
Io Programming Guide

Introduction
Perspective
Getting Started
Downloading
Installing
Binaries
Running Scripts
Interactive Mode

Syntax
Expressions
Messages
Operators
Assignment
Numbers
Strings
Comments

Objects
Overview
Prototypes
Inheritance
Methods
Blocks
Forward
Resend
Super
Introspection

Control Flow
true, false and nil
Comparison
Conditions
Loops
Return

Importing

Concurrency
Coroutines
Scheduler
Actors
Futures
yield
Pause and Resume

Exceptions
Raise
try, catch
Pass
Custom Exceptions

Unicode
Sequences
Source
Conversion

Primitives
Object
List
Sequence
Ranges
File
Directory
Date
Networking
XML
Vector

Embedding
Conventions
IoState
Values

Bindings

Appendix
Grammar
Credits
References
License

Introduction

Overview Io is a dynamic prototype-based programming language. The ideas in Io are
mostly inspired by Smalltalk[1] (all values are objects), Self[2] (prototype-based),
NewtonScript[3] (differential inheritance), Act1[4] (actors and futures for
concurrency), Lisp[5] (code is a runtime inspectable / modifiable tree) and Lua[6]
(small, embeddable).

Perspective The focus of programming language research for the last thirty years has been
to combine the expressive power of high level languages like Smalltalk and the
performance of low level language like C with little attention paid to advancing
expressive power itself. The result has been a series of languages which are
neither as fast as C or as expressive as Smalltalk. Io's purpose is to refocus
attention on expressiveness by exploring higher level dynamic programming
features with greater levels of runtime flexibility and simplified programming
syntax and semantics.

In Io, all values are objects (of which, anything can change at runtime, including
slots, methods and inheritance), all code is made up of expressions (which are
runtime inspectable and modifiable) and all expressions are made up of
dynamic message sends (including assignment and control structures).
Execution contexts themselves are objects and activatable objects such as
methods/blocks and functions are unified into blocks with assignable scope.
Concurrency is made more easily manageable through actors and implemented
using coroutines for scalability.

Goals To be a language that is:

simple

conceptually simple and consistent
easily embedded and extended

powerful

highly dynamic and introspective
highly concurrent (via coroutines and async i/o)

practical

fast enough
multi-platform
unrestrictive BSD/MIT license
comprehensive standard packages in distro

Downloading Io distributions are available at:

http://iolanguage.com

Installing First compile the Io vm:

make vm
sudo make install

Installing Addon Dependencies

Some of Io's addons require libraries that may not be installed on your system
already. To install these automatically, type either:

su -c "sudo make aptget"

or:

su -c "make emerge"

or:

sudo make port

Depending on which package installer you use. (port is for OSX)

Compiling Addons

To build, from the top folder, run:

make

Binaries will be placed in the _build/binaries subfolder. To install:

sudo make install

or, if you'd like the install to simply link to your development folder:

sudo make linkInstall

and to run all unit tests:

make test

Don't worry if some of the addons won't build unless it's a particular addon
that you need. Addons are just optional libraries.

Notes

To make a particular addon, you can do:

make AddonName

After doing a pull from the source control repo, be sure to do:

make clean; make

To test just the vm:

make testvm

And to update the reference documentation (found in docs/IoReference.html)
from the source code:

make doc

Binaries Io builds two executables and places them in the binaries folder. They are:

io_static
io

The io_static executable contains the vm with a minimal set of primitives all
statically linked into the executable. The io executable contains just enough to
load the iovm dynamically linked library and is able to dynamically load io
addons when they are referenced.

Running Scripts An example of running a script:

io samples/misc/HelloWorld.io

There is no main() function or object that gets executed first in Io. Scripts are
executed when compiled.

Interactive Mode Running:

./_build/binaries/io

Or, if Io is installed, running:

io

will open the Io interpreter prompt.

You can evaluate code by entering it directly. Example:

Io> "Hello world!" println
==> Hello world!

Expressions are evaluated in the context of the Lobby:

Io> print
[printout of lobby contents]

If you have a .iorc file in your home folder, it will be evaled before the
interactive prompt starts.

Inspecting objects You can get a list of the slots of an object like this:

Io> someObject slotNames

To show them in sorted order:

Io> someObject slotNames sort

For a nicely formatted description of an object, the slotSummary method is
handy:

Io> slotSummary
==> Object_0x20c4e0:
 Lobby = Object_0x20c4e0
 Protos = Object_0x20bff0
 exit = method(...)
 forward = method(...)

Exploring further:

Io> Protos
==> Object_0x20bff0:
 Addons = Object_0x20c6f0
 Core = Object_0x20c4b0

Io> Protos Addons
==> Object_0x20c6f0:
 ReadLine = Object_0x366a10

Only ReadLine is seen in the Addons since no other Addons have been loaded
yet.

Inspecting a method will print a decompiled version of it:

Io> Lobby getSlot("forward")
==> # io/Z_Importer.io:65
method(
 Importer import(call)
)

doFile and doString

A script can be run from the interactive mode using the doFile method:

doFile("scriptName.io")

The evaluation context of doFile is the receiver, which in this case would be the
lobby. To evaluate the script in the context of some other object, simply send
the doFile message to it:

someObject doFile("scriptName.io")

The doString method can be used to evaluate a string:

Io> doString("1+1")
==> 2

And to evaluate a string in the context of a particular object:

someObject doString("1 + 1")

Command Line Arguments

Example of printing out command line arguments:

System args foreach(k, v, write("'", v, "'\n"))

launchPath

The System "launchPath" slot is set to the location of the initial source file that
is executed; when the interactive prompt is started (without specifying a source
file to execute), the launchPath is the current working directory:

System launchPath

Syntax

Expressions Io has no keywords or statements. Everything is an expression composed
entirely of messages, each of which is a runtime accessible object. The informal
BNF description:

exp ::= { message | terminator }
message ::= symbol [arguments]
arguments ::= "(" [exp [{ "," exp }]] ")"
symbol ::= identifier | number | string
terminator ::= "\n" | ";"

For performance reasons, String and Number literal messages have their results
cached in their message objects.

Messages Message arguments are passed as expressions and evaluated by the receiver.
Selective evaluation of arguments can be used to implement control flow.
Examples:

for(i, 1, 10, i println)
a := if(b == 0, c + 1, d)

In the above code, "for" and "if" are just normal messages, not special forms or
keywords.

Likewise, dynamic evaluation can be used with enumeration without the need
to wrap the expression in a block. Examples:

people select(person, person age < 30)
names := people map(person, person name)

Methods like map and select will typically apply the expression directly to the
values if only the expression is provided:

people select(age < 30)
names := people map(name)

There is also some syntax sugar for operators (including assignment), which are
handled by an Io macro executed on the expression after it is compiled into a
message tree. Some sample source code:

Account := Object clone
Account balance := 0
Account deposit := method(amount,
 balance = balance + amount
)

account := Account clone
account deposit(10.00)
account balance println

Like Self[2], Io's syntax does not distinguish between accessing a slot
containing a method from one containing a variable.

Operators An operator is just a message whose name contains no alphanumeric
characters (other than ";", "_", '"' or ".") or is one of the following words: or,
and, return. Example:

1 + 2

This just gets compiled into the normal message:

1 +(2)

Which is the form you can use if you need to do grouping:

1 +(2 * 4)

Standard operators follow C's precedence order, so:

1 + 2 * 3 + 4

Is parsed as:

1 +(2 *(3)) +(4)

User defined operators (that don't have a standard operator name) are
performed left to right.

Assignment Io has three assignment operators:

operator action

::= Creates slot, creates setter, assigns value

:= Creates slot, assigns value

= Assigns value to slot if it exists, otherwise raises exception

These operators are compiled to normal messages whose methods can be
overridden. For example:

source compiles to

a ::= 1 newSlot("a", 1)

a := 1 setSlot("a", 1)

a = 1 updateSlot("a", 1)

On Locals objects, updateSlot is overridden so it will update the slot in the
object in which the method was activated if the slot is not found the locals.
This is done so update assignments in methods don't require self to be an
explicit target.

Numbers The following are examples of valid number formats:

123
123.456
0.456
.456
123e-4
123e4
123.456e-7
123.456e2

Hex numbers are also supported (in any casing):

0x0
0x0F
0XeE

Strings Strings can be defined surrounded by a single set of double quotes with
escaped quotes (and other escape characters) within.

s := "this is a \"test\".\nThis is only a test."

Or for strings with non-escaped characters and/or spanning many lines, triple
quotes can be used.

s := """this is a "test".
This is only a test."""

Comments Comments of the //, /**/ and # style are supported. Examples:

a := b // add a comment to a line

/* comment out a group
a := 1
b := 2
*/

The "#" style is useful for unix scripts:

#!/usr/local/bin/io

That's it! You now know everything there is to know about Io's syntax. Control
flow, objects, methods, exceptions are expressed with the syntax and
semantics described above.

Objects

Overview Io's guiding design principle is simplicity and power through conceptual
unification.

concept unifies

scopable blocks functions, methods, closures

prototypes objects, classes, namespaces, locals

messages operators, calls, assigns, var access

Prototypes In Io, everything is an object (including the locals storage of a block and the
namespace itself) and all actions are messages (including assignment). Objects
are composed of a list of key/value pairs called slots, and an internal list of
objects from which it inherits called protos. A slot's key is a symbol (a unique
immutable sequence) and its value can be any type of object.

clone and init
New objects are made by cloning existing ones. A clone is an empty object
that has the parent in its list of protos. A new instance's init slot will be
activated which gives the object a chance to initialize itself. Like
NewtonScript[3], slots in Io are create-on-write.

me := Person clone

To add an instance variable or method, simply set it:

myDog name := "rover"
myDog sit := method("I'm sitting\n" print)

When an object is cloned, its "init" slot will be called if it has one.

Inheritance When an object receives a message it looks for a matching slot, if not found,
the lookup continues depth first recursively in its protos. Lookup loops are
detected (at runtime) and avoided. If the matching slot contains an activatable
object, such as a Block or CFunction, it is activated, if it contains any other type
of value it returns the value. Io has no globals and the root object in the Io
namespace is called the Lobby.

Since there are no classes, there's no difference between a subclass and an
instance. Here's an example of creating the equivalent of a subclass:

Io> Dog := Object clone
==> Object_0x4a7c0

The above code sets the Lobby slot "Dog" to a clone of the Object object; the
protos list of this new object contains only a reference to Object, essentially
indicating that a subclass of Object has been created. Instance variables and
methods are inherited from the objects referenced in the protos list. If a slot is
set, it creates a new slot in our object instead of changing the protos:

 Io> Dog color := "red"
 Io> Dog
 ==> Object_0x4a7c0:
 color := "red"

Multiple Inheritance

You can add any number of protos to an object's protos list. When responding
to a message, the lookup mechanism does a depth first search of the proto
chain.

Methods A method is an anonymous function which, when called, creates an object to
store its locals and sets the local's proto pointer and its self slot to the target of
the message. The Object method method() can be used to create methods.
Example:

method((2 + 2) print)

An example of using a method in an object:

Dog := Object clone
Dog bark := method("woof!" print)

The above code creates a new "subclass" of object named Dog and adds a
bark slot containing a block that prints "woof!". Example of calling this method:

Dog bark

The default return value of a block is the result of the last expression.

Arguments

Methods can also be defined to take arguments. Example:

add := method(a, b, a + b)

The general form is:

method(<arg name 0>, <arg name 1>, ..., <do message>)

Blocks A block is the same as a method except it is lexically scoped. That is, variable
lookups continue in the context of where the block was created instead of the
target of the message which activated the block. A block can be created using
the Object method block(). Example of creating a block:

b := block(a, a + b)

Blocks vs. Methods

This is sometimes a source of confusion so it's worth explaining in detail. Both
methods and blocks create an object to hold their locals when they are called.
The difference is what the "proto" and "self" slots of that locals object are set
to. In a method, those slots are set to the target of the message. In a block,
they're set to the locals object where the block was created. So a failed
variable lookup in a block's locals continue in the locals where it was created.
And a failed variable lookup in a method's locals continue in the object to
which the message that activated it was sent.

call and self slots

When a locals object is created, its self slot is set (to the target of the message,
in the case of a method, or to the creation context, in the case of a block) and
its call slot is set to a Call object that can be used to access information about
the block activation:

slot returns

call sender locals object of caller

call message message used to call this method/block

call activated the activated method/block

call slotContext context in which slot was found

call target current object

Variable Arguments

The "call message" slot in locals can be used to access the unevaluated
argument messages. Example of implementing if() within Io:

myif := method(
 (call sender doMessage(call message argAt(0))) ifTrue(
 call sender doMessage(call message argAt(1))) ifFalse(
 call sender doMessage(call message argAt(2)))
)

myif(foo == bar, write("true\n"), write("false\n"))

The doMessage() method evaluates the argument in the context of the receiver.
A shorter way to express this is to use the evalArgAt() method on the call
object:

myif := method(
 call evalArgAt(0) ifTrue(
 call evalArgAt(1)) ifFalse(
 call evalArgAt(2))
)

myif(foo == bar, write("true\n"), write("false\n"))

Forward If an object doesn't respond to a message, it will invoke its "forward" method if
it has one. Here's an example of how to print the information related lookup
that failed:

MyObject forward := method(
 write("sender = ", call sender, "\n")
 write("message name = ", call message name, "\n")
 args := call message argsEvaluatedIn(call sender)
 args foreach(i, v, write("arg", i, " = ", v, "\n"))
)

Resend Sends the current message to the receiver's protos with self as the context.
Example:

A := Object clone
A m := method(write("in A\n"))
B := A clone
B m := method(write("in B\n"); resend)
B m

will print:

in B
in A

For sending other messages to the receiver's proto, super is used.

Super Sometimes it's necessary to send a message directly to a proto. Example:

Dog := Object clone
Dog bark := method(writeln("woof!"))

fido := Dog clone
fido bark := method(
 writeln("ruf!")
 super(bark)
)

Both resend and super are implemented in Io.

Introspection Using the following methods you can introspect the entire Io namespace. There
are also methods for modifying any and all of these attributes at runtime.

slotNames

The slotNames method returns a list of the names of an object's slots:

Io> Dog slotNames
==> list("bark")

protos

The protos method returns a list of the objects which an object inherits from:

Io> Dog protos
==> list("Object")

getSlot

The "getSlot" method can be used to get the value of a block in a slot without
activating it:

myMethod := Dog getSlot("bark")

Above, we've set the locals object's "myMethod" slot to the bark method. It's
important to remember that if you then want use the myMethod without
activating it, you'll need to use the getSlot method:

otherObject newMethod := getSlot("myMethod")

Here, the target of the getSlot method is the locals object.

code

The arguments and expressions of methods are open to introspection. A useful
convenience method is "code", which returns a string representation of the
source code of the method in a normalized form.

Io> method(a, a * 2) code
==> "method(a, a *(2))"

Control Flow

true, false and nil There are singletons for true, false and nil. nil is typically used to indicate an
unset or missing value.

Comparison The comparison methods:

==, !=, >=, <=, >, <

return either the true or false. The compare() method is used to implement the
comparison methods and returns -1, 0 or 1 which mean less-than, equal-to or
greater-than, respectively.

if, then, else The if() method can be used in the form:

if(<condition>, <do message>, <else do message>)

Example:

if(a == 10, "a is 10" print)

The else argument is optional. The condition is considered false if the condition
expression evaluates to false or nil, and true otherwise.

The result of the evaluated message is returned, so:

if(y < 10, x := y, x := 0)

is the same as:

x := if(y < 10, y, 0)

Conditions can also be used in this form:

if(y < 10) then(x := y) else(x := 2)

elseif() is supported:

if(y < 10) then(x := y) elseif(y == 11) then(x := 0) else(x := 2)

ifTrue, ifFalse Also supported are Smalltalk style ifTrue, ifFalse, ifNil and ifNonNil methods:

(y < 10) ifTrue(x := y) ifFalse(x := 2)

Notice that the condition expression must have parenthesis surrounding it.

loop The loop method can be used for "infinite" loops:

loop("foo" println)

repeat The Number repeat method can be used to repeat a loop a given number of
times.

3 repeat("foo" print)
==> foofoofoo

while Arguments:

while(<condition>, <do message>)

Example:

a := 1
while(a < 10,
 a print
 a = a + 1
)

for Arguments:

for(<counter>, <start>, <end>, <optional step>, <do message>)

The start and end messages are only evaluated once, when the loop starts.
Example:

for(a, 0, 10,
 a println
)

Example with a step:

for(x, 0, 10, 3, x println)

Which would print:

0
3
6
9

To reverse the order of the loop, add a negative step:

for(a, 10, 0, -1, a println)

Note: the first value will be the first value of the loop variable and the last will
be the last value on the final pass through the loop. So a loop of 1 to 10 will
loop 10 times and a loop of 0 to 10 will loop 11 times.

break, continue loop, repeat, while and for support the break and continue methods. Example:

for(i, 1, 10,
 if(i == 3, continue)
 if(i == 7, break)
 i print
)

Output:

12456

return Any part of a block can return immediately using the return method. Example:

Io> test := method(123 print; return "abc"; 456 print)
Io> test
123
==> abc

Internally, break, continue and return all work by setting a IoState internal
variable called "stopStatus" which is monitored by the loop and message
evaluation code.

Importing

The Importer proto implements Io's built-in auto importer feature. If you put
each of your proto's in their own file, and give the file the same name with and
".io" extension, the Importer will automatically import that file when the proto is
first referenced. The Importer's default search path is the current working
directory, but can add search paths using its addSearchPath() method.

Concurrency

Coroutines Io uses coroutines (user level cooperative threads), instead of preemptive OS
level threads to implement concurrency. This avoids the substantial costs
(memory, system calls, locking, caching issues, etc) associated with native
threads and allows Io to support a very high level of concurrency with
thousands of active threads.

Scheduler The Scheduler object is responsible for resuming coroutines that are yielding.
The current scheduling system uses a simple first-in-first-out policy with no
priorities.

Actors An actor is an object with its own thread (in our case, its own coroutine) which
it uses to process its queue of asynchronous messages. Any object in Io can
be sent an asynchronous message by placing using the asyncSend() or
futureSend() messages.

Examples:

result := self foo // synchronous
futureResult := self futureSend(foo) // async, immediately returns a Future
self asyncSend(foo) // async, immediately returns nil

When an object receives an asynchronous message it puts the message in its
queue and, if it doesn't already have one, starts a coroutine to process the
messages in its queue. Queued messages are processed sequentially in a first-
in-first-out order. Control can be yielded to other coroutines by calling "yield".
Example:

obj1 := Object clone
obj1 test := method(for(n, 1, 3, n print; yield))
obj2 := obj1 clone
obj1 asyncSend(test); obj2 asyncSend(test)
while(Scheduler yieldingCoros size > 1, yield)

This would print "112233". Here's a more real world example:

HttpServer handleRequest := method(aSocket,
 HttpRequestHandler clone asyncSend(handleRequest(aSocket))
)

Futures Io's futures are transparent. That is, when the result is ready, they become the
result. If a message is sent to a future (besides the two methods it implements),
it waits until it turns into the result before processing the message. Transparent
futures are powerful because they allow programs to minimize blocking while
also freeing the programmer from managing the fine details of synchronization.

Auto Deadlock Detection

An advantage of using futures is that when a future requires a wait, it will check
to see if pausing to wait for the result would cause a deadlock and if so, avoid
the deadlock and raise an exception. It performs this check by traversing the
list of connected futures.

Futures and the Command Line Interface

The command line will attempt to print the result of expressions evaluated in it,
so if the result is a Future, it will attempt to print it and this will wait on the
result of Future. Example:

Io> q := method(wait(1))
Io> futureSend(q)
[1-second delay]
==> nil

To avoid this, just make sure the Future isn't the result. Example:

Io> futureSend(q); nil
[no delay]
==> nil

Yield An object will automatically yield between processing each of its asynchronous
messages. The yield method only needs to be called if a yield is required during
an asynchronous message execution.

Pause and Resume

It's also possible to pause and resume an object. See the concurrency
methods of the Object primitive for details and related methods.

Exceptions

Raise An exception can be raised by calling raise() on an exception proto.

Exception raise("generic foo exception")

Try and Catch To catch an exception, the try() method of the Object proto is used. try() will
catch any exceptions that occur within it and return the caught exception or nil
if no exception is caught.

e := try(<doMessage>)

To catch a particular exception, the Exception catch() method can be used.
Example:

e := try(
 // ...
)

e catch(Exception,
 writeln(e coroutine backtraceString)
)

The first argument to catch indicates which types of exceptions will be caught.
catch() returns the exception if it doesn't match and nil if it does.

Pass To re-raise an exception caught by try(), use the pass method. This is useful to
pass the exception up to the next outer exception handler, usually after all
catches failed to match the type of the current exception:

e := try(
 // ...
)

e catch(Error,
 // ...
) catch(Exception,
 // ...
) pass

Custom Exceptions Custom exception types can be implemented by simply cloning an existing
Exception type:

MyErrorType := Error clone

Primitives

Primitives are objects built into Io whose methods are typically implemented in
C and store some hidden data in their instances. For example, the Number
primitive has a double precision floating point number as its hidden data and its
methods that do arithmetic operations are C functions. All Io primitives inherit
from the Object prototype and are mutable. That is, their methods can be
changed. The reference docs contain more info on primitives.

This document is not meant as a reference manual, but an overview of the
base primitives and bindings is provided here to give the user a jump start and
a feel for what is available and where to look in the reference documentation for
further details.

Object The ? Operator
Sometimes it's desirable to conditionally call a method only if it exists (to avoid
raising an exception). Example:

if(obj getSlot("foo"), obj foo)

Putting a "?" before a message has the same effect:

obj ?foo

List A List is an array of references and supports all the standard array manipulation
and enumeration methods. Examples:

Create an empty list:

a := List clone

Create a list of arbitrary objects using the list() method:

a := list(33, "a")

Append an item:

a append("b")
==> list(33, "a", "b")

Get the list size:

a size
==> 3

Get the item at a given index (List indexes begin at zero):

a at(1)
==> "a"

Note: List indexes begin at zero and nil is returned if the accessed index
doesn't exist.

Set the item at a given index:

a atPut(2, "foo")
==> list(33, "a", "foo", "b")

a atPut(6, "Fred")

==> Exception: index out of bounds

Remove an item at a given index:

a remove("foo")
==> list(33, "a", "b")

Inserting an item at a given index:

a atInsert(2, "foo")
==> list(33, "a", "foo", "56")

foreach

The foreach, map and select methods can be used in three forms:

Io> a := list(65, 21, 122)

In the first form, the first argument is used as an index variable, the second as
a value variable and the 3rd as the expression to evaluate for each value.

Io> a foreach(i, v, write(i, ":", v, ", "))
==> 0:65, 1:21, 2:122,

The second form removes the index argument:

Io> a foreach(v, v println)
==> 65
21
122

The third form removes the value argument and simply sends the expression as
a message to each value:

Io> a foreach(println)
==> 65
21
122

map and select

Io's map and select (known as filter in some other languages) methods allow
arbitrary expressions as the map/select predicates.

Io> numbers := list(1, 2, 3, 4, 5, 6)

Io> numbers select(isOdd)
==> list(1, 3, 5)

Io> numbers select(x, x isOdd)
==> list(1, 3, 5)

Io> numbers select(i, x, x isOdd)
==> list(1, 3, 5)

Io> numbers map(x, x*2)
==> list(2, 4, 6, 8, 10, 12)

Io> numbers map(i, x, x+i)
==> list(1, 3, 5, 7, 9, 11)

Io> numbers map(*3)
==> list(3, 6, 9, 12, 15, 18)

The map and select methods return new lists. To do the same operations in-
place, you can use selectInPlace() and mapInPlace() methods.

Sequence In Io, an immutable Sequence is called a Symbol and a mutable Sequence is
the equivalent of a Buffer or String. Literal strings(ones that appear in source
code surrounded by quotes) are Symbols. Mutable operations cannot be
performed on Symbols, but one can make mutable copy of a Symbol calling its
asMutable method and then perform the mutation operations on the copy.
Common string operations Getting the length of a string:

"abc" size
==> 3

Checking if a string contains a substring:

"apples" containsSeq("ppl")
==> true

Getting the character (byte) at position N:

"Kavi" at(1)
==> 97

Slicing:

"Kirikuro" slice(0, 2)
==> "Ki"

"Kirikuro" slice(-2) # NOT: slice(-2, 0)!
==> "ro"

Io> "Kirikuro" slice(0, -2)
"Kiriku"

Stripping whitespace:

" abc " asMutable strip
==> "abc"

" abc " asMutable lstrip
==> "abc "

" abc " asMutable rstrip
==> " abc"

Converting to upper/lowercase:

"Kavi" asUppercase
==> "KAVI"
"Kavi" asLowercase
==> "kavi"

Splitting a string:

"the quick brown fox" split
==> list("the", "quick", "brown", "fox")

Splitting by others character is possible as well.

"a few good men" split("e")
==> list("a f", "w good m", "n")

Converting to number:

"13" asNumber
==> 13

"a13" asNumber
==> nil

String interpolation:

name := "Fred"
==> Fred
"My name is #{name}" interpolate
==> My name is Fred

Interpolate will eval anything with #{} as Io code in the local context. The code
may include loops or anything else but needs to return an object that responds
to asString.

Ranges A range is a container containing a start and an end point, and instructions on
how to get from the start, to the end. Using Ranges is often convenient when
creating large lists of sequential data as they can be easily converted to lists, or
as a replacement for the for() method.

The Range protocol

Each object that can be used in Ranges needs to implement a
"nextInSequence" method which takes a single optional argument (the number
of items to skip in the sequence of objects), and return the next item after that
skip value. The default skip value is 1. The skip value of 0 is undefined. An
example:

Number nextInSequence := method(skipVal,
 if(skipVal isNil, skipVal = 1)
 self + skipVal
)

With this method on Number (it's already there in the standard libraries), you
can then use Numbers in Ranges, as demonstrated below:

1 to(5) foreach(v, v println)

The above will print 1 through 5, each on its own line.

File The methods openForAppending, openForReading, or openForUpdating are
used for opening files. To erase an existing file before opening a new open, the
remove method can be used. Example:

f := File with("foo.txt)
f remove
f openForUpdating
f write("hello world!")
f close

Directory Creating a directory object:

dir := Directory with("/Users/steve/")

Get a list of file objects for all the files in a directory:

files := dir files
==> list(File_0x820c40, File_0x820c40, ...)

Get a list of both the file and directory objects in a directory:

items := Directory items
==> list(Directory_0x8446b0, File_0x820c40, ...)

items at(4) name
==> DarkSide-0.0.1 # a directory name

Setting a Directory object to a certain directory and using it:

root := Directory clone setPath("c:/")
==> Directory_0x8637b8

root fileNames
==> list("AUTOEXEC.BAT", "boot.ini", "CONFIG.SYS", ...)

Testing for existence:

Directory clone setPath("q:/") exists
==> false

Getthing the current working directory:

Directory currentWorkingDirectory
==> "/cygdrive/c/lang/IoFull-Cygwin-2006-04-20"

Date Creating a new date instance:

d := Date clone

Setting it to the current date/time:

d now

Getting the date/time as a number, in seconds:

Date now asNumber
==> 1147198509.417114

Date now asNumber
==> 1147198512.33313

Getting individual parts of a Date object:

d := Date now
==> 2006-05-09 21:53:03 EST

d
==> 2006-05-09 21:53:03 EST

d year
==> 2006

d month
==> 5

d day
==> 9

d hour
==> 21

d minute
==> 53

d second
==> 3.747125

Find how long it takes to execute some code:

Date cpuSecondsToRun(100000 repeat(1+1))
==> 0.02

Networking All of Io's networking is done with asynchronous sockets underneath, but
operations like reading and writing to a socket appear to be synchronous since
the calling coroutine is unscheduled until the socket has completed the
operation, or a timeout occurs. Note that you'll need to first reference the
associated addon in order to cause it to load before using its objects. In these
examples, you'll have to reference "Socket" to get the Socket addon to load
first.

Creating a URL object:

url := URL with("http://example.com/")

Fetching an URL:

data := url fetch

Streaming a URL to a file:

url streamTo(File with("out.txt"))

A simple whois client:

whois := method(host,
 socket := Socket clone \
 setHostName("rs.internic.net") setPort(43)
 socket connect streamWrite(host, "\n")
 while(socket streamReadNextChunk, nil)
 return socket readBuffer
)

A minimal web server:

WebRequest := Object clone do(
 handleSocket := method(aSocket,
 aSocket streamReadNextChunk
 request := aSocket readBuffer \
 betweenSeq("GET ", " HTTP")
 f := File with(request)
 if(f exists,
 f streamTo(aSocket)
 ,
 aSocket streamWrite("not found")
)
 aSocket close
)
)

WebServer := Server clone do(
 setPort(8000)
 handleSocket := method(aSocket,
 WebRequest clone asyncSend(handleSocket(aSocket))
)
)

WebServer start

XML Using the XML parser to find the links in a web page:

SGML // reference this to load the SGML addon
xml := URL with("http://www.yahoo.com/") fetch asXML
links := xml elementsWithName("a") map(attributes at("href"))

Vector Io's Vectors are built on its Sequence primitive and are defined as:

Vector := Sequence clone setItemType("float32")

The Sequence primitive supports SIMD acceleration on a number of float32
operations. Currently these include add, subtract, multiple and divide but in the
future can be extended to support most math, logic and string manipulation
related operations. Here's a small example:

iters := 1000
size := 1024
ops := iters * size

v1 := Vector clone setSize(size) rangeFill
v2 := Vector clone setSize(size) rangeFill

dt := Date secondsToRun(
 iters repeat(v1 *= v2)
)

writeln((ops/(dt*1000000000)) asString(1, 3), " GFLOPS")

Which when run on 2Ghz Mac Laptop, outputs:

1.255 GFLOPS

A similar bit of C code (without SIMD acceleration) outputs:

0.479 GFLOPS

So for this example, Io is about three times faster than plain C.

Unicode

Sequences In Io, symbols, strings, and vectors are unified into a single Sequence prototype
which is an array of any available hardware data type such as:

uint8, uint16, uint32, uint64
int8, int16, int32, int64
float32, float64

Encodings Also, a Sequence has a encoding attribute, which can be:

number, ascii, ucs2, ucs4, utf8

UCS-2 and UCS-4 are the fixed character width versions of UTF-16 and UTF-
32, respectively. A String is just a Sequence with a text encoding, a Symbol is
an immutable String and a Vector is a Sequence with a number encoding.

UTF encodings are assumed to be big endian.

Except for input and output, all strings should be kept in a fixed character width
encoding. This design allows for a simpler implementation, code sharing
between vector and string ops, fast index-based access, and SIMD
acceleration of Sequence operations. All Sequence methods will do automatic
type conversions as needed.

Source Code Io source files are assumed to be in UTF8 (of which ASCII is a subset). When a
source file is read, its symbols and strings are stored in Sequences in their
minimal fixed character width encoding. Examples:

Io> "hello" encoding
==> ascii

Io> "π" encoding
==> ucs2

Io> "∞" encoding
==> ucs2

We can also inspect the internal representation:

Io> "π" itemType
==> uint16

Io> "π" itemSize
==> 2

Conversion The Sequence object has a number of conversion methods:

asUTF8
asUCS2
asUCS4

Embedding

Conventions Io's C code is written using object oriented style conventions where structures
are treated as objects and functions as methods. Familiarity with these may
help make the embedding APIs easier to understand.

Structures

Member names are words that begin with a lower case character with
successive words each having their first character upper cased. Acronyms are
capitalized. Structure names are words with their first character capitalized.
Example:

typdef struct
{
 char *firstName;
 char *lastName;
 char *address;
} Person;

Functions

Function names begin with the name of structure they operate on followed by
an underscore and the method name. Each structure has a new and free
function.

Example:

List *List_new(void);
void List_free(List *self);

All methods (except new) have the structure (the "object") as the first argument
the variable is named "self". Method names are in keyword format. That is, for
each argument, the method name has a description followed by an underscore.
The casing of the descriptions follow that of structure member names.

Examples:

int List_count(List *self); // no argument
void List_add_(List *self, void *item); // one argument
void Dictionary_key_value_(Dictionary *self,
 char *key, char *value);

File Names

Each structure has its own separate .h and .c files. The names of the files are
the same as the name of the structure. These files contain all the
functions(methods) that operate on the given structure.

IoState An IoState can be thought of as an instance of an Io "virtual machine",
although "virtual machine" is a less appropriate term because it implies a
particular type of implementation.

Multiple states

Io is multi-state, meaning that it is designed to support multiple state instances
within the same process. These instances are isolated and share no memory so
they can be safely accessed simultaneously by different os threads, though a
given state should only be accessed by one os thread at a time.

Creating a state

Here's a simple example of creating a state, evaluating a string in it, and freeing
the state:

#include "IoState.h"

int main(int argc, const char *argv[])
{
 IoState *self = IoState_new();
 IoState_init(self);
 IoState_doCString_(self, "writeln(\"hello world!\"");
 IoState_free(self);
 return 0;
}

Values We can also get return values and look at their types and print them:

IoObject *v = IoState_doCString_(self, someString);
char *name = IoObject_name(v);
printf("return type is a ‘%s', name);
IoObject_print(v);

Checking value types

There are some macro short cuts to help with quick type checks:

if (ISNUMBER(v))
{
 printf("result is the number %f", IoNumber_asFloat(v));
}
else if(ISSEQ(v))
{
 printf("result is the string %s", IoSeq_asCString(v));
}
else if(ISLIST(v))
{
 printf("result is a list with %i elements",
 IoList_rawSize(v));
}

Note that return values are always proper Io objects (as all values are objects in
Io). You can find the C level methods (functions like IoList_rawSize()) for these
objects in the header files in the folder Io/libs/iovm/source.

Bindings

Documentation on how to write bindings/addons forthcoming..

Appendix

Grammar messages

expression ::= { message | sctpad }
message ::= [wcpad] symbol [scpad] [arguments]
arguments ::= Open [argument [{ Comma argument }]] Close
argument ::= [wcpad] expression [wcpad]

symbols

symbol ::= Identifier | number | Operator | quote
Identifier ::= { letter | digit | "_" }
Operator ::= { ":" | "." | "'" | "~" | "!" | "@" | "$" |
"%" | "^" | "&" | "*" | "-" | "+" | "/" | "=" | "{" | "}" |
"[" | "]" | "|" | "\" | "<" | ">" | "?" }

quotes

quote ::= MonoQuote | TriQuote
MonoQuote ::= """ ["\"" | not(""")] """
TriQuote ::= """"" [not(""""")] """""

spans

Terminator ::= { [separator] ";" | "\n" | "\r" [separator] }
separator ::= { " " | "\f" | "\t" | "\v" }
whitespace ::= { " " | "\f" | "\r" | "\t" | "\v" | "\n" }
sctpad ::= { separator | Comment | Terminator }
scpad ::= { separator | Comment }
wcpad ::= { whitespace | Comment }

comments

Comment ::= slashStarComment | slashSlashComment | poundComment
slashStarComment ::= "/*" [not("*/")] "*/"
slashSlashComment ::= "//" [not("\n")] "\n"
poundComment ::= "#" [not("\n")] "\n"

numbers

number ::= HexNumber | Decimal
HexNumber ::= "0" anyCase("x") { [digit | hexLetter] }
hexLetter ::= "a" | "b" | "c" | "d" | "e" | "f"
Decimal ::= digits | "." digits |
 digits "." digits ["e" [-] digits]

characters

Comma ::= ","
Open ::= "(" | "[" | "{"
Close ::= ")" | "]" | "}"
letter ::= "a" ... "z" | "A" ... "Z"
digit ::= "0" ... "9"
digits ::= { digit }

The uppercase words above designate elements the lexer treats as tokens.

Credits Io is the product of all the talented folks who taken the time and interest to
make a contribution. The complete list of contributors is difficult to keep track
of, but some of the recent major contributors include; Jonathan Wright, Jeremy
Tregunna, Mike Austin, Chris Double, Rich Collins, Oliver Ansaldi, James
Burgess, Baptist Heyman, Ken Kerahone, Christian Thater, Brian Mitchell,
Zachary Bir and many more. The mailing list archives, repo inventory and
release history are probably the best sources for a more complete record of
individual contributions.

References 1 Goldberg, A et al.
Smalltalk-80: The Language and Its Implementation
Addison-Wesley, 1983

2 Ungar, D and Smith,
RB. Self: The Power of Simplicity
OOPSLA, 1987

3 Smith, W.
Class-based NewtonScript Programming
PIE Developers magazine, Jan 1994

4 Lieberman
H. Concurrent Object-Oriented Programming in Act 1
MIT AI Lab, 1987

5 McCarthy, J et al.
LISP I programmer's manual
MIT Press, 1960

6 Ierusalimschy, R, et al.
Lua: an extensible extension language
John Wiley & Sons, 1996

License Copyright 2006-2010 Steve Dekorte. All rights reserved.

Redistribution and use of this document with or without modification, are
permitted provided that the copies reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

This documentation is provided "as is" and any express or implied warranties,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed. In no event shall the authors be
liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this
documentation, even if advised of the possibility of such damage.

