FreeBSD ZFS
The Zettabyte File System
|
00001 /* 00002 * CDDL HEADER START 00003 * 00004 * The contents of this file are subject to the terms of the 00005 * Common Development and Distribution License (the "License"). 00006 * You may not use this file except in compliance with the License. 00007 * 00008 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 00009 * or http://www.opensolaris.org/os/licensing. 00010 * See the License for the specific language governing permissions 00011 * and limitations under the License. 00012 * 00013 * When distributing Covered Code, include this CDDL HEADER in each 00014 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 00015 * If applicable, add the following below this CDDL HEADER, with the 00016 * fields enclosed by brackets "[]" replaced with your own identifying 00017 * information: Portions Copyright [yyyy] [name of copyright owner] 00018 * 00019 * CDDL HEADER END 00020 */ 00021 /* 00022 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 00023 */ 00024 00032 #include <sys/zio.h> 00033 #include <sys/spa.h> 00034 #include <sys/dmu.h> 00035 #include <sys/zfs_context.h> 00036 #include <sys/fs/zfs.h> 00037 #include <sys/zap.h> 00038 #include <sys/zap_impl.h> 00039 #include <sys/zap_leaf.h> 00040 #include <sys/arc.h> 00041 00042 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 00043 00044 #define CHAIN_END 0xffff /* end of the chunk chain */ 00045 00046 /* half the (current) minimum block size */ 00047 #define MAX_ARRAY_BYTES (8<<10) 00048 00049 #define LEAF_HASH(l, h) \ 00050 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 00051 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) 00052 00053 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 00054 00055 00056 static void 00057 zap_memset(void *a, int c, size_t n) 00058 { 00059 char *cp = a; 00060 char *cpend = cp + n; 00061 00062 while (cp < cpend) 00063 *cp++ = c; 00064 } 00065 00066 static void 00067 stv(int len, void *addr, uint64_t value) 00068 { 00069 switch (len) { 00070 case 1: 00071 *(uint8_t *)addr = value; 00072 return; 00073 case 2: 00074 *(uint16_t *)addr = value; 00075 return; 00076 case 4: 00077 *(uint32_t *)addr = value; 00078 return; 00079 case 8: 00080 *(uint64_t *)addr = value; 00081 return; 00082 } 00083 ASSERT(!"bad int len"); 00084 } 00085 00086 static uint64_t 00087 ldv(int len, const void *addr) 00088 { 00089 switch (len) { 00090 case 1: 00091 return (*(uint8_t *)addr); 00092 case 2: 00093 return (*(uint16_t *)addr); 00094 case 4: 00095 return (*(uint32_t *)addr); 00096 case 8: 00097 return (*(uint64_t *)addr); 00098 } 00099 ASSERT(!"bad int len"); 00100 return (0xFEEDFACEDEADBEEFULL); 00101 } 00102 00103 void 00104 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 00105 { 00106 int i; 00107 zap_leaf_t l; 00108 l.l_bs = highbit(size)-1; 00109 l.l_phys = buf; 00110 00111 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 00112 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 00113 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 00114 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 00115 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 00116 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 00117 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 00118 00119 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 00120 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 00121 00122 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 00123 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 00124 struct zap_leaf_entry *le; 00125 00126 switch (lc->l_free.lf_type) { 00127 case ZAP_CHUNK_ENTRY: 00128 le = &lc->l_entry; 00129 00130 le->le_type = BSWAP_8(le->le_type); 00131 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 00132 le->le_next = BSWAP_16(le->le_next); 00133 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 00134 le->le_name_numints = BSWAP_16(le->le_name_numints); 00135 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 00136 le->le_value_numints = BSWAP_16(le->le_value_numints); 00137 le->le_cd = BSWAP_32(le->le_cd); 00138 le->le_hash = BSWAP_64(le->le_hash); 00139 break; 00140 case ZAP_CHUNK_FREE: 00141 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 00142 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 00143 break; 00144 case ZAP_CHUNK_ARRAY: 00145 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 00146 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 00147 /* la_array doesn't need swapping */ 00148 break; 00149 default: 00150 ASSERT(!"bad leaf type"); 00151 } 00152 } 00153 } 00154 00155 void 00156 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 00157 { 00158 int i; 00159 00160 l->l_bs = highbit(l->l_dbuf->db_size)-1; 00161 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); 00162 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 00163 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 00164 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 00165 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 00166 } 00167 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 00168 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; 00169 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 00170 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 00171 if (sort) 00172 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 00173 } 00174 00175 /* 00176 * Routines which manipulate leaf chunks (l_chunk[]). 00177 */ 00178 00179 static uint16_t 00180 zap_leaf_chunk_alloc(zap_leaf_t *l) 00181 { 00182 int chunk; 00183 00184 ASSERT(l->l_phys->l_hdr.lh_nfree > 0); 00185 00186 chunk = l->l_phys->l_hdr.lh_freelist; 00187 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00188 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 00189 00190 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 00191 00192 l->l_phys->l_hdr.lh_nfree--; 00193 00194 return (chunk); 00195 } 00196 00197 static void 00198 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 00199 { 00200 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 00201 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 00202 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00203 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 00204 00205 zlf->lf_type = ZAP_CHUNK_FREE; 00206 zlf->lf_next = l->l_phys->l_hdr.lh_freelist; 00207 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 00208 l->l_phys->l_hdr.lh_freelist = chunk; 00209 00210 l->l_phys->l_hdr.lh_nfree++; 00211 } 00212 00213 /* 00214 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 00215 */ 00216 00217 static uint16_t 00218 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 00219 int integer_size, int num_integers) 00220 { 00221 uint16_t chunk_head; 00222 uint16_t *chunkp = &chunk_head; 00223 int byten = 0; 00224 uint64_t value; 00225 int shift = (integer_size-1)*8; 00226 int len = num_integers; 00227 00228 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 00229 00230 while (len > 0) { 00231 uint16_t chunk = zap_leaf_chunk_alloc(l); 00232 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 00233 int i; 00234 00235 la->la_type = ZAP_CHUNK_ARRAY; 00236 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 00237 if (byten == 0) 00238 value = ldv(integer_size, buf); 00239 la->la_array[i] = value >> shift; 00240 value <<= 8; 00241 if (++byten == integer_size) { 00242 byten = 0; 00243 buf += integer_size; 00244 if (--len == 0) 00245 break; 00246 } 00247 } 00248 00249 *chunkp = chunk; 00250 chunkp = &la->la_next; 00251 } 00252 *chunkp = CHAIN_END; 00253 00254 return (chunk_head); 00255 } 00256 00257 static void 00258 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 00259 { 00260 uint16_t chunk = *chunkp; 00261 00262 *chunkp = CHAIN_END; 00263 00264 while (chunk != CHAIN_END) { 00265 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 00266 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 00267 ZAP_CHUNK_ARRAY); 00268 zap_leaf_chunk_free(l, chunk); 00269 chunk = nextchunk; 00270 } 00271 } 00272 00277 static void 00278 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 00279 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 00280 void *buf) 00281 { 00282 int len = MIN(array_len, buf_len); 00283 int byten = 0; 00284 uint64_t value = 0; 00285 char *p = buf; 00286 00287 ASSERT3U(array_int_len, <=, buf_int_len); 00288 00289 /* Fast path for one 8-byte integer */ 00290 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 00291 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 00292 uint8_t *ip = la->la_array; 00293 uint64_t *buf64 = buf; 00294 00295 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 00296 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 00297 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 00298 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 00299 return; 00300 } 00301 00302 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 00303 if (array_int_len == 1 && buf_int_len == 1 && 00304 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 00305 while (chunk != CHAIN_END) { 00306 struct zap_leaf_array *la = 00307 &ZAP_LEAF_CHUNK(l, chunk).l_array; 00308 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); 00309 p += ZAP_LEAF_ARRAY_BYTES; 00310 chunk = la->la_next; 00311 } 00312 return; 00313 } 00314 00315 while (len > 0) { 00316 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 00317 int i; 00318 00319 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00320 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 00321 value = (value << 8) | la->la_array[i]; 00322 byten++; 00323 if (byten == array_int_len) { 00324 stv(buf_int_len, p, value); 00325 byten = 0; 00326 len--; 00327 if (len == 0) 00328 return; 00329 p += buf_int_len; 00330 } 00331 } 00332 chunk = la->la_next; 00333 } 00334 } 00335 00336 static boolean_t 00337 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 00338 int chunk, int array_numints) 00339 { 00340 int bseen = 0; 00341 00342 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 00343 uint64_t *thiskey; 00344 boolean_t match; 00345 00346 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 00347 thiskey = kmem_alloc(array_numints * sizeof (*thiskey), 00348 KM_SLEEP); 00349 00350 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 00351 sizeof (*thiskey), array_numints, thiskey); 00352 match = bcmp(thiskey, zn->zn_key_orig, 00353 array_numints * sizeof (*thiskey)) == 0; 00354 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 00355 return (match); 00356 } 00357 00358 ASSERT(zn->zn_key_intlen == 1); 00359 if (zn->zn_matchtype == MT_FIRST) { 00360 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 00361 boolean_t match; 00362 00363 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 00364 sizeof (char), array_numints, thisname); 00365 match = zap_match(zn, thisname); 00366 kmem_free(thisname, array_numints); 00367 return (match); 00368 } 00369 00370 /* 00371 * Fast path for exact matching. 00372 * First check that the lengths match, so that we don't read 00373 * past the end of the zn_key_orig array. 00374 */ 00375 if (array_numints != zn->zn_key_orig_numints) 00376 return (B_FALSE); 00377 while (bseen < array_numints) { 00378 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 00379 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 00380 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00381 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) 00382 break; 00383 chunk = la->la_next; 00384 bseen += toread; 00385 } 00386 return (bseen == array_numints); 00387 } 00388 00389 /* 00390 * Routines which manipulate leaf entries. 00391 */ 00392 00393 int 00394 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 00395 { 00396 uint16_t *chunkp; 00397 struct zap_leaf_entry *le; 00398 00399 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 00400 00401 again: 00402 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 00403 *chunkp != CHAIN_END; chunkp = &le->le_next) { 00404 uint16_t chunk = *chunkp; 00405 le = ZAP_LEAF_ENTRY(l, chunk); 00406 00407 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00408 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 00409 00410 if (le->le_hash != zn->zn_hash) 00411 continue; 00412 00413 /* 00414 * NB: the entry chain is always sorted by cd on 00415 * normalized zap objects, so this will find the 00416 * lowest-cd match for MT_FIRST. 00417 */ 00418 ASSERT(zn->zn_matchtype == MT_EXACT || 00419 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 00420 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 00421 le->le_name_numints)) { 00422 zeh->zeh_num_integers = le->le_value_numints; 00423 zeh->zeh_integer_size = le->le_value_intlen; 00424 zeh->zeh_cd = le->le_cd; 00425 zeh->zeh_hash = le->le_hash; 00426 zeh->zeh_chunkp = chunkp; 00427 zeh->zeh_leaf = l; 00428 return (0); 00429 } 00430 } 00431 00432 /* 00433 * NB: we could of course do this in one pass, but that would be 00434 * a pain. We'll see if MT_BEST is even used much. 00435 */ 00436 if (zn->zn_matchtype == MT_BEST) { 00437 zn->zn_matchtype = MT_FIRST; 00438 goto again; 00439 } 00440 00441 return (ENOENT); 00442 } 00443 00444 /* Return (h1,cd1 >= h2,cd2) */ 00445 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 00446 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 00447 00448 int 00449 zap_leaf_lookup_closest(zap_leaf_t *l, 00450 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 00451 { 00452 uint16_t chunk; 00453 uint64_t besth = -1ULL; 00454 uint32_t bestcd = -1U; 00455 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 00456 uint16_t lh; 00457 struct zap_leaf_entry *le; 00458 00459 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 00460 00461 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 00462 for (chunk = l->l_phys->l_hash[lh]; 00463 chunk != CHAIN_END; chunk = le->le_next) { 00464 le = ZAP_LEAF_ENTRY(l, chunk); 00465 00466 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00467 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 00468 00469 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 00470 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 00471 ASSERT3U(bestlh, >=, lh); 00472 bestlh = lh; 00473 besth = le->le_hash; 00474 bestcd = le->le_cd; 00475 00476 zeh->zeh_num_integers = le->le_value_numints; 00477 zeh->zeh_integer_size = le->le_value_intlen; 00478 zeh->zeh_cd = le->le_cd; 00479 zeh->zeh_hash = le->le_hash; 00480 zeh->zeh_fakechunk = chunk; 00481 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 00482 zeh->zeh_leaf = l; 00483 } 00484 } 00485 } 00486 00487 return (bestcd == -1U ? ENOENT : 0); 00488 } 00489 00490 int 00491 zap_entry_read(const zap_entry_handle_t *zeh, 00492 uint8_t integer_size, uint64_t num_integers, void *buf) 00493 { 00494 struct zap_leaf_entry *le = 00495 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 00496 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 00497 00498 if (le->le_value_intlen > integer_size) 00499 return (EINVAL); 00500 00501 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 00502 le->le_value_intlen, le->le_value_numints, 00503 integer_size, num_integers, buf); 00504 00505 if (zeh->zeh_num_integers > num_integers) 00506 return (EOVERFLOW); 00507 return (0); 00508 00509 } 00510 00511 int 00512 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 00513 char *buf) 00514 { 00515 struct zap_leaf_entry *le = 00516 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 00517 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 00518 00519 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 00520 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 00521 le->le_name_numints, 8, buflen / 8, buf); 00522 } else { 00523 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 00524 le->le_name_numints, 1, buflen, buf); 00525 } 00526 if (le->le_name_numints > buflen) 00527 return (EOVERFLOW); 00528 return (0); 00529 } 00530 00531 int 00532 zap_entry_update(zap_entry_handle_t *zeh, 00533 uint8_t integer_size, uint64_t num_integers, const void *buf) 00534 { 00535 int delta_chunks; 00536 zap_leaf_t *l = zeh->zeh_leaf; 00537 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 00538 00539 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 00540 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 00541 00542 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) 00543 return (EAGAIN); 00544 00545 zap_leaf_array_free(l, &le->le_value_chunk); 00546 le->le_value_chunk = 00547 zap_leaf_array_create(l, buf, integer_size, num_integers); 00548 le->le_value_numints = num_integers; 00549 le->le_value_intlen = integer_size; 00550 return (0); 00551 } 00552 00553 void 00554 zap_entry_remove(zap_entry_handle_t *zeh) 00555 { 00556 uint16_t entry_chunk; 00557 struct zap_leaf_entry *le; 00558 zap_leaf_t *l = zeh->zeh_leaf; 00559 00560 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 00561 00562 entry_chunk = *zeh->zeh_chunkp; 00563 le = ZAP_LEAF_ENTRY(l, entry_chunk); 00564 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 00565 00566 zap_leaf_array_free(l, &le->le_name_chunk); 00567 zap_leaf_array_free(l, &le->le_value_chunk); 00568 00569 *zeh->zeh_chunkp = le->le_next; 00570 zap_leaf_chunk_free(l, entry_chunk); 00571 00572 l->l_phys->l_hdr.lh_nentries--; 00573 } 00574 00575 int 00576 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 00577 uint8_t integer_size, uint64_t num_integers, const void *buf, 00578 zap_entry_handle_t *zeh) 00579 { 00580 uint16_t chunk; 00581 uint16_t *chunkp; 00582 struct zap_leaf_entry *le; 00583 uint64_t valuelen; 00584 int numchunks; 00585 uint64_t h = zn->zn_hash; 00586 00587 valuelen = integer_size * num_integers; 00588 00589 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 00590 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 00591 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 00592 return (E2BIG); 00593 00594 if (cd == ZAP_NEED_CD) { 00595 /* find the lowest unused cd */ 00596 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 00597 cd = 0; 00598 00599 for (chunk = *LEAF_HASH_ENTPTR(l, h); 00600 chunk != CHAIN_END; chunk = le->le_next) { 00601 le = ZAP_LEAF_ENTRY(l, chunk); 00602 if (le->le_cd > cd) 00603 break; 00604 if (le->le_hash == h) { 00605 ASSERT3U(cd, ==, le->le_cd); 00606 cd++; 00607 } 00608 } 00609 } else { 00610 /* old unsorted format; do it the O(n^2) way */ 00611 for (cd = 0; ; cd++) { 00612 for (chunk = *LEAF_HASH_ENTPTR(l, h); 00613 chunk != CHAIN_END; chunk = le->le_next) { 00614 le = ZAP_LEAF_ENTRY(l, chunk); 00615 if (le->le_hash == h && 00616 le->le_cd == cd) { 00617 break; 00618 } 00619 } 00620 /* If this cd is not in use, we are good. */ 00621 if (chunk == CHAIN_END) 00622 break; 00623 } 00624 } 00625 /* 00626 * We would run out of space in a block before we could 00627 * store enough entries to run out of CD values. 00628 */ 00629 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 00630 } 00631 00632 if (l->l_phys->l_hdr.lh_nfree < numchunks) 00633 return (EAGAIN); 00634 00635 /* make the entry */ 00636 chunk = zap_leaf_chunk_alloc(l); 00637 le = ZAP_LEAF_ENTRY(l, chunk); 00638 le->le_type = ZAP_CHUNK_ENTRY; 00639 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 00640 zn->zn_key_intlen, zn->zn_key_orig_numints); 00641 le->le_name_numints = zn->zn_key_orig_numints; 00642 le->le_value_chunk = 00643 zap_leaf_array_create(l, buf, integer_size, num_integers); 00644 le->le_value_numints = num_integers; 00645 le->le_value_intlen = integer_size; 00646 le->le_hash = h; 00647 le->le_cd = cd; 00648 00649 /* link it into the hash chain */ 00650 /* XXX if we did the search above, we could just use that */ 00651 chunkp = zap_leaf_rehash_entry(l, chunk); 00652 00653 l->l_phys->l_hdr.lh_nentries++; 00654 00655 zeh->zeh_leaf = l; 00656 zeh->zeh_num_integers = num_integers; 00657 zeh->zeh_integer_size = le->le_value_intlen; 00658 zeh->zeh_cd = le->le_cd; 00659 zeh->zeh_hash = le->le_hash; 00660 zeh->zeh_chunkp = chunkp; 00661 00662 return (0); 00663 } 00664 00676 boolean_t 00677 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 00678 const char *name, zap_t *zap) 00679 { 00680 uint64_t chunk; 00681 struct zap_leaf_entry *le; 00682 boolean_t allocdzn = B_FALSE; 00683 00684 if (zap->zap_normflags == 0) 00685 return (B_FALSE); 00686 00687 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 00688 chunk != CHAIN_END; chunk = le->le_next) { 00689 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 00690 if (le->le_hash != zeh->zeh_hash) 00691 continue; 00692 if (le->le_cd == zeh->zeh_cd) 00693 continue; 00694 00695 if (zn == NULL) { 00696 zn = zap_name_alloc(zap, name, MT_FIRST); 00697 allocdzn = B_TRUE; 00698 } 00699 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 00700 le->le_name_chunk, le->le_name_numints)) { 00701 if (allocdzn) 00702 zap_name_free(zn); 00703 return (B_TRUE); 00704 } 00705 } 00706 if (allocdzn) 00707 zap_name_free(zn); 00708 return (B_FALSE); 00709 } 00710 00711 /* 00712 * Routines for transferring entries between leafs. 00713 */ 00714 00715 static uint16_t * 00716 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 00717 { 00718 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 00719 struct zap_leaf_entry *le2; 00720 uint16_t *chunkp; 00721 00722 /* 00723 * keep the entry chain sorted by cd 00724 * NB: this will not cause problems for unsorted leafs, though 00725 * it is unnecessary there. 00726 */ 00727 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 00728 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 00729 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 00730 if (le2->le_cd > le->le_cd) 00731 break; 00732 } 00733 00734 le->le_next = *chunkp; 00735 *chunkp = entry; 00736 return (chunkp); 00737 } 00738 00739 static uint16_t 00740 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 00741 { 00742 uint16_t new_chunk; 00743 uint16_t *nchunkp = &new_chunk; 00744 00745 while (chunk != CHAIN_END) { 00746 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 00747 struct zap_leaf_array *nla = 00748 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 00749 struct zap_leaf_array *la = 00750 &ZAP_LEAF_CHUNK(l, chunk).l_array; 00751 int nextchunk = la->la_next; 00752 00753 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00754 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 00755 00756 *nla = *la; /* structure assignment */ 00757 00758 zap_leaf_chunk_free(l, chunk); 00759 chunk = nextchunk; 00760 *nchunkp = nchunk; 00761 nchunkp = &nla->la_next; 00762 } 00763 *nchunkp = CHAIN_END; 00764 return (new_chunk); 00765 } 00766 00767 static void 00768 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 00769 { 00770 struct zap_leaf_entry *le, *nle; 00771 uint16_t chunk; 00772 00773 le = ZAP_LEAF_ENTRY(l, entry); 00774 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 00775 00776 chunk = zap_leaf_chunk_alloc(nl); 00777 nle = ZAP_LEAF_ENTRY(nl, chunk); 00778 *nle = *le; /* structure assignment */ 00779 00780 (void) zap_leaf_rehash_entry(nl, chunk); 00781 00782 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 00783 nle->le_value_chunk = 00784 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 00785 00786 zap_leaf_chunk_free(l, entry); 00787 00788 l->l_phys->l_hdr.lh_nentries--; 00789 nl->l_phys->l_hdr.lh_nentries++; 00790 } 00791 00795 void 00796 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 00797 { 00798 int i; 00799 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; 00800 00801 /* set new prefix and prefix_len */ 00802 l->l_phys->l_hdr.lh_prefix <<= 1; 00803 l->l_phys->l_hdr.lh_prefix_len++; 00804 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; 00805 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 00806 00807 /* break existing hash chains */ 00808 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 00809 00810 if (sort) 00811 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 00812 00813 /* 00814 * Transfer entries whose hash bit 'bit' is set to nl; rehash 00815 * the remaining entries 00816 * 00817 * NB: We could find entries via the hashtable instead. That 00818 * would be O(hashents+numents) rather than O(numblks+numents), 00819 * but this accesses memory more sequentially, and when we're 00820 * called, the block is usually pretty full. 00821 */ 00822 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 00823 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 00824 if (le->le_type != ZAP_CHUNK_ENTRY) 00825 continue; 00826 00827 if (le->le_hash & (1ULL << bit)) 00828 zap_leaf_transfer_entry(l, i, nl); 00829 else 00830 (void) zap_leaf_rehash_entry(l, i); 00831 } 00832 } 00833 00834 void 00835 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 00836 { 00837 int i, n; 00838 00839 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 00840 l->l_phys->l_hdr.lh_prefix_len; 00841 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 00842 zs->zs_leafs_with_2n_pointers[n]++; 00843 00844 00845 n = l->l_phys->l_hdr.lh_nentries/5; 00846 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 00847 zs->zs_blocks_with_n5_entries[n]++; 00848 00849 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 00850 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 00851 (1<<FZAP_BLOCK_SHIFT(zap)); 00852 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 00853 zs->zs_blocks_n_tenths_full[n]++; 00854 00855 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 00856 int nentries = 0; 00857 int chunk = l->l_phys->l_hash[i]; 00858 00859 while (chunk != CHAIN_END) { 00860 struct zap_leaf_entry *le = 00861 ZAP_LEAF_ENTRY(l, chunk); 00862 00863 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 00864 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 00865 le->le_value_intlen); 00866 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 00867 zs->zs_entries_using_n_chunks[n]++; 00868 00869 chunk = le->le_next; 00870 nentries++; 00871 } 00872 00873 n = nentries; 00874 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 00875 zs->zs_buckets_with_n_entries[n]++; 00876 } 00877 }