
The Magical Mystery Merge
Or

Why we run FreeBSD-current
at Netflix

Drew Gallatin
Openfest, November 2023

Open Connect is Netflix’s CDN. It is
global, efficient, and purpose-built
for distributing Netflix’s content.

Open Connect Appliances are
Netflix’s CDN servers.

 Netflix OCAs:

● Run FreeBSD-current
○ UFS for content / ZFS for root

● Serve content using ngnix
○ Pre-encoded for all codecs/bitrates

● Storage fails in place
○ No RAID for content, etc

 Netflix Workload:

● Serve only static media files
● Pre-encoded for all codecs/bitrates

○ Video quality is of the utmost
importance, so we don’t transcode on
the server

● Greatly simplifies server workload

 FreeBSD:

● Free, open source OS with BSD license
● Forked from 386BSD in 1993
● Focus on performance
● Main distro includes kernel, base utils,

compilers, all source, and packaged 3rd
party software

● Netflix has an internal “distro”

 OCA Dev:

● Team within Netflix that maintains the
software stack for our OCAs

● Roughly 10 FTEs
● Most of us are FreeBSD committers or

contributors

 OCA OS development, then & now

● Merge FreeBSD from -stable every few
weeks.

● Moved to a new -stable branch every
few years
○ This sometimes took months.

● Upstreaming patches required porting
them to -current

 OCA OS development, then & now

● Merge upstream from FreeBSD-current
every 3 weeks
○ We notice & resolve new upstream

bugs that impact us immediately
○ Much easier to upstream code and

collaborate with upstream developers

 Upstreaming code to FreeBSD:

● Small changes & bugfixes are done
upstream, and brought back via the
3-week upstream merge process (or via
cherrypicks for critical issues)

● Larger changes are done locally
○ kTLS took ~5 years to upstream

 Testing:

● Each change is built and regression
tested automatically using Jenkins on
amd64 & arm64

● Nightly smoke tests on dozens of OCAs
running production traffic

● Release testing on a limited number of
OCAs running production traffic

 Our contributions to FreeBSD:

● Asynchronous sendfile
● Unmapped mbufs
● Kernel TLS
● CAM IO Scheduler
● RACK and BBR TCP
● TCP HPTS (TCP pacing)
● Performance enhancements for NUMA

 More contributions to FreeBSD:

● Pfil memory pointer hooks for efficient
firewall packet handling

● Many scalability fixes
● Kboot (kexec of FreeBSD from a Linux

kernel) for arm64 and amd64

 Contributions to FreeBSD:

● Improved support for FreeBSD from
various hardware vendors

● Financial support of the FreeBSD
Foundation

 Performance Goals:

● Improve efficiency by reducing CPU use
while improving our maintaining
member QoE
○ Improves bandwidth at the high end
○ Reduces power consumption at the

low end

 Performance Milestones:

2017: First 100Gb/s CDN server
Intel Xeon E5-2697A, software kTLS

2020: First 200Gb/s CDN server
AMD 7502P, software kTLS

2021: First 400Gb/s CDN server
AMD 7502P, NIC kTLS offload

 Important Performance Milestones:

2022: First 800Gb/s CDN server
2x AMD 7713, NIC kTLS offload

2023: First 100Gb/s CDN server
consuming only 100W of power

Nvidia Bluefield-3, NIC kTLS offload

 Magical Mystery Merge: A case study
in why we track FreeBSD-current

● Upstream merge from 3 Aug -> 30 Aug
● Testing merge branch, my 8 year old

100GbE Xeons showed an 8% increase
in CPU usage

● Neither profilers nor performance
metrics showed any new bottlenecks

Drew Gallatin
NAB Show, April 2022

 Bisect, and Bisect some more

● We bisected in the upstream FreeBSD
tree, re-doing the merge into our tree for
every bisection step.

● Then built, installed, and tested an image
with production traffic

● Each bisection step took ~4 hours (1hr
build & install, 2 hours to ramp OCA up
and down, 1 hour to collect CPU use)

 Found it!

9a7add6d01f3 init_main: Switch from sysinit array to SLIST

But this makes no sense. This just
changes the sorting algorithm for kernel
initialization functions..
This is one of the most famous commits
in recent years

 SYSINIT

● kernel subsystem initializers, sorted by
linker into alphabetical order

● There are 79 subsystems and 10 “order”
hints within subsystems

● Sorted at boot by subsystem, then order.
● SYSINITS from the same subsystem with

the same order should be able to run in
any order

 The (easy) bug

● Original sort was not a bubble sort, but a
selection sort

● This means ties are handled differently,
and the order for all ties are different

● Colin and I both realized this when we both
verified SYSINITS were called in a different
order now using TSLOG

 The (easy) fix

● 71679cf468ba init_main: Switch from
SLIST to STAILQ, fix order

● This reverts the ordering to what we had
before.

● But why does it work?

 Bisecting to find the real bug

● Reverse selected SYSINITS in multiple
subsystems (by using a simple patch
controlled by kernel args)

○ SI_SUB_DRIVERS
● Reverse selected SYSINITS in

SI_SUB_DRIVERS

 The real bug

● Old p4tcc cpu frequency driver was put into
control when it was initialized first

● The correct driver (est) never got a chance
to attach

● Things had worked accidentally for years,
due to linkerset alphabetical ordering

● A colleague (Warner Losh) is working on a
real fix for CPU frequency driver selection

 p4tcc:
dev.cpu.0.freq_levels: 2599/-1 2274/-1 1949/-1
1624/-1 1299/-1 974/-1 649/-1 324/-1

est:
dev.cpu.0.freq_levels: 2601/145000 2600/145000
2500/137619 2400/130381 2300/123284 2200/116324
2100/109501 2000/102810 1900/97595 1800/91158
1700/84855 1600/78682 1500/72640 1400/66724
1300/62183 1200/56509

 Community interaction

● I reached out to Colin in an internal
FreeBSD chatroom

● He remembered the change & was happy
to help.

● He posted a fix for review within hours
● It landed the next day, and I cherry-picked

it into our codebase

 Community benefits

● Netflix noticed this bug almost immediately
after it hit the tree. We were the first to
notice a regression and be able to attribute
it to this change.

● At least one other driver bug was “fixed” by
reverting to the old order (amdtemp)

 Netflix benefits

● This was a bug that made no sense, and
required bisection.

● Bisecting 3 weeks of changes took days.
Had we moved between -stable branches,
bisecting 3+ years of changes could have
taken weeks

 Netflix benefits

● Since we found the bug within a week or
so of it hitting the tree, the developer
responsible was incredibly responsive. All
the details were fresh in his memory.

● Contrast this to somebody reporting a bug
in something you did 3-4 years ago.

Thank you
Slides at: https://people.freebsd.org/~gallatin/talks/

