
Sept/Oct 2014 1312 FreeBSD Journal

GPLv3
As with other GNU projects, in 2007 GDB’s
license changed to version 3 of the GNU Public
License (GPLv3). The GPLv3 includes some
restrictions that major FreeBSD contributors and
consumers find unpalatable, and to date the
project has avoided including any GPLv3-
licensed code in the base system.

SEARCH FOR A NEW
DEBUGGER
With a stale version of GDB in the base system
and no clear path forward, it was clear FreeBSD
needed a new debugger. Several open-source
debugger projects were formed, both within and
outside of the FreeBSD community. None of them
reached critical mass to sustain development and
produce a viable debugger we could use.
Then at their 2010 World-Wide Developer

Conference, Apple announced they had their
own debugger project, LLDB. It was released as
open source in June of that year, and the next
year it became the default debugger for Xcode,
Apple’s IDE. LLDB is provided under the
University of Illinois/NCSA license which is a per-
missive, BSD-like license that is an ideal match
for the FreeBSD project’s licensing philosophy.
LLDB has since grown beyond an Apple proj-

ect, with major contributions coming from
open-source groups within companies like Intel
and Google, and from FreeBSD, Debian, and
other independent, open-source projects.
Several people contributed to the FreeBSD port

of LLDB, and our plan is that it will become the
standard debugger in the FreeBSD base system.

LLDB DESIGN
LLDB is built as a set of modular components on
top of the LLVM compiler infrastructure project
and the Clang front-end. Reusing Clang and
LLVM components allows for a great deal of
functionality with lower effort and smaller code
size compared to other debuggers. For example,
LLDB has a full Clang compiler built in, used for
its expression parser. If an expression is accept-
able in a project’s source code, it will also be
handled by LLDB’s expression parser, allowing a
user to examine complex classes and data types
in great detail and with confidence. LLVM pro-
vides LLDB’s processor-specific support, including
disassembly support and CPU-specific function-
ality. The modular design also provides the foun-
dation for straightforward support of new
processors, languages, and platforms.
A number of overall goals guide LLDB’s

design, and many of these derive from Clang
and LLVM. To achieve high performance and
reduce memory usage, LLDB attempts to parse
only the debugging information required to per-
form an action. Threaded, high-performance
classes provided by LLVM also contribute to
LLDB’s speed (see chart below).
LLDB aims to allow customization throughout

so that a user can tailor the debugging experi-
ence. Variable and value display, type formatters,
summary information, commands, prompts, and
aliases can all be configured.

LL
DB

The GNU debugger, GDB, has long served as
the base system’s debugger. In 1993, the very
first FreeBSD release included GDB 3.5. Every
release since has included a version of GDB.
The project followed GDB’s development for
more than a decade, and a number of different
contributors incorporated new versions into the
FreeBSD source tree.

This work produced a growing set of
changes, and the effort increased with each
new import. Project members attempted to
have the changes incorporated to the upstream
GDB project, but met resistance from the pro-
ject’s maintainers. Eventually this growing main-
tenance effort wore on the team, and the last
import was GDB 6.1.1 in June 2004.

One attribute that distinguishes FreeBSD from other open-
source operating systems is the concept of the “base

system,” an integrated core that is developed, maintained,
tested, and released as an integrated whole. Some major
components of the base system are the kernel, userland
libraries, system binaries, and development toolchain–and
a key component of the toolchain is the debugger.

O

I N F r e e B S D

THE SEARCH FOR A NEW DEBUGGER

by Ed Maste

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

4.16 4.18 5.0 5.2 5.2.1 6.1.1 6.3 6.4 6.5 6.6 6.7 7.0

L LDB AP I s
L LDB Co r e

P LUG IN S
ABI

EXPRE S S ION PARSER

HOST AB S TRACT ION

SYMBOL

TARGET

UT I L I TY

EXPRE S S ION PARSER

COMMANDS

INTERPRETER

DATA FORMATTER S

SCRIPT
INTERPRETER

LLVM or CLANG-provided components

DISASSEMBLER

DYNAMIC LOADER

INSTRUCTION

JIT LOADER

LANGUAGE RUNTIME

OBJECT CONTAINER

OBJECT FILE

OPERATING SYSTEM

PLATFORM

PROCESS

SYMBOL FILE

SYMBOL VENDOR

SYSTEM RUNTIME

UNWIND ASSEMBLY

lldb Python IDE

14 FreeBSD Journal

Like Clang and LLVM, LLDB inherently sup-
ports multiple CPU architectures and platforms
within the same debugger binary. For example,
the same debugger could be used to locally
debug a native FreeBSD/amd64 application,
examine a core file from a FreeBSD/MIPS sys-
tem, and remotely debug an application run-
ning under a debug server on Linux. It’s also
possible to have multiple debug sessions run-
ning simultaneously in the same debugger.
As a debugger framework, LLDB is designed

to be embedded in, or used by, other projects.
IDEs and graphical front ends can easily incorpo-
rate and build on LLDB’s functionality, using a
C++ API. A full scripting API is also provided,
currently supporting Python bindings. Python is
usable from within LLDB, at the command line,
for controlling execution after breakpoints, and
for implementing new commands. The scripting

interface is also available for external use; a
Python script can create a debugger object and
then use it to examine and control a debuggee’s
state, evaluate expressions, and so on.

LLDB USE
LLDB’s command interpreter is designed with a
consistent, structured syntax. Commands gen-
erally follow the pattern “noun verb”—for
example “thread list” or “breakpoint set”. The
command syntax is somewhat more verbose
than GDB, and adapting may take some effort
for longtime GDB users. The benefit is that the
command set is discoverable and regular; tar-
geted autocompletion can provide relevant
options to the user. As with GDB, commands
may be abbreviated to the shortest unique
prefix. An example of starting a debug
session may look like:

% lldb
(lldb) target create /bin/ls
Current executable set to ‘/bin/ls’ (x86_64).
(lldb) breakpoint set -name main
Breakpoint 1: where = ls`main + 33 at ls.c:163, address = 0x00000000004023f1
(lldb) process launch

LLDB has a powerful support for command aliases, and includes a built-in set of aliases for many
GDB commands. Using the GDB aliases, the same result as above could be achieved with:

% lldb /bin/ls
Current executable set to ‘/bin/ls’ (x86_64).
(lldb) b main
Breakpoint 1: where = ls`main + 33 at ls.c:163, address = 0x00000000004023f1
(lldb) run

The built-in aliases are limited though, and some of the more esoteric overloaded functionality
provided by GDB commands is not available through the aliases. This is particularly true for break-
points—in GDB the breakpoint command argument may be a line number, file name, function, or
address, with sometimes overlapping or conflicting meaning. Migrating to LLDB’s syntax and relying
on the substring match to allow more concise commands is likely to be most effective.

t

t

t
Some GDB and LLDB Commands for Comparison

GDB LLDB
Launch a process with no arguments

(lldb) process launch
(gdb) run (lldb) run
(gdb) r (lldb) r

Launch a process with arguments args
(gdb) run args (lldb) process launch -- args
(gdb) r args (lldb) r args

Sept/Oct 2014 15
(continues)

Launch a process in a new terminal window
n/a

Attach to a process by pid
(gdb) attach pid

Source level single step

(gdb) step
(gdb) s

Source level single step over function calls

(gdb) next
(gdb) n

Source level single step out of current function

(gdb) finish

Instruction level single step
(gdb) stepi
(gdb) si

Instruction level single step over function calls
(gdb) nexti
(gdb) ni

Return immediately from current frame
(gdb) return return expression

Set a breakpoint at all functions by name

(gdb) break name
(gdb) b name

Set a breakpoint by file and line

(gdb) break file:line

Set a breakpoint in all C++ methods by name

(gdb) break name
assuming no C functions have the same name

List breakpoints
(gdb) info break

Delete a breakpoint
(gdb) delete 1

Show arguments and local variables
(gdb) info args
and
(gdb) info locals

(Commands for Comparison continued)

GDB LLDB

(lldb) process launch --tty -- args

(lldb) process attach --pid pid
(lldb) attach -p pid

(lldb) thread step-in
(lldb) step
(lldb) s

(lldb) thread step-over
(lldb) next
(lldb) n

(lldb) thread step-out
(lldb) finish

(lldb) thread step-inst
(lldb) si

(lldb) thread step-inst-over
(lldb) ni

(lldb) thread return return expression

(lldb) breakpoint set --name name
(lldb) br s -n name
(lldb) b name

(lldb) breakpoint set --file file --line line
(lldb) br s -f file -l line
(lldb) b file:line

(lldb) breakpoint set --method name
(lldb) br s -M name

(lldb) breakpoint list
(lldb) br l

(lldb) breakpoint delete 1
(lldb) br del 1

(lldb) frame variable
(lldb) fr v

16 FreeBSD Journal Sept/Oct 2014 17

The “target create” command (previous page chart) can create multiple targets in a
debugging session with “target list” showing the active ones:

To switch between them use “target select <number>”.

BREAKPOINTS

EXAMINING DEBUGEE STATE
After encountering a breakpoint or stopping
for another reason, LLDB selects the most rele-
vant thread. This will be the one that encoun-
tered a breakpoint, received a signal, per-
formed an invalid memory access, or otherwise
triggered the stop.
The “thread list” command lists all

active threads in the debuggee, with “thread
select” choosing the desired thread for sub-

sequent commands.
To obtain a stack backtrace use the

“thread backtrace” command, also
available with the “bt” alias. By default the
current thread’s backtrace is shown, but a dif-
ferent thread index may be provided as an
argument, or “all” to show the stack for
each thread.
While examining a backtrace the “frame

select” command may be used to choose a
specific frame. The “up” and “down” aliases

Breakpoints are set with the “breakpoint set”
command. Breakpoints may be set at a given
address, filename and line number, function or
method name, or upon language-specific
exceptions. Breakpoints may also be restricted
to a specified thread or shared library.
Breakpoints are maintained as logical

breakpoints within LLDB, which then resolve
to one or more locations. The logical break-
point and each resolved location are given
integer identifiers, joined with a dot. For
example, if the third breakpoint matches two
function names and thus resolves to two loca-
tions, they will be called “3.1.” and “3.2”.
Breakpoints remain live throughout the

debugging session, so loading a shared library
with a function or method that matches an

existing breakpoint specification results in new
locations being added to that breakpoint.
Similarly, unloading a shared library may
remove breakpoint locations. A breakpoint
remains set, but in an unresolved state after
unloading all of its locations.
Whenever the debuggee process stops,

LLDB prints relevant information: the thread
that stopped, process location information
including the address, filename, and line num-
ber, the current function and its arguments,
and the stop reason. The reported stop reason
may be a breakpoint, watchpoint, signal,
address exception, or one of a number of tar-
get- or language-specific reasons. Finally, a
small portion of the source code at the cur-
rent address is shown.

(lldb) target list
Current targets:
target #0: /bin/app1 (arch=x86-64-unknown-freebsd10.1, platform=host)
target #1: /bin/app2 (arch=x86-64-unknown-freebsd10.1, platform=host, pid=81166, state=exited)

* thread #1: tid = 100641, 0x00000000004023f1 ls`main(argc=1, argv=0x00007fffffffe760)
+ 33 at ls.c:163, name = 'ls', stop reason = breakpoint 1.1

frame #0: 0x00000000004023f1 ls`main(argc=1, argv=0x00007fffffffe760) + 33 at ls.c:163
160 #ifdef COLORLS
161 char termcapbuf[1024]; /* termcap definition buffer */
162 char tcapbuf[512]; /* capability buffer */

-> 163 char *bp = tcapbuf;
164 #endif
165
166 (void)setlocale(LC_ALL, "");

(lldb)

provide short forms for relative frame selection.
With a frame selected the “frame vari-
able” command will display function argu-
ments and local variables that are in scope.

CONTROLLING THE
DEBUGGEE
LLDB groups the single-stepping process control
commands under the top-level thread com-
mand. “thread step-in” steps a single
source line, continuing into function calls.
“thread step-over” also steps a single
source line, but does not stop inside of a func-
tion call. “thread step-out” continues until
the program returns from the current function.
The “thread until <line>” command
continues until the program reaches the speci-
fied source file line, or it returns from the cur-
rent function.
The stepping commands have aliases to

match GDB: “s” or “step” for thread step-in,
“n” or “next” for thread step-over, and “f”
or “finish” for thread step-out.

DATA FORMATTERS
LLDB has built-in support for a number of high-
level data structure formats used by language
runtimes and libraries. These take the internal
representation of a variable and display it in a
convenient user-facing format, as might be used
in source code.
For FreeBSD, the C++ runtime library format-

ters are likely the most valuable. LLDB includes
support for the two of interest in FreeBSD:
libc++ and GNU libstdc++.
As an example, a std::string will show

just the string contents by default, when the
type formatter is enabled:

(lldb) expression str
(string) $1 = “This is a string.”

Formatters may be disabled in order to see the
full details of the data structure, if necessary:

SCRIPTING
LLDB’s scripting interface may be accessed in
multiple ways. The most basic is the “script”
command, which invokes the embedded inter-
preter and may be used to query current pro-
gram state through a set of convenience vari-
ables. Python may also be used to implement
new LLDB commands.
LLDB can also invoke a script after hitting

a breakpoint. The script can then control pro-
gram state (for example, continuing the
process), allowing for very complex breakpoint
conditions.
Finally, LLDB can be used entirely from a

Python script, without involving the stand-alone
lldb binary. A script can “import lldb”, cre-
ate a debugger instance and then a target, set
breakpoints, launch, single step, and continue
the target, and examine variables or evaluate
expressions.

LLDB IN FreeBSD ROADMAP
Ongoing development effort on the LLDB
FreeBSD port takes place directly in the LLDB
repository. It currently works well for the amd64

architecture, for both live
and core file-based userland
debugging. Core file debug-
ging support also exists for
the MIPS architecture.
Between CPU support cur-
rently in progress by Google
and work ongoing in the
FreeBSD community, we
expect to support 64- and

t

t

lldb) type category disable gnu-libstdc++
(lldb) expression str
(string) $2 = {

_M_dataplus = {_M_p = “This is a string.”}
}

LL
DB

t

t

32-bit versions of the x86, ARM, MIPS, and
PowerPC CPU architectures.
A Google Summer of Code (GSoC) 2014

project delivered a proof-of-concept for
FreeBSD kernel debugging support; additional
work is required to refine this before it can be
integrated into LLDB.
One key component under development in

the LLDB project is a remote debugging stub.
This allows an LLDB instance running on one
computer to access and control a process run-
ning on another. This is especially important
for debugging on small embedded devices,
which may lack the memory or computing
power to accommodate a full-featured debug-
ger. The debugging stub is initially being
implemented for Linux, but the port to
FreeBSD is relatively straightforward.
Snapshots of the LLDB tree are imported

into FreeBSD-Current on an occasional basis.
LLDB is not yet built by default, but may
be enabled by adding WITH_LLDB=yes
to /etc/src.conf before running “make
buildworld” as described in the FreeBSD
Handbook.
One complication in the FreeBSD base sys-

tem is that it does not include Python, so the

LLDB snapshot is currently built without script-
ing support. It remains functional, but as a
result some of the more interesting and
advanced features are not available. We are
evaluating different approaches to address this,
likely migrating the scripting interface to a run-
time rather than compile-time option. This
would allow all of LLDB’s Python capabilities to
be enabled by simply installing the Python
package or port.
We expect to update Clang and LLVM in the

FreeBSD base system to version 3.5 in the near
future. LLDB will be updated at the same time,
and we then expect to enable building it by
default. •

Ed Maste manages project development for
the FreeBSD Foundation and works in an engi-
neering support role with the University of
Cambridge Computer Laboratory. He is also
a member of the elected FreeBSD Core Team.
Aside from FreeBSD and LLDB, he is a contrib-
utor to a number of other open-source proj-
ects, including QEMU and Open vSwitch. He
lives in Kitchener, Canada, with his wife,
Anna, and sons, Pieter and Daniel.

THE SEARCH FOR A NEW DEBUGGER

18 FreeBSD Journal

