
The LLDB Debugger in FreeBSD

Ed Maste
The FreeBSD Foundation / The University of Cambridge

Boulder, Colorado, USA / Cambridge, England
Email: emaste@freebsd.org

February 23, 2015

Abstract

LLDB is a modern, high-performance debugger in the
LLVM family of projects, and is built as a modular and
reusable set of components on top of the Clang/LLVM
foundation. Originally developed for Mac OS X, it
now also supports FreeBSD, Linux and Windows. This
paper provides an overview of the design of LLDB,
compares it with the existing GNU debugger in the
FreeBSD base system, and presents the path to import-
ing LLDB as FreeBSD’s debugger.

1 Introduction

BSD operating systems, including FreeBSD, have the
concept of a “base system,” an integrated core that is
developed, maintained, tested, and released as an inte-
grated whole. Some major components of the base sys-
tem are the kernel, userland libraries, system binaries,
and development tool chain – and a key component of
the tool chain is the debugger.

The FreeBSD base system has long relied on the
GNU debugger, GDB. The very first FreeBSD release
included a copy of GDB 3.5, and every release since
then has included some version of GDB. For more than
a decade the project followed GDB’s development, and
over time a number of different contributors incorpo-
rated new versions into the FreeBSD source tree.

This work produced a growing set of changes, and
each new import required additional effort to resolve
conflicts where changes had been made in both the
FreeBSD and the upstream (that is, the GDB project’s)
version. Project members attempted to get the changes
incorporated into the upstream GDB project, but were
unsuccessful in doing so. Eventually the growing main-

tenance burden discouraged effort within the FreeBSD
community, and GDB imports stopped with GDB 6.1.1
in June 2004. Since that time additional bug fixes
and enhancements have been made to GDB in the
FreeBSD tree, but no full updates have been done.
Those changes consist of 8 commits merged from up-
stream, 4 from Apple’s GDB version, 24 changes spe-
cific to FreeBSD, and 18 “bookkeeping” changes such
as tracking changes in APIs in other components or ac-
commodating files that moved in the source hierarchy.

1.1 GPLv3

In 2007 GDB’s license was updated to version 3 of the
GNU General Public License (GPLv3). The GPLv3 in-
cludes additional restrictions that certain FreeBSD con-
sumers, contributors and users find unpalatable. To
date the FreeBSD project has avoided importing GPLv3
software into the base system.

The last release of GDB available under the GPLv2
is GDB 6.6. Compared to version 6.1.1 it lacks suffi-
cient improvements to make an update worthwhile. It
is therefore unlikely that a new version of GDB will be
imported into the FreeBSD base system, although it will
remain available through the third-party ports tree and
binary packages.

1.2 A New Debugger – LLDB

As there was no path forward with GDB, it became in-
creasingly clear that a new debugger was required for
the FreeBSD base system. In 2010 Apple announced at
their World-Wide Developer conference that they were
working on a debugger project named LLDB, and they
released it as open source later that year.

Domain Committers Commits
apple.com 16 4040
intel.com 7 496
gmail.com 20 445
freebsd.org 1 351
google.com 6 255
filcab.net 1 97
debian.org 1 68
mentor.com 1 48
codeplay.com 2 47
valvesoftware.com 1 39
All others 18 187

Table 1: Top ten email domains by LLDB commit
count, 2012-2014

Figure 1: Committer and code size growth in LLDB

LLDB is part of the LLVM family of projects, and
builds on other LLVM components. As with the rest
of LLVM, it is released under the University of Illi-
nois/NCSA license. This is a permissive BSD-like li-
cense that is an ideal match for the FreeBSD project’s
base system licensing philosophy.

LLDB has grown beyond an Apple project, and has
major contributions from open-source groups within
companies like Intel and Google, and from FreeBSD,
Debian, and other independent, open-source projects.
For illustrative purposes the top ten email domains by
number of LLDB commits in 2012 through 2014 are
shown in Table 1. LLDB’s growth in code size and
unique committers per month is shown in Figure 1,
using data from Black Duck Software’s Open Hub
website[1].

2 LLDB Design
LLDB is built as a set of modular components on top of
the LLVM compiler infrastructure project and the Clang
front-end. Reusing Clang and LLVM components al-
lows for a great deal of functionality with lower effort
and smaller code size in comparison with other debug-
gers.

As an example, debuggers require an expression
parser for interpreting input from the user. Some debug-
gers rely on an independently developed, ad-hoc parser.
In contrast, LLDB includes a built-in copy of Clang
and uses it as the parser. This provides extremely high
fidelity in interpreting expressions: the parser for the
command line is the same one that handles the source
code.

2.1 Core LLDB Classes
A high level block diagram of LLDB’s design is shown
in Figure 2. LLDB’s core functionality is implemented
in a set of classes that roughly correspond to the follow-
ing top-level source directories:

API LLDB provides a rich Application Programming
Interface (API) for both C++ and Python consumers.
LLDB vends a C++ API[2], which is converted into
Python bindings[3] with SWIG, the Simplified Wrap-
per and Interface Generator. There is interest in sup-
porting bindings for additional languages including C,
C#, Javascript and Lua.

Breakpoint The Breakpoint classes handle resolving
breakpoints by name, address, source file and line, etc.,
and managing lists of breakpoints.

Command Interpreter The command interpreter
presents the (lldb) prompt to the user and interprets
their commands. It also implements the script com-
mand which provides access to a built-in Python inter-
preter.

Data Formatters Data formatters present variables
in a format convenient to the user, hiding the details
of data structures used by the language’s standard li-
brary or other runtime libraries. For example, a C++
std::string will be displayed as

(std::string) s = "Text"

2

rather than

(std::string) s = {
_M_dataplus = (_M_p = "Text")

}

Expression Parser The expression parser provides
an interface to the built-in copy of Clang for interpret-
ing the user’s source-level expressions, passed to the
expression command or its alias p. It is possible
to declare variables, use multiple statements, and use
loops. For example,

(lldb) expr int $j = 0;
for(int $i = 0; $i < 5; $i++) $j = $j + $i

(lldb) p $j
(int) $j = 10

Host LLDB currently builds for Android, FreeBSD,
Linux, OS X and Windows hosts. The Host subdirec-
tory contains the abstraction for these platforms.

Symbol Symbol classes handle obtaining debugging
information, and the lookup of symbols to serve user
expressions.

Target The Target subdirectory contains all of the
classes that manage LLDB’s view of the debuggee, also
known as the inferior process. This includes the pro-
cesses’ memory, loaded modules, threads, and “Thread
Plans” for single stepping, running to a breakpoint, call-
ing functions and other actions.

Utility A number of register list, pseudoterminal,
string and other utility classes.

2.2 LLDB Plugins
Classes for specific object file formats, system runtims,
and target platforms are implemented as LLDB Plug-
ins. These plugins are not currently runtime- loadable,
but do follow consistent APIs that simplify adding sup-
port for new formats or platforms. A detailed view of
LLDB’s plugins appears in Figure 3.

The main task in adding FreeBSD support was the
creation of a FreeBSD process plugin. This plugin man-
ages FreeBSD target processes and threads, signals, and
the ptrace interface.

The FreeBSD host class and the elf-core process plu-
gin also required significant effort for FreeBSD support.

The test suite also had to be made more portable by re-
moving platform-specific assumptions.

3 Using LLDB

LLDB’s command interpreter is designed with a consis-
tent, structured syntax. Commands generally follow the
pattern “noun verb” – for example, thread list
or breakpoint set. The syntax is more verbose
than GDB’s, and longtime GDB users will take some
time to adapt.

The benefit is that the command set is discoverable
and regular; targeted autocompletion can provide rele-
vant options to the user. As with GDB, commands may
be abbreviated to the shortest unique prefix.

An example of starting a debug session may look
like:

% lldb
(lldb) target create /bin/ls
Current executable set to ’/bin/ls’ (x86_64).
(lldb) breakpoint set -name main
Breakpoint 1: where = ls‘main + 33 at
ls.c:163, address = 0x00000000004023fl

(lldb) process launch

LLDB has powerful support for command aliases,
and includes a built-in set of aliases for many GDB
commands. Using GDB aliases, the same result as
above could be achieved with:

% lldb /bin/ls
Current executable set to ’/bin/ls’ (x86_64).
(lldb) b main
Breakpoint 1: where = ls‘main + 33 at
ls.c:163, address = 0x00000000004023fl

(lldb) run

The built-in aliases are limited though, and some of
the more esoteric overloaded functionality provided by
GDB is not available through aliases. This is particu-
larly true for breakpoints – in GDB the breakpoint com-
mand argument may be a line number, file name, func-
tion, or address, with sometimes overlapping or con-
flicting meaning. Migrating to LLDB’s syntax and rely-
ing on the substring match to allow more concise com-
mands is likely to be the most effective approach.

LLDB can manage multiple targets within a single
debugging session. The targets may be local or remote,
and may be different CPU architectures.

3

LLDB APIs

LLDB Core

Breakpoint Plugins

ABICommands

Data Formatters

Host Abstraction

Interpreter

Expression Parser

Symbol

Target

Utility

Disassembler

Dynamic Loader

Instruction

JITLoader

Language Runtime

Object Container

Object File

Operating System

Platform

Process

Symbol File

Symbol Vendor

System Runtime

Unwind Assembly

lldb Python IDE

Script
Interpreter

LLVM or Clang-provided components

Figure 2: LLDB Block Diagram

4

Process
FreeBSD

Linux

OSX Kernel

gdb-remote

Windows

elf-core

mach-core

Dynamic Loader
OSX Kernel

OSX

POSIX

Hexagon

Language Runtime

ObjC

Symbol File
DWARF

System Runtime

Disass
LLVM

ABI
OSX-arm

OSX-arm64

OSX-i386

SysV-hexagon

SysV-ppc

Instruction
arm

arm64

JIT Loader

gdb

C++

Object Container
BSD ar

Mach-O

Object File
ELF

Mach-O

PECOFF

JIT

Platform
FreeBSD

Linux

Kalimba

OSX

Windows

gdb-server

Symbol Vendor
ELF

OSX

Unwind Assembly

InstEmul

x86

OSX

SysV-ppc64

SysV-x86_64

Static

Instrumentation
Runtime

AddressSanitizer

Memory History

AddressSanitizer

Android

Symtab

Figure 3: LLDB Plugins

5

3.1 Breakpoints
Breakpoints are set with the “breakpoint set”
command. They may be set at a given address, file-
name and line number, function or method name, or on
language-specific execptions. Breakpoints may also be
restricted to a specified thread or shared library.

Breakpoints are maintained in a logical state within
LLDB, and are later resolved to one or more locations.
The logical breakpoint and each resolved location are
given integer identifiers, joind with a period. For exam-
ple, if the third breakpoint matches two locations, they
will be called “3.1” and “3.2”.

Breakpoints remain live throughout a debugging ses-
sion, so loading a shared library with a function or
method that matches an existing breakpoint specifica-
tion results in new locations being added to that break-
point. Similar, unloading a shared library may remove
breakpoint locations. A breakpoint remains set, but in
an unresolved state, after unloading all of its locations.

3.2 Examining Debuggee State
Whenever the debuggee process stops, LLDB prints rel-
evant information: the thread that stopped, process lo-
cation information including address, filename, and line
number, the current function and its arguments, and a
stop reason. The reported stop reason may be a break-
point, watchpoint, signal, address exception, or one of
a number of target- or language-specific reasons. Fi-
nally, a small portion of the source code at the current
addresss is shown.

After encoutering a breakpoint or stopping for an-
other reason, LLDB selects the most relevant thread.
This will be the one that encountered a breakpoint, re-
ceived a signal, performed an invalid memory access,
or otherwise triggered the stop.

The “thread list” command lists all active
threads in the debuggee, with “thread select”
choosing the desired thread for subsequent commands.

To obtain a stack backtrace use the “thread
backtrace” command, also available as the “bt”
alias. By default only the current thread’s backtrace is
shown, but a different thread index may be provided
as an argument, or “all” to show the stack for each
thread.

While examining a backtrace the “frame
select” command may be used to choose a
specific frame. The “up” and “down” aliases provide
short forms for relative frame selection. With a frame

selected the “frame variable” command will
display function arguments and local variables that are
in scope.

3.3 Controlling the Debuggee

LLDB groups the single-stepping process control
commands under the top-level thread command.
“thread step-in” steps a single source line, con-
tinuing into function calls. “thread step-over”
also steps a single source line, but does not stop inside
of a function call. “thread step-out” continues
until the program returns from the current function. The
“thread until <line>” command continues un-
til the program reaches the specified source file line, or
it returns from the current function.

3.4 Scripting

LLDB provides multiple ways to interact with its script-
ing capability. The most basic is the “script” com-
mand, which invokes the embedded Python interpreter
and may be used to query current program state through
a set of convenience variables. New user-facing com-
mands may also be implemented in Python.

LLDB can also invoke a script after hitting a break-
point. That script can then control the debugee state (for
example, exmaining variables and deciding to continue
the process), allowing for complex breakpoint condi-
tions.

Finally, LLDB may be used as a debugger object
from a Python script, without using the standalone
“lldb” binary. The script can “import lldb”, cre-
ate a debugger instance and a target, set breakpoints,
launch, single step, and continue the target.

4 FreeBSD LLDB Roadmap

Ongoing development effort on the LLDB FreeBSD
port takes place directly in the upstream LLDB reposi-
tory. Earlier in the porting effort new versions of LLDB
were imported into FreeBSD as snapshots from the up-
stream Subversion repository. Functionality was im-
proving so quickly that waiting for a release would miss
significant new features and bug fixes.

Upstream development still continues at a rapid pace,
but LLDB releases have recently achieved a level of
stability and maturity to allow release-based updates.

6

LLDB version 3.5 was imported in this manner, coinci-
dent with the corresponding Clang/LLVM import.

LLDB on FreeBSD works well on the amd64 archi-
tecture, for live and core file- based userland debugging.
There is also support for the 64-bit MIPS architecture,
and 32- and 64-bit PowerPC. LLDB does not yet sup-
port FreeBSD on 32- or 64-bit ARM, but support exists
in LLDB for other operating systems and it is expected
to be a relatively easy port.

A Google Summer of Code (GSoC) 2014 project de-
livered an initial proof of concept for FreeBSD kernel
debugging support; additional work is required to refine
this before it may be integrated into LLDB.

A key component of an overall debugging environ-
ment is a remote target stub, which allows a debugger
on a host computer to attach to the stub and debug a
process on a different target computer. LLDB includes
a target stub named lldb-gdbserver for Linux that
reuses the same implementation as for local debugging.
Porting it to FreeBSD is a possibility.

Facebook released another debug server named ds2,
also under a permissive license. It may be a preferable
candidate for inclusion in the FreeBSD base system, as
it has a smaller footprint and thus may be more suitable
for embedded platforms.

An update to LLDB version 3.6 is in progress, along
with Clang and LLVM, with the expectation that LLDB
will be enabled by default for the amd64 platform.

Acknowledgments

The initial LLDB FreeBSD porting effort was under-
taken by Kip Macy and Mark Peek, prior to the author’s
involvement with LLDB. After the FreeBSD port be-
came usable a number of developers contributed bug
fixes or additional CPU architecture support, including
Justin Hibbits, Mike Ma, John Wolfe, and others.

Portions of this work are part of the CTSRD project
that is sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL), under contract FA8750-10-
C-0237. The views, opinions, and/or findings contained
in this paper are those of the author and should not be
interpreted as representing the official views or policies,
either expressed or implied, of the Department of De-
fense or the U.S. Government.

References
[1] Black Duck Software, Open HUB: The LLDB

Debugger, https://www.openhub.net/p/
lldb, February 2015.

[2] LLDB API Documentation, http://lldb.
llvm.org/cpp_reference/html/index.
html

[3] LLDB python API, http://lldb.llvm.org/
python_reference/index.html

7

