
Kernel TLS and hardware TLS offload in
FreeBSD 13

by

Mellanox, Chelsio and Netflix

Why crypto?

● Bob and Alice and the secret message
● Mathematical dependance on a relatively

small pre-shared key
● When used right:

○ Prevents eavesdropping
○ Prevents data tampering

● When used wrong:
○ Makes denial of service easier

What is TLS ?

● Transport Layer Security, TLS
● Used behind https:// (TCP port 443)
● Supports multiple crypto codecs among others

○ AES 128B / 256B
● Supports multiple key exchange protocols

○ DiffieHellman, DH
○ Ron Rivest, Adi Shamir, Leonard Adleman,

RSA
● Most recent version is v1.3

What is TLS ?

TLS v1.2

● Layout of a TLS record
● More detailed information at: https://tls.ulfheim.net/

TLS
REC(s)

TCP
HDR

IPv4/IPv
6

HDR
ETH
HDR

uint8_t tls_type (data,
handshake,alert)

uint8_t tls_vmajor (3)

uint8_t tls_vminor (3)

uint16_t tls_length (0..16K)

uint8_t tls_nonce[]

uint8_t tls_data[]

TLS v1.3

● Layout of a TLS record
● More detailed information at: https://tls.ulfheim.net/

TLS
REC(s)

TCP
HDR

IPv4/IPv
6

HDR
ETH
HDR

uint8_t tls_type (data=23)

uint8_t tls_vmajor (3)

uint8_t tls_vminor (3)

uint16_t tls_length (0..16K)

uint8_t tls_data[]

AES 128B / 256B

● Advanced Encryption Standard, AES
○ See: https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

● A 16-byte block cipher
● The stream version can stop and resume

encryption at any arbitrary point in the TLS
record
○ Supports the concept of a crypto cursor

● FreeBSD also supports CBC

TLS implementations

● Current FreeBSD alternatives (OpenSSL based)
○ Generic user-space, AES-NI
○ SW kernel TLS, AES-NI
○ Open Crypto Framework kernel backend
○ TCP Offload Engine for TLS
○ NIC kernel TLS

... vs ...

A look inside OpenSSL

● Datapath is oriented around:
○ typedef struct bio_st BIO;
○ BIO_read()
○ BIO_write()

● All data must have a pointer in user-space in
order to be encrypted

● Based on the source and sink methodology
● Refer to the bio(3) manual page

OpenSSL and kTLS

● 16 patches have been submitted by:
Boris Pismenny <borisp@mellanox.com>

● FreeBSD userspace APIs:
○ #include <sys/ktls.h>
○ setsockopt(TCP_TXTLS_ENABLE)
○ setsockopt(TCP_TXTLS_MODE)

● FreeBSD kernel support added in r351522:
○ https://svnweb.freebsd.org/changeset/base/351522

Netflix kTLS

● Kernel TLS Motivation
○ Handle 100Gb/s of TLS with nginx
○ Retain performance advantages of async

sendfile(9) (fewer context switches, no
nginx thread pool, no extra memory copy)

○ Eliminate any possible inefficiency

New mbuf technologies

● Not ready flag
● Unmapped mbufs
● Send Tags

not ready mbuf flag

● mbuf flag M_NOTREADY tell socket buffers if mbufs are
ready for transmission or not.

● Added to support async sendfile in r275329
● Sendfile(9) adds mbuf to socket buffer marked

M_NOTREADY
○ Until M_NOTREADY is cleared, tcp cannot send it

● disk reads are issued into those mbufs
● M_NOTREADY cleared and tcp_usr_ready() routine called

after disk read is complete
● Allows a simple mbuf filter routine, like TLS encryption, to

process the mbufs before they are submitted to the network
driver via the TCP stack.

Netflix “unmapped” mbufs

● Called “unmapped” because they carry an array of pointers to unmapped physical

addresses.

● Initially envisioned for sendfile, not TLS

● Dramatically reduces the length of socket buffer mbuf chains, thus reducing cache

misses. For a 16K TLS record, it compresses chains by about 6:1 (TLS hdr, trailer

and 4 buffers). For unencrypted sendfile, it can compress mbuf chains up to 19:1

○ 5-20% CPU reduction in Netflix unencrypted workloads

● Describes a TLS record entirely, including TLS header, trailer, message data, and

pointers to kernel TLS session state in a single mbuf

● A single reference counted entity per TLS record is key for NIC TLS offload to be

able to easily handle TCP retransmissions.

Netflix Software kTLS

Software Kernel TLS Implementation, TLS 1.0 -> TLS 1.3

○ Plaintext data passed to kernel via sendfile() or sosend().

○ The kernel frames TLS records into M_NOMAP mbufs at
sendfile() or sosend() time and places them into socket
buffers.

○ Mbuf chains are marked with M_NOTREADY

○ Framed records are queued for encryption when they
would previously be marked “ready”

○ Encryption is done by a pool of kernel threads (1 per core)

○ Once encrypted, mbufs are marked “ready” & sent to TCP

mbuf send tags

● A property of mbufs which tell the underlying
network interface about dedicated packet
processing and queues.

● A quick and efficient way to demultiplex data
traffic.

● Allows for traversal through VLAN and LAGG
(Link Aggregation).

● Safe against route changes.

mbuf send tag APIs

● Control path methods:
○ struct mbuf_snd_tag *mst;
○ struct ifnet *ifp;

○ Allocate(ifp, &mst)
○ Modify(mst, arg)
○ Query(mst, arg)
○ Free(ifp, mst)

mbuf send tags

● From Network Stack, NS, perspective:
○ struct mbuf *mb;
○ struct ifnet *ifp;
○ m_pkthdr.snd_tag = mst;
○ m_pkthdr.csum_flag |= CSUM_SND_TAG;
○ ifp->if_output(mb);

mbuf send tags

● From Network Driver, ND, perspective:
○ struct mbuf *mb;
○ struct xxx_send_tag *st;
○ st = container_of(m_pkthdr.snd_tag, …)
○ select queue by st->queue;

NS

LAGG

VLAN

ND

o o o

Dataflow overview

Sendfile dataflow overview

Using sendfile and software kTLS, data
is encrypted by the host CPU.

This increases our bandwidth
requirements by 25GB/s to roughly
55GB/s CPU

Disks Memory Network Card

100Gb/s
12.5GB/s

100Gb/s
12.5GB/s

5G
B

/s

 5G
B

/s

12
.5

G
B

/s

12
.5

G
B

/s

12
.5
G
B/
s

Sendfile dataflow overview

Using sendfile and inline kTLS, data is
encrypted by the NIC.

This reduces our bandwidth
requirements by 25GB/s to roughly the
same as no TLS. CPU

Disks Memory Network Card

100Gb/s
12.5GB/s

100Gb/s
12.5GB/s

5G
B

/s

 5G
B

/s

12.5G
B/s

12
.5
G
B/
s

TLS before and after

NIC kTLS offload challenges

● Minor OSI model violation.
● Packets are sent containing full headers,

except for un-encrypted payload.
● Prior to retransmission, crypto cursor needs

update by re-transmitting off-the-wire parts of
the TLS record, if any.

Benchmarks

Netflix Video Serving with TLS

Kernel TLS Performance: 90Gb/s, 68% CPU (SW), 35% CPU (T6 NIC kTLS)

○ Original (~2016) Netflix 100G NVME flash appliance

■ E5-2697A v4 @ 2.60GHz (16 core / 32 HTT), 128GB DDR4 2400MT/s, 1x100GbE, 4xNVME

Mellanox NIC TLS

Mellanox NIC TLS support

● ConnectX-6 DX (coming October 2019)
○ http://www.mellanox.com/page/ethernet_cards_overview
○ 16 000 000 simultaneous TLS connections (25, 50, 100 and 200 Gbit/s)

Chelsio HW TLS support

● T6 NIC TLS supports TLS v1.1 and v1.2 using
both AES-CBC and AES-GCM.

● TOE TLS support for kTLS is in progress.
● ccr(4) can be used for AES-GCM via the OCF

backend.

Questions and Answers

Q/A

