
title: FreeBSD Handbook authors: - author: The FreeBSD Documentation Project copyright: 1995-

2021 The FreeBSD Documentation Project releaseinfo: "$FreeBSD$" trademarks: ["freebsd", "ibm",

"ieee", "redhat", "3com", "adobe", "apple", "intel", "linux", "microsoft", "opengroup", "sun",

"realnetworks", "oracle", "3ware", "arm", "adaptec", "google", "heidelberger", "intuit", "lsilogic",

"themathworks", "thomson", "vmware", "wolframresearch", "xiph", "xfree86", "general"] ---

1

FreeBSD Handbook

Abstract

Welcome to FreeBSD! This handbook covers the installation and day to day use of FreeBSD 12.2-

RELEASE , FreeBSD 12.1-RELEASE and FreeBSD 11.4-RELEASE . This book is the result of ongoing

work by many individuals. Some sections might be outdated. Those interested in helping to update

and expand this document should send email to the FreeBSD documentation project mailing list .

The latest version of this book is available from the FreeBSD web site . Previous versions can be

obtained from https://docs.FreeBSD.org/doc/ . The book can be downloaded in a variety of formats

and compression options from the FreeBSD FTP server or one of the numerous

crossref:mirrors[mirrors-ftp,mirror sites]. Printed copies can be purchased at the FreeBSD Mall .

Searches can be performed on the handbook and other documents on the search page .

2

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
https://www.FreeBSD.org/
https://docs.FreeBSD.org/doc/
https://download.freebsd.org/ftp/doc/
https://www.freebsdmall.com/
https://www.FreeBSD.org/search/

Preface

Intended Audience

The FreeBSD newcomer will find that the first section of this book guides the user through the

FreeBSD installation process and gently introduces the concepts and conventions that underpin

UNIX¨. Working through this section requires little more than the desire to explore, and the ability

to take on board new concepts as they are introduced.

Once you have traveled this far, the second, far larger, section of the Handbook is a comprehensive

reference to all manner of topics of interest to FreeBSD system administrators. Some of these

chapters may recommend that you do some prior reading, and this is noted in the synopsis at the

beginning of each chapter.

For a list of additional sources of information, please see

crossref:bibliography[bibliography,Bibliography].

Changes from the Third Edition

The current online version of the Handbook represents the cumulative effort of many hundreds of

contributors over the past 10 years. The following are some of the significant changes since the two

volume third edition was published in 2004:

¥ crossref:dtrace[dtrace,DTrace] has been added with information about the powerful DTrace

performance analysis tool.

¥ crossref:filesystems[filesystems,Other File Systems] has been added with information about

non-native file systems in FreeBSD, such as ZFS from Sunª.

¥ crossref:audit[audit,Security Event Auditing] has been added to cover the new auditing

capabilities in FreeBSD and explain its use.

¥ crossref:virtualization[virtualization,Virtualization] has been added with information about

installing FreeBSD on virtualization software.

¥ crossref:bsdinstall[bsdinstall,Installing FreeBSD] has been added to cover installation of

FreeBSD using the new installation utility, bsdinstall.

Changes from the Second Edition (2004)

The third edition was the culmination of over two years of work by the dedicated members of the

FreeBSD Documentation Project. The printed edition grew to such a size that it was necessary to

publish as two separate volumes. The following are the major changes in this new edition:

¥ crossref:config[config-tuning,Configuration and Tuning] has been expanded with new

information about the ACPI power and resource management, the cron system utility, and more

kernel tuning options.

¥ crossref:security[security,Security] has been expanded with new information about virtual

private networks (VPNs), file system access control lists (ACLs), and security advisories.

3

¥ crossref:mac[mac,Mandatory Access Control] is a new chapter with this edition. It explains

what MAC is and how this mechanism can be used to secure a FreeBSD system.

¥ crossref:disks[disks,Storage] has been expanded with new information about USB storage

devices, file system snapshots, file system quotas, file and network backed filesystems, and

encrypted disk partitions.

¥ A troubleshooting section has been added to crossref:ppp-and-slip[ppp-and-slip,PPP].

¥ crossref:mail[mail,Electronic Mail] has been expanded with new information about using

alternative transport agents, SMTP authentication, UUCP, fetchmail, procmail, and other

advanced topics.

¥ crossref:network-servers[network-servers,Network Servers] is all new with this edition. This

chapter includes information about setting up the Apache HTTP Server, ftpd, and setting up a

server for Microsoft¨ Windows¨ clients with Samba. Some sections from crossref:advanced-

networking[advanced-networking,Advanced Networking] were moved here to improve the

presentation.

¥ crossref:advanced-networking[advanced-networking,Advanced Networking] has been

expanded with new information about using Bluetooth¨ devices with FreeBSD, setting up

wireless networks, and Asynchronous Transfer Mode (ATM) networking.

¥ A glossary has been added to provide a central location for the definitions of technical terms

used throughout the book.

¥ A number of aesthetic improvements have been made to the tables and figures throughout the

book.

Changes from the First Edition (2001)

The second edition was the culmination of over two years of work by the dedicated members of the

FreeBSD Documentation Project. The following were the major changes in this edition:

¥ A complete Index has been added.

¥ All ASCII figures have been replaced by graphical diagrams.

¥ A standard synopsis has been added to each chapter to give a quick summary of what

information the chapter contains, and what the reader is expected to know.

¥ The content has been logically reorganized into three parts: "Getting Started", "System

Administration", and "Appendices".

¥ crossref:basics[basics,FreeBSD Basics] has been expanded to contain additional information

about processes, daemons, and signals.

¥ crossref:ports[ports,Installing Applications: Packages and Ports] has been expanded to contain

additional information about binary package management.

¥ crossref:x11[x11,The X Window System] has been completely rewritten with an emphasis on

using modern desktop technologies such as KDE and GNOME on XFree86ª 4.X.

¥ crossref:boot[boot,The FreeBSD Booting Process] has been expanded.

¥ crossref:disks[disks,Storage] has been written from what used to be two separate chapters on

"Disks" and "Backups". We feel that the topics are easier to comprehend when presented as a

4

single chapter. A section on RAID (both hardware and software) has also been added.

¥ crossref:serialcomms[serialcomms,Serial Communications] has been completely reorganized

and updated for FreeBSD 4.X/5.X.

¥ crossref:ppp-and-slip[ppp-and-slip,PPP] has been substantially updated.

¥ Many new sections have been added to crossref:advanced-networking[advanced-

networking,Advanced Networking].

¥ crossref:mail[mail,Electronic Mail] has been expanded to include more information about

configuring sendmail.

¥ crossref:linuxemu[linuxemu,Linux¨ Binary Compatibility] has been expanded to include

information about installing Oracle¨ and SAP¨ R/3¨.

¥ The following new topics are covered in this second edition:

! crossref:config[config-tuning,Configuration and Tuning].

! crossref:multimedia[multimedia,Multimedia].

Organization of This Book

This book is split into five logically distinct sections. The first section, Getting Started , covers the

installation and basic usage of FreeBSD. It is expected that the reader will follow these chapters in

sequence, possibly skipping chapters covering familiar topics. The second section, Common Tasks ,

covers some frequently used features of FreeBSD. This section, and all subsequent sections, can be

read out of order. Each chapter begins with a succinct synopsis that describes what the chapter

covers and what the reader is expected to already know. This is meant to allow the casual reader to

skip around to find chapters of interest. The third section, System Administration , covers

administration topics. The fourth section, Network Communication , covers networking and server

topics. The fifth section contains appendices of reference information.

crossref:introduction[introduction,Introduction]

Introduces FreeBSD to a new user. It describes the history of the FreeBSD Project, its goals and

development model.

crossref:bsdinstall[bsdinstall,Installing FreeBSD]

Walks a user through the entire installation process of FreeBSD 9. x and later using bsdinstall.

crossref:basics[basics,FreeBSD Basics]

Covers the basic commands and functionality of the FreeBSD operating system. If you are

familiar with Linux¨ or another flavor of UNIX¨ then you can probably skip this chapter.

crossref:ports[ports,Installing Applications: Packages and Ports]

Covers the installation of third-party software with both FreeBSDÕs innovative "Ports Collection"

and standard binary packages.

crossref:x11[x11,The X Window System]

Describes the X Window System in general and using X11 on FreeBSD in particular. Also

describes common desktop environments such as KDE and GNOME.

5

crossref:desktop[desktop,Desktop Applications]

Lists some common desktop applications, such as web browsers and productivity suites, and

describes how to install them on FreeBSD.

crossref:multimedia[multimedia,Multimedia]

Shows how to set up sound and video playback support for your system. Also describes some

sample audio and video applications.

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]

Explains why you might need to configure a new kernel and provides detailed instructions for

configuring, building, and installing a custom kernel.

crossref:printing[printing,Printing]

Describes managing printers on FreeBSD, including information about banner pages, printer

accounting, and initial setup.

crossref:linuxemu[linuxemu,Linux¨ Binary Compatibility]

Describes the Linux¨ compatibility features of FreeBSD. Also provides detailed installation

instructions for many popular Linux¨ applications such as Oracle¨ and Mathematica¨.

crossref:config[config-tuning,Configuration and Tuning]

Describes the parameters available for system administrators to tune a FreeBSD system for

optimum performance. Also describes the various configuration files used in FreeBSD and

where to find them.

crossref:boot[boot,The FreeBSD Booting Process]

Describes the FreeBSD boot process and explains how to control this process with configuration

options.

crossref:security[security,Security]

Describes many different tools available to help keep your FreeBSD system secure, including

Kerberos, IPsec and OpenSSH.

crossref:jails[jails,Jails]

Describes the jails framework, and the improvements of jails over the traditional chroot support

of FreeBSD.

crossref:mac[mac,Mandatory Access Control]

Explains what Mandatory Access Control (MAC) is and how this mechanism can be used to

secure a FreeBSD system.

crossref:audit[audit,Security Event Auditing]

Describes what FreeBSD Event Auditing is, how it can be installed, configured, and how audit

trails can be inspected or monitored.

crossref:disks[disks,Storage]

Describes how to manage storage media and filesystems with FreeBSD. This includes physical

disks, RAID arrays, optical and tape media, memory-backed disks, and network filesystems.

6

crossref:geom[geom,GEOM: Modular Disk Transformation Framework]

Describes what the GEOM framework in FreeBSD is and how to configure various supported

RAID levels.

crossref:filesystems[filesystems,Other File Systems]

Examines support of non-native file systems in FreeBSD, like the Z File System from Sunª.

crossref:virtualization[virtualization,Virtualization]

Describes what virtualization systems offer, and how they can be used with FreeBSD.

crossref:l10n[l10n,Localization - i18n/L10n Usage and Setup]

Describes how to use FreeBSD in languages other than English. Covers both system and

application level localization.

crossref:cutting-edge[updating-upgrading,Updating and Upgrading FreeBSD]

Explains the differences between FreeBSD-STABLE, FreeBSD-CURRENT, and FreeBSD releases.

Describes which users would benefit from tracking a development system and outlines that

process. Covers the methods users may take to update their system to the latest security release.

crossref:dtrace[dtrace,DTrace]

Describes how to configure and use the DTrace tool from Sunª in FreeBSD. Dynamic tracing can

help locate performance issues, by performing real time system analysis.

crossref:serialcomms[serialcomms,Serial Communications]

Explains how to connect terminals and modems to your FreeBSD system for both dial in and dial

out connections.

crossref:ppp-and-slip[ppp-and-slip,PPP]

Describes how to use PPP to connect to remote systems with FreeBSD.

crossref:mail[mail,Electronic Mail]

Explains the different components of an email server and dives into simple configuration topics

for the most popular mail server software: sendmail.

crossref:network-servers[network-servers,Network Servers]

Provides detailed instructions and example configuration files to set up your FreeBSD machine

as a network filesystem server, domain name server, network information system server, or

time synchronization server.

crossref:firewalls[firewalls,Firewalls]

Explains the philosophy behind software-based firewalls and provides detailed information

about the configuration of the different firewalls available for FreeBSD.

crossref:advanced-networking[advanced-networking,Advanced Networking]

Describes many networking topics, including sharing an Internet connection with other

computers on your LAN, advanced routing topics, wireless networking, Bluetooth¨, ATM, IPv6,

and much more.

7

crossref:mirrors[mirrors,Obtaining FreeBSD]

Lists different sources for obtaining FreeBSD media on CDROM or DVD as well as different sites

on the Internet that allow you to download and install FreeBSD.

crossref:bibliography[bibliography,Bibliography]

This book touches on many different subjects that may leave you hungry for a more detailed

explanation. The bibliography lists many excellent books that are referenced in the text.

crossref:eresources[eresources,Resources on the Internet]

Describes the many forums available for FreeBSD users to post questions and engage in

technical conversations about FreeBSD.

crossref:pgpkeys[pgpkeys,OpenPGP Keys]

Lists the PGP fingerprints of several FreeBSD Developers.

Conventions used in this book

To provide a consistent and easy to read text, several conventions are followed throughout the

book.

Typographic Conventions

Italic

An italic font is used for filenames, URLs, emphasized text, and the first usage of technical terms.

Monospace

A monospaced font is used for error messages, commands, environment variables, names of ports,

hostnames, user names, group names, device names, variables, and code fragments.

Bold

A bold font is used for applications, commands, and keys.

User Input

Keys are shown in bold to stand out from other text. Key combinations that are meant to be typed

simultaneously are shown with + between the keys, such as:

Ctrl "+" Alt "+" Del

Meaning the user should type the Ctrl , Alt , and Del keys at the same time.

Keys that are meant to be typed in sequence will be separated with commas, for example:

Ctrl "+" X , Ctrl "+" S

Would mean that the user is expected to type the Ctrl and X keys simultaneously and then to type

the Ctrl and S keys simultaneously.

8

Examples

Examples starting with C:\> indicate a MS-DOS¨ command. Unless otherwise noted, these

commands may be executed from a "Command Prompt" window in a modern Microsoft¨

Windows¨ environment.

E:\> tools\fdimage floppies\kern.flp A:

Examples starting with # indicate a command that must be invoked as the superuser in FreeBSD.

You can login as root to type the command, or login as your normal account and use man:su[1] to

gain superuser privileges.

dd if=kern.flp of=/dev/fd0

Examples starting with % indicate a command that should be invoked from a normal user account.

Unless otherwise noted, C-shell syntax is used for setting environment variables and other shell

commands.

% top

Acknowledgments

The book you are holding represents the efforts of many hundreds of people around the world.

Whether they sent in fixes for typos, or submitted complete chapters, all the contributions have

been useful.

Several companies have supported the development of this document by paying authors to work on

it full-time, paying for publication, etc. In particular, BSDi (subsequently acquired by Wind River

Systems) paid members of the FreeBSD Documentation Project to work on improving this book full

time leading up to the publication of the first printed edition in March 2000 (ISBN 1-57176-241-8).

Wind River Systems then paid several additional authors to make a number of improvements to the

print-output infrastructure and to add additional chapters to the text. This work culminated in the

publication of the second printed edition in November 2001 (ISBN 1-57176-303-1). In 2003-2004,

FreeBSD Mall, Inc , paid several contributors to improve the Handbook in preparation for the third

printed edition.

9

http://www.windriver.com
http://www.windriver.com
http://www.freebsdmall.com

Part I: Getting Started

This part of the handbook is for users and administrators who are new to FreeBSD. These chapters:

¥ Introduce FreeBSD.

¥ Guide readers through the installation process.

¥ Teach UNIX¨ basics and fundamentals.

¥ Show how to install the wealth of third party applications available for FreeBSD.

¥ Introduce X, the UNIX¨ windowing system, and detail how to configure a desktop environment

that makes users more productive.

The number of forward references in the text have been kept to a minimum so that this section can

be read from front to back with minimal page flipping.

10

Chapter 1. Introduction

1.1. Synopsis

Thank you for your interest in FreeBSD! The following chapter covers various aspects of the

FreeBSD Project, such as its history, goals, development model, and so on.

After reading this chapter you will know:

¥ How FreeBSD relates to other computer operating systems.

¥ The history of the FreeBSD Project.

¥ The goals of the FreeBSD Project.

¥ The basics of the FreeBSD open-source development model.

¥ And of course: where the name "FreeBSD" comes from.

1.2. Welcome to FreeBSD!

FreeBSD is an Open Source, standards-compliant Unix-like operating system for x86 (both 32 and 64

bit), ARM¨, AArch64, RISC-V¨, MIPS¨, POWER¨, PowerPC¨, and Sun UltraSPARC¨ computers. It

provides all the features that are nowadays taken for granted, such as preemptive multitasking,

memory protection, virtual memory, multi-user facilities, SMP support, all the Open Source

development tools for different languages and frameworks, and desktop features centered around

X Window System, KDE, or GNOME. Its particular strengths are:

¥ Liberal Open Source license , which grants you rights to freely modify and extend its source code

and incorporate it in both Open Source projects and closed products without imposing

restrictions typical to copyleft licenses, as well as avoiding potential license incompatibility

problems.

¥ Strong TCP/IP networking - FreeBSD implements industry standard protocols with ever

increasing performance and scalability. This makes it a good match in both server, and

routing/firewalling roles - and indeed many companies and vendors use it precisely for that

purpose.

¥ Fully integrated OpenZFS support , including root-on-ZFS, ZFS Boot Environments, fault

management, administrative delegation, support for jails, FreeBSD specific documentation, and

system installer support.

¥ Extensive security features , from the Mandatory Access Control framework to Capsicum

capability and sandbox mechanisms.

¥ Over 30 thousand prebuilt packages for all supported architectures, and the Ports Collection

which makes it easy to build your own, customized ones.

¥ Documentation - in addition to Handbook and books from different authors that cover topics

ranging from system administration to kernel internals, there are also the man:man[1] pages,

not only for userspace daemons, utilities, and configuration files, but also for kernel driver APIs

(section 9) and individual drivers (section 4).

11

¥ Simple and consistent repository structure and build system - FreeBSD uses a single repository

for all of its components, both kernel and userspace. This, along with an unified and easy to

customize build system and a well thought out development process makes it easy to integrate

FreeBSD with build infrastructure for your own product.

¥ Staying true to Unix philosophy , preferring composability instead of monolithic "all in one"

daemons with hardcoded behavior.

¥ Binary compatibility with Linux, which makes it possible to run many Linux binaries without

the need for virtualisation.

FreeBSD is based on the 4.4BSD-Lite release from Computer Systems Research Group (CSRG) at the

University of California at Berkeley, and carries on the distinguished tradition of BSD systems

development. In addition to the fine work provided by CSRG, the FreeBSD Project has put in many

thousands of man-hours into extending the functionality and fine-tuning the system for maximum

performance and reliability in real-life load situations. FreeBSD offers performance and reliability

on par with other Open Source and commercial offerings, combined with cutting-edge features not

available anywhere else.

1.2.1. What Can FreeBSD Do?

The applications to which FreeBSD can be put are truly limited only by your own imagination.

From software development to factory automation, inventory control to azimuth correction of

remote satellite antennae; if it can be done with a commercial UNIX¨ product then it is more than

likely that you can do it with FreeBSD too! FreeBSD also benefits significantly from literally

thousands of high quality applications developed by research centers and universities around the

world, often available at little to no cost.

Because the source code for FreeBSD itself is freely available, the system can also be customized to

an almost unheard of degree for special applications or projects, and in ways not generally possible

with operating systems from most major commercial vendors. Here is just a sampling of some of

the applications in which people are currently using FreeBSD:

¥ Internet Services: The robust TCP/IP networking built into FreeBSD makes it an ideal platform

for a variety of Internet services such as:

! Web servers

! IPv4 and IPv6 routing

! Firewalls and NAT ("IP masquerading") gateways

! FTP servers

! Email servers

! And moreÉ

¥ Education: Are you a student of computer science or a related engineering field? There is no

better way of learning about operating systems, computer architecture and networking than the

hands on, under the hood experience that FreeBSD can provide. A number of freely available

CAD, mathematical and graphic design packages also make it highly useful to those whose

primary interest in a computer is to get other work done!

¥ Research: With source code for the entire system available, FreeBSD is an excellent platform for

12

research in operating systems as well as other branches of computer science. FreeBSDÕs freely

available nature also makes it possible for remote groups to collaborate on ideas or shared

development without having to worry about special licensing agreements or limitations on

what may be discussed in open forums.

¥ Networking: Need a new router? A name server (DNS)? A firewall to keep people out of your

internal network? FreeBSD can easily turn that unused PC sitting in the corner into an

advanced router with sophisticated packet-filtering capabilities.

¥ Embedded: FreeBSD makes an excellent platform to build embedded systems upon. With

support for the ARM¨, MIPS¨ and PowerPC¨ platforms, coupled with a robust network stack,

cutting edge features and the permissive BSD license FreeBSD makes an excellent foundation

for building embedded routers, firewalls, and other devices.

¥ Desktop: FreeBSD makes a fine choice for an inexpensive desktop solution using the freely

available X11 server. FreeBSD offers a choice from many open-source desktop environments,

including the standard GNOME and KDE graphical user interfaces. FreeBSD can even boot

"diskless" from a central server, making individual workstations even cheaper and easier to

administer.

¥ Software Development: The basic FreeBSD system comes with a full suite of development tools

including a full C/C++ compiler and debugger suite. Support for many other languages are also

available through the ports and packages collection.

FreeBSD is available to download free of charge, or can be obtained on either CD-ROM or DVD.

Please see crossref:mirrors[mirrors, Obtaining FreeBSD] for more information about obtaining

FreeBSD.

1.2.2. Who Uses FreeBSD?

FreeBSD has been known for its web serving capabilities - sites that run on FreeBSD include Hacker

News , Netcraft , NetEase , Netflix , Sina , Sony Japan , Rambler , Yahoo! , and Yandex .

FreeBSDÕs advanced features, proven security, predictable release cycle, and permissive license

have led to its use as a platform for building many commercial and open source appliances,

devices, and products. Many of the worldÕs largest IT companies use FreeBSD:

¥ Apache - The Apache Software Foundation runs most of its public facing infrastructure,

including possibly one of the largest SVN repositories in the world with over 1.4 million

commits, on FreeBSD.

¥ Apple - OS X borrows heavily from FreeBSD for the network stack, virtual file system, and many

userland components. Apple iOS also contains elements borrowed from FreeBSD.

¥ Cisco - IronPort network security and anti-spam appliances run a modified FreeBSD kernel.

¥ Citrix - The NetScaler line of security appliances provide layer 4-7 load balancing, content

caching, application firewall, secure VPN, and mobile cloud network access, along with the

power of a FreeBSD shell.

¥ Dell EMC Isilon - IsilonÕs enterprise storage appliances are based on FreeBSD. The extremely

liberal FreeBSD license allowed Isilon to integrate their intellectual property throughout the

kernel and focus on building their product instead of an operating system.

13

https://docs.freebsd.org/en/books/faq/#bsd-license-restrictions
https://news.ycombinator.com/
https://news.ycombinator.com/
http://www.netcraft.com/
http://www.163.com/
https://signup.netflix.com/openconnect
http://www.sina.com/
http://www.sony.co.jp/
http://www.rambler.ru/
http://www.yahoo.com/
http://www.yandex.ru/
http://www.apache.org/
http://www.apple.com/
http://www.cisco.com/
http://www.citrix.com/
https://www.emc.com/isilon

¥ Quest KACE - The KACE system management appliances run FreeBSD because of its reliability,

scalability, and the community that supports its continued development.

¥ iXsystems - The TrueNAS line of unified storage appliances is based on FreeBSD. In addition to

their commercial products, iXsystems also manages development of the open source projects

TrueOS and FreeNAS.

¥ Juniper - The JunOS operating system that powers all Juniper networking gear (including

routers, switches, security, and networking appliances) is based on FreeBSD. Juniper is one of

many vendors that showcases the symbiotic relationship between the project and vendors of

commercial products. Improvements generated at Juniper are upstreamed into FreeBSD to

reduce the complexity of integrating new features from FreeBSD back into JunOS in the future.

¥ McAfee - SecurOS, the basis of McAfee enterprise firewall products including Sidewinder is

based on FreeBSD.

¥ NetApp - The Data ONTAP GX line of storage appliances are based on FreeBSD. In addition,

NetApp has contributed back many features, including the new BSD licensed hypervisor, bhyve.

¥ Netflix - The OpenConnect appliance that Netflix uses to stream movies to its customers is based

on FreeBSD. Netflix has made extensive contributions to the codebase and works to maintain a

zero delta from mainline FreeBSD. Netflix OpenConnect appliances are responsible for

delivering more than 32% of all Internet traffic in North America.

¥ Sandvine - Sandvine uses FreeBSD as the basis of their high performance real-time network

processing platforms that make up their intelligent network policy control products.

¥ Sony - The PlayStation 4 gaming console runs a modified version of FreeBSD.

¥ Sophos - The Sophos Email Appliance product is based on a hardened FreeBSD and scans

inbound mail for spam and viruses, while also monitoring outbound mail for malware as well

as the accidental loss of sensitive information.

¥ Spectra Logic - The nTier line of archive grade storage appliances run FreeBSD and OpenZFS.

¥ Stormshield - Stormshield Network Security appliances are based on a hardened version of

FreeBSD. The BSD license allows them to integrate their own intellectual property with the

system while returning a great deal of interesting development to the community.

¥ The Weather Channel - The IntelliStar appliance that is installed at each local cable providerÕs

headend and is responsible for injecting local weather forecasts into the cable TV networkÕs

programming runs FreeBSD.

¥ Verisign - Verisign is responsible for operating the .com and .net root domain registries as well

as the accompanying DNS infrastructure. They rely on a number of different network operating

systems including FreeBSD to ensure there is no common point of failure in their infrastructure.

¥ Voxer - Voxer powers their mobile voice messaging platform with ZFS on FreeBSD. Voxer

switched from a Solaris derivative to FreeBSD because of its superior documentation, larger

and more active community, and more developer friendly environment. In addition to critical

features like ZFS and DTrace, FreeBSD also offers TRIM support for ZFS.

¥ Fudo Security - The FUDO security appliance allows enterprises to monitor, control, record, and

audit contractors and administrators who work on their systems. Based on all of the best

security features of FreeBSD including ZFS, GELI, Capsicum, HAST, and auditdistd.

14

http://www.quest.com/KACE
http://www.ixsystems.com/
http://www.juniper.net/
http://www.mcafee.com/
http://www.netapp.com/
http://www.netflix.com/
http://www.sandvine.com/
http://www.sony.com/
http://www.sophos.com/
http://www.spectralogic.com/
https://www.stormshield.eu
http://www.weather.com/
http://www.verisign.com/
http://www.voxer.com/
https://fudosecurity.com/en/

FreeBSD has also spawned a number of related open source projects:

¥ BSD Router - A FreeBSD based replacement for large enterprise routers designed to run on

standard PC hardware.

¥ FreeNAS - A customized FreeBSD designed to be used as a network file server appliance.

Provides a python based web interface to simplify the management of both the UFS and ZFS file

systems. Includes support for NFS, SMB/CIFS, AFP, FTP, and iSCSI. Includes an extensible plugin

system based on FreeBSD jails.

¥ GhostBSD - is derived from FreeBSD, uses the GTK environment to provide a beautiful looks and

comfortable experience on the modern BSD platform offering a natural and native UNIX¨ work

environment.

¥ mfsBSD - A toolkit for building a FreeBSD system image that runs entirely from memory.

¥ NAS4Free - A file server distribution based on FreeBSD with a PHP powered web interface.

¥ OPNSense - OPNsense is an open source, easy-to-use and easy-to-build FreeBSD based firewall

and routing platform. OPNsense includes most of the features available in expensive

commercial firewalls, and more in many cases. It brings the rich feature set of commercial

offerings with the benefits of open and verifiable sources.

¥ TrueOS - TrueOS is based on the legendary security and stability of FreeBSD. TrueOS follows

FreeBSD-CURRENT, with the latest drivers, security updates, and packages available.

¥ MidnightBSD - is a FreeBSD derived operating system developed with desktop users in mind. It

includes all the software youÕd expect for your daily tasks: mail, web browsing, word

processing, gaming, and much more.

¥ NomadBSD - is a persistent live system for USB flash drives, based on FreeBSD. Together with

automatic hardware detection and setup, it is configured to be used as a desktop system that

works out of the box, but can also be used for data recovery, for educational purposes, or to test

FreeBSDÕs hardware compatibility.

¥ pfSense - A firewall distribution based on FreeBSD with a huge array of features and extensive

IPv6 support.

¥ ZRouter - An open source alternative firmware for embedded devices based on FreeBSD.

Designed to replace the proprietary firmware on off-the-shelf routers.

A list of testimonials from companies basing their products and services on FreeBSD can be found

at the FreeBSD Foundation website. Wikipedia also maintains a list of products based on FreeBSD .

1.3. About the FreeBSD Project

The following section provides some background information on the project, including a brief

history, project goals, and the development model of the project.

1.3.1. A Brief History of FreeBSD

The FreeBSD Project had its genesis in the early part of 1993, partially as the brainchild of the

Unofficial 386BSDPatchkitÕs last 3 coordinators: Nate Williams, Rod Grimes and Jordan Hubbard.

15

http://bsdrp.net/
http://www.freenas.org/
https://ghostbsd.org/
http://mfsbsd.vx.sk/
http://www.nas4free.org/
http://www.opnsense.org/
https://www.trueos.org
https://www.midnightbsd.org
https://www.nomadbsd.org
http://www.pfsense.org/
http://zrouter.org/
https://www.freebsdfoundation.org/about/testimonials/
https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD

The original goal was to produce an intermediate snapshot of 386BSD in order to fix a number of

problems that the patchkit mechanism was just not capable of solving. The early working title for

the project was 386BSD 0.5 or 386BSD Interim in reference of that fact.

386BSD was Bill JolitzÕs operating system, which had been up to that point suffering rather severely

from almost a yearÕs worth of neglect. As the patchkit swelled ever more uncomfortably with each

passing day, they decided to assist Bill by providing this interim "cleanup" snapshot. Those plans

came to a rude halt when Bill Jolitz suddenly decided to withdraw his sanction from the project

without any clear indication of what would be done instead.

The trio thought that the goal remained worthwhile, even without BillÕs support, and so they

adopted the name "FreeBSD" coined by David Greenman. The initial objectives were set after

consulting with the systemÕs current users and, once it became clear that the project was on the

road to perhaps even becoming a reality, Jordan contacted Walnut Creek CDROM with an eye

toward improving FreeBSDÕs distribution channels for those many unfortunates without easy

access to the Internet. Walnut Creek CDROM not only supported the idea of distributing FreeBSD on

CD but also went so far as to provide the project with a machine to work on and a fast Internet

connection. Without Walnut Creek CDROMÕs almost unprecedented degree of faith in what was, at

the time, a completely unknown project, it is quite unlikely that FreeBSD would have gotten as far,

as fast, as it has today.

The first CD-ROM (and general net-wide) distribution was FreeBSD 1.0, released in December of

1993. This was based on the 4.3BSD-Lite ("Net/2") tape from U.C. Berkeley, with many components

also provided by 386BSD and the Free Software Foundation. It was a fairly reasonable success for a

first offering, and they followed it with the highly successful FreeBSD 1.1 release in May of 1994.

Around this time, some rather unexpected storm clouds formed on the horizon as Novell and U.C.

Berkeley settled their long-running lawsuit over the legal status of the Berkeley Net/2 tape. A

condition of that settlement was U.C. BerkeleyÕs concession that large parts of Net/2 were

"encumbered" code and the property of Novell, who had in turn acquired it from AT&T some time

previously. What Berkeley got in return was NovellÕs "blessing" that the 4.4BSD-Lite release, when it

was finally released, would be declared unencumbered and all existing Net/2 users would be

strongly encouraged to switch. This included FreeBSD, and the project was given until the end of

July 1994 to stop shipping its own Net/2 based product. Under the terms of that agreement, the

project was allowed one last release before the deadline, that release being FreeBSD 1.1.5.1.

FreeBSD then set about the arduous task of literally re-inventing itself from a completely new and

rather incomplete set of 4.4BSD-Lite bits. The "Lite" releases were light in part because BerkeleyÕs

CSRG had removed large chunks of code required for actually constructing a bootable running

system (due to various legal requirements) and the fact that the Intel port of 4.4 was highly

incomplete. It took the project until November of 1994 to make this transition, and in December it

released FreeBSD 2.0 to the world. Despite being still more than a little rough around the edges, the

release was a significant success and was followed by the more robust and easier to install FreeBSD

2.0.5 release in June of 1995.

Since that time, FreeBSD has made a series of releases each time improving the stability, speed, and

feature set of the previous version.

For now, long-term development projects continue to take place in the 10.X-CURRENT (trunk)

16

branch, and snapshot releases of 10.X are continually made available from the snapshot server as

work progresses.

1.3.2. FreeBSD Project Goals

The goals of the FreeBSD Project are to provide software that may be used for any purpose and

without strings attached. Many of us have a significant investment in the code (and project) and

would certainly not mind a little financial compensation now and then, but we are definitely not

prepared to insist on it. We believe that our first and foremost "mission" is to provide code to any

and all comers, and for whatever purpose, so that the code gets the widest possible use and

provides the widest possible benefit. This is, I believe, one of the most fundamental goals of Free

Software and one that we enthusiastically support.

That code in our source tree which falls under the GNU General Public License (GPL) or Library

General Public License (LGPL) comes with slightly more strings attached, though at least on the side

of enforced access rather than the usual opposite. Due to the additional complexities that can

evolve in the commercial use of GPL software we do, however, prefer software submitted under the

more relaxed BSD license when it is a reasonable option to do so.

1.3.3. The FreeBSD Development Model

The development of FreeBSD is a very open and flexible process, being literally built from the

contributions of thousands of people around the world, as can be seen from our list of contributors .

FreeBSDÕs development infrastructure allow these thousands of contributors to collaborate over the

Internet. We are constantly on the lookout for new developers and ideas, and those interested in

becoming more closely involved with the project need simply contact us at the FreeBSD technical

discussions mailing list . The FreeBSD announcements mailing list is also available to those wishing

to make other FreeBSD users aware of major areas of work.

Useful things to know about the FreeBSD Project and its development process, whether working

independently or in close cooperation:

The SVN repositories

For several years, the central source tree for FreeBSD was maintained by CVS (Concurrent

Versions System), a freely available source code control tool. In June 2008, the Project switched

to using SVN (Subversion). The switch was deemed necessary, as the technical limitations

imposed by CVS were becoming obvious due to the rapid expansion of the source tree and the

amount of history already stored. The Documentation Project and Ports Collection repositories

also moved from CVS to SVN in May 2012 and July 2012, respectively. Please refer to the

crossref:cutting-edge[synching, Obtaining the Source] section for more information on obtaining

the FreeBSD src/ repository and crossref:ports[ports-using, Using the Ports Collection] for details

on obtaining the FreeBSD Ports Collection.

The committers list

The committers are the people who have write access to the Subversion tree, and are authorized

to make modifications to the FreeBSD source (the term "committer" comes from commit , the

source control command which is used to bring new changes into the repository). Anyone can

submit a bug to the Bug Database . Before submitting a bug report, the FreeBSD mailing lists, IRC

17

ftp://ftp.FreeBSD.org/pub/FreeBSD/snapshots/
https://docs.freebsd.org/en/articles/contributors/
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-announce
http://www.nongnu.org/cvs/
http://subversion.tigris.org
https://bugs.FreeBSD.org/submit/

channels, or forums can be used to help verify that an issue is actually a bug.

The FreeBSD core team

The FreeBSD core team would be equivalent to the board of directors if the FreeBSD Project were

a company. The primary task of the core team is to make sure the project, as a whole, is in good

shape and is heading in the right directions. Inviting dedicated and responsible developers to

join our group of committers is one of the functions of the core team, as is the recruitment of

new core team members as others move on. The current core team was elected from a pool of

committer candidates in June 2020. Elections are held every 2 years.

!

Like most developers, most members of the core team are also volunteers when

it comes to FreeBSD development and do not benefit from the project

financially, so "commitment" should also not be misconstrued as meaning

"guaranteed support." The "board of directors" analogy above is not very

accurate, and it may be more suitable to say that these are the people who gave

up their lives in favor of FreeBSD against their better judgement!

Outside contributors

Last, but definitely not least, the largest group of developers are the users themselves who

provide feedback and bug fixes to us on an almost constant basis. The primary way of keeping in

touch with FreeBSDÕs more non-centralized development is to subscribe to the FreeBSD

technical discussions mailing list where such things are discussed. See

crossref:eresources[eresources, Resources on the Internet] for more information about the

various FreeBSD mailing lists.

The FreeBSD Contributors List is a long and growing one, so why not join it by contributing

something back to FreeBSD today?

Providing code is not the only way of contributing to the project; for a more complete list of

things that need doing, please refer to the FreeBSD Project web site .

In summary, our development model is organized as a loose set of concentric circles. The

centralized model is designed for the convenience of the users of FreeBSD, who are provided with

an easy way of tracking one central code base, not to keep potential contributors out! Our desire is

to present a stable operating system with a large set of coherent crossref:ports[ports,application

programs] that the users can easily install and use - this model works very well in accomplishing

that.

All we ask of those who would join us as FreeBSD developers is some of the same dedication its

current people have to its continued success!

1.3.4. Third Party Programs

In addition to the base distributions, FreeBSD offers a ported software collection with thousands of

commonly sought-after programs. At the time of this writing, there were over 36000 ports! The list

of ports ranges from http servers, to games, languages, editors, and almost everything in between.

The entire Ports Collection requires approximately 500 MB. To compile a port, you simply change to

the directory of the program you wish to install, type make install , and let the system do the rest.

The full original distribution for each port you build is retrieved dynamically so you need only

18

http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
https://docs.freebsd.org/en/articles/contributors/
https://www.FreeBSD.org/

enough disk space to build the ports you want. Almost every port is also provided as a pre-compiled

"package", which can be installed with a simple command (pkg install) by those who do not wish

to compile their own ports from source. More information on packages and ports can be found in

crossref:ports[ports,Installing Applications: Packages and Ports].

1.3.5. Additional Documentation

All supported FreeBSD versions provide an option in the installer to install additional

documentation under /usr/local/shared/doc/freebsd during the initial system setup. Documentation

may also be installed at any later time using packages as described in crossref:cutting-edge[doc-

ports-install-package,ÒUpdating Documentation from PortsÓ]. You may view the locally installed

manuals with any HTML capable browser using the following URLs:

The FreeBSD Handbook

/usr/local/shared/doc/freebsd/handbook/index.html

The FreeBSD FAQ

/usr/local/shared/doc/freebsd/faq/index.html

You can also view the master (and most frequently updated) copies at https://www.FreeBSD.org/ .

19

file://localhost/usr/local/shared/doc/freebsd/handbook/index.html
file://localhost/usr/local/shared/doc/freebsd/faq/index.html
https://www.FreeBSD.org/

Chapter 2. Installing FreeBSD

2.1. Synopsis

There are several different ways of getting FreeBSD to run, depending on the environment. Those

are:

¥ Virtual Machine images, to download and import on a virtual environment of choice. These can

be downloaded from the Download FreeBSD page. There are images for KVM ("qcow2"),

VMWare ("vmdk"), Hyper-V ("vhd"), and raw device images that are universally supported.

These are not installation images, but rather the preconfigured ("already installed") instances,

ready to run and perform post-installation tasks.

¥ Virtual Machine images available at AmazonÕs AWS Marketplace , Microsoft Azure Marketplace ,

and Google Cloud Platform , to run on their respective hosting services. For more information on

deploying FreeBSD on Azure please consult the relevant chapter in the Azure Documentation .

¥ SD card images, for embedded systems such as Raspberry Pi or BeagleBone Black. These can be

downloaded from the Download FreeBSD page. These files must be uncompressed and written

as a raw image to an SD card, from which the board will then boot.

¥ Installation images, to install FreeBSD on a hard drive for the usual desktop, laptop, or server

systems.

The rest of this chapter describes the fourth case, explaining how to install FreeBSD using the text-

based installation program named bsdinstall.

In general, the installation instructions in this chapter are written for the i386ª and AMD64

architectures. Where applicable, instructions specific to other platforms will be listed. There may

be minor differences between the installer and what is shown here, so use this chapter as a general

guide rather than as a set of literal instructions.

!

Users who prefer to install FreeBSD using a graphical installer may be interested

in GhostBSD , MidnightBSD or NomadBSD .

After reading this chapter, you will know:

¥ The minimum hardware requirements and FreeBSD supported architectures.

¥ How to create the FreeBSD installation media.

¥ How to start bsdinstall.

¥ The questions bsdinstall will ask, what they mean, and how to answer them.

¥ How to troubleshoot a failed installation.

¥ How to access a live version of FreeBSD before committing to an installation.

Before reading this chapter, you should:

¥ Read the supported hardware list that shipped with the version of FreeBSD to be installed and

verify that the systemÕs hardware is supported.

20

https://www.freebsd.org/where/
https://aws.amazon.com/marketplace/pp/B07L6QV354
https://azuremarketplace.microsoft.com/en-us/marketplace/apps?search=freebsd&page=1
https://console.cloud.google.com/marketplace/details/freebsd-cloud/freebsd-12
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/freebsd-intro-on-azure
https://www.freebsd.org/where/
https://ghostbsd.org
https://www.midnightbsd.org
https://nomadbsd.org

2.2. Minimum Hardware Requirements

The hardware requirements to install FreeBSD vary by architecture. Hardware architectures and

devices supported by a FreeBSD release are listed on the FreeBSD Release Information page. The

FreeBSD download page also has recommendations for choosing the correct image for different

architectures.

A FreeBSD installation requires a minimum of 96 MB of RAM and 1.5 GB of free hard drive space.

However, such small amounts of memory and disk space are really only suitable for custom

applications like embedded appliances. General-purpose desktop systems need more resources. 2-4

GB RAM and at least 8 GB hard drive space is a good starting point.

These are the processor requirements for each architecture:

amd64

This is the most common desktop and laptop processor type, used in most modern systems.

Intel¨ calls it Intel64. Other manufacturers sometimes call it x86-64.

Examples of amd64 compatible processors include: AMD Athlonª64, AMD Opteronª, multi-core

Intel¨ Xeonª, and Intel¨ Coreª 2 and later processors.

i386

Older desktops and laptops often use this 32-bit, x86 architecture.

Almost all i386-compatible processors with a floating point unit are supported. All Intel¨

processors 486 or higher are supported.

FreeBSD will take advantage of Physical Address Extensions (PAE) support on CPUs with this

feature. A kernel with the PAE feature enabled will detect memory above 4 GB and allow it to be

used by the system. However, using PAE places constraints on device drivers and other features

of FreeBSD.

powerpc

All New World ROM Apple¨ Mac¨ systems with built-in USB are supported. SMP is supported on

machines with multiple CPUs.

A 32-bit kernel can only use the first 2 GB of RAM.

sparc64

Systems supported by FreeBSD/sparc64 are listed at the FreeBSD/sparc64 Project .

SMP is supported on all systems with more than 1 processor. A dedicated disk is required as it is

not possible to share a disk with another operating system at this time.

2.3. Pre-Installation Tasks

Once it has been determined that the system meets the minimum hardware requirements for

installing FreeBSD, the installation file should be downloaded and the installation media prepared.

Before doing this, check that the system is ready for an installation by verifying the items in this

21

https://www.FreeBSD.org/releases/
https://www.FreeBSD.org/where/
https://www.FreeBSD.org/platforms/sparc/

checklist:

1. Back Up Important Data

Before installing any operating system, always backup all important data first. Do not store the

backup on the system being installed. Instead, save the data to a removable disk such as a USB

drive, another system on the network, or an online backup service. Test the backup before

starting the installation to make sure it contains all of the needed files. Once the installer

formats the systemÕs disk, all data stored on that disk will be lost.

2. Decide Where to Install FreeBSD

If FreeBSD will be the only operating system installed, this step can be skipped. But if FreeBSD

will share the disk with another operating system, decide which disk or partition will be used

for FreeBSD.

In the i386 and amd64 architectures, disks can be divided into multiple partitions using one of

two partitioning schemes. A traditional Master Boot Record (MBR) holds a partition table

defining up to four primary partitions . For historical reasons, FreeBSD calls these primary

partition slices . One of these primary partitions can be made into an extended partition

containing multiple logical partitions . The GUID Partition Table (GPT) is a newer and simpler

method of partitioning a disk. Common GPT implementations allow up to 128 partitions per

disk, eliminating the need for logical partitions.

The FreeBSD boot loader requires either a primary or GPT partition. If all of the primary or GPT

partitions are already in use, one must be freed for FreeBSD. To create a partition without

deleting existing data, use a partition resizing tool to shrink an existing partition and create a

new partition using the freed space.

A variety of free and commercial partition resizing tools are listed at

http://en.wikipedia.org/wiki/List_of_disk_partitioning_software . GParted Live

(http://gparted.sourceforge.net/livecd.php) is a free live CD which includes the GParted partition

editor. GParted is also included with many other Linux live CD distributions.

"

When used properly, disk shrinking utilities can safely create space for

creating a new partition. Since the possibility of selecting the wrong partition

exists, always backup any important data and verify the integrity of the backup

before modifying disk partitions.

Disk partitions containing different operating systems make it possible to install multiple

operating systems on one computer. An alternative is to use virtualization

(crossref:virtualization[virtualization,Virtualization]) which allows multiple operating systems

to run at the same time without modifying any disk partitions.

3. Collect Network Information

Some FreeBSD installation methods require a network connection in order to download the

installation files. After any installation, the installer will offer to setup the systemÕs network

interfaces.

22

http://en.wikipedia.org/wiki/List_of_disk_partitioning_software
http://gparted.sourceforge.net/livecd.php

If the network has a DHCP server, it can be used to provide automatic network configuration. If

DHCP is not available, the following network information for the system must be obtained from

the local network administrator or Internet service provider:

Required Network Information

a. IP address

b. Subnet mask

c. IP address of default gateway

d. Domain name of the network

e. IP addresses of the networkÕs DNS servers

4. Check for FreeBSD Errata

Although the FreeBSD Project strives to ensure that each release of FreeBSD is as stable as

possible, bugs occasionally creep into the process. On very rare occasions those bugs affect the

installation process. As these problems are discovered and fixed, they are noted in the FreeBSD

Errata (https://www.freebsd.org/releases/12.1R/errata/) on the FreeBSD web site. Check the

errata before installing to make sure that there are no problems that might affect the

installation.

Information and errata for all the releases can be found on the release information section of

the FreeBSD web site (https://www.freebsd.org/releases/).

2.3.1. Prepare the Installation Media

The FreeBSD installer is not an application that can be run from within another operating system.

Instead, download a FreeBSD installation file, burn it to the media associated with its file type and

size (CD, DVD, or USB), and boot the system to install from the inserted media.

FreeBSD installation files are available at www.freebsd.org/where/ . Each installation fileÕs name

includes the release version of FreeBSD, the architecture, and the type of file. For example, to install

FreeBSD 12.1 on an amd64 system from a DVD, download FreeBSD-12.1-RELEASE-amd64-dvd1.iso ,

burn this file to a DVD, and boot the system with the DVD inserted.

Installation files are available in several formats. The formats vary depending on computer

architecture and media type.

Additional installation files are included for computers that boot with UEFI (Unified Extensible

Firmware Interface). The names of these files include the string uefi .

File types:

¥ -bootonly.iso : This is the smallest installation file as it only contains the installer. A working

Internet connection is required during installation as the installer will download the files it

needs to complete the FreeBSD installation. This file should be burned to a CD using a CD

burning application.

¥ -disc1.iso : This file contains all of the files needed to install FreeBSD, its source, and the Ports

23

https://www.FreeBSD.org/releases/12.1R/errata/
https://www.FreeBSD.org/releases/
https://www.FreeBSD.org/where/

Collection. It should be burned to a CD using a CD burning application.

¥ -dvd1.iso : This file contains all of the files needed to install FreeBSD, its source, and the Ports

Collection. It also contains a set of popular binary packages for installing a window manager

and some applications so that a complete system can be installed from media without requiring

a connection to the Internet. This file should be burned to a DVD using a DVD burning

application.

¥ -memstick.img : This file contains all of the files needed to install FreeBSD, its source, and the

Ports Collection. It should be burned to a USB stick using the instructions below.

¥ -mini-memstick.img : Like -bootonly.iso , does not include installation files, but downloads them

as needed. A working internet connection is required during installation. Write this file to a USB

stick as shown in Writing an Image File to USB .

After downloading the image file, download CHECKSUM.SHA256 from the same directory. Calculate

a checksum for the image file. FreeBSD provides man:sha256[1] for this, used as sha256

imagefilename . Other operating systems have similar programs.

Compare the calculated checksum with the one shown in CHECKSUM.SHA256 . The checksums must

match exactly. If the checksums do not match, the image file is corrupt and must be downloaded

again.

2.3.1.1. Writing an Image File to USB

The *.img file is an image of the complete contents of a memory stick. It cannot be copied to the

target device as a file. Several applications are available for writing the *.img to a USB stick. This

section describes two of these utilities.

#

Before proceeding, back up any important data on the USB stick. This procedure

will erase the existing data on the stick.

24

Procedure. Using dd to Write the Image

"

This example uses /dev/da0 as the target device where the image will be

written. Be very careful that the correct device is used as this command will

destroy the existing data on the specified target device.

1. The command-line utility is available on BSD, Linux¨, and Mac OS¨ systems. To burn the

image using dd , insert the USB stick and determine its device name. Then, specify the

name of the downloaded installation file and the device name for the USB stick. This

example burns the amd64 installation image to the first USB device on an existing

FreeBSD system.

dd if=FreeBSD-12.1-RELEASE-amd64-memstick.img of=/dev/da0 bs=1M conv=sync

If this command fails, verify that the USB stick is not mounted and that the device name is

for the disk, not a partition. Some operating systems might require this command to be

run with . The syntax varies slightly across different platforms; for example, Mac OS¨

requires a lower-case bs=1m . Systems like Linux¨ might buffer writes. To force all writes

to complete, use .

Procedure. Using Windows¨ to Write the Image

"

Be sure to give the correct drive letter as the existing data on the specified

drive will be overwritten and destroyed.

1. Obtaining Image Writer for Windows¨

Image Writer for Windows¨ is a free application that can correctly write an image file to

a memory stick. Download it from https://sourceforge.net/projects/win32diskimager/ and

extract it into a folder.

2. Writing the Image with Image Writer

Double-click the Win32DiskImager icon to start the program. Verify that the drive letter

shown under Device is the drive with the memory stick. Click the folder icon and select

the image to be written to the memory stick. Click [!Save!] to accept the image file name.

Verify that everything is correct, and that no folders on the memory stick are open in

other windows. When everything is ready, click [!Write!] to write the image file to the

memory stick.

You are now ready to start installing FreeBSD.

25

https://sourceforge.net/projects/win32diskimager/

2.4. Starting the Installation

#

By default, the installation will not make any changes to the disk(s) before the

following message:

Your changes will now be written to disk. If you

have chosen to overwrite existing data, it will

be PERMANENTLY ERASED. Are you sure you want to

commit your changes?

The install can be exited at any time prior to this warning. If there is a concern

that something is incorrectly configured, just turn the computer off before this

point and no changes will be made to the systemÕs disks.

This section describes how to boot the system from the installation media which was prepared

using the instructions in Prepare the Installation Media . When using a bootable USB stick, plug in

the USB stick before turning on the computer. When booting from CD or DVD, turn on the computer

and insert the media at the first opportunity. How to configure the system to boot from the inserted

media depends upon the architecture.

2.4.1. Booting on i386ª and amd64

These architectures provide a BIOS menu for selecting the boot device. Depending upon the

installation media being used, select the CD/DVD or USB device as the first boot device. Most

systems also provide a key for selecting the boot device during startup without having to enter the

BIOS. Typically, the key is either F10 , F11 , F12 , or Escape .

If the computer loads the existing operating system instead of the FreeBSD installer, then either:

1. The installation media was not inserted early enough in the boot process. Leave the media

inserted and try restarting the computer.

2. The BIOS changes were incorrect or not saved. Double-check that the right boot device is

selected as the first boot device.

3. This system is too old to support booting from the chosen media. In this case, the Plop Boot

Manager (http://www.plop.at/en/bootmanagers.html) can be used to boot the system from the

selected media.

2.4.2. Booting on PowerPC¨

On most machines, holding C on the keyboard during boot will boot from the CD. Otherwise, hold

Command "+" Option "+" O "+" F , or Windows "+" Alt "+" O "+" F on non-Apple¨ keyboards. At the 0 > prompt, enter

Êboot cd:,\ppc\loader cd:0

26

http://www.plop.at/en/bootmanagers.html

2.4.3. FreeBSD Boot Menu

Once the system boots from the installation media, a menu similar to the following will be

displayed:

Figure 1. FreeBSD Boot Loader Menu

By default, the menu will wait ten seconds for user input before booting into the FreeBSD installer

or, if FreeBSD is already installed, before booting into FreeBSD. To pause the boot timer in order to

review the selections, press Space . To select an option, press its highlighted number, character, or

key. The following options are available.

¥ Boot Multi User : This will continue the FreeBSD boot process. If the boot timer has been paused,

press 1 , upper- or lower-case B , or Enter .

¥ Boot Single User : This mode can be used to fix an existing FreeBSD installation as described in

crossref:boot[boot-singleuser,ÒSingle-User ModeÓ]. Press 2 or the upper- or lower-case S to enter

this mode.

¥ Escape to loader prompt : This will boot the system into a repair prompt that contains a limited

number of low-level commands. This prompt is described in crossref:boot[boot-loader,ÒStage

ThreeÓ]. Press 3 or Esc to boot into this prompt.

¥ Reboot : Reboots the system.

¥ Kernel : Loads a different kernel.

¥ Configure Boot Options : Opens the menu shown in, and described under, FreeBSD Boot Options

Menu .

27

Figure 2. FreeBSD Boot Options Menu

The boot options menu is divided into two sections. The first section can be used to either return to

the main boot menu or to reset any toggled options back to their defaults.

The next section is used to toggle the available options to On or Off by pressing the optionÕs

highlighted number or character. The system will always boot using the settings for these options

until they are modified. Several options can be toggled using this menu:

¥ ACPI Support : If the system hangs during boot, try toggling this option to Off .

¥ Safe Mode : If the system still hangs during boot even with ACPI Support set to Off , try setting this

option to On .

¥ Single User : Toggle this option to On to fix an existing FreeBSD installation as described in

crossref:boot[boot-singleuser,ÒSingle-User ModeÓ]. Once the problem is fixed, set it back to Off .

¥ Verbose : Toggle this option to On to see more detailed messages during the boot process. This can

be useful when troubleshooting a piece of hardware.

After making the needed selections, press 1 or Backspace to return to the main boot menu, then

press Enter to continue booting into FreeBSD. A series of boot messages will appear as FreeBSD

carries out its hardware device probes and loads the installation program. Once the boot is

complete, the welcome menu shown in Welcome Menu will be displayed.

28

Figure 3. Welcome Menu

Press Enter to select the default of [!Install!] to enter the installer. The rest of this chapter describes

how to use this installer. Otherwise, use the right or left arrows or the colorized letter to select the

desired menu item. The [!Shell!] can be used to access a FreeBSD shell in order to use command line

utilities to prepare the disks before installation. The [!Live CD!] option can be used to try out

FreeBSD before installing it. The live version is described in Using the Live CD .

!

To review the boot messages, including the hardware device probe, press the

upper- or lower-case S and then Enter to access a shell. At the shell prompt, type

more /var/run/dmesg.boot and use the space bar to scroll through the messages.

When finished, type exit to return to the welcome menu.

2.5. Using bsdinstall

This section shows the order of the bsdinstall menus and the type of information that will be asked

before the system is installed. Use the arrow keys to highlight a menu option, then Space to select or

deselect that menu item. When finished, press Enter to save the selection and move onto the next

screen.

2.5.1. Selecting the Keymap Menu

Before starting the process, bsdinstall will load the keymap files as show in Keymap Loading .

29

Figure 4. Keymap Loading

After the keymaps have been loaded bsdinstall displays the menu shown in Keymap Selection

Menu . Use the up and down arrows to select the keymap that most closely represents the mapping

of the keyboard attached to the system. Press Enter to save the selection.

Figure 5. Keymap Selection Menu

!

Pressing Esc will exit this menu and use the default keymap. If the choice of

keymap is not clear, United States of America ISO-8859-1 is also a safe option.

In addition, when selecting a different keymap, the user can try the keymap and ensure it is correct

30

before proceeding as shown in Keymap Testing Menu .

Figure 6. Keymap Testing Menu

2.5.2. Setting the Hostname

The next bsdinstall menu is used to set the hostname for the newly installed system.

Figure 7. Setting the Hostname

Type in a hostname that is unique for the network. It should be a fully-qualified hostname, such as

machine3.example.com .

31

2.5.3. Selecting Components to Install

Next, bsdinstall will prompt to select optional components to install.

Figure 8. Selecting Components to Install

Deciding which components to install will depend largely on the intended use of the system and the

amount of disk space available. The FreeBSD kernel and userland, collectively known as the base

system , are always installed. Depending on the architecture, some of these components may not

appear:

¥ base-dbg - Base tools like cat, ls among many others with debug symbols activated.

¥ kernel-dbg - Kernel and modules with debug symbols activated.

¥ lib32-dbg - Compatibility libraries for running 32-bit applications on a 64-bit version of FreeBSD

with debug symbols activated.

¥ lib32 - Compatibility libraries for running 32-bit applications on a 64-bit version of FreeBSD.

¥ ports - The FreeBSD Ports Collection is a collection of files which automates the downloading,

compiling and installation of third-party software packages. crossref:ports[ports,Installing

Applications: Packages and Ports] discusses how to use the Ports Collection.

"

The installation program does not check for adequate disk space. Select this

option only if sufficient hard disk space is available. The FreeBSD Ports

Collection takes up about 500 MB of disk space.

¥ src - The complete FreeBSD source code for both the kernel and the userland. Although not

required for the majority of applications, it may be required to build device drivers, kernel

modules, or some applications from the Ports Collection. It is also used for developing FreeBSD

itself. The full source tree requires 1 GB of disk space and recompiling the entire FreeBSD

system requires an additional 5 GB of space.

32

¥ tests - FreeBSD Test Suite.

2.5.4. Installing from the Network

The menu shown in Installing from the Network only appears when installing from a -bootonly.iso

or -mini-memstick.img as this installation media does not hold copies of the installation files. Since

the installation files must be retrieved over a network connection, this menu indicates that the

network interface must be configured first. If this menu is shown in any step of the process

remember to follow the instructions in Configuring Network Interfaces .

Figure 9. Installing from the Network

2.6. Allocating Disk Space

The next menu is used to determine the method for allocating disk space.

33

Figure 10. Partitioning Choices

bsdinstall gives the user four methods for allocating disk space:

¥ Auto (UFS) partitioning automatically sets up the disk partitions using the UFS file system.

¥ Manual partitioning allows advanced users to create customized partitions from menu options.

¥ Shell opens a shell prompt where advanced users can create customized partitions using

command-line utilities like man:gpart[8], man:fdisk[8], and man:bsdlabel[8].

¥ Auto (ZFS) partitioning creates a root-on-ZFS system with optional GELI encryption support for

boot environments .

This section describes what to consider when laying out the disk partitions. It then demonstrates

how to use the different partitioning methods.

2.6.1. Designing the Partition Layout

When laying out file systems, remember that hard drives transfer data faster from the outer tracks

to the inner. Thus, smaller and heavier-accessed file systems should be closer to the outside of the

drive, while larger partitions like /usr should be placed toward the inner parts of the disk. It is a

good idea to create partitions in an order similar to: / , swap, /var , and /usr .

The size of the /var partition reflects the intended machineÕs usage. This partition is used to hold

mailboxes, log files, and printer spools. Mailboxes and log files can grow to unexpected sizes

depending on the number of users and how long log files are kept. On average, most users rarely

need more than about a gigabyte of free disk space in /var .

34

!

Sometimes, a lot of disk space is required in /var/tmp . When new software is

installed, the packaging tools extract a temporary copy of the packages under

/var/tmp . Large software packages, like Firefox or LibreOffice may be tricky to

install if there is not enough disk space under /var/tmp .

The /usr partition holds many of the files which support the system, including the FreeBSD Ports

Collection and system source code. At least 2 gigabytes of space is recommended for this partition.

When selecting partition sizes, keep the space requirements in mind. Running out of space in one

partition while barely using another can be a hassle.

As a rule of thumb, the swap partition should be about double the size of physical memory (RAM).

Systems with minimal RAM may perform better with more swap. Configuring too little swap can

lead to inefficiencies in the VM page scanning code and might create issues later if more memory is

added.

On larger systems with multiple SCSI disks or multiple IDE disks operating on different controllers,

it is recommended that swap be configured on each drive, up to four drives. The swap partitions

should be approximately the same size. The kernel can handle arbitrary sizes but internal data

structures scale to 4 times the largest swap partition. Keeping the swap partitions near the same

size will allow the kernel to optimally stripe swap space across disks. Large swap sizes are fine,

even if swap is not used much. It might be easier to recover from a runaway program before being

forced to reboot.

By properly partitioning a system, fragmentation introduced in the smaller write heavy partitions

will not bleed over into the mostly read partitions. Keeping the write loaded partitions closer to the

diskÕs edge will increase I/O performance in the partitions where it occurs the most. While I/O

performance in the larger partitions may be needed, shifting them more toward the edge of the

disk will not lead to a significant performance improvement over moving /var to the edge.

2.6.2. Guided Partitioning Using UFS

When this method is selected, a menu will display the available disk(s). If multiple disks are

connected, choose the one where FreeBSD is to be installed.

35

Figure 11. Selecting from Multiple Disks

Once the disk is selected, the next menu prompts to install to either the entire disk or to create a

partition using free space. If [!Entire Disk!] is chosen, a general partition layout filling the whole

disk is automatically created. Selecting [!Partition!] creates a partition layout from the unused

space on the disk.

Figure 12. Selecting Entire Disk or Partition

After [!Entire Disk!] is chosen bsdinstall displays a dialog indicating that the disk will be erased.

36

Figure 13. Confirmation

The next menu shows a list with the partition schemes types. GPT is usually the most appropriate

choice for amd64 computers. Older computers that are not compatible with GPT should use MBR.

The other partition schemes are generally used for uncommon or older computers. More

information is available in Partitioning Schemes .

Figure 14. Select Partition Scheme

After the partition layout has been created, review it to ensure it meets the needs of the installation.

Selecting [!Revert!] will reset the partitions to their original values and pressing [!Auto!] will

recreate the automatic FreeBSD partitions. Partitions can also be manually created, modified, or

deleted. When the partitioning is correct, select [!Finish!] to continue with the installation.

37

Figure 15. Review Created Partitions

Once the disks are configured, the next menu provides the last chance to make changes before the

selected drives are formatted. If changes need to be made, select [!Back!] to return to the main

partitioning menu. [!Revert & Exit!] exits the installer without making any changes to the drive.

Select [!Commit!] to start the installation process.

Figure 16. Final Confirmation

To continue with the installation process go to Fetching Distribution Files .

38

2.6.3. Manual Partitioning

Selecting this method opens the partition editor:

Figure 17. Manually Create Partitions

Highlight the installation drive (ada0 in this example) and select [!Create!] to display a menu of

available partition schemes:

Figure 18. Manually Create Partitions

GPT is usually the most appropriate choice for amd64 computers. Older computers that are not

compatible with GPT should use MBR. The other partition schemes are generally used for

39

uncommon or older computers.

Table 1. Partitioning Schemes

Abbreviation Description

APM Apple Partition Map, used by PowerPC¨.

BSD BSD label without an MBR, sometimes called

dangerously dedicated mode as non-BSD disk

utilities may not recognize it.

GPT GUID Partition Table

(http://en.wikipedia.org/wiki/GUID_Partition_Tab

le).

MBR Master Boot Record

(http://en.wikipedia.org/wiki/Master_boot_recor

d).

VTOC8 Volume Table Of Contents used by Sun SPARC64

and UltraSPARC computers.

After the partitioning scheme has been selected and created, select [!Create!] again to create the

partitions. The Tab key is used to move the cursor between fields.

Figure 19. Manually Create Partitions

A standard FreeBSD GPT installation uses at least three partitions:

¥ freebsd-boot - Holds the FreeBSD boot code.

¥ freebsd-ufs - A FreeBSD UFS file system.

¥ freebsd-zfs - A FreeBSD ZFS file system. More information about ZFS is available in

crossref:zfs[zfs,The Z File System (ZFS)].

40

http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Master_boot_record

¥ freebsd-swap - FreeBSD swap space.

Refer to man:gpart[8] for descriptions of the available GPT partition types.

Multiple file system partitions can be created and some people prefer a traditional layout with

separate partitions for / , /var , /tmp , and /usr . See Creating Traditional Split File System Partitions for

an example.

The Size may be entered with common abbreviations: K for kilobytes, M for megabytes, or G for

gigabytes.

!

Proper sector alignment provides the best performance, and making partition

sizes even multiples of 4K bytes helps to ensure alignment on drives with either

512-byte or 4K-byte sectors. Generally, using partition sizes that are even multiples

of 1M or 1G is the easiest way to make sure every partition starts at an even

multiple of 4K. There is one exception: the freebsd-boot partition should be no

larger than 512K due to current boot code limitations.

A Mountpoint is needed if the partition will contain a file system. If only a single UFS partition will

be created, the mountpoint should be / .

The Label is a name by which the partition will be known. Drive names or numbers can change if

the drive is connected to a different controller or port, but the partition label does not change.

Referring to labels instead of drive names and partition numbers in files like /etc/fstab makes the

system more tolerant to hardware changes. GPT labels appear in /dev/gpt/ when a disk is attached.

Other partitioning schemes have different label capabilities and their labels appear in different

directories in /dev/ .

!

Use a unique label on every partition to avoid conflicts from identical labels. A few

letters from the computerÕs name, use, or location can be added to the label. For

instance, use labroot or rootfslab for the UFS root partition on the computer

named lab .

41

Example 1. Creating Traditional Split File System Partitions

For a traditional partition layout where the / , /var , /tmp , and /usr directories are separate file

systems on their own partitions, create a GPT partitioning scheme, then create the partitions as

shown. Partition sizes shown are typical for a 20G target disk. If more space is available on the

target disk, larger swap or /var partitions may be useful. Labels shown here are prefixed with

ex for "example", but readers should use other unique label values as described above.

By default, FreeBSDÕs gptboot expects the first UFS partition to be the / partition.

Partition Type Size Mountpoint Label

freebsd-boot 512K

freebsd-ufs 2G

/

exrootfs

freebsd-swap 4G exswap

freebsd-ufs 2G

/var

exvarfs

freebsd-ufs 1G

/tmp

extmpfs

freebsd-ufs

accept the default

(remainder of the

disk)

/usr

exusrfs

After the custom partitions have been created, select [!Finish!] to continue with the installation and

go to Fetching Distribution Files .

2.6.4. Guided Partitioning Using Root-on-ZFS

This partitioning mode only works with whole disks and will erase the contents of the entire disk.

The main ZFS configuration menu offers a number of options to control the creation of the pool.

42

Figure 20. ZFS Partitioning Menu

Here is a summary of the options which can be used in this menu:

¥ Install - Proceed with the installation with the selected options.

¥ Pool Type/Disks - Allow to configure the Pool Type and the disk(s) that will constitute the pool.

The automatic ZFS installer currently only supports the creation of a single top level vdev,

except in stripe mode. To create more complex pools, use the instructions in Shell Mode

Partitioning to create the pool.

¥ Rescan Devices - Repopulate the list of available disks.

¥ Disk Info - Disk Info menu can be used to inspect each disk, including its partition table and

various other information such as the device model number and serial number, if available.

¥ Pool Name - Establish the name of the pool. The default name is zroot .

¥ Force 4K Sectors? - Force the use of 4K sectors. By default, the installer will automatically create

partitions aligned to 4K boundaries and force ZFS to use 4K sectors. This is safe even with 512

byte sector disks, and has the added benefit of ensuring that pools created on 512 byte disks will

be able to have 4K sector disks added in the future, either as additional storage space or as

replacements for failed disks. Press the Enter key to chose to activate it or not.

¥ Encrypt Disks? - Encrypting the disks allows the user to encrypt the disks using GELI. More

information about disk encryption is available in crossref:disks[disks-encrypting-geli,ÒDisk

Encryption with geliÓ]. Press the Enter key to chose activate it or not.

¥ Partition Scheme - Allow to choose the partition scheme. GPT is the recommended option in

most cases. Press the Enter key to chose between the different options.

¥ Swap Size - Establish the amount of swap space.

¥ Mirror Swap? - Allows the user to mirror the swap between the disks. Be aware, enabling mirror

swap will break crash dumps. Press the Enter key to activate it or not.

43

¥ Encrypt Swap? - Allow the user the possibility to encrypt the swap. Encrypts the swap with a

temporary key each time that the system boots and discards it on reboot. Press the Enter key to

chose activate it or not. More information about swap encryption in crossref:disks[swap-

encrypting,ÒEncrypting SwapÓ].

Select T to configure the Pool Type and the disk(s) that will constitute the pool.

Figure 21. ZFS Pool Type

Here is a summary of the Pool Type which can be selected in this menu:

¥ stripe - Striping provides maximum storage of all connected devices, but no redundancy. If just

one disk fails the data on the pool is lost irrevocably.

¥ mirror - Mirroring stores a complete copy of all data on every disk. Mirroring provides a good

read performance because data is read from all disks in parallel. Write performance is slower

as the data must be written to all disks in the pool. Allows all but one disk to fail. This option

requires at least two disks.

¥ raid10 - Striped mirrors. Provides the best performance, but the least storage. This option needs

at least an even number of disks and a minimum of four disks.

¥ raidz1 - Single Redundant RAID. Allow one disk to fail concurrently. This option needs at least

three disks.

¥ raidz2 - Double Redundant RAID. Allows two disks to fail concurrently. This option needs at

least four disks.

¥ raidz3 - Triple Redundant RAID. Allows three disks to fail concurrently. This option needs at

least five disks.

Once a Pool Type has been selected, a list of available disks is displayed, and the user is prompted to

select one or more disks to make up the pool. The configuration is then validated, to ensure enough

disks are selected. If not, select [!<Change Selection>!] to return to the list of disks, or [!<Back>!] to

44

change the Pool Type .

Figure 22. Disk Selection

Figure 23. Invalid Selection

If one or more disks are missing from the list, or if disks were attached after the installer was

started, select [!- Rescan Devices!] to repopulate the list of available disks.

45

Figure 24. Rescan Devices

To avoid accidentally erasing the wrong disk, the [!- Disk Info!] menu can be used to inspect each

disk, including its partition table and various other information such as the device model number

and serial number, if available.

Figure 25. Analyzing a Disk

Select N to configure the Pool Name . Enter the desired name then select [!<OK>!] to establish it or

[!<Cancel>!] to return to the main menu and leave the default name.

46

Figure 26. Pool Name

Select S to set the amount of swap. Enter the desired amount of swap and then select [!<OK>!] to

establish it or [!<Cancel>!] to return to the main menu and let the default amount.

Figure 27. Swap Amount

Once all options have been set to the desired values, select the [!>>> Install!] option at the top of the

menu. The installer then offers a last chance to cancel before the contents of the selected drives are

destroyed to create the ZFS pool.

47

Figure 28. Last Chance

If GELI disk encryption was enabled, the installer will prompt twice for the passphrase to be used to

encrypt the disks. And after that the initializing of the encryption begins.

Figure 29. Disk Encryption Password

48

Figure 30. Initializing Encryption

The installation then proceeds normally. To continue with the installation go to Fetching

Distribution Files .

2.6.5. Shell Mode Partitioning

When creating advanced installations, the bsdinstall partitioning menus may not provide the level

of flexibility required. Advanced users can select the [!Shell!] option from the partitioning menu in

order to manually partition the drives, create the file system(s), populate /tmp/bsdinstall_etc/fstab ,

and mount the file systems under /mnt . Once this is done, type exit to return to bsdinstall and

continue the installation.

2.7. Fetching Distribution Files

Installation time will vary depending on the distributions chosen, installation media, and speed of

the computer. A series of messages will indicate the progress.

First, the installer formats the selected disk(s) and initializes the partitions. Next, in the case of a

bootonly media or mini memstick , it downloads the selected components:

49

Figure 31. Fetching Distribution Files

Next, the integrity of the distribution files is verified to ensure they have not been corrupted during

download or misread from the installation media:

Figure 32. Verifying Distribution Files

Finally, the verified distribution files are extracted to the disk:

50

Figure 33. Extracting Distribution Files

Once all requested distribution files have been extracted, bsdinstall displays the first post-

installation configuration screen. The available post-configuration options are described in the next

section.

2.8. Accounts, Time Zone, Services and Hardening

2.8.1. Setting the root Password

First, the root password must be set. While entering the password, the characters being typed are

not displayed on the screen. After the password has been entered, it must be entered again. This

helps prevent typing errors.

51

Figure 34. Setting the root Password

2.8.2. Setting the Time Zone

The next series of menus are used to determine the correct local time by selecting the geographic

region, country, and time zone. Setting the time zone allows the system to automatically correct for

regional time changes, such as daylight savings time, and perform other time zone related

functions properly.

The example shown here is for a machine located in the mainland time zone of Spain, Europe. The

selections will vary according to the geographical location.

Figure 35. Select a Region

52

The appropriate region is selected using the arrow keys and then pressing Enter .

Figure 36. Select a Country

Select the appropriate country using the arrow keys and press Enter .

Figure 37. Select a Time Zone

The appropriate time zone is selected using the arrow keys and pressing Enter .

53

Figure 38. Confirm Time Zone

Confirm the abbreviation for the time zone is correct.

Figure 39. Select Date

The appropriate date is selected using the arrow keys and then pressing [!Set Date!] . Otherwise, the

date selection can be skipped by pressing [!Skip!] .

54

Figure 40. Select Time

The appropriate time is selected using the arrow keys and then pressing [!Set Time!] . Otherwise,

the time selection can be skipped by pressing [!Skip!] .

2.8.3. Enabling Services

The next menu is used to configure which system services will be started whenever the system

boots. All of these services are optional. Only start the services that are needed for the system to

function.

Figure 41. Selecting Additional Services to Enable

55

Here is a summary of the services which can be enabled in this menu:

¥ local_unbound - Enable the DNS local unbound. It is necessary to keep in mind that this is the

unbound of the base system and is only meant for use as a local caching forwarding resolver. If

the objective is to set up a resolver for the entire network install package:dns/unbound[].

¥ sshd - The Secure Shell (SSH) daemon is used to remotely access a system over an encrypted

connection. Only enable this service if the system should be available for remote logins.

¥ moused - Enable this service if the mouse will be used from the command-line system console.

¥ ntpdate - Enable the automatic clock synchronization at boot time. The functionality of this

program is now available in the man:ntpd[8] daemon. After a suitable period of mourning, the

man:ntpdate[8] utility will be retired.

¥ ntpd - The Network Time Protocol (NTP) daemon for automatic clock synchronization. Enable

this service if there is a Windows¨, Kerberos, or LDAP server on the network.

¥ powerd - System power control utility for power control and energy saving.

¥ dumpdev - Enabling crash dumps is useful in debugging issues with the system, so users are

encouraged to enable crash dumps.

2.8.4. Enabling Hardening Security Options

The next menu is used to configure which security options will be enabled. All of these options are

optional. But their use is encouraged.

Figure 42. Selecting Hardening Security Options

Here is a summary of the options which can be enabled in this menu:

¥ hide_uids - Hide processes running as other users to prevent the unprivileged users to see other

running processes in execution by other users (UID) preventing information leakage.

56

¥ hide_gids - Hide processes running as other groups to prevent the unprivileged users to see

other running processes in execution by other groups (GID) preventing information leakage.

¥ hide_jail - Hide processes running in jails to prevent the unprivileged users to see processes

running inside the jails.

¥ read_msgbuf - Disabling reading kernel message buffer for unprivileged users prevent from

using man:dmesg[8] to view messages from the kernelÕs log buffer.

¥ proc_debug - Disabling process debugging facilities for unprivileged users disables a variety of

unprivileged inter-process debugging services, including some procfs functionality, ptrace(), and

ktrace(). Please note that this will also prevent debugging tools, for instance man:lldb[1],

man:truss[1], man:procstat[1], as well as some built-in debugging facilities in certain scripting

language like PHP, etc., from working for unprivileged users.

¥ random_pid - Randomize the PID of newly created processes.

¥ clear_tmp - Clean /tmp when the system starts up.

¥ disable_syslogd - Disable opening syslogd network socket. By default FreeBSD runs syslogd in a

secure way with -s . That prevents the daemon from listening for incoming UDP requests at port

514. With this option enabled syslogd will run with the flag -ss which prevents syslogd from

opening any port. To get more information consult man:syslogd[8].

¥ disable_sendmail - Disable the sendmail mail transport agent.

¥ secure_console - When this option is enabled, the prompt requests the root password when

entering single-user mode.

¥ disable_ddtrace - DTrace can run in a mode that will actually affect the running kernel.

Destructive actions may not be used unless they have been explicitly enabled. To enable this

option when using DTrace use -w . To get more information consult man:dtrace[1].

2.8.5. Add Users

The next menu prompts to create at least one user account. It is recommended to login to the

system using a user account rather than as root . When logged in as root , there are essentially no

limits or protection on what can be done. Logging in as a normal user is safer and more secure.

Select [!Yes!] to add new users.

57

Figure 43. Add User Accounts

Follow the prompts and input the requested information for the user account. The example shown

in Enter User Information creates the asample user account.

Figure 44. Enter User Information

Here is a summary of the information to input:

¥ Username - The name the user will enter to log in. A common convention is to use the first letter

of the first name combined with the last name, as long as each username is unique for the

system. The username is case sensitive and should not contain any spaces.

¥ Full name - The userÕs full name. This can contain spaces and is used as a description for the

58

user account.

¥ Uid - User ID. Typically, this is left blank so the system will assign a value.

¥ Login group - The userÕs group. Typically this is left blank to accept the default.

¥ Invite user into other groups? - Additional groups to which the user will be added as a

member. If the user needs administrative access, type wheel here.

¥ Login class - Typically left blank for the default.

¥ Shell - Type in one of the listed values to set the interactive shell for the user. Refer to

crossref:basics[shells,ÒShellsÓ] for more information about shells.

¥ Home directory - The userÕs home directory. The default is usually correct.

¥ Home directory permissions - Permissions on the userÕs home directory. The default is usually

correct.

¥ Use password-based authentication? - Typically yes so that the user is prompted to input their

password at login.

¥ Use an empty password? - Typically no as it is insecure to have a blank password.

¥ Use a random password? - Typically no so that the user can set their own password in the next

prompt.

¥ Enter password - The password for this user. Characters typed will not show on the screen.

¥ Enter password again - The password must be typed again for verification.

¥ Lock out the account after creation? - Typically no so that the user can login.

After entering everything, a summary is shown for review. If a mistake was made, enter no and try

again. If everything is correct, enter yes to create the new user.

Figure 45. Exit User and Group Management

If there are more users to add, answer the Add another user? question with yes . Enter no to finish

59

adding users and continue the installation.

For more information on adding users and user management, see crossref:basics[users-

synopsis,ÒUsers and Basic Account ManagementÓ].

2.8.6. Final Configuration

After everything has been installed and configured, a final chance is provided to modify settings.

Figure 46. Final Configuration

Use this menu to make any changes or do any additional configuration before completing the

installation.

¥ Add User - Described in Add Users .

¥ Root Password - Described in Setting the root Password .

¥ Hostname - Described in Setting the Hostname .

¥ Network - Described in Configuring Network Interfaces .

¥ Services - Described in Enabling Services .

¥ System Hardening - Described in Enabling Hardening Security Options .

¥ Time Zone - Described in Setting the Time Zone .

¥ Handbook - Download and install the FreeBSD Handbook.

After any final configuration is complete, select [!Exit!] .

60

Figure 47. Manual Configuration

bsdinstall will prompt if there are any additional configuration that needs to be done before

rebooting into the new system. Select [!Yes!] to exit to a shell within the new system or [!No!] to

proceed to the last step of the installation.

Figure 48. Complete the Installation

If further configuration or special setup is needed, select [!Live CD!] to boot the install media into

Live CD mode.

If the installation is complete, select [!Reboot!] to reboot the computer and start the new FreeBSD

system. Do not forget to remove the FreeBSD install media or the computer may boot from it again.

61

As FreeBSD boots, informational messages are displayed. After the system finishes booting, a login

prompt is displayed. At the login: prompt, enter the username added during the installation. Avoid

logging in as root . Refer to crossref:basics[users-superuser,ÒThe Superuser AccountÓ] for

instructions on how to become the superuser when administrative access is needed.

The messages that appeared during boot can be reviewed by pressing Scroll-Lock to turn on the

scroll-back buffer. The PgUp , PgDn , and arrow keys can be used to scroll back through the messages.

When finished, press Scroll-Lock again to unlock the display and return to the console. To review

these messages once the system has been up for some time, type less /var/run/dmesg.boot from a

command prompt. Press q to return to the command line after viewing.

If sshd was enabled in Selecting Additional Services to Enable , the first boot may be a bit slower as

the system will generate the RSA and DSA keys. Subsequent boots will be faster. The fingerprints of

the keys will be displayed, as seen in this example:

62

Generating public/private rsa1 key pair.

Your identification has been saved in /etc/ssh/ssh_host_key.

Your public key has been saved in /etc/ssh/ssh_host_key.pub.

The key fingerprint is:

10:a0:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@machine3.example.com

The key's randomart image is:

+--[RSA1 1024]----+

| o.. |

| o . . |

| . o |

| o |

| o S |

| + + o |

|o . + * |

|o+ ..+ . |

|==o..o+E |

+-----------------+

Generating public/private dsa key pair.

Your identification has been saved in /etc/ssh/ssh_host_dsa_key.

Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.

The key fingerprint is:

7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@machine3.example.com

The key's randomart image is:

+--[DSA 1024]----+

| |

| o . . + |

| E .|

| . . o o . . |

| + S = . |

| + . = o |

| + . * . |

| . . o . |

| .o. . |

+-----------------+

Starting sshd.

Refer to crossref:security[openssh,"OpenSSH"] for more information about fingerprints and SSH.

FreeBSD does not install a graphical environment by default. Refer to crossref:x11[x11,The X

Window System] for more information about installing and configuring a graphical window

manager.

Proper shutdown of a FreeBSD computer helps protect data and hardware from damage. Do not

turn off the power before the system has been properly shut down! If the user is a member of the

wheel group, become the superuser by typing su at the command line and entering the root

password. Then, type shutdown -p now and the system will shut down cleanly, and if the hardware

supports it, turn itself off.

63

2.9. Network Interfaces

2.9.1. Configuring Network Interfaces

Next, a list of the network interfaces found on the computer is shown. Select the interface to

configure.

Figure 49. Choose a Network Interface

If an Ethernet interface is selected, the installer will skip ahead to the menu shown in Choose IPv4

Networking . If a wireless network interface is chosen, the system will instead scan for wireless

access points:

64

Figure 50. Scanning for Wireless Access Points

Wireless networks are identified by a Service Set Identifier (SSID), a short, unique name given to

each network. SSIDs found during the scan are listed, followed by a description of the encryption

types available for that network. If the desired SSID does not appear in the list, select [!Rescan!] to

scan again. If the desired network still does not appear, check for problems with antenna

connections or try moving the computer closer to the access point. Rescan after each change is

made.

Figure 51. Choosing a Wireless Network

Next, enter the encryption information for connecting to the selected wireless network. WPA2

encryption is strongly recommended as older encryption types, like WEP, offer little security. If the

65

network uses WPA2, input the password, also known as the Pre-Shared Key (PSK). For security

reasons, the characters typed into the input box are displayed as asterisks.

Figure 52. WPA2 Setup

Next, choose whether or not an IPv4 address should be configured on the Ethernet or wireless

interface:

Figure 53. Choose IPv4 Networking

There are two methods of IPv4 configuration. DHCP will automatically configure the network

interface correctly and should be used if the network provides a DHCP server. Otherwise, the

addressing information needs to be input manually as a static configuration.

66

!

Do not enter random network information as it will not work. If a DHCP server is

not available, obtain the information listed in Required Network Information from

the network administrator or Internet service provider.

If a DHCP server is available, select [!Yes!] in the next menu to automatically configure the network

interface. The installer will appear to pause for a minute or so as it finds the DHCP server and

obtains the addressing information for the system.

Figure 54. Choose IPv4DHCP Configuration

If a DHCP server is not available, select [!No!] and input the following addressing information in

this menu:

67

Figure 55. IPv4 Static Configuration

¥ IP Address - The IPv4 address assigned to this computer. The address must be unique and not

already in use by another piece of equipment on the local network.

¥ Subnet Mask - The subnet mask for the network.

¥ Default Router - The IP address of the networkÕs default gateway.

The next screen will ask if the interface should be configured for IPv6. If IPv6 is available and

desired, choose [!Yes!] to select it.

Figure 56. Choose IPv6 Networking

68

IPv6 also has two methods of configuration. StateLess Address AutoConfiguration (SLAAC) will

automatically request the correct configuration information from a local router. Refer to rfc4862

for more information. Static configuration requires manual entry of network information.

If an IPv6 router is available, select [!Yes!] in the next menu to automatically configure the network

interface. The installer will appear to pause for a minute or so as it finds the router and obtains the

addressing information for the system.

Figure 57. Choose IPv6 SLAAC Configuration

If an IPv6 router is not available, select [!No!] and input the following addressing information in

this menu:

69

http://tools.ietf.org/html/rfc4862

Figure 58. IPv6 Static Configuration

¥ IPv6 Address - The IPv6 address assigned to this computer. The address must be unique and not

already in use by another piece of equipment on the local network.

¥ Default Router - The IPv6 address of the networkÕs default gateway.

The last network configuration menu is used to configure the Domain Name System (DNS) resolver,

which converts hostnames to and from network addresses. If DHCP or SLAAC was used to

autoconfigure the network interface, the Resolver Configuration values may already be filled in.

Otherwise, enter the local networkÕs domain name in the Search field. DNS #1 and DNS #2 are the

IPv4 and/or IPv6 addresses of the DNS servers. At least one DNS server is required.

70

Figure 59. DNS Configuration

Once the interface is configured, select a mirror site that is located in the same region of the world

as the computer on which FreeBSD is being installed. Files can be retrieved more quickly when the

mirror is close to the target computer, reducing installation time.

Figure 60. Choosing a Mirror

2.10. Troubleshooting

This section covers basic installation troubleshooting, such as common problems people have

reported.

71

Check the Hardware Notes (https://www.freebsd.org/releases/) document for the version of FreeBSD

to make sure the hardware is supported. If the hardware is supported and lock-ups or other

problems occur, build a custom kernel using the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel] to add support for devices

which are not present in the GENERIC kernel. The default kernel assumes that most hardware

devices are in their factory default configuration in terms of IRQs, I/O addresses, and DMA

channels. If the hardware has been reconfigured, a custom kernel configuration file can tell

FreeBSD where to find things.

!

Some installation problems can be avoided or alleviated by updating the firmware

on various hardware components, most notably the motherboard. Motherboard

firmware is usually referred to as the BIOS. Most motherboard and computer

manufacturers have a website for upgrades and upgrade information.

Manufacturers generally advise against upgrading the motherboard BIOS unless

there is a good reason for doing so, like a critical update. The upgrade process can

go wrong, leaving the BIOS incomplete and the computer inoperative.

If the system hangs while probing hardware during boot, or it behaves strangely during install,

ACPI may be the culprit. FreeBSD makes extensive use of the system ACPI service on the i386 and

amd64 platforms to aid in system configuration if it is detected during boot. Unfortunately, some

bugs still exist in both the ACPI driver and within system motherboards and BIOS firmware. ACPI

can be disabled by setting the hint.acpi.0.disabled hint in the third stage boot loader:

Êset hint.acpi.0.disabled="1"

This is reset each time the system is booted, so it is necessary to add hint.acpi.0.disabled="1" to the

file /boot/loader.conf . More information about the boot loader can be found in crossref:boot[boot-

synopsis,ÒSynopsisÓ].

2.11. Using the Live CD

The welcome menu of bsdinstall, shown in Welcome Menu , provides a [!Live CD!] option. This is

useful for those who are still wondering whether FreeBSD is the right operating system for them

and want to test some of the features before installing.

The following points should be noted before using the [!Live CD!] :

¥ To gain access to the system, authentication is required. The username is root and the password

is blank.

¥ As the system runs directly from the installation media, performance will be significantly

slower than that of a system installed on a hard disk.

¥ This option only provides a command prompt and not a graphical interface.

72

https://www.FreeBSD.org/releases/

Chapter 3. FreeBSD basics

3.1. Synopsis

This chapter covers the basic commands and functionality of the FreeBSD operating system. Much

of this material is relevant for any UNIX¨-like operating system. New FreeBSD users are

encouraged to read through this chapter carefully.

After reading this chapter, you will know:

¥ How to use and configure virtual consoles.

¥ How to create and manage users and groups on FreeBSD.

¥ How UNIX¨ file permissions and FreeBSD file flags work.

¥ The default FreeBSD file system layout.

¥ The FreeBSD disk organization.

¥ How to mount and unmount file systems.

¥ What processes, daemons, and signals are.

¥ What a shell is, and how to change the default login environment.

¥ How to use basic text editors.

¥ What devices and device nodes are.

¥ How to read manual pages for more information.

3.2. Virtual Consoles and Terminals

Unless FreeBSD has been configured to automatically start a graphical environment during startup,

the system will boot into a command line login prompt, as seen in this example:

FreeBSD/amd64 (pc3.example.org) (ttyv0)

login:

The first line contains some information about the system. The amd64 indicates that the system in

this example is running a 64-bit version of FreeBSD. The hostname is pc3.example.org , and ttyv0

indicates that this is the "system console". The second line is the login prompt.

Since FreeBSD is a multiuser system, it needs some way to distinguish between different users. This

is accomplished by requiring every user to log into the system before gaining access to the

programs on the system. Every user has a unique name "username" and a personal "password".

To log into the system console, type the username that was configured during system installation,

as described in crossref:bsdinstall[bsdinstall-addusers,Add Users], and press Enter . Then enter the

password associated with the username and press Enter . The password is not echoed for security

reasons.

73

Once the correct password is input, the message of the day (MOTD) will be displayed followed by a

command prompt. Depending upon the shell that was selected when the user was created, this

prompt will be a # , $, or % character. The prompt indicates that the user is now logged into the

FreeBSD system console and ready to try the available commands.

3.2.1. Virtual Consoles

While the system console can be used to interact with the system, a user working from the

command line at the keyboard of a FreeBSD system will typically instead log into a virtual console.

This is because system messages are configured by default to display on the system console. These

messages will appear over the command or file that the user is working on, making it difficult to

concentrate on the work at hand.

By default, FreeBSD is configured to provide several virtual consoles for inputting commands. Each

virtual console has its own login prompt and shell and it is easy to switch between virtual consoles.

This essentially provides the command line equivalent of having several windows open at the same

time in a graphical environment.

The key combinations Alt "+" F1 through Alt "+" F8 have been reserved by FreeBSD for switching

between virtual consoles. Use Alt "+" F1 to switch to the system console (ttyv0), Alt "+" F2 to access the

first virtual console (ttyv1), Alt "+" F3 to access the second virtual console (ttyv2), and so on. When

using Xorg as a graphical console, the combination becomes Ctrl "+" Alt "+" F1 to return to a text-based

virtual console.

When switching from one console to the next, FreeBSD manages the screen output. The result is an

illusion of having multiple virtual screens and keyboards that can be used to type commands for

FreeBSD to run. The programs that are launched in one virtual console do not stop running when

the user switches to a different virtual console.

Refer to man:kbdcontrol[1], man:vidcontrol[1], man:at 4 , man:syscons[4], and man:vt[4] for a more

technical description of the FreeBSD console and its keyboard drivers.

In FreeBSD, the number of available virtual consoles is configured in this section of /etc/ttys :

name getty type status comments

#

ttyv0 "/usr/libexec/getty Pc" xterm on secure

Virtual terminals

ttyv1 "/usr/libexec/getty Pc" xterm on secure

ttyv2 "/usr/libexec/getty Pc" xterm on secure

ttyv3 "/usr/libexec/getty Pc" xterm on secure

ttyv4 "/usr/libexec/getty Pc" xterm on secure

ttyv5 "/usr/libexec/getty Pc" xterm on secure

ttyv6 "/usr/libexec/getty Pc" xterm on secure

ttyv7 "/usr/libexec/getty Pc" xterm on secure

ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure

To disable a virtual console, put a comment symbol () at the beginning of the line representing

that virtual console. For example, to reduce the number of available virtual consoles from

74

eight to four, put a in front of the last four lines representing virtual consoles ttyv5 through

ttyv8 . Do not comment out the line for the system console ttyv0 . Note that the last virtual console

(ttyv8) is used to access the graphical environment if Xorg has been installed and configured as

described in crossref:x11[x11,The X Window System].

For a detailed description of every column in this file and the available options for the virtual

consoles, refer to man:ttys[5].

3.2.2. Single User Mode

The FreeBSD boot menu provides an option labelled as "Boot Single User". If this option is selected,

the system will boot into a special mode known as "single user mode". This mode is typically used to

repair a system that will not boot or to reset the root password when it is not known. While in

single user mode, networking and other virtual consoles are not available. However, full root

access to the system is available, and by default, the root password is not needed. For these reasons,

physical access to the keyboard is needed to boot into this mode and determining who has physical

access to the keyboard is something to consider when securing a FreeBSD system.

The settings which control single user mode are found in this section of /etc/ttys :

name getty type status comments

#

If console is marked "insecure", then init will ask for the root password

when going to single-user mode.

console none unknown off secure

By default, the status is set to secure . This assumes that who has physical access to the keyboard is

either not important or it is controlled by a physical security policy. If this setting is changed to

insecure , the assumption is that the environment itself is insecure because anyone can access the

keyboard. When this line is changed to insecure , FreeBSD will prompt for the root password when a

user selects to boot into single user mode.

!

Be careful when changing this setting to insecure ! If the root password is forgotten,

booting into single user mode is still possible, but may be difficult for someone

who is not familiar with the FreeBSD booting process.

3.2.3. Changing Console Video Modes

The FreeBSD console default video mode may be adjusted to 1024x768, 1280x1024, or any other size

supported by the graphics chip and monitor. To use a different video mode load the VESA module:

kldload vesa

To determine which video modes are supported by the hardware, use man:vidcontrol[1]. To get a

list of supported video modes issue the following:

75

vidcontrol -i mode

The output of this command lists the video modes that are supported by the hardware. To select a

new video mode, specify the mode using man:vidcontrol[1] as the root user:

vidcontrol MODE_279

If the new video mode is acceptable, it can be permanently set on boot by adding it to /etc/rc.conf :

allscreens_flags="MODE_279"

3.3. Users and Basic Account Management

FreeBSD allows multiple users to use the computer at the same time. While only one user can sit in

front of the screen and use the keyboard at any one time, any number of users can log in to the

system through the network. To use the system, each user should have their own user account.

This chapter describes:

¥ The different types of user accounts on a FreeBSD system.

¥ How to add, remove, and modify user accounts.

¥ How to set limits to control the resources that users and groups are allowed to access.

¥ How to create groups and add users as members of a group.

3.3.1. Account Types

Since all access to the FreeBSD system is achieved using accounts and all processes are run by

users, user and account management is important.

There are three main types of accounts: system accounts, user accounts, and the superuser account.

3.3.1.1. System Accounts

System accounts are used to run services such as DNS, mail, and web servers. The reason for this is

security; if all services ran as the superuser, they could act without restriction.

Examples of system accounts are daemon , operator , bind , news , and www .

"

Care must be taken when using the operator group, as unintended superuser-like

access privileges may be granted, including but not limited to shutdown, reboot,

and access to all items in /dev in the group.

nobody is the generic unprivileged system account. However, the more services that use nobody , the

more files and processes that user will become associated with, and hence the more privileged that

user becomes.

76

3.3.1.2. User Accounts

User accounts are assigned to real people and are used to log in and use the system. Every person

accessing the system should have a unique user account. This allows the administrator to find out

who is doing what and prevents users from clobbering the settings of other users.

Each user can set up their own environment to accommodate their use of the system, by

configuring their default shell, editor, key bindings, and language settings.

Every user account on a FreeBSD system has certain information associated with it:

User name

The user name is typed at the login: prompt. Each user must have a unique user name. There

are a number of rules for creating valid user names which are documented in man:passwd[5]. It

is recommended to use user names that consist of eight or fewer, all lower case characters in

order to maintain backwards compatibility with applications.

Password

Each account has an associated password.

User ID (UID)

The User ID (UID) is a number used to uniquely identify the user to the FreeBSD system.

Commands that allow a user name to be specified will first convert it to the UID. It is

recommended to use a UID less than 65535, since higher values may cause compatibility issues

with some software.

Group ID (GID)

The Group ID (GID) is a number used to uniquely identify the primary group that the user

belongs to. Groups are a mechanism for controlling access to resources based on a userÕs GID

rather than their UID. This can significantly reduce the size of some configuration files and

allows users to be members of more than one group. It is recommended to use a GID of 65535 or

lower as higher GIDs may break some software.

Login class

Login classes are an extension to the group mechanism that provide additional flexibility when

tailoring the system to different users. Login classes are discussed further in

crossref:security[users-limiting,Configuring Login Classes].

Password change time

By default, passwords do not expire. However, password expiration can be enabled on a per-

user basis, forcing some or all users to change their passwords after a certain amount of time

has elapsed.

Account expiration time

By default, FreeBSD does not expire accounts. When creating accounts that need a limited

lifespan, such as student accounts in a school, specify the account expiry date using man:pw[8].

After the expiry time has elapsed, the account cannot be used to log in to the system, although

the accountÕs directories and files will remain.

77

UserÕs full name

The user name uniquely identifies the account to FreeBSD, but does not necessarily reflect the

userÕs real name. Similar to a comment, this information can contain spaces, uppercase

characters, and be more than 8 characters long.

Home directory

The home directory is the full path to a directory on the system. This is the userÕs starting

directory when the user logs in. A common convention is to put all user home directories under

/home/username or /usr/home/username . Each user stores their personal files and

subdirectories in their own home directory.

User shell

The shell provides the userÕs default environment for interacting with the system. There are

many different kinds of shells and experienced users will have their own preferences, which can

be reflected in their account settings.

3.3.1.3. The Superuser Account

The superuser account, usually called root , is used to manage the system with no limitations on

privileges. For this reason, it should not be used for day-to-day tasks like sending and receiving

mail, general exploration of the system, or programming.

The superuser, unlike other user accounts, can operate without limits, and misuse of the superuser

account may result in spectacular disasters. User accounts are unable to destroy the operating

system by mistake, so it is recommended to login as a user account and to only become the

superuser when a command requires extra privilege.

Always double and triple-check any commands issued as the superuser, since an extra space or

missing character can mean irreparable data loss.

There are several ways to gain superuser privilege. While one can log in as root , this is highly

discouraged.

Instead, use man:su[1] to become the superuser. If - is specified when running this command, the

user will also inherit the root userÕs environment. The user running this command must be in the

wheel group or else the command will fail. The user must also know the password for the root user

account.

In this example, the user only becomes superuser in order to run make install as this step requires

superuser privilege. Once the command completes, the user types exit to leave the superuser

account and return to the privilege of their user account.

78

Example 2. Install a Program As the Superuser

% configure

% make

% su -

Password:

make install

exit

%

The built-in man:su[1] framework works well for single systems or small networks with just one

system administrator. An alternative is to install the package:security/sudo[] package or port. This

software provides activity logging and allows the administrator to configure which users can run

which commands as the superuser.

3.3.2. Managing Accounts

FreeBSD provides a variety of different commands to manage user accounts. The most common

commands are summarized in Utilities for Managing User Accounts , followed by some examples of

their usage. See the manual page for each utility for more details and usage examples.

Table 2. Utilities for Managing User Accounts

Command Summary

man:adduser[8] The recommended command-line application

for adding new users.

man:rmuser[8] The recommended command-line application

for removing users.

man:chpass[1] A flexible tool for changing user database

information.

man:passwd[1] The command-line tool to change user

passwords.

man:pw[8] A powerful and flexible tool for modifying all

aspects of user accounts.

3.3.2.1. adduser

The recommended program for adding new users is man:adduser[8]. When a new user is added,

this program automatically updates /etc/passwd and /etc/group . It also creates a home directory for

the new user, copies in the default configuration files from /usr/shared/skel , and can optionally mail

the new user a welcome message. This utility must be run as the superuser.

The man:adduser[8] utility is interactive and walks through the steps for creating a new user

account. As seen in Adding a User on FreeBSD , either input the required information or press

Return to accept the default value shown in square brackets. In this example, the user has been

invited into the wheel group, allowing them to become the superuser with man:su[1]. When

79

finished, the utility will prompt to either create another user or to exit.

Example 3. Adding a User on FreeBSD

adduser

Username: jru

Full name: J. Random User

Uid (Leave empty for default):

Login group [jru]:

Login group is jru. Invite jru into other groups? []: wheel

Login class [default]:

Shell (sh csh tcsh zsh nologin) [sh]: zsh

Home directory [/home/jru]:

Home directory permissions (Leave empty for default):

Use password-based authentication? [yes]:

Use an empty password? (yes/no) [no]:

Use a random password? (yes/no) [no]:

Enter password:

Enter password again:

Lock out the account after creation? [no]:

Username : jru

Password : ****

Full Name : J. Random User

Uid : 1001

Class :

Groups : jru wheel

Home : /home/jru

Shell : /usr/local/bin/zsh

Locked : no

OK? (yes/no): yes

adduser: INFO: Successfully added (jru) to the user database.

Add another user? (yes/no): no

Goodbye!

#

!

Since the password is not echoed when typed, be careful to not mistype the

password when creating the user account.

3.3.2.2. rmuser

To completely remove a user from the system, run man:rmuser[8] as the superuser. This command

performs the following steps:

1. Removes the userÕs man:crontab[1] entry, if one exists.

2. Removes any man:at[1] jobs belonging to the user.

3. Kills all processes owned by the user.

4. Removes the user from the systemÕs local password file.

80

5. Optionally removes the userÕs home directory, if it is owned by the user.

6. Removes the incoming mail files belonging to the user from /var/mail .

7. Removes all files owned by the user from temporary file storage areas such as /tmp .

8. Finally, removes the username from all groups to which it belongs in /etc/group . If a group

becomes empty and the group name is the same as the username, the group is removed. This

complements the per-user unique groups created by man:adduser[8].

man:rmuser[8] cannot be used to remove superuser accounts since that is almost always an

indication of massive destruction.

By default, an interactive mode is used, as shown in the following example.

Example 4. rmuser Interactive Account Removal

rmuser jru

Matching password entry:

jru:*:1001:1001::0:0:J. Random User:/home/jru:/usr/local/bin/zsh

Is this the entry you wish to remove? y

Remove user's home directory (/home/jru)? y

Removing user (jru): mailspool home passwd.

#

3.3.2.3. chpass

Any user can use man:chpass[1] to change their default shell and personal information associated

with their user account. The superuser can use this utility to change additional account information

for any user.

When passed no options, aside from an optional username, man:chpass[1] displays an editor

containing user information. When the user exits from the editor, the user database is updated

with the new information.

!

This utility will prompt for the userÕs password when exiting the editor, unless the

utility is run as the superuser.

In Using chpass as Superuser , the superuser has typed chpass jru and is now viewing the fields that

can be changed for this user. If jru runs this command instead, only the last six fields will be

displayed and available for editing. This is shown in Using chpass as Regular User .

81

Example 5. Using chpass as Superuser

#Changing user database information for jru.

Login: jru

Password: *

Uid [#]: 1001

Gid [# or name]: 1001

Change [month day year]:

Expire [month day year]:

Class:

Home directory: /home/jru

Shell: /usr/local/bin/zsh

Full Name: J. Random User

Office Location:

Office Phone:

Home Phone:

Other information:

Example 6. Using chpass as Regular User

#Changing user database information for jru.

Shell: /usr/local/bin/zsh

Full Name: J. Random User

Office Location:

Office Phone:

Home Phone:

Other information:

!

The commands man:chfn[1] and man:chsh[1] are links to man:chpass[1], as are

man:ypchpass[1], man:ypchfn[1], and man:ypchsh[1]. Since NIS support is

automatic, specifying the yp before the command is not necessary. How to

configure NIS is covered in crossref:network-servers[network-servers,Network

Servers].

3.3.2.4. passwd

Any user can easily change their password using man:passwd[1]. To prevent accidental or

unauthorized changes, this command will prompt for the userÕs original password before a new

password can be set:

82

Example 7. Changing Your Password

% passwd

Changing local password for jru.

Old password:

New password:

Retype new password:

passwd: updating the database...

passwd: done

The superuser can change any userÕs password by specifying the username when running

man:passwd[1]. When this utility is run as the superuser, it will not prompt for the userÕs current

password. This allows the password to be changed when a user cannot remember the original

password.

Example 8. Changing Another UserÕs Password as the Superuser

passwd jru

Changing local password for jru.

New password:

Retype new password:

passwd: updating the database...

passwd: done

!

As with man:chpass[1], man:yppasswd[1] is a link to man:passwd[1], so NIS works

with either command.

3.3.2.5. pw

The man:pw[8] utility can create, remove, modify, and display users and groups. It functions as a

front end to the system user and group files. man:pw[8] has a very powerful set of command line

options that make it suitable for use in shell scripts, but new users may find it more complicated

than the other commands presented in this section.

3.3.3. Managing Groups

A group is a list of users. A group is identified by its group name and GID. In FreeBSD, the kernel

uses the UID of a process, and the list of groups it belongs to, to determine what the process is

allowed to do. Most of the time, the GID of a user or process usually means the first group in the list.

The group name to GID mapping is listed in /etc/group . This is a plain text file with four colon-

delimited fields. The first field is the group name, the second is the encrypted password, the third

the GID, and the fourth the comma-delimited list of members. For a more complete description of

the syntax, refer to man:group[5].

83

The superuser can modify /etc/group using a text editor. Alternatively, man:pw[8] can be used to

add and edit groups. For example, to add a group called teamtwo and then confirm that it exists:

Example 9. Adding a Group Using man:pw[8]

pw groupadd teamtwo

pw groupshow teamtwo

teamtwo:*:1100:

In this example, 1100 is the GID of teamtwo . Right now, teamtwo has no members. This command will

add jru as a member of teamtwo .

Example 10. Adding User Accounts to a New Group Using man:pw[8]

pw groupmod teamtwo -M jru

pw groupshow teamtwo

teamtwo:*:1100:jru

The argument to -M is a comma-delimited list of users to be added to a new (empty) group or to

replace the members of an existing group. To the user, this group membership is different from

(and in addition to) the userÕs primary group listed in the password file. This means that the user

will not show up as a member when using groupshow with man:pw[8], but will show up when the

information is queried via man:id[1] or a similar tool. When man:pw[8] is used to add a user to a

group, it only manipulates /etc/group and does not attempt to read additional data from

/etc/passwd .

Example 11. Adding a New Member to a Group Using man:pw[8]

pw groupmod teamtwo -m db

pw groupshow teamtwo

teamtwo:*:1100:jru,db

In this example, the argument to -m is a comma-delimited list of users who are to be added to the

group. Unlike the previous example, these users are appended to the group and do not replace

existing users in the group.

Example 12. Using man:id[1] to Determine Group Membership

% id jru

uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo)

In this example, jru is a member of the groups jru and teamtwo .

84

For more information about this command and the format of /etc/group , refer to man:pw[8] and

man:group[5].

3.4. Permissions

In FreeBSD, every file and directory has an associated set of permissions and several utilities are

available for viewing and modifying these permissions. Understanding how permissions work is

necessary to make sure that users are able to access the files that they need and are unable to

improperly access the files used by the operating system or owned by other users.

This section discusses the traditional UNIX¨ permissions used in FreeBSD. For finer grained file

system access control, refer to crossref:security[fs-acl,ÒAccess Control ListsÓ].

In UNIX¨, basic permissions are assigned using three types of access: read, write, and execute.

These access types are used to determine file access to the fileÕs owner, group, and others (everyone

else). The read, write, and execute permissions can be represented as the letters r , w , and x . They

can also be represented as binary numbers as each permission is either on or off (0). When

represented as a number, the order is always read as rwx , where r has an on value of 4 , w has an on

value of 2 and x has an on value of 1 .

Table 4.1 summarizes the possible numeric and alphabetic possibilities. When reading the

"Directory Listing" column, a - is used to represent a permission that is set to off.

Table 3. UNIX¨ Permissions

Value Permission Directory Listing

0 No read, no write, no execute

1 No read, no write, execute

--x

2 No read, write, no execute

-w-

3 No read, write, execute

-wx

4 Read, no write, no execute

r--

5 Read, no write, execute

r-x

6 Read, write, no execute

rw-

7 Read, write, execute

rwx

Use the -l argument to man:ls[1] to view a long directory listing that includes a column of

information about a fileÕs permissions for the owner, group, and everyone else. For example, an ls

-l in an arbitrary directory may show:

% ls -l

total 530

-rw-r--r-- 1 root wheel 512 Sep 5 12:31 myfile

-rw-r--r-- 1 root wheel 512 Sep 5 12:31 otherfile

-rw-r--r-- 1 root wheel 7680 Sep 5 12:31 email.txt

85

The first (leftmost) character in the first column indicates whether this file is a regular file, a

directory, a special character device, a socket, or any other special pseudo-file device. In this

example, the - indicates a regular file. The next three characters, rw- in this example, give the

permissions for the owner of the file. The next three characters, r-- , give the permissions for the

group that the file belongs to. The final three characters, r-- , give the permissions for the rest of the

world. A dash means that the permission is turned off. In this example, the permissions are set so

the owner can read and write to the file, the group can read the file, and the rest of the world can

only read the file. According to the table above, the permissions for this file would be 644 , where

each digit represents the three parts of the fileÕs permission.

How does the system control permissions on devices? FreeBSD treats most hardware devices as a

file that programs can open, read, and write data to. These special device files are stored in /dev/ .

Directories are also treated as files. They have read, write, and execute permissions. The executable

bit for a directory has a slightly different meaning than that of files. When a directory is marked

executable, it means it is possible to change into that directory using man:cd[1]. This also means

that it is possible to access the files within that directory, subject to the permissions on the files

themselves.

In order to perform a directory listing, the read permission must be set on the directory. In order to

delete a file that one knows the name of, it is necessary to have write and execute permissions to

the directory containing the file.

There are more permission bits, but they are primarily used in special circumstances such as setuid

binaries and sticky directories. For more information on file permissions and how to set them, refer

to man:chmod[1].

3.4.1. Symbolic Permissions

Symbolic permissions use characters instead of octal values to assign permissions to files or

directories. Symbolic permissions use the syntax of (who) (action) (permissions), where the

following values are available:

Option Letter Represents

(who) u User

(who) g Group owner

(who) o Other

(who) a All ("world")

(action) + Adding permissions

(action) - Removing permissions

(action) = Explicitly set permissions

(permissions) r Read

(permissions) w Write

(permissions) x Execute

86

Option Letter Represents

(permissions) t Sticky bit

(permissions) s Set UID or GID

These values are used with man:chmod[1], but with letters instead of numbers. For example, the

following command would block other users from accessing FILE :

% chmod go= FILE

A comma separated list can be provided when more than one set of changes to a file must be made.

For example, the following command removes the group and "world" write permission on FILE ,

and adds the execute permissions for everyone:

% chmod go-w,a+x FILE

3.4.2. FreeBSD File Flags

In addition to file permissions, FreeBSD supports the use of "file flags". These flags add an

additional level of security and control over files, but not directories. With file flags, even root can

be prevented from removing or altering files.

File flags are modified using man:chflags[1]. For example, to enable the system undeletable flag on

the file file1 , issue the following command:

chflags sunlink file1

To disable the system undeletable flag, put a "no" in front of the sunlink :

chflags nosunlink file1

To view the flags of a file, use -lo with man:ls[1]:

ls -lo file1

-rw-r--r-- 1 trhodes trhodes sunlnk 0 Mar 1 05:54 file1

Several file flags may only be added or removed by the root user. In other cases, the file owner may

set its file flags. Refer to man:chflags[1] and man:chflags[2] for more information.

87

3.4.3. The setuid , setgid , and sticky Permissions

Other than the permissions already discussed, there are three other specific settings that all

administrators should know about. They are the setuid , setgid , and sticky permissions.

These settings are important for some UNIX¨ operations as they provide functionality not normally

granted to normal users. To understand them, the difference between the real user ID and effective

user ID must be noted.

The real user ID is the UID who owns or starts the process. The effective UID is the user ID the

process runs as. As an example, man:passwd[1] runs with the real user ID when a user changes

their password. However, in order to update the password database, the command runs as the

effective ID of the root user. This allows users to change their passwords without seeing a

Permission Denied error.

The setuid permission may be set by prefixing a permission set with the number four (4) as shown

in the following example:

chmod 4755 suidexample.sh

The permissions on suidexample.sh now look like the following:

-rwsr-xr-x 1 trhodes trhodes 63 Aug 29 06:36 suidexample.sh

Note that a s is now part of the permission set designated for the file owner, replacing the

executable bit. This allows utilities which need elevated permissions, such as man:passwd[1].

!

The nosuid man:mount[8] option will cause such binaries to silently fail without

alerting the user. That option is not completely reliable as a nosuid wrapper may

be able to circumvent it.

To view this in real time, open two terminals. On one, type passwd as a normal user. While it waits

for a new password, check the process table and look at the user information for man:passwd[1]:

In terminal A:

Changing local password for trhodes

Old Password:

In terminal B:

ps aux | grep passwd

88

trhodes 5232 0.0 0.2 3420 1608 0 R+ 2:10AM 0:00.00 grep passwd

root 5211 0.0 0.2 3620 1724 2 I+ 2:09AM 0:00.01 passwd

Although man:passwd[1] is run as a normal user, it is using the effective UID of root .

The setgid permission performs the same function as the setuid permission; except that it alters the

group settings. When an application or utility executes with this setting, it will be granted the

permissions based on the group that owns the file, not the user who started the process.

To set the setgid permission on a file, provide man:chmod[1] with a leading two (2):

chmod 2755 sgidexample.sh

In the following listing, notice that the s is now in the field designated for the group permission

settings:

-rwxr-sr-x 1 trhodes trhodes 44 Aug 31 01:49 sgidexample.sh

!

In these examples, even though the shell script in question is an executable file, it

will not run with a different EUID or effective user ID. This is because shell scripts

may not access the man:setuid[2] system calls.

The setuid and setgid permission bits may lower system security, by allowing for elevated

permissions. The third special permission, the sticky bit , can strengthen the security of a system.

When the sticky bit is set on a directory, it allows file deletion only by the file owner. This is useful

to prevent file deletion in public directories, such as /tmp , by users who do not own the file. To

utilize this permission, prefix the permission set with a one (1):

chmod 1777 /tmp

The sticky bit permission will display as a t at the very end of the permission set:

ls -al / | grep tmp

drwxrwxrwt 10 root wheel 512 Aug 31 01:49 tmp

3.5. Directory Structure

The FreeBSD directory hierarchy is fundamental to obtaining an overall understanding of the

system. The most important directory is root or, "/". This directory is the first one mounted at boot

time and it contains the base system necessary to prepare the operating system for multi-user

89

operation. The root directory also contains mount points for other file systems that are mounted

during the transition to multi-user operation.

A mount point is a directory where additional file systems can be grafted onto a parent file system

(usually the root file system). This is further described in Disk Organization . Standard mount points

include /usr/ , /var/ , /tmp/ , /mnt/ , and /cdrom/ . These directories are usually referenced to entries in

/etc/fstab . This file is a table of various file systems and mount points and is read by the system.

Most of the file systems in /etc/fstab are mounted automatically at boot time from the script

man:rc[8] unless their entry includes noauto . Details can be found in The fstab File .

A complete description of the file system hierarchy is available in man:hier[7]. The following table

provides a brief overview of the most common directories.

Directory Description

/ Root directory of the file system.

/bin/ User utilities fundamental to both single-user

and multi-user environments.

/boot/ Programs and configuration files used during

operating system bootstrap.

/boot/defaults/ Default boot configuration files. Refer to

man:loader.conf[5] for details.

/dev/ Device nodes. Refer to man:intro[4] for details.

/etc/ System configuration files and scripts.

/etc/defaults/ Default system configuration files. Refer to

man:rc[8] for details.

/etc/mail/ Configuration files for mail transport agents

such as man:sendmail[8].

/etc/periodic/ Scripts that run daily, weekly, and monthly, via

man:cron[8]. Refer to man:periodic[8] for

details.

/etc/ppp/ man:ppp[8] configuration files.

/mnt/ Empty directory commonly used by system

administrators as a temporary mount point.

/proc/ Process file system. Refer to man:procfs[5],

man:mount_procfs[8] for details.

/rescue/ Statically linked programs for emergency

recovery as described in man:rescue[8].

/root/ Home directory for the root account.

/sbin/ System programs and administration utilities

fundamental to both single-user and multi-user

environments.

90

Directory Description

/tmp/ Temporary files which are usually not preserved

across a system reboot. A memory-based file

system is often mounted at /tmp . This can be

automated using the tmpmfs-related variables of

man:rc.conf[5] or with an entry in /etc/fstab ;

refer to man:mdmfs[8] for details.

/usr/ The majority of user utilities and applications.

/usr/bin/ Common utilities, programming tools, and

applications.

/usr/include/ Standard C include files.

/usr/lib/ Archive libraries.

/usr/libdata/ Miscellaneous utility data files.

/usr/libexec/ System daemons and system utilities executed

by other programs.

/usr/local/ Local executables and libraries. Also used as the

default destination for the FreeBSD ports

framework. Within /usr/local , the general layout

sketched out by man:hier[7] for /usr should be

used. Exceptions are the man directory, which is

directly under /usr/local rather than under

/usr/local/share , and the ports documentation is

in share/doc/port .

/usr/obj/ Architecture-specific target tree produced by

building the /usr/src tree.

/usr/ports/ The FreeBSD Ports Collection (optional).

/usr/sbin/ System daemons and system utilities executed

by users.

/usr/shared/ Architecture-independent files.

/usr/src/ BSD and/or local source files.

/var/ Multi-purpose log, temporary, transient, and

spool files. A memory-based file system is

sometimes mounted at /var . This can be

automated using the varmfs-related variables in

man:rc.conf[5] or with an entry in /etc/fstab ;

refer to man:mdmfs[8] for details.

/var/log/ Miscellaneous system log files.

/var/mail/ User mailbox files.

/var/spool/ Miscellaneous printer and mail system spooling

directories.

91

Directory Description

/var/tmp/ Temporary files which are usually preserved

across a system reboot, unless /var is a memory-

based file system.

/var/yp/ NIS maps.

3.6. Disk Organization

The smallest unit of organization that FreeBSD uses to find files is the filename. Filenames are case-

sensitive, which means that readme.txt and README.TXT are two separate files. FreeBSD does not

use the extension of a file to determine whether the file is a program, document, or some other

form of data.

Files are stored in directories. A directory may contain no files, or it may contain many hundreds of

files. A directory can also contain other directories, allowing a hierarchy of directories within one

another in order to organize data.

Files and directories are referenced by giving the file or directory name, followed by a forward

slash, / , followed by any other directory names that are necessary. For example, if the directory foo

contains a directory bar which contains the file readme.txt , the full name, or path , to the file is

foo/bar/readme.txt . Note that this is different from Windows¨ which uses \ to separate file and

directory names. FreeBSD does not use drive letters, or other drive names in the path. For example,

one would not type c:\foo\bar\readme.txt on FreeBSD.

Directories and files are stored in a file system. Each file system contains exactly one directory at

the very top level, called the root directory for that file system. This root directory can contain other

directories. One file system is designated the root file system or / . Every other file system is mounted

under the root file system. No matter how many disks are on the FreeBSD system, every directory

appears to be part of the same disk.

Consider three file systems, called A , B , and C . Each file system has one root directory, which

contains two other directories, called A1 , A2 (and likewise B1 , B2 and C1 , C2).

Call A the root file system. If man:ls[1] is used to view the contents of this directory, it will show two

subdirectories, A1 and A2 . The directory tree looks like this:

A file system must be mounted on to a directory in another file system. When mounting file system

92

B on to the directory A1 , the root directory of B replaces A1 , and the directories in B appear

accordingly:

Any files that are in the B1 or B2 directories can be reached with the path /A1/B1 or /A1/B2 as

necessary. Any files that were in /A1 have been temporarily hidden. They will reappear if B is

unmounted from A .

If B had been mounted on A2 then the diagram would look like this:

and the paths would be /A2/B1 and /A2/B2 respectively.

File systems can be mounted on top of one another. Continuing the last example, the C file system

could be mounted on top of the B1 directory in the B file system, leading to this arrangement:

93

Or C could be mounted directly on to the A file system, under the A1 directory:

It is entirely possible to have one large root file system, and not need to create any others. There are

some drawbacks to this approach, and one advantage.

Benefits of Multiple File Systems

¥ Different file systems can have different mount options . For example, the root file system can be

mounted read-only, making it impossible for users to inadvertently delete or edit a critical file.

Separating user-writable file systems, such as /home , from other file systems allows them to be

mounted nosuid . This option prevents the suid / guid bits on executables stored on the file system

from taking effect, possibly improving security.

¥ FreeBSD automatically optimizes the layout of files on a file system, depending on how the file

system is being used. So a file system that contains many small files that are written frequently

94

will have a different optimization to one that contains fewer, larger files. By having one big file

system this optimization breaks down.

¥ FreeBSDÕs file systems are robust if power is lost. However, a power loss at a critical point could

still damage the structure of the file system. By splitting data over multiple file systems it is

more likely that the system will still come up, making it easier to restore from backup as

necessary.

Benefit of a Single File System

¥ File systems are a fixed size. If you create a file system when you install FreeBSD and give it a

specific size, you may later discover that you need to make the partition bigger. This is not easily

accomplished without backing up, recreating the file system with the new size, and then

restoring the backed up data.

#

FreeBSD features the man:growfs[8] command, which makes it possible to

increase the size of file system on the fly, removing this limitation.

File systems are contained in partitions. This does not have the same meaning as the common

usage of the term partition (for example, MS-DOS¨ partition), because of FreeBSDÕs UNIX¨

heritage. Each partition is identified by a letter from a through to h . Each partition can contain only

one file system, which means that file systems are often described by either their typical mount

point in the file system hierarchy, or the letter of the partition they are contained in.

FreeBSD also uses disk space for swap space to provide virtual memory . This allows your computer

to behave as though it has much more memory than it actually does. When FreeBSD runs out of

memory, it moves some of the data that is not currently being used to the swap space, and moves it

back in (moving something else out) when it needs it.

Some partitions have certain conventions associated with them.

Partition Convention

a

Normally contains the root file system.

b

Normally contains swap space.

c

Normally the same size as the enclosing slice.

This allows utilities that need to work on the

entire slice, such as a bad block scanner, to work

on the c partition. A file system would not

normally be created on this partition.

d

Partition d used to have a special meaning

associated with it, although that is now gone and

d may work as any normal partition.

Disks in FreeBSD are divided into slices, referred to in Windows¨ as partitions, which are

numbered from 1 to 4. These are then divided into partitions, which contain file systems, and are

labeled using letters.

Slice numbers follow the device name, prefixed with an s , starting at 1. So "da0 s1 " is the first slice

95

on the first SCSI drive. There can only be four physical slices on a disk, but there can be logical

slices inside physical slices of the appropriate type. These extended slices are numbered starting at

5, so "ada0 s5 " is the first extended slice on the first SATA disk. These devices are used by file

systems that expect to occupy a slice.

Slices, "dangerously dedicated" physical drives, and other drives contain partitions , which are

represented as letters from a to h . This letter is appended to the device name, so "da0 a " is the a

partition on the first da drive, which is "dangerously dedicated". "ada1s3 e " is the fifth partition in

the third slice of the second SATA disk drive.

Finally, each disk on the system is identified. A disk name starts with a code that indicates the type

of disk, and then a number, indicating which disk it is. Unlike slices, disk numbering starts at 0.

Common codes are listed in Disk Device Names .

When referring to a partition, include the disk name, s , the slice number, and then the partition

letter. Examples are shown in Sample Disk, Slice, and Partition Names .

Conceptual Model of a Disk shows a conceptual model of a disk layout.

When installing FreeBSD, configure the disk slices, create partitions within the slice to be used for

FreeBSD, create a file system or swap space in each partition, and decide where each file system

will be mounted.

Table 4. Disk Device Names

Drive Type Drive Device Name

SATA and IDE hard drives ada or ad

SCSI hard drives and USB storage devices

da

SATA and IDECD-ROM drives cd or acd

SCSICD-ROM drives

cd

Floppy drives

fd

Assorted non-standard CD-ROM drives mcd for Mitsumi CD-ROM and scd for Sony CD-

ROM devices

SCSI tape drives

sa

IDE tape drives

ast

RAID drives Examples include aacd for Adaptec¨

AdvancedRAID, mlxd and mlyd for Mylex¨, amrd

for AMI MegaRAID¨, idad for Compaq Smart

RAID, twed for 3ware¨ RAID.

96

Table 5. Sample Disk, Slice, and Partition Names

Name Meaning

ada0s1a

The first partition (a) on the first slice (s1) on

the first SATA disk (ada0).

da1s2e

The fifth partition (e) on the second slice (s2)

on the second SCSI disk (da1).

97

Example 13. Conceptual Model of a Disk

This diagram shows FreeBSDÕs view of the first SATA disk attached to the system. Assume that

the disk is 250 GB in size, and contains an 80 GB slice and a 170 GB slice (MS-DOS¨ partitions).

The first slice contains a Windows¨ NTFS file system, C: , and the second slice contains a

FreeBSD installation. This example FreeBSD installation has four data partitions and a swap

partition.

The four partitions each hold a file system. Partition a is used for the root file system, d for

/var/ , e for /tmp/ , and f for /usr/ . Partition letter c refers to the entire slice, and so is not used

for ordinary partitions.

3.7. Mounting and Unmounting File Systems

The file system is best visualized as a tree, rooted, as it were, at / . /dev , /usr , and the other

directories in the root directory are branches, which may have their own branches, such as

/usr/local , and so on.

There are various reasons to house some of these directories on separate file systems. /var contains

the directories log/ , spool/ , and various types of temporary files, and as such, may get filled up.

98

Filling up the root file system is not a good idea, so splitting /var from / is often favorable.

Another common reason to contain certain directory trees on other file systems is if they are to be

housed on separate physical disks, or are separate virtual disks, such as Network File System

mounts, described in crossref:network-servers[network-nfs,ÒNetwork File System (NFS)Ó], or

CDROM drives.

3.7.1. The fstab File

During the boot process (crossref:boot[boot,The FreeBSD Booting Process]), file systems listed in

/etc/fstab are automatically mounted except for the entries containing noauto . This file contains

entries in the following format:

device /mount-point fstype options dumpfreq passno

device

An existing device name as explained in Disk Device Names .

mount-point

An existing directory on which to mount the file system.

fstype

The file system type to pass to man:mount[8]. The default FreeBSD file system is ufs .

options

Either rw for read-write file systems, or ro for read-only file systems, followed by any other

options that may be needed. A common option is noauto for file systems not normally mounted

during the boot sequence. Other options are listed in man:mount[8].

dumpfreq

Used by man:dump[8] to determine which file systems require dumping. If the field is missing, a

value of zero is assumed.

passno

Determines the order in which file systems should be checked. File systems that should be

skipped should have their passno set to zero. The root file system needs to be checked before

everything else and should have its passno set to one. The other file systems should be set to

values greater than one. If more than one file system has the same passno , man:fsck[8] will

attempt to check file systems in parallel if possible.

Refer to man:fstab[5] for more information on the format of /etc/fstab and its options.

3.7.2. Using man:mount[8]

File systems are mounted using man:mount[8]. The most basic syntax is as follows:

99

mount device mountpoint

This command provides many options which are described in man:mount[8], The most commonly

used options include:

Mount Options

-a

Mount all the file systems listed in /etc/fstab , except those marked as "noauto", excluded by the

-t flag, or those that are already mounted.

-d

Do everything except for the actual mount system call. This option is useful in conjunction with

the -v flag to determine what man:mount[8] is actually trying to do.

-f

Force the mount of an unclean file system (dangerous), or the revocation of write access when

downgrading a file systemÕs mount status from read-write to read-only.

-r

Mount the file system read-only. This is identical to using -o ro .

-t fstype

Mount the specified file system type or mount only file systems of the given type, if -a is

included. "ufs" is the default file system type.

-u

Update mount options on the file system.

-v

Be verbose.

-w

Mount the file system read-write.

The following options can be passed to -o as a comma-separated list:

nosuid

Do not interpret setuid or setgid flags on the file system. This is also a useful security option.

3.7.3. Using man:umount[8]

To unmount a file system use man:umount[8]. This command takes one parameter which can be a

mountpoint, device name, -a or -A .

All forms take -f to force unmounting, and -v for verbosity. Be warned that -f is not generally a

good idea as it might crash the computer or damage data on the file system.

100

To unmount all mounted file systems, or just the file system types listed after -t , use -a or -A . Note

that -A does not attempt to unmount the root file system.

3.8. Processes and Daemons

FreeBSD is a multi-tasking operating system. Each program running at any one time is called a

process . Every running command starts at least one new process and there are a number of system

processes that are run by FreeBSD.

Each process is uniquely identified by a number called a process ID (PID). Similar to files, each

process has one owner and group, and the owner and group permissions are used to determine

which files and devices the process can open. Most processes also have a parent process that

started them. For example, the shell is a process, and any command started in the shell is a process

which has the shell as its parent process. The exception is a special process called man:init[8] which

is always the first process to start at boot time and which always has a PID of 1 .

Some programs are not designed to be run with continuous user input and disconnect from the

terminal at the first opportunity. For example, a web server responds to web requests, rather than

user input. Mail servers are another example of this type of application. These types of programs

are known as daemons . The term daemon comes from Greek mythology and represents an entity

that is neither good nor evil, and which invisibly performs useful tasks. This is why the BSD mascot

is the cheerful-looking daemon with sneakers and a pitchfork.

There is a convention to name programs that normally run as daemons with a trailing "d". For

example, BIND is the Berkeley Internet Name Domain, but the actual program that executes is

named . The Apache web server program is httpd and the line printer spooling daemon is lpd . This is

only a naming convention. For example, the main mail daemon for the Sendmail application is

sendmail , and not maild .

3.8.1. Viewing Processes

To see the processes running on the system, use man:ps[1] or man:top[1]. To display a static list of

the currently running processes, their PIDs, how much memory they are using, and the command

they were started with, use man:ps[1]. To display all the running processes and update the display

every few seconds in order to interactively see what the computer is doing, use man:top[1].

By default, man:ps[1] only shows the commands that are running and owned by the user. For

example:

% ps

ÊPID TT STAT TIME COMMAND

8203 0 Ss 0:00.59 /bin/csh

8895 0 R+ 0:00.00 ps

The output from man:ps[1] is organized into a number of columns. The PID column displays the

process ID. PIDs are assigned starting at 1, go up to 99999, then wrap around back to the beginning.

However, a PID is not reassigned if it is already in use. The TT column shows the tty the program is

running on and STAT shows the programÕs state. TIME is the amount of time the program has been

101

running on the CPU. This is usually not the elapsed time since the program was started, as most

programs spend a lot of time waiting for things to happen before they need to spend time on the

CPU. Finally, COMMAND is the command that was used to start the program.

A number of different options are available to change the information that is displayed. One of the

most useful sets is auxww , where a displays information about all the running processes of all users, u

displays the username and memory usage of the process' owner, x displays information about

daemon processes, and ww causes man:ps[1] to display the full command line for each process,

rather than truncating it once it gets too long to fit on the screen.

The output from man:top[1] is similar:

% top

last pid: 9609; load averages: 0.56, 0.45, 0.36 up 0+00:20:03

10:21:46

107 processes: 2 running, 104 sleeping, 1 zombie

CPU: 6.2% user, 0.1% nice, 8.2% system, 0.4% interrupt, 85.1% idle

Mem: 541M Active, 450M Inact, 1333M Wired, 4064K Cache, 1498M Free

ARC: 992M Total, 377M MFU, 589M MRU, 250K Anon, 5280K Header, 21M Other

Swap: 2048M Total, 2048M Free

Ê PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND

Ê 557 root 1 -21 r31 136M 42296K select 0 2:20 9.96% Xorg

Ê8198 dru 2 52 0 449M 82736K select 3 0:08 5.96% kdeinit4

Ê8311 dru 27 30 0 1150M 187M uwait 1 1:37 0.98% firefox

Ê 431 root 1 20 0 14268K 1728K select 0 0:06 0.98% moused

Ê9551 dru 1 21 0 16600K 2660K CPU3 3 0:01 0.98% top

Ê2357 dru 4 37 0 718M 141M select 0 0:21 0.00% kdeinit4

Ê8705 dru 4 35 0 480M 98M select 2 0:20 0.00% kdeinit4

Ê8076 dru 6 20 0 552M 113M uwait 0 0:12 0.00% soffice.bin

Ê2623 root 1 30 10 12088K 1636K select 3 0:09 0.00% powerd

Ê2338 dru 1 20 0 440M 84532K select 1 0:06 0.00% kwin

Ê1427 dru 5 22 0 605M 86412K select 1 0:05 0.00% kdeinit4

The output is split into two sections. The header (the first five or six lines) shows the PID of the last

process to run, the system load averages (which are a measure of how busy the system is), the

system uptime (time since the last reboot) and the current time. The other figures in the header

relate to how many processes are running, how much memory and swap space has been used, and

how much time the system is spending in different CPU states. If the ZFS file system module has

been loaded, an ARC line indicates how much data was read from the memory cache instead of from

disk.

Below the header is a series of columns containing similar information to the output from

man:ps[1], such as the PID, username, amount of CPU time, and the command that started the

process. By default, man:top[1] also displays the amount of memory space taken by the process.

This is split into two columns: one for total size and one for resident size. Total size is how much

memory the application has needed and the resident size is how much it is actually using now.

man:top[1] automatically updates the display every two seconds. A different interval can be

102

specified with -s .

3.8.2. Killing Processes

One way to communicate with any running process or daemon is to send a signal using man:kill[1].

There are a number of different signals; some have a specific meaning while others are described

in the applicationÕs documentation. A user can only send a signal to a process they own and sending

a signal to someone elseÕs process will result in a permission denied error. The exception is the root

user, who can send signals to anyoneÕs processes.

The operating system can also send a signal to a process. If an application is badly written and tries

to access memory that it is not supposed to, FreeBSD will send the process the "Segmentation

Violation" signal (SIGSEGV). If an application has been written to use the man:alarm[3] system call to

be alerted after a period of time has elapsed, it will be sent the "Alarm" signal (SIGALRM).

Two signals can be used to stop a process: SIGTERM and SIGKILL . SIGTERM is the polite way to kill a

process as the process can read the signal, close any log files it may have open, and attempt to finish

what it is doing before shutting down. In some cases, a process may ignore SIGTERM if it is in the

middle of some task that cannot be interrupted.

SIGKILL cannot be ignored by a process. Sending a SIGKILL to a process will usually stop that process

there and then.

[1]

.

Other commonly used signals are SIGHUP , SIGUSR1 , and SIGUSR2 . Since these are general purpose

signals, different applications will respond differently.

For example, after changing a web serverÕs configuration file, the web server needs to be told to re-

read its configuration. Restarting httpd would result in a brief outage period on the web server.

Instead, send the daemon the SIGHUP signal. Be aware that different daemons will have different

behavior, so refer to the documentation for the daemon to determine if SIGHUP will achieve the

desired results.

103

Procedure: Sending a Signal to a Process

This example shows how to send a signal to man:inetd[8]. The man:inetd[8] configuration file

is /etc/inetd.conf , and man:inetd[8] will re-read this configuration file when it is sent a SIGHUP .

1. Find the PID of the process to send the signal to using man:pgrep[1]. In this example, the

PID for man:inetd[8] is 198:

% pgrep -l inetd

198 inetd -wW

2. Use man:kill[1] to send the signal. As man:inetd[8] is owned by root , use man:su[1] to

become root first.

% su

Password:

/bin/kill -s HUP 198

Like most UNIX¨ commands, man:kill[1] will not print any output if it is successful. If a signal

is sent to a process not owned by that user, the message kill: PID : Operation not permitted

will be displayed. Mistyping the PID will either send the signal to the wrong process, which

could have negative results, or will send the signal to a PID that is not currently in use,

resulting in the error kill: PID : No such process .

!

Why Use /bin/kill ?:

Many shells provide kill as a built in command, meaning that the shell will

send the signal directly, rather than running /bin/kill . Be aware that different

shells have a different syntax for specifying the name of the signal to send.

Rather than try to learn all of them, it can be simpler to specify /bin/kill .

When sending other signals, substitute TERM or KILL with the name of the signal.

#

Killing a random process on the system is a bad idea. In particular, man:init[8], PID

1, is special. Running /bin/kill -s KILL 1 is a quick, and unrecommended, way to

shutdown the system. Always double check the arguments to man:kill[1] before

pressing Return .

3.9. Shells

A shell provides a command line interface for interacting with the operating system. A shell

receives commands from the input channel and executes them. Many shells provide built in

functions to help with everyday tasks such as file management, file globbing, command line editing,

command macros, and environment variables. FreeBSD comes with several shells, including the

Bourne shell (man:sh[1]) and the extended C shell (man:tcsh[1]). Other shells are available from the

104

FreeBSD Ports Collection, such as zsh and bash .

The shell that is used is really a matter of taste. A C programmer might feel more comfortable with

a C-like shell such as man:tcsh[1]. A Linux¨ user might prefer bash . Each shell has unique

properties that may or may not work with a userÕs preferred working environment, which is why

there is a choice of which shell to use.

One common shell feature is filename completion. After a user types the first few letters of a

command or filename and presses Tab , the shell completes the rest of the command or filename.

Consider two files called foobar and football . To delete foobar , the user might type rm foo and press

Tab to complete the filename.

But the shell only shows rm foo . It was unable to complete the filename because both foobar and

football start with foo . Some shells sound a beep or show all the choices if more than one name

matches. The user must then type more characters to identify the desired filename. Typing a t and

pressing Tab again is enough to let the shell determine which filename is desired and fill in the rest.

Another feature of the shell is the use of environment variables. Environment variables are a

variable/key pair stored in the shellÕs environment. This environment can be read by any program

invoked by the shell, and thus contains a lot of program configuration. Common Environment

Variables provides a list of common environment variables and their meanings. Note that the

names of environment variables are always in uppercase.

Table 6. Common Environment Variables

Variable Description

USER

Current logged in userÕs name.

PATH

Colon-separated list of directories to search for

binaries.

DISPLAY

Network name of the Xorg display to connect to,

if available.

SHELL

The current shell.

TERM

The name of the userÕs type of terminal. Used to

determine the capabilities of the terminal.

TERMCAP

Database entry of the terminal escape codes to

perform various terminal functions.

OSTYPE

Type of operating system.

MACHTYPE

The systemÕs CPU architecture.

EDITOR

The userÕs preferred text editor.

PAGER

The userÕs preferred utility for viewing text one

page at a time.

MANPATH

Colon-separated list of directories to search for

manual pages.

How to set an environment variable differs between shells. In man:tcsh[1] and man:csh[1], use

105

setenv to set environment variables. In man:sh[1] and bash , use export to set the current

environment variables. This example sets the default EDITOR to /usr/local/bin/emacs for the

man:tcsh[1] shell:

% setenv EDITOR /usr/local/bin/emacs

The equivalent command for bash would be:

% export EDITOR="/usr/local/bin/emacs"

To expand an environment variable in order to see its current setting, type a $ character in front of

its name on the command line. For example, echo $TERM displays the current $TERM setting.

Shells treat special characters, known as meta-characters, as special representations of data. The

most common meta-character is * , which represents any number of characters in a filename. Meta-

characters can be used to perform filename globbing. For example, echo * is equivalent to ls

because the shell takes all the files that match * and echo lists them on the command line.

To prevent the shell from interpreting a special character, escape it from the shell by starting it

with a backslash (\). For example, echo $TERM prints the terminal setting whereas echo \$TERM

literally prints the string $TERM .

3.9.1. Changing the Shell

The easiest way to permanently change the default shell is to use chsh . Running this command will

open the editor that is configured in the EDITOR environment variable, which by default is set to

man:vi[1]. Change the Shell: line to the full path of the new shell.

Alternately, use chsh -s which will set the specified shell without opening an editor. For example, to

change the shell to bash :

% chsh -s /usr/local/bin/bash

!

The new shell must be present in /etc/shells . If the shell was installed from the

FreeBSD Ports Collection as described in crossref:ports[ports,Installing

Applications: Packages and Ports], it should be automatically added to this file. If it

is missing, add it using this command, replacing the path with the path of the shell:

echo /usr/local/bin/bash >> /etc/shells

Then, rerun man:chsh[1].

106

3.9.2. Advanced Shell Techniques

The UNIX¨ shell is not just a command interpreter, it acts as a powerful tool which allows users to

execute commands, redirect their output, redirect their input and chain commands together to

improve the final command output. When this functionality is mixed with built in commands, the

user is provided with an environment that can maximize efficiency.

Shell redirection is the action of sending the output or the input of a command into another

command or into a file. To capture the output of the man:ls[1] command, for example, into a file,

redirect the output:

% ls > directory_listing.txt

The directory contents will now be listed in directory_listing.txt . Some commands can be used to

read input, such as man:sort[1]. To sort this listing, redirect the input:

% sort < directory_listing.txt

The input will be sorted and placed on the screen. To redirect that input into another file, one could

redirect the output of man:sort[1] by mixing the direction:

% sort < directory_listing.txt > sorted.txt

In all of the previous examples, the commands are performing redirection using file descriptors.

Every UNIX¨ system has file descriptors, which include standard input (stdin), standard output

(stdout), and standard error (stderr). Each one has a purpose, where input could be a keyboard or a

mouse, something that provides input. Output could be a screen or paper in a printer. And error

would be anything that is used for diagnostic or error messages. All three are considered I/O based

file descriptors and sometimes considered streams.

Through the use of these descriptors, the shell allows output and input to be passed around through

various commands and redirected to or from a file. Another method of redirection is the pipe

operator.

The UNIX¨ pipe operator, "|" allows the output of one command to be directly passed or directed to

another program. Basically, a pipe allows the standard output of a command to be passed as

standard input to another command, for example:

% cat directory_listing.txt | sort | less

In that example, the contents of directory_listing.txt will be sorted and the output passed to

man:less[1]. This allows the user to scroll through the output at their own pace and prevent it from

scrolling off the screen.

107

3.10. Text Editors

Most FreeBSD configuration is done by editing text files, so it is a good idea to become familiar with

a text editor. FreeBSD comes with a few as part of the base system, and many more are available in

the Ports Collection.

A simple editor to learn is man:ee[1], which stands for easy editor. To start this editor, type ee

filename where filename is the name of the file to be edited. Once inside the editor, all of the

commands for manipulating the editorÕs functions are listed at the top of the display. The caret (^)

represents Ctrl , so ^e expands to Ctrl "+" e . To leave man:ee[1], press Esc , then choose the "leave

editor" option from the main menu. The editor will prompt to save any changes if the file has been

modified.

FreeBSD also comes with more powerful text editors, such as man:vi[1], as part of the base system.

Other editors, like package:editors/emacs[] and package:editors/vim[], are part of the FreeBSD Ports

Collection. These editors offer more functionality at the expense of being more complicated to

learn. Learning a more powerful editor such as vim or Emacs can save more time in the long run.

Many applications which modify files or require typed input will automatically open a text editor.

To change the default editor, set the EDITOR environment variable as described in Shells .

3.11. Devices and Device Nodes

A device is a term used mostly for hardware-related activities in a system, including disks, printers,

graphics cards, and keyboards. When FreeBSD boots, the majority of the boot messages refer to

devices being detected. A copy of the boot messages are saved to /var/run/dmesg.boot .

Each device has a device name and number. For example, ada0 is the first SATA hard drive, while

kbd0 represents the keyboard.

Most devices in FreeBSD must be accessed through special files called device nodes, which are

located in /dev .

3.12. Manual Pages

The most comprehensive documentation on FreeBSD is in the form of manual pages. Nearly every

program on the system comes with a short reference manual explaining the basic operation and

available arguments. These manuals can be viewed using man :

% man command

where command is the name of the command to learn about. For example, to learn more about

man:ls[1], type:

% man ls

108

Manual pages are divided into sections which represent the type of topic. In FreeBSD, the following

sections are available:

1. User commands.

2. System calls and error numbers.

3. Functions in the C libraries.

4. Device drivers.

5. File formats.

6. Games and other diversions.

7. Miscellaneous information.

8. System maintenance and operation commands.

9. System kernel interfaces.

In some cases, the same topic may appear in more than one section of the online manual. For

example, there is a chmod user command and a chmod() system call. To tell man:man[1] which

section to display, specify the section number:

% man 1 chmod

This will display the manual page for the user command man:chmod[1]. References to a particular

section of the online manual are traditionally placed in parenthesis in written documentation, so

man:chmod[1] refers to the user command and man:chmod[2] refers to the system call.

If the name of the manual page is unknown, use man -k to search for keywords in the manual page

descriptions:

% man -k mail

This command displays a list of commands that have the keyword "mail" in their descriptions. This

is equivalent to using man:apropos[1].

To read the descriptions for all of the commands in /usr/bin , type:

% cd /usr/bin

% man -f * | more

or

% cd /usr/bin

% whatis * |more

109

3.12.1. GNU Info Files

FreeBSD includes several applications and utilities produced by the Free Software Foundation

(FSF). In addition to manual pages, these programs may include hypertext documents called info

files. These can be viewed using man:info[1] or, if package:editors/emacs[] is installed, the info

mode of emacs.

To use man:info[1], type:

% info

For a brief introduction, type h . For a quick command reference, type ? .

[1] There are a few tasks that cannot be interrupted. For example, if the process is trying to read from a file that is on another

computer on the network, and the other computer is unavailable, the process is said to be uninterruptible. Eventually the process

will time out, typically after two minutes. As soon as this time out occurs the process will be killed.

110

Chapter 4. Installing Applications: Packages

and Ports

4.1. Synopsis

FreeBSD is bundled with a rich collection of system tools as part of the base system. In addition,

FreeBSD provides two complementary technologies for installing third-party software: the FreeBSD

Ports Collection, for installing from source, and packages, for installing from pre-built binaries.

Either method may be used to install software from local media or from the network.

After reading this chapter, you will know:

¥ The difference between binary packages and ports.

¥ How to find third-party software that has been ported to FreeBSD.

¥ How to manage binary packages using pkg.

¥ How to build third-party software from source using the Ports Collection.

¥ How to find the files installed with the application for post-installation configuration.

¥ What to do if a software installation fails.

4.2. Overview of Software Installation

The typical steps for installing third-party software on a UNIX¨ system include:

1. Find and download the software, which might be distributed in source code format or as a

binary.

2. Unpack the software from its distribution format. This is typically a tarball compressed with a

program such as man:compress[1], man:gzip[1], man:bzip2[1] or man:xz[1].

3. Locate the documentation in INSTALL , README or some file in a doc/ subdirectory and read up

on how to install the software.

4. If the software was distributed in source format, compile it. This may involve editing a Makefile

or running a configure script.

5. Test and install the software.

A FreeBSD port is a collection of files designed to automate the process of compiling an application

from source code. The files that comprise a port contain all the necessary information to

automatically download, extract, patch, compile, and install the application.

If the software has not already been adapted and tested on FreeBSD, the source code might need

editing in order for it to install and run properly.

However, over 36000 third-party applications have already been ported to FreeBSD. When feasible,

these applications are made available for download as pre-compiled packages .

111

https://www.FreeBSD.org/ports/

Packages can be manipulated with the FreeBSD package management commands.

Both packages and ports understand dependencies. If a package or port is used to install an

application and a dependent library is not already installed, the library will automatically be

installed first.

A FreeBSD package contains pre-compiled copies of all the commands for an application, as well as

any configuration files and documentation. A package can be manipulated with the man:pkg[8]

commands, such as pkg install .

While the two technologies are similar, packages and ports each have their own strengths. Select

the technology that meets your requirements for installing a particular application.

Package Benefits

¥ A compressed package tarball is typically smaller than the compressed tarball containing the

source code for the application.

¥ Packages do not require compilation time. For large applications, such as Mozilla, KDE, or

GNOME, this can be important on a slow system.

¥ Packages do not require any understanding of the process involved in compiling software on

FreeBSD.

Port Benefits

¥ Packages are normally compiled with conservative options because they have to run on the

maximum number of systems. By compiling from the port, one can change the compilation

options.

¥ Some applications have compile-time options relating to which features are installed. For

example, Apache can be configured with a wide variety of different built-in options.

In some cases, multiple packages will exist for the same application to specify certain settings.

For example, Ghostscript is available as a ghostscript package and a ghostscript-nox11 package,

depending on whether or not Xorg is installed. Creating multiple packages rapidly becomes

impossible if an application has more than one or two different compile-time options.

¥ The licensing conditions of some software forbid binary distribution. Such software must be

distributed as source code which must be compiled by the end-user.

¥ Some people do not trust binary distributions or prefer to read through source code in order to

look for potential problems.

¥ Source code is needed in order to apply custom patches.

To keep track of updated ports, subscribe to the FreeBSD ports mailing list and the FreeBSD ports

bugs mailing list .

"

Before installing any application, check https://vuxml.freebsd.org/ for security

issues related to the application or type pkg audit -F to check all installed

applications for known vulnerabilities.

The remainder of this chapter explains how to use packages and ports to install and manage third-

112

http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-bugs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-bugs
https://vuxml.freebsd.org/

party software on FreeBSD.

4.3. Finding Software

FreeBSDÕs list of available applications is growing all the time. There are a number of ways to find

software to install:

¥ The FreeBSD web site maintains an up-to-date searchable list of all the available applications, at

https://www.FreeBSD.org/ports/ . The ports can be searched by application name or by software

category.

¥ Dan Langille maintains FreshPorts.org which provides a comprehensive search utility and also

tracks changes to the applications in the Ports Collection. Registered users can create a

customized watch list in order to receive an automated email when their watched ports are

updated.

¥ If finding a particular application becomes challenging, try searching a site like SourceForge.net

or GitHub.com then check back at the FreeBSD site to see if the application has been ported.

¥ To search the binary package repository for an application:

pkg search subversion

git-subversion-1.9.2

java-subversion-1.8.8_2

p5-subversion-1.8.8_2

py27-hgsubversion-1.6

py27-subversion-1.8.8_2

ruby-subversion-1.8.8_2

subversion-1.8.8_2

subversion-book-4515

subversion-static-1.8.8_2

subversion16-1.6.23_4

subversion17-1.7.16_2

Package names include the version number and, in the case of ports based on python, the

version number of the version of python the package was built with. Some ports also have

multiple versions available. In the case of Subversion, there are different versions available, as

well as different compile options. In this case, the statically linked version of Subversion. When

indicating which package to install, it is best to specify the application by the port origin, which

is the path in the ports tree. Repeat the pkg search with -o to list the origin of each package:

113

https://www.FreeBSD.org/ports/
http://www.FreshPorts.org/
http://www.sourceforge.net/
http://www.github.com/
https://www.FreeBSD.org/ports/

pkg search -o subversion

devel/git-subversion

java/java-subversion

devel/p5-subversion

devel/py-hgsubversion

devel/py-subversion

devel/ruby-subversion

devel/subversion16

devel/subversion17

devel/subversion

devel/subversion-book

devel/subversion-static

Searching by shell globs, regular expressions, exact match, by description, or any other field in

the repository database is also supported by pkg search . After installing package:ports-

mgmt/pkg[] or package:ports-mgmt/pkg-devel[], see man:pkg-search[8] for more details.

¥ If the Ports Collection is already installed, there are several methods to query the local version

of the ports tree. To find out which category a port is in, type whereis file , where file is the

program to be installed:

whereis lsof

lsof: /usr/ports/sysutils/lsof

Alternately, an man:echo[1] statement can be used:

echo /usr/ports/*/*lsof*

/usr/ports/sysutils/lsof

Note that this will also return any matched files downloaded into the /usr/ports/distfiles

directory.

¥ Another way to find software is by using the Ports CollectionÕs built-in search mechanism. To

use the search feature, cd to /usr/ports then run make search name=program-name where program-

name is the name of the software. For example, to search for lsof :

cd /usr/ports

make search name=lsof

Port: lsof-4.88.d,8

Path: /usr/ports/sysutils/lsof

Info: Lists information about open files (similar to fstat(1))

Maint: ler@lerctr.org

Index: sysutils

B-deps:

R-deps:

114

!

The built-in search mechanism uses a file of index information. If a message

indicates that the INDEX is required, run make fetchindex to download the

current index file. With the INDEX present, make search will be able to perform

the requested search.

The "Path:" line indicates where to find the port.

To receive less information, use the quicksearch feature:

cd /usr/ports

make quicksearch name=lsof

Port: lsof-4.88.d,8

Path: /usr/ports/sysutils/lsof

Info: Lists information about open files (similar to fstat(1))

For more in-depth searching, use make search key= string or make quicksearch key= string , where

string is some text to search for. The text can be in comments, descriptions, or dependencies in

order to find ports which relate to a particular subject when the name of the program is

unknown.

When using search or quicksearch , the search string is case-insensitive. Searching for "LSOF"

will yield the same results as searching for "lsof".

4.4. Using pkg for Binary Package Management

pkg is the next generation replacement for the traditional FreeBSD package management tools,

offering many features that make dealing with binary packages faster and easier.

For sites wishing to only use prebuilt binary packages from the FreeBSD mirrors, managing

packages with pkg can be sufficient.

However, for those sites building from source or using their own repositories, a separate port

management tool will be needed.

Since pkg only works with binary packages, it is not a replacement for such tools. Those tools can

be used to install software from both binary packages and the Ports Collection, while pkg installs

only binary packages.

4.4.1. Getting Started with pkg

FreeBSD includes a bootstrap utility which can be used to download and install pkg and its manual

pages. This utility is designed to work with versions of FreeBSD starting with 10. X .

!

Not all FreeBSD versions and architectures support this bootstrap process. The

current list is at https://pkg.freebsd.org/ . For other cases, pkg must instead be

installed from the Ports Collection or as a binary package.

115

https://pkg.freebsd.org/

To bootstrap the system, run:

/usr/sbin/pkg

You must have a working Internet connection for the bootstrap process to succeed.

Otherwise, to install the port, run:

cd /usr/ports/ports-mgmt/pkg

make

make install clean

When upgrading an existing system that originally used the older pkg_* tools, the database must be

converted to the new format, so that the new tools are aware of the already installed packages.

Once pkg has been installed, the package database must be converted from the traditional format to

the new format by running this command:

pkg2ng

!

This step is not required for new installations that do not yet have any third-party

software installed.

#

This step is not reversible. Once the package database has been converted to the

pkg format, the traditional pkg_* tools should no longer be used.

!

The package database conversion may emit errors as the contents are converted to

the new version. Generally, these errors can be safely ignored. However, a list of

software that was not successfully converted is shown after pkg2ng finishes. These

applications must be manually reinstalled.

To ensure that the Ports Collection registers new software with pkg instead of the traditional

packages database, FreeBSD versions earlier than 10. X require this line in /etc/make.conf :

WITH_PKGNG= yes

By default, pkg uses the binary packages from the FreeBSD package mirrors (the repository). For

information about building a custom package repository, see Building Packages with Poudriere .

Additional pkg configuration options are described in man:pkg.conf[5].

Usage information for pkg is available in the man:pkg[8] manual page or by running pkg without

additional arguments.

Each pkg command argument is documented in a command-specific manual page. To read the

116

manual page for pkg install , for example, run either of these commands:

pkg help install

man pkg-install

The rest of this section demonstrates common binary package management tasks which can be

performed using pkg. Each demonstrated command provides many switches to customize its use.

Refer to a commandÕs help or man page for details and more examples.

4.4.2. Quarterly and Latest Ports Branches

The Quarterly branch provides users with a more predictable and stable experience for port and

package installation and upgrades. This is done essentially by only allowing non-feature updates.

Quarterly branches aim to receive security fixes (that may be version updates, or backports of

commits), bug fixes and ports compliance or framework changes. The Quarterly branch is cut from

HEAD at the beginning of every (yearly) quarter in January, April, July, and October. Branches are

named according to the year (YYYY) and quarter (Q1-4) they are created in. For example, the

quarterly branch created in January 2016, is named 2016Q1. And the Latest branch provides the

latest versions of the packages to the users.

To switch from quarterly to latest run the following commands:

mkdir -p /usr/local/etc/pkg/repos

cp /etc/pkg/FreeBSD.conf /usr/local/etc/pkg/repos/FreeBSD.conf

Edit the file /usr/local/etc/pkg/repos/FreeBSD.conf and change the string quarterly to latest in the

url: line.

The result should be similar to the following:

FreeBSD: {

Ê url: "pkg+http://pkg.FreeBSD.org/${ABI}/latest",

Ê mirror_type: "srv",

Ê signature_type: "fingerprints",

Ê fingerprints: "/usr/shared/keys/pkg",

Ê enabled: yes

}

And finally run this command to update from the new (latest) repository metadata.

pkg update -f

117

4.4.3. Obtaining Information About Installed Packages

Information about the packages installed on a system can be viewed by running pkg info which,

when run without any switches, will list the package version for either all installed packages or the

specified package.

For example, to see which version of pkg is installed, run:

pkg info pkg

pkg-1.1.4_1

4.4.4. Installing and Removing Packages

To install a binary package use the following command, where packagename is the name of the

package to install:

pkg install packagename

This command uses repository data to determine which version of the software to install and if it

has any uninstalled dependencies. For example, to install curl:

pkg install curl

Updating repository catalogue

/usr/local/tmp/All/curl-7.31.0_1.txz 100% of 1181 kB 1380 kBps 00m01s

/usr/local/tmp/All/ca_root_nss-3.15.1_1.txz 100% of 288 kB 1700 kBps 00m00s

Updating repository catalogue

The following 2 packages will be installed:

Ê Installing ca_root_nss: 3.15.1_1

Ê Installing curl: 7.31.0_1

The installation will require 3 MB more space

0 B to be downloaded

Proceed with installing packages [y/N]: y

Checking integrity... done

[1/2] Installing ca_root_nss-3.15.1_1... done

[2/2] Installing curl-7.31.0_1... done

Cleaning up cache files...Done

The new package and any additional packages that were installed as dependencies can be seen in

the installed packages list:

118

pkg info

ca_root_nss-3.15.1_1 The root certificate bundle from the Mozilla Project

curl-7.31.0_1 Non-interactive tool to get files from FTP, GOPHER, HTTP(S) servers

pkg-1.1.4_6 New generation package manager

Packages that are no longer needed can be removed with pkg delete . For example:

pkg delete curl

The following packages will be deleted:

Ê curl-7.31.0_1

The deletion will free 3 MB

Proceed with deleting packages [y/N]: y

[1/1] Deleting curl-7.31.0_1... done

4.4.5. Upgrading Installed Packages

Installed packages can be upgraded to their latest versions by running:

pkg upgrade

This command will compare the installed versions with those available in the repository catalogue

and upgrade them from the repository.

4.4.6. Auditing Installed Packages

Software vulnerabilities are regularly discovered in third-party applications. To address this, pkg

includes a built-in auditing mechanism. To determine if there are any known vulnerabilities for the

software installed on the system, run:

pkg audit -F

4.4.7. Automatically Removing Unused Packages

Removing a package may leave behind dependencies which are no longer required. Unneeded

packages that were installed as dependencies (leaf packages) can be automatically detected and

removed using:

119

pkg autoremove

Packages to be autoremoved:

Ê ca_root_nss-3.15.1_1

The autoremoval will free 723 kB

Proceed with autoremoval of packages [y/N]: y

Deinstalling ca_root_nss-3.15.1_1... done

Packages installed as dependencies are called automatic packages. Non-automatic packages, i.e the

packages that were explicity installed not as a dependency to another package, can be listed using:

pkg prime-list

nginx

openvpn

sudo

pkg prime-list is an alias command declared in /usr/local/etc/pkg.conf . There are many others that

can be used to query the package database of the system. For instance, command pkg prime-origins

can be used to get the origin port directory of the list mentioned above:

pkg prime-origins

www/nginx

security/openvpn

security/sudo

This list can be used to rebuild all packages installed on a system using build tools such as

package:ports-mgmt/poudriere[] or package:ports-mgmt/synth[].

Marking an installed package as automatic can be done using:

pkg set -A 1 devel/cmake

Once a package is a leaf package and is marked as automatic, it gets selected by pkg autoremove .

Marking an installed package as not automatic can be done using:

pkg set -A 0 devel/cmake

4.4.8. Restoring the Package Database

Unlike the traditional package management system, pkg includes its own package database backup

mechanism. This functionality is enabled by default.

120

!

To disable the periodic script from backing up the package database, set

daily_backup_pkgdb_enable="NO" in man:periodic.conf[5].

To restore the contents of a previous package database backup, run the following command

replacing /path/to/pkg.sql with the location of the backup:

pkg backup -r /path/to/pkg.sql

!

If restoring a backup taken by the periodic script, it must be decompressed prior to

being restored.

To run a manual backup of the pkg database, run the following command, replacing /path/to/pkg.sql

with a suitable file name and location:

pkg backup -d /path/to/pkg.sql

4.4.9. Removing Stale Packages

By default, pkg stores binary packages in a cache directory defined by PKG_CACHEDIR in

man:pkg.conf[5]. Only copies of the latest installed packages are kept. Older versions of pkg kept all

previous packages. To remove these outdated binary packages, run:

pkg clean

The entire cache may be cleared by running:

pkg clean -a

4.4.10. Modifying Package Metadata

Software within the FreeBSD Ports Collection can undergo major version number changes. To

address this, pkg has a built-in command to update package origins. This can be useful, for

example, if package:lang/php5[] is renamed to package:lang/php53[] so that package:lang/php5[]

can now represent version 5.4 .

To change the package origin for the above example, run:

pkg set -o lang/php5:lang/php53

As another example, to update package:lang/ruby18[] to package:lang/ruby19[], run:

pkg set -o lang/ruby18:lang/ruby19

121

As a final example, to change the origin of the libglut shared libraries from

package:graphics/libglut[] to package:graphics/freeglut[], run:

pkg set -o graphics/libglut:graphics/freeglut

!

When changing package origins, it is important to reinstall packages that are

dependent on the package with the modified origin. To force a reinstallation of

dependent packages, run:

pkg install -Rf graphics/freeglut

4.5. Using the Ports Collection

The Ports Collection is a set of Makefiles , patches, and description files. Each set of these files is used

to compile and install an individual application on FreeBSD, and is called a port .

By default, the Ports Collection itself is stored as a subdirectory of /usr/ports .

Before an application can be compiled using a port, the Ports Collection must first be installed. If it

was not installed during the installation of FreeBSD, use one of the following methods to install it:

122

Procedure: Portsnap Method

The base system of FreeBSD includes Portsnap. This is a fast and user-friendly tool for

retrieving the Ports Collection and is the recommended choice for most users. This utility

connects to a FreeBSD site, verifies the secure key, and downloads a new copy of the Ports

Collection. The key is used to verify the integrity of all downloaded files.

1. To download a compressed snapshot of the Ports Collection into /var/db/portsnap :

portsnap fetch

2. When running Portsnap for the first time, extract the snapshot into /usr/ports :

portsnap extract

3. After the first use of Portsnap has been completed as shown above, /usr/ports can be

updated as needed by running:

portsnap fetch

portsnap update

When using fetch , the extract or the update operation may be run consecutively, like so:

portsnap fetch update

123

Procedure: Subversion Method

If more control over the ports tree is needed or if local changes need to be maintained,

Subversion can be used to obtain the Ports Collection. Refer to the Subversion Primer for a

detailed description of Subversion.

1. Subversion must be installed before it can be used to check out the ports tree. If a copy of

the ports tree is already present, install Subversion like this:

cd /usr/ports/devel/subversion

make install clean

If the ports tree is not available, or pkg is being used to manage packages, Subversion can

be installed as a package:

pkg install subversion

2. Check out a copy of the ports tree:

svn checkout https://svn.FreeBSD.org/ports/head /usr/ports

3. As needed, update /usr/ports after the initial Subversion checkout:

svn update /usr/ports

The Ports Collection contains directories for software categories. Inside each category are

subdirectories for individual applications. Each application subdirectory contains a set of files that

tells FreeBSD how to compile and install that program, called a ports skeleton . Each port skeleton

includes these files and directories:

¥ Makefile : contains statements that specify how the application should be compiled and where

its components should be installed.

¥ distinfo : contains the names and checksums of the files that must be downloaded to build the

port.

¥ files/ : this directory contains any patches needed for the program to compile and install on

FreeBSD. This directory may also contain other files used to build the port.

¥ pkg-descr : provides a more detailed description of the program.

¥ pkg-plist : a list of all the files that will be installed by the port. It also tells the ports system

which files to remove upon deinstallation.

Some ports include pkg-message or other files to handle special situations. For more details on

these files, and on ports in general, refer to the FreeBSD PorterÕs Handbook .

124

https://docs.freebsd.org/en/articles/committers-guide/#subversion-primer
https://docs.freebsd.org/en/books/porters-handbook/

The port does not include the actual source code, also known as a distfile . The extract portion of

building a port will automatically save the downloaded source to /usr/ports/distfiles .

4.5.1. Installing Ports

This section provides basic instructions on using the Ports Collection to install or remove software.

The detailed description of available make targets and environment variables is available in

man:ports[7].

"

Before compiling any port, be sure to update the Ports Collection as described in

the previous section. Since the installation of any third-party software can

introduce security vulnerabilities, it is recommended to first check

https://vuxml.freebsd.org/ for known security issues related to the port.

Alternately, run pkg audit -F before installing a new port. This command can be

configured to automatically perform a security audit and an update of the

vulnerability database during the daily security system check. For more

information, refer to man:pkg-audit[8] and man:periodic[8].

Using the Ports Collection assumes a working Internet connection. It also requires superuser

privilege.

To compile and install the port, change to the directory of the port to be installed, then type make

install at the prompt. Messages will indicate the progress:

125

https://vuxml.freebsd.org/

cd /usr/ports/sysutils/lsof

make install

>> lsof_4.88D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/.

>> Attempting to fetch from ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/.

===> Extracting for lsof-4.88

...

[extraction output snipped]

...

>> Checksum OK for lsof_4.88D.freebsd.tar.gz.

===> Patching for lsof-4.88.d,8

===> Applying FreeBSD patches for lsof-4.88.d,8

===> Configuring for lsof-4.88.d,8

...

[configure output snipped]

...

===> Building for lsof-4.88.d,8

...

[compilation output snipped]

...

===> Installing for lsof-4.88.d,8

...

[installation output snipped]

...

===> Generating temporary packing list

===> Compressing manual pages for lsof-4.88.d,8

===> Registering installation for lsof-4.88.d,8

===> SECURITY NOTE:

Ê This port has installed the following binaries which execute with

Ê increased privileges.

/usr/local/sbin/lsof

#

Since lsof is a program that runs with increased privileges, a security warning is displayed as it is

installed. Once the installation is complete, the prompt will be returned.

Some shells keep a cache of the commands that are available in the directories listed in the PATH

environment variable, to speed up lookup operations for the executable file of these commands.

Users of the tcsh shell should type rehash so that a newly installed command can be used without

specifying its full path. Use hash -r instead for the sh shell. Refer to the documentation for the shell

for more information.

During installation, a working subdirectory is created which contains all the temporary files used

during compilation. Removing this directory saves disk space and minimizes the chance of

problems later when upgrading to the newer version of the port:

126

make clean

===> Cleaning for lsof-88.d,8

#

!

To save this extra step, instead use make install clean when compiling the port.

4.5.1.1. Customizing Ports Installation

Some ports provide build options which can be used to enable or disable application components,

provide security options, or allow for other customizations. Examples include

package:www/firefox[], package:security/gpgme[], and package:mail/sylpheed-claws[]. If the port

depends upon other ports which have configurable options, it may pause several times for user

interaction as the default behavior is to prompt the user to select options from a menu. To avoid

this and do all of the configuration in one batch, run make config-recursive within the port

skeleton. Then, run make install [clean] to compile and install the port.

!

When using config-recursive , the list of ports to configure are gathered by the all-

depends-list target. It is recommended to run make config-recursive until all

dependent ports options have been defined, and ports options screens no longer

appear, to be certain that all dependency options have been configured.

There are several ways to revisit a portÕs build options menu in order to add, remove, or change

these options after a port has been built. One method is to cd into the directory containing the port

and type make config . Another option is to use make showconfig . Another option is to execute make

rmconfig which will remove all selected options and allow you to start over. All of these options, and

others, are explained in great detail in man:ports[7].

The ports system uses man:fetch[1] to download the source files, which supports various

environment variables. The FTP_PASSIVE_MODE , FTP_PROXY , and FTP_PASSWORD variables may need to be

set if the FreeBSD system is behind a firewall or FTP/HTTP proxy. See man:fetch[3] for the complete

list of supported variables.

For users who cannot be connected to the Internet all the time, make fetch can be run within

/usr/ports , to fetch all distfiles, or within a category, such as /usr/ports/net , or within the specific

port skeleton. Note that if a port has any dependencies, running this command in a category or

ports skeleton will not fetch the distfiles of ports from another category. Instead, use make fetch-

recursive to also fetch the distfiles for all the dependencies of a port.

In rare cases, such as when an organization has a local distfiles repository, the MASTER_SITES

variable can be used to override the download locations specified in the Makefile . When using,

specify the alternate location:

cd /usr/ports/directory

make MASTER_SITE_OVERRIDE= \

ftp://ftp.organization.org/pub/FreeBSD/ports/distfiles/ fetch

127

The WRKDIRPREFIX and PREFIX variables can override the default working and target directories. For

example:

make WRKDIRPREFIX=/usr/home/example/ports install

will compile the port in /usr/home/example/ports and install everything under /usr/local .

make PREFIX=/usr/home/example/local install

will compile the port in /usr/ports and install it in /usr/home/example/local . And:

make WRKDIRPREFIX=../ports PREFIX=../local install

will combine the two.

These can also be set as environmental variables. Refer to the manual page for your shell for

instructions on how to set an environmental variable.

4.5.2. Removing Installed Ports

Installed ports can be uninstalled using pkg delete . Examples for using this command can be found

in the man:pkg-delete[8] manual page.

Alternately, make deinstall can be run in the portÕs directory:

cd /usr/ports/sysutils/lsof

make deinstall

===> Deinstalling for sysutils/lsof

===> Deinstalling

Deinstallation has been requested for the following 1 packages:

Ê lsof-4.88.d,8

The deinstallation will free 229 kB

[1/1] Deleting lsof-4.88.d,8... done

It is recommended to read the messages as the port is uninstalled. If the port has any applications

that depend upon it, this information will be displayed but the uninstallation will proceed. In such

cases, it may be better to reinstall the application in order to prevent broken dependencies.

4.5.3. Upgrading Ports

Over time, newer versions of software become available in the Ports Collection. This section

describes how to determine which software can be upgraded and how to perform the upgrade.

To determine if newer versions of installed ports are available, ensure that the latest version of the

128

ports tree is installed, using the updating command described in either ÒPortsnap MethodÓ or

ÒSubversion MethodÓ . On FreeBSD 10 and later, or if the system has been converted to pkg, the

following command will list the installed ports which are out of date:

pkg version -l "<"

For FreeBSD 9. X and lower, the following command will list the installed ports that are out of date:

pkg_version -l "<"

#

Before attempting an upgrade, read /usr/ports/UPDATING from the top of the file to

the date closest to the last time ports were upgraded or the system was installed.

This file describes various issues and additional steps users may encounter and

need to perform when updating a port, including such things as file format

changes, changes in locations of configuration files, or any incompatibilities with

previous versions. Make note of any instructions which match any of the ports that

need upgrading and follow these instructions when performing the upgrade.

4.5.3.1. Tools to Upgrade and Manage Ports

The Ports Collection contains several utilities to perform the actual upgrade. Each has its strengths

and weaknesses.

Historically, most installations used either Portmaster or Portupgrade. Synth is a newer alternative.

!

The choice of which tool is best for a particular system is up to the system

administrator. It is recommended practice to back up your data before using any

of these tools.

4.5.3.2. Upgrading Ports Using Portmaster

package:ports-mgmt/portmaster[] is a very small utility for upgrading installed ports. It is designed

to use the tools installed with the FreeBSD base system without depending on other ports or

databases. To install this utility as a port:

cd /usr/ports/ports-mgmt/portmaster

make install clean

Portmaster defines four categories of ports:

¥ Root port: has no dependencies and is not a dependency of any other ports.

¥ Trunk port: has no dependencies, but other ports depend upon it.

¥ Branch port: has dependencies and other ports depend upon it.

¥ Leaf port: has dependencies but no other ports depend upon it.

129

To list these categories and search for updates:

portmaster -L

===>>> Root ports (No dependencies, not depended on)

===>>> ispell-3.2.06_18

===>>> screen-4.0.3

Ê ===>>> New version available: screen-4.0.3_1

===>>> tcpflow-0.21_1

===>>> 7 root ports

...

===>>> Branch ports (Have dependencies, are depended on)

===>>> apache22-2.2.3

Ê ===>>> New version available: apache22-2.2.8

...

===>>> Leaf ports (Have dependencies, not depended on)

===>>> automake-1.9.6_2

===>>> bash-3.1.17

Ê ===>>> New version available: bash-3.2.33

...

===>>> 32 leaf ports

===>>> 137 total installed ports

Ê ===>>> 83 have new versions available

This command is used to upgrade all outdated ports:

portmaster -a

!

By default, Portmaster makes a backup package before deleting the existing port. If

the installation of the new version is successful, Portmaster deletes the backup.

Using -b instructs Portmaster not to automatically delete the backup. Adding -i

starts Portmaster in interactive mode, prompting for confirmation before

upgrading each port. Many other options are available. Read through the manual

page for man:portmaster[8] for details regarding their usage.

If errors are encountered during the upgrade process, add -f to upgrade and rebuild all ports:

portmaster -af

Portmaster can also be used to install new ports on the system, upgrading all dependencies before

building and installing the new port. To use this function, specify the location of the port in the

Ports Collection:

portmaster shells/bash

130

More information about package:ports-mgmt/portmaster[] may be found in its pkg-descr .

4.5.3.3. Upgrading Ports Using Portupgrade

package:ports-mgmt/portupgrade[] is another utility that can be used to upgrade ports. It installs a

suite of applications which can be used to manage ports. However, it is dependent upon Ruby. To

install the port:

cd /usr/ports/ports-mgmt/portupgrade

make install clean

Before performing an upgrade using this utility, it is recommended to scan the list of installed ports

using pkgdb -F and to fix all the inconsistencies it reports.

To upgrade all the outdated ports installed on the system, use portupgrade -a . Alternately, include -i

to be asked for confirmation of every individual upgrade:

portupgrade -ai

To upgrade only a specified application instead of all available ports, use portupgrade pkgname . It is

very important to include -R to first upgrade all the ports required by the given application:

portupgrade -R firefox

If -P is included, Portupgrade searches for available packages in the local directories listed in

PKG_PATH . If none are available locally, it then fetches packages from a remote site. If packages can

not be found locally or fetched remotely, Portupgrade will use ports. To avoid using ports entirely,

specify -PP . This last set of options tells Portupgrade to abort if no packages are available:

portupgrade -PP gnome3

To just fetch the port distfiles, or packages, if -P is specified, without building or installing anything,

use -F . For further information on all of the available switches, refer to the manual page for

portupgrade .

More information about package:ports-mgmt/portupgrade[] may be found in its pkg-descr .

4.5.4. Ports and Disk Space

Using the Ports Collection will use up disk space over time. After building and installing a port,

running make clean within the ports skeleton will clean up the temporary work directory. If

Portmaster is used to install a port, it will automatically remove this directory unless -K is specified.

If Portupgrade is installed, this command will remove all work directories found within the local

copy of the Ports Collection:

131

portsclean -C

In addition, outdated source distribution files accumulate in /usr/ports/distfiles over time. To use

Portupgrade to delete all the distfiles that are no longer referenced by any ports:

portsclean -D

Portupgrade can remove all distfiles not referenced by any port currently installed on the system:

portsclean -DD

If Portmaster is installed, use:

portmaster --clean-distfiles

By default, this command is interactive and prompts the user to confirm if a distfile should be

deleted.

In addition to these commands, package:ports-mgmt/pkg_cutleaves[] automates the task of

removing installed ports that are no longer needed.

4.6. Building Packages with Poudriere

Poudriere is a BSD -licensed utility for creating and testing FreeBSD packages. It uses FreeBSD jails to

set up isolated compilation environments. These jails can be used to build packages for versions of

FreeBSD that are different from the system on which it is installed, and also to build packages for

i386 if the host is an amd64 system. Once the packages are built, they are in a layout identical to the

official mirrors. These packages are usable by man:pkg[8] and other package management tools.

Poudriere is installed using the package:ports-mgmt/poudriere[] package or port. The installation

includes a sample configuration file /usr/local/etc/poudriere.conf.sample . Copy this file to

/usr/local/etc/poudriere.conf . Edit the copied file to suit the local configuration.

While ZFS is not required on the system running poudriere, it is beneficial. When ZFS is used, ZPOOL

must be specified in /usr/local/etc/poudriere.conf and FREEBSD_HOST should be set to a nearby mirror.

Defining CCACHE_DIR enables the use of package:devel/ccache[] to cache compilation and reduce

build times for frequently-compiled code. It may be convenient to put poudriere datasets in an

isolated tree mounted at /poudriere . Defaults for the other configuration values are adequate.

The number of processor cores detected is used to define how many builds will run in parallel.

Supply enough virtual memory, either with RAM or swap space. If virtual memory runs out, the

compilation jails will stop and be torn down, resulting in weird error messages.

132

4.6.1. Initialize Jails and Port Trees

After configuration, initialize poudriere so that it installs a jail with the required FreeBSD tree and

a ports tree. Specify a name for the jail using -j and the FreeBSD version with -v . On systems

running FreeBSD/amd64, the architecture can be set with -a to either i386 or amd64 . The default is

the architecture shown by uname .

133

poudriere jail -c -j 11amd64 -v 11.4-RELEASE

[00:00:00] Creating 11amd64 fs at /poudriere/jails/11amd64... done

[00:00:00] Using pre-distributed MANIFEST for FreeBSD 11.4-RELEASE amd64

[00:00:00] Fetching base for FreeBSD 11.4-RELEASE amd64

/poudriere/jails/11amd64/fromftp/base.txz 125 MB 4110 kBps 31s

[00:00:33] Extracting base... done

[00:00:54] Fetching src for FreeBSD 11.4-RELEASE amd64

/poudriere/jails/11amd64/fromftp/src.txz 154 MB 4178 kBps 38s

[00:01:33] Extracting src... done

[00:02:31] Fetching lib32 for FreeBSD 11.4-RELEASE amd64

/poudriere/jails/11amd64/fromftp/lib32.txz 24 MB 3969 kBps 06s

[00:02:38] Extracting lib32... done

[00:02:42] Cleaning up... done

[00:02:42] Recording filesystem state for clean... done

[00:02:42] Upgrading using ftp

/etc/resolv.conf -> /poudriere/jails/11amd64/etc/resolv.conf

Looking up update.FreeBSD.org mirrors... 3 mirrors found.

Fetching public key from update4.freebsd.org... done.

Fetching metadata signature for 11.4-RELEASE from update4.freebsd.org... done.

Fetching metadata index... done.

Fetching 2 metadata files... done.

Inspecting system... done.

Preparing to download files... done.

Fetching 124

patches.....10....20....30....40....50....60....70....80....90....100....110....120..

done.

Applying patches... done.

Fetching 6 files... done.

The following files will be added as part of updating to

11.4-RELEASE-p1:

/usr/src/contrib/unbound/.github

/usr/src/contrib/unbound/.github/FUNDING.yml

/usr/src/contrib/unbound/contrib/drop2rpz

/usr/src/contrib/unbound/contrib/unbound_portable.service.in

/usr/src/contrib/unbound/services/rpz.c

/usr/src/contrib/unbound/services/rpz.h

/usr/src/lib/libc/tests/gen/spawnp_enoexec.sh

The following files will be updated as part of updating to

11.4-RELEASE-p1:

[É]

Installing updates...Scanning //usr/shared/certs/blacklisted for certificates...

Scanning //usr/shared/certs/trusted for certificates...

Êdone.

11.4-RELEASE-p1

[00:04:06] Recording filesystem state for clean... done

[00:04:07] Jail 11amd64 11.4-RELEASE-p1 amd64 is ready to be used

134

poudriere ports -c -p local -m svn+https

[00:00:00] Creating local fs at /poudriere/ports/local... done

[00:00:00] Checking out the ports tree... done

On a single computer, poudriere can build ports with multiple configurations, in multiple jails, and

from different port trees. Custom configurations for these combinations are called sets . See the

CUSTOMIZATION section of man:poudriere[8] for details after package:ports-mgmt/poudriere[] or

package:ports-mgmt/poudriere-devel[] is installed.

The basic configuration shown here puts a single jail-, port-, and set-specific make.conf in

/usr/local/etc/poudriere.d . The filename in this example is created by combining the jail name, port

name, and set name: 10amd64-local-workstation-make.conf . The system make.conf and this new

file are combined at build time to create the make.conf used by the build jail.

Packages to be built are entered in 10amd64-local-workstation-pkglist :

editors/emacs

devel/git

ports-mgmt/pkg

...

Options and dependencies for the specified ports are configured:

poudriere options -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-

pkglist

Finally, packages are built and a package repository is created:

poudriere bulk -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-

pkglist

While running, pressing Ctrl "+" t displays the current state of the build. Poudriere also builds files in

/poudriere/logs/bulk/jailname that can be used with a web server to display build information.

After completion, the new packages are now available for installation from the poudriere

repository.

For more information on using poudriere, see man:poudriere[8] and the main web site,

https://github.com/freebsd/poudriere/wiki .

4.6.2. Configuring pkg Clients to Use a Poudriere Repository

While it is possible to use both a custom repository along side of the official repository, sometimes it

is useful to disable the official repository. This is done by creating a configuration file that overrides

and disables the official configuration file. Create /usr/local/etc/pkg/repos/FreeBSD.conf that

135

https://github.com/freebsd/poudriere/wiki

contains the following:

FreeBSD: {

Ê enabled: no

}

Usually it is easiest to serve a poudriere repository to the client machines via HTTP. Set up a

webserver to serve up the package directory, for instance:

/usr/local/poudriere/data/packages/10amd64 , where 10amd64 is the name of the build.

If the URL to the package repository is: http://pkg.example.com/10amd64 , then the repository

configuration file in /usr/local/etc/pkg/repos/custom.conf would look like:

custom: {

Ê url: "http://pkg.example.com/10amd64",

Ê enabled: yes,

}

4.7. Post-Installation Considerations

Regardless of whether the software was installed from a binary package or port, most third-party

applications require some level of configuration after installation. The following commands and

locations can be used to help determine what was installed with the application.

¥ Most applications install at least one default configuration file in /usr/local/etc . In cases where

an application has a large number of configuration files, a subdirectory will be created to hold

them. Often, sample configuration files are installed which end with a suffix such as .sample .

The configuration files should be reviewed and possibly edited to meet the systemÕs needs. To

edit a sample file, first copy it without the .sample extension.

¥ Applications which provide documentation will install it into /usr/local/shared/doc and many

applications also install manual pages. This documentation should be consulted before

continuing.

¥ Some applications run services which must be added to /etc/rc.conf before starting the

application. These applications usually install a startup script in /usr/local/etc/rc.d . See

crossref:config[configtuning-starting-services,Starting Services] for more information.

!

By design, applications do not run their startup script upon installation, nor do

they run their stop script upon deinstallation or upgrade. This decision is left to

the individual system administrator.

¥ Users of man:csh[1] should run rehash to rebuild the known binary list in the shells PATH .

¥ Use pkg info to determine which files, man pages, and binaries were installed with the

application.

136

http://pkg.example.com/10amd64

4.8. Dealing with Broken Ports

When a port does not build or install, try the following:

1. Search to see if there is a fix pending for the port in the Problem Report database . If so,

implementing the proposed fix may fix the issue.

2. Ask the maintainer of the port for help. Type make maintainer in the ports skeleton or read the

portÕs Makefile to find the maintainerÕs email address. Remember to include the $FreeBSD: line

from the portÕs Makefile and the output leading up to the error in the email to the maintainer.

!

Some ports are not maintained by an individual but instead by a group

maintainer represented by a mailing list . Many, but not all, of these addresses

look like freebsd-listname@FreeBSD.org . Please take this into account when

sending an email.

In particular, ports maintained by ports@FreeBSD.org are not maintained by a

specific individual. Instead, any fixes and support come from the general

community who subscribe to that mailing list. More volunteers are always

needed!

If there is no response to the email, use Bugzilla to submit a bug report using the instructions in

Writing FreeBSD Problem Reports .

3. Fix it! The PorterÕs Handbook includes detailed information on the ports infrastructure so that

you can fix the occasional broken port or even submit your own!

4. Install the package instead of the port using the instructions in Using pkg for Binary Package

Management .

137

https://www.FreeBSD.org/support/
https://docs.freebsd.org/en/articles/mailing-list-faq/
mailto:freebsd-listname@FreeBSD.org
mailto:ports@FreeBSD.org
https://docs.freebsd.org/en/articles/problem-reports/
https://docs.freebsd.org/en/books/porters-handbook/

Chapter 5. The X Window System

5.1. Synopsis

An installation of FreeBSD using bsdinstall does not automatically install a graphical user interface.

This chapter describes how to install and configure Xorg, which provides the open source X

Window System used to provide a graphical environment. It then describes how to find and install

a desktop environment or window manager.

!

Users who prefer an installation method that automatically configures the Xorg

should refer to GhostBSD , MidnightBSD or NomadBSD .

For more information on the video hardware that Xorg supports, refer to the x.org website.

After reading this chapter, you will know:

¥ The various components of the X Window System, and how they interoperate.

¥ How to install and configure Xorg.

¥ How to install and configure several window managers and desktop environments.

¥ How to use TrueType¨ fonts in Xorg.

¥ How to set up your system for graphical logins (XDM).

Before reading this chapter, you should:

¥ Know how to install additional third-party software as described in

crossref:ports[ports,Installing Applications: Packages and Ports].

5.2. Terminology

While it is not necessary to understand all of the details of the various components in the X

Window System and how they interact, some basic knowledge of these components can be useful.

X server

X was designed from the beginning to be network-centric, and adopts a "client-server" model. In

this model, the "X server" runs on the computer that has the keyboard, monitor, and mouse

attached. The serverÕs responsibility includes tasks such as managing the display, handling input

from the keyboard and mouse, and handling input or output from other devices such as a tablet

or a video projector. This confuses some people, because the X terminology is exactly backward

to what they expect. They expect the "X server" to be the big powerful machine down the hall,

and the "X client" to be the machine on their desk.

X client

Each X application, such as XTerm or Firefox, is a "client". A client sends messages to the server

such as "Please draw a window at these coordinates", and the server sends back messages such

as "The user just clicked on the OK button".

138

https://ghostbsd.org
https://www.midnightbsd.org
https://www.nomad.org
http://www.x.org/

In a home or small office environment, the X server and the X clients commonly run on the same

computer. It is also possible to run the X server on a less powerful computer and to run the X

applications on a more powerful system. In this scenario, the communication between the X

client and server takes place over the network.

window manager

X does not dictate what windows should look like on-screen, how to move them around with the

mouse, which keystrokes should be used to move between windows, what the title bars on each

window should look like, whether or not they have close buttons on them, and so on. Instead, X

delegates this responsibility to a separate window manager application. There are dozens of

window managers available. Each window manager provides a different look and feel: some

support virtual desktops, some allow customized keystrokes to manage the desktop, some have a

"Start" button, and some are themeable, allowing a complete change of the desktopÕs look-and-

feel. Window managers are available in the x11-wm category of the Ports Collection.

Each window manager uses a different configuration mechanism. Some expect configuration

file written by hand while others provide graphical tools for most configuration tasks.

desktop environment

KDE and GNOME are considered to be desktop environments as they include an entire suite of

applications for performing common desktop tasks. These may include office suites, web

browsers, and games.

focus policy

The window manager is responsible for the mouse focus policy. This policy provides some

means for choosing which window is actively receiving keystrokes and it should also visibly

indicate which window is currently active.

One focus policy is called "click-to-focus". In this model, a window becomes active upon

receiving a mouse click. In the "focus-follows-mouse" policy, the window that is under the mouse

pointer has focus and the focus is changed by pointing at another window. If the mouse is over

the root window, then this window is focused. In the "sloppy-focus" model, if the mouse is moved

over the root window, the most recently used window still has the focus. With sloppy-focus,

focus is only changed when the cursor enters a new window, and not when exiting the current

window. In the "click-to-focus" policy, the active window is selected by mouse click. The window

may then be raised and appear in front of all other windows. All keystrokes will now be directed

to this window, even if the cursor is moved to another window.

Different window managers support different focus models. All of them support click-to-focus,

and the majority of them also support other policies. Consult the documentation for the window

manager to determine which focus models are available.

widgets

Widget is a term for all of the items in the user interface that can be clicked or manipulated in

some way. This includes buttons, check boxes, radio buttons, icons, and lists. A widget toolkit is a

set of widgets used to create graphical applications. There are several popular widget toolkits,

including Qt, used by KDE, and GTK+, used by GNOME. As a result, applications will have a

different look and feel, depending upon which widget toolkit was used to create the application.

139

http://www.xwinman.org/
http://www.xwinman.org/

5.3. Installing Xorg

On FreeBSD, Xorg can be installed as a package or port.

The binary package can be installed quickly but with fewer options for customization:

pkg install xorg

To build and install from the Ports Collection:

cd /usr/ports/x11/xorg

make install clean

Either of these installations results in the complete Xorg system being installed. Binary packages

are the best option for most users.

A smaller version of the X system suitable for experienced users is available in package:x11/xorg-

minimal[]. Most of the documents, libraries, and applications will not be installed. Some

applications require these additional components to function.

5.4. Xorg Configuration

5.4.1. Quick Start

Xorg supports most common video cards, keyboards, and pointing devices.

!

Video cards, monitors, and input devices are automatically detected and do not

require any manual configuration. Do not create xorg.conf or run a -configure step

unless automatic configuration fails.

1. If Xorg has been used on this computer before, move or remove any existing configuration files:

mv /etc/X11/xorg.conf ~/xorg.conf.etc

mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc

2. Add the user who will run Xorg to the video or wheel group to enable 3D acceleration when

available. To add user jru to whichever group is available:

pw groupmod video -m jru || pw groupmod wheel -m jru

3. The TWM window manager is included by default. It is started when Xorg starts:

% startx

140

4. On some older versions of FreeBSD, the system console must be set to man:vt[4] before

switching back to the text console will work properly. See Kernel Mode Setting (KMS) .

5.4.2. User Group for Accelerated Video

Access to /dev/dri is needed to allow 3D acceleration on video cards. It is usually simplest to add the

user who will be running X to either the video or wheel group. Here, man:pw[8] is used to add user

slurms to the video group, or to the wheel group if there is no video group:

pw groupmod video -m slurms || pw groupmod wheel -m slurms

5.4.3. Kernel Mode Setting (KMS)

When the computer switches from displaying the console to a higher screen resolution for X, it

must set the video output mode . Recent versions of Xorg use a system inside the kernel to do these

mode changes more efficiently. Older versions of FreeBSD use man:sc[4], which is not aware of the

KMS system. The end result is that after closing X, the system console is blank, even though it is still

working. The newer man:vt[4] console avoids this problem.

Add this line to /boot/loader.conf to enable man:vt[4]:

kern.vty=vt

5.4.4. Configuration Files

Manual configuration is usually not necessary. Please do not manually create configuration files

unless autoconfiguration does not work.

5.4.4.1. Directory

Xorg looks in several directories for configuration files. /usr/local/etc/X11/ is the recommended

directory for these files on FreeBSD. Using this directory helps keep application files separate from

operating system files.

Storing configuration files in the legacy /etc/X11/ still works. However, this mixes application files

with the base FreeBSD files and is not recommended.

5.4.4.2. Single or Multiple Files

It is easier to use multiple files that each configure a specific setting than the traditional single

xorg.conf . These files are stored in the xorg.conf.d/ subdirectory of the main configuration file

directory. The full path is typically /usr/local/etc/X11/xorg.conf.d/ .

Examples of these files are shown later in this section.

The traditional single xorg.conf still works, but is neither as clear nor as flexible as multiple files in

the xorg.conf.d/ subdirectory.

141

5.4.5. Video Cards

Because of changes made in recent versions of FreeBSD, it is now possible to use graphics drivers

provided by the Ports framework or as packages. As such, users can use one of the following

drivers available from package:graphics/drm-kmod[].

Intel KMS driver, Radeon KMS driver, AMD KMS driver

2D and 3D acceleration is supported on most Intel KMS driver graphics cards provided by Intel.

Driver name: i915kms

2D and 3D acceleration is supported on most older Radeon KMS driver graphics cards provided

by AMD.

Driver name: radeonkms

2D and 3D acceleration is supported on most newer AMD KMS driver graphics cards provided by

AMD.

Driver name: amdgpu

For reference, please see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units or

https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units for a list of supported

GPUs.

Intel¨

3D acceleration is supported on most Intel¨ graphics up to Ivy Bridge (HD Graphics 2500, 4000,

and P4000), including Iron Lake (HD Graphics) and Sandy Bridge (HD Graphics 2000).

Driver name: intel

For reference, see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units .

AMD¨ Radeon

2D and 3D acceleration is supported on Radeon cards up to and including the HD6000 series.

Driver name: radeon

For reference, see https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units .

NVIDIA

Several NVIDIA drivers are available in the x11 category of the Ports Collection. Install the driver

that matches the video card.

For reference, see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units .

Hybrid Combination Graphics

Some notebook computers add additional graphics processing units to those built into the

chipset or processor. Optimus combines Intel¨ and NVIDIA hardware. Switchable Graphics or

Hybrid Graphics are a combination of an Intel¨ or AMD¨ processor and an AMD¨ Radeon GPU .

142

https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

Implementations of these hybrid graphics systems vary, and Xorg on FreeBSD is not able to drive

all versions of them.

Some computers provide a BIOS option to disable one of the graphics adapters or select a discrete

mode which can be used with one of the standard video card drivers. For example, it is

sometimes possible to disable the NVIDIA GPU in an Optimus system. The Intel¨ video can then

be used with an Intel¨ driver.

BIOS settings depend on the model of computer. In some situations, both GPU s can be left enabled,

but creating a configuration file that only uses the main GPU in the Device section is enough to

make such a system functional.

Other Video Cards

Drivers for some less-common video cards can be found in the x11-drivers directory of the Ports

Collection.

Cards that are not supported by a specific driver might still be usable with the package:x11-

drivers/xf86-video-vesa[] driver. This driver is installed by package:x11/xorg[]. It can also be

installed manually as package:x11-drivers/xf86-video-vesa[]. Xorg attempts to use this driver

when a specific driver is not found for the video card.

package:x11-drivers/xf86-video-scfb[] is a similar nonspecialized video driver that works on

many UEFI and ARM¨ computers.

Setting the Video Driver in a File

To set the Intel¨ driver in a configuration file:

Example 14. Select Intel¨ Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-intel.conf

Section "Device"

Ê Identifier "Card0"

Ê Driver "intel"

Ê # BusID "PCI:1:0:0"

EndSection

If more than one video card is present, the BusID identifier can be uncommented and set to

select the desired card. A list of video card bus ID s can be displayed with pciconf -lv | grep

-B3 display .

To set the Radeon driver in a configuration file:

143

Example 15. Select Radeon Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf

Section "Device"

Ê Identifier "Card0"

Ê Driver "radeon"

EndSection

To set the VESA driver in a configuration file:

Example 16. Select VESA Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf

Section "Device"

Ê Identifier "Card0"

Ê Driver "vesa"

EndSection

To set the scfb driver for use with a UEFI or ARM¨ computer:

Example 17. Select scfb Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-scfb.conf

Section "Device"

Ê Identifier "Card0"

Ê Driver "scfb"

EndSection

5.4.6. Monitors

Almost all monitors support the Extended Display Identification Data standard (EDID). Xorg uses

EDID to communicate with the monitor and detect the supported resolutions and refresh rates. Then

it selects the most appropriate combination of settings to use with that monitor.

Other resolutions supported by the monitor can be chosen by setting the desired resolution in

configuration files, or after the X server has been started with man:xrandr[1].

Using man:xrandr[1]

Run man:xrandr[1] without any parameters to see a list of video outputs and detected monitor

modes:

144

% xrandr

Screen 0: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192

DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis)

495mm x 310mm

Ê 1920x1200 59.95*+

Ê 1600x1200 60.00

Ê 1280x1024 85.02 75.02 60.02

Ê 1280x960 60.00

Ê 1152x864 75.00

Ê 1024x768 85.00 75.08 70.07 60.00

Ê 832x624 74.55

Ê 800x600 75.00 60.32

Ê 640x480 75.00 60.00

Ê 720x400 70.08

DisplayPort-0 disconnected (normal left inverted right x axis y axis)

HDMI-0 disconnected (normal left inverted right x axis y axis)

This shows that the DVI-0 output is being used to display a screen resolution of 1920x1200 pixels

at a refresh rate of about 60 Hz. Monitors are not attached to the DisplayPort-0 and HDMI-0

connectors.

Any of the other display modes can be selected with man:xrandr[1]. For example, to switch to

1280x1024 at 60 Hz:

% xrandr --mode 1280x1024 --rate 60

A common task is using the external video output on a notebook computer for a video projector.

The type and quantity of output connectors varies between devices, and the name given to each

output varies from driver to driver. What one driver calls HDMI-1 , another might call HDMI1 . So

the first step is to run man:xrandr[1] to list all the available outputs:

145

% xrandr

Screen 0: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192

LVDS1 connected 1366x768+0+0 (normal left inverted right x axis y axis) 344mm x

193mm

Ê 1366x768 60.04*+

Ê 1024x768 60.00

Ê 800x600 60.32 56.25

Ê 640x480 59.94

VGA1 connected (normal left inverted right x axis y axis)

Ê 1280x1024 60.02 + 75.02

Ê 1280x960 60.00

Ê 1152x864 75.00

Ê 1024x768 75.08 70.07 60.00

Ê 832x624 74.55

Ê 800x600 72.19 75.00 60.32 56.25

Ê 640x480 75.00 72.81 66.67 60.00

Ê 720x400 70.08

HDMI1 disconnected (normal left inverted right x axis y axis)

DP1 disconnected (normal left inverted right x axis y axis)

Four outputs were found: the built-in panel LVDS1 , and external VGA1 , HDMI1 , and DP1 connectors.

The projector has been connected to the VGA1 output. man:xrandr[1] is now used to set that

output to the native resolution of the projector and add the additional space to the right side of

the desktop:

% xrandr --output VGA1 --auto --right-of LVDS1

--auto chooses the resolution and refresh rate detected by EDID . If the resolution is not correctly

detected, a fixed value can be given with --mode instead of the --auto statement. For example,

most projectors can be used with a 1024x768 resolution, which is set with --mode 1024x768 .

man:xrandr[1] is often run from .xinitrc to set the appropriate mode when X starts.

Setting Monitor Resolution in a File

To set a screen resolution of 1024x768 in a configuration file:

146

Example 18. Set Screen Resolution in a File

/usr/local/etc/X11/xorg.conf.d/screen-resolution.conf

Section "Screen"

Ê Identifier "Screen0"

Ê Device "Card0"

Ê SubSection "Display"

Ê Modes "1024x768"

Ê EndSubSection

EndSection

The few monitors that do not have EDID can be configured by setting HorizSync and VertRefresh

to the range of frequencies supported by the monitor.

Example 19. Manually Setting Monitor Frequencies

/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf

Section "Monitor"

Ê Identifier "Monitor0"

Ê HorizSync 30-83 # kHz

Ê VertRefresh 50-76 # Hz

EndSection

5.4.7. Input Devices

5.4.7.1. Keyboards

Keyboard Layout

The standardized location of keys on a keyboard is called a layout . Layouts and other adjustable

parameters are listed in man:xkeyboard-config[7].

A United States layout is the default. To select an alternate layout, set the XkbLayout and

XkbVariant options in an InputClass . This will be applied to all input devices that match the class.

This example selects a French keyboard layout.

147

Example 20. Setting a Keyboard Layout

/usr/local/etc/X11/xorg.conf.d/keyboard-fr.conf

Section "InputClass"

Ê Identifier "KeyboardDefaults"

Ê MatchIsKeyboard "on"

Ê Option "XkbLayout" "fr"

EndSection

Example 21. Setting Multiple Keyboard Layouts

Set United States, Spanish, and Ukrainian keyboard layouts. Cycle through these layouts by

pressing Alt "+" Shift . package:x11/xxkb[] or package:x11/sbxkb[] can be used for improved

layout switching control and current layout indicators.

/usr/local/etc/X11/xorg.conf.d/kbd-layout-multi.conf

Section "InputClass"

Ê Identifier "All Keyboards"

Ê MatchIsKeyboard "yes"

Ê Option "XkbLayout" "us, es, ua"

EndSection

Closing Xorg From the Keyboard

X can be closed with a combination of keys. By default, that key combination is not set because it

conflicts with keyboard commands for some applications. Enabling this option requires changes

to the keyboard InputDevice section:

Example 22. Enabling Keyboard Exit from X

/usr/local/etc/X11/xorg.conf.d/keyboard-zap.conf

Section "InputClass"

Ê Identifier "KeyboardDefaults"

Ê MatchIsKeyboard "on"

Ê Option "XkbOptions" "terminate:ctrl_alt_bksp"

EndSection

5.4.7.2. Mice and Pointing Devices

#

If using package:xorg-server[] 1.20.8 or later under FreeBSD 12.1 and not using

man:moused[8], add kern.evdev.rcpt_mask=12 to /etc/sysctl.conf .

148

Many mouse parameters can be adjusted with configuration options. See man:mousedrv[4] for a

full list.

Mouse Buttons

The number of buttons on a mouse can be set in the mouse InputDevice section of xorg.conf . To

set the number of buttons to 7:

Example 23. Setting the Number of Mouse Buttons

/usr/local/etc/X11/xorg.conf.d/mouse0-buttons.conf

Section "InputDevice"

Ê Identifier "Mouse0"

Ê Option "Buttons" "7"

EndSection

5.4.8. Manual Configuration

In some cases, Xorg autoconfiguration does not work with particular hardware, or a different

configuration is desired. For these cases, a custom configuration file can be created.

"

Do not create manual configuration files unless required. Unnecessary manual

configuration can prevent proper operation.

A configuration file can be generated by Xorg based on the detected hardware. This file is often a

useful starting point for custom configurations.

Generating an xorg.conf :

Xorg -configure

The configuration file is saved to /root/xorg.conf.new . Make any changes desired, then test that file

(using -retro so there is a visible background) with:

Xorg -retro -config /root/xorg.conf.new

After the new configuration has been adjusted and tested, it can be split into smaller files in the

normal location, /usr/local/etc/X11/xorg.conf.d/ .

5.5. Using Fonts in Xorg

5.5.1. Type1 Fonts

The default fonts that ship with Xorg are less than ideal for typical desktop publishing applications.

Large presentation fonts show up jagged and unprofessional looking, and small fonts are almost

149

completely unintelligible. However, there are several free, high quality Type1 (PostScript¨) fonts

available which can be readily used with Xorg. For instance, the URW font collection (package:x11-

fonts/urwfonts[]) includes high quality versions of standard type1 fonts (Times Romanª,

Helveticaª, Palatinoª and others). The Freefonts collection (package:x11-fonts/freefonts[]) includes

many more fonts, but most of them are intended for use in graphics software such as the Gimp, and

are not complete enough to serve as screen fonts. In addition, Xorg can be configured to use

TrueType¨ fonts with a minimum of effort. For more details on this, see the man:X[7] manual page

or TrueType¨ Fonts .

To install the above Type1 font collections from binary packages, run the following commands:

pkg install urwfonts

Alternatively, to build from the Ports Collection, run the following commands:

cd /usr/ports/x11-fonts/urwfonts

make install clean

And likewise with the freefont or other collections. To have the X server detect these fonts, add an

appropriate line to the X server configuration file (/etc/X11/xorg.conf), which reads:

FontPath "/usr/local/shared/fonts/urwfonts/"

Alternatively, at the command line in the X session run:

% xset fp+ /usr/local/shared/fonts/urwfonts

% xset fp rehash

This will work but will be lost when the X session is closed, unless it is added to the startup file

(~/.xinitrc for a normal startx session, or ~/.xsession when logging in through a graphical login

manager like XDM). A third way is to use the new /usr/local/etc/fonts/local.conf as demonstrated in

Anti-Aliased Fonts .

5.5.2. TrueType¨ Fonts

Xorg has built in support for rendering TrueType¨ fonts. There are two different modules that can

enable this functionality. The freetype module is used in this example because it is more consistent

with the other font rendering back-ends. To enable the freetype module just add the following line

to the "Module" section of /etc/X11/xorg.conf .

Load "freetype"

Now make a directory for the TrueType¨ fonts (for example, /usr/local/shared/fonts/TrueType) and

copy all of the TrueType¨ fonts into this directory. Keep in mind that TrueType¨ fonts cannot be

150

directly taken from an Apple¨ Mac¨; they must be in UNIX¨/MS-DOS¨/Windows¨ format for use

by Xorg. Once the files have been copied into this directory, use mkfontscale to create a fonts.dir , so

that the X font renderer knows that these new files have been installed. mkfontscale can be installed

as a package:

pkg install mkfontscale

Then create an index of X font files in a directory:

cd /usr/local/shared/fonts/TrueType

mkfontscale

Now add the TrueType¨ directory to the font path. This is just the same as described in Type1

Fonts :

% xset fp+ /usr/local/shared/fonts/TrueType

% xset fp rehash

or add a FontPath line to xorg.conf .

Now Gimp, LibreOffice, and all of the other X applications should now recognize the installed

TrueType¨ fonts. Extremely small fonts (as with text in a high resolution display on a web page)

and extremely large fonts (within LibreOffice) will look much better now.

5.5.3. Anti-Aliased Fonts

All fonts in Xorg that are found in /usr/local/shared/fonts/ and ~/.fonts/ are automatically made

available for anti-aliasing to Xft-aware applications. Most recent applications are Xft-aware,

including KDE, GNOME, and Firefox.

To control which fonts are anti-aliased, or to configure anti-aliasing properties, create (or edit, if it

already exists) the file /usr/local/etc/fonts/local.conf . Several advanced features of the Xft font

system can be tuned using this file; this section describes only some simple possibilities. For more

details, please see man:fonts-conf[5].

This file must be in XML format. Pay careful attention to case, and make sure all tags are properly

closed. The file begins with the usual XML header followed by a DOCTYPE definition, and then the

<fontconfig> tag:

<?xml version="1.0"?>

Ê <!DOCTYPE fontconfig SYSTEM "fonts.dtd">

Ê <fontconfig>

As previously stated, all fonts in /usr/local/shared/fonts/ as well as ~/.fonts/ are already made

available to Xft-aware applications. To add another directory outside of these two directory trees,

151

add a line like this to /usr/local/etc/fonts/local.conf :

<dir>/path/to/my/fonts</dir>

After adding new fonts, and especially new font directories, rebuild the font caches:

fc-cache -f

Anti-aliasing makes borders slightly fuzzy, which makes very small text more readable and

removes "staircases" from large text, but can cause eyestrain if applied to normal text. To exclude

font sizes smaller than 14 point from anti-aliasing, include these lines:

Ê <match target="font">

Ê <test name="size" compare="less">

Ê <double>14</double>

Ê </test>

Ê <edit name="antialias" mode="assign">

Ê <bool>false</bool>

Ê </edit>

Ê </match>

Ê <match target="font">

Ê <test name="pixelsize" compare="less" qual="any">

Ê <double>14</double>

Ê </test>

Ê <edit mode="assign" name="antialias">

Ê <bool>false</bool>

Ê </edit>

Ê </match>

Spacing for some monospaced fonts might also be inappropriate with anti-aliasing. This seems to be

an issue with KDE, in particular. One possible fix is to force the spacing for such fonts to be 100.

Add these lines:

152

Ê <match target="pattern" name="family">

Ê <test qual="any" name="family">

Ê <string>fixed</string>

Ê </test>

Ê <edit name="family" mode="assign">

Ê <string>mono</string>

Ê </edit>

Ê </match>

Ê <match target="pattern" name="family">

Ê <test qual="any" name="family">

Ê <string>console</string>

Ê </test>

Ê <edit name="family" mode="assign">

Ê <string>mono</string>

Ê </edit>

Ê </match>

(this aliases the other common names for fixed fonts as "mono"), and then add:

Ê <match target="pattern" name="family">

Ê <test qual="any" name="family">

Ê <string>mono</string>

Ê </test>

Ê <edit name="spacing" mode="assign">

Ê <int>100</int>

Ê </edit>

Ê </match>

Certain fonts, such as Helvetica, may have a problem when anti-aliased. Usually this manifests itself

as a font that seems cut in half vertically. At worst, it may cause applications to crash. To avoid this,

consider adding the following to local.conf :

Ê <match target="pattern" name="family">

Ê <test qual="any" name="family">

Ê <string>Helvetica</string>

Ê </test>

Ê <edit name="family" mode="assign">

Ê <string>sans-serif</string>

Ê </edit>

Ê </match>

After editing local.conf , make certain to end the file with the </fontconfig> tag. Not doing this will

cause changes to be ignored.

Users can add personalized settings by creating their own ~/.config/fontconfig/fonts.conf . This file

uses the same XML format described above.

153

One last point: with an LCD screen, sub-pixel sampling may be desired. This basically treats the

(horizontally separated) red, green and blue components separately to improve the horizontal

resolution; the results can be dramatic. To enable this, add the line somewhere in local.conf :

Ê <match target="font">

Ê <test qual="all" name="rgba">

Ê <const>unknown</const>

Ê </test>

Ê <edit name="rgba" mode="assign">

Ê <const>rgb</const>

Ê </edit>

Ê </match>

!

Depending on the sort of display, rgb may need to be changed to bgr , vrgb or vbgr :

experiment and see which works best.

5.6. The X Display Manager

Xorg provides an X Display Manager, XDM, which can be used for login session management. XDM

provides a graphical interface for choosing which display server to connect to and for entering

authorization information such as a login and password combination.

This section demonstrates how to configure the X Display Manager on FreeBSD. Some desktop

environments provide their own graphical login manager. Refer to GNOME for instructions on how

to configure the GNOME Display Manager and KDE for instructions on how to configure the KDE

Display Manager.

5.6.1. Configuring XDM

To install XDM, use the package:x11/xdm[] package or port. Once installed, XDM can be configured

to run when the machine boots up by editing this entry in /etc/ttys :

ttyv8 "/usr/local/bin/xdm -nodaemon" xterm off secure

Change the off to on and save the edit. The ttyv8 in this entry indicates that XDM will run on the

ninth virtual terminal.

The XDM configuration directory is located in /usr/local/etc/X11/xdm . This directory contains

several files used to change the behavior and appearance of XDM, as well as a few scripts and

programs used to set up the desktop when XDM is running. XDM Configuration Files summarizes

the function of each of these files. The exact syntax and usage of these files is described in

man:xdm[1].

Table 7. XDM Configuration Files

154

File Description

Xaccess The protocol for connecting to XDM is called the

X Display Manager Connection Protocol (XDMCP).

This file is a client authorization ruleset for

controlling XDMCP connections from remote

machines. By default, this file does not allow any

remote clients to connect.

Xresources This file controls the look and feel of the XDM

display chooser and login screens. The default

configuration is a simple rectangular login

window with the hostname of the machine

displayed at the top in a large font and "Login:"

and "Password:" prompts below. The format of

this file is identical to the app-defaults file

described in the Xorg documentation.

Xservers The list of local and remote displays the chooser

should provide as login choices.

Xsession Default session script for logins which is run by

XDM after a user has logged in. This points to a

customized session script in ~/.xsession .

Xsetup_ * Script to automatically launch applications

before displaying the chooser or login interfaces.

There is a script for each display being used,

named Xsetup_* , where * is the local display

number. Typically these scripts run one or two

programs in the background such as xconsole .

xdm-config Global configuration for all displays running on

this machine.

xdm-errors Contains errors generated by the server

program. If a display that XDM is trying to start

hangs, look at this file for error messages. These

messages are also written to the userÕs

~/.xsession-errors on a per-session basis.

xdm-pid The running process ID of XDM.

5.6.2. Configuring Remote Access

By default, only users on the same system can login using XDM. To enable users on other systems to

connect to the display server, edit the access control rules and enable the connection listener.

To configure XDM to listen for any remote connection, comment out the DisplayManager.requestPort

line in /usr/local/etc/X11/xdm/xdm-config by putting a ! in front of it:

155

! SECURITY: do not listen for XDMCP or Chooser requests

! Comment out this line if you want to manage X terminals with xdm

DisplayManager.requestPort: 0

Save the edits and restart XDM. To restrict remote access, look at the example entries in

/usr/local/etc/X11/xdm/Xaccess and refer to man:xdm[1] for further information.

5.7. Desktop Environments

This section describes how to install three popular desktop environments on a FreeBSD system. A

desktop environment can range from a simple window manager to a complete suite of desktop

applications. Over a hundred desktop environments are available in the x11-wm category of the

Ports Collection.

5.7.1. GNOME

GNOME is a user-friendly desktop environment. It includes a panel for starting applications and

displaying status, a desktop, a set of tools and applications, and a set of conventions that make it

easy for applications to cooperate and be consistent with each other. More information regarding

GNOME on FreeBSD can be found at https://www.FreeBSD.org/gnome . That web site contains

additional documentation about installing, configuring, and managing GNOME on FreeBSD.

This desktop environment can be installed from a package:

pkg install gnome3

To instead build GNOME from ports, use the following command. GNOME is a large application and

will take some time to compile, even on a fast computer.

cd /usr/ports/x11/gnome3

make install clean

GNOME requires /proc to be mounted. Add this line to /etc/fstab to mount this file system

automatically during system startup:

proc /proc procfs rw 0 0

GNOME uses D-Bus for a message bus and hardware abstraction. These applications are

automatically installed as dependencies of GNOME. Enable them in /etc/rc.conf so they will be

started when the system boots:

dbus_enable="YES"

156

https://www.FreeBSD.org/gnome

After installation, configure Xorg to start GNOME. The easiest way to do this is to enable the GNOME

Display Manager, GDM, which is installed as part of the GNOME package or port. It can be enabled

by adding this line to /etc/rc.conf :

gdm_enable="YES"

It is often desirable to also start all GNOME services. To achieve this, add a second line to

/etc/rc.conf :

gnome_enable="YES"

GDM will start automatically when the system boots.

A second method for starting GNOME is to type startx from the command-line after configuring

~/.xinitrc . If this file already exists, replace the line that starts the current window manager with

one that starts /usr/local/bin/gnome-session . If this file does not exist, create it with this command:

% echo "exec /usr/local/bin/gnome-session" > ~/.xinitrc

A third method is to use XDM as the display manager. In this case, create an executable ~/.xsession :

% echo "exec /usr/local/bin/gnome-session" > ~/.xsession

5.7.2. KDE

KDE is another easy-to-use desktop environment. This desktop provides a suite of applications with

a consistent look and feel, a standardized menu and toolbars, keybindings, color-schemes,

internationalization, and a centralized, dialog-driven desktop configuration. More information on

KDE can be found at http://www.kde.org/ . For FreeBSD-specific information, consult

http://freebsd.kde.org .

To install the KDE package, type:

pkg install x11/kde5

To instead build the KDE port, use the following command. Installing the port will provide a menu

for selecting which components to install. KDE is a large application and will take some time to

compile, even on a fast computer.

cd /usr/ports/x11/kde5

make install clean

KDE requires /proc to be mounted. Add this line to /etc/fstab to mount this file system automatically

157

http://www.kde.org/
http://freebsd.kde.org/

during system startup:

proc /proc procfs rw 0 0

KDE uses D-Bus for a message bus and hardware abstraction. These applications are automatically

installed as dependencies of KDE. Enable them in /etc/rc.conf so they will be started when the

system boots:

dbus_enable="YES"

Since KDE Plasma 5, the KDE Display Manager, KDM is no longer developed. A possible replacement

is SDDM. To install it, type:

pkg install x11/sddm

Add this line to /etc/rc.conf :

sddm_enable="YES"

A second method for launching KDE Plasma is to type startx from the command line. For this to

work, the following line is needed in ~/.xinitrc :

exec ck-launch-session startplasma-x11

A third method for starting KDE Plasma is through XDM. To do so, create an executable ~/.xsession

as follows:

% echo "exec ck-launch-session startplasma-x11" > ~/.xsession

Once KDE Plasma is started, refer to its built-in help system for more information on how to use its

various menus and applications.

5.7.3. Xfce

Xfce is a desktop environment based on the GTK+ toolkit used by GNOME. However, it is more

lightweight and provides a simple, efficient, easy-to-use desktop. It is fully configurable, has a main

panel with menus, applets, and application launchers, provides a file manager and sound manager,

and is themeable. Since it is fast, light, and efficient, it is ideal for older or slower machines with

memory limitations. More information on Xfce can be found at http://www.xfce.org .

To install the Xfce package:

158

http://www.xfce.org/

pkg install xfce

Alternatively, to build the port:

cd /usr/ports/x11-wm/xfce4

make install clean

Xfce uses D-Bus for a message bus. This application is automatically installed as dependency of

Xfce. Enable it in /etc/rc.conf so it will be started when the system boots:

dbus_enable="YES"

Unlike GNOME or KDE, Xfce does not provide its own login manager. In order to start Xfce from the

command line by typing startx , first create ~/.xinitrc with this command:

% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xinitrc

An alternate method is to use XDM. To configure this method, create an executable ~/.xsession :

% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xsession

5.8. Installing Compiz Fusion

One way to make using a desktop computer more pleasant is with nice 3D effects.

Installing the Compiz Fusion package is easy, but configuring it requires a few steps that are not

described in the portÕs documentation.

5.8.1. Setting up the FreeBSD nVidia Driver

Desktop effects can cause quite a load on the graphics card. For an nVidia-based graphics card, the

proprietary driver is required for good performance. Users of other graphics cards can skip this

section and continue with the xorg.conf configuration.

To determine which nVidia driver is needed see the FAQ question on the subject .

Having determined the correct driver to use for your card, installation is as simple as installing any

other package.

For example, to install the latest driver:

pkg install x11/nvidia-driver

159

https://docs.freebsd.org/en/books/faq/#idp59950544

The driver will create a kernel module, which needs to be loaded at system startup. Add the

following line to /boot/loader.conf :

nvidia_load="YES"

!

To immediately load the kernel module into the running kernel issue a command

like kldload nvidia . However, it has been noted that some versions of Xorg will not

function properly if the driver is not loaded at boot time. After editing

/boot/loader.conf , a reboot is recommended.

With the kernel module loaded, you normally only need to change a single line in xorg.conf to

enable the proprietary driver:

Find the following line in /etc/X11/xorg.conf :

Driver "nv"

and change it to:

Driver "nvidia"

Start the GUI as usual, and you should be greeted by the nVidia splash. Everything should work as

usual.

5.8.2. Configuring xorg.conf for Desktop Effects

To enable Compiz Fusion, /etc/X11/xorg.conf needs to be modified:

Add the following section to enable composite effects:

Section "Extensions"

Ê Option "Composite" "Enable"

EndSection

Locate the "Screen" section which should look similar to the one below:

Section "Screen"

Ê Identifier "Screen0"

Ê Device "Card0"

Ê Monitor "Monitor0"

Ê ...

and add the following two lines (after "Monitor" will do):

160

DefaultDepth 24

Option "AddARGBGLXVisuals" "True"

Locate the "Subsection" that refers to the screen resolution that you wish to use. For example, if you

wish to use 1280x1024, locate the section that follows. If the desired resolution does not appear in

any subsection, you may add the relevant entry by hand:

SubSection "Display"

Ê Viewport 0 0

Ê Modes "1280x1024"

EndSubSection

A color depth of 24 bits is needed for desktop composition, change the above subsection to:

SubSection "Display"

Ê Viewport 0 0

Ê Depth 24

Ê Modes "1280x1024"

EndSubSection

Finally, confirm that the "glx" and "extmod" modules are loaded in the "Module" section:

Section "Module"

Ê Load "extmod"

Ê Load "glx"

Ê ...

The preceding can be done automatically with package:x11/nvidia-xconfig[] by running (as root):

nvidia-xconfig --add-argb-glx-visuals

nvidia-xconfig --composite

nvidia-xconfig --depth=24

5.8.3. Installing and Configuring Compiz Fusion

Installing Compiz Fusion is as simple as any other package:

pkg install x11-wm/compiz-fusion

When the installation is finished, start your graphic desktop and at a terminal, enter the following

commands (as a normal user):

161

% compiz --replace --sm-disable --ignore-desktop-hints ccp &

% emerald --replace &

Your screen will flicker for a few seconds, as your window manager (e.g., Metacity if you are using

GNOME) is replaced by Compiz Fusion. Emerald takes care of the window decorations (i.e., close,

minimize, maximize buttons, title bars and so on).

You may convert this to a trivial script and have it run at startup automatically (e.g., by adding to

"Sessions" in a GNOME desktop):

#! /bin/sh

compiz --replace --sm-disable --ignore-desktop-hints ccp &

emerald --replace &

Save this in your home directory as, for example, start-compiz and make it executable:

% chmod +x ~/start-compiz

Then use the GUI to add it to Startup Programs (located in System , Preferences , Sessions on a

GNOME desktop).

To actually select all the desired effects and their settings, execute (again as a normal user) the

Compiz Config Settings Manager:

% ccsm

!

In GNOME, this can also be found in the System , Preferences menu.

If you have selected "gconf support" during the build, you will also be able to view these settings

using gconf-editor under apps/compiz .

5.9. Troubleshooting

If the mouse does not work, you will need to first configure it before proceeding. In recent Xorg

versions, the InputDevice sections in xorg.conf are ignored in favor of the autodetected devices. To

restore the old behavior, add the following line to the ServerLayout or ServerFlags section of this

file:

Option "AutoAddDevices" "false"

Input devices may then be configured as in previous versions, along with any other options needed

(e.g., keyboard layout switching).

162

!

As previously explained the hald daemon will, by default, automatically detect

your keyboard. There are chances that your keyboard layout or model will not be

correct, desktop environments like GNOME, KDE or Xfce provide tools to configure

the keyboard. However, it is possible to set the keyboard properties directly either

with the help of the man:setxkbmap[1] utility or with a haldÕs configuration rule.

For example if, one wants to use a PC 102 keys keyboard coming with a french

layout, we have to create a keyboard configuration file for hald called x11-input.fdi

and saved in the /usr/local/etc/hal/fdi/policy directory. This file should contain the

following lines:

<?xml version="1.0" encoding="utf-8"?>

<deviceinfo version="0.2">

Ê <device>

Ê <match key="info.capabilities" contains="input.keyboard">

Ê <merge key="input.x11_options.XkbModel"

type="string">pc102</merge>

Ê <merge key="input.x11_options.XkbLayout" type="string">fr</merge>

Ê </match>

Ê </device>

</deviceinfo>

If this file already exists, just copy and add to your file the lines regarding the

keyboard configuration.

You will have to reboot your machine to force hald to read this file.

It is possible to do the same configuration from an X terminal or a script with this

command line:

% setxkbmap -model pc102 -layout fr

/usr/local/shared/X11/xkb/rules/base.lst lists the various keyboard, layouts and

options available.

The xorg.conf.new configuration file may now be tuned to taste. Open the file in a text editor such

as man:emacs[1] or man:ee[1]. If the monitor is an older or unusual model that does not support

autodetection of sync frequencies, those settings can be added to xorg.conf.new under the "Monitor"

section:

163

Section "Monitor"

Ê Identifier "Monitor0"

Ê VendorName "Monitor Vendor"

Ê ModelName "Monitor Model"

Ê HorizSync 30-107

Ê VertRefresh 48-120

EndSection

Most monitors support sync frequency autodetection, making manual entry of these values

unnecessary. For the few monitors that do not support autodetection, avoid potential damage by

only entering values provided by the manufacturer.

X allows DPMS (Energy Star) features to be used with capable monitors. The man:xset[1] program

controls the time-outs and can force standby, suspend, or off modes. If you wish to enable DPMS

features for your monitor, you must add the following line to the monitor section:

Option "DPMS"

While the xorg.conf.new configuration file is still open in an editor, select the default resolution and

color depth desired. This is defined in the "Screen" section:

Section "Screen"

Ê Identifier "Screen0"

Ê Device "Card0"

Ê Monitor "Monitor0"

Ê DefaultDepth 24

Ê SubSection "Display"

Ê Viewport 0 0

Ê Depth 24

Ê Modes "1024x768"

Ê EndSubSection

EndSection

The DefaultDepth keyword describes the color depth to run at by default. This can be overridden

with the -depth command line switch to man:Xorg[1]. The Modes keyword describes the resolution to

run at for the given color depth. Note that only VESA standard modes are supported as defined by

the target systemÕs graphics hardware. In the example above, the default color depth is twenty-four

bits per pixel. At this color depth, the accepted resolution is 1024 by 768 pixels.

Finally, write the configuration file and test it using the test mode given above.

!

One of the tools available to assist you during troubleshooting process are the Xorg

log files, which contain information on each device that the Xorg server attaches

to. Xorg log file names are in the format of /var/log/Xorg.0.log . The exact name of

the log can vary from Xorg.0.log to Xorg.8.log and so forth.

164

If all is well, the configuration file needs to be installed in a common location where man:Xorg[1]

can find it. This is typically /etc/X11/xorg.conf or /usr/local/etc/X11/xorg.conf .

cp xorg.conf.new /etc/X11/xorg.conf

The Xorg configuration process is now complete. Xorg may be now started with the man:startx[1]

utility. The Xorg server may also be started with the use of man:xdm[1].

5.9.1. Configuration with Intel¨ i810 Graphics Chipsets

Configuration with Intel¨ i810 integrated chipsets requires the agpgart AGP programming interface

for Xorg to drive the card. See the man:agp[4] driver manual page for more information.

This will allow configuration of the hardware as any other graphics board. Note on systems without

the man:agp[4] driver compiled in the kernel, trying to load the module with man:kldload[8] will

not work. This driver has to be in the kernel at boot time through being compiled in or using

/boot/loader.conf .

5.9.2. Adding a Widescreen Flatpanel to the Mix

This section assumes a bit of advanced configuration knowledge. If attempts to use the standard

configuration tools above have not resulted in a working configuration, there is information

enough in the log files to be of use in getting the setup working. Use of a text editor will be

necessary.

Current widescreen (WSXGA, WSXGA+, WUXGA, WXGA, WXGA+, et.al.) formats support 16:10 and

10:9 formats or aspect ratios that can be problematic. Examples of some common screen

resolutions for 16:10 aspect ratios are:

¥ 2560x1600

¥ 1920x1200

¥ 1680x1050

¥ 1440x900

¥ 1280x800

At some point, it will be as easy as adding one of these resolutions as a possible Mode in the Section

"Screen" as such:

165

Section "Screen"

Identifier "Screen0"

Device "Card0"

Monitor "Monitor0"

DefaultDepth 24

SubSection "Display"

Ê Viewport 0 0

Ê Depth 24

Ê Modes "1680x1050"

EndSubSection

EndSection

Xorg is smart enough to pull the resolution information from the widescreen via I2C/DDC

information so it knows what the monitor can handle as far as frequencies and resolutions.

If those ModeLines do not exist in the drivers, one might need to give Xorg a little hint. Using

/var/log/Xorg.0.log one can extract enough information to manually create a ModeLine that will

work. Simply look for information resembling this:

(II) MGA(0): Supported additional Video Mode:

(II) MGA(0): clock: 146.2 MHz Image Size: 433 x 271 mm

(II) MGA(0): h_active: 1680 h_sync: 1784 h_sync_end 1960 h_blank_end 2240 h_border:

0

(II) MGA(0): v_active: 1050 v_sync: 1053 v_sync_end 1059 v_blanking: 1089 v_border:

0

(II) MGA(0): Ranges: V min: 48 V max: 85 Hz, H min: 30 H max: 94 kHz, PixClock max

170 MHz

This information is called EDID information. Creating a ModeLine from this is just a matter of putting

the numbers in the correct order:

ModeLine <name> <clock> <4 horiz. timings> <4 vert. timings>

So that the ModeLine in Section "Monitor" for this example would look like this:

Section "Monitor"

Identifier "Monitor1"

VendorName "Bigname"

ModelName "BestModel"

ModeLine "1680x1050" 146.2 1680 1784 1960 2240 1050 1053 1059 1089

Option "DPMS"

EndSection

Now having completed these simple editing steps, X should start on your new widescreen monitor.

166

5.9.3. Troubleshooting Compiz Fusion

5.9.3.1. I have installed Compiz Fusion, and after running the commands you mention, my

windows are left without title bars and buttons. What is wrong?

You are probably missing a setting in /etc/X11/xorg.conf . Review this file carefully and check

especially the DefaultDepth and AddARGBGLXVisuals directives.

5.9.3.2. When I run the command to start Compiz Fusion, the X server crashes and I am back

at the console. What is wrong?

If you check /var/log/Xorg.0.log , you will probably find error messages during the X startup. The

most common would be:

(EE) NVIDIA(0): Failed to initialize the GLX module; please check in your X

(EE) NVIDIA(0): log file that the GLX module has been loaded in your X

(EE) NVIDIA(0): server, and that the module is the NVIDIA GLX module. If

(EE) NVIDIA(0): you continue to encounter problems, Please try

(EE) NVIDIA(0): reinstalling the NVIDIA driver.

This is usually the case when you upgrade Xorg. You will need to reinstall the package:x11/nvidia-

driver[] package so glx is built again.

167

Part II: Common Tasks

Now that the basics have been covered, this part of the book discusses some frequently used

features of FreeBSD. These chapters:

¥ Introduce popular and useful desktop applications: browsers, productivity tools, document

viewers, and more.

¥ Introduce a number of multimedia tools available for FreeBSD.

¥ Explain the process of building a customized FreeBSD kernel to enable extra functionality.

¥ Describe the print system in detail, both for desktop and network-connected printer setups.

¥ Show how to run Linux applications on the FreeBSD system.

Some of these chapters recommend prior reading, and this is noted in the synopsis at the beginning

of each chapter.

168

Chapter 6. Desktop Applications

6.1. Synopsis

While FreeBSD is popular as a server for its performance and stability, it is also suited for day-to-

day use as a desktop. With over 36000 applications available as FreeBSD packages or ports, it is easy

to build a customized desktop that runs a wide variety of desktop applications. This chapter

demonstrates how to install numerous desktop applications, including web browsers, productivity

software, document viewers, and financial software.

!

Users who prefer to install a pre-built desktop version of FreeBSD rather than

configuring one from scratch should refer to GhostBSD , MidnightBSD or

NomadBSD .

Readers of this chapter should know how to:

¥ Install additional software using packages or ports as described in

crossref:ports[ports,Installing Applications: Packages and Ports].

¥ Install X and a window manager as described in crossref:x11[x11,The X Window System].

For information on how to configure a multimedia environment, refer to

crossref:multimedia[multimedia,Multimedia].

6.2. Browsers

FreeBSD does not come with a pre-installed web browser. Instead, the www category of the Ports

Collection contains many browsers which can be installed as a package or compiled from the Ports

Collection.

The KDE and GNOME desktop environments include their own HTML browser. Refer to

crossref:x11[x11-wm,ÒDesktop EnvironmentsÓ] for more information on how to set up these

complete desktops.

Some lightweight browsers include package:www/dillo2[], package:www/links[], and

package:www/w3m[].

This section demonstrates how to install the following popular web browsers and indicates if the

application is resource-heavy, takes time to compile from ports, or has any major dependencies.

Application Name Resources Needed Installation from

Ports

Notes

Firefox medium heavy FreeBSD, Linux¨, and

localized versions are

available

Konqueror medium heavy Requires KDE libraries

Chromium medium heavy Requires Gtk+

169

https://ghostbsd.org
https://www.midnightbsd.org
https://www.nomad.org
https://www.FreeBSD.org/ports/

6.2.1. Firefox

Firefox is an open source browser that features a standards-compliant HTML display engine,

tabbed browsing, popup blocking, extensions, improved security, and more. Firefox is based on the

Mozilla codebase.

To install the package of the latest release version of Firefox, type:

pkg install firefox

To instead install Firefox Extended Support Release (ESR) version, use:

pkg install firefox-esr

The Ports Collection can instead be used to compile the desired version of Firefox from source code.

This example builds package:www/firefox[], where firefox can be replaced with the ESR or

localized version to install.

cd /usr/ports/www/firefox

make install clean

6.2.2. Konqueror

Konqueror is more than a web browser as it is also a file manager and a multimedia viewer.

Supports WebKit as well as its own KHTML. WebKit is a rendering engine used by many modern

browsers including Chromium.

Konqueror can be installed as a package by typing:

pkg install konqueror

To install from the Ports Collection:

cd /usr/ports/x11-fm/konqueror/

make install clean

6.2.3. Chromium

Chromium is an open source browser project that aims to build a safer, faster, and more stable web

browsing experience. Chromium features tabbed browsing, popup blocking, extensions, and much

more. Chromium is the open source project upon which the Google Chrome web browser is based.

Chromium can be installed as a package by typing:

170

pkg install chromium

Alternatively, Chromium can be compiled from source using the Ports Collection:

cd /usr/ports/www/chromium

make install clean

!

The executable for Chromium is /usr/local/bin/chrome , not

/usr/local/bin/chromium .

6.3. Productivity

When it comes to productivity, users often look for an office suite or an easy-to-use word processor.

While some desktop environments like KDE provide an office suite, there is no default productivity

package. Several office suites and graphical word processors are available for FreeBSD, regardless

of the installed window manager.

This section demonstrates how to install the following popular productivity software and indicates

if the application is resource-heavy, takes time to compile from ports, or has any major

dependencies.

Application Name Resources Needed Installation from

Ports

Major Dependencies

Calligra light heavy KDE

AbiWord light light Gtk+ or GNOME

The Gimp light heavy Gtk+

Apache OpenOffice heavy huge JDKª and Mozilla

LibreOffice somewhat heavy huge Gtk+, or KDE/ GNOME,

or JDKª

6.3.1. Calligra

The KDE desktop environment includes an office suite which can be installed separately from KDE.

Calligra includes standard components that can be found in other office suites. Words is the word

processor, Sheets is the spreadsheet program, Stage manages slide presentations, and Karbon is

used to draw graphical documents.

In FreeBSD, package:editors/calligra[] can be installed as a package or a port. To install the package:

pkg install calligra

If the package is not available, use the Ports Collection instead:

171

cd /usr/ports/editors/calligra

make install clean

6.3.2. AbiWord

AbiWord is a free word processing program similar in look and feel to Microsoft¨ Word. It is fast,

contains many features, and is user-friendly.

AbiWord can import or export many file formats, including some proprietary ones like Microsoft¨

.rtf .

To install the AbiWord package:

pkg install abiword

If the package is not available, it can be compiled from the Ports Collection:

cd /usr/ports/editors/abiword

make install clean

6.3.3. The GIMP

For image authoring or picture retouching, The GIMP provides a sophisticated image manipulation

program. It can be used as a simple paint program or as a quality photo retouching suite. It

supports a large number of plugins and features a scripting interface. The GIMP can read and write

a wide range of file formats and supports interfaces with scanners and tablets.

To install the package:

pkg install gimp

Alternately, use the Ports Collection:

cd /usr/ports/graphics/gimp

make install clean

The graphics category (freebsd.org/ports/graphics/) of the Ports Collection contains several GIMP-

related plugins, help files, and user manuals.

6.3.4. Apache OpenOffice

Apache OpenOffice is an open source office suite which is developed under the wing of the Apache

Software FoundationÕs Incubator. It includes all of the applications found in a complete office

productivity suite: a word processor, spreadsheet, presentation manager, and drawing program. Its

172

https://www.FreeBSD.org/ports/graphics/

user interface is similar to other office suites, and it can import and export in various popular file

formats. It is available in a number of different languages and internationalization has been

extended to interfaces, spell checkers, and dictionaries.

The word processor of Apache OpenOffice uses a native XML file format for increased portability

and flexibility. The spreadsheet program features a macro language which can be interfaced with

external databases. Apache OpenOffice is stable and runs natively on Windows¨, Solarisª, Linux¨,

FreeBSD, and Mac OS¨ X. More information about Apache OpenOffice can be found at

openoffice.org . For FreeBSD specific information refer to porting.openoffice.org/freebsd/ .

To install the Apache OpenOffice package:

pkg install apache-openoffice

Once the package is installed, type the following command to launch Apache OpenOffice:

% openoffice-X.Y.Z

where X.Y.Z is the version number of the installed version of Apache OpenOffice. The first time

Apache OpenOffice launches, some questions will be asked and a .openoffice.org folder will be

created in the userÕs home directory.

If the desired Apache OpenOffice package is not available, compiling the port is still an option.

However, this requires a lot of disk space and a fairly long time to compile:

cd /usr/ports/editors/openoffice-4

make install clean

!

To build a localized version, replace the previous command with:

make LOCALIZED_LANG=your_language install clean

Replace your_language with the correct language ISO-code. A list of supported

language codes is available in files/Makefile.localized , located in the portÕs

directory.

6.3.5. LibreOffice

LibreOffice is a free software office suite developed by documentfoundation.org . It is compatible

with other major office suites and available on a variety of platforms. It is a rebranded fork of

Apache OpenOffice and includes applications found in a complete office productivity suite: a word

processor, spreadsheet, presentation manager, drawing program, database management program,

and a tool for creating and editing mathematical formul¾. It is available in a number of different

languages and internationalization has been extended to interfaces, spell checkers, and

dictionaries.

173

http://openoffice.org/
http://porting.openoffice.org/freebsd/
http://www.documentfoundation.org/

The word processor of LibreOffice uses a native XML file format for increased portability and

flexibility. The spreadsheet program features a macro language which can be interfaced with

external databases. LibreOffice is stable and runs natively on Windows¨, Linux¨, FreeBSD, and

Mac OS¨ X. More information about LibreOffice can be found at libreoffice.org .

To install the English version of the LibreOffice package:

pkg install libreoffice

The editors category (freebsd.org/ports/editors/) of the Ports Collection contains several

localizations for LibreOffice. When installing a localized package, replace libreoffice with the

name of the localized package.

Once the package is installed, type the following command to run LibreOffice:

% libreoffice

During the first launch, some questions will be asked and a .libreoffice folder will be created in the

userÕs home directory.

If the desired LibreOffice package is not available, compiling the port is still an option. However,

this requires a lot of disk space and a fairly long time to compile. This example compiles the English

version:

cd /usr/ports/editors/libreoffice

make install clean

!

To build a localized version, cd into the port directory of the desired language.

Supported languages can be found in the editors category

(freebsd.org/ports/editors/) of the Ports Collection.

6.4. Document Viewers

Some new document formats have gained popularity since the advent of UNIX¨ and the viewers

they require may not be available in the base system. This section demonstrates how to install the

following document viewers:

Application Name Resources Needed Installation from

Ports

Major Dependencies

Xpdf light light FreeType

gv light light Xaw3d

Geeqie light light Gtk+ or GNOME

ePDFView light light Gtk+

174

http://www.libreoffice.org/
https://www.FreeBSD.org/ports/editors/
https://www.FreeBSD.org/ports/editors/

Application Name Resources Needed Installation from

Ports

Major Dependencies

Okular light heavy KDE

6.4.1. Xpdf

For users that prefer a small FreeBSD PDF viewer, Xpdf provides a light-weight and efficient viewer

which requires few resources. It uses the standard X fonts and does not require any additional

toolkits.

To install the Xpdf package:

pkg install xpdf

If the package is not available, use the Ports Collection:

cd /usr/ports/graphics/xpdf

make install clean

Once the installation is complete, launch xpdf and use the right mouse button to activate the menu.

6.4.2. gv

gv is a PostScript¨ and PDF viewer. It is based on ghostview, but has a nicer look as it is based on

the Xaw3d widget toolkit. gv has many configurable features, such as orientation, paper size, scale,

and anti-aliasing. Almost any operation can be performed with either the keyboard or the mouse.

To install gv as a package:

pkg install gv

If a package is unavailable, use the Ports Collection:

cd /usr/ports/print/gv

make install clean

6.4.3. Geeqie

Geeqie is a fork from the unmaintained GQView project, in an effort to move development forward

and integrate the existing patches. Geeqie is an image manager which supports viewing a file with a

single click, launching an external editor, and thumbnail previews. It also features a slideshow

mode and some basic file operations, making it easy to manage image collections and to find

duplicate files. Geeqie supports full screen viewing and internationalization.

175

To install the Geeqie package:

pkg install geeqie

If the package is not available, use the Ports Collection:

cd /usr/ports/graphics/geeqie

make install clean

6.4.4. ePDFView

ePDFView is a lightweight PDF document viewer that only uses the Gtk+ and Poppler libraries. It is

currently under development, but already opens most PDF files (even encrypted), save copies of

documents, and has support for printing using CUPS.

To install ePDFView as a package:

pkg install epdfview

If a package is unavailable, use the Ports Collection:

cd /usr/ports/graphics/epdfview

make install clean

6.4.5. Okular

Okular is a universal document viewer based on KPDF for KDE. It can open many document

formats, including PDF , PostScript¨, DjVu, CHM , XPS , and ePub.

To install Okular as a package:

pkg install okular

If a package is unavailable, use the Ports Collection:

cd /usr/ports/graphics/okular

make install clean

6.5. Finance

For managing personal finances on a FreeBSD desktop, some powerful and easy-to-use applications

can be installed. Some are compatible with widespread file formats, such as the formats used by

176

Quicken and Excel.

This section covers these programs:

Application Name Resources Needed Installation from

Ports

Major Dependencies

GnuCash light heavy GNOME

Gnumeric light heavy GNOME

KMyMoney light heavy KDE

6.5.1. GnuCash

GnuCash is part of the GNOME effort to provide user-friendly, yet powerful, applications to end-

users. GnuCash can be used to keep track of income and expenses, bank accounts, and stocks. It

features an intuitive interface while remaining professional.

GnuCash provides a smart register, a hierarchical system of accounts, and many keyboard

accelerators and auto-completion methods. It can split a single transaction into several more

detailed pieces. GnuCash can import and merge Quicken QIF files. It also handles most

international date and currency formats.

To install the GnuCash package:

pkg install gnucash

If the package is not available, use the Ports Collection:

cd /usr/ports/finance/gnucash

make install clean

6.5.2. Gnumeric

Gnumeric is a spreadsheet program developed by the GNOME community. It features convenient

automatic guessing of user input according to the cell format with an autofill system for many

sequences. It can import files in a number of popular formats, including Excel, Lotus 1-2-3, and

Quattro Pro. It has a large number of built-in functions and allows all of the usual cell formats such

as number, currency, date, time, and much more.

To install Gnumeric as a package:

pkg install gnumeric

If the package is not available, use the Ports Collection:

177

cd /usr/ports/math/gnumeric

make install clean

6.5.3. KMyMoney

KMyMoney is a personal finance application created by the KDE community. KMyMoney aims to

provide the important features found in commercial personal finance manager applications. It also

highlights ease-of-use and proper double-entry accounting among its features. KMyMoney imports

from standard Quicken QIF files, tracks investments, handles multiple currencies, and provides a

wealth of reports.

To install KMyMoney as a package:

pkg install kmymoney-kde4

If the package is not available, use the Ports Collection:

cd /usr/ports/finance/kmymoney-kde4

make install clean

178

Chapter 7. Multimedia

7.1. Synopsis

FreeBSD supports a wide variety of sound cards, allowing users to enjoy high fidelity output from a

FreeBSD system. This includes the ability to record and play back audio in the MPEG Audio Layer 3

(MP3), Waveform Audio File (WAV), Ogg Vorbis, and other formats. The FreeBSD Ports Collection

contains many applications for editing recorded audio, adding sound effects, and controlling

attached MIDI devices.

FreeBSD also supports the playback of video files and DVD s. The FreeBSD Ports Collection contains

applications to encode, convert, and playback various video media.

This chapter describes how to configure sound cards, video playback, TV tuner cards, and scanners

on FreeBSD. It also describes some of the applications which are available for using these devices.

After reading this chapter, you will know how to:

¥ Configure a sound card on FreeBSD.

¥ Troubleshoot the sound setup.

¥ Playback and encode MP3s and other audio.

¥ Prepare a FreeBSD system for video playback.

¥ Play DVD s, .mpg , and .avi files.

¥ Rip CD and DVD content into files.

¥ Configure a TV card.

¥ Install and setup MythTV on FreeBSD

¥ Configure an image scanner.

¥ Configure a Bluetooth headset.

Before reading this chapter, you should:

¥ Know how to install applications as described in crossref:ports[ports,Installing Applications:

Packages and Ports].

7.2. Setting Up the Sound Card

Before beginning the configuration, determine the model of the sound card and the chip it uses.

FreeBSD supports a wide variety of sound cards. Check the supported audio devices list of the

Hardware Notes to see if the card is supported and which FreeBSD driver it uses.

In order to use the sound device, its device driver must be loaded. The easiest way is to load a

kernel module for the sound card with man:kldload[8]. This example loads the driver for a built-in

audio chipset based on the Intel specification:

179

https://www.FreeBSD.org/releases/12.0R/hardware/

kldload snd_hda

To automate the loading of this driver at boot time, add the driver to /boot/loader.conf . The line for

this driver is:

snd_hda_load="YES"

Other available sound modules are listed in /boot/defaults/loader.conf . When unsure which driver

to use, load the snd_driver module:

kldload snd_driver

This is a metadriver which loads all of the most common sound drivers and can be used to speed up

the search for the correct driver. It is also possible to load all sound drivers by adding the

metadriver to /boot/loader.conf .

To determine which driver was selected for the sound card after loading the snd_driver

metadriver, type cat /dev/sndstat .

7.2.1. Configuring a Custom Kernel with Sound Support

This section is for users who prefer to statically compile in support for the sound card in a custom

kernel. For more information about recompiling a kernel, refer to

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel].

When using a custom kernel to provide sound support, make sure that the audio framework driver

exists in the custom kernel configuration file:

device sound

Next, add support for the sound card. To continue the example of the built-in audio chipset based

on the Intel specification from the previous section, use the following line in the custom kernel

configuration file:

device snd_hda

Be sure to read the manual page of the driver for the device name to use for the driver.

Non-PnP ISA sound cards may require the IRQ and I/O port settings of the card to be added to

/boot/device.hints . During the boot process, man:loader[8] reads this file and passes the settings to

the kernel. For example, an old Creative SoundBlaster¨ 16 ISA non-PnP card will use the

man:snd_sbc[4] driver in conjunction with snd_sb16 . For this card, the following lines must be

added to the kernel configuration file:

180

device snd_sbc

device snd_sb16

If the card uses the 0x220 I/O port and IRQ 5 , these lines must also be added to /boot/device.hints :

hint.sbc.0.at="isa"

hint.sbc.0.port="0x220"

hint.sbc.0.irq="5"

hint.sbc.0.drq="1"

hint.sbc.0.flags="0x15"

The syntax used in /boot/device.hints is described in man:sound[4] and the manual page for the

driver of the sound card.

The settings shown above are the defaults. In some cases, the IRQ or other settings may need to be

changed to match the card. Refer to man:snd_sbc[4] for more information about this card.

7.2.2. Testing Sound

After loading the required module or rebooting into the custom kernel, the sound card should be

detected. To confirm, run dmesg | grep pcm . This example is from a system with a built-in Conexant

CX20590 chipset:

pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 5 on hdaa0

pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 6 on hdaa0

pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> at nid 31,25 and 35,27 on hdaa1

The status of the sound card may also be checked using this command:

cat /dev/sndstat

FreeBSD Audio Driver (newpcm: 64bit 2009061500/amd64)

Installed devices:

pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)

pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)

pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> (play/rec) default

The output will vary depending upon the sound card. If no pcm devices are listed, double-check

that the correct device driver was loaded or compiled into the kernel. The next section lists some

common problems and their solutions.

If all goes well, the sound card should now work in FreeBSD. If the CD or DVD drive is properly

connected to the sound card, one can insert an audio CD in the drive and play it with

man:cdcontrol[1]:

181

% cdcontrol -f /dev/acd0 play 1

"

Audio CD s have specialized encodings which means that they should not be

mounted using man:mount[8].

Various applications, such as package:audio/workman[], provide a friendlier interface. The

package:audio/mpg123[] port can be installed to listen to MP3 audio files.

Another quick way to test the card is to send data to /dev/dsp :

% cat filename > /dev/dsp

where filename can be any type of file. This command should produce some noise, confirming that

the sound card is working.

!

The /dev/dsp* device nodes will be created automatically as needed. When not in

use, they do not exist and will not appear in the output of man:ls[1].

7.2.3. Setting up Bluetooth Sound Devices

Connecting to a Bluetooth device is out of scope for this chapter. Refer to crossref:advanced-

networking[network-bluetooth,ÒBluetoothÓ] for more information.

To get Bluetooth sound sink working with FreeBSDÕs sound system, users have to install

package:audio/virtual_oss[] first:

pkg install virtual_oss

package:audio/virtual_oss[] requires cuse to be loaded into the kernel:

kldload cuse

To load cuse during system startup, run this command:

sysrc -f /boot/loader.conf cuse_load=yes

To use headphones as a sound sink with package:audio/virtual_oss[], users need to create a virtual

device after connecting to a Bluetooth audio device:

virtual_oss -C 2 -c 2 -r 48000 -b 16 -s 768 -R /dev/null -P

/dev/bluetooth/headphones -d dsp

182

!

headphones in this example is a hostname from /etc/bluetooth/hosts . BT_ADDR could

be used instead.

Refer to man:virtual_oss[8] for more information.

7.2.4. Troubleshooting Sound

Common Error Messages lists some common error messages and their solutions:

Table 8. Common Error Messages

Error Solution

sb_dspwr(XX) timed out

The I/O port is not set correctly.

bad irq XX

The IRQ is set incorrectly. Make sure that the set

IRQ and the sound IRQ are the same.

xxx: gus pcm not attached, out of memory

There is not enough available memory to use the

device.

xxx: canÕt open /dev/dsp!

Type fstat | grep dsp to check if another

application is holding the device open.

Noteworthy troublemakers are esound and

KDEÕs sound support.

Modern graphics cards often come with their own sound driver for use with HDMI . This sound

device is sometimes enumerated before the sound card meaning that the sound card will not be

used as the default playback device. To check if this is the case, run dmesg and look for pcm . The

output looks something like this:

...

hdac0: HDA Driver Revision: 20100226_0142

hdac1: HDA Driver Revision: 20100226_0142

hdac0: HDA Codec #0: NVidia (Unknown)

hdac0: HDA Codec #1: NVidia (Unknown)

hdac0: HDA Codec #2: NVidia (Unknown)

hdac0: HDA Codec #3: NVidia (Unknown)

pcm0: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 0 nid 1 on hdac0

pcm1: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 1 nid 1 on hdac0

pcm2: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 2 nid 1 on hdac0

pcm3: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 3 nid 1 on hdac0

hdac1: HDA Codec #2: Realtek ALC889

pcm4: <HDA Realtek ALC889 PCM #0 Analog> at cad 2 nid 1 on hdac1

pcm5: <HDA Realtek ALC889 PCM #1 Analog> at cad 2 nid 1 on hdac1

pcm6: <HDA Realtek ALC889 PCM #2 Digital> at cad 2 nid 1 on hdac1

pcm7: <HDA Realtek ALC889 PCM #3 Digital> at cad 2 nid 1 on hdac1

...

In this example, the graphics card (NVidia) has been enumerated before the sound card (Realtek

ALC889). To use the sound card as the default playback device, change hw.snd.default_unit to the

183

unit that should be used for playback:

sysctl hw.snd.default_unit=n

where n is the number of the sound device to use. In this example, it should be 4 . Make this change

permanent by adding the following line to /etc/sysctl.conf :

hw.snd.default_unit=4

7.2.5. Utilizing Multiple Sound Sources

It is often desirable to have multiple sources of sound that are able to play simultaneously. FreeBSD

uses "Virtual Sound Channels" to multiplex the sound cardÕs playback by mixing sound in the

kernel.

Three man:sysctl[8] knobs are available for configuring virtual channels:

sysctl dev.pcm.0.play.vchans=4

sysctl dev.pcm.0.rec.vchans=4

sysctl hw.snd.maxautovchans=4

This example allocates four virtual channels, which is a practical number for everyday use. Both

dev.pcm.0.play.vchans=4 and dev.pcm.0.rec.vchans=4 are configurable after a device has been

attached and represent the number of virtual channels pcm0 has for playback and recording. Since

the pcm module can be loaded independently of the hardware drivers, hw.snd.maxautovchans

indicates how many virtual channels will be given to an audio device when it is attached. Refer to

man:pcm[4] for more information.

!

The number of virtual channels for a device cannot be changed while it is in use.

First, close any programs using the device, such as music players or sound

daemons.

The correct pcm device will automatically be allocated transparently to a program that requests

/dev/dsp0 .

7.2.6. Setting Default Values for Mixer Channels

The default values for the different mixer channels are hardcoded in the source code of the

man:pcm[4] driver. While sound card mixer levels can be changed using man:mixer[8] or third-

party applications and daemons, this is not a permanent solution. To instead set default mixer

values at the driver level, define the appropriate values in /boot/device.hints , as seen in this

example:

hint.pcm.0.vol="50"

184

This will set the volume channel to a default value of 50 when the man:pcm[4] module is loaded.

7.3. MP3 Audio

This section describes some MP3 players available for FreeBSD, how to rip audio CD tracks, and how

to encode and decode MP3 s.

7.3.1. MP3 Players

A popular graphical MP3 player is Audacious. It supports Winamp skins and additional plugins. The

interface is intuitive, with a playlist, graphic equalizer, and more. Those familiar with Winamp will

find Audacious simple to use. On FreeBSD, Audacious can be installed from the

package:multimedia/audacious[] port or package. Audacious is a descendant of XMMS.

The package:audio/mpg123[] package or port provides an alternative, command-line MP3 player.

Once installed, specify the MP3 file to play on the command line. If the system has multiple audio

devices, the sound device can also be specified:

mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3

High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3

Ê version 1.18.1; written and copyright by Michael Hipp and others

Ê free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...

MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo

Additional MP3 players are available in the FreeBSD Ports Collection.

7.3.2. Ripping CD Audio Tracks

Before encoding a CD or CD track to MP3 , the audio data on the CD must be ripped to the hard drive.

This is done by copying the raw CD Digital Audio (CDDA) data to WAV files.

The cdda2wav tool, which is installed with the package:sysutils/cdrtools[] suite, can be used to rip

audio information from CD s.

With the audio CD in the drive, the following command can be issued as root to rip an entire CD into

individual, per track, WAV files:

cdda2wav -D 0,1,0 -B

In this example, the -D 0,1,0 indicates the SCSI device 0,1,0 containing the CD to rip. Use cdrecord

-scanbus to determine the correct device parameters for the system.

To rip individual tracks, use -t to specify the track:

185

cdda2wav -D 0,1,0 -t 7

To rip a range of tracks, such as track one to seven, specify a range:

cdda2wav -D 0,1,0 -t 1+7

To rip from an ATAPI (IDE) CDROM drive, specify the device name in place of the SCSI unit numbers.

For example, to rip track 7 from an IDE drive:

cdda2wav -D /dev/acd0 -t 7

Alternately, dd can be used to extract audio tracks on ATAPI drives, as described in

crossref:disks[duplicating-audiocds,ÒDuplicating Audio CDsÓ].

7.3.3. Encoding and Decoding MP3s

Lame is a popular MP3 encoder which can be installed from the package:audio/lame[] port. Due to

patent issues, a package is not available.

The following command will convert the ripped WAV file audio01.wav to audio01.mp3 :

lame -h -b 128 --tt "Foo Song Title" --ta "FooBar Artist" --tl "FooBar Album" \

--ty "2014" --tc "Ripped and encoded by Foo" --tg "Genre" audio01.wav audio01.mp3

The specified 128 kbits is a standard MP3 bitrate while the 160 and 192 bitrates provide higher

quality. The higher the bitrate, the larger the size of the resulting MP3 . The -h turns on the "higher

quality but a little slower" mode. The options beginning with --t indicate ID3 tags, which usually

contain song information, to be embedded within the MP3 file. Additional encoding options can be

found in the lame manual page.

In order to burn an audio CD from MP3 s, they must first be converted to a non-compressed file

format. XMMS can be used to convert to the WAV format, while mpg123 can be used to convert to the

raw Pulse-Code Modulation (PCM) audio data format.

To convert audio01.mp3 using mpg123, specify the name of the PCM file:

mpg123 -s audio01.mp3 > audio01.pcm

To use XMMS to convert a MP3 to WAV format, use these steps:

Procedure: Converting to WAV Format in XMMS

1. Launch XMMS.

2. Right-click the window to bring up the XMMS menu.

186

3. Select Preferences under Options .

4. Change the Output Plugin to "Disk Writer Plugin".

5. Press Configure .

6. Enter or browse to a directory to write the uncompressed files to.

7. Load the MP3 file into XMMS as usual, with volume at 100% and EQ settings turned off.

8. Press Play . The XMMS will appear as if it is playing the MP3 , but no music will be heard. It is

actually playing the MP3 to a file.

9. When finished, be sure to set the default Output Plugin back to what it was before in order to

listen to MP3 s again.

Both the WAV and PCM formats can be used with cdrecord. When using WAV files, there will be a small

tick sound at the beginning of each track. This sound is the header of the WAV file. The

package:audio/sox[] port or package can be used to remove the header:

% sox -t wav -r 44100 -s -w -c 2 track.wav track.raw

Refer to crossref:disks[creating-cds,ÒCreating and Using CD MediaÓ] for more information on using

a CD burner in FreeBSD.

7.4. Video Playback

Before configuring video playback, determine the model and chipset of the video card. While Xorg

supports a wide variety of video cards, not all provide good playback performance. To obtain a list

of extensions supported by the Xorg server using the card, run xdpyinfo while Xorg is running.

It is a good idea to have a short MPEG test file for evaluating various players and options. Since

some DVD applications look for DVD media in /dev/dvd by default, or have this device name

hardcoded in them, it might be useful to make a symbolic link to the proper device:

ln -sf /dev/cd0 /dev/dvd

Due to the nature of man:devfs[5], manually created links will not persist after a system reboot. In

order to recreate the symbolic link automatically when the system boots, add the following line to

/etc/devfs.conf :

link cd0 dvd

DVD decryption invokes certain functions that require write permission to the DVD device.

To enhance the shared memory Xorg interface, it is recommended to increase the values of these

man:sysctl[8] variables:

187

kern.ipc.shmmax=67108864

kern.ipc.shmall=32768

7.4.1. Determining Video Capabilities

There are several possible ways to display video under Xorg and what works is largely hardware

dependent. Each method described below will have varying quality across different hardware.

Common video interfaces include:

1. Xorg: normal output using shared memory.

2. XVideo: an extension to the Xorg interface which allows video to be directly displayed in

drawable objects through a special acceleration. This extension provides good quality playback

even on low-end machines. The next section describes how to determine if this extension is

running.

3. SDL : the Simple Directmedia Layer is a porting layer for many operating systems, allowing cross-

platform applications to be developed which make efficient use of sound and graphics. SDL

provides a low-level abstraction to the hardware which can sometimes be more efficient than

the Xorg interface. On FreeBSD, SDL can be installed using the package:devel/sdl20[] package or

port.

4. DGA : the Direct Graphics Access is an Xorg extension which allows a program to bypass the Xorg

server and directly alter the framebuffer. As it relies on a low-level memory mapping, programs

using it must be run as root . The DGA extension can be tested and benchmarked using

man:dga[1]. When dga is running, it changes the colors of the display whenever a key is pressed.

To quit, press q .

5. SVGAlib: a low level console graphics layer.

7.4.1.1. XVideo

To check whether this extension is running, use xvinfo :

% xvinfo

XVideo is supported for the card if the result is similar to:

X-Video Extension version 2.2

Ê screen #0

Ê Adaptor #0: "Savage Streams Engine"

Ê number of ports: 1

Ê port base: 43

Ê operations supported: PutImage

Ê supported visuals:

Ê depth 16, visualID 0x22

Ê depth 16, visualID 0x23

Ê number of attributes: 5

188

Ê "XV_COLORKEY" (range 0 to 16777215)

Ê client settable attribute

Ê client gettable attribute (current value is 2110)

Ê "XV_BRIGHTNESS" (range -128 to 127)

Ê client settable attribute

Ê client gettable attribute (current value is 0)

Ê "XV_CONTRAST" (range 0 to 255)

Ê client settable attribute

Ê client gettable attribute (current value is 128)

Ê "XV_SATURATION" (range 0 to 255)

Ê client settable attribute

Ê client gettable attribute (current value is 128)

Ê "XV_HUE" (range -180 to 180)

Ê client settable attribute

Ê client gettable attribute (current value is 0)

Ê maximum XvImage size: 1024 x 1024

Ê Number of image formats: 7

Ê id: 0x32595559 (YUY2)

Ê guid: 59555932-0000-0010-8000-00aa00389b71

Ê bits per pixel: 16

Ê number of planes: 1

Ê type: YUV (packed)

Ê id: 0x32315659 (YV12)

Ê guid: 59563132-0000-0010-8000-00aa00389b71

Ê bits per pixel: 12

Ê number of planes: 3

Ê type: YUV (planar)

Ê id: 0x30323449 (I420)

Ê guid: 49343230-0000-0010-8000-00aa00389b71

Ê bits per pixel: 12

Ê number of planes: 3

Ê type: YUV (planar)

Ê id: 0x36315652 (RV16)

Ê guid: 52563135-0000-0000-0000-000000000000

Ê bits per pixel: 16

Ê number of planes: 1

Ê type: RGB (packed)

Ê depth: 0

Ê red, green, blue masks: 0x1f, 0x3e0, 0x7c00

Ê id: 0x35315652 (RV15)

Ê guid: 52563136-0000-0000-0000-000000000000

Ê bits per pixel: 16

Ê number of planes: 1

Ê type: RGB (packed)

Ê depth: 0

Ê red, green, blue masks: 0x1f, 0x7e0, 0xf800

Ê id: 0x31313259 (Y211)

Ê guid: 59323131-0000-0010-8000-00aa00389b71

Ê bits per pixel: 6

Ê number of planes: 3

Ê type: YUV (packed)

189

Ê id: 0x0

Ê guid: 00000000-0000-0000-0000-000000000000

Ê bits per pixel: 0

Ê number of planes: 0

Ê type: RGB (packed)

Ê depth: 1

Ê red, green, blue masks: 0x0, 0x0, 0x0

The formats listed, such as YUV2 and YUV12, are not present with every implementation of XVideo

and their absence may hinder some players.

If the result instead looks like:

X-Video Extension version 2.2

screen #0

no adaptors present

XVideo is probably not supported for the card. This means that it will be more difficult for the

display to meet the computational demands of rendering video, depending on the video card and

processor.

7.4.2. Ports and Packages Dealing with Video

This section introduces some of the software available from the FreeBSD Ports Collection which can

be used for video playback.

7.4.2.1. MPlayer and MEncoder

MPlayer is a command-line video player with an optional graphical interface which aims to provide

speed and flexibility. Other graphical front-ends to MPlayer are available from the FreeBSD Ports

Collection.

MPlayer can be installed using the package:multimedia/mplayer[] package or port. Several compile

options are available and a variety of hardware checks occur during the build process. For these

reasons, some users prefer to build the port rather than install the package.

When compiling the port, the menu options should be reviewed to determine the type of support to

compile into the port. If an option is not selected, MPlayer will not be able to display that type of

video format. Use the arrow keys and spacebar to select the required formats. When finished, press

Enter to continue the port compile and installation.

By default, the package or port will build the mplayer command line utility and the gmplayer

graphical utility. To encode videos, compile the package:multimedia/mencoder[] port. Due to

licensing restrictions, a package is not available for MEncoder.

The first time MPlayer is run, it will create ~/.mplayer in the userÕs home directory. This

subdirectory contains default versions of the user-specific configuration files.

This section describes only a few common uses. Refer to mplayer(1) for a complete description of its

190

numerous options.

To play the file testfile.avi , specify the video interfaces with -vo , as seen in the following examples:

% mplayer -vo xv testfile.avi

% mplayer -vo sdl testfile.avi

% mplayer -vo x11 testfile.avi

mplayer -vo dga testfile.avi

mplayer -vo 'sdl:dga' testfile.avi

It is worth trying all of these options, as their relative performance depends on many factors and

will vary significantly with hardware.

To play a DVD , replace testfile.avi with dvd:// N -dvd-device DEVICE , where N is the title number to

play and DEVICE is the device node for the DVD . For example, to play title 3 from /dev/dvd :

mplayer -vo xv dvd://3 -dvd-device /dev/dvd

!

The default DVD device can be defined during the build of the MPlayer port by

including the WITH_DVD_DEVICE=/path/to/desired/device option. By default, the

device is /dev/cd0 . More details can be found in the portÕs Makefile.options .

To stop, pause, advance, and so on, use a keybinding. To see the list of keybindings, run mplayer -h

or read mplayer(1).

Additional playback options include -fs -zoom , which engages fullscreen mode, and -framedrop ,

which helps performance.

Each user can add commonly used options to their ~/.mplayer/config like so:

vo=xv

fs=yes

zoom=yes

mplayer can be used to rip a DVD title to a .vob . To dump the second title from a DVD :

191

mplayer -dumpstream -dumpfile out.vob dvd://2 -dvd-device /dev/dvd

The output file, out.vob , will be in MPEG format.

Anyone wishing to obtain a high level of expertise with UNIX¨ video should consult

mplayerhq.hu/DOCS as it is technically informative. This documentation should be considered as

required reading before submitting any bug reports.

Before using mencoder , it is a good idea to become familiar with the options described at

mplayerhq.hu/DOCS/HTML/en/mencoder.html . There are innumerable ways to improve quality,

lower bitrate, and change formats, and some of these options may make the difference between

good or bad performance. Improper combinations of command line options can yield output files

that are unplayable even by mplayer .

Here is an example of a simple copy:

% mencoder input.avi -oac copy -ovc copy -o output.avi

To rip to a file, use -dumpfile with mplayer .

To convert input.avi to the MPEG4 codec with MPEG3 audio encoding, first install the

package:audio/lame[] port. Due to licensing restrictions, a package is not available. Once installed,

type:

% mencoder input.avi -oac mp3lame -lameopts br=192 \

Ê -ovc lavc -lavcopts vcodec=mpeg4:vhq -o output.avi

This will produce output playable by applications such as mplayer and xine .

input.avi can be replaced with dvd://1 -dvd-device /dev/dvd and run as root to re-encode a DVD title

directly. Since it may take a few tries to get the desired result, it is recommended to instead dump

the title to a file and to work on the file.

7.4.2.2. The xine Video Player

xine is a video player with a reusable base library and a modular executable which can be

extended with plugins. It can be installed using the package:multimedia/xine[] package or port.

In practice, xine requires either a fast CPU with a fast video card, or support for the XVideo

extension. The xine video player performs best on XVideo interfaces.

By default, the xine player starts a graphical user interface. The menus can then be used to open a

specific file.

Alternatively, xine may be invoked from the command line by specifying the name of the file to

play:

192

http://www.mplayerhq.hu/DOCS/
http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html

% xine -g -p mymovie.avi

Refer to xine-project.org/faq for more information and troubleshooting tips.

7.4.2.3. The Transcode Utilities

Transcode provides a suite of tools for re-encoding video and audio files. Transcode can be used to

merge video files or repair broken files using command line tools with stdin/stdout stream

interfaces.

In FreeBSD, Transcode can be installed using the package:multimedia/transcode[] package or port.

Many users prefer to compile the port as it provides a menu of compile options for specifying the

support and codecs to compile in. If an option is not selected, Transcode will not be able to encode

that format. Use the arrow keys and spacebar to select the required formats. When finished, press

Enter to continue the port compile and installation.

This example demonstrates how to convert a DivX file into a PAL MPEG-1 file (PAL VCD):

% transcode -i input.avi -V --export_prof vcd-pal -o output_vcd

% mplex -f 1 -o output_vcd.mpg output_vcd.m1v output_vcd.mpa

The resulting MPEG file, output_vcd.mpg , is ready to be played with MPlayer. The file can be burned

on a CD media to create a video CD using a utility such as package:multimedia/vcdimager[] or

package:sysutils/cdrdao[].

In addition to the manual page for transcode , refer to transcoding.org/cgi-bin/transcode for further

information and examples.

7.5. TV Cards

TV cards can be used to watch broadcast or cable TV on a computer. Most cards accept composite

video via an RCA or S-video input and some cards include a FM radio tuner.

FreeBSD provides support for PCI-based TV cards using a Brooktree Bt848/849/878/879 video

capture chip with the man:bktr[4] driver. This driver supports most Pinnacle PCTV video cards.

Before purchasing a TV card, consult man:bktr[4] for a list of supported tuners.

7.5.1. Loading the Driver

In order to use the card, the man:bktr[4] driver must be loaded. To automate this at boot time, add

the following line to /boot/loader.conf :

bktr_load="YES"

Alternatively, one can statically compile support for the TV card into a custom kernel. In that case,

add the following lines to the custom kernel configuration file:

193

http://www.xine-project.org/faq
http://www.transcoding.org/cgi-bin/transcode

device bktr

device iicbus

device iicbb

device smbus

These additional devices are necessary as the card components are interconnected via an I2C bus.

Then, build and install a new kernel.

To test that the tuner is correctly detected, reboot the system. The TV card should appear in the boot

messages, as seen in this example:

bktr0: <BrookTree 848A> mem 0xd7000000-0xd7000fff irq 10 at device 10.0 on pci0

iicbb0: <I2C bit-banging driver> on bti2c0

iicbus0: <Philips I2C bus> on iicbb0 master-only

iicbus1: <Philips I2C bus> on iicbb0 master-only

smbus0: <System Management Bus> on bti2c0

bktr0: Pinnacle/Miro TV, Philips SECAM tuner.

The messages will differ according to the hardware. If necessary, it is possible to override some of

the detected parameters using man:sysctl[8] or custom kernel configuration options. For example,

to force the tuner to a Philips SECAM tuner, add the following line to a custom kernel configuration

file:

options OVERRIDE_TUNER=6

or, use man:sysctl[8]:

sysctl hw.bt848.tuner=6

Refer to man:bktr[4] for a description of the available man:sysctl[8] parameters and kernel options.

7.5.2. Useful Applications

To use the TV card, install one of the following applications:

¥ package:multimedia/fxtv[] provides TV-in-a-window and image/audio/video capture

capabilities.

¥ package:multimedia/xawtv[] is another TV application with similar features.

¥ package:audio/xmradio[] provides an application for using the FM radio tuner of a TV card.

More applications are available in the FreeBSD Ports Collection.

194

7.5.3. Troubleshooting

If any problems are encountered with the TV card, check that the video capture chip and the tuner

are supported by man:bktr[4] and that the right configuration options were used. For more support

or to ask questions about supported TV cards, refer to the FreeBSD multimedia mailing list mailing

list.

7.6. MythTV

MythTV is a popular, open source Personal Video Recorder (PVR) application. This section

demonstrates how to install and setup MythTV on FreeBSD. Refer to mythtv.org/wiki for more

information on how to use MythTV.

MythTV requires a frontend and a backend. These components can either be installed on the same

system or on different machines.

The frontend can be installed on FreeBSD using the package:multimedia/mythtv-frontend[] package

or port. Xorg must also be installed and configured as described in crossref:x11[x11,The X Window

System]. Ideally, this system has a video card that supports X-Video Motion Compensation (XvMC)

and, optionally, a Linux Infrared Remote Control (LIRC)-compatible remote.

To install both the backend and the frontend on FreeBSD, use the package:multimedia/mythtv[]

package or port. A MySQLª database server is also required and should automatically be installed

as a dependency. Optionally, this system should have a tuner card and sufficient storage to hold

recorded data.

7.6.1. Hardware

MythTV uses Video for Linux (V4L) to access video input devices such as encoders and tuners. In

FreeBSD, MythTV works best with USB DVB-S/C/T cards as they are well supported by the

package:multimedia/webcamd[] package or port which provides a V4L userland application. Any

Digital Video Broadcasting (DVB) card supported by webcamd should work with MythTV. A list of

known working cards can be found at wiki.freebsd.org/WebcamCompat . Drivers are also available

for Hauppauge cards in the package:multimedia/pvr250[] and package:multimedia/pvrxxx[] ports,

but they provide a non-standard driver interface that does not work with versions of MythTV

greater than 0.23. Due to licensing restrictions, no packages are available and these two ports must

be compiled.

The wiki.freebsd.org/HTPC page contains a list of all available DVB drivers.

7.6.2. Setting up the MythTV Backend

To install MythTV using binary packages:

pkg install mythtv

Alternatively, to install from the Ports Collection:

195

http://lists.FreeBSD.org/mailman/listinfo/freebsd-multimedia
http://www.mythtv.org/wiki/
https://wiki.freebsd.org/WebcamCompat
https://wiki.freebsd.org/HTPC

cd /usr/ports/multimedia/mythtv

make install

Once installed, set up the MythTV database:

mysql -uroot -p < /usr/local/shared/mythtv/database/mc.sql

Then, configure the backend:

mythtv-setup

Finally, start the backend:

sysrc mythbackend_enable=yes

service mythbackend start

7.7. Image Scanners

In FreeBSD, access to image scanners is provided by SANE (Scanner Access Now Easy), which is

available in the FreeBSD Ports Collection. SANE will also use some FreeBSD device drivers to

provide access to the scanner hardware.

FreeBSD supports both SCSI and USB scanners. Depending upon the scanner interface, different

device drivers are required. Be sure the scanner is supported by SANE prior to performing any

configuration. Refer to http://www.sane-project.org/sane-supported-devices.html for more

information about supported scanners.

This chapter describes how to determine if the scanner has been detected by FreeBSD. It then

provides an overview of how to configure and use SANE on a FreeBSD system.

7.7.1. Checking the Scanner

The GENERIC kernel includes the device drivers needed to support USB scanners. Users with a

custom kernel should ensure that the following lines are present in the custom kernel configuration

file:

device usb

device uhci

device ohci

device ehci

device xhci

To determine if the USB scanner is detected, plug it in and use dmesg to determine whether the

scanner appears in the system message buffer. If it does, it should display a message similar to this:

196

http://www.sane-project.org/sane-supported-devices.html

ugen0.2: <EPSON> at usbus0

In this example, an EPSON Perfection¨ 1650 USB scanner was detected on /dev/ugen0.2 .

If the scanner uses a SCSI interface, it is important to know which SCSI controller board it will use.

Depending upon the SCSI chipset, a custom kernel configuration file may be needed. The GENERIC

kernel supports the most common SCSI controllers. Refer to /usr/src/sys/conf/NOTES to determine

the correct line to add to a custom kernel configuration file. In addition to the SCSI adapter driver,

the following lines are needed in a custom kernel configuration file:

device scbus

device pass

Verify that the device is displayed in the system message buffer:

pass2 at aic0 bus 0 target 2 lun 0

pass2: <AGFA SNAPSCAN 600 1.10> Fixed Scanner SCSI-2 device

pass2: 3.300MB/s transfers

If the scanner was not powered-on at system boot, it is still possible to manually force detection by

performing a SCSI bus scan with camcontrol :

camcontrol rescan all

Re-scan of bus 0 was successful

Re-scan of bus 1 was successful

Re-scan of bus 2 was successful

Re-scan of bus 3 was successful

The scanner should now appear in the SCSI devices list:

camcontrol devlist

<IBM DDRS-34560 S97B> at scbus0 target 5 lun 0 (pass0,da0)

<IBM DDRS-34560 S97B> at scbus0 target 6 lun 0 (pass1,da1)

<AGFA SNAPSCAN 600 1.10> at scbus1 target 2 lun 0 (pass3)

<PHILIPS CDD3610 CD-R/RW 1.00> at scbus2 target 0 lun 0 (pass2,cd0)

Refer to man:scsi[4] and man:camcontrol[8] for more details about SCSI devices on FreeBSD.

7.7.2. SANE Configuration

The SANE system provides the access to the scanner via backends (package:graphics/sane-

backends[]). Refer to http://www.sane-project.org/sane-supported-devices.html to determine which

backend supports the scanner. A graphical scanning interface is provided by third party

applications like Kooka (package:graphics/kooka[]) or XSane (package:graphics/xsane[]). SANEÕs

197

http://www.sane-project.org/sane-supported-devices.html

backends are enough to test the scanner.

To install the backends from binary package:

pkg install sane-backends

Alternatively, to install from the Ports Collection

cd /usr/ports/graphics/sane-backends

make install clean

After installing the package:graphics/sane-backends[] port or package, use sane-find-scanner to

check the scanner detection by the SANE system:

sane-find-scanner -q

found SCSI scanner "AGFA SNAPSCAN 600 1.10" at /dev/pass3

The output should show the interface type of the scanner and the device node used to attach the

scanner to the system. The vendor and the product model may or may not appear.

!

Some USB scanners require firmware to be loaded. Refer to sane-find-scanner(1)

and sane(7) for details.

Next, check if the scanner will be identified by a scanning frontend. The SANE backends include

scanimage which can be used to list the devices and perform an image acquisition. Use -L to list the

scanner devices. The first example is for a SCSI scanner and the second is for a USB scanner:

scanimage -L

device `snapscan:/dev/pass3' is a AGFA SNAPSCAN 600 flatbed scanner

scanimage -L

device 'epson2:libusb:000:002' is a Epson GT-8200 flatbed scanner

In this second example, epson2 is the backend name and libusb:000:002 means /dev/ugen0.2 is the

device node used by the scanner.

If scanimage is unable to identify the scanner, this message will appear:

scanimage -L

No scanners were identified. If you were expecting something different,

check that the scanner is plugged in, turned on and detected by the

sane-find-scanner tool (if appropriate). Please read the documentation

which came with this software (README, FAQ, manpages).

198

If this happens, edit the backend configuration file in /usr/local/etc/sane.d/ and define the scanner

device used. For example, if the undetected scanner model is an EPSON Perfection¨ 1650 and it

uses the epson2 backend, edit /usr/local/etc/sane.d/epson2.conf . When editing, add a line specifying

the interface and the device node used. In this case, add the following line:

usb /dev/ugen0.2

Save the edits and verify that the scanner is identified with the right backend name and the device

node:

scanimage -L

device 'epson2:libusb:000:002' is a Epson GT-8200 flatbed scanner

Once scanimage -L sees the scanner, the configuration is complete and the scanner is now ready to

use.

While scanimage can be used to perform an image acquisition from the command line, it is often

preferable to use a graphical interface to perform image scanning. Applications like Kooka or XSane

are popular scanning frontends. They offer advanced features such as various scanning modes,

color correction, and batch scans. XSane is also usable as a GIMP plugin.

7.7.3. Scanner Permissions

In order to have access to the scanner, a user needs read and write permissions to the device node

used by the scanner. In the previous example, the USB scanner uses the device node /dev/ugen0.2

which is really a symlink to the real device node /dev/usb/0.2.0 . The symlink and the device node

are owned, respectively, by the wheel and operator groups. While adding the user to these groups

will allow access to the scanner, it is considered insecure to add a user to wheel . A better solution is

to create a group and make the scanner device accessible to members of this group.

This example creates a group called usb :

pw groupadd usb

Then, make the /dev/ugen0.2 symlink and the /dev/usb/0.2.0 device node accessible to the usb group

with write permissions of 0660 or 0664 by adding the following lines to /etc/devfs.rules :

[system=5]

add path ugen0.2 mode 0660 group usb

add path usb/0.2.0 mode 0666 group usb

199

!

It happens the device node changes with the addition or removal of devices, so one

may want to give access to all USB devices using this ruleset instead:

[system=5]

add path 'ugen*' mode 0660 group usb

add path 'usb/*' mode 0666 group usb

Refer to man:devfs.rules[5] for more information about this file.

Next, enable the ruleset in /etc/rc.conf:

devfs_system_ruleset="system"

And, restart the man:devfs[8] system:

service devfs restart

Finally, add the users to usb in order to allow access to the scanner:

pw groupmod usb -m joe

For more details refer to man:pw[8].

200

Chapter 8. Configuring the FreeBSD Kernel

8.1. Synopsis

The kernel is the core of the FreeBSD operating system. It is responsible for managing memory,

enforcing security controls, networking, disk access, and much more. While much of FreeBSD is

dynamically configurable, it is still occasionally necessary to configure and compile a custom

kernel.

After reading this chapter, you will know:

¥ When to build a custom kernel.

¥ How to take a hardware inventory.

¥ How to customize a kernel configuration file.

¥ How to use the kernel configuration file to create and build a new kernel.

¥ How to install the new kernel.

¥ How to troubleshoot if things go wrong.

All of the commands listed in the examples in this chapter should be executed as root .

8.2. Why Build a Custom Kernel?

Traditionally, FreeBSD used a monolithic kernel. The kernel was one large program, supported a

fixed list of devices, and in order to change the kernelÕs behavior, one had to compile and then

reboot into a new kernel.

Today, most of the functionality in the FreeBSD kernel is contained in modules which can be

dynamically loaded and unloaded from the kernel as necessary. This allows the running kernel to

adapt immediately to new hardware and for new functionality to be brought into the kernel. This is

known as a modular kernel.

Occasionally, it is still necessary to perform static kernel configuration. Sometimes the needed

functionality is so tied to the kernel that it can not be made dynamically loadable. Some security

environments prevent the loading and unloading of kernel modules and require that only needed

functionality is statically compiled into the kernel.

Building a custom kernel is often a rite of passage for advanced BSD users. This process, while time

consuming, can provide benefits to the FreeBSD system. Unlike the GENERIC kernel, which must

support a wide range of hardware, a custom kernel can be stripped down to only provide support

for that computerÕs hardware. This has a number of benefits, such as:

¥ Faster boot time. Since the kernel will only probe the hardware on the system, the time it takes

the system to boot can decrease.

¥ Lower memory usage. A custom kernel often uses less memory than the GENERIC kernel by

omitting unused features and device drivers. This is important because the kernel code remains

resident in physical memory at all times, preventing that memory from being used by

201

applications. For this reason, a custom kernel is useful on a system with a small amount of RAM.

¥ Additional hardware support. A custom kernel can add support for devices which are not

present in the GENERIC kernel.

Before building a custom kernel, consider the reason for doing so. If there is a need for specific

hardware support, it may already exist as a module.

Kernel modules exist in /boot/kernel and may be dynamically loaded into the running kernel using

man:kldload[8]. Most kernel drivers have a loadable module and manual page. For example, the

man:ath[4] wireless Ethernet driver has the following information in its manual page:

Alternatively, to load the driver as a module at boot time, place the

following line in man:loader.conf[5]:

Ê if_ath_load="YES"

Adding if_ath_load="YES" to /boot/loader.conf will load this module dynamically at boot time.

In some cases, there is no associated module in /boot/kernel . This is mostly true for certain

subsystems.

8.3. Finding the System Hardware

Before editing the kernel configuration file, it is recommended to perform an inventory of the

machineÕs hardware. On a dual-boot system, the inventory can be created from the other operating

system. For example, Microsoft¨'s Device Manager contains information about installed devices.

!

Some versions of Microsoft¨ Windows¨ have a System icon which can be used to

access Device Manager.

If FreeBSD is the only installed operating system, use man:dmesg[8] to determine the hardware that

was found and listed during the boot probe. Most device drivers on FreeBSD have a manual page

which lists the hardware supported by that driver. For example, the following lines indicate that

the man:psm[4] driver found a mouse:

psm0: <PS/2 Mouse> irq 12 on atkbdc0

psm0: [GIANT-LOCKED]

psm0: [ITHREAD]

psm0: model Generic PS/2 mouse, device ID 0

Since this hardware exists, this driver should not be removed from a custom kernel configuration

file.

If the output of dmesg does not display the results of the boot probe output, instead read the contents

of /var/run/dmesg.boot .

Another tool for finding hardware is man:pciconf[8], which provides more verbose output. For

202

example:

% pciconf -lv

ath0@pci0:3:0:0: class=0x020000 card=0x058a1014 chip=0x1014168c rev=0x01

hdr=0x00

Ê vendor = 'Atheros Communications Inc.'

Ê device = 'AR5212 Atheros AR5212 802.11abg wireless'

Ê class = network

Ê subclass = ethernet

This output shows that the ath driver located a wireless Ethernet device.

The -k flag of man:man[1] can be used to provide useful information. For example, it can be used to

display a list of manual pages which contain a particular device brand or name:

man -k Atheros

ath(4) - Atheros IEEE 802.11 wireless network driver

ath_hal(4) - Atheros Hardware Access Layer (HAL)

Once the hardware inventory list is created, refer to it to ensure that drivers for installed hardware

are not removed as the custom kernel configuration is edited.

8.4. The Configuration File

In order to create a custom kernel configuration file and build a custom kernel, the full FreeBSD

source tree must first be installed.

If /usr/src/ does not exist or it is empty, source has not been installed. Source can be installed using

Subversion and the instructions in crossref:mirrors[svn,ÒUsing SubversionÓ].

Once source is installed, review the contents of /usr/src/sys . This directory contains a number of

subdirectories, including those which represent the following supported architectures: amd64 , i386 ,

powerpc , and sparc64 . Everything inside a particular architectureÕs directory deals with that

architecture only and the rest of the code is machine independent code common to all platforms.

Each supported architecture has a conf subdirectory which contains the GENERIC kernel

configuration file for that architecture.

Do not make edits to GENERIC . Instead, copy the file to a different name and make edits to the copy.

The convention is to use a name with all capital letters. When maintaining multiple FreeBSD

machines with different hardware, it is a good idea to name it after the machineÕs hostname. This

example creates a copy, named MYKERNEL , of the GENERIC configuration file for the amd64

architecture:

cd /usr/src/sys/amd64/conf

cp GENERIC MYKERNEL

203

MYKERNEL can now be customized with any ASCII text editor. The default editor is vi, though an

easier editor for beginners, called ee, is also installed with FreeBSD.

The format of the kernel configuration file is simple. Each line contains a keyword that represents a

device or subsystem, an argument, and a brief description. Any text after a is considered a

comment and ignored. To remove kernel support for a device or subsystem, put a at the

beginning of the line representing that device or subsystem. Do not add or remove a # for any line

that you do not understand.

"

It is easy to remove support for a device or option and end up with a broken

kernel. For example, if the man:ata[4] driver is removed from the kernel

configuration file, a system using ATA disk drivers may not boot. When in doubt,

just leave support in the kernel.

In addition to the brief descriptions provided in this file, additional descriptions are contained in

NOTES , which can be found in the same directory as GENERIC for that architecture. For

architecture independent options, refer to /usr/src/sys/conf/NOTES .

!

When finished customizing the kernel configuration file, save a backup copy to a

location outside of /usr/src .

Alternately, keep the kernel configuration file elsewhere and create a symbolic

link to the file:

cd /usr/src/sys/amd64/conf

mkdir /root/kernels

cp GENERIC /root/kernels/MYKERNEL

ln -s /root/kernels/MYKERNEL

An include directive is available for use in configuration files. This allows another configuration file

to be included in the current one, making it easy to maintain small changes relative to an existing

file. If only a small number of additional options or drivers are required, this allows a delta to be

maintained with respect to GENERIC , as seen in this example:

include GENERIC

ident MYKERNEL

options IPFIREWALL

options DUMMYNET

options IPFIREWALL_DEFAULT_TO_ACCEPT

options IPDIVERT

Using this method, the local configuration file expresses local differences from a GENERIC kernel.

As upgrades are performed, new features added to GENERIC will also be added to the local kernel

unless they are specifically prevented using nooptions or nodevice . A comprehensive list of

configuration directives and their descriptions may be found in man:config[5].

204

!

To build a file which contains all available options, run the following command as

root :

cd /usr/src/sys/arch/conf && make LINT

8.5. Building and Installing a Custom Kernel

Once the edits to the custom configuration file have been saved, the source code for the kernel can

be compiled using the following steps:

Procedure: Building a Kernel . Change to this directory:

+

cd /usr/src

1. Compile the new kernel by specifying the name of the custom kernel configuration file:

make buildkernel KERNCONF=MYKERNEL

2. Install the new kernel associated with the specified kernel configuration file. This command will

copy the new kernel to /boot/kernel/kernel and save the old kernel to /boot/kernel.old/kernel :

make installkernel KERNCONF=MYKERNEL

3. Shutdown the system and reboot into the new kernel. If something goes wrong, refer to The

kernel does not boot .

By default, when a custom kernel is compiled, all kernel modules are rebuilt. To update a kernel

faster or to build only custom modules, edit /etc/make.conf before starting to build the kernel.

For example, this variable specifies the list of modules to build instead of using the default of

building all modules:

MODULES_OVERRIDE = linux acpi

Alternately, this variable lists which modules to exclude from the build process:

WITHOUT_MODULES = linux acpi sound

Additional variables are available. Refer to man:make.conf[5] for details.

205

8.6. If Something Goes Wrong

There are four categories of trouble that can occur when building a custom kernel:

config fails

If config fails, it will print the line number that is incorrect. As an example, for the following

message, make sure that line 17 is typed correctly by comparing it to GENERIC or NOTES :

config: line 17: syntax error

make fails

If make fails, it is usually due to an error in the kernel configuration file which is not severe

enough for config to catch. Review the configuration, and if the problem is not apparent, send an

email to the FreeBSD general questions mailing list which contains the kernel configuration file.

The kernel does not boot

If the new kernel does not boot or fails to recognize devices, do not panic! Fortunately, FreeBSD

has an excellent mechanism for recovering from incompatible kernels. Simply choose the kernel

to boot from at the FreeBSD boot loader. This can be accessed when the system boot menu

appears by selecting the "Escape to a loader prompt" option. At the prompt, type boot kernel.old ,

or the name of any other kernel that is known to boot properly.

After booting with a good kernel, check over the configuration file and try to build it again. One

helpful resource is /var/log/messages which records the kernel messages from every successful

boot. Also, man:dmesg[8] will print the kernel messages from the current boot.

!

When troubleshooting a kernel, make sure to keep a copy of GENERIC , or some

other kernel that is known to work, as a different name that will not get erased

on the next build. This is important because every time a new kernel is

installed, kernel.old is overwritten with the last installed kernel, which may or

may not be bootable. As soon as possible, move the working kernel by

renaming the directory containing the good kernel:

mv /boot/kernel /boot/kernel.bad

mv /boot/kernel.good /boot/kernel

The kernel works, but man:ps[1] does not

If the kernel version differs from the one that the system utilities have been built with, for

example, a kernel built from -CURRENT sources is installed on a -RELEASE system, many system

status commands like man:ps[1] and man:vmstat[8] will not work. To fix this, crossref:cutting-

edge[makeworld,recompile and install a world] built with the same version of the source tree as

the kernel. It is never a good idea to use a different version of the kernel than the rest of the

operating system.

206

http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions

Chapter 9. Printing

Putting information on paper is a vital function, despite many attempts to eliminate it. Printing has

two basic components. The data must be delivered to the printer, and must be in a form that the

printer can understand.

9.1. Quick Start

Basic printing can be set up quickly. The printer must be capable of printing plain ASCII text. For

printing to other types of files, see Filters .

207

1. Create a directory to store files while they are being printed:

mkdir -p /var/spool/lpd/lp

chown daemon:daemon /var/spool/lpd/lp

chmod 770 /var/spool/lpd/lp

2. As root , create /etc/printcap with these contents:

lp:\

Ê :lp=/dev/unlpt0:\ !

Ê :sh:\

Ê :mx#0:\

Ê :sd=/var/spool/lpd/lp:\

Ê :lf=/var/log/lpd-errs:

!

This line is for a printer connected to a USB port.

For a printer connected to a parallel or "printer" port, use:

:lp=/dev/lpt0:\

For a printer connected directly to a network, use:

:lp=:rm=network-printer-name:rp=raw:\

Replace network-printer-name with the DNS host name of the network printer.

3. Enable LPD by editing /etc/rc.conf , adding this line:

lpd_enable="YES"

Start the service:

service lpd start

Starting lpd.

4. Print a test:

printf "1. This printer can print.\n2. This is the second line.\n" | lpr

!

If both lines do not start at the left border, but "stairstep" instead, see

Preventing Stairstepping on Plain Text Printers .

208

Text files can now be printed with lpr . Give the filename on the command line, or pipe

output directly into lpr .

% lpr textfile.txt

% ls -lh | lpr

9.2. Printer Connections

Printers are connected to computer systems in a variety of ways. Small desktop printers are usually

connected directly to a computerÕs USB port. Older printers are connected to a parallel or "printer"

port. Some printers are directly connected to a network, making it easy for multiple computers to

share them. A few printers use a rare serial port connection.

FreeBSD can communicate with all of these types of printers.

USB

USB printers can be connected to any available USB port on the computer.

When FreeBSD detects a USB printer, two device entries are created: /dev/ulpt0 and /dev/unlpt0 .

Data sent to either device will be relayed to the printer. After each print job, ulpt0 resets the USB

port. Resetting the port can cause problems with some printers, so the unlpt0 device is usually

used instead. unlpt0 does not reset the USB port at all.

Parallel (IEEE -1284)

The parallel port device is /dev/lpt0 . This device appears whether a printer is attached or not, it

is not autodetected.

Vendors have largely moved away from these "legacy" ports, and many computers no longer

have them. Adapters can be used to connect a parallel printer to a USB port. With such an

adapter, the printer can be treated as if it were actually a USB printer. Devices called print servers

can also be used to connect parallel printers directly to a network.

Serial (RS-232)

Serial ports are another legacy port, rarely used for printers except in certain niche applications.

Cables, connectors, and required wiring vary widely.

For serial ports built into a motherboard, the serial device name is /dev/cuau0 or /dev/cuau1 .

Serial USB adapters can also be used, and these will appear as /dev/cuaU0 .

Several communication parameters must be known to communicate with a serial printer. The

most important are baud rate or BPS (Bits Per Second) and parity . Values vary, but typical serial

printers use a baud rate of 9600 and no parity.

Network

Network printers are connected directly to the local computer network.

The DNS hostname of the printer must be known. If the printer is assigned a dynamic address by

209

DHCP , DNS should be dynamically updated so that the host name always has the correct IP address.

Network printers are often given static IP addresses to avoid this problem.

Most network printers understand print jobs sent with the LPD protocol. A print queue name

can also be specified. Some printers process data differently depending on which queue is used.

For example, a raw queue prints the data unchanged, while the text queue adds carriage returns

to plain text.

Many network printers can also print data sent directly to port 9100.

9.2.1. Summary

Wired network connections are usually the easiest to set up and give the fastest printing. For direct

connection to the computer, USB is preferred for speed and simplicity. Parallel connections work but

have limitations on cable length and speed. Serial connections are more difficult to configure. Cable

wiring differs between models, and communication parameters like baud rate and parity bits must

add to the complexity. Fortunately, serial printers are rare.

9.3. Common Page Description Languages

Data sent to a printer must be in a language that the printer can understand. These languages are

called Page Description Languages, or PDLs.

ASCII

Plain ASCII text is the simplest way to send data to a printer. Characters correspond one to one

with what will be printed: an A in the data prints an A on the page. Very little formatting is

available. There is no way to select a font or proportional spacing. The forced simplicity of plain

ASCII means that text can be printed straight from the computer with little or no encoding or

translation. The printed output corresponds directly with what was sent.

Some inexpensive printers cannot print plain ASCII text. This makes them more difficult to set

up, but it is usually still possible.

PostScript¨

PostScript¨ is almost the opposite of ASCII . Rather than simple text, a PostScript¨ program is a

set of instructions that draw the final document. Different fonts and graphics can be used.

However, this power comes at a price. The program that draws the page must be written.

Usually this program is generated by application software, so the process is invisible to the user.

Inexpensive printers sometimes leave out PostScript¨ compatibility as a cost-saving measure.

PCL (Printer Command Language)

PCL is an extension of ASCII , adding escape sequences for formatting, font selection, and printing

graphics. Many printers provide PCL5 support. Some support the newer PCL6 or PCLXL . These later

versions are supersets of PCL5 and can provide faster printing.

Host-Based

Manufacturers can reduce the cost of a printer by giving it a simple processor and very little

memory. These printers are not capable of printing plain text. Instead, bitmaps of text and

210

graphics are drawn by a driver on the host computer and then sent to the printer. These are

called host-based printers.

Communication between the driver and a host-based printer is often through proprietary or

undocumented protocols, making them functional only on the most common operating systems.

9.3.1. Converting PostScript¨ to Other PDLs

Many applications from the Ports Collection and FreeBSD utilities produce PostScript¨ output. This

table shows the utilities available to convert that into other common PDLs:

Table 9. Output PDLs

Output PDL Generated By Notes

PCL or PCL5 package:print/ghostscript9-

base[]

-sDEVICE=ljet4 for

monochrome, -sDEVICE=cljet5

for color

PCLXL or PCL6 package:print/ghostscript9-

base[]

-sDEVICE=pxlmono for

monochrome,

-sDEVICE=pxlcolor for color

ESC/P2

package:print/ghostscript9-

base[]

-sDEVICE=uniprint

XQX

package:print/foo2zjs[]

9.3.2. Summary

For the easiest printing, choose a printer that supports PostScript¨. Printers that support PCL are

the next preferred. With package:print/ghostscript9-base[], these printers can be used as if they

understood PostScript¨ natively. Printers that support PostScript¨ or PCL directly almost always

support direct printing of plain ASCII text files also.

Line-based printers like typical inkjets usually do not support PostScript¨ or PCL . They often can

print plain ASCII text files. package:print/ghostscript9-base[] supports the PDLs used by some of

these printers. However, printing an entire graphic-based page on these printers is often very slow

due to the large amount of data to be transferred and printed.

Host-based printers are often more difficult to set up. Some cannot be used at all because of

proprietary PDLs. Avoid these printers when possible.

Descriptions of many PDLs can be found at http://www.undocprint.org/formats/

page_description_languages . The particular PDL used by various models of printers can be found at

http://www.openprinting.org/printers .

9.4. Direct Printing

For occasional printing, files can be sent directly to a printer device without any setup. For

example, a file called sample.txt can be sent to a USB printer:

211

http://www.undocprint.org/formats/page_description_languages
http://www.undocprint.org/formats/page_description_languages
http://www.openprinting.org/printers

cp sample.txt /dev/unlpt0

Direct printing to network printers depends on the abilities of the printer, but most accept print

jobs on port 9100, and man:nc[1] can be used with them. To print the same file to a printer with the

DNS hostname of netlaser :

nc netlaser 9100 < sample.txt

9.5. LPD (Line Printer Daemon)

Printing a file in the background is called spooling . A spooler allows the user to continue with other

programs on the computer without waiting for the printer to slowly complete the print job.

FreeBSD includes a spooler called man:lpd[8]. Print jobs are submitted with man:lpr[1].

9.5.1. Initial Setup

A directory for storing print jobs is created, ownership is set, and the permissions are set to prevent

other users from viewing the contents of those files:

mkdir -p /var/spool/lpd/lp

chown daemon:daemon /var/spool/lpd/lp

chmod 770 /var/spool/lpd/lp

Printers are defined in /etc/printcap . An entry for each printer includes details like a name, the port

where it is attached, and various other settings. Create /etc/printcap with these contents:

lp:\ !

Ê :lp=/dev/unlpt0:\ "

Ê :sh:\ #

Ê :mx#0:\ $

Ê :sd=/var/spool/lpd/lp:\ %

Ê :lf=/var/log/lpd-errs: &

!

The name of this printer. man:lpr[1] sends print jobs to the lp printer unless another printer is

specified with -P , so the default printer should be named lp .

"

The device where the printer is connected. Replace this line with the appropriate one for the

connection type shown here.

#

Suppress the printing of a header page at the start of a print job.

$

Do not limit the maximum size of a print job.

%

The path to the spooling directory for this printer. Each printer uses its own spooling directory.

&

The log file where errors on this printer will be reported.

212

After creating /etc/printcap , use man:chkprintcap[8] to test it for errors:

chkprintcap

Fix any reported problems before continuing.

Enable man:lpd[8] in /etc/rc.conf :

lpd_enable="YES"

Start the service:

service lpd start

9.5.2. Printing with man:lpr[1]

Documents are sent to the printer with lpr . A file to be printed can be named on the command line

or piped into lpr . These two commands are equivalent, sending the contents of doc.txt to the

default printer:

% lpr doc.txt

% cat doc.txt | lpr

Printers can be selected with -P . To print to a printer called laser :

% lpr -Plaser doc.txt

9.5.3. Filters

The examples shown so far have sent the contents of a text file directly to the printer. As long as the

printer understands the content of those files, output will be printed correctly.

Some printers are not capable of printing plain text, and the input file might not even be plain text.

Filters allow files to be translated or processed. The typical use is to translate one type of input, like

plain text, into a form that the printer can understand, like PostScript¨ or PCL . Filters can also be

used to provide additional features, like adding page numbers or highlighting source code to make

it easier to read.

The filters discussed here are input filters or text filters . These filters convert the incoming file into

different forms. Use man:su[1] to become root before creating the files.

Filters are specified in /etc/printcap with the if= identifier. To use /usr/local/libexec/lf2crlf as a

filter, modify /etc/printcap like this:

213

lp:\

Ê :lp=/dev/unlpt0:\

Ê :sh:\

Ê :mx#0:\

Ê :sd=/var/spool/lpd/lp:\

Ê :if=/usr/local/libexec/lf2crlf:\ !

Ê :lf=/var/log/lpd-errs:

!

if= identifies the input filter that will be used on incoming text.

!

The backslash line continuation characters at the end of the lines in printcap

entries reveal that an entry for a printer is really just one long line with entries

delimited by colon characters. An earlier example can be rewritten as a single less-

readable line:

lp:lp=/dev/unlpt0:sh:mx#0:sd=/var/spool/lpd/lp:if=/usr/local/libexec/lf

2crlf:lf=/var/log/lpd-errs:

9.5.3.1. Preventing Stairstepping on Plain Text Printers

Typical FreeBSD text files contain only a single line feed character at the end of each line. These

lines will "stairstep" on a standard printer:

A printed file looks

Ê like the steps of a staircase

Ê scattered by the wind

A filter can convert the newline characters into carriage returns and newlines. The carriage returns

make the printer return to the left after each line. Create /usr/local/libexec/lf2crlf with these

contents:

#!/bin/sh

CR=$'\r'

/usr/bin/sed -e "s/$/${CR}/g"

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/lf2crlf

Modify /etc/printcap to use the new filter:

:if=/usr/local/libexec/lf2crlf:\

214

Test the filter by printing the same plain text file. The carriage returns will cause each line to start

at the left side of the page.

9.5.3.2. Fancy Plain Text on PostScript¨ Printers with package:print/enscript[]

GNUEnscript converts plain text files into nicely-formatted PostScript¨ for printing on PostScript¨

printers. It adds page numbers, wraps long lines, and provides numerous other features to make

printed text files easier to read. Depending on the local paper size, install either

package:print/enscript-letter[] or package:print/enscript-a4[] from the Ports Collection.

Create /usr/local/libexec/enscript with these contents:

#!/bin/sh

/usr/local/bin/enscript -o -

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/enscript

Modify /etc/printcap to use the new filter:

:if=/usr/local/libexec/enscript:\

Test the filter by printing a plain text file.

9.5.3.3. Printing PostScript¨ to PCL Printers

Many programs produce PostScript¨ documents. However, inexpensive printers often only

understand plain text or PCL . This filter converts PostScript¨ files to PCL before sending them to the

printer.

Install the Ghostscript PostScript¨ interpreter, package:print/ghostscript9-base[], from the Ports

Collection.

Create /usr/local/libexec/ps2pcl with these contents:

#!/bin/sh

/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=ljet4 -sOutputFile=- -

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/ps2pcl

PostScript¨ input sent to this script will be rendered and converted to PCL before being sent on to

the printer.

215

Modify /etc/printcap to use this new input filter:

:if=/usr/local/libexec/ps2pcl:\

Test the filter by sending a small PostScript¨ program to it:

% printf "%%\!PS \n /Helvetica findfont 18 scalefont setfont \

72 432 moveto (PostScript printing successful.) show showpage \004" | lpr

9.5.3.4. Smart Filters

A filter that detects the type of input and automatically converts it to the correct format for the

printer can be very convenient. The first two characters of a PostScript¨ file are usually %! . A filter

can detect those two characters. PostScript¨ files can be sent on to a PostScript¨ printer

unchanged. Text files can be converted to PostScript¨ with Enscript as shown earlier. Create

/usr/local/libexec/psif with these contents:

#!/bin/sh

#

psif - Print PostScript or plain text on a PostScript printer

#

IFS="" read -r first_line

first_two_chars=`expr "$first_line" : '\(..\)'`

case "$first_two_chars" in

%!)

Ê # %! : PostScript job, print it.

Ê echo "$first_line" && cat && exit 0

Ê exit 2

Ê ;;

*)

Ê # otherwise, format with enscript

Ê (echo "$first_line"; cat) | /usr/local/bin/enscript -o - && exit 0

Ê exit 2

Ê ;;

esac

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/psif

Modify /etc/printcap to use this new input filter:

:if=/usr/local/libexec/psif:\

216

Test the filter by printing PostScript¨ and plain text files.

9.5.3.5. Other Smart Filters

Writing a filter that detects many different types of input and formats them correctly is challenging.

package:print/apsfilter[] from the Ports Collection is a smart "magic" filter that detects dozens of file

types and automatically converts them to the PDL understood by the printer. See

http://www.apsfilter.org for more details.

9.5.4. Multiple Queues

The entries in /etc/printcap are really definitions of queues . There can be more than one queue for a

single printer. When combined with filters, multiple queues provide users more control over how

their jobs are printed.

As an example, consider a networked PostScript¨ laser printer in an office. Most users want to

print plain text, but a few advanced users want to be able to print PostScript¨ files directly. Two

entries can be created for the same printer in /etc/printcap :

textprinter:\

Ê :lp=9100@officelaser:\

Ê :sh:\

Ê :mx#0:\

Ê :sd=/var/spool/lpd/textprinter:\

Ê :if=/usr/local/libexec/enscript:\

Ê :lf=/var/log/lpd-errs:

psprinter:\

Ê :lp=9100@officelaser:\

Ê :sh:\

Ê :mx#0:\

Ê :sd=/var/spool/lpd/psprinter:\

Ê :lf=/var/log/lpd-errs:

Documents sent to textprinter will be formatted by the /usr/local/libexec/enscript filter shown in an

earlier example. Advanced users can print PostScript¨ files on psprinter , where no filtering is

done.

This multiple queue technique can be used to provide direct access to all kinds of printer features.

A printer with a duplexer could use two queues, one for ordinary single-sided printing, and one

with a filter that sends the command sequence to enable double-sided printing and then sends the

incoming file.

9.5.5. Monitoring and Controlling Printing

Several utilities are available to monitor print jobs and check and control printer operation.

217

http://www.apsfilter.org

9.5.5.1. man:lpq[1]

man:lpq[1] shows the status of a userÕs print jobs. Print jobs from other users are not shown.

Show the current userÕs pending jobs on a single printer:

% lpq -Plp

Rank Owner Job Files Total Size

1st jsmith 0 (standard input) 12792 bytes

Show the current userÕs pending jobs on all printers:

% lpq -a

lp:

Rank Owner Job Files Total Size

1st jsmith 1 (standard input) 27320 bytes

laser:

Rank Owner Job Files Total Size

1st jsmith 287 (standard input) 22443 bytes

9.5.5.2. man:lprm[1]

man:lprm[1] is used to remove print jobs. Normal users are only allowed to remove their own jobs.

root can remove any or all jobs.

Remove all pending jobs from a printer:

lprm -Plp -

dfA002smithy dequeued

cfA002smithy dequeued

dfA003smithy dequeued

cfA003smithy dequeued

dfA004smithy dequeued

cfA004smithy dequeued

Remove a single job from a printer. man:lpq[1] is used to find the job number.

% lpq

Rank Owner Job Files Total Size

1st jsmith 5 (standard input) 12188 bytes

% lprm -Plp 5

dfA005smithy dequeued

cfA005smithy dequeued

218

9.5.5.3. man:lpc[8]

man:lpc[8] is used to check and modify printer status. lpc is followed by a command and an

optional printer name. all can be used instead of a specific printer name, and the command will be

applied to all printers. Normal users can view status with man:lpc[8]. Only root can use commands

which modify printer status.

Show the status of all printers:

% lpc status all

lp:

Ê queuing is enabled

Ê printing is enabled

Ê 1 entry in spool area

Ê printer idle

laser:

Ê queuing is enabled

Ê printing is enabled

Ê 1 entry in spool area

Ê waiting for laser to come up

Prevent a printer from accepting new jobs, then begin accepting new jobs again:

lpc disable lp

lp:

Ê queuing disabled

lpc enable lp

lp:

Ê queuing enabled

Stop printing, but continue to accept new jobs. Then begin printing again:

lpc stop lp

lp:

Ê printing disabled

lpc start lp

lp:

Ê printing enabled

Ê daemon started

Restart a printer after some error condition:

219

lpc restart lp

lp:

Ê no daemon to abort

Ê printing enabled

Ê daemon restarted

Turn the print queue off and disable printing, with a message to explain the problem to users:

lpc down lp Repair parts will arrive on Monday

lp:

Ê printer and queuing disabled

Ê status message is now: Repair parts will arrive on Monday

Re-enable a printer that is down:

lpc up lp

lp:

Ê printing enabled

Ê daemon started

See man:lpc[8] for more commands and options.

9.5.6. Shared Printers

Printers are often shared by multiple users in businesses and schools. Additional features are

provided to make sharing printers more convenient.

9.5.6.1. Aliases

The printer name is set in the first line of the entry in /etc/printcap . Additional names, or aliases ,

can be added after that name. Aliases are separated from the name and each other by vertical bars:

lp|repairsprinter|salesprinter:\

Aliases can be used in place of the printer name. For example, users in the Sales department print

to their printer with

% lpr -Psalesprinter sales-report.txt

Users in the Repairs department print to their printer with

% lpr -Prepairsprinter repairs-report.txt

220

All of the documents print on that single printer. When the Sales department grows enough to need

their own printer, the alias can be removed from the shared printer entry and used as the name of

a new printer. Users in both departments continue to use the same commands, but the Sales

documents are sent to the new printer.

9.5.6.2. Header Pages

It can be difficult for users to locate their documents in the stack of pages produced by a busy

shared printer. Header pages were created to solve this problem. A header page with the user name

and document name is printed before each print job. These pages are also sometimes called banner

or separator pages.

Enabling header pages differs depending on whether the printer is connected directly to the

computer with a USB , parallel, or serial cable, or is connected remotely over a network.

Header pages on directly-connected printers are enabled by removing the :sh:\ (Suppress Header)

line from the entry in /etc/printcap . These header pages only use line feed characters for new lines.

Some printers will need the /usr/shared/examples/printing/hpif filter to prevent stairstepped text.

The filter configures PCL printers to print both carriage returns and line feeds when a line feed is

received.

Header pages for network printers must be configured on the printer itself. Header page entries in

/etc/printcap are ignored. Settings are usually available from the printer front panel or a

configuration web page accessible with a web browser.

9.5.7. References

Example files: /usr/shared/examples/printing/ .

The 4.3BSD Line Printer Spooler Manual , /usr/shared/doc/smm/07.lpd/paper.ascii.gz .

Manual pages: man:printcap[5], man:lpd[8], man:lpr[1], man:lpc[8], man:lprm[1], man:lpq[1].

9.6. Other Printing Systems

Several other printing systems are available in addition to the built-in man:lpd[8]. These systems

offer support for other protocols or additional features.

9.6.1. CUPS (Common UNIX¨ Printing System)

CUPS is a popular printing system available on many operating systems. Using CUPS on FreeBSD is

documented in a separate article: CUPS

9.6.2. HPLIP

Hewlett Packard provides a printing system that supports many of their inkjet and laser printers.

The port is package:print/hplip[]. The main web page is at http://hplipopensource.com/hplip-web/

index.html . The port handles all the installation details on FreeBSD. Configuration information is

shown at http://hplipopensource.com/hplip-web/install/manual/hp_setup.html .

221

https://docs.freebsd.org/en/articles/cups/
http://hplipopensource.com/hplip-web/index.html
http://hplipopensource.com/hplip-web/index.html
http://hplipopensource.com/hplip-web/install/manual/hp_setup.html

9.6.3. LPRng

LPRng was developed as an enhanced alternative to man:lpd[8]. The port is

package:sysutils/LPRng[]. For details and documentation, see http://www.lprng.com/ .

222

http://www.lprng.com/

Chapter 10. Linux¨ Binary Compatibility

10.1. Synopsis

FreeBSD provides binary compatibility with Linux¨, allowing users to install and run most Linux¨

binaries on a FreeBSD system without having to first modify the binary. It has even been reported

that, in some situations, Linux¨ binaries perform better on FreeBSD than they do on Linux¨.

However, some Linux¨-specific operating system features are not supported under FreeBSD. For

example, Linux¨ binaries will not work on FreeBSD if they overly use i386ª specific calls, such as

enabling virtual 8086 mode.

!

Support for 64-bit binary compatibility with Linux¨ was added in FreeBSD 10.3.

After reading this chapter, you will know:

¥ How to enable Linux¨ binary compatibility on a FreeBSD system.

¥ How to install additional Linux¨ shared libraries.

¥ How to install Linux¨ applications on a FreeBSD system.

¥ The implementation details of Linux¨ compatibility in FreeBSD.

Before reading this chapter, you should:

¥ Know how to install crossref:ports[ports,additional third-party software].

10.2. Configuring Linux¨ Binary Compatibility

By default, Linux¨ libraries are not installed and Linux¨ binary compatibility is not enabled.

Linux¨ libraries can either be installed manually or from the FreeBSD Ports Collection.

Before attempting to build the port, load the Linux¨ kernel module, otherwise the build will fail:

kldload linux

For 64-bit compatibility:

kldload linux64

To verify that the module is loaded:

% kldstat

Ê Id Refs Address Size Name

Ê 1 2 0xc0100000 16bdb8 kernel

Ê 7 1 0xc24db000 d000 linux.ko

223

The package:emulators/linux_base-c7[] package or port is the easiest way to install a base set of

Linux¨ libraries and binaries on a FreeBSD system. To install the port:

pkg install emulators/linux_base-c7

For Linux¨ compatibility to be enabled at boot time, add this line to /etc/rc.conf :

linux_enable="YES"

On 64-bit machines, /etc/rc.d/abi will automatically load the module for 64-bit emulation.

Since the Linux¨ binary compatibility layer has gained support for running both 32- and 64-bit

Linux¨ binaries (on 64-bit x86 hosts), it is no longer possible to link the emulation functionality

statically into a custom kernel.

10.2.1. Installing Additional Libraries Manually

If a Linux¨ application complains about missing shared libraries after configuring Linux¨ binary

compatibility, determine which shared libraries the Linux¨ binary needs and install them

manually.

From a Linux¨ system, ldd can be used to determine which shared libraries the application needs.

For example, to check which shared libraries linuxdoom needs, run this command from a Linux¨

system that has Doom installed:

% ldd linuxdoom

libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0

libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0

libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29

Then, copy all the files in the last column of the output from the Linux¨ system into /compat/linux

on the FreeBSD system. Once copied, create symbolic links to the names in the first column. This

example will result in the following files on the FreeBSD system:

/compat/linux/usr/X11/lib/libXt.so.3.1.0

/compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0

/compat/linux/usr/X11/lib/libX11.so.3.1.0

/compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0

/compat/linux/lib/libc.so.4.6.29

/compat/linux/lib/libc.so.4 -> libc.so.4.6.29

If a Linux¨ shared library already exists with a matching major revision number to the first

column of the ldd output, it does not need to be copied to the file named in the last column, as the

existing library should work. It is advisable to copy the shared library if it is a newer version,

though. The old one can be removed, as long as the symbolic link points to the new one.

224

For example, these libraries already exist on the FreeBSD system:

/compat/linux/lib/libc.so.4.6.27

/compat/linux/lib/libc.so.4 -> libc.so.4.6.27

and ldd indicates that a binary requires a later version:

libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29

Since the existing library is only one or two versions out of date in the last digit, the program

should still work with the slightly older version. However, it is safe to replace the existing libc.so

with the newer version:

/compat/linux/lib/libc.so.4.6.29

/compat/linux/lib/libc.so.4 -> libc.so.4.6.29

Generally, one will need to look for the shared libraries that Linux¨ binaries depend on only the

first few times that a Linux¨ program is installed on FreeBSD. After a while, there will be a

sufficient set of Linux¨ shared libraries on the system to be able to run newly installed Linux¨

binaries without any extra work.

10.2.2. Installing Linux¨ ELF Binaries

ELF binaries sometimes require an extra step. When an unbranded ELF binary is executed, it will

generate an error message:

% ./my-linux-elf-binary

ELF binary type not known

Abort

To help the FreeBSD kernel distinguish between a FreeBSD ELF binary and a Linux¨ binary, use

man:brandelf[1]:

% brandelf -t Linux my-linux-elf-binary

Since the GNU toolchain places the appropriate branding information into ELF binaries

automatically, this step is usually not necessary.

10.2.3. Installing a Linux¨ RPM Based Application

To install a Linux¨ RPM-based application, first install the package:archivers/rpm4[] package or

port. Once installed, root can use this command to install a .rpm :

225

cd /compat/linux

rpm2cpio < /path/to/linux.archive.rpm | cpio -id

If necessary, brandelf the installed ELF binaries. Note that this will prevent a clean uninstall.

10.2.4. Configuring the Hostname Resolver

If DNS does not work or this error appears:

resolv+: "bind" is an invalid keyword resolv+:

"hosts" is an invalid keyword

configure /compat/linux/etc/host.conf as follows:

order hosts, bind

multi on

This specifies that /etc/hosts is searched first and DNS is searched second. When

/compat/linux/etc/host.conf does not exist, Linux¨ applications use /etc/host.conf and complain

about the incompatible FreeBSD syntax. Remove bind if a name server is not configured using

/etc/resolv.conf .

10.3. Advanced Topics

This section describes how Linux¨ binary compatibility works and is based on an email written to

FreeBSD chat mailing list by Terry Lambert tlambert@primenet.com (Message ID:

< 199906020108.SAA07001@usr09.primenet.com >).

FreeBSD has an abstraction called an "execution class loader". This is a wedge into the

man:execve[2] system call.

Historically, the UNIX¨ loader examined the magic number (generally the first 4 or 8 bytes of the

file) to see if it was a binary known to the system, and if so, invoked the binary loader.

If it was not the binary type for the system, the man:execve[2] call returned a failure, and the shell

attempted to start executing it as shell commands. The assumption was a default of "whatever the

current shell is".

Later, a hack was made for man:sh[1] to examine the first two characters, and if they were :\n , it

invoked the man:csh[1] shell instead.

FreeBSD has a list of loaders, instead of a single loader, with a fallback to the #! loader for running

shell interpreters or shell scripts.

For the Linux¨ ABI support, FreeBSD sees the magic number as an ELF binary. The ELF loader

looks for a specialized brand , which is a comment section in the ELF image, and which is not

226

http://lists.FreeBSD.org/mailman/listinfo/freebsd-chat
mailto:tlambert@primenet.com
mailto:199906020108.SAA07001@usr09.primenet.com

present on SVR4/Solarisª ELF binaries.

For Linux¨ binaries to function, they must be branded as type Linux using man:brandelf[1]:

brandelf -t Linux file

When the ELF loader sees the Linux brand, the loader replaces a pointer in the proc structure. All

system calls are indexed through this pointer. In addition, the process is flagged for special

handling of the trap vector for the signal trampoline code, and several other (minor) fix-ups that

are handled by the Linux¨ kernel module.

The Linux¨ system call vector contains, among other things, a list of sysent[] entries whose

addresses reside in the kernel module.

When a system call is called by the Linux¨ binary, the trap code dereferences the system call

function pointer off the proc structure, and gets the Linux¨, not the FreeBSD, system call entry

points.

Linux¨ mode dynamically reroots lookups. This is, in effect, equivalent to union to file system

mounts. First, an attempt is made to lookup the file in /compat/linux/original-path . If that fails, the

lookup is done in /original-path . This makes sure that binaries that require other binaries can run.

For example, the Linux¨ toolchain can all run under Linux¨ ABI support. It also means that the

Linux¨ binaries can load and execute FreeBSD binaries, if there are no corresponding Linux¨

binaries present, and that a man:uname[1] command can be placed in the /compat/linux directory

tree to ensure that the Linux¨ binaries cannot tell they are not running on Linux¨.

In effect, there is a Linux¨ kernel in the FreeBSD kernel. The various underlying functions that

implement all of the services provided by the kernel are identical to both the FreeBSD system call

table entries, and the Linux¨ system call table entries: file system operations, virtual memory

operations, signal delivery, and System V IPC. The only difference is that FreeBSD binaries get the

FreeBSD glue functions, and Linux¨ binaries get the Linux¨ glue functions. The FreeBSD glue

functions are statically linked into the kernel, and the Linux¨ glue functions can be statically

linked, or they can be accessed via a kernel module.

Technically, this is not really emulation, it is an ABI implementation. It is sometimes called "Linux¨

emulation" because the implementation was done at a time when there was no other word to

describe what was going on. Saying that FreeBSD ran Linux¨ binaries was not true, since the code

was not compiled in.

227

Chapter 11. WINE

11.1. Synopsis

WINE , which stands for Wine Is Not an Emulator, is technically a software translation layer. It

enables to install and run some software written for Windows¨ on FreeBSD (and other) systems.

It operates by intercepting system calls, or requests from the software to the operating system, and

translating them from Windows¨ calls to calls that FreeBSD understands. It will also translate any

responses as needed into what the Windows¨ software is expecting. So in some ways, it emulates a

Windows¨ environment, in that it provides many of the resources Windows¨ applications are

expecting.

However, it is not an emulator in the traditional sense. Many of these solutions operate by

constructing an entire other computer using software processes in place of hardware Virtualization

(such as that provided by the package:emulators/qemu[] port) operates in this way. One of the

benefits of this approach is the ability to install a full version of the OS in question to the emulator.

It means that the environment will not look any different to applications than a real machine, and

chances are good that everything will work on it. The downside to this approach is the fact that

software acting as hardware is inherently slower than actual hardware. The computer built in

software (called the guest) requires resources from the real machine (the host), and holds on to

those resources for as long as it is running.

The WINE Project, on the other hand, is much lighter on systemÕs resources. It will translate system

calls on the fly, so while it is difficult to be as fast as a real Windows¨ computer, it can come very

close. On the other hand, WINE is trying to keep up with a moving target in terms of all the

different system calls and other functionality it needs to support. As a result there may be

applications that do not work as expected on WINE, will not work at all, or will not even install to

begin with.

At the end of the day, WINE provides another option to try to get a particular Windows¨ software

program running on FreeBSD. It can always serve as the first option which, if successful, offers a

good experience without unnecessarily depleting the host FreeBSD systemÕs resources.

This chapter will describe:

¥ How to install WINE on a FreeBSD system.

¥ How WINE operates, and how it is different from other alternatives like virtualizaton.

¥ How to fine-tune WINE to the specific needs of some applications.

¥ How to install GUI helpers for WINE.

¥ Common tips and solutions for on FreeBSD.

¥ Considerations for WINE on FreeBSD in terms of the multi-user environment.

Before reading this chapter, it will be useful to:

¥ Understand the crossref:basics[basics,basics of UNIX¨ and FreeBSD].

228

https://www.winehq.org/

¥ Know how to crossref:bsdinstall[bsdinstall,install FreeBSD].

¥ Know how to crossref:advanced-networking[advanced-networking,set up a network

connection].

¥ Know how to crossref:ports[ports,install additional third-party software.

11.2. WINE Overview & Concepts

WINE is a complex system, so before running it on a FreeBSD system it is worth gaining an

understanding of what it is and how it works.

11.2.1. What is WINE?

As mentioned in the Synopsis for this chapter, WINE is a compatibility layer that allows Windows¨

applications to run on other operating systems. In theory, it means these programs should run on

systems like FreeBSD, macOS, and Android.

When WINE runs a Windows¨ executable, two things occur:

¥ Firstly, WINE implements an environment that mimics that of various versions of Windows¨.

For example, if an application requests access to a resource such as RAM, WINE has a memory

interface that looks and acts (as far as the application is concerned) like Windows¨.

¥ Then, once that application makes use of that interface, WINE takes the incoming request for

space in memory and translates it to something compatible with the host system. In the same

way when the application retrieves that data, WINE facilitates fetching it from the host system

and passing it back to the Windows¨ application.

11.2.2. WINE and the FreeBSD System

Installing WINE on a FreeBSD system will entail a few different components:

¥ FreeBSD applications for tasks such as running the Windows¨ executables, configuring the

WINE sub-system, or compiling programs with WINE support.

¥ A large number of libraries that implement the core functions of Windows¨ (for example

/lib/wine/api-ms-core-memory-l1-1-1.dll.so , which is part of the aforementioned memory

interface).

¥ A number of Windows¨ executables, which are (or mimic) common utilities (such as

/lib/wine/notepad.exe.so , which provides the standard Windows¨ text editor).

¥ Additional Windows¨ assets, in particular fonts (like the Tahoma font, which is stored in

share/wine/fonts/tahoma.ttf in the install root).

11.2.3. Graphical Versus Text Mode/Terminal Programs in WINE

As an operating system where terminal utilities are "first-class citizens," it is natural to assume that

WINE will contain extensive support for text-mode program. However, the majority of applications

for Windows¨, especially the most popular ones, are designed with a graphical user interface (GUI)

in mind. Therefore, WINEÕs utilities are designed by default to launch graphical programs.

229

However, there are three methods available to run these so-called Console User Interface (CUI)

programs:

¥ The Bare Streams approach will display the output directly to standard output.

¥ The wineconsole utility can be used with either the user or curses backed to utilize some of the

enhancements the WINE system provides for CUI applications.

These approaches are described in greater detail on the WINE Wiki .

11.2.4. WINE Derivative Projects

WINE itself is a mature open source project, so it is little surprise it is used as the foundation of

more complex solutions.

11.2.4.1. Commercial WINE Implementations

A number of companies have taken WINE and made it a core of their own, proprietary products

(WINEÕs LGPL license permits this). Two of the most famous of these are as follows:

¥ Codeweavers CrossOver

This solution provides a simplified "one-click" installation of WINE, which contains additional

enhancements and optimizations (although the company contributes many of these back upstream

to the WINE project). One area of focus for Codeweavers is to make the most popular applications

install and run smoothly.

While the company once produced a native FreeBSD version of their CrossOver solution, it appears

to have long been abandoned. While some resources (such as a dedicated forum) are still present,

they also have seen no activity for some time.

¥ Steam Proton

Gaming company Steam also uses WINE to enable Windows¨ games to install and run on other

systems. it is primary target is Linux-based systems, though some support exists for macOS as well.

While Steam does not offer a native FreeBSD client,there are several options for using the Linux¨

client using FreeBSDÕs Linux Compatibility Layer.

11.2.4.2. WINE Companion Programs

In addition to proprietary offerings, other projects have released applications designed to work in

tandem with the standard, open source version of WINE. The goals for these can range from

making installation easier to offering easy ways to get popular software installed.

These solutions are covered in greater detail in the later section on GUI frontends , and include the

following:

¥ winetricks

¥ Homura

230

https://wiki.winehq.org/Wine_User%27s_Guide#Text_mode_programs_.28CUI:_Console_User_Interface.29
https://www.codeweavers.com/compatibility/crossover/forum/freebsd

11.2.5. Alternatives to WINE

For FreeBSD users, some alternatives to using WINE are as follows:

¥ Dual-Booting: A straightforward option is to run desired Windows¨ applications natively on

that OS. This of course means existing FreeBSD in order to boot Windows¨, so this method is

not feasible if access to programs in both systems is required simultaneously.

¥ Virtual Machines: Virtual Machines (VMs), as mentioned earlier in this chapter, are software

processes that emulate full sets of hardware, on which additional operating systems (including

Windows¨) can be installed and run. Modern tools make VMs easy to create and manage, but

this method comes at a cost. A good portion of the host systems resources must be allocated to

each VM, and those resources cannot be reclaimed by the host as long as the VM is running. A

few examples of VM managers include the open source solutions qemu, bhyve, and VirtualBox.

See the chapter on Virtualization for more detail.

¥ Remote Access: Like many other UNIX¨-like systems, FreeBSD can run a variety of applications

enabling users to remotely access Windows¨ computers and use their programs or data. In

addtion to clients such as xrdp that connect to the standard Windows¨ Remote Desktop

Protocol, other open source standards such as vnc can also be used (provided a compatible

server is present on the other side).

11.3. Installing WINE on FreeBSD

WINE can be installed via the pkg tool, or by compiling the port(s).

11.3.1. WINE Prerequistes

Before installing WINE itself, it is useful to have the following pre-requisites installed.

¥ A GUI

Most Windows¨ programs are expecting to have a graphical user interface available. If WINE is

installed without one present, its dependencies will include the Wayland compositor, and so a GUI

will be installed along with WINE. But it is useful to have the GUI of choice installed, configured,

and working correctly before installing WINE.

¥ wine-gecko

The Windows¨ operating system has for some time had a default web browser pre-installed:

Internet Explorer. As a result, some applications work under the assumption that there will always

be something capable of displaying web pages. In order to provide this functionality, the WINE

layer includes a web browser component using the Mozilla projectÕs Gecko engine. When WINE is

first launched it will offer to download and install this, and there are reasons users might want it

do so (these will be covered in a later chapter). But they can also install it prior to installing WINE,

or alongside the install of WINE proper.

Install this package with the following:

231

pkg install wine-gecko

Alternately, compile the port with the following:

cd /usr/ports/emulator/wine-gecko

make install

¥ wine-mono

This port installs the MONO framework, an open source implementation of MicrosoftÕs .NET.

Including this with the WINE installation will make it that much more likely that any applications

written in .NET will install and run on the system.

To install the package:

pkg install wine-mono

To compile from the ports collection:

cd /usr/ports/emulator/wine-mono

make install

11.3.2. Installing WINE via FreeBSD Package Repositories

With the pre-requisites in place, install WINE via package with the following command:

pkg install wine

Alternately compile the WINE sub-system from source with the following:

cd /usr/ports/emulator/wine

make install

11.3.3. Concerns of 32- Versus 64-Bit in WINE Installations

Like most software, Windows¨ applications made the upgrade from the older 32-bit architecture to

64 bits. And most recent software is written for 64-bit operating systems, although modern OSes can

sometimes continue to run older 32-bit programs as well. FreeBSD is no different, having had

support for 64-bit since the 5.x series.

However, using old software no longer supported by default is a common use for emulators, and

users commonly turn to WINE to play games and use other programs that do not run properly on

modern hardware. Fortunately, FreeBSD can support all three scenarios:

232

¥ On modern, 64-bit machine and want to run 64-bit Windows¨ software, simply install the ports

mentioned in the above sections. The ports system will automatically install the 64-bit version.

¥ Alternately, users might have an older 32-bit machine that they do not want to run with its

original, now non-supported software. They can install the 32-bit (i386) version of FreeBSD,

then install the ports in the above sections. Again, on a 32-bit machine the ports system will

install the corresponding 32-bit version of WINE by default.

However, given a 64-bit version of FreeBSD and need to run 32-bit Windows¨ applications,

installing a different port is required to enable 32-bit compatibility. To install the pre-compiled

package, use the following:

pkg install i386-wine

Or compile the port with the following:

cd /usr/ports/emulator/i386-wine

make install

11.4. Running a First WINE Program on FreeBSD

Now that WINE is installed, the next step is to try it out by running a simple program. An easy way

to do this is to download a self-contained application, i.e., one can simply unpack and run without

any complex installation process.

So-called "portable" versions of applications are good choices for this test, as are programs that run

with only a single executable file.

11.4.1. Running a Program from the Command Line

There are two different methods to launch a Windows program from the terminal. The first, and

most straightforward is to navigate to the directory containing the programÕs executable (.EXE) and

issue the following:

% wine program.exe

For applications that take command-line arguments, add them after the executable as usual:

% wine program2.exe -file file.txt

Alternately, supply the full path to the executable to use it in a script, for example:

% wine /home/user/bin/program.exe

233

11.4.2. Running a Program from a GUI

After installation graphical shells should be updated with new associations for Windows executable

(.EXE) files. It will now be possible to browse the system using a file manager, and launch the

Windows application in the same way as other files and programs (either a single- or double-click,

depending on the desktopÕs settings).

On most desktops, check to make sure this association is correct by right-clicking on the file, and

looking for an entry in the context menu to open the file. One of the options (hopefully the default

one) will be with the Wine Windows Program Loader , as shown in the below screenshot:

In the event the program does not run as expected, try launching it from the command line and

review any messages displayed in the terminal to troubleshoot.

In the event WINE is not the default application for .EXE files after install, check the MIME associate

for this extension in the current desktop environment, graphical shell, or file manager.

11.5. Configuring WINE Installation

With an understanding of what WINE is and how it works at a high level, the next step to

effectively using it on FreeBSD is becoming familiar with its configuration. The following sections

will describe the key concept of the WINE prefix , and illustrate how it is used to control the

behavior of applications run through WINE.

11.5.1. WINE Prefixes

A WINE prefix is a directory, usually located beneath the default location of $HOME/.wine though it

can be located elsewhere. The prefix is a set of configurations and support files used by the wine to

234

configure and run the Windows¨ environment a given application needs. By default, a brand new

WINE installation will create the following structure when first launched by a user:

¥ .update-timestamp : contains the last modified date of file /usr/share/wine/wine.inf . It is used by

WINE to determine if a prefix is out of date, and automatically update it if needed.

¥ dosdevices/ : contains information on mappings of Windows¨ resources to resources on the

host FreeBSD system. For example, after a new WINE installation, this should contain at least

two entries which enable access to the FreeBSD filesystem using Windows¨-style drive letters:

! c:@ : A link to drive_c described below.

! z:@ : A link to the root directory of the system.

¥ drive_c/ : emulates the main (i.e., C:) drive of a Windows¨ system. It contains a directory

structure and associated files mirroring that of standard Windows¨ systems. A fresh WINE

prefix will contain Windows¨ 10 directories such as Users and Windows that holds the OS itself.

Furthermore, applications installed within a prefix will be located in either Program Files or

Program Files (x86) , depending on their architecture.

¥ system.reg : This Registry file contains information on the Windows¨ installation, which in the

case of WINE is the environment in drive_c .

¥ user.reg : This Registry file contains the current userÕs personal configurations, made either by

varous software or through the use of the Registry Editor.

¥ userdef.reg : This Registry file is a default set of configurations for newly-created users.

11.5.2. Creating and Using WINE Prefixes

While WINE will create a default prefix in the userÕs $HOME/.wine/ , it is possible to set up multiple

prefixes. There are a few reasons to do this:

¥ The most common reason is to emulate different versions of Windows¨, according to the

compatibility needs of the software in question.

¥ In addition, it is common to encounter software that does not work correctly in the default

environment, and requires special configuration. it is useful to isolate these in their own,

custom prefixes, so the changes do not impact other applications.

¥ Similarly, copying the default or "main" prefix into a separate "testing" one in order to evaluate

an applicationÕs compatibility can reduce the chance of corruption.

Creating a prefix from the terminal requires the following command:

% WINEPREFIX="/home/username/.wine-new" winecfg

This will run the winecfg program, which can be used to configure wine prefixes (more on this in a

later section). But by providing a directory path value for the WINEPREFIX environment variable, a

new prefix is created at that location if one does not already exist.

Supplying the same variable to the wine program will similarly cause the selected program to be

run with the specified prefix:

235

% WINEPREFIX="/home/username/.wine-new" wine program.exe

11.5.3. Configuring WINE Prefixes with winecfg

As described above WINE includes a tool called winecfg to configure prefixes from within a GUI. It

contains a variety of functions, which are detailed in the sections below. When winecfg is run from

within a prefix, or provided the location of a prefix within the WINEPREFIX variable, it enables the

configuration of the selected prefix as described in the below sections.

Selections made on the Applications tab will affect the scope of changes made in the Libraries and

Graphics tabs, which will be limited to the application selected. See the section on Using Winecfg in

the WINE Wiki for more details.

11.5.3.1. Applications

[wine config 1] | wine-config-1

The Applications contains controls enabling the association of programs with a particular version of

Windows¨. On first start-up the Application settings section will contain a single entry: Default

Settings . This corresponds to all the default configurations of the prefix, which (as the disabled

Remove application button implies) cannot be deleted.

But additional applications can be added with the following process:

1. Click the Add application button.

2. Use the provided dialog to select the desired programÕs executable.

3. Select the version of Windows¨ to be used with the selected program.

11.5.3.2. Libraries

236

https://wiki.winehq.org/Wine_User%27s_Guide#Using_Winecfg

WINE provides a set of open source library files as part of its distribution that provide the same

functions as their Windows¨ counterparts. However, as noted earlier in this chapter, the WINE

project is always trying to keep pace with new updates to these libraries. As a result, the versions

that ship with WINE may be missing functionality that the latest Windows¨ programs are

expecting.

However, winecfg makes it possible specify overrides for the built-in libraries, particularly there is

a version of Windows¨ available on the same machine as the host FreeBSD installation. For each

library to be overridden, do the following:

1. Open the New override for library drop-down and select the library to be replaced.

2. Click the Add button.

3. The new override will appear in the Existing overrides list, notice the native, builtin designation

in parentheses.

4. Click to select the library.

5. Click the Edit button.

6. Use the provided dialog to select a corresponding library to be used in place of the built-in one.

Be sure to select a file that is truly the corresponding version of the built-in one, otherwise there

may be unexpected behavior.

237

11.5.3.3. Graphics

The Graphics tab provides some options to make the windows of programs run via WINE operate

smoothly with FreeBSD

¥ Automatic mouse capture when windows are full-screen.

¥ Allowing the FreeBSD window manager to decorate the windows, such as their title bars, for

programs running via WINE.

¥ Allowing the window manager to control windows for programs running via WINE, such as

running resizing functions on them.

¥ Create an emulated virtual desktop, within which all WINE programs will run. If this item is

selected, the size of the virtual desktop can be specified using the Desktop size input boxes.

¥ Setting the screen resolution for programs running via WINE.

11.5.3.4. Desktop Integration

238

This tab allows configuration of the following items:

¥ The theme and related visual settings to be used for programs running via WINE.

¥ Whether the WINE sub-system should manage MIME types (used to determine which

application opens a particular file type) internally.

¥ Mappings of directories in the host FreeBSD system to useful folders within the Windows¨

environment. To change an existing association, select the desired item and click Browse , then

use the provided dialog to select a directory.

11.5.3.5. Drives

239

The Drives tab allows linking of directories in the host FreeBSD system to drive letters in the

Windows¨ environment. The default values in this tab should look familiar, as theyÕre displaying

the contents of dosdevices/ in the current WINE prefix. Changes made via this dialog will reflect in

dosdevices , and properly-formatted links created in that directory will display in this tab.

To create a new entry, such as for a CD-ROM (mounted at /mnt/cdrom), take the following steps:

1. Click the _Add _ button.

2. In the provided dialog, choose a free drive letter.

3. Click OK .

4. Fill in the Path input box by either typing the path to the resource, or click _Browse _ and use

the provided dialog to select it.

By default WINE will autodetect the type of resource linked, but this can be manually overridden.

See the section in the WINE Wiki for more detail on advanced options.

11.5.3.6. Audio

240

https://wiki.winehq.org/Wine_User%27s_Guide#Drive_Settings

This tab contains some configurable options for routing sound from Windows¨ programs to the

native FreeBSD sound system, including:

¥ Driver selection

¥ Default device selection

¥ Sound test

11.5.3.7. About

241

The final tab contains information on the WINE project, including a link to the website. It also

allows entry of (entirely optional) user information, although this is not sent anywhere as it is in

other operating systems.

11.6. WINE Management GUIs

While the base install of WINE comes with a GUI configuration tool in winecfg, it is main purpose is

just that: strictly configuring an existing WINE prefix. There are, however, more advanced

applications that will assist in the initial installation of applications as well as optimizing their

WINE environments. The below sections include a selection of the most popular.

11.6.1. Winetricks

winetricks is a cross-platform, general purpose helper program for WINE. It is not developed by the

WINE project proper, but rather maintained on Github by a group of contributors. It contains some

automated "recipes" for getting common applications to work on WINE, both by optimizing the

settings as well as acquiring some DLL libraries automatically.

11.6.1.1. Installing winetricks

To install winetricks on a FreeBSD using binary packages, use the following commands (note

winetricks requires either the i386-wine or i386-wine-devel package, and is therefore not installed

automatically with other dependencies):

242

https://github.com/Winetricks/winetricks

pkg install i386-wine winetricks

To compile it from source, issue the following in the terminal:

cd /usr/ports/emulators/i386-wine

make install

cd /usr/ports/emulators/winetricks

make install

If a manual installation is required, refer to the Github account for instructions.

11.6.1.2. Using winetricks

Run winetricks with the following command:

% winetricks

Note: this should be in a 32-bit prefix to run winetricks. Launching winetricks displays a window

with a number of choices, as follows:

Selecting either Install an application , Install a benchmark , or Install a game shows a list with

supported options, such as the one below for applications:

243

https://github.com/Winetricks/winetricks

Selecting one or more items and clicking OK will start their installation process(es). Initially, some

messages that appear to be errors may show up, but theyÕre actually informational alerts as

winetricks configures the WINE environment to get around known issues for the application:

Once these are circumvented, the actual installer for the application will be run:

244

Once the installation completes, the new Windows application should be available from the

desktop environmentÕs standard menu (shown in the screenshot below for the LXQT desktop

environment):

In order to remove the application, run winetricks again, and select Run an uninstaller .

245

A Windows¨-style dialog will appear with a list of installed programs and components. Select the

application to be removed, then click the Modify/Remove button.

246

This will run the applications built-in installer, which should also have the option to uninstall.

247

11.6.2. Homura

Homura is an application similar to winetricks, although it was inspired by the Lutris gaming

system for Linux. But while it is focused on games, there are also non-gaming applications available

for install through Homura.

11.6.2.1. Installing Homura

To install HomuraÕs binary package, issue the following command:

pkg install homura

Homura is available in the FreeBSD Ports system. However, than the emulators section of Ports or

binary packages, look for it in the games section.

cd /usr/ports/games/homura

make install

11.6.2.2. Using Homura

HomuraÕs usage is quite similar to that of winetricks. When using it for the first time, launch it from

248

https://lutris.net/

the command line (or a desktop environment runner applet) with:

% Homura

This should result in a friendly welcome message. Click OK to continue.

The program will also offer to place a link in the application menu of compatible environments:

Depending on the setup of the FreeBSD machine, Homura may display a message urging the install

of native graphics drivers.

The applicationÕs window should then appear, which amounts to a "main menu" with all its options.

Many of the items are the same as winetricks, although Homura offers some additional, helpful

249

options such as opening its data folder (Open Homura Folder) or running a specified program (Run

a executable in prefix).

To select one of HomuraÕs supported applications to install, select Installation , and click OK . This

will display a list of applications Homura can install automatically. Select one, and click OK to start

the process.

250

As a first step Homura will download the selected program. A notification may appear in supported

desktop environments.

The program will also create a new prefix for the application. A standard WINE dialog with this

message will display.

Next, Homura will install any prerequisites for the selected program. This may involve

downloading and extracting a fair number of files, the details of which will show in dialogs.

Downloaded packages are automatically opened and run as required.

251

The installation may end with a simple desktop notification or message in the terminal, depending

on how Homura was launched. But in either case Homura should return to the main screen. To

confirm the installation was successful, select Launcher , and click OK .

252

This will display a list of installed applications.

253

To run the new program, select it from the list, and click OK . To uninstall the application, select

Uninstallation from the main screen, which will display a similar list. Select the program to be

removed, and click OK .

254

11.6.3. Running Multiple Management GUIs

it is worth noting that the above solutions are not mutually exclusive. it is perfectly acceptable,

even advantageous, to have both installed at the same time, as they support a different set of

programs.

However, it is wise to ensure that they do not access any of the same WINE prefixes. Each of these

solutions applies workarounds and makes changes to the registries based on known workarounds

to existing WINE issues in order to make a given application run smoothly. Allowing both

winetricks and Homura to access the same prefix could lead to some of these being overwritten,

with the result being some or all applications do not work as expected.

255

11.7. WINE in Multi-User FreeBSD Installations

11.7.1. Issues with Using a Common WINE Prefix

Like most UNIX¨-like operating systems, FreeBSD is designed for multiple users to be logged in and

working at the same time. On the other hand, Windows¨ is multi-user in the sense that there can

be multiple user accounts set up on one system. But the expectation is that only one will be using

the physical machine (a desktop or laptop PC) at any given moment.

More recent consumer versions of Windows¨ have taken some steps to improve the OS in multi-

user scenarios. But it is still largely structured around a single-user experience. Furthermore, the

measures the WINE project has taken to create acompatible environment means, unlike FreeBSD

applications (including WINE itself), it will resemble this single-user environment.

So it follows that each user will have to maintain their own set of configurations, which is

potentially good. Yet it is advantageous to install applications, particularly large ones like office

suites or games, only once. Two examples of reasons to do this are maintenance (software updates

need only be applied once) and efficiency in storage (no duplicated files).

There are two strategies to minimze the impact of multiple WINE users in the system.

11.7.2. Installing Applications to a Common Drive

As shown in the section on WINE Configuration, WINE provides the ability to attach additional

drives to a given prefix. In this way, applications can be installed to a common location, while each

user will still have an prefix where individual settings may be kept (depending on the program).

This is a good setup if there are relatively few applications to be shared between users, and they are

programs that require few custom tweaks changes to the prefix in order to function.

The steps to make install applications in this way are as follows:

1. First, set up a shared location on the system where the files will be stored, such as

/mnt/windows-drive_d/ . Creating new directories is described in man page for the mkdir

command.

2. Next, set permissions for this new directory to allow only desired users to access it. One

approach to this is to create a new group such as "windows," add the desired users to that group

(see the sub-section on groups in the HandbookÕs Users and Basic Account Management

section), and set to the permissions on the directory to 770 (the section on Permissions in the

FreeBSD Basics chapter of the Handbook illustrates this process).

3. Finally, add the location as a drive to the userÕs prefix using the winecfg as described in the

above section on WINE Configuration in this chapter.

Once complete, applications can be installed to this location, and subsequently run using the

assigned drive letter (or the standard UNIX¨-style directory path). However, as noted above, only

one user should be running these applications (which may be accessing files within their

installation directory) at the same time. Some applications may also exhibit unexpected behavior

when run by a user who is not the owner, despite being a member of the group that should have

full "read/write/execute" permissions for the entire directory.

256

11.7.3. Using a Common Installation of WINE

If, on the other hand, there are many applications to be shared, or they require specific tuning in

order to work correctly, a different approach may be required. In this method, a completely

separate user is created specifically for the purposes of storing the WINE prefix and all its installed

applications. Individual users are then granted permission to run programs as this user using the

su command. The result is that these users can launch a WINE application as they normally would,

only it will act as though launched by the newly-created user, and therefore use the centrally-

maintained prefix containing both settings and programs. To accomplish this, take the following

steps.

Create a new user with the following command (as root), which will step through the required

details:

adduser

Enter the username (e.g., windows) and Full name ("Microsoft Windows"). Then accept the defaults

for the remainder of the questions. Next, install the sudo utlity using binary packages with the

following:

pkg install sudo

Once installed, edit /etc/sudoers as follows:

257

User alias specification

define which users can run the wine/windows programs

User_Alias WINDOWS_USERS = user1,user2

define which users can administrate (become root)

User_Alias ADMIN = user1

Cmnd alias specification

define which commands the WINDOWS_USERS may run

Cmnd_Alias WINDOWS = /usr/bin/wine,/usr/bin/winecfg

Defaults

Defaults:WINDOWS_USERS env_reset

Defaults:WINDOWS_USERS env_keep += DISPLAY

Defaults:WINDOWS_USERS env_keep += XAUTHORITY

Defaults !lecture,tty_tickets,!fqdn

User privilege specification

root ALL=(ALL) ALL

Members of the admin user_alias, defined above, may gain root privileges

ADMIN ALL=(ALL) ALL

The WINDOWS_USERS may run WINDOWS programs as user windows without a password

WINDOWS_USERS ALL = (windows) NOPASSWD: WINDOWS

The result of these changes is the users named in the User_Alias section are permitted to run the

programs listed in the Cmnd Alias section using the resources listed in the Defaults section (the

current display) as if they were the user listed in the final line of the file. In other words, users

designates as WINDOWS_USERS can run the wine and winecfg applications as user windows . As a

bonus, the configuration here means they will not be required to enter the password for the

windows user.

Next provide access to the display back to the windows user, as whom the WINE programs will be

running:

% xhost +local:windows

This should be added to the list of commands run either at login or when the default graphical

environment starts. Once all the above are complete, a user configured as one of the WINDOW_USERS in

sudoers can run programs using the shared prefix with the following command:

it is worth noting that multiple users accessing this shared environment at the same time is still

risky. However, consider also that the shared environment can itself contain multiple prefixes. In

this way an administrator can create a tested and verified set of programs, each with its own prefix.

At the same time, one user can play a game while another works with office programs without the

258

need for redundant software installations.

11.8. WINE on FreeBSD FAQ

The following section describes some frequently asked questions, tips/tricks, or common issues in

running WINE on FreeBSD, along with their respective answers.

11.8.1. Basic Installation and Usage

11.8.1.1. How to Install 32-bit and 64-bit WINE on the Same System?

As described earlier in this section, the wine and i386-wine packages conflict with one another, and

therefore cannot be installed on the same system in the normal way. However, multiple installs can

be achieved using mechanisms like chroots/jails, or by building WINE from source (note this does

not mean building the port).

11.8.1.2. Can DOS Programs Be Run on WINE?

They can, as "Console User Interface" applications as mentioned eariler in this section. However,

there is an arguably better method for running DOS software: DOSBox. On the other hand, thereÕs

little reason not to at least try it. Simply create a new prefix, install the software, and if it does not

work delete the prefix.

11.8.1.3. Should the "wine-devel" Package/Port be Installed to Use the Development Version of

WINE Instead of Stable?

Yes, installing this version will install the "development" version of WINE. As with the 32- and 64-bit

versions, they cannot be installed together with the stable versions unless additional measures are

taken.

Note that WINE also has a "Staging" version, which contains the most recent updates. This was at

one time available as a FreeBSD port; however, it has since been removed. It can be compiled

directly from source however.

11.8.2. Install Optimization

11.8.2.1. How Should Windows¨ Hardware (e.g., Graphics) Drivers be Handled?

Operating system drivers transfer commands between applications and hardware. WINE emulates

a Windows¨ environment, including the drivers, which in turn use FreeBSDÕs native drivers for

this transfer. it is not advisable to install Windows¨ drivers, as the WINE system is designed to use

the host systems drivers. If, for example, a graphics card that benefits from dedicated drivers,

install them using the standard FreeBSD methods, not Windows¨ installers.

11.8.2.2. Is There a way to Make Windows¨ Fonts Look Better?

A user on the FreeBSD forums suggests this configuration to fix out-of-the-box look of WINE fonts,

which can be slightly pixelated.

259

According to a post in the FreeBSD Forums , adding the following to .config/fontconfig/fonts.conf

will add anti-aliasing and make text more readable.

<?xml version="1.0"?>

<!DOCTYPE fontconfig SYSTEM "fonts.dtd>"

<fontconfig>

Ê <!-- antialias all fonts -->

Ê <match target="font">

Ê <edit name="antialias" mode="assign"><bool>true</bool></edit>>

Ê <edit name="hinting" mode="assign"><bool>true</bool></edit>>

Ê <edit name="hintstyle" mode="assign"><const>hintslight</const></edit>>

Ê <edit name="rgba" mode="assign"><const>rgb</const></edit>>

Ê </match>

</fontconfig>

11.8.2.3. Does Having Windows¨ Installed Elsewhere on a System Help WINE Operate?

It may, depending on the application being run. As mentioned in the section describing winecfg,

some built-in WINE DLLs and other libraries can be overridden by providing a path to an alternate

version. Provided the Windows¨ partition or drive is mounted to the FreeBSD system and

accessible to the user, configuring some of these overrides will use native Windows¨ libraries and

may decrease the chance of unexpected behavior.

11.8.3. Application-Specific

11.8.3.1. Where is the Best Place to see if Application X Works on WINE?

The first stop in determining compatibiliy should be the WINE AppDB . This is a compilation of

reports of programs working (or not) on all supported platforms, although (as previously

mentioned), solutions for one platform are often applicable to others.

11.8.3.2. Is There Anything That Will Help Games Run Better?

Perhaps. Many Windows¨ games rely on DirectX, a proprietary Microsoft graphics layer. However

there are projects in the open source community attempting to implement support for this

technology.

The dxvk project, which is an attempt to implement DirectX using the FreeBSD-compatible Vulkan

graphics sub-system, is one such. Although its primary target is WINE on Linux, some FreeBSD

users report compiling and using dxvk.

In addition, work is under way on a wine-protonhttps://www.freshports.org/emulators/wine-

proton/[port]. This will bring the work of Valve, developer of the Steam gaming platform, to

FreeBSD. Proton is a distribution of WINE designed to allow many Windows¨ games to run on

other operating systems with minimal setup.

260

https://forums.freebsd.org/threads/make-wine-ui-fonts-look-good.68273/
https://appdb.winehq.org/
https://forums.freebsd.org/threads/what-about-gaming-on-freebsd.723/page-9
https://forums.freebsd.org/threads/what-about-gaming-on-freebsd.723/page-9

11.8.3.3. Is There Anywhere FreeBSD WINE Users Gather to Exchange Tips and Tricks?

There are plenty of places FreeBSD users discuss issues related to WINE that can be searched for

solutions:

¥ The FreeBSD forums , particularly the Installation and Maintenance of Ports or Packages or

Emulation and virtualization forums.

¥ FreeBSD IRC channels including #freebsd (for general support), #freebsd-games, and others.

¥ The BSD World Discord serverÕs channels including bsd-desktop , bsd-gaming , bsd-wine , and

others.

11.8.4. Other OS Resources

There are a number of resources focused on other operating systems that may be useful for

FreeBSD users:

¥ The WINE Wiki has a wealth of information on using WINE, much of which is applicable across

many of WINEÕs supported operating systems.

¥ Similarly, the documentation available from other OS projects can also be of good value. The

WINE page on the Arch Linux Wiki is a particularly good example, although some of the "Third-

party applications" (i.e., "companion applications") are obviously not available on FreeBSD.

¥ Finally, Codeweavers (a developer of a commercial version of WINE) is an active upstream

contributor. Oftentimes answers to questions in their support forum can be of aid in

troubleshooting problems with the open source version of WINE.

261

https://forums.freebsd.org/
https://wiki.freebsd.org/IRC/Channels
https://discord.gg/2CCuhCt
https://wiki.winehq.org/
https://wiki.archlinux.org/index.php/wine
https://wiki.archlinux.org/index.php/wine
https://www.codeweavers.com/support/forums

Part III: System Administration

The remaining chapters cover all aspects of FreeBSD system administration. Each chapter starts by

describing what will be learned as a result of reading the chapter, and also details what the reader

is expected to know before tackling the material.

These chapters are designed to be read as the information is needed. They do not need to be read in

any particular order, nor must all of them be read before beginning to use FreeBSD.

262

Chapter 12. Configuration and Tuning

12.1. Synopsis

One of the important aspects of FreeBSD is proper system configuration. This chapter explains

much of the FreeBSD configuration process, including some of the parameters which can be set to

tune a FreeBSD system.

After reading this chapter, you will know:

¥ The basics of rc.conf configuration and /usr/local/etc/rc.d startup scripts.

¥ How to configure and test a network card.

¥ How to configure virtual hosts on network devices.

¥ How to use the various configuration files in /etc .

¥ How to tune FreeBSD using man:sysctl[8] variables.

¥ How to tune disk performance and modify kernel limitations.

Before reading this chapter, you should:

¥ Understand UNIX¨ and FreeBSD basics (crossref:basics[basics,FreeBSD Basics]).

¥ Be familiar with the basics of kernel configuration and compilation

(crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]).

12.2. Starting Services

Many users install third party software on FreeBSD from the Ports Collection and require the

installed services to be started upon system initialization. Services, such as package:mail/postfix[]

or package:www/apache22[] are just two of the many software packages which may be started

during system initialization. This section explains the procedures available for starting third party

software.

In FreeBSD, most included services, such as man:cron[8], are started through the system startup

scripts.

12.2.1. Extended Application Configuration

Now that FreeBSD includes rc.d , configuration of application startup is easier and provides more

features. Using the key words discussed in Managing Services in FreeBSD , applications can be set to

start after certain other services and extra flags can be passed through /etc/rc.conf in place of hard

coded flags in the startup script. A basic script may look similar to the following:

263

#!/bin/sh

#

PROVIDE: utility

REQUIRE: DAEMON

KEYWORD: shutdown

. /etc/rc.subr

name=utility

rcvar=utility_enable

command="/usr/local/sbin/utility"

load_rc_config $name

#

DO NOT CHANGE THESE DEFAULT VALUES HERE

SET THEM IN THE /etc/rc.conf FILE

#

utility_enable=${utility_enable-"NO"}

pidfile=${utility_pidfile-"/var/run/utility.pid"}

run_rc_command "$1"

This script will ensure that the provided utility will be started after the DAEMON pseudo-service. It

also provides a method for setting and tracking the process ID (PID).

This application could then have the following line placed in /etc/rc.conf :

utility_enable="YES"

This method allows for easier manipulation of command line arguments, inclusion of the default

functions provided in /etc/rc.subr , compatibility with man:rcorder[8], and provides for easier

configuration via rc.conf .

12.2.2. Using Services to Start Services

Other services can be started using man:inetd[8]. Working with man:inetd[8] and its configuration

is described in depth in crossref:network-servers[network-inetd,ÒThe inetd Super-ServerÓ].

In some cases, it may make more sense to use man:cron[8] to start system services. This approach

has a number of advantages as man:cron[8] runs these processes as the owner of the

man:crontab[5]. This allows regular users to start and maintain their own applications.

The @reboot feature of man:cron[8], may be used in place of the time specification. This causes the

job to run when man:cron[8] is started, normally during system initialization.

264

12.3. Configuring man:cron[8]

One of the most useful utilities in FreeBSD is cron. This utility runs in the background and regularly

checks /etc/crontab for tasks to execute and searches /var/cron/tabs for custom crontab files. These

files are used to schedule tasks which cron runs at the specified times. Each entry in a crontab

defines a task to run and is known as a cron job .

Two different types of configuration files are used: the system crontab, which should not be

modified, and user crontabs, which can be created and edited as needed. The format used by these

files is documented in man:crontab[5]. The format of the system crontab, /etc/crontab includes a who

column which does not exist in user crontabs. In the system crontab, cron runs the command as the

user specified in this column. In a user crontab, all commands run as the user who created the

crontab.

User crontabs allow individual users to schedule their own tasks. The root user can also have a user

crontab which can be used to schedule tasks that do not exist in the system crontab .

Here is a sample entry from the system crontab, /etc/crontab :

/etc/crontab - root's crontab for FreeBSD

#

$FreeBSD$

!

SHELL=/bin/sh

PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin "

#

#minute hour mday month wday who command #

#

*/5 * * * * root /usr/libexec/atrun $

!

Lines that begin with the # character are comments. A comment can be placed in the file as a

reminder of what and why a desired action is performed. Comments cannot be on the same line

as a command or else they will be interpreted as part of the command; they must be on a new

line. Blank lines are ignored.

"

The equals (=) character is used to define any environment settings. In this example, it is used to

define the SHELL and PATH . If the SHELL is omitted, cron will use the default Bourne shell. If the

PATH is omitted, the full path must be given to the command or script to run.

#

This line defines the seven fields used in a system crontab: minute , hour , mday , month , wday , who , and

command . The minute field is the time in minutes when the specified command will be run, the

hour is the hour when the specified command will be run, the mday is the day of the month, month

is the month, and wday is the day of the week. These fields must be numeric values, representing

the twenty-four hour clock, or a * , representing all values for that field. The who field only exists

in the system crontab and specifies which user the command should be run as. The last field is

the command to be executed.

$

This entry defines the values for this cron job. The */5 , followed by several more * characters,

specifies that /usr/libexec/atrun is invoked by root every five minutes of every hour, of every

day and day of the week, of every month.Commands can include any number of switches.

265

However, commands which extend to multiple lines need to be broken with the backslash "\"

continuation character.

12.3.1. Creating a User Crontab

To create a user crontab, invoke crontab in editor mode:

% crontab -e

This will open the userÕs crontab using the default text editor. The first time a user runs this

command, it will open an empty file. Once a user creates a crontab, this command will open that

file for editing.

It is useful to add these lines to the top of the crontab file in order to set the environment variables

and to remember the meanings of the fields in the crontab:

SHELL=/bin/sh

PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin

Order of crontab fields

minute hour mday month wday command

Then add a line for each command or script to run, specifying the time to run the command. This

example runs the specified custom Bourne shell script every day at two in the afternoon. Since the

path to the script is not specified in PATH , the full path to the script is given:

0 14 * * * /usr/home/dru/bin/mycustomscript.sh

!

Before using a custom script, make sure it is executable and test it with the limited

set of environment variables set by cron. To replicate the environment that would

be used to run the above cron entry, use:

env -i SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin

HOME=/home/dru LOGNAME=dru /usr/home/dru/bin/mycustomscript.sh

The environment set by cron is discussed in man:crontab[5]. Checking that scripts

operate correctly in a cron environment is especially important if they include any

commands that delete files using wildcards.

When finished editing the crontab, save the file. It will automatically be installed and cron will read

the crontab and run its cron jobs at their specified times. To list the cron jobs in a crontab, use this

command:

% crontab -l

0 14 * * * /usr/home/dru/bin/mycustomscript.sh

266

To remove all of the cron jobs in a user crontab:

% crontab -r

remove crontab for dru? y

12.4. Managing Services in FreeBSD

FreeBSD uses the man:rc[8] system of startup scripts during system initialization and for managing

services. The scripts listed in /etc/rc.d provide basic services which can be controlled with the start ,

stop , and restart options to man:service[8]. For instance, man:sshd[8] can be restarted with the

following command:

service sshd restart

This procedure can be used to start services on a running system. Services will be started

automatically at boot time as specified in man:rc.conf[5]. For example, to enable man:natd[8] at

system startup, add the following line to /etc/rc.conf :

natd_enable="YES"

If a natd_enable="NO" line is already present, change the NO to YES . The man:rc[8] scripts will

automatically load any dependent services during the next boot, as described below.

Since the man:rc[8] system is primarily intended to start and stop services at system startup and

shutdown time, the start , stop and restart options will only perform their action if the appropriate

/etc/rc.conf variable is set. For instance, sshd restart will only work if sshd_enable is set to YES in

/etc/rc.conf . To start , stop or restart a service regardless of the settings in /etc/rc.conf , these

commands should be prefixed with "one". For instance, to restart man:sshd[8] regardless of the

current /etc/rc.conf setting, execute the following command:

service sshd onerestart

To check if a service is enabled in /etc/rc.conf , run the appropriate man:rc[8] script with rcvar . This

example checks to see if man:sshd[8] is enabled in /etc/rc.conf :

service sshd rcvar

sshd

#

sshd_enable="YES"

(default: "")

!

The # sshd line is output from the above command, not a root console.

267

To determine whether or not a service is running, use status . For instance, to verify that

man:sshd[8] is running:

service sshd status

sshd is running as pid 433.

In some cases, it is also possible to reload a service. This attempts to send a signal to an individual

service, forcing the service to reload its configuration files. In most cases, this means sending the

service a SIGHUP signal. Support for this feature is not included for every service.

The man:rc[8] system is used for network services and it also contributes to most of the system

initialization. For instance, when the /etc/rc.d/bgfsck script is executed, it prints out the following

message:

Starting background file system checks in 60 seconds.

This script is used for background file system checks, which occur only during system initialization.

Many system services depend on other services to function properly. For example, man:yp[8] and

other RPC-based services may fail to start until after the man:rpcbind[8] service has started. To

resolve this issue, information about dependencies and other meta-data is included in the

comments at the top of each startup script. The man:rcorder[8] program is used to parse these

comments during system initialization to determine the order in which system services should be

invoked to satisfy the dependencies.

The following key word must be included in all startup scripts as it is required by man:rc.subr[8] to

"enable" the startup script:

¥ PROVIDE : Specifies the services this file provides.

The following key words may be included at the top of each startup script. They are not strictly

necessary, but are useful as hints to man:rcorder[8]:

¥ REQUIRE : Lists services which are required for this service. The script containing this key word

will run after the specified services.

¥ BEFORE : Lists services which depend on this service. The script containing this key word will run

before the specified services.

By carefully setting these keywords for each startup script, an administrator has a fine-grained

level of control of the startup order of the scripts, without the need for "runlevels" used by some

UNIX¨ operating systems.

Additional information can be found in man:rc[8] and man:rc.subr[8]. Refer to this article for

instructions on how to create custom man:rc[8] scripts.

268

https://docs.freebsd.org/en/articles/rc-scripting/

12.4.1. Managing System-Specific Configuration

The principal location for system configuration information is /etc/rc.conf . This file contains a wide

range of configuration information and it is read at system startup to configure the system. It

provides the configuration information for the rc* files.

The entries in /etc/rc.conf override the default settings in /etc/defaults/rc.conf . The file containing

the default settings should not be edited. Instead, all system-specific changes should be made to

/etc/rc.conf .

A number of strategies may be applied in clustered applications to separate site-wide configuration

from system-specific configuration in order to reduce administration overhead. The recommended

approach is to place system-specific configuration into /etc/rc.conf.local . For example, these entries

in /etc/rc.conf apply to all systems:

sshd_enable="YES"

keyrate="fast"

defaultrouter="10.1.1.254"

Whereas these entries in /etc/rc.conf.local apply to this system only:

hostname="node1.example.org"

ifconfig_fxp0="inet 10.1.1.1/8"

Distribute /etc/rc.conf to every system using an application such as rsync or puppet, while

/etc/rc.conf.local remains unique.

Upgrading the system will not overwrite /etc/rc.conf , so system configuration information will not

be lost.

!

Both /etc/rc.conf and /etc/rc.conf.local are parsed by man:sh[1]. This allows system

operators to create complex configuration scenarios. Refer to man:rc.conf[5] for

further information on this topic.

12.5. Setting Up Network Interface Cards

Adding and configuring a network interface card (NIC) is a common task for any FreeBSD

administrator.

12.5.1. Locating the Correct Driver

First, determine the model of the NIC and the chip it uses. FreeBSD supports a wide variety of NICs.

Check the Hardware Compatibility List for the FreeBSD release to see if the NIC is supported.

If the NIC is supported, determine the name of the FreeBSD driver for the NIC. Refer to

/usr/src/sys/conf/NOTES and /usr/src/sys/arch/conf/NOTES for the list of NIC drivers with some

information about the supported chipsets. When in doubt, read the manual page of the driver as it

269

will provide more information about the supported hardware and any known limitations of the

driver.

The drivers for common NICs are already present in the GENERIC kernel, meaning the NIC should

be probed during boot. The systemÕs boot messages can be viewed by typing more

/var/run/dmesg.boot and using the spacebar to scroll through the text. In this example, two Ethernet

NICs using the man:dc[4] driver are present on the system:

dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd38

000ff irq 15 at device 11.0 on pci0

miibus0: <MII bus> on dc0

bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0

bmtphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

dc0: Ethernet address: 00:a0:cc:da:da:da

dc0: [ITHREAD]

dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30

000ff irq 11 at device 12.0 on pci0

miibus1: <MII bus> on dc1

bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1

bmtphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

dc1: Ethernet address: 00:a0:cc:da:da:db

dc1: [ITHREAD]

If the driver for the NIC is not present in GENERIC , but a driver is available, the driver will need to

be loaded before the NIC can be configured and used. This may be accomplished in one of two

ways:

¥ The easiest way is to load a kernel module for the NIC using man:kldload[8]. To also

automatically load the driver at boot time, add the appropriate line to /boot/loader.conf . Not all

NIC drivers are available as modules.

¥ Alternatively, statically compile support for the NIC into a custom kernel. Refer to

/usr/src/sys/conf/NOTES , /usr/src/sys/arch/conf/NOTES and the manual page of the driver to

determine which line to add to the custom kernel configuration file. For more information

about recompiling the kernel, refer to crossref:kernelconfig[kernelconfig,Configuring the

FreeBSD Kernel]. If the NIC was detected at boot, the kernel does not need to be recompiled.

12.5.1.1. Using Windows¨ NDIS Drivers

Unfortunately, there are still many vendors that do not provide schematics for their drivers to the

open source community because they regard such information as trade secrets. Consequently, the

developers of FreeBSD and other operating systems are left with two choices: develop the drivers

by a long and pain-staking process of reverse engineering or using the existing driver binaries

available for Microsoft¨ Windows¨ platforms.

FreeBSD provides "native" support for the Network Driver Interface Specification (NDIS). It

includes man:ndisgen[8] which can be used to convert a Windows¨ XP driver into a format that

can be used on FreeBSD. As the man:ndis[4] driver uses a Windows¨ XP binary, it only runs on

i386ª and amd64 systems. PCI, CardBus, PCMCIA, and USB devices are supported.

270

To use man:ndisgen[8], three things are needed:

1. FreeBSD kernel sources.

2. A Windows¨ XP driver binary with a .SYS extension.

3. A Windows¨ XP driver configuration file with a .INF extension.

Download the .SYS and .INF files for the specific NIC. Generally, these can be found on the driver CD

or at the vendorÕs website. The following examples use W32DRIVER.SYS and W32DRIVER.INF .

The driver bit width must match the version of FreeBSD. For FreeBSD/i386, use a Windows¨ 32-bit

driver. For FreeBSD/amd64, a Windows¨ 64-bit driver is needed.

The next step is to compile the driver binary into a loadable kernel module. As root , use

man:ndisgen[8]:

ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS

This command is interactive and prompts for any extra information it requires. A new kernel

module will be generated in the current directory. Use man:kldload[8] to load the new module:

kldload ./W32DRIVER_SYS.ko

In addition to the generated kernel module, the ndis.ko and if_ndis.ko modules must be loaded. This

should happen automatically when any module that depends on man:ndis[4] is loaded. If not, load

them manually, using the following commands:

kldload ndis

kldload if_ndis

The first command loads the man:ndis[4] miniport driver wrapper and the second loads the

generated NIC driver.

Check man:dmesg[8] to see if there were any load errors. If all went well, the output should be

similar to the following:

ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1

ndis0: NDIS API version: 5.0

ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5

ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps

ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps

From here, ndis0 can be configured like any other NIC.

To configure the system to load the man:ndis[4] modules at boot time, copy the generated module,

W32DRIVER_SYS.ko , to /boot/modules . Then, add the following line to /boot/loader.conf :

271

W32DRIVER_SYS_load="YES"

12.5.2. Configuring the Network Card

Once the right driver is loaded for the NIC, the card needs to be configured. It may have been

configured at installation time by man:bsdinstall[8].

To display the NIC configuration, enter the following command:

% ifconfig

dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê options=80008<VLAN_MTU,LINKSTATE>

Ê ether 00:a0:cc:da:da:da

Ê inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255

Ê media: Ethernet autoselect (100baseTX <full-duplex>)

Ê status: active

dc1: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê options=80008<VLAN_MTU,LINKSTATE>

Ê ether 00:a0:cc:da:da:db

Ê inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255

Ê media: Ethernet 10baseT/UTP

Ê status: no carrier

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384

Ê options=3<RXCSUM,TXCSUM>

Ê inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4

Ê inet6 ::1 prefixlen 128

Ê inet 127.0.0.1 netmask 0xff000000

Ê nd6 options=3<PERFORMNUD,ACCEPT_RTADV>

In this example, the following devices were displayed:

¥ dc0 : The first Ethernet interface.

¥ dc1 : The second Ethernet interface.

¥ lo0 : The loopback device.

FreeBSD uses the driver name followed by the order in which the card is detected at boot to name

the NIC. For example, sis2 is the third NIC on the system using the man:sis[4] driver.

In this example, dc0 is up and running. The key indicators are:

1. UP means that the card is configured and ready.

2. The card has an Internet (inet) address, 192.168.1.3 .

3. It has a valid subnet mask (netmask), where 0xffffff00 is the same as 255.255.255.0 .

4. It has a valid broadcast address, 192.168.1.255 .

5. The MAC address of the card (ether) is 00:a0:cc:da:da:da .

272

6. The physical media selection is on autoselection mode (media: Ethernet autoselect (100baseTX

<full-duplex>)). In this example, dc1 is configured to run with 10baseT/UTP media. For more

information on available media types for a driver, refer to its manual page.

7. The status of the link (status) is active , indicating that the carrier signal is detected. For dc1 , the

status: no carrier status is normal when an Ethernet cable is not plugged into the card.

If the man:ifconfig[8] output had shown something similar to:

dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê options=80008<VLAN_MTU,LINKSTATE>

Ê ether 00:a0:cc:da:da:da

Ê media: Ethernet autoselect (100baseTX <full-duplex>)

Ê status: active

it would indicate the card has not been configured.

The card must be configured as root . The NIC configuration can be performed from the command

line with man:ifconfig[8] but will not persist after a reboot unless the configuration is also added to

/etc/rc.conf . If a DHCP server is present on the LAN, just add this line:

ifconfig_dc0="DHCP"

Replace dc0 with the correct value for the system.

The line added, then, follow the instructions given in Testing and Troubleshooting .

!

If the network was configured during installation, some entries for the NIC(s) may

be already present. Double check /etc/rc.conf before adding any lines.

If there is no DHCP server, the NIC(s) must be configured manually. Add a line for each NIC present

on the system, as seen in this example:

ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0"

ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP"

Replace dc0 and dc1 and the IP address information with the correct values for the system. Refer to

the man page for the driver, man:ifconfig[8], and man:rc.conf[5] for more details about the allowed

options and the syntax of /etc/rc.conf .

If the network is not using DNS, edit /etc/hosts to add the names and IP addresses of the hosts on the

LAN, if they are not already there. For more information, refer to man:hosts[5] and to

/usr/shared/examples/etc/hosts .

273

!

If there is no DHCP server and access to the Internet is needed, manually configure

the default gateway and the nameserver:

echo 'defaultrouter="your_default_router"' >> /etc/rc.conf

echo 'nameserver your_DNS_server' >> /etc/resolv.conf

12.5.3. Testing and Troubleshooting

Once the necessary changes to /etc/rc.conf are saved, a reboot can be used to test the network

configuration and to verify that the system restarts without any configuration errors. Alternatively,

apply the settings to the networking system with this command:

service netif restart

!

If a default gateway has been set in /etc/rc.conf , also issue this command:

service routing restart

Once the networking system has been relaunched, test the NICs.

12.5.3.1. Testing the Ethernet Card

To verify that an Ethernet card is configured correctly, man:ping[8] the interface itself, and then

man:ping[8] another machine on the LAN:

% ping -c5 192.168.1.3

PING 192.168.1.3 (192.168.1.3): 56 data bytes

64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms

64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms

64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms

64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms

64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms

--- 192.168.1.3 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms

274

% ping -c5 192.168.1.2

PING 192.168.1.2 (192.168.1.2): 56 data bytes

64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms

64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms

64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms

64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms

64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms

--- 192.168.1.2 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.700/0.729/0.766/0.025 ms

To test network resolution, use the host name instead of the IP address. If there is no DNS server on

the network, /etc/hosts must first be configured. To this purpose, edit /etc/hosts to add the names

and IP addresses of the hosts on the LAN, if they are not already there. For more information, refer

to man:hosts[5] and to /usr/shared/examples/etc/hosts .

12.5.3.2. Troubleshooting

When troubleshooting hardware and software configurations, check the simple things first. Is the

network cable plugged in? Are the network services properly configured? Is the firewall configured

correctly? Is the NIC supported by FreeBSD? Before sending a bug report, always check the

Hardware Notes, update the version of FreeBSD to the latest STABLE version, check the mailing list

archives, and search the Internet.

If the card works, yet performance is poor, read through man:tuning[7]. Also, check the network

configuration as incorrect network settings can cause slow connections.

Some users experience one or two device timeout messages, which is normal for some cards. If they

continue, or are bothersome, determine if the device is conflicting with another device. Double

check the cable connections. Consider trying another card.

To resolve watchdog timeout errors, first check the network cable. Many cards require a PCI slot

which supports bus mastering. On some old motherboards, only one PCI slot allows it, usually slot

0. Check the NIC and the motherboard documentation to determine if that may be the problem.

No route to host messages occur if the system is unable to route a packet to the destination host.

This can happen if no default route is specified or if a cable is unplugged. Check the output of

netstat -rn and make sure there is a valid route to the host. If there is not, read crossref:advanced-

networking[network-routing,ÒGateways and RoutesÓ].

ping: sendto: Permission denied error messages are often caused by a misconfigured firewall. If a

firewall is enabled on FreeBSD but no rules have been defined, the default policy is to deny all

traffic, even man:ping[8]. Refer to crossref:firewalls[firewalls,Firewalls] for more information.

Sometimes performance of the card is poor or below average. In these cases, try setting the media

selection mode from autoselect to the correct media selection. While this works for most hardware,

it may or may not resolve the issue. Again, check all the network settings, and refer to

man:tuning[7].

275

12.6. Virtual Hosts

A common use of FreeBSD is virtual site hosting, where one server appears to the network as many

servers. This is achieved by assigning multiple network addresses to a single interface.

A given network interface has one "real" address, and may have any number of "alias" addresses.

These aliases are normally added by placing alias entries in /etc/rc.conf , as seen in this example:

ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx"

Alias entries must start with alias 0 using a sequential number such as alias0 , alias1 , and so on.

The configuration process will stop at the first missing number.

The calculation of alias netmasks is important. For a given interface, there must be one address

which correctly represents the networkÕs netmask. Any other addresses which fall within this

network must have a netmask of all 1 s, expressed as either 255.255.255.255 or 0xffffffff .

For example, consider the case where the fxp0 interface is connected to two networks: 10.1.1.0

with a netmask of 255.255.255.0 and 202.0.75.16 with a netmask of 255.255.255.240 . The system is

to be configured to appear in the ranges 10.1.1.1 through 10.1.1.5 and 202.0.75.17 through

202.0.75.20 . Only the first address in a given network range should have a real netmask. All the rest

(10.1.1.2 through 10.1.1.5 and 202.0.75.18 through 202.0.75.20) must be configured with a

netmask of 255.255.255.255 .

The following /etc/rc.conf entries configure the adapter correctly for this scenario:

ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0"

ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255"

ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255"

ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255"

ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255"

ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240"

ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255"

ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255"

ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255"

A simpler way to express this is with a space-separated list of IP address ranges. The first address

will be given the indicated subnet mask and the additional addresses will have a subnet mask of

255.255.255.255 .

ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28"

12.7. Configuring System Logging

Generating and reading system logs is an important aspect of system administration. The

information in system logs can be used to detect hardware and software issues as well as

276

application and system configuration errors. This information also plays an important role in

security auditing and incident response. Most system daemons and applications will generate log

entries.

FreeBSD provides a system logger, syslogd, to manage logging. By default, syslogd is started when

the system boots. This is controlled by the variable syslogd_enable in /etc/rc.conf . There are

numerous application arguments that can be set using syslogd_flags in /etc/rc.conf . Refer to

man:syslogd[8] for more information on the available arguments.

This section describes how to configure the FreeBSD system logger for both local and remote

logging and how to perform log rotation and log management.

12.7.1. Configuring Local Logging

The configuration file, /etc/syslog.conf , controls what syslogd does with log entries as they are

received. There are several parameters to control the handling of incoming events. The facility

describes which subsystem generated the message, such as the kernel or a daemon, and the level

describes the severity of the event that occurred. This makes it possible to configure if and where a

log message is logged, depending on the facility and level. It is also possible to take action

depending on the application that sent the message, and in the case of remote logging, the

hostname of the machine generating the logging event.

This configuration file contains one line per action, where the syntax for each line is a selector field

followed by an action field. The syntax of the selector field is facility.level which will match log

messages from facility at level level or higher. It is also possible to add an optional comparison flag

before the level to specify more precisely what is logged. Multiple selector fields can be used for the

same action, and are separated with a semicolon (;). Using * will match everything. The action field

denotes where to send the log message, such as to a file or remote log host. As an example, here is

the default syslog.conf from FreeBSD:

277

$FreeBSD$

#

Spaces ARE valid field separators in this file. However,

other *nix-like systems still insist on using tabs as field

separators. If you are sharing this file between systems, you

may want to use only tabs as field separators here.

Consult the syslog.conf(5) manpage.

*.err;kern.warning;auth.notice;mail.crit /dev/console

*.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

security.* /var/log/security

auth.info;authpriv.info /var/log/auth.log

mail.info /var/log/maillog

lpr.info /var/log/lpd-errs

ftp.info /var/log/xferlog

cron.* /var/log/cron

!-devd

*.=debug /var/log/debug.log

*.emerg *

uncomment this to log all writes to /dev/console to /var/log/console.log

#console.info /var/log/console.log

uncomment this to enable logging of all log messages to /var/log/all.log

touch /var/log/all.log and chmod it to mode 600 before it will work

#*.* /var/log/all.log

uncomment this to enable logging to a remote loghost named loghost

#*.* @loghost

uncomment these if you're running inn

news.crit /var/log/news/news.crit

news.err /var/log/news/news.err

news.notice /var/log/news/news.notice

Uncomment this if you wish to see messages produced by devd

!devd

*.>=info

!ppp

. /var/log/ppp.log

!*

In this example:

¥ Line 8 matches all messages with a level of err or higher, as well as kern.warning , auth.notice

and mail.crit , and sends these log messages to the console (/dev/console).

¥ Line 12 matches all messages from the mail facility at level info or above and logs the messages

to /var/log/maillog .

¥ Line 17 uses a comparison flag (=) to only match messages at level debug and logs them to

/var/log/debug.log .

¥ Line 33 is an example usage of a program specification. This makes the rules following it only

valid for the specified program. In this case, only the messages generated by ppp are logged to

/var/log/ppp.log .

278

The available levels, in order from most to least critical are emerg , alert , crit , err , warning , notice ,

info , and debug .

The facilities, in no particular order, are auth , authpriv , console , cron , daemon , ftp , kern , lpr , mail ,

mark , news , security , syslog , user , uucp , and local0 through local7 . Be aware that other operating

systems might have different facilities.

To log everything of level notice and higher to /var/log/daemon.log , add the following entry:

daemon.notice /var/log/daemon.log

For more information about the different levels and facilities, refer to man:syslog[3] and

man:syslogd[8]. For more information about /etc/syslog.conf , its syntax, and more advanced usage

examples, see man:syslog.conf[5].

12.7.2. Log Management and Rotation

Log files can grow quickly, taking up disk space and making it more difficult to locate useful

information. Log management attempts to mitigate this. In FreeBSD, newsyslog is used to manage

log files. This built-in program periodically rotates and compresses log files, and optionally creates

missing log files and signals programs when log files are moved. The log files may be generated by

syslogd or by any other program which generates log files. While newsyslog is normally run from

man:cron[8], it is not a system daemon. In the default configuration, it runs every hour.

To know which actions to take, newsyslog reads its configuration file, /etc/newsyslog.conf . This file

contains one line for each log file that newsyslog manages. Each line states the file owner,

permissions, when to rotate that file, optional flags that affect log rotation, such as compression,

and programs to signal when the log is rotated. Here is the default configuration in FreeBSD:

279

configuration file for newsyslog

$FreeBSD$

#

Entries which do not specify the '/pid_file' field will cause the

syslogd process to be signalled when that log file is rotated. This

action is only appropriate for log files which are written to by the

syslogd process (ie, files listed in /etc/syslog.conf). If there

is no process which needs to be signalled when a given log file is

rotated, then the entry for that file should include the 'N' flag.

#

The 'flags' field is one or more of the letters: BCDGJNUXZ or a '-'.

#

Note: some sites will want to select more restrictive protections than the

defaults. In particular, it may be desirable to switch many of the 644

entries to 640 or 600. For example, some sites will consider the

contents of maillog, messages, and lpd-errs to be confidential. In the

future, these defaults may change to more conservative ones.

#

logfilename [owner:group] mode count size when flags [/pid_file]

[sig_num]

/var/log/all.log 600 7 * @T00 J

/var/log/amd.log 644 7 100 * J

/var/log/auth.log 600 7 100 @0101T JC

/var/log/console.log 600 5 100 * J

/var/log/cron 600 3 100 * JC

/var/log/daily.log 640 7 * @T00 JN

/var/log/debug.log 600 7 100 * JC

/var/log/kerberos.log 600 7 100 * J

/var/log/lpd-errs 644 7 100 * JC

/var/log/maillog 640 7 * @T00 JC

/var/log/messages 644 5 100 @0101T JC

/var/log/monthly.log 640 12 * $M1D0 JN

/var/log/pflog 600 3 100 * JB

/var/run/pflogd.pid

/var/log/ppp.log root:network 640 3 100 * JC

/var/log/devd.log 644 3 100 * JC

/var/log/security 600 10 100 * JC

/var/log/sendmail.st 640 10 * 168 B

/var/log/utx.log 644 3 * @01T05 B

/var/log/weekly.log 640 5 1 $W6D0 JN

/var/log/xferlog 600 7 100 * JC

Each line starts with the name of the log to be rotated, optionally followed by an owner and group

for both rotated and newly created files. The mode field sets the permissions on the log file and count

denotes how many rotated log files should be kept. The size and when fields tell newsyslog when to

rotate the file. A log file is rotated when either its size is larger than the size field or when the time

in the when field has passed. An asterisk (*) means that this field is ignored. The flags field gives

further instructions, such as how to compress the rotated file or to create the log file if it is missing.

The last two fields are optional and specify the name of the Process ID (PID) file of a process and a

280

signal number to send to that process when the file is rotated.

For more information on all fields, valid flags, and how to specify the rotation time, refer to

man:newsyslog.conf[5]. Since newsyslog is run from man:cron[8], it cannot rotate files more often

than it is scheduled to run from man:cron[8].

12.7.3. Configuring Remote Logging

Monitoring the log files of multiple hosts can become unwieldy as the number of systems increases.

Configuring centralized logging can reduce some of the administrative burden of log file

administration.

In FreeBSD, centralized log file aggregation, merging, and rotation can be configured using syslogd

and newsyslog. This section demonstrates an example configuration, where host A , named

logserv.example.com , will collect logging information for the local network. Host B , named

logclient.example.com , will be configured to pass logging information to the logging server.

12.7.3.1. Log Server Configuration

A log server is a system that has been configured to accept logging information from other hosts.

Before configuring a log server, check the following:

¥ If there is a firewall between the logging server and any logging clients, ensure that the firewall

ruleset allows UDP port 514 for both the clients and the server.

¥ The logging server and all client machines must have forward and reverse entries in the local

DNS. If the network does not have a DNS server, create entries in each systemÕs /etc/hosts .

Proper name resolution is required so that log entries are not rejected by the logging server.

On the log server, edit /etc/syslog.conf to specify the name of the client to receive log entries from,

the logging facility to be used, and the name of the log to store the hostÕs log entries. This example

adds the hostname of B , logs all facilities, and stores the log entries in /var/log/logclient.log .

Example 24. Sample Log Server Configuration

+logclient.example.com

. /var/log/logclient.log

When adding multiple log clients, add a similar two-line entry for each client. More information

about the available facilities may be found in man:syslog.conf[5].

Next, configure /etc/rc.conf :

syslogd_enable="YES"

syslogd_flags="-a logclient.example.com -v -v"

The first entry starts syslogd at system boot. The second entry allows log entries from the specified

client. The -v -v increases the verbosity of logged messages. This is useful for tweaking facilities as

281

administrators are able to see what type of messages are being logged under each facility.

Multiple -a options may be specified to allow logging from multiple clients. IP addresses and whole

netblocks may also be specified. Refer to man:syslogd[8] for a full list of possible options.

Finally, create the log file:

touch /var/log/logclient.log

At this point, syslogd should be restarted and verified:

service syslogd restart

pgrep syslog

If a PID is returned, the server restarted successfully, and client configuration can begin. If the

server did not restart, consult /var/log/messages for the error.

12.7.3.2. Log Client Configuration

A logging client sends log entries to a logging server on the network. The client also keeps a local

copy of its own logs.

Once a logging server has been configured, edit /etc/rc.conf on the logging client:

syslogd_enable="YES"

syslogd_flags="-s -v -v"

The first entry enables syslogd on boot up. The second entry prevents logs from being accepted by

this client from other hosts (-s) and increases the verbosity of logged messages.

Next, define the logging server in the clientÕs /etc/syslog.conf . In this example, all logged facilities

are sent to a remote system, denoted by the @ symbol, with the specified hostname:

. @logserv.example.com

After saving the edit, restart syslogd for the changes to take effect:

service syslogd restart

To test that log messages are being sent across the network, use man:logger[1] on the client to send

a message to syslogd:

logger "Test message from logclient"

282

This message should now exist both in /var/log/messages on the client and /var/log/logclient.log on

the log server.

12.7.3.3. Debugging Log Servers

If no messages are being received on the log server, the cause is most likely a network connectivity

issue, a hostname resolution issue, or a typo in a configuration file. To isolate the cause, ensure that

both the logging server and the logging client are able to ping each other using the hostname

specified in their /etc/rc.conf . If this fails, check the network cabling, the firewall ruleset, and the

hostname entries in the DNS server or /etc/hosts on both the logging server and clients. Repeat until

the ping is successful from both hosts.

If the ping succeeds on both hosts but log messages are still not being received, temporarily

increase logging verbosity to narrow down the configuration issue. In the following example,

/var/log/logclient.log on the logging server is empty and /var/log/messages on the logging client does

not indicate a reason for the failure. To increase debugging output, edit the syslogd_flags entry on

the logging server and issue a restart:

syslogd_flags="-d -a logclient.example.com -v -v"

service syslogd restart

Debugging data similar to the following will flash on the console immediately after the restart:

logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart

syslogd: restarted

logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is

/boot/kernel/kernel

Logging to FILE /var/log/messages

syslogd: kernel boot file is /boot/kernel/kernel

cvthname(192.168.1.10)

validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com;

rejected in rule 0 due to name mismatch.

In this example, the log messages are being rejected due to a typo which results in a hostname

mismatch. The clientÕs hostname should be logclient , not logclien . Fix the typo, issue a restart, and

verify the results:

283

service syslogd restart

logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart

syslogd: restarted

logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is

/boot/kernel/kernel

syslogd: kernel boot file is /boot/kernel/kernel

logmsg: pri 166, flags 17, from logserv.example.com,

msg Dec 10 20:55:02 <syslog.err> logserv.example.com syslogd: exiting on signal 2

cvthname(192.168.1.10)

validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com;

accepted in rule 0.

logmsg: pri 15, flags 0, from logclient.example.com, msg Dec 11 02:01:28 trhodes: Test

message 2

Logging to FILE /var/log/logclient.log

Logging to FILE /var/log/messages

At this point, the messages are being properly received and placed in the correct file.

12.7.3.4. Security Considerations

As with any network service, security requirements should be considered before implementing a

logging server. Log files may contain sensitive data about services enabled on the local host, user

accounts, and configuration data. Network data sent from the client to the server will not be

encrypted or password protected. If a need for encryption exists, consider using

package:security/stunnel[], which will transmit the logging data over an encrypted tunnel.

Local security is also an issue. Log files are not encrypted during use or after log rotation. Local

users may access log files to gain additional insight into system configuration. Setting proper

permissions on log files is critical. The built-in log rotator, newsyslog, supports setting permissions

on newly created and rotated log files. Setting log files to mode 600 should prevent unwanted access

by local users. Refer to man:newsyslog.conf[5] for additional information.

12.8. Configuration Files

12.8.1. /etc Layout

There are a number of directories in which configuration information is kept. These include:

/etc Generic system-specific configuration

information.

/etc/defaults Default versions of system configuration files.

/etc/mail Extra man:sendmail[8] configuration and other

MTA configuration files.

/etc/ppp Configuration for both user- and kernel-ppp

programs.

284

/usr/local/etc Configuration files for installed applications.

May contain per-application subdirectories.

/usr/local/etc/rc.d man:rc[8] scripts for installed applications.

/var/db Automatically generated system-specific

database files, such as the package database and

the man:locate[1] database.

12.8.2. Hostnames

12.8.2.1. /etc/resolv.conf

How a FreeBSD system accesses the Internet Domain Name System (DNS) is controlled by

man:resolv.conf[5].

The most common entries to /etc/resolv.conf are:

nameserver

The IP address of a name server the resolver

should query. The servers are queried in the

order listed with a maximum of three.

search

Search list for hostname lookup. This is

normally determined by the domain of the local

hostname.

domain

The local domain name.

A typical /etc/resolv.conf looks like this:

search example.com

nameserver 147.11.1.11

nameserver 147.11.100.30

!

Only one of the search and domain options should be used.

When using DHCP, man:dhclient[8] usually rewrites /etc/resolv.conf with information received from

the DHCP server.

12.8.2.2. /etc/hosts

/etc/hosts is a simple text database which works in conjunction with DNS and NIS to provide host

name to IP address mappings. Entries for local computers connected via a LAN can be added to this

file for simplistic naming purposes instead of setting up a man:named[8] server. Additionally,

/etc/hosts can be used to provide a local record of Internet names, reducing the need to query

external DNS servers for commonly accessed names.

285

$FreeBSD$

#

#

Host Database

#

This file should contain the addresses and aliases for local hosts that

share this file. Replace 'my.domain' below with the domainname of your

machine.

#

In the presence of the domain name service or NIS, this file may

not be consulted at all; see /etc/nsswitch.conf for the resolution order.

#

#

::1 localhost localhost.my.domain

127.0.0.1 localhost localhost.my.domain

#

Imaginary network.

#10.0.0.2 myname.my.domain myname

#10.0.0.3 myfriend.my.domain myfriend

#

According to RFC 1918, you can use the following IP networks for

private nets which will never be connected to the Internet:

#

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

#

In case you want to be able to connect to the Internet, you need

real official assigned numbers. Do not try to invent your own network

numbers but instead get one from your network provider (if any) or

from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.)

#

The format of /etc/hosts is as follows:

[Internet address] [official hostname] [alias1] [alias2] ...

For example:

10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2

Consult man:hosts[5] for more information.

12.9. Tuning with man:sysctl[8]

man:sysctl[8] is used to make changes to a running FreeBSD system. This includes many advanced

options of the TCP/IP stack and virtual memory system that can dramatically improve performance

286

for an experienced system administrator. Over five hundred system variables can be read and set

using man:sysctl[8].

At its core, man:sysctl[8] serves two functions: to read and to modify system settings.

To view all readable variables:

% sysctl -a

To read a particular variable, specify its name:

% sysctl kern.maxproc

kern.maxproc: 1044

To set a particular variable, use the variable = value syntax:

sysctl kern.maxfiles=5000

kern.maxfiles: 2088 -> 5000

Settings of sysctl variables are usually either strings, numbers, or booleans, where a boolean is 1 for

yes or 0 for no.

To automatically set some variables each time the machine boots, add them to /etc/sysctl.conf . For

more information, refer to man:sysctl.conf[5] and sysctl.conf .

12.9.1. sysctl.conf

The configuration file for man:sysctl[8], /etc/sysctl.conf , looks much like /etc/rc.conf . Values are set

in a variable=value form. The specified values are set after the system goes into multi-user mode.

Not all variables are settable in this mode.

For example, to turn off logging of fatal signal exits and prevent users from seeing processes started

by other users, the following tunables can be set in /etc/sysctl.conf :

Do not log fatal signal exits (e.g., sig 11)

kern.logsigexit=0

Prevent users from seeing information about processes that

are being run under another UID.

security.bsd.see_other_uids=0

12.9.2. man:sysctl[8] Read-only

In some cases it may be desirable to modify read-only man:sysctl[8] values, which will require a

reboot of the system.

287

For instance, on some laptop models the man:cardbus[4] device will not probe memory ranges and

will fail with errors similar to:

cbb0: Could not map register memory

device_probe_and_attach: cbb0 attach returned 12

The fix requires the modification of a read-only man:sysctl[8] setting. Add

hw.pci.allow_unsupported_io_range=1 to /boot/loader.conf and reboot. Now man:cardbus[4] should

work properly.

12.10. Tuning Disks

The following section will discuss various tuning mechanisms and options which may be applied to

disk devices. In many cases, disks with mechanical parts, such as SCSI drives, will be the bottleneck

driving down the overall system performance. While a solution is to install a drive without

mechanical parts, such as a solid state drive, mechanical drives are not going away anytime in the

near future. When tuning disks, it is advisable to utilize the features of the man:iostat[8] command

to test various changes to the system. This command will allow the user to obtain valuable

information on system IO.

12.10.1. Sysctl Variables

12.10.1.1. vfs.vmiodirenable

The vfs.vmiodirenable man:sysctl[8] variable may be set to either 0 (off) or 1 (on). It is set to 1 by

default. This variable controls how directories are cached by the system. Most directories are small,

using just a single fragment (typically 1 K) in the file system and typically 512 bytes in the buffer

cache. With this variable turned off, the buffer cache will only cache a fixed number of directories,

even if the system has a huge amount of memory. When turned on, this man:sysctl[8] allows the

buffer cache to use the VM page cache to cache the directories, making all the memory available for

caching directories. However, the minimum in-core memory used to cache a directory is the

physical page size (typically 4 K) rather than 512 bytes. Keeping this option enabled is

recommended if the system is running any services which manipulate large numbers of files. Such

services can include web caches, large mail systems, and news systems. Keeping this option on will

generally not reduce performance, even with the wasted memory, but one should experiment to

find out.

12.10.1.2. vfs.write_behind

The vfs.write_behind man:sysctl[8] variable defaults to 1 (on). This tells the file system to issue

media writes as full clusters are collected, which typically occurs when writing large sequential

files. This avoids saturating the buffer cache with dirty buffers when it would not benefit I/O

performance. However, this may stall processes and under certain circumstances should be turned

off.

288

12.10.1.3. vfs.hirunningspace

The vfs.hirunningspace man:sysctl[8] variable determines how much outstanding write I/O may be

queued to disk controllers system-wide at any given instance. The default is usually sufficient, but

on machines with many disks, try bumping it up to four or five megabytes . Setting too high a value

which exceeds the buffer cacheÕs write threshold can lead to bad clustering performance. Do not set

this value arbitrarily high as higher write values may add latency to reads occurring at the same

time.

There are various other buffer cache and VM page cache related man:sysctl[8] values. Modifying

these values is not recommended as the VM system does a good job of automatically tuning itself.

12.10.1.4. vm.swap_idle_enabled

The vm.swap_idle_enabled man:sysctl[8] variable is useful in large multi-user systems with many

active login users and lots of idle processes. Such systems tend to generate continuous pressure on

free memory reserves. Turning this feature on and tweaking the swapout hysteresis (in idle

seconds) via vm.swap_idle_threshold1 and vm.swap_idle_threshold2 depresses the priority of

memory pages associated with idle processes more quickly then the normal pageout algorithm.

This gives a helping hand to the pageout daemon. Only turn this option on if needed, because the

tradeoff is essentially pre-page memory sooner rather than later which eats more swap and disk

bandwidth. In a small system this option will have a determinable effect, but in a large system that

is already doing moderate paging, this option allows the VM system to stage whole processes into

and out of memory easily.

12.10.1.5. hw.ata.wc

Turning off IDE write caching reduces write bandwidth to IDE disks, but may sometimes be

necessary due to data consistency issues introduced by hard drive vendors. The problem is that

some IDE drives lie about when a write completes. With IDE write caching turned on, IDE hard

drives write data to disk out of order and will sometimes delay writing some blocks indefinitely

when under heavy disk load. A crash or power failure may cause serious file system corruption.

Check the default on the system by observing the hw.ata.wc man:sysctl[8] variable. If IDE write

caching is turned off, one can set this read-only variable to 1 in /boot/loader.conf in order to enable

it at boot time.

For more information, refer to man:ata[4].

12.10.1.6. SCSI_DELAY (kern.cam.scsi_delay)

The SCSI_DELAY kernel configuration option may be used to reduce system boot times. The defaults

are fairly high and can be responsible for 15 seconds of delay in the boot process. Reducing it to 5

seconds usually works with modern drives. The kern.cam.scsi_delay boot time tunable should be

used. The tunable and kernel configuration option accept values in terms of milliseconds and not

seconds .

12.10.2. Soft Updates

To fine-tune a file system, use man:tunefs[8]. This program has many different options. To toggle

Soft Updates on and off, use:

289

tunefs -n enable /filesystem

tunefs -n disable /filesystem

A file system cannot be modified with man:tunefs[8] while it is mounted. A good time to enable Soft

Updates is before any partitions have been mounted, in single-user mode.

Soft Updates is recommended for UFS file systems as it drastically improves meta-data

performance, mainly file creation and deletion, through the use of a memory cache. There are two

downsides to Soft Updates to be aware of. First, Soft Updates guarantee file system consistency in

the case of a crash, but could easily be several seconds or even a minute behind updating the

physical disk. If the system crashes, unwritten data may be lost. Secondly, Soft Updates delay the

freeing of file system blocks. If the root file system is almost full, performing a major update, such

as make installworld , can cause the file system to run out of space and the update to fail.

12.10.2.1. More Details About Soft Updates

Meta-data updates are updates to non-content data like inodes or directories. There are two

traditional approaches to writing a file systemÕs meta-data back to disk.

Historically, the default behavior was to write out meta-data updates synchronously. If a directory

changed, the system waited until the change was actually written to disk. The file data buffers (file

contents) were passed through the buffer cache and backed up to disk later on asynchronously. The

advantage of this implementation is that it operates safely. If there is a failure during an update,

meta-data is always in a consistent state. A file is either created completely or not at all. If the data

blocks of a file did not find their way out of the buffer cache onto the disk by the time of the crash,

man:fsck[8] recognizes this and repairs the file system by setting the file length to 0 . Additionally,

the implementation is clear and simple. The disadvantage is that meta-data changes are slow. For

example, rm -r touches all the files in a directory sequentially, but each directory change will be

written synchronously to the disk. This includes updates to the directory itself, to the inode table,

and possibly to indirect blocks allocated by the file. Similar considerations apply for unrolling large

hierarchies using tar -x .

The second approach is to use asynchronous meta-data updates. This is the default for a UFS file

system mounted with mount -o async . Since all meta-data updates are also passed through the

buffer cache, they will be intermixed with the updates of the file content data. The advantage of

this implementation is there is no need to wait until each meta-data update has been written to

disk, so all operations which cause huge amounts of meta-data updates work much faster than in

the synchronous case. This implementation is still clear and simple, so there is a low risk for bugs

creeping into the code. The disadvantage is that there is no guarantee for a consistent state of the

file system. If there is a failure during an operation that updated large amounts of meta-data, like a

power failure or someone pressing the reset button, the file system will be left in an unpredictable

state. There is no opportunity to examine the state of the file system when the system comes up

again as the data blocks of a file could already have been written to the disk while the updates of

the inode table or the associated directory were not. It is impossible to implement a man:fsck[8]

which is able to clean up the resulting chaos because the necessary information is not available on

the disk. If the file system has been damaged beyond repair, the only choice is to reformat it and

restore from backup.

290

The usual solution for this problem is to implement dirty region logging , which is also referred to as

journaling . Meta-data updates are still written synchronously, but only into a small region of the

disk. Later on, they are moved to their proper location. Since the logging area is a small, contiguous

region on the disk, there are no long distances for the disk heads to move, even during heavy

operations, so these operations are quicker than synchronous updates. Additionally, the complexity

of the implementation is limited, so the risk of bugs being present is low. A disadvantage is that all

meta-data is written twice, once into the logging region and once to the proper location, so

performance "pessimization" might result. On the other hand, in case of a crash, all pending meta-

data operations can be either quickly rolled back or completed from the logging area after the

system comes up again, resulting in a fast file system startup.

Kirk McKusick, the developer of Berkeley FFS, solved this problem with Soft Updates. All pending

meta-data updates are kept in memory and written out to disk in a sorted sequence ("ordered meta-

data updates"). This has the effect that, in case of heavy meta-data operations, later updates to an

item "catch" the earlier ones which are still in memory and have not already been written to disk.

All operations are generally performed in memory before the update is written to disk and the data

blocks are sorted according to their position so that they will not be on the disk ahead of their meta-

data. If the system crashes, an implicit "log rewind" causes all operations which were not written to

the disk appear as if they never happened. A consistent file system state is maintained that appears

to be the one of 30 to 60 seconds earlier. The algorithm used guarantees that all resources in use are

marked as such in their blocks and inodes. After a crash, the only resource allocation error that

occurs is that resources are marked as "used" which are actually "free". man:fsck[8] recognizes this

situation, and frees the resources that are no longer used. It is safe to ignore the dirty state of the

file system after a crash by forcibly mounting it with mount -f . In order to free resources that may

be unused, man:fsck[8] needs to be run at a later time. This is the idea behind the background

man:fsck[8] : at system startup time, only a snapshot of the file system is recorded and man:fsck[8] is

run afterwards. All file systems can then be mounted "dirty", so the system startup proceeds in

multi-user mode. Then, background man:fsck[8] is scheduled for all file systems where this is

required, to free resources that may be unused. File systems that do not use Soft Updates still need

the usual foreground man:fsck[8].

The advantage is that meta-data operations are nearly as fast as asynchronous updates and are

faster than logging , which has to write the meta-data twice. The disadvantages are the complexity

of the code, a higher memory consumption, and some idiosyncrasies. After a crash, the state of the

file system appears to be somewhat "older". In situations where the standard synchronous

approach would have caused some zero-length files to remain after the man:fsck[8], these files do

not exist at all with Soft Updates because neither the meta-data nor the file contents have been

written to disk. Disk space is not released until the updates have been written to disk, which may

take place some time after running man:rm[1]. This may cause problems when installing large

amounts of data on a file system that does not have enough free space to hold all the files twice.

12.11. Tuning Kernel Limits

12.11.1. File/Process Limits

12.11.1.1. kern.maxfiles

The kern.maxfiles man:sysctl[8] variable can be raised or lowered based upon system

291

requirements. This variable indicates the maximum number of file descriptors on the system.

When the file descriptor table is full, file: table is full will show up repeatedly in the system

message buffer, which can be viewed using man:dmesg[8].

Each open file, socket, or fifo uses one file descriptor. A large-scale production server may easily

require many thousands of file descriptors, depending on the kind and number of services running

concurrently.

In older FreeBSD releases, the default value of kern.maxfiles is derived from maxusers in the kernel

configuration file. kern.maxfiles grows proportionally to the value of maxusers . When compiling a

custom kernel, consider setting this kernel configuration option according to the use of the system.

From this number, the kernel is given most of its pre-defined limits. Even though a production

machine may not have 256 concurrent users, the resources needed may be similar to a high-scale

web server.

The read-only man:sysctl[8] variable kern.maxusers is automatically sized at boot based on the

amount of memory available in the system, and may be determined at run-time by inspecting the

value of kern.maxusers . Some systems require larger or smaller values of kern.maxusers and values

of 64 , 128 , and 256 are not uncommon. Going above 256 is not recommended unless a huge number

of file descriptors is needed. Many of the tunable values set to their defaults by kern.maxusers may

be individually overridden at boot-time or run-time in /boot/loader.conf . Refer to

man:loader.conf[5] and /boot/defaults/loader.conf for more details and some hints.

In older releases, the system will auto-tune maxusers if it is set to 0 .

[2]

. When setting this option, set

maxusers to at least 4 , especially if the system runs Xorg or is used to compile software. The most

important table set by maxusers is the maximum number of processes, which is set to 20 + 16 *

maxusers . If maxusers is set to 1 , there can only be 36 simultaneous processes, including the 18 or so

that the system starts up at boot time and the 15 or so used by Xorg. Even a simple task like reading

a manual page will start up nine processes to filter, decompress, and view it. Setting maxusers to 64

allows up to 1044 simultaneous processes, which should be enough for nearly all uses. If, however,

the error is displayed when trying to start another program, or a server is running with a large

number of simultaneous users, increase the number and rebuild.

!

maxusers does not limit the number of users which can log into the machine. It

instead sets various table sizes to reasonable values considering the maximum

number of users on the system and how many processes each user will be

running.

12.11.1.2. kern.ipc.soacceptqueue

The kern.ipc.soacceptqueue man:sysctl[8] variable limits the size of the listen queue for accepting

new TCP connections. The default value of 128 is typically too low for robust handling of new

connections on a heavily loaded web server. For such environments, it is recommended to increase

this value to 1024 or higher. A service such as man:sendmail[8], or Apache may itself limit the listen

queue size, but will often have a directive in its configuration file to adjust the queue size. Large

listen queues do a better job of avoiding Denial of Service (DoS) attacks.

292

12.11.2. Network Limits

The NMBCLUSTERS kernel configuration option dictates the amount of network Mbufs available to the

system. A heavily-trafficked server with a low number of Mbufs will hinder performance. Each

cluster represents approximately 2 K of memory, so a value of 1024 represents 2 megabytes of

kernel memory reserved for network buffers. A simple calculation can be done to figure out how

many are needed. A web server which maxes out at 1000 simultaneous connections where each

connection uses a 6 K receive and 16 K send buffer, requires approximately 32 MB worth of

network buffers to cover the web server. A good rule of thumb is to multiply by 2 , so 2x32 MB / 2 KB

= 64 MB / 2 kB = 32768 . Values between 4096 and 32768 are recommended for machines with greater

amounts of memory. Never specify an arbitrarily high value for this parameter as it could lead to a

boot time crash. To observe network cluster usage, use -m with man:netstat[1].

The kern.ipc.nmbclusters loader tunable should be used to tune this at boot time. Only older

versions of FreeBSD will require the use of the NMBCLUSTERS kernel man:config[8] option.

For busy servers that make extensive use of the man:sendfile[2] system call, it may be necessary to

increase the number of man:sendfile[2] buffers via the NSFBUFS kernel configuration option or by

setting its value in /boot/loader.conf (see man:loader[8] for details). A common indicator that this

parameter needs to be adjusted is when processes are seen in the sfbufa state. The man:sysctl[8]

variable kern.ipc.nsfbufs is read-only. This parameter nominally scales with kern.maxusers ,

however it may be necessary to tune accordingly.

#

Even though a socket has been marked as non-blocking, calling man:sendfile[2] on

the non-blocking socket may result in the man:sendfile[2] call blocking until

enough struct sf_buf 's are made available.

12.11.2.1. net.inet.ip.portrange.*

The net.inet.ip.portrange.* man:sysctl[8] variables control the port number ranges automatically

bound to TCP and UDP sockets. There are three ranges: a low range, a default range, and a high range.

Most network programs use the default range which is controlled by net.inet.ip.portrange.first

and net.inet.ip.portrange.last , which default to 1024 and 5000 , respectively. Bound port ranges are

used for outgoing connections and it is possible to run the system out of ports under certain

circumstances. This most commonly occurs when running a heavily loaded web proxy. The port

range is not an issue when running a server which handles mainly incoming connections, such as a

web server, or has a limited number of outgoing connections, such as a mail relay. For situations

where there is a shortage of ports, it is recommended to increase net.inet.ip.portrange.last

modestly. A value of 10000 , 20000 or 30000 may be reasonable. Consider firewall effects when

changing the port range. Some firewalls may block large ranges of ports, usually low-numbered

ports, and expect systems to use higher ranges of ports for outgoing connections. For this reason, it

is not recommended that the value of net.inet.ip.portrange.first be lowered.

12.11.2.2. TCP Bandwidth Delay Product

TCP bandwidth delay product limiting can be enabled by setting the net.inet.tcp.inflight.enable

man:sysctl[8] variable to 1 . This instructs the system to attempt to calculate the bandwidth delay

product for each connection and limit the amount of data queued to the network to just the amount

required to maintain optimum throughput.

293

This feature is useful when serving data over modems, Gigabit Ethernet, high speed WAN links, or

any other link with a high bandwidth delay product, especially when also using window scaling or

when a large send window has been configured. When enabling this option, also set

net.inet.tcp.inflight.debug to 0 to disable debugging. For production use, setting

net.inet.tcp.inflight.min to at least 6144 may be beneficial. Setting high minimums may effectively

disable bandwidth limiting, depending on the link. The limiting feature reduces the amount of data

built up in intermediate route and switch packet queues and reduces the amount of data built up in

the local hostÕs interface queue. With fewer queued packets, interactive connections, especially

over slow modems, will operate with lower Round Trip Times . This feature only effects server side

data transmission such as uploading. It has no effect on data reception or downloading.

Adjusting net.inet.tcp.inflight.stab is not recommended. This parameter defaults to 20 ,

representing 2 maximal packets added to the bandwidth delay product window calculation. The

additional window is required to stabilize the algorithm and improve responsiveness to changing

conditions, but it can also result in higher man:ping[8] times over slow links, though still much

lower than without the inflight algorithm. In such cases, try reducing this parameter to 15 , 10 , or 5

and reducing net.inet.tcp.inflight.min to a value such as 3500 to get the desired effect. Reducing

these parameters should be done as a last resort only.

12.11.3. Virtual Memory

12.11.3.1. kern.maxvnodes

A vnode is the internal representation of a file or directory. Increasing the number of vnodes

available to the operating system reduces disk I/O. Normally, this is handled by the operating

system and does not need to be changed. In some cases where disk I/O is a bottleneck and the

system is running out of vnodes, this setting needs to be increased. The amount of inactive and free

RAM will need to be taken into account.

To see the current number of vnodes in use:

sysctl vfs.numvnodes

vfs.numvnodes: 91349

To see the maximum vnodes:

sysctl kern.maxvnodes

kern.maxvnodes: 100000

If the current vnode usage is near the maximum, try increasing kern.maxvnodes by a value of 1000 .

Keep an eye on the number of vfs.numvnodes . If it climbs up to the maximum again, kern.maxvnodes

will need to be increased further. Otherwise, a shift in memory usage as reported by man:top[1]

should be visible and more memory should be active.

294

12.12. Adding Swap Space

Sometimes a system requires more swap space. This section describes two methods to increase

swap space: adding swap to an existing partition or new hard drive, and creating a swap file on an

existing partition.

For information on how to encrypt swap space, which options exist, and why it should be done,

refer to crossref:disks[swap-encrypting,ÒEncrypting SwapÓ].

12.12.1. Swap on a New Hard Drive or Existing Partition

Adding a new hard drive for swap gives better performance than using a partition on an existing

drive. Setting up partitions and hard drives is explained in crossref:disks[disks-adding,ÒAdding

DisksÓ] while crossref:bsdinstall[configtuning-initial,ÒDesigning the Partition LayoutÓ] discusses

partition layouts and swap partition size considerations.

Use swapon to add a swap partition to the system. For example:

swapon /dev/ada1s1b

"

It is possible to use any partition not currently mounted, even if it already contains

data. Using swapon on a partition that contains data will overwrite and destroy that

data. Make sure that the partition to be added as swap is really the intended

partition before running swapon .

To automatically add this swap partition on boot, add an entry to /etc/fstab :

/dev/ada1s1b none swap sw 0 0

See man:fstab[5] for an explanation of the entries in /etc/fstab . More information about swapon can

be found in man:swapon[8].

12.12.2. Creating a Swap File

These examples create a 512M swap file called /usr/swap0 instead of using a partition.

Using swap files requires that the module needed by man:md[4] has either been built into the

kernel or has been loaded before swap is enabled. See

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel] for information about building

a custom kernel.

295

Example 25. Creating a Swap File

1. Create the swap file:

dd if=/dev/zero of=/usr/swap0 bs=1m count=512

2. Set the proper permissions on the new file:

chmod 0600 /usr/swap0

3. Inform the system about the swap file by adding a line to /etc/fstab :

md99 none swap sw,file=/usr/swap0,late 0 0

The man:md[4] device md99 is used, leaving lower device numbers available for

interactive use.

4. Swap space will be added on system startup. To add swap space immediately, use

man:swapon[8]:

swapon -aL

12.13. Power and Resource Management

It is important to utilize hardware resources in an efficient manner. Power and resource

management allows the operating system to monitor system limits and to possibly provide an alert

if the system temperature increases unexpectedly. An early specification for providing power

management was the Advanced Power Management (APM) facility. APM controls the power usage

of a system based on its activity. However, it was difficult and inflexible for operating systems to

manage the power usage and thermal properties of a system. The hardware was managed by the

BIOS and the user had limited configurability and visibility into the power management settings.

The APMBIOS is supplied by the vendor and is specific to the hardware platform. An APM driver in

the operating system mediates access to the APM Software Interface, which allows management of

power levels.

There are four major problems in APM. First, power management is done by the vendor-specific

BIOS, separate from the operating system. For example, the user can set idle-time values for a hard

drive in the APMBIOS so that, when exceeded, the BIOS spins down the hard drive without the

consent of the operating system. Second, the APM logic is embedded in the BIOS, and it operates

outside the scope of the operating system. This means that users can only fix problems in the

APMBIOS by flashing a new one into the ROM, which is a dangerous procedure with the potential to

leave the system in an unrecoverable state if it fails. Third, APM is a vendor-specific technology,

meaning that there is a lot of duplication of efforts and bugs found in one vendorÕs BIOS may not be

296

solved in others. Lastly, the APMBIOS did not have enough room to implement a sophisticated

power policy or one that can adapt well to the purpose of the machine.

The Plug and Play BIOS (PNPBIOS) was unreliable in many situations. PNPBIOS is 16-bit technology,

so the operating system has to use 16-bit emulation in order to interface with PNPBIOS methods.

FreeBSD provides an APM driver as APM should still be used for systems manufactured at or before

the year 2000. The driver is documented in man:apm[4].

The successor to APM is the Advanced Configuration and Power Interface (ACPI). ACPI is a standard

written by an alliance of vendors to provide an interface for hardware resources and power

management. It is a key element in Operating System-directed configuration and Power Management

as it provides more control and flexibility to the operating system.

This chapter demonstrates how to configure ACPI on FreeBSD. It then offers some tips on how to

debug ACPI and how to submit a problem report containing debugging information so that

developers can diagnosis and fix ACPI issues.

12.13.1. Configuring ACPI

In FreeBSD the man:acpi[4] driver is loaded by default at system boot and should not be compiled

into the kernel. This driver cannot be unloaded after boot because the system bus uses it for

various hardware interactions. However, if the system is experiencing problems, ACPI can be

disabled altogether by rebooting after setting hint.acpi.0.disabled="1" in /boot/loader.conf or by

setting this variable at the loader prompt, as described in crossref:boot[boot-loader,ÒStage ThreeÓ].

!

ACPI and APM cannot coexist and should be used separately. The last one to load

will terminate if the driver notices the other is running.

ACPI can be used to put the system into a sleep mode with acpiconf , the -s flag, and a number from

1 to 5 . Most users only need 1 (quick suspend to RAM) or 3 (suspend to RAM). Option 5 performs a

soft-off which is the same as running halt -p .

Other options are available using sysctl . Refer to man:acpi[4] and man:acpiconf[8] for more

information.

12.13.2. Common Problems

ACPI is present in all modern computers that conform to the ia32 (x86) and amd64 (AMD)

architectures. The full standard has many features including CPU performance management,

power planes control, thermal zones, various battery systems, embedded controllers, and bus

enumeration. Most systems implement less than the full standard. For instance, a desktop system

usually only implements bus enumeration while a laptop might have cooling and battery

management support as well. Laptops also have suspend and resume, with their own associated

complexity.

An ACPI-compliant system has various components. The BIOS and chipset vendors provide various

fixed tables, such as FADT, in memory that specify things like the APIC map (used for SMP), config

registers, and simple configuration values. Additionally, a bytecode table, the Differentiated System

Description Table DSDT, specifies a tree-like name space of devices and methods.

297

The ACPI driver must parse the fixed tables, implement an interpreter for the bytecode, and modify

device drivers and the kernel to accept information from the ACPI subsystem. For FreeBSD, Intel¨

has provided an interpreter (ACPI-CA) that is shared with Linux¨ and NetBSD. The path to the

ACPI-CA source code is src/sys/contrib/dev/acpica . The glue code that allows ACPI-CA to work on

FreeBSD is in src/sys/dev/acpica/Osd . Finally, drivers that implement various ACPI devices are

found in src/sys/dev/acpica .

For ACPI to work correctly, all the parts have to work correctly. Here are some common problems,

in order of frequency of appearance, and some possible workarounds or fixes. If a fix does not

resolve the issue, refer to Getting and Submitting Debugging Info for instructions on how to submit

a bug report.

12.13.2.1. Mouse Issues

In some cases, resuming from a suspend operation will cause the mouse to fail. A known work

around is to add hint.psm.0.flags="0x3000" to /boot/loader.conf .

12.13.2.2. Suspend/Resume

ACPI has three suspend to RAM (STR) states, S1 - S3 , and one suspend to disk state (STD), called S4 .

STD can be implemented in two separate ways. The S4 BIOS is a BIOS-assisted suspend to disk and

S4 OS is implemented entirely by the operating system. The normal state the system is in when

plugged in but not powered up is "soft off" (S5).

Use sysctl hw.acpi to check for the suspend-related items. These example results are from a

Thinkpad:

hw.acpi.supported_sleep_state: S3 S4 S5

hw.acpi.s4bios: 0

Use acpiconf -s to test S3 , S4 , and S5 . An s4bios of one (1) indicates S4 BIOS support instead of S4

operating system support.

When testing suspend/resume, start with S1 , if supported. This state is most likely to work since it

does not require much driver support. No one has implemented S2 , which is similar to S1 . Next, try

S3 . This is the deepest STR state and requires a lot of driver support to properly reinitialize the

hardware.

A common problem with suspend/resume is that many device drivers do not save, restore, or

reinitialize their firmware, registers, or device memory properly. As a first attempt at debugging

the problem, try:

sysctl debug.bootverbose=1

sysctl debug.acpi.suspend_bounce=1

acpiconf -s 3

This test emulates the suspend/resume cycle of all device drivers without actually going into S3

state. In some cases, problems such as losing firmware state, device watchdog time out, and

298

retrying forever, can be captured with this method. Note that the system will not really enter S3

state, which means devices may not lose power, and many will work fine even if suspend/resume

methods are totally missing, unlike real S3 state.

Harder cases require additional hardware, such as a serial port and cable for debugging through a

serial console, a Firewire port and cable for using man:dcons[4], and kernel debugging skills.

To help isolate the problem, unload as many drivers as possible. If it works, narrow down which

driver is the problem by loading drivers until it fails again. Typically, binary drivers like nvidia.ko ,

display drivers, and USB will have the most problems while Ethernet interfaces usually work fine.

If drivers can be properly loaded and unloaded, automate this by putting the appropriate

commands in /etc/rc.suspend and /etc/rc.resume . Try setting hw.acpi.reset_video to 1 if the display

is messed up after resume. Try setting longer or shorter values for hw.acpi.sleep_delay to see if that

helps.

Try loading a recent Linux¨ distribution to see if suspend/resume works on the same hardware. If

it works on Linux¨, it is likely a FreeBSD driver problem. Narrowing down which driver causes the

problem will assist developers in fixing the problem. Since the ACPI maintainers rarely maintain

other drivers, such as sound or ATA, any driver problems should also be posted to the FreeBSD-

CURRENT mailing list and mailed to the driver maintainer. Advanced users can include debugging

man:printf[3]s in a problematic driver to track down where in its resume function it hangs.

Finally, try disabling ACPI and enabling APM instead. If suspend/resume works with APM, stick

with APM, especially on older hardware (pre-2000). It took vendors a while to get ACPI support

correct and older hardware is more likely to have BIOS problems with ACPI.

12.13.2.3. System Hangs

Most system hangs are a result of lost interrupts or an interrupt storm. Chipsets may have problems

based on boot, how the BIOS configures interrupts before correctness of the APIC (MADT) table, and

routing of the System Control Interrupt (SCI).

Interrupt storms can be distinguished from lost interrupts by checking the output of vmstat -i and

looking at the line that has acpi0 . If the counter is increasing at more than a couple per second,

there is an interrupt storm. If the system appears hung, try breaking to DDB (CTRL "+" ALT "+" ESC on

console) and type show interrupts .

When dealing with interrupt problems, try disabling APIC support with hint.apic.0.disabled="1" in

/boot/loader.conf .

12.13.2.4. Panics

Panics are relatively rare for ACPI and are the top priority to be fixed. The first step is to isolate the

steps to reproduce the panic, if possible, and get a backtrace. Follow the advice for enabling options

DDB and setting up a serial console in crossref:serialcomms[serialconsole-ddb,ÒEntering the DDB

Debugger from the Serial LineÓ] or setting up a dump partition. To get a backtrace in DDB, use tr .

When handwriting the backtrace, get at least the last five and the top five lines in the trace.

Then, try to isolate the problem by booting with ACPI disabled. If that works, isolate the ACPI

subsystem by using various values of debug.acpi.disable . See man:acpi[4] for some examples.

299

http://lists.FreeBSD.org/mailman/listinfo/freebsd-current
http://lists.FreeBSD.org/mailman/listinfo/freebsd-current

12.13.2.5. System Powers Up After Suspend or Shutdown

First, try setting hw.acpi.disable_on_poweroff="0" in /boot/loader.conf . This keeps ACPI from

disabling various events during the shutdown process. Some systems need this value set to 1 (the

default) for the same reason. This usually fixes the problem of a system powering up spontaneously

after a suspend or poweroff.

12.13.2.6. BIOS Contains Buggy Bytecode

Some BIOS vendors provide incorrect or buggy bytecode. This is usually manifested by kernel

console messages like this:

ACPI-1287: *** Error: Method execution failed [_SB_.PCI0.LPC0.FIGD._STA] \\

(Node 0xc3f6d160), AE_NOT_FOUND

Often, these problems may be resolved by updating the BIOS to the latest revision. Most console

messages are harmless, but if there are other problems, like the battery status is not working, these

messages are a good place to start looking for problems.

12.13.3. Overriding the Default AML

The BIOS bytecode, known as ACPI Machine Language (AML), is compiled from a source language

called ACPI Source Language (ASL). The AML is found in the table known as the Differentiated

System Description Table (DSDT).

The goal of FreeBSD is for everyone to have working ACPI without any user intervention.

Workarounds are still being developed for common mistakes made by BIOS vendors. The

Microsoft¨ interpreter (acpi.sys and acpiec.sys) does not strictly check for adherence to the

standard, and thus many BIOS vendors who only test ACPI under Windows¨ never fix their ASL.

FreeBSD developers continue to identify and document which non-standard behavior is allowed by

Microsoft¨'s interpreter and replicate it so that FreeBSD can work without forcing users to fix the

ASL.

To help identify buggy behavior and possibly fix it manually, a copy can be made of the systemÕs

ASL. To copy the systemÕs ASL to a specified file name, use acpidump with -t , to show the contents of

the fixed tables, and -d , to disassemble the AML:

acpidump -td > my.asl

Some AML versions assume the user is running Windows¨. To override this, set

hw.acpi.osname= "Windows 2009" in /boot/loader.conf , using the most recent Windows¨ version listed

in the ASL.

Other workarounds may require my.asl to be customized. If this file is edited, compile the new ASL

using the following command. Warnings can usually be ignored, but errors are bugs that will

usually prevent ACPI from working correctly.

300

iasl -f my.asl

Including -f forces creation of the AML, even if there are errors during compilation. Some errors,

such as missing return statements, are automatically worked around by the FreeBSD interpreter.

The default output filename for iasl is DSDT.aml . Load this file instead of the BIOSÕs buggy copy,

which is still present in flash memory, by editing /boot/loader.conf as follows:

acpi_dsdt_load="YES"

acpi_dsdt_name="/boot/DSDT.aml"

Be sure to copy DSDT.aml to /boot , then reboot the system. If this fixes the problem, send a

man:diff[1] of the old and new ASL to FreeBSD ACPI mailing list so that developers can work

around the buggy behavior in acpica .

12.13.4. Getting and Submitting Debugging Info

The ACPI driver has a flexible debugging facility. A set of subsystems and the level of verbosity can

be specified. The subsystems to debug are specified as layers and are broken down into

components (ACPI_ALL_COMPONENTS) and ACPI hardware support (ACPI_ALL_DRIVERS). The verbosity of

debugging output is specified as the level and ranges from just report errors (ACPI_LV_ERROR) to

everything (ACPI_LV_VERBOSE). The level is a bitmask so multiple options can be set at once,

separated by spaces. In practice, a serial console should be used to log the output so it is not lost as

the console message buffer flushes. A full list of the individual layers and levels is found in

man:acpi[4].

Debugging output is not enabled by default. To enable it, add options ACPI_DEBUG to the custom

kernel configuration file if ACPI is compiled into the kernel. Add ACPI_DEBUG=1 to /etc/make.conf to

enable it globally. If a module is used instead of a custom kernel, recompile just the acpi.ko module

as follows:

cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1

Copy the compiled acpi.ko to /boot/kernel and add the desired level and layer to /boot/loader.conf .

The entries in this example enable debug messages for all ACPI components and hardware drivers

and output error messages at the least verbose level:

debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS"

debug.acpi.level="ACPI_LV_ERROR"

If the required information is triggered by a specific event, such as a suspend and then resume, do

not modify /boot/loader.conf . Instead, use sysctl to specify the layer and level after booting and

preparing the system for the specific event. The variables which can be set using sysctl are named

the same as the tunables in /boot/loader.conf .

301

http://lists.FreeBSD.org/mailman/listinfo/freebsd-acpi

Once the debugging information is gathered, it can be sent to FreeBSD ACPI mailing list so that it

can be used by the FreeBSD ACPI maintainers to identify the root cause of the problem and to

develop a solution.

!

Before submitting debugging information to this mailing list, ensure the latest

BIOS version is installed and, if available, the embedded controller firmware

version.

When submitting a problem report, include the following information:

¥ Description of the buggy behavior, including system type, model, and anything that causes the

bug to appear. Note as accurately as possible when the bug began occurring if it is new.

¥ The output of dmesg after running boot -v , including any error messages generated by the bug.

¥ The dmesg output from boot -v with ACPI disabled, if disabling ACPI helps to fix the problem.

¥ Output from sysctl hw.acpi . This lists which features the system offers.

¥ The URL to a pasted version of the systemÕs ASL. Do not send the ASL directly to the list as it can

be very large. Generate a copy of the ASL by running this command:

acpidump -dt > name-system.asl

Substitute the login name for name and manufacturer/model for system . For example, use njl-

FooCo6000.asl .

Most FreeBSD developers watch the FreeBSD-CURRENT mailing list , but one should submit

problems to FreeBSD ACPI mailing list to be sure it is seen. Be patient when waiting for a response.

If the bug is not immediately apparent, submit a bug report. When entering a PR, include the same

information as requested above. This helps developers to track the problem and resolve it. Do not

send a PR without emailing FreeBSD ACPI mailing list first as it is likely that the problem has been

reported before.

12.13.5. References

More information about ACPI may be found in the following locations:

¥ The FreeBSD ACPI Mailing List Archives (https://lists.freebsd.org/pipermail/freebsd-acpi/)

¥ The ACPI 2.0 Specification (http://acpi.info/spec.htm)

¥ man:acpi[4], man:acpi_thermal[4], man:acpidump[8], man:iasl[8], and man:acpidb[8]

[2] The auto-tuning algorithm sets maxusers equal to the amount of memory in the system, with a minimum of 32, and a

maximum of 384.

302

http://lists.FreeBSD.org/mailman/listinfo/freebsd-acpi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-current
http://lists.FreeBSD.org/mailman/listinfo/freebsd-acpi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-acpi
https://lists.freebsd.org/pipermail/freebsd-acpi/
http://acpi.info/spec.htm

Chapter 13. The FreeBSD Booting Process

13.1. Synopsis

The process of starting a computer and loading the operating system is referred to as "the bootstrap

process", or "booting". FreeBSDÕs boot process provides a great deal of flexibility in customizing

what happens when the system starts, including the ability to select from different operating

systems installed on the same computer, different versions of the same operating system, or a

different installed kernel.

This chapter details the configuration options that can be set. It demonstrates how to customize the

FreeBSD boot process, including everything that happens until the FreeBSD kernel has started,

probed for devices, and started man:init[8]. This occurs when the text color of the boot messages

changes from bright white to grey.

After reading this chapter, you will recognize:

¥ The components of the FreeBSD bootstrap system and how they interact.

¥ The options that can be passed to the components in the FreeBSD bootstrap in order to control

the boot process.

¥ How to configure a customized boot splash screen.

¥ The basics of setting device hints.

¥ How to boot into single- and multi-user mode and how to properly shut down a FreeBSD system.

!

This chapter only describes the boot process for FreeBSD running on x86 and

amd64 systems.

13.2. FreeBSD Boot Process

Turning on a computer and starting the operating system poses an interesting dilemma. By

definition, the computer does not know how to do anything until the operating system is started.

This includes running programs from the disk. If the computer can not run a program from the disk

without the operating system, and the operating system programs are on the disk, how is the

operating system started?

This problem parallels one in the book The Adventures of Baron Munchausen. A character had

fallen part way down a manhole, and pulled himself out by grabbing his bootstraps and lifting. In

the early days of computing, the term bootstrap was applied to the mechanism used to load the

operating system. It has since become shortened to "booting".

On x86 hardware, the Basic Input/Output System (BIOS) is responsible for loading the operating

system. The BIOS looks on the hard disk for the Master Boot Record (MBR), which must be located

in a specific place on the disk. The BIOS has enough knowledge to load and run the MBR, and

assumes that the MBR can then carry out the rest of the tasks involved in loading the operating

system, possibly with the help of the BIOS.

303

!

FreeBSD provides for booting from both the older MBR standard, and the newer

GUID Partition Table (GPT). GPT partitioning is often found on computers with the

Unified Extensible Firmware Interface (UEFI). However, FreeBSD can boot from

GPT partitions even on machines with only a legacy BIOS with man:gptboot[8].

Work is under way to provide direct UEFI booting.

The code within the MBR is typically referred to as a boot manager , especially when it interacts

with the user. The boot manager usually has more code in the first track of the disk or within the

file system. Examples of boot managers include the standard FreeBSD boot manager boot0, also

called Boot Easy, and Grub, which is used by many Linux¨ distributions.

If only one operating system is installed, the MBR searches for the first bootable (active) slice on the

disk, and then runs the code on that slice to load the remainder of the operating system. When

multiple operating systems are present, a different boot manager can be installed to display a list of

operating systems so the user can select one to boot.

The remainder of the FreeBSD bootstrap system is divided into three stages. The first stage knows

just enough to get the computer into a specific state and run the second stage. The second stage can

do a little bit more, before running the third stage. The third stage finishes the task of loading the

operating system. The work is split into three stages because the MBR puts limits on the size of the

programs that can be run at stages one and two. Chaining the tasks together allows FreeBSD to

provide a more flexible loader.

The kernel is then started and begins to probe for devices and initialize them for use. Once the

kernel boot process is finished, the kernel passes control to the user process man:init[8], which

makes sure the disks are in a usable state, starts the user-level resource configuration which

mounts file systems, sets up network cards to communicate on the network, and starts the

processes which have been configured to run at startup.

This section describes these stages in more detail and demonstrates how to interact with the

FreeBSD boot process.

13.2.1. The Boot Manager

The boot manager code in the MBR is sometimes referred to as stage zero of the boot process. By

default, FreeBSD uses the boot0 boot manager.

The MBR installed by the FreeBSD installer is based on /boot/boot0 . The size and capability of boot0

is restricted to 446 bytes due to the slice table and 0x55AA identifier at the end of the MBR. If boot0

and multiple operating systems are installed, a message similar to this example will be displayed at

boot time:

304

Example 26. boot0 Screenshot

F1 Win

F2 FreeBSD

Default: F2

Other operating systems will overwrite an existing MBR if they are installed after FreeBSD. If this

happens, or to replace the existing MBR with the FreeBSD MBR, use the following command:

fdisk -B -b /boot/boot0 device

where device is the boot disk, such as ad0 for the first IDE disk, ad2 for the first IDE disk on a second

IDE controller, or da0 for the first SCSI disk. To create a custom configuration of the MBR, refer to

man:boot0cfg[8].

13.2.2. Stage One and Stage Two

Conceptually, the first and second stages are part of the same program on the same area of the disk.

Due to space constraints, they have been split into two, but are always installed together. They are

copied from the combined /boot/boot by the FreeBSD installer or bsdlabel .

These two stages are located outside file systems, in the first track of the boot slice, starting with the

first sector. This is where boot0, or any other boot manager, expects to find a program to run which

will continue the boot process.

The first stage, boot1 , is very simple, since it can only be 512 bytes in size. It knows just enough

about the FreeBSD bsdlabel , which stores information about the slice, to find and execute boot2 .

Stage two, boot2 , is slightly more sophisticated, and understands the FreeBSD file system enough to

find files. It can provide a simple interface to choose the kernel or loader to run. It runs loader,

which is much more sophisticated and provides a boot configuration file. If the boot process is

interrupted at stage two, the following interactive screen is displayed:

Example 27. boot2 Screenshot

>> FreeBSD/i386 BOOT

Default: 0:ad(0,a)/boot/loader

boot:

To replace the installed boot1 and boot2 , use bsdlabel , where diskslice is the disk and slice to boot

from, such as ad0s1 for the first slice on the first IDE disk:

305

bsdlabel -B diskslice

"

If just the disk name is used, such as ad0 , bsdlabel will create the disk in

"dangerously dedicated mode", without slices. This is probably not the desired

action, so double check the diskslice before pressing Return .

13.2.3. Stage Three

The loader is the final stage of the three-stage bootstrap process. It is located on the file system,

usually as /boot/loader .

The loader is intended as an interactive method for configuration, using a built-in command set,

backed up by a more powerful interpreter which has a more complex command set.

During initialization, loader will probe for a console and for disks, and figure out which disk it is

booting from. It will set variables accordingly, and an interpreter is started where user commands

can be passed from a script or interactively.

The loader will then read /boot/loader.rc , which by default reads in /boot/defaults/loader.conf

which sets reasonable defaults for variables and reads /boot/loader.conf for local changes to those

variables. loader.rc then acts on these variables, loading whichever modules and kernel are

selected.

Finally, by default, loader issues a 10 second wait for key presses, and boots the kernel if it is not

interrupted. If interrupted, the user is presented with a prompt which understands the command

set, where the user may adjust variables, unload all modules, load modules, and then finally boot or

reboot. Loader Built-In Commands lists the most commonly used loader commands. For a complete

discussion of all available commands, refer to man:loader[8].

Table 10. Loader Built-In Commands

Variable Description

autoboot seconds Proceeds to boot the kernel if not interrupted within the time span given, in

seconds. It displays a countdown, and the default time span is 10 seconds.

boot [-options]

[kernelname]

Immediately proceeds to boot the kernel, with any specified options or kernel

name. Providing a kernel name on the command-line is only applicable after

an unload has been issued. Otherwise, the previously-loaded kernel will be

used. If kernelname is not qualified, it will be searched under /boot/kernel and

/boot/modules .

boot-conf Goes through the same automatic configuration of modules based on specified

variables, most commonly kernel . This only makes sense if unload is used first,

before changing some variables.

help [topic] Shows help messages read from /boot/loader.help . If the topic given is index ,

the list of available topics is displayed.

include filename É Reads the specified file and interprets it line by line. An error immediately

stops the include .

306

Variable Description

load [-t type]

filename

Loads the kernel, kernel module, or file of the type given, with the specified

filename. Any arguments after filename are passed to the file. If filename is not

qualified, it will be searched under /boot/kernel and /boot/modules .

ls [-l] [path] Displays a listing of files in the given path, or the root directory, if the path is

not specified. If -l is specified, file sizes will also be shown.

lsdev [-v] Lists all of the devices from which it may be possible to load modules. If -v is

specified, more details are printed.

lsmod [-v] Displays loaded modules. If -v is specified, more details are shown.

more filename Displays the files specified, with a pause at each LINES displayed.

reboot Immediately reboots the system.

set variable , set

variable=value

Sets the specified environment variables.

unload Removes all loaded modules.

Here are some practical examples of loader usage. To boot the usual kernel in single-user mode :

Êboot -s

To unload the usual kernel and modules and then load the previous or another, specified kernel:

Êunload

Êload /path/to/kernelfile

Use the qualified /boot/GENERIC/kernel to refer to the default kernel that comes with an

installation, or /boot/kernel.old/kernel , to refer to the previously installed kernel before a system

upgrade or before configuring a custom kernel.

Use the following to load the usual modules with another kernel. Note that in this case it is not

necessary the qualified name:

unload

set kernel="mykernel"

boot-conf

To load an automated kernel configuration script:

Êload -t userconfig_script /boot/kernel.conf

307

13.2.4. Last Stage

Once the kernel is loaded by either loader or by boot2, which bypasses loader, it examines any boot

flags and adjusts its behavior as necessary. Kernel Interaction During Boot lists the commonly used

boot flags. Refer to man:boot[8] for more information on the other boot flags.

Table 11. Kernel Interaction During Boot

Option Description

-a

During kernel initialization, ask for the device to

mount as the root file system.

-C

Boot the root file system from a CDROM.

-s

Boot into single-user mode.

-v

Be more verbose during kernel startup.

Once the kernel has finished booting, it passes control to the user process man:init[8], which is

located at /sbin/init , or the program path specified in the init_path variable in loader . This is the

last stage of the boot process.

The boot sequence makes sure that the file systems available on the system are consistent. If a UFS

file system is not, and fsck cannot fix the inconsistencies, init drops the system into single-user

mode so that the system administrator can resolve the problem directly. Otherwise, the system

boots into multi-user mode.

13.2.4.1. Single-User Mode

A user can specify this mode by booting with -s or by setting the boot_single variable in loader. It

can also be reached by running shutdown now from multi-user mode. Single-user mode begins with

this message:

Enter full pathname of shell or RETURN for /bin/sh:

If the user presses Enter , the system will enter the default Bourne shell. To specify a different shell,

input the full path to the shell.

Single-user mode is usually used to repair a system that will not boot due to an inconsistent file

system or an error in a boot configuration file. It can also be used to reset the root password when

it is unknown. These actions are possible as the single-user mode prompt gives full, local access to

the system and its configuration files. There is no networking in this mode.

While single-user mode is useful for repairing a system, it poses a security risk unless the system is

in a physically secure location. By default, any user who can gain physical access to a system will

have full control of that system after booting into single-user mode.

If the system console is changed to insecure in /etc/ttys , the system will first prompt for the root

password before initiating single-user mode. This adds a measure of security while removing the

ability to reset the root password when it is unknown.

308

Example 28. Configuring an Insecure Console in /etc/ttys

name getty type status comments

#

If console is marked "insecure", then init will ask for the root password

when going to single-user mode.

console none unknown off insecure

An insecure console means that physical security to the console is considered to be insecure, so only

someone who knows the root password may use single-user mode.

13.2.4.2. Multi-User Mode

If init finds the file systems to be in order, or once the user has finished their commands in single-

user mode and has typed exit to leave single-user mode, the system enters multi-user mode, in

which it starts the resource configuration of the system.

The resource configuration system reads in configuration defaults from /etc/defaults/rc.conf and

system-specific details from /etc/rc.conf . It then proceeds to mount the system file systems listed in

/etc/fstab . It starts up networking services, miscellaneous system daemons, then the startup scripts

of locally installed packages.

To learn more about the resource configuration system, refer to man:rc[8] and examine the scripts

located in /etc/rc.d .

13.3. Configuring Boot Time Splash Screens

Typically when a FreeBSD system boots, it displays its progress as a series of messages at the

console. A boot splash screen creates an alternate boot screen that hides all of the boot probe and

service startup messages. A few boot loader messages, including the boot options menu and a timed

wait countdown prompt, are displayed at boot time, even when the splash screen is enabled. The

display of the splash screen can be turned off by hitting any key on the keyboard during the boot

process.

There are two basic environments available in FreeBSD. The first is the default legacy virtual

console command line environment. After the system finishes booting, a console login prompt is

presented. The second environment is a configured graphical environment. Refer to

crossref:x11[x11,The X Window System] for more information on how to install and configure a

graphical display manager and a graphical login manager.

Once the system has booted, the splash screen defaults to being a screen saver. After a time period

of non-use, the splash screen will display and will cycle through steps of changing intensity of the

image, from bright to very dark and over again. The configuration of the splash screen saver can be

overridden by adding a saver= line to /etc/rc.conf . Several built-in screen savers are available and

described in man:splash[4]. The saver= option only applies to virtual consoles and has no effect on

graphical display managers.

309

By installing the package:sysutils/bsd-splash-changer[] package or port, a random splash image

from a collection will display at boot. The splash screen function supports 256-colors in the bitmap

(.bmp), ZSoft PCX (.pcx), or TheDraw (.bin) formats. The .bmp , .pcx , or .bin image has to be placed

on the root partition, for example in /boot . The splash image files must have a resolution of 320 by

200 pixels or less in order to work on standard VGA adapters. For the default boot display

resolution of 256-colors and 320 by 200 pixels or less, add the following lines to /boot/loader.conf .

Replace splash.bmp with the name of the bitmap file to use:

splash_bmp_load="YES"

bitmap_load="YES"

bitmap_name="/boot/splash.bmp"

To use a PCX file instead of a bitmap file:

splash_pcx_load="YES"

bitmap_load="YES"

bitmap_name="/boot/splash.pcx"

To instead use ASCII art in the https://en.wikipedia.org/wiki/TheDraw format:

splash_txt="YES"

bitmap_load="YES"

bitmap_name="/boot/splash.bin"

Other interesting loader.conf options include:

beastie_disable="YES"

This will stop the boot options menu from being displayed, but the timed wait count down

prompt will still be present. Even with the display of the boot options menu disabled, entering

an option selection at the timed wait count down prompt will enact the corresponding boot

option.

loader_logo="beastie"

This will replace the default words "FreeBSD", which are displayed to the right of the boot

options menu, with the colored beastie logo.

For more information, refer to man:splash[4], man:loader.conf[5], and man:vga[4].

13.4. Device Hints

During initial system startup, the boot man:loader[8] reads man:device.hints[5]. This file stores

kernel boot information known as variables, sometimes referred to as "device hints". These "device

hints" are used by device drivers for device configuration.

Device hints may also be specified at the Stage 3 boot loader prompt, as demonstrated in Stage

Three . Variables can be added using set , removed with unset , and viewed show . Variables set in

310

https://en.wikipedia.org/wiki/TheDraw

/boot/device.hints can also be overridden. Device hints entered at the boot loader are not

permanent and will not be applied on the next reboot.

Once the system is booted, man:kenv[1] can be used to dump all of the variables.

The syntax for /boot/device.hints is one variable per line, using the hash "#" as comment markers.

Lines are constructed as follows:

Êhint.driver.unit.keyword="value"

The syntax for the Stage 3 boot loader is:

Êset hint.driver.unit.keyword=value

where driver is the device driver name, unit is the device driver unit number, and keyword is the

hint keyword. The keyword may consist of the following options:

¥ at : specifies the bus which the device is attached to.

¥ port : specifies the start address of the I/O to be used.

¥ irq : specifies the interrupt request number to be used.

¥ drq : specifies the DMA channel number.

¥ maddr : specifies the physical memory address occupied by the device.

¥ flags : sets various flag bits for the device.

¥ disabled : if set to 1 the device is disabled.

Since device drivers may accept or require more hints not listed here, viewing a driverÕs manual

page is recommended. For more information, refer to man:device.hints[5], man:kenv[1],

man:loader.conf[5], and man:loader[8].

13.5. Shutdown Sequence

Upon controlled shutdown using man:shutdown[8], man:init[8] will attempt to run the script

/etc/rc.shutdown , and then proceed to send all processes the TERM signal, and subsequently the KILL

signal to any that do not terminate in a timely manner.

To power down a FreeBSD machine on architectures and systems that support power management,

use shutdown -p now to turn the power off immediately. To reboot a FreeBSD system, use shutdown -r

now . One must be root or a member of operator in order to run man:shutdown[8]. One can also use

man:halt[8] and man:reboot[8]. Refer to their manual pages and to man:shutdown[8] for more

information.

Modify group membership by referring to crossref:basics[users-synopsis,ÒUsers and Basic Account

ManagementÓ].

311

!

Power management requires man:acpi[4] to be loaded as a module or statically

compiled into a custom kernel.

312

Chapter 14. Security

14.1. Synopsis

Security, whether physical or virtual, is a topic so broad that an entire industry has evolved around

it. Hundreds of standard practices have been authored about how to secure systems and networks,

and as a user of FreeBSD, understanding how to protect against attacks and intruders is a must.

In this chapter, several fundamentals and techniques will be discussed. The FreeBSD system comes

with multiple layers of security, and many more third party utilities may be added to enhance

security.

After reading this chapter, you will know:

¥ Basic FreeBSD system security concepts.

¥ The various crypt mechanisms available in FreeBSD.

¥ How to set up one-time password authentication.

¥ How to configure TCP Wrapper for use with man:inetd[8].

¥ How to set up Kerberos on FreeBSD.

¥ How to configure IPsec and create a VPN.

¥ How to configure and use OpenSSH on FreeBSD.

¥ How to use file system ACLs.

¥ How to use pkg to audit third party software packages installed from the Ports Collection.

¥ How to utilize FreeBSD security advisories.

¥ What Process Accounting is and how to enable it on FreeBSD.

¥ How to control user resources using login classes or the resource limits database.

Before reading this chapter, you should:

¥ Understand basic FreeBSD and Internet concepts.

Additional security topics are covered elsewhere in this Handbook. For example, Mandatory Access

Control is discussed in crossref:mac[mac,Mandatory Access Control] and Internet firewalls are

discussed in crossref:firewalls[firewalls,Firewalls].

14.2. Introduction

Security is everyoneÕs responsibility. A weak entry point in any system could allow intruders to gain

access to critical information and cause havoc on an entire network. One of the core principles of

information security is the CIA triad, which stands for the Confidentiality, Integrity, and Availability

of information systems.

The CIA triad is a bedrock concept of computer security as customers and users expect their data to

be protected. For example, a customer expects that their credit card information is securely stored

313

(confidentiality), that their orders are not changed behind the scenes (integrity), and that they have

access to their order information at all times (availablility).

To provide CIA, security professionals apply a defense in depth strategy. The idea of defense in

depth is to add several layers of security to prevent one single layer failing and the entire security

system collapsing. For example, a system administrator cannot simply turn on a firewall and

consider the network or system secure. One must also audit accounts, check the integrity of

binaries, and ensure malicious tools are not installed. To implement an effective security strategy,

one must understand threats and how to defend against them.

What is a threat as it pertains to computer security? Threats are not limited to remote attackers

who attempt to access a system without permission from a remote location. Threats also include

employees, malicious software, unauthorized network devices, natural disasters, security

vulnerabilities, and even competing corporations.

Systems and networks can be accessed without permission, sometimes by accident, or by remote

attackers, and in some cases, via corporate espionage or former employees. As a user, it is

important to prepare for and admit when a mistake has led to a security breach and report possible

issues to the security team. As an administrator, it is important to know of the threats and be

prepared to mitigate them.

When applying security to systems, it is recommended to start by securing the basic accounts and

system configuration, and then to secure the network layer so that it adheres to the system policy

and the organizationÕs security procedures. Many organizations already have a security policy that

covers the configuration of technology devices. The policy should include the security configuration

of workstations, desktops, mobile devices, phones, production servers, and development servers. In

many cases, standard operating procedures (SOPs) already exist. When in doubt, ask the security

team.

The rest of this introduction describes how some of these basic security configurations are

performed on a FreeBSD system. The rest of this chapter describes some specific tools which can be

used when implementing a security policy on a FreeBSD system.

14.2.1. Preventing Logins

In securing a system, a good starting point is an audit of accounts. Ensure that root has a strong

password and that this password is not shared. Disable any accounts that do not need login access.

To deny login access to accounts, two methods exist. The first is to lock the account. This example

locks the toor account:

pw lock toor

The second method is to prevent login access by changing the shell to /usr/sbin/nologin . Only the

superuser can change the shell for other users:

chsh -s /usr/sbin/nologin toor

314

The /usr/sbin/nologin shell prevents the system from assigning a shell to the user when they

attempt to login.

14.2.2. Permitted Account Escalation

In some cases, system administration needs to be shared with other users. FreeBSD has two

methods to handle this. The first one, which is not recommended, is a shared root password used by

members of the wheel group. With this method, a user types su and enters the password for wheel

whenever superuser access is needed. The user should then type exit to leave privileged access

after finishing the commands that required administrative access. To add a user to this group, edit

/etc/group and add the user to the end of the wheel entry. The user must be separated by a comma

character with no space.

The second, and recommended, method to permit privilege escalation is to install the

package:security/sudo[] package or port. This software provides additional auditing, more fine-

grained user control, and can be configured to lock users into running only the specified privileged

commands.

After installation, use visudo to edit /usr/local/etc/sudoers . This example creates a new webadmin

group, adds the trhodes account to that group, and configures that group access to restart

package:apache24[]:

pw groupadd webadmin -M trhodes -g 6000

visudo

%webadmin ALL=(ALL) /usr/sbin/service apache24 *

14.2.3. Password Hashes

Passwords are a necessary evil of technology. When they must be used, they should be complex and

a powerful hash mechanism should be used to encrypt the version that is stored in the password

database. FreeBSD supports the DES, MD5, SHA256, SHA512, and Blowfish hash algorithms in its

crypt() library. The default of SHA512 should not be changed to a less secure hashing algorithm,

but can be changed to the more secure Blowfish algorithm.

!

Blowfish is not part of AES and is not considered compliant with any Federal

Information Processing Standards (FIPS). Its use may not be permitted in some

environments.

To determine which hash algorithm is used to encrypt a userÕs password, the superuser can view

the hash for the user in the FreeBSD password database. Each hash starts with a symbol which

indicates the type of hash mechanism used to encrypt the password. If DES is used, there is no

beginning symbol. For MD5, the symbol is $. For SHA256 and SHA512, the symbol is 6 . For

Blowfish, the symbol is $2a$. In this example, the password for dru is hashed using the default

SHA512 algorithm as the hash starts with 6 . Note that the encrypted hash, not the password itself,

is stored in the password database:

315

grep dru /etc/master.passwd

dru:6pzIjSvCAn.PBYQBA$PXpSeWPx3g5kscj3IMiM7tUEUSPmGexxta.8Lt9TGSi2lNQqYGKszsBPuGME0:

1001:1001::0:0:dru:/usr/home/dru:/bin/csh

The hash mechanism is set in the userÕs login class. For this example, the user is in the default login

class and the hash algorithm is set with this line in /etc/login.conf :

Ê :passwd_format=sha512:\

To change the algorithm to Blowfish, modify that line to look like this:

Ê :passwd_format=blf:\

Then run cap_mkdb /etc/login.conf as described in Configuring Login Classes . Note that this change

will not affect any existing password hashes. This means that all passwords should be re-hashed by

asking users to run passwd in order to change their password.

For remote logins, two-factor authentication should be used. An example of two-factor

authentication is "something you have", such as a key, and "something you know", such as the

passphrase for that key. Since OpenSSH is part of the FreeBSD base system, all network logins

should be over an encrypted connection and use key-based authentication instead of passwords.

For more information, refer to OpenSSH . Kerberos users may need to make additional changes to

implement OpenSSH in their network. These changes are described in Kerberos .

14.2.4. Password Policy Enforcement

Enforcing a strong password policy for local accounts is a fundamental aspect of system security. In

FreeBSD, password length, password strength, and password complexity can be implemented using

built-in Pluggable Authentication Modules (PAM).

This section demonstrates how to configure the minimum and maximum password length and the

enforcement of mixed characters using the pam_passwdqc.so module. This module is enforced

when a user changes their password.

To configure this module, become the superuser and uncomment the line containing

pam_passwdqc.so in /etc/pam.d/passwd . Then, edit that line to match the password policy:

password requisite pam_passwdqc.so

min=disabled,disabled,disabled,12,10 similar=deny retry=3 enforce=users

This example sets several requirements for new passwords. The min setting controls the minimum

password length. It has five values because this module defines five different types of passwords

based on their complexity. Complexity is defined by the type of characters that must exist in a

password, such as letters, numbers, symbols, and case. The types of passwords are described in

man:pam_passwdqc[8]. In this example, the first three types of passwords are disabled, meaning

316

that passwords that meet those complexity requirements will not be accepted, regardless of their

length. The 12 sets a minimum password policy of at least twelve characters, if the password also

contains characters with three types of complexity. The 10 sets the password policy to also allow

passwords of at least ten characters, if the password contains characters with four types of

complexity.

The similar setting denies passwords that are similar to the userÕs previous password. The retry

setting provides a user with three opportunities to enter a new password.

Once this file is saved, a user changing their password will see a message similar to the following:

% passwd

Changing local password for trhodes

Old Password:

You can now choose the new password.

A valid password should be a mix of upper and lower case letters,

digits and other characters. You can use a 12 character long

password with characters from at least 3 of these 4 classes, or

a 10 character long password containing characters from all the

classes. Characters that form a common pattern are discarded by

the check.

Alternatively, if no one else can see your terminal now, you can

pick this as your password: "trait-useful&knob".

Enter new password:

If a password that does not match the policy is entered, it will be rejected with a warning and the

user will have an opportunity to try again, up to the configured number of retries.

Most password policies require passwords to expire after so many days. To set a password age time

in FreeBSD, set passwordtime for the userÕs login class in /etc/login.conf . The default login class

contains an example:

:passwordtime=90d:\

So, to set an expiry of 90 days for this login class, remove the comment symbol (#), save the edit,

and run cap_mkdb /etc/login.conf .

To set the expiration on individual users, pass an expiration date or the number of days to expiry

and a username to pw :

pw usermod -p 30-apr-2015 -n trhodes

As seen here, an expiration date is set in the form of day, month, and year. For more information,

see man:pw[8].

317

14.2.5. Detecting Rootkits

A rootkit is any unauthorized software that attempts to gain root access to a system. Once installed,

this malicious software will normally open up another avenue of entry for an attacker. Realistically,

once a system has been compromised by a rootkit and an investigation has been performed, the

system should be reinstalled from scratch. There is tremendous risk that even the most prudent

security or systems engineer will miss something an attacker left behind.

A rootkit does do one thing useful for administrators: once detected, it is a sign that a compromise

happened at some point. But, these types of applications tend to be very well hidden. This section

demonstrates a tool that can be used to detect rootkits, package:security/rkhunter[].

After installation of this package or port, the system may be checked using the following command.

It will produce a lot of information and will require some manual pressing of ENTER :

rkhunter -c

After the process completes, a status message will be printed to the screen. This message will

include the amount of files checked, suspect files, possible rootkits, and more. During the check,

some generic security warnings may be produced about hidden files, the OpenSSH protocol

selection, and known vulnerable versions of installed software. These can be handled now or after

a more detailed analysis has been performed.

Every administrator should know what is running on the systems they are responsible for. Third-

party tools like rkhunter and package:sysutils/lsof[], and native commands such as netstat and ps ,

can show a great deal of information on the system. Take notes on what is normal, ask questions

when something seems out of place, and be paranoid. While preventing a compromise is ideal,

detecting a compromise is a must.

14.2.6. Binary Verification

Verification of system files and binaries is important because it provides the system administration

and security teams information about system changes. A software application that monitors the

system for changes is called an Intrusion Detection System (IDS).

FreeBSD provides native support for a basic IDS system. While the nightly security emails will

notify an administrator of changes, the information is stored locally and there is a chance that a

malicious user could modify this information in order to hide their changes to the system. As such,

it is recommended to create a separate set of binary signatures and store them on a read-only, root-

owned directory or, preferably, on a removable USB disk or remote rsync server.

The built-in mtree utility can be used to generate a specification of the contents of a directory. A

seed, or a numeric constant, is used to generate the specification and is required to check that the

specification has not changed. This makes it possible to determine if a file or binary has been

modified. Since the seed value is unknown by an attacker, faking or checking the checksum values

of files will be difficult to impossible. The following example generates a set of SHA256 hashes, one

for each system binary in /bin , and saves those values to a hidden file in root 's home directory,

/root/.bin_chksum_mtree :

318

mtree -s 3483151339707503 -c -K cksum,sha256digest -p /bin > /root/.bin_chksum_mtree

mtree: /bin checksum: 3427012225

The 3483151339707503 represents the seed. This value should be remembered, but not shared.

Viewing /root/.bin_cksum_mtree should yield output similar to the following:

user: root

machine: dreadnaught

tree: /bin

date: Mon Feb 3 10:19:53 2014

.

/set type=file uid=0 gid=0 mode=0555 nlink=1 flags=none

. type=dir mode=0755 nlink=2 size=1024 \

Ê time=1380277977.000000000

Ê \133 nlink=2 size=11704 time=1380277977.000000000 \

Ê cksum=484492447 \

Ê

sha256digest=6207490fbdb5ed1904441fbfa941279055c3e24d3a4049aeb45094596400662a

Ê cat size=12096 time=1380277975.000000000 cksum=3909216944 \

Ê

sha256digest=65ea347b9418760b247ab10244f47a7ca2a569c9836d77f074e7a306900c1e69

Ê chflags size=8168 time=1380277975.000000000 cksum=3949425175 \

Ê

sha256digest=c99eb6fc1c92cac335c08be004a0a5b4c24a0c0ef3712017b12c89a978b2dac3

Ê chio size=18520 time=1380277975.000000000 cksum=2208263309 \

Ê

sha256digest=ddf7c8cb92a58750a675328345560d8cc7fe14fb3ccd3690c34954cbe69fc964

Ê chmod size=8640 time=1380277975.000000000 cksum=2214429708 \

Ê

sha256digest=a435972263bf814ad8df082c0752aa2a7bdd8b74ff01431ccbd52ed1e490bbe7

The machineÕs hostname, the date and time the specification was created, and the name of the user

who created the specification are included in this report. There is a checksum, size, time, and

SHA256 digest for each binary in the directory.

To verify that the binary signatures have not changed, compare the current contents of the

directory to the previously generated specification, and save the results to a file. This command

requires the seed that was used to generate the original specification:

mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >>

/root/.bin_chksum_output

mtree: /bin checksum: 3427012225

This should produce the same checksum for /bin that was produced when the specification was

created. If no changes have occurred to the binaries in this directory, the /root/.bin_chksum_output

319

output file will be empty. To simulate a change, change the date on /bin/cat using touch and run the

verification command again:

touch /bin/cat

mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >>

/root/.bin_chksum_output

more /root/.bin_chksum_output

cat changed

Ê modification time expected Fri Sep 27 06:32:55 2013 found Mon Feb 3 10:28:43 2014

It is recommended to create specifications for the directories which contain binaries and

configuration files, as well as any directories containing sensitive data. Typically, specifications are

created for /bin , /sbin , /usr/bin , /usr/sbin , /usr/local/bin , /etc , and /usr/local/etc .

More advanced IDS systems exist, such as package:security/aide[]. In most cases, mtree provides the

functionality administrators need. It is important to keep the seed value and the checksum output

hidden from malicious users. More information about mtree can be found in man:mtree[8].

14.2.7. System Tuning for Security

In FreeBSD, many system features can be tuned using sysctl . A few of the security features which

can be tuned to prevent Denial of Service (DoS) attacks will be covered in this section. More

information about using sysctl , including how to temporarily change values and how to make the

changes permanent after testing, can be found in crossref:config[configtuning-sysctl,ÒTuning with

sysctl(8)Ó].

!

Any time a setting is changed with sysctl , the chance to cause undesired harm is

increased, affecting the availability of the system. All changes should be monitored

and, if possible, tried on a testing system before being used on a production

system.

By default, the FreeBSD kernel boots with a security level of -1 . This is called "insecure mode"

because immutable file flags may be turned off and all devices may be read from or written to. The

security level will remain at -1 unless it is altered through sysctl or by a setting in the startup

scripts. The security level may be increased during system startup by setting

kern_securelevel_enable to YES in /etc/rc.conf , and the value of kern_securelevel to the desired

security level. See man:security[7] and man:init[8] for more information on these settings and the

available security levels.

"

Increasing the securelevel can break Xorg and cause other issues. Be prepared to

do some debugging.

The net.inet.tcp.blackhole and net.inet.udp.blackhole settings can be used to drop incoming SYN

packets on closed ports without sending a return RST response. The default behavior is to return an

RST to show a port is closed. Changing the default provides some level of protection against ports

scans, which are used to determine which applications are running on a system. Set

net.inet.tcp.blackhole to 2 and net.inet.udp.blackhole to 1 . Refer to man:blackhole[4] for more

320

information about these settings.

The net.inet.icmp.drop_redirect and net.inet.ip.redirect settings help prevent against redirect

attacks . A redirect attack is a type of DoS which sends mass numbers of ICMP type 5 packets. Since

these packets are not required, set net.inet.icmp.drop_redirect to 1 and set net.inet.ip.redirect to

0 .

Source routing is a method for detecting and accessing non-routable addresses on the internal

network. This should be disabled as non-routable addresses are normally not routable on purpose.

To disable this feature, set net.inet.ip.sourceroute and net.inet.ip.accept_sourceroute to 0 .

When a machine on the network needs to send messages to all hosts on a subnet, an ICMP echo

request message is sent to the broadcast address. However, there is no reason for an external host

to perform such an action. To reject all external broadcast requests, set net.inet.icmp.bmcastecho to

0 .

Some additional settings are documented in man:security[7].

14.3. One-time Passwords

By default, FreeBSD includes support for One-time Passwords In Everything (OPIE). OPIE is

designed to prevent replay attacks, in which an attacker discovers a userÕs password and uses it to

access a system. Since a password is only used once in OPIE, a discovered password is of little use to

an attacker. OPIE uses a secure hash and a challenge/response system to manage passwords. The

FreeBSD implementation uses the MD5 hash by default.

OPIE uses three different types of passwords. The first is the usual UNIX¨ or Kerberos password.

The second is the one-time password which is generated by opiekey . The third type of password is

the "secret password" which is used to generate one-time passwords. The secret password has

nothing to do with, and should be different from, the UNIX¨ password.

There are two other pieces of data that are important to OPIE. One is the "seed" or "key", consisting

of two letters and five digits. The other is the "iteration count", a number between 1 and 100. OPIE

creates the one-time password by concatenating the seed and the secret password, applying the

MD5 hash as many times as specified by the iteration count, and turning the result into six short

English words which represent the one-time password. The authentication system keeps track of

the last one-time password used, and the user is authenticated if the hash of the user-provided

password is equal to the previous password. Since a one-way hash is used, it is impossible to

generate future one-time passwords if a successfully used password is captured. The iteration count

is decremented after each successful login to keep the user and the login program in sync. When

the iteration count gets down to 1 , OPIE must be reinitialized.

There are a few programs involved in this process. A one-time password, or a consecutive list of

one-time passwords, is generated by passing an iteration count, a seed, and a secret password to

man:opiekey[1]. In addition to initializing OPIE, man:opiepasswd[1] is used to change passwords,

iteration counts, or seeds. The relevant credential files in /etc/opiekeys are examined by

man:opieinfo[1] which prints out the invoking userÕs current iteration count and seed.

This section describes four different sorts of operations. The first is how to set up one-time-

321

passwords for the first time over a secure connection. The second is how to use opiepasswd over an

insecure connection. The third is how to log in over an insecure connection. The fourth is how to

generate a number of keys which can be written down or printed out to use at insecure locations.

14.3.1. Initializing OPIE

To initialize OPIE for the first time, run this command from a secure location:

% opiepasswd -c

Adding unfurl:

Only use this method from the console; NEVER from remote. If you are using

telnet, xterm, or a dial-in, type ^C now or exit with no password.

Then run opiepasswd without the -c parameter.

Using MD5 to compute responses.

Enter new secret pass phrase:

Again new secret pass phrase:

ID unfurl OTP key is 499 to4268

MOS MALL GOAT ARM AVID COED

The -c sets console mode which assumes that the command is being run from a secure location,

such as a computer under the userÕs control or an SSH session to a computer under the userÕs

control.

When prompted, enter the secret password which will be used to generate the one-time login keys.

This password should be difficult to guess and should be different than the password which is

associated with the userÕs login account. It must be between 10 and 127 characters long. Remember

this password.

The ID line lists the login name (unfurl), default iteration count (499), and default seed (to4268).

When logging in, the system will remember these parameters and display them, meaning that they

do not have to be memorized. The last line lists the generated one-time password which

corresponds to those parameters and the secret password. At the next login, use this one-time

password.

14.3.2. Insecure Connection Initialization

To initialize or change the secret password on an insecure system, a secure connection is needed to

some place where opiekey can be run. This might be a shell prompt on a trusted machine. An

iteration count is needed, where 100 is probably a good value, and the seed can either be specified

or the randomly-generated one used. On the insecure connection, the machine being initialized, use

man:opiepasswd[1]:

322

% opiepasswd

Updating unfurl:

You need the response from an OTP generator.

Old secret pass phrase:

Ê otp-md5 498 to4268 ext

Ê Response: GAME GAG WELT OUT DOWN CHAT

New secret pass phrase:

Ê otp-md5 499 to4269

Ê Response: LINE PAP MILK NELL BUOY TROY

ID mark OTP key is 499 gr4269

LINE PAP MILK NELL BUOY TROY

To accept the default seed, press Return . Before entering an access password, move over to the

secure connection and give it the same parameters:

% opiekey 498 to4268

Using the MD5 algorithm to compute response.

Reminder: Do not use opiekey from telnet or dial-in sessions.

Enter secret pass phrase:

GAME GAG WELT OUT DOWN CHAT

Switch back over to the insecure connection, and copy the generated one-time password over to the

relevant program.

14.3.3. Generating a Single One-time Password

After initializing OPIE and logging in, a prompt like this will be displayed:

% telnet example.com

Trying 10.0.0.1...

Connected to example.com

Escape character is '^]'.

FreeBSD/i386 (example.com) (ttypa)

login: <username>

otp-md5 498 gr4269 ext

Password:

The OPIE prompts provides a useful feature. If Return is pressed at the password prompt, the

prompt will turn echo on and display what is typed. This can be useful when attempting to type in a

password by hand from a printout.

At this point, generate the one-time password to answer this login prompt. This must be done on a

trusted system where it is safe to run man:opiekey[1]. There are versions of this command for

323

Windows¨, Mac OS¨ and FreeBSD. This command needs the iteration count and the seed as

command line options. Use cut-and-paste from the login prompt on the machine being logged in to.

On the trusted system:

% opiekey 498 to4268

Using the MD5 algorithm to compute response.

Reminder: Do not use opiekey from telnet or dial-in sessions.

Enter secret pass phrase:

GAME GAG WELT OUT DOWN CHAT

Once the one-time password is generated, continue to log in.

14.3.4. Generating Multiple One-time Passwords

Sometimes there is no access to a trusted machine or secure connection. In this case, it is possible to

use man:opiekey[1] to generate a number of one-time passwords beforehand. For example:

% opiekey -n 5 30 zz99999

Using the MD5 algorithm to compute response.

Reminder: Do not use opiekey from telnet or dial-in sessions.

Enter secret pass phrase: <secret password>

26: JOAN BORE FOSS DES NAY QUIT

27: LATE BIAS SLAY FOLK MUCH TRIG

28: SALT TIN ANTI LOON NEAL USE

29: RIO ODIN GO BYE FURY TIC

30: GREW JIVE SAN GIRD BOIL PHI

The -n 5 requests five keys in sequence, and 30 specifies what the last iteration number should be.

Note that these are printed out in reverse order of use. The really paranoid might want to write the

results down by hand; otherwise, print the list. Each line shows both the iteration count and the

one-time password. Scratch off the passwords as they are used.

14.3.5. Restricting Use of UNIX¨ Passwords

OPIE can restrict the use of UNIX¨ passwords based on the IP address of a login session. The

relevant file is /etc/opieaccess , which is present by default. Refer to man:opieaccess[5] for more

information on this file and which security considerations to be aware of when using it.

Here is a sample opieaccess :

permit 192.168.0.0 255.255.0.0

This line allows users whose IP source address (which is vulnerable to spoofing) matches the

specified value and mask, to use UNIX¨ passwords at any time.

If no rules in opieaccess are matched, the default is to deny non-OPIE logins.

324

14.4. TCP Wrapper

TCP Wrapper is a host-based access control system which extends the abilities of crossref:network-

servers[network-inetd,ÒThe inetd Super-ServerÓ]. It can be configured to provide logging support,

return messages, and connection restrictions for the server daemons under the control of inetd.

Refer to man:tcpd[8] for more information about TCP Wrapper and its features.

TCP Wrapper should not be considered a replacement for a properly configured firewall. Instead,

TCP Wrapper should be used in conjunction with a firewall and other security enhancements in

order to provide another layer of protection in the implementation of a security policy.

14.4.1. Initial Configuration

To enable TCP Wrapper in FreeBSD, add the following lines to /etc/rc.conf :

inetd_enable="YES"

inetd_flags="-Ww"

Then, properly configure /etc/hosts.allow .

!

Unlike other implementations of TCP Wrapper, the use of hosts.deny is deprecated

in FreeBSD. All configuration options should be placed in /etc/hosts.allow .

In the simplest configuration, daemon connection policies are set to either permit or block,

depending on the options in /etc/hosts.allow . The default configuration in FreeBSD is to allow all

connections to the daemons started with inetd.

Basic configuration usually takes the form of daemon : address : action , where daemon is the

daemon which inetd started, address is a valid hostname, IP address, or an IPv6 address enclosed in

brackets ([]), and action is either allow or deny . TCP Wrapper uses a first rule match semantic,

meaning that the configuration file is scanned from the beginning for a matching rule. When a

match is found, the rule is applied and the search process stops.

For example, to allow POP3 connections via the package:mail/qpopper[] daemon, the following

lines should be appended to hosts.allow :

This line is required for POP3 connections:

qpopper : ALL : allow

Whenever this file is edited, restart inetd:

service inetd restart

325

14.4.2. Advanced Configuration

TCP Wrapper provides advanced options to allow more control over the way connections are

handled. In some cases, it may be appropriate to return a comment to certain hosts or daemon

connections. In other cases, a log entry should be recorded or an email sent to the administrator.

Other situations may require the use of a service for local connections only. This is all possible

through the use of configuration options known as wildcards, expansion characters, and external

command execution.

Suppose that a situation occurs where a connection should be denied yet a reason should be sent to

the host who attempted to establish that connection. That action is possible with twist . When a

connection attempt is made, twist executes a shell command or script. An example exists in

hosts.allow :

The rest of the daemons are protected.

ALL : ALL \

Ê : severity auth.info \

Ê : twist /bin/echo "You are not welcome to use %d from %h."

In this example, the message "You are not allowed to use daemon name from hostname ." will be

returned for any daemon not configured in hosts.allow . This is useful for sending a reply back to

the connection initiator right after the established connection is dropped. Any message returned

must be wrapped in quote (") characters.

"

It may be possible to launch a denial of service attack on the server if an attacker

floods these daemons with connection requests.

Another possibility is to use spawn . Like twist , spawn implicitly denies the connection and may be

used to run external shell commands or scripts. Unlike twist , spawn will not send a reply back to the

host who established the connection. For example, consider the following configuration:

We do not allow connections from example.com:

ALL : .example.com \

Ê : spawn (/bin/echo %a from %h attempted to access %d >> \

Ê /var/log/connections.log) \

Ê : deny

This will deny all connection attempts from *.example.com and log the hostname, IP address, and the

daemon to which access was attempted to /var/log/connections.log . This example uses the

substitution characters %a and %h . Refer to man:hosts_access[5] for the complete list.

To match every instance of a daemon, domain, or IP address, use ALL . Another wildcard is PARANOID

which may be used to match any host which provides an IP address that may be forged because the

IP address differs from its resolved hostname. In this example, all connection requests to Sendmail

which have an IP address that varies from its hostname will be denied:

326

Block possibly spoofed requests to sendmail:

sendmail : PARANOID : deny

$

Using the PARANOID wildcard will result in denied connections if the client or server

has a broken DNS setup.

To learn more about wildcards and their associated functionality, refer to man:hosts_access[5].

!

When adding new configuration lines, make sure that any unneeded entries for

that daemon are commented out in hosts.allow .

14.5. Kerberos

Kerberos is a network authentication protocol which was originally created by the Massachusetts

Institute of Technology (MIT) as a way to securely provide authentication across a potentially

hostile network. The Kerberos protocol uses strong cryptography so that both a client and server

can prove their identity without sending any unencrypted secrets over the network. Kerberos can

be described as an identity-verifying proxy system and as a trusted third-party authentication

system. After a user authenticates with Kerberos, their communications can be encrypted to assure

privacy and data integrity.

The only function of Kerberos is to provide the secure authentication of users and servers on the

network. It does not provide authorization or auditing functions. It is recommended that Kerberos

be used with other security methods which provide authorization and audit services.

The current version of the protocol is version 5, described in RFC 4120. Several free

implementations of this protocol are available, covering a wide range of operating systems. MIT

continues to develop their Kerberos package. It is commonly used in the US as a cryptography

product, and has historically been subject to US export regulations. In FreeBSD, MITKerberos is

available as the package:security/krb5[] package or port. The Heimdal Kerberos implementation

was explicitly developed outside of the US to avoid export regulations. The Heimdal Kerberos

distribution is included in the base FreeBSD installation, and another distribution with more

configurable options is available as package:security/heimdal[] in the Ports Collection.

In Kerberos users and services are identified as "principals" which are contained within an

administrative grouping, called a "realm". A typical user principal would be of the form user @ REALM

(realms are traditionally uppercase).

This section provides a guide on how to set up Kerberos using the Heimdal distribution included in

FreeBSD.

For purposes of demonstrating a Kerberos installation, the name spaces will be as follows:

¥ The DNS domain (zone) will be example.org .

¥ The Kerberos realm will be EXAMPLE.ORG .

327

!

Use real domain names when setting up Kerberos, even if it will run internally.

This avoids DNS problems and assures inter-operation with other Kerberos realms.

14.5.1. Setting up a Heimdal KDC

The Key Distribution Center (KDC) is the centralized authentication service that Kerberos provides,

the "trusted third party" of the system. It is the computer that issues Kerberos tickets, which are

used for clients to authenticate to servers. As the KDC is considered trusted by all other computers

in the Kerberos realm, it has heightened security concerns. Direct access to the KDC should be

limited.

While running a KDC requires few computing resources, a dedicated machine acting only as a KDC

is recommended for security reasons.

To begin, install the package:security/heimdal[] package as follows:

pkg install heimdal

Next, update /etc/rc.conf using sysrc as follows:

sysrc kdc_enable=yes

sysrc kadmind_enable=yes

Next, edit /etc/krb5.conf as follows:

[libdefaults]

Ê default_realm = EXAMPLE.ORG

[realms]

Ê EXAMPLE.ORG = {

Ê kdc = kerberos.example.org

Ê admin_server = kerberos.example.org

Ê }

[domain_realm]

Ê .example.org = EXAMPLE.ORG

In this example, the KDC will use the fully-qualified hostname kerberos.example.org . The hostname

of the KDC must be resolvable in the DNS.

Kerberos can also use the DNS to locate KDCs, instead of a [realms] section in /etc/krb5.conf . For

large organizations that have their own DNS servers, the above example could be trimmed to:

[libdefaults]

Ê default_realm = EXAMPLE.ORG

[domain_realm]

Ê .example.org = EXAMPLE.ORG

328

With the following lines being included in the example.org zone file:

_kerberos._udp IN SRV 01 00 88 kerberos.example.org.

_kerberos._tcp IN SRV 01 00 88 kerberos.example.org.

_kpasswd._udp IN SRV 01 00 464 kerberos.example.org.

_kerberos-adm._tcp IN SRV 01 00 749 kerberos.example.org.

_kerberos IN TXT EXAMPLE.ORG

!

In order for clients to be able to find the Kerberos services, they must have either a

fully configured /etc/krb5.conf or a minimally configured /etc/krb5.conf and a

properly configured DNS server.

Next, create the Kerberos database which contains the keys of all principals (users and hosts)

encrypted with a master password. It is not required to remember this password as it will be stored

in /var/heimdal/m-key ; it would be reasonable to use a 45-character random password for this

purpose. To create the master key, run kstash and enter a password:

kstash

Master key: xxxxxxxxxxxxxxxxxxxxxxx

Verifying password - Master key: xxxxxxxxxxxxxxxxxxxxxxx

Once the master key has been created, the database should be initialized. The Kerberos

administrative tool man:kadmin[8] can be used on the KDC in a mode that operates directly on the

database, without using the man:kadmind[8] network service, as kadmin -l . This resolves the

chicken-and-egg problem of trying to connect to the database before it is created. At the kadmin

prompt, use init to create the realmÕs initial database:

kadmin -l

kadmin> init EXAMPLE.ORG

Realm max ticket life [unlimited]:

Lastly, while still in kadmin , create the first principal using add . Stick to the default options for the

principal for now, as these can be changed later with modify . Type ? at the prompt to see the

available options.

kadmin> add tillman

Max ticket life [unlimited]:

Max renewable life [unlimited]:

Principal expiration time [never]:

Password expiration time [never]:

Attributes []:

Password: xxxxxxxx

Verifying password - Password: xxxxxxxx

Next, start the KDC services by running:

329

service kdc start

service kadmind start

While there will not be any kerberized daemons running at this point, it is possible to confirm that

the KDC is functioning by obtaining a ticket for the principal that was just created:

% kinit tillman

tillman@EXAMPLE.ORG's Password:

Confirm that a ticket was successfully obtained using klist :

% klist

Credentials cache: FILE:/tmp/krb5cc_1001

Ê Principal: tillman@EXAMPLE.ORG

Ê Issued Expires Principal

Aug 27 15:37:58 2013 Aug 28 01:37:58 2013 krbtgt/EXAMPLE.ORG@EXAMPLE.ORG

The temporary ticket can be destroyed when the test is finished:

% kdestroy

14.5.2. Configuring a Server to Use Kerberos

The first step in configuring a server to use Kerberos authentication is to ensure that it has the

correct configuration in /etc/krb5.conf . The version from the KDC can be used as-is, or it can be

regenerated on the new system.

Next, create /etc/krb5.keytab on the server. This is the main part of "Kerberizing" a service - it

corresponds to generating a secret shared between the service and the KDC. The secret is a

cryptographic key, stored in a "keytab". The keytab contains the serverÕs host key, which allows it

and the KDC to verify each others' identity. It must be transmitted to the server in a secure fashion,

as the security of the server can be broken if the key is made public. Typically, the keytab is

generated on an administratorÕs trusted machine using kadmin , then securely transferred to the

server, e.g., with man:scp[1]; it can also be created directly on the server if that is consistent with

the desired security policy. It is very important that the keytab is transmitted to the server in a

secure fashion: if the key is known by some other party, that party can impersonate any user to the

server! Using kadmin on the server directly is convenient, because the entry for the host principal in

the KDC database is also created using kadmin .

Of course, kadmin is a kerberized service; a Kerberos ticket is needed to authenticate to the network

service, but to ensure that the user running kadmin is actually present (and their session has not

been hijacked), kadmin will prompt for the password to get a fresh ticket. The principal

authenticating to the kadmin service must be permitted to use the kadmin interface, as specified in

/var/heimdal/kadmind.acl . See the section titled "Remote administration" in info heimdal for details

330

on designing access control lists. Instead of enabling remote kadmin access, the administrator could

securely connect to the KDC via the local console or man:ssh[1], and perform administration locally

using kadmin -l .

After installing /etc/krb5.conf , use add --random-key in kadmin . This adds the serverÕs host principal

to the database, but does not extract a copy of the host principal key to a keytab. To generate the

keytab, use ext to extract the serverÕs host principal key to its own keytab:

kadmin

kadmin> add --random-key host/myserver.example.org

Max ticket life [unlimited]:

Max renewable life [unlimited]:

Principal expiration time [never]:

Password expiration time [never]:

Attributes []:

kadmin> ext_keytab host/myserver.example.org

kadmin> exit

Note that ext_keytab stores the extracted key in /etc/krb5.keytab by default. This is good when being

run on the server being kerberized, but the --keytab path/to/file argument should be used when

the keytab is being extracted elsewhere:

kadmin

kadmin> ext_keytab --keytab=/tmp/example.keytab host/myserver.example.org

kadmin> exit

The keytab can then be securely copied to the server using man:scp[1] or a removable media. Be

sure to specify a non-default keytab name to avoid inserting unneeded keys into the systemÕs

keytab.

At this point, the server can read encrypted messages from the KDC using its shared key, stored in

krb5.keytab . It is now ready for the Kerberos-using services to be enabled. One of the most common

such services is man:sshd[8], which supports Kerberos via the GSS-API. In /etc/ssh/sshd_config , add

the line:

GSSAPIAuthentication yes

After making this change, man:sshd[8] must be restarted for the new configuration to take effect:

service sshd restart .

14.5.3. Configuring a Client to Use Kerberos

As it was for the server, the client requires configuration in /etc/krb5.conf . Copy the file in place

(securely) or re-enter it as needed.

Test the client by using kinit , klist , and kdestroy from the client to obtain, show, and then delete a

ticket for an existing principal. Kerberos applications should also be able to connect to Kerberos

331

enabled servers. If that does not work but obtaining a ticket does, the problem is likely with the

server and not with the client or the KDC. In the case of kerberized man:ssh[1], GSS-API is disabled

by default, so test using ssh -o GSSAPIAuthentication=yes hostname .

When testing a Kerberized application, try using a packet sniffer such as tcpdump to confirm that no

sensitive information is sent in the clear.

Various Kerberos client applications are available. With the advent of a bridge so that applications

using SASL for authentication can use GSS-API mechanisms as well, large classes of client

applications can use Kerberos for authentication, from Jabber clients to IMAP clients.

Users within a realm typically have their Kerberos principal mapped to a local user account.

Occasionally, one needs to grant access to a local user account to someone who does not have a

matching Kerberos principal. For example, tillman@EXAMPLE.ORG may need access to the local user

account webdevelopers . Other principals may also need access to that local account.

The .k5login and .k5users files, placed in a userÕs home directory, can be used to solve this problem.

For example, if the following .k5login is placed in the home directory of webdevelopers , both

principals listed will have access to that account without requiring a shared password:

tillman@example.org

jdoe@example.org

Refer to man:ksu[1] for more information about .k5users .

14.5.4. MIT Differences

The major difference between the MIT and Heimdal implementations is that kadmin has a different,

but equivalent, set of commands and uses a different protocol. If the KDC is MIT, the Heimdal

version of kadmin cannot be used to administer the KDC remotely, and vice versa.

Client applications may also use slightly different command line options to accomplish the same

tasks. Following the instructions at http://web.mit.edu/Kerberos/www/ is recommended. Be careful

of path issues: the MIT port installs into /usr/local/ by default, and the FreeBSD system applications

run instead of the MIT versions if PATH lists the system directories first.

When using MIT Kerberos as a KDC on FreeBSD, the following edits should also be made to rc.conf :

kdc_program="/usr/local/sbin/kdc"

kadmind_program="/usr/local/sbin/kadmind"

kdc_flags=""

kdc_enable="YES"

kadmind_enable="YES"

14.5.5. Kerberos Tips, Tricks, and Troubleshooting

When configuring and troubleshooting Kerberos, keep the following points in mind:

332

http://web.mit.edu/Kerberos/www/

¥ When using either Heimdal or MITKerberos from ports, ensure that the PATH lists the portÕs

versions of the client applications before the system versions.

¥ If all the computers in the realm do not have synchronized time settings, authentication may

fail. crossref:network-servers[network-ntp,ÒClock Synchronization with NTPÓ] describes how to

synchronize clocks using NTP.

¥ If the hostname is changed, the host/ principal must be changed and the keytab updated. This

also applies to special keytab entries like the HTTP/ principal used for ApacheÕs

package:www/mod_auth_kerb[].

¥ All hosts in the realm must be both forward and reverse resolvable in DNS or, at a minimum,

exist in /etc/hosts . CNAMEs will work, but the A and PTR records must be correct and in place.

The error message for unresolvable hosts is not intuitive: Kerberos5 refuses authentication

because Read req failed: Key table entry not found .

¥ Some operating systems that act as clients to the KDC do not set the permissions for ksu to be

setuid root . This means that ksu does not work. This is a permissions problem, not a KDC error.

¥ With MITKerberos, to allow a principal to have a ticket life longer than the default lifetime of

ten hours, use modify_principal at the man:kadmin[8] prompt to change the maxlife of both the

principal in question and the krbtgt principal. The principal can then use kinit -l to request a

ticket with a longer lifetime.

¥ When running a packet sniffer on the KDC to aid in troubleshooting while running kinit from a

workstation, the Ticket Granting Ticket (TGT) is sent immediately, even before the password is

typed. This is because the Kerberos server freely transmits a TGT to any unauthorized request.

However, every TGT is encrypted in a key derived from the userÕs password. When a user types

their password, it is not sent to the KDC, it is instead used to decrypt the TGT that kinit already

obtained. If the decryption process results in a valid ticket with a valid time stamp, the user has

valid Kerberos credentials. These credentials include a session key for establishing secure

communications with the Kerberos server in the future, as well as the actual TGT, which is

encrypted with the Kerberos serverÕs own key. This second layer of encryption allows the

Kerberos server to verify the authenticity of each TGT.

¥ Host principals can have a longer ticket lifetime. If the user principal has a lifetime of a week

but the host being connected to has a lifetime of nine hours, the user cache will have an expired

host principal and the ticket cache will not work as expected.

¥ When setting up krb5.dict to prevent specific bad passwords from being used as described in

man:kadmind[8], remember that it only applies to principals that have a password policy

assigned to them. The format used in krb5.dict is one string per line. Creating a symbolic link to

/usr/shared/dict/words might be useful.

14.5.6. Mitigating Kerberos Limitations

Since Kerberos is an all or nothing approach, every service enabled on the network must either be

modified to work with Kerberos or be otherwise secured against network attacks. This is to prevent

user credentials from being stolen and re-used. An example is when Kerberos is enabled on all

remote shells but the non-Kerberized POP3 mail server sends passwords in plain text.

The KDC is a single point of failure. By design, the KDC must be as secure as its master password

database. The KDC should have absolutely no other services running on it and should be physically

333

secure. The danger is high because Kerberos stores all passwords encrypted with the same master

key which is stored as a file on the KDC.

A compromised master key is not quite as bad as one might fear. The master key is only used to

encrypt the Kerberos database and as a seed for the random number generator. As long as access to

the KDC is secure, an attacker cannot do much with the master key.

If the KDC is unavailable, network services are unusable as authentication cannot be performed.

This can be alleviated with a single master KDC and one or more slaves, and with careful

implementation of secondary or fall-back authentication using PAM.

Kerberos allows users, hosts and services to authenticate between themselves. It does not have a

mechanism to authenticate the KDC to the users, hosts, or services. This means that a trojaned kinit

could record all user names and passwords. File system integrity checking tools like

package:security/tripwire[] can alleviate this.

14.5.7. Resources and Further Information

¥ The Kerberos FAQ

¥ Designing an Authentication System: a Dialog in Four Scenes

¥ RFC 4120, The Kerberos Network Authentication Service (V5)

¥ MIT Kerberos home page

¥ Heimdal Kerberos project wiki page

14.6. OpenSSL

OpenSSL is an open source implementation of the SSL and TLS protocols. It provides an encryption

transport layer on top of the normal communications layer, allowing it to be intertwined with

many network applications and services.

The version of OpenSSL included in FreeBSD supports the Secure Sockets Layer 3.0 (SSLv3) and

Transport Layer Security 1.0/1.1/1.2 (TLSv1/TLSv1.1/TLSv1.2) network security protocols and can be

used as a general cryptographic library. In FreeBSD 12.0-RELEASE and above, OpenSSL also

supports Transport Layer Security 1.3 (TLSv1.3).

OpenSSL is often used to encrypt authentication of mail clients and to secure web based

transactions such as credit card payments. Some ports, such as package:www/apache24[] and

package:databases/postgresql11-server[], include a compile option for building with OpenSSL. If

selected, the port will add support using OpenSSL from the base system. To instead have the port

compile against OpenSSL from the package:security/openssl[] port, add the following to

/etc/make.conf :

DEFAULT_VERSIONS+= ssl=openssl

Another common use of OpenSSL is to provide certificates for use with software applications.

Certificates can be used to verify the credentials of a company or individual. If a certificate has not

334

http://www.faqs.org/faqs/Kerberos-faq/general/preamble.html
http://web.mit.edu/Kerberos/www/dialogue.html
https://www.ietf.org/rfc/rfc4120.txt
http://web.mit.edu/Kerberos/www/
https://github.com/heimdal/heimdal/wiki

been signed by an external Certificate Authority (CA), such as http://www.verisign.com , the

application that uses the certificate will produce a warning. There is a cost associated with

obtaining a signed certificate and using a signed certificate is not mandatory as certificates can be

self-signed. However, using an external authority will prevent warnings and can put users at ease.

This section demonstrates how to create and use certificates on a FreeBSD system. Refer to

crossref:network-servers[ldap-config,ÒConfiguring an LDAP ServerÓ] for an example of how to

create a CA for signing oneÕs own certificates.

For more information about SSL, read the free OpenSSL Cookbook .

14.6.1. Generating Certificates

To generate a certificate that will be signed by an external CA, issue the following command and

input the information requested at the prompts. This input information will be written to the

certificate. At the Common Name prompt, input the fully qualified name for the system that will use the

certificate. If this name does not match the server, the application verifying the certificate will issue

a warning to the user, rendering the verification provided by the certificate as useless.

openssl req -new -nodes -out req.pem -keyout cert.key -sha256 -newkey rsa:2048

Generating a 2048 bit RSA private key

..................+++

...+++

writing new private key to 'cert.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:PA

Locality Name (eg, city) []:Pittsburgh

Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company

Organizational Unit Name (eg, section) []:Systems Administrator

Common Name (eg, YOUR name) []:localhost.example.org

Email Address []:trhodes@FreeBSD.org

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:Another Name

Other options, such as the expire time and alternate encryption algorithms, are available when

creating a certificate. A complete list of options is described in man:openssl[1].

This command will create two files in the current directory. The certificate request, req.pem , can be

335

http://www.verisign.com
https://www.feistyduck.com/books/openssl-cookbook/

sent to a CA who will validate the entered credentials, sign the request, and return the signed

certificate. The second file, cert.key , is the private key for the certificate and should be stored in a

secure location. If this falls in the hands of others, it can be used to impersonate the user or the

server.

Alternately, if a signature from a CA is not required, a self-signed certificate can be created. First,

generate the RSA key:

openssl genrsa -rand -genkey -out cert.key 2048

0 semi-random bytes loaded

Generating RSA private key, 2048 bit long modulus

...+++

..

...........................+++

e is 65537 (0x10001)

Use this key to create a self-signed certificate. Follow the usual prompts for creating a certificate:

openssl req -new -x509 -days 365 -key cert.key -out cert.crt -sha256

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:PA

Locality Name (eg, city) []:Pittsburgh

Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company

Organizational Unit Name (eg, section) []:Systems Administrator

Common Name (e.g. server FQDN or YOUR name) []:localhost.example.org

Email Address []:trhodes@FreeBSD.org

This will create two new files in the current directory: a private key file cert.key , and the certificate

itself, cert.crt . These should be placed in a directory, preferably under /etc/ssl/ , which is readable

only by root . Permissions of 0700 are appropriate for these files and can be set using chmod .

14.6.2. Using Certificates

One use for a certificate is to encrypt connections to the Sendmail mail server in order to prevent

the use of clear text authentication.

!

Some mail clients will display an error if the user has not installed a local copy of

the certificate. Refer to the documentation included with the software for more

information on certificate installation.

In FreeBSD 10.0-RELEASE and above, it is possible to create a self-signed certificate for Sendmail

336

automatically. To enable this, add the following lines to /etc/rc.conf :

sendmail_enable="YES"

sendmail_cert_create="YES"

sendmail_cert_cn="localhost.example.org"

This will automatically create a self-signed certificate, /etc/mail/certs/host.cert , a signing key,

/etc/mail/certs/host.key , and a CA certificate, /etc/mail/certs/cacert.pem . The certificate will use the

Common Name specified in sendmail_cert_cn . After saving the edits, restart Sendmail:

service sendmail restart

If all went well, there will be no error messages in /var/log/maillog . For a simple test, connect to the

mail serverÕs listening port using telnet :

telnet example.com 25

Trying 192.0.34.166...

Connected to example.com.

Escape character is '^]'.

220 example.com ESMTP Sendmail 8.14.7/8.14.7; Fri, 18 Apr 2014 11:50:32 -0400 (EDT)

ehlo example.com

250-example.com Hello example.com [192.0.34.166], pleased to meet you

250-ENHANCEDSTATUSCODES

250-PIPELINING

250-8BITMIME

250-SIZE

250-DSN

250-ETRN

250-AUTH LOGIN PLAIN

250-STARTTLS

250-DELIVERBY

250 HELP

quit

221 2.0.0 example.com closing connection

Connection closed by foreign host.

If the STARTTLS line appears in the output, everything is working correctly.

14.7. VPN over IPsec

Internet Protocol Security (IPsec) is a set of protocols which sit on top of the Internet Protocol (IP)

layer. It allows two or more hosts to communicate in a secure manner by authenticating and

encrypting each IP packet of a communication session. The FreeBSD IPsec network stack is based

on the http://www.kame.net/ implementation and supports both IPv4 and IPv6 sessions.

IPsec is comprised of the following sub-protocols:

337

http://www.kame.net/

¥ Encapsulated Security Payload (ESP) : this protocol protects the IP packet data from third party

interference by encrypting the contents using symmetric cryptography algorithms such as

Blowfish and 3DES.

¥ Authentication Header (AH) : this protocol protects the IP packet header from third party

interference and spoofing by computing a cryptographic checksum and hashing the IP packet

header fields with a secure hashing function. This is then followed by an additional header that

contains the hash, to allow the information in the packet to be authenticated.

¥ IP Payload Compression Protocol (IPComp): this protocol tries to increase communication

performance by compressing the IP payload in order to reduce the amount of data sent.

These protocols can either be used together or separately, depending on the environment.

IPsec supports two modes of operation. The first mode, Transport Mode , protects communications

between two hosts. The second mode, Tunnel Mode , is used to build virtual tunnels, commonly

known as Virtual Private Networks (VPNs). Consult man:ipsec[4] for detailed information on the

IPsec subsystem in FreeBSD.

IPsec support is enabled by default on FreeBSD 11 and later. For previous versions of FreeBSD, add

these options to a custom kernel configuration file and rebuild the kernel using the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]:

options IPSEC IP security

device crypto

If IPsec debugging support is desired, the following kernel option should also be added:

options IPSEC_DEBUG debug for IP security

This rest of this chapter demonstrates the process of setting up an IPsecVPN between a home

network and a corporate network. In the example scenario:

¥ Both sites are connected to the Internet through a gateway that is running FreeBSD.

¥ The gateway on each network has at least one external IP address. In this example, the

corporate LANÕs external IP address is 172.16.5.4 and the home LANÕs external IP address is

192.168.1.12 .

¥ The internal addresses of the two networks can be either public or private IP addresses.

However, the address space must not collide. For example, both networks cannot use

192.168.1.x . In this example, the corporate LANÕs internal IP address is 10.246.38.1 and the

home LANÕs internal IP address is 10.0.0.5 .

14.7.1. Configuring a VPN on FreeBSD

To begin, package:security/ipsec-tools[] must be installed from the Ports Collection. This software

provides a number of applications which support the configuration.

The next requirement is to create two man:gif[4] pseudo-devices which will be used to tunnel

338

packets and allow both networks to communicate properly. As root , run the following commands,

replacing internal and external with the real IP addresses of the internal and external interfaces of

the two gateways:

ifconfig gif0 create

ifconfig gif0 internal1 internal2

ifconfig gif0 tunnel external1 external2

Verify the setup on each gateway, using ifconfig . Here is the output from Gateway 1:

gif0: flags=8051 mtu 1280

tunnel inet 172.16.5.4 --> 192.168.1.12

inet6 fe80::2e0:81ff:fe02:5881%gif0 prefixlen 64 scopeid 0x6

inet 10.246.38.1 --> 10.0.0.5 netmask 0xffffff00

Here is the output from Gateway 2:

gif0: flags=8051 mtu 1280

tunnel inet 192.168.1.12 --> 172.16.5.4

inet 10.0.0.5 --> 10.246.38.1 netmask 0xffffff00

inet6 fe80::250:bfff:fe3a:c1f%gif0 prefixlen 64 scopeid 0x4

Once complete, both internal IP addresses should be reachable using man:ping[8]:

priv-net# ping 10.0.0.5

PING 10.0.0.5 (10.0.0.5): 56 data bytes

64 bytes from 10.0.0.5: icmp_seq=0 ttl=64 time=42.786 ms

64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=19.255 ms

64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=20.440 ms

64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=21.036 ms

--- 10.0.0.5 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/stddev = 19.255/25.879/42.786/9.782 ms

corp-net# ping 10.246.38.1

PING 10.246.38.1 (10.246.38.1): 56 data bytes

64 bytes from 10.246.38.1: icmp_seq=0 ttl=64 time=28.106 ms

64 bytes from 10.246.38.1: icmp_seq=1 ttl=64 time=42.917 ms

64 bytes from 10.246.38.1: icmp_seq=2 ttl=64 time=127.525 ms

64 bytes from 10.246.38.1: icmp_seq=3 ttl=64 time=119.896 ms

64 bytes from 10.246.38.1: icmp_seq=4 ttl=64 time=154.524 ms

--- 10.246.38.1 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 28.106/94.594/154.524/49.814 ms

As expected, both sides have the ability to send and receive ICMP packets from the privately

339

configured addresses. Next, both gateways must be told how to route packets in order to correctly

send traffic from either network. The following commands will achieve this goal:

corp-net# route add 10.0.0.0 10.0.0.5 255.255.255.0

corp-net# route add net 10.0.0.0: gateway 10.0.0.5

priv-net# route add 10.246.38.0 10.246.38.1 255.255.255.0

priv-net# route add host 10.246.38.0: gateway 10.246.38.1

At this point, internal machines should be reachable from each gateway as well as from machines

behind the gateways. Again, use man:ping[8] to confirm:

corp-net# ping 10.0.0.8

PING 10.0.0.8 (10.0.0.8): 56 data bytes

64 bytes from 10.0.0.8: icmp_seq=0 ttl=63 time=92.391 ms

64 bytes from 10.0.0.8: icmp_seq=1 ttl=63 time=21.870 ms

64 bytes from 10.0.0.8: icmp_seq=2 ttl=63 time=198.022 ms

64 bytes from 10.0.0.8: icmp_seq=3 ttl=63 time=22.241 ms

64 bytes from 10.0.0.8: icmp_seq=4 ttl=63 time=174.705 ms

--- 10.0.0.8 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 21.870/101.846/198.022/74.001 ms

priv-net# ping 10.246.38.107

PING 10.246.38.1 (10.246.38.107): 56 data bytes

64 bytes from 10.246.38.107: icmp_seq=0 ttl=64 time=53.491 ms

64 bytes from 10.246.38.107: icmp_seq=1 ttl=64 time=23.395 ms

64 bytes from 10.246.38.107: icmp_seq=2 ttl=64 time=23.865 ms

64 bytes from 10.246.38.107: icmp_seq=3 ttl=64 time=21.145 ms

64 bytes from 10.246.38.107: icmp_seq=4 ttl=64 time=36.708 ms

--- 10.246.38.107 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 21.145/31.721/53.491/12.179 ms

Setting up the tunnels is the easy part. Configuring a secure link is a more in depth process. The

following configuration uses pre-shared (PSK) RSA keys. Other than the IP addresses, the

/usr/local/etc/racoon/racoon.conf on both gateways will be identical and look similar to:

path pre_shared_key "/usr/local/etc/racoon/psk.txt"; #location of pre-shared key

file

log debug; #log verbosity setting: set to 'notify' when testing and debugging is

complete

padding # options are not to be changed

{

Ê maximum_length 20;

Ê randomize off;

Ê strict_check off;

Ê exclusive_tail off;

340

}

timer # timing options. change as needed

{

Ê counter 5;

Ê interval 20 sec;

Ê persend 1;

natt_keepalive 15 sec;

Ê phase1 30 sec;

Ê phase2 15 sec;

}

listen # address [port] that racoon will listen on

{

Ê isakmp 172.16.5.4 [500];

Ê isakmp_natt 172.16.5.4 [4500];

}

remote 192.168.1.12 [500]

{

Ê exchange_mode main,aggressive;

Ê doi ipsec_doi;

Ê situation identity_only;

Ê my_identifier address 172.16.5.4;

Ê peers_identifier address 192.168.1.12;

Ê lifetime time 8 hour;

Ê passive off;

Ê proposal_check obey;

nat_traversal off;

Ê generate_policy off;

Ê proposal {

Ê encryption_algorithm blowfish;

Ê hash_algorithm md5;

Ê authentication_method pre_shared_key;

Ê lifetime time 30 sec;

Ê dh_group 1;

Ê }

}

sainfo (address 10.246.38.0/24 any address 10.0.0.0/24 any) # address

$network/$netmask $type address $network/$netmask $type ($type being any or esp)

{ # $network must be the two internal networks you are

joining.

Ê pfs_group 1;

Ê lifetime time 36000 sec;

Ê encryption_algorithm blowfish,3des;

Ê authentication_algorithm hmac_md5,hmac_sha1;

Ê compression_algorithm deflate;

}

341

For descriptions of each available option, refer to the manual page for racoon.conf .

The Security Policy Database (SPD) needs to be configured so that FreeBSD and racoon are able to

encrypt and decrypt network traffic between the hosts.

This can be achieved with a shell script, similar to the following, on the corporate gateway. This file

will be used during system initialization and should be saved as /usr/local/etc/racoon/setkey.conf .

flush;

spdflush;

To the home network

spdadd 10.246.38.0/24 10.0.0.0/24 any -P out ipsec esp/tunnel/172.16.5.4-

192.168.1.12/use;

spdadd 10.0.0.0/24 10.246.38.0/24 any -P in ipsec esp/tunnel/192.168.1.12-

172.16.5.4/use;

Once in place, racoon may be started on both gateways using the following command:

/usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf -l

/var/log/racoon.log

The output should be similar to the following:

corp-net# /usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf

Foreground mode.

2006-01-30 01:35:47: INFO: begin Identity Protection mode.

2006-01-30 01:35:48: INFO: received Vendor ID: KAME/racoon

2006-01-30 01:35:55: INFO: received Vendor ID: KAME/racoon

2006-01-30 01:36:04: INFO: ISAKMP-SA established 172.16.5.4[500]-192.168.1.12[500]

spi:623b9b3bd2492452:7deab82d54ff704a

2006-01-30 01:36:05: INFO: initiate new phase 2 negotiation:

172.16.5.4[0]192.168.1.12[0]

2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]-

>172.16.5.4[0] spi=28496098(0x1b2d0e2)

2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]-

>192.168.1.12[0] spi=47784998(0x2d92426)

2006-01-30 01:36:13: INFO: respond new phase 2 negotiation:

172.16.5.4[0]192.168.1.12[0]

2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]-

>172.16.5.4[0] spi=124397467(0x76a279b)

2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]-

>192.168.1.12[0] spi=175852902(0xa7b4d66)

To ensure the tunnel is working properly, switch to another console and use man:tcpdump[1] to

view network traffic using the following command. Replace em0 with the network interface card as

required:

342

tcpdump -i em0 host 172.16.5.4 and dst 192.168.1.12

Data similar to the following should appear on the console. If not, there is an issue and debugging

the returned data will be required.

01:47:32.021683 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com:

ESP(spi=0x02acbf9f,seq=0xa)

01:47:33.022442 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com:

ESP(spi=0x02acbf9f,seq=0xb)

01:47:34.024218 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com:

ESP(spi=0x02acbf9f,seq=0xc)

At this point, both networks should be available and seem to be part of the same network. Most

likely both networks are protected by a firewall. To allow traffic to flow between them, rules need

to be added to pass packets. For the man:ipfw[8] firewall, add the following lines to the firewall

configuration file:

ipfw add 00201 allow log esp from any to any

ipfw add 00202 allow log ah from any to any

ipfw add 00203 allow log ipencap from any to any

ipfw add 00204 allow log udp from any 500 to any

!

The rule numbers may need to be altered depending on the current host

configuration.

For users of man:pf[4] or man:ipf[8], the following rules should do the trick:

pass in quick proto esp from any to any

pass in quick proto ah from any to any

pass in quick proto ipencap from any to any

pass in quick proto udp from any port = 500 to any port = 500

pass in quick on gif0 from any to any

pass out quick proto esp from any to any

pass out quick proto ah from any to any

pass out quick proto ipencap from any to any

pass out quick proto udp from any port = 500 to any port = 500

pass out quick on gif0 from any to any

Finally, to allow the machine to start support for the VPN during system initialization, add the

following lines to /etc/rc.conf :

343

ipsec_enable="YES"

ipsec_program="/usr/local/sbin/setkey"

ipsec_file="/usr/local/etc/racoon/setkey.conf" # allows setting up spd policies on

boot

racoon_enable="yes"

14.8. OpenSSH

OpenSSH is a set of network connectivity tools used to provide secure access to remote machines.

Additionally, TCP/IP connections can be tunneled or forwarded securely through SSH connections.

OpenSSH encrypts all traffic to effectively eliminate eavesdropping, connection hijacking, and other

network-level attacks.

OpenSSH is maintained by the OpenBSD project and is installed by default in FreeBSD. It is

compatible with both SSH version 1 and 2 protocols.

When data is sent over the network in an unencrypted form, network sniffers anywhere in

between the client and server can steal user/password information or data transferred during the

session. OpenSSH offers a variety of authentication and encryption methods to prevent this from

happening. More information about OpenSSH is available from http://www.openssh.com/ .

This section provides an overview of the built-in client utilities to securely access other systems and

securely transfer files from a FreeBSD system. It then describes how to configure a SSH server on a

FreeBSD system. More information is available in the man pages mentioned in this chapter.

14.8.1. Using the SSH Client Utilities

To log into a SSH server, use ssh and specify a username that exists on that server and the IP

address or hostname of the server. If this is the first time a connection has been made to the

specified server, the user will be prompted to first verify the serverÕs fingerprint:

ssh user@example.com

The authenticity of host 'example.com (10.0.0.1)' can't be established.

ECDSA key fingerprint is 25:cc:73:b5:b3:96:75:3d:56:19:49:d2:5c:1f:91:3b.

Are you sure you want to continue connecting (yes/no)? yes

Permanently added 'example.com' (ECDSA) to the list of known hosts.

Password for user@example.com: user_password

SSH utilizes a key fingerprint system to verify the authenticity of the server when the client

connects. When the user accepts the keyÕs fingerprint by typing yes when connecting for the first

time, a copy of the key is saved to .ssh/known_hosts in the userÕs home directory. Future attempts to

login are verified against the saved key and ssh will display an alert if the serverÕs key does not

match the saved key. If this occurs, the user should first verify why the key has changed before

continuing with the connection.

By default, recent versions of OpenSSH only accept SSHv2 connections. By default, the client will

use version 2 if possible and will fall back to version 1 if the server does not support version 2. To

344

http://www.openssh.com/

force ssh to only use the specified protocol, include -1 or -2 . Additional options are described in

man:ssh[1].

Use man:scp[1] to securely copy a file to or from a remote machine. This example copies

COPYRIGHT on the remote system to a file of the same name in the current directory of the local

system:

scp user@example.com:/COPYRIGHT COPYRIGHT

Password for user@example.com: *******

COPYRIGHT 100% |*****************************| 4735

00:00

#

Since the fingerprint was already verified for this host, the serverÕs key is automatically checked

before prompting for the userÕs password.

The arguments passed to scp are similar to cp . The file or files to copy is the first argument and the

destination to copy to is the second. Since the file is fetched over the network, one or more of the

file arguments takes the form user@host:<path_to_remote_file> . Be aware when copying directories

recursively that scp uses -r , whereas cp uses -R .

To open an interactive session for copying files, use sftp . Refer to man:sftp[1] for a list of available

commands while in an sftp session.

14.8.1.1. Key-based Authentication

Instead of using passwords, a client can be configured to connect to the remote machine using keys.

To generate RSA authentication keys, use ssh-keygen . To generate a public and private key pair,

specify the type of key and follow the prompts. It is recommended to protect the keys with a

memorable, but hard to guess passphrase.

345

% ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa):

Enter passphrase (empty for no passphrase): !

Enter same passphrase again: "

Your identification has been saved in /home/user/.ssh/id_rsa.

Your public key has been saved in /home/user/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:54Xm9Uvtv6H4NOo6yjP/YCfODryvUU7yWHzMqeXwhq8 user@host.example.com

The key's randomart image is:

+---[RSA 2048]----+

| |

| |

| |

| . o.. |

| .S*+*o |

| . O=Oo . . |

| = Oo= oo..|

| .oB.* +.oo.|

| =OE**.o..=|

+----[SHA256]-----+

!

Type a passphrase here. It can contain spaces and symbols.

"

Retype the passphrase to verify it.

The private key is stored in ~/.ssh/id_rsa and the public key is stored in ~/.ssh/id_rsa.pub . The public

key must be copied to ~/.ssh/authorized_keys on the remote machine for key-based authentication

to work.

"

Many users believe that keys are secure by design and will use a key without a

passphrase. This is dangerous behavior. An administrator can verify that a key

pair is protected by a passphrase by viewing the private key manually. If the

private key file contains the word ENCRYPTED , the key owner is using a passphrase.

In addition, to better secure end users, from may be placed in the public key file.

For example, adding from="192.168.10.5" in front of the ssh-rsa prefix will only

allow that specific user to log in from that IP address.

The options and files vary with different versions of OpenSSH. To avoid problems, consult man:ssh-

keygen[1].

If a passphrase is used, the user is prompted for the passphrase each time a connection is made to

the server. To load SSH keys into memory and remove the need to type the passphrase each time,

use man:ssh-agent[1] and man:ssh-add[1].

Authentication is handled by ssh-agent , using the private keys that are loaded into it. ssh-agent can

be used to launch another application like a shell or a window manager.

To use ssh-agent in a shell, start it with a shell as an argument. Add the identity by running ssh-add

and entering the passphrase for the private key. The user will then be able to ssh to any host that

346

has the corresponding public key installed. For example:

% ssh-agent csh

% ssh-add

Enter passphrase for key '/usr/home/user/.ssh/id_rsa': !

Identity added: /usr/home/user/.ssh/id_rsa (/usr/home/user/.ssh/id_rsa)

%

!

Enter the passphrase for the key.

To use ssh-agent in Xorg, add an entry for it in ~/.xinitrc . This provides the ssh-agent services to all

programs launched in Xorg. An example ~/.xinitrc might look like this:

exec ssh-agent startxfce4

This launches ssh-agent , which in turn launches XFCE, every time Xorg starts. Once Xorg has been

restarted so that the changes can take effect, run ssh-add to load all of the SSH keys.

14.8.1.2. SSH Tunneling

OpenSSH has the ability to create a tunnel to encapsulate another protocol in an encrypted session.

The following command tells ssh to create a tunnel for telnet:

% ssh -2 -N -f -L 5023:localhost:23 user@foo.example.com

%

This example uses the following options:

-2

Forces ssh to use version 2 to connect to the server.

-N

Indicates no command, or tunnel only. If omitted, ssh initiates a normal session.

-f

Forces ssh to run in the background.

-L

Indicates a local tunnel in localport:remotehost:remoteport format.

user@foo.example.com

The login name to use on the specified remote SSH server.

An SSH tunnel works by creating a listen socket on localhost on the specified localport . It then

forwards any connections received on localport via the SSH connection to the specified

remotehost:remoteport . In the example, port 5023 on the client is forwarded to port 23 on the remote

347

machine. Since port 23 is used by telnet, this creates an encrypted telnet session through an SSH

tunnel.

This method can be used to wrap any number of insecure TCP protocols such as SMTP, POP3, and

FTP, as seen in the following examples.

Example 29. Create a Secure Tunnel for SMTP

% ssh -2 -N -f -L 5025:localhost:25 user@mailserver.example.com

user@mailserver.example.com's password: *****

% telnet localhost 5025

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

220 mailserver.example.com ESMTP

This can be used in conjunction with ssh-keygen and additional user accounts to create a more

seamless SSH tunneling environment. Keys can be used in place of typing a password, and the

tunnels can be run as a separate user.

Example 30. Secure Access of a POP3 Server

In this example, there is an SSH server that accepts connections from the outside. On the same

network resides a mail server running a POP3 server. To check email in a secure manner,

create an SSH connection to the SSH server and tunnel through to the mail server:

% ssh -2 -N -f -L 2110:mail.example.com:110 user@ssh-server.example.com

user@ssh-server.example.com's password: ******

Once the tunnel is up and running, point the email client to send POP3 requests to localhost on

port 2110. This connection will be forwarded securely across the tunnel to mail.example.com .

348

Example 31. Bypassing a Firewall

Some firewalls filter both incoming and outgoing connections. For example, a firewall might

limit access from remote machines to ports 22 and 80 to only allow SSH and web surfing. This

prevents access to any other service which uses a port other than 22 or 80.

The solution is to create an SSH connection to a machine outside of the networkÕs firewall and

use it to tunnel to the desired service:

% ssh -2 -N -f -L 8888:music.example.com:8000 user@unfirewalled-system.example.org

user@unfirewalled-system.example.org's password: *******

In this example, a streaming Ogg Vorbis client can now be pointed to localhost port 8888,

which will be forwarded over to music.example.com on port 8000, successfully bypassing the

firewall.

14.8.2. Enabling the SSH Server

In addition to providing built-in SSH client utilities, a FreeBSD system can be configured as an SSH

server, accepting connections from other SSH clients.

To see if sshd is operating, use the man:service[8] command:

service sshd status

If the service is not running, add the following line to /etc/rc.conf .

sshd_enable="YES"

This will start sshd, the daemon program for OpenSSH, the next time the system boots. To start it

now:

service sshd start

The first time sshd starts on a FreeBSD system, the systemÕs host keys will be automatically created

and the fingerprint will be displayed on the console. Provide users with the fingerprint so that they

can verify it the first time they connect to the server.

Refer to man:sshd[8] for the list of available options when starting sshd and a more complete

discussion about authentication, the login process, and the various configuration files.

At this point, the sshd should be available to all users with a username and password on the system.

349

14.8.3. SSH Server Security

While sshd is the most widely used remote administration facility for FreeBSD, brute force and

drive by attacks are common to any system exposed to public networks. Several additional

parameters are available to prevent the success of these attacks and will be described in this

section.

It is a good idea to limit which users can log into the SSH server and from where using the

AllowUsers keyword in the OpenSSH server configuration file. For example, to only allow root to log

in from 192.168.1.32 , add this line to /etc/ssh/sshd_config :

AllowUsers root@192.168.1.32

To allow admin to log in from anywhere, list that user without specifying an IP address:

AllowUsers admin

Multiple users should be listed on the same line, like so:

AllowUsers root@192.168.1.32 admin

After making changes to /etc/ssh/sshd_config , tell sshd to reload its configuration file by running:

service sshd reload

!

When this keyword is used, it is important to list each user that needs to log into

this machine. Any user that is not specified in that line will be locked out. Also, the

keywords used in the OpenSSH server configuration file are case-sensitive. If the

keyword is not spelled correctly, including its case, it will be ignored. Always test

changes to this file to make sure that the edits are working as expected. Refer to

man:sshd_config[5] to verify the spelling and use of the available keywords.

In addition, users may be forced to use two factor authentication via the use of a public and private

key. When required, the user may generate a key pair through the use of man:ssh-keygen[1] and

send the administrator the public key. This key file will be placed in the authorized_keys as

described above in the client section. To force the users to use keys only, the following option may

be configured:

AuthenticationMethods publickey

!

Do not confuse /etc/ssh/sshd_config with /etc/ssh/ssh_config (note the extra d in the

first filename). The first file configures the server and the second file configures

the client. Refer to man:ssh_config[5] for a listing of the available client settings.

350

14.9. Access Control Lists

Access Control Lists (ACLs) extend the standard UNIX¨ permission model in a POSIX¨.1e

compatible way. This permits an administrator to take advantage of a more fine-grained

permissions model.

The FreeBSD GENERIC kernel provides ACL support for UFS file systems. Users who prefer to

compile a custom kernel must include the following option in their custom kernel configuration

file:

options UFS_ACL

If this option is not compiled in, a warning message will be displayed when attempting to mount a

file system with ACL support. ACLs rely on extended attributes which are natively supported in

UFS2.

This chapter describes how to enable ACL support and provides some usage examples.

14.9.1. Enabling ACL Support

ACLs are enabled by the mount-time administrative flag, acls , which may be added to /etc/fstab .

The mount-time flag can also be automatically set in a persistent manner using man:tunefs[8] to

modify a superblock ACLs flag in the file system header. In general, it is preferred to use the

superblock flag for several reasons:

¥ The superblock flag cannot be changed by a remount using mount -u as it requires a complete

umount and fresh mount . This means that ACLs cannot be enabled on the root file system after

boot. It also means that ACL support on a file system cannot be changed while the system is in

use.

¥ Setting the superblock flag causes the file system to always be mounted with ACLs enabled, even

if there is not an fstab entry or if the devices re-order. This prevents accidental mounting of the

file system without ACL support.

!

It is desirable to discourage accidental mounting without ACLs enabled because

nasty things can happen if ACLs are enabled, then disabled, then re-enabled

without flushing the extended attributes. In general, once ACLs are enabled on a

file system, they should not be disabled, as the resulting file protections may not be

compatible with those intended by the users of the system, and re-enabling ACLs

may re-attach the previous ACLs to files that have since had their permissions

changed, resulting in unpredictable behavior.

File systems with ACLs enabled will show a plus (+) sign in their permission settings:

351

drwx------ 2 robert robert 512 Dec 27 11:54 private

drwxrwx---+ 2 robert robert 512 Dec 23 10:57 directory1

drwxrwx---+ 2 robert robert 512 Dec 22 10:20 directory2

drwxrwx---+ 2 robert robert 512 Dec 27 11:57 directory3

drwxr-xr-x 2 robert robert 512 Nov 10 11:54 public_html

In this example, directory1 , directory2 , and directory3 are all taking advantage of ACLs, whereas

private and public_html are not.

14.9.2. Using ACLs

File system ACLs can be viewed using getfacl . For instance, to view the ACL settings on test :

% getfacl test

Ê #file:test

Ê #owner:1001

Ê #group:1001

Ê user::rw-

Ê group::r--

Ê other::r--

To change the ACL settings on this file, use setfacl . To remove all of the currently defined ACLs

from a file or file system, include -k . However, the preferred method is to use -b as it leaves the

basic fields required for ACLs to work.

% setfacl -k test

To modify the default ACL entries, use -m :

% setfacl -m u:trhodes:rwx,group:web:r--,o::--- test

In this example, there were no pre-defined entries, as they were removed by the previous

command. This command restores the default options and assigns the options listed. If a user or

group is added which does not exist on the system, an Invalid argument error will be displayed.

Refer to man:getfacl[1] and man:setfacl[1] for more information about the options available for

these commands.

14.10. Monitoring Third Party Security Issues

In recent years, the security world has made many improvements to how vulnerability assessment

is handled. The threat of system intrusion increases as third party utilities are installed and

configured for virtually any operating system available today.

Vulnerability assessment is a key factor in security. While FreeBSD releases advisories for the base

352

system, doing so for every third party utility is beyond the FreeBSD ProjectÕs capability. There is a

way to mitigate third party vulnerabilities and warn administrators of known security issues. A

FreeBSD add on utility known as pkg includes options explicitly for this purpose.

pkg polls a database for security issues. The database is updated and maintained by the FreeBSD

Security Team and ports developers.

Please refer to crossref:ports[pkgng-intro,instructions] for installing pkg.

Installation provides man:periodic[8] configuration files for maintaining the pkg audit database,

and provides a programmatic method of keeping it updated. This functionality is enabled if

daily_status_security_pkgaudit_enable is set to YES in man:periodic.conf[5]. Ensure that daily

security run emails, which are sent to root 's email account, are being read.

After installation, and to audit third party utilities as part of the Ports Collection at any time, an

administrator may choose to update the database and view known vulnerabilities of installed

packages by invoking:

pkg audit -F

pkg displays messages any published vulnerabilities in installed packages:

Affected package: cups-base-1.1.22.0_1

Type of problem: cups-base -- HPGL buffer overflow vulnerability.

Reference: <https://www.FreeBSD.org/ports/portaudit/40a3bca2-6809-11d9-a9e7-

0001020eed82.html>

1 problem(s) in your installed packages found.

You are advised to update or deinstall the affected package(s) immediately.

By pointing a web browser to the displayed URL, an administrator may obtain more information

about the vulnerability. This will include the versions affected, by FreeBSD port version, along with

other web sites which may contain security advisories.

pkg is a powerful utility and is extremely useful when coupled with package:ports-

mgmt/portmaster[].

14.11. FreeBSD Security Advisories

Like many producers of quality operating systems, the FreeBSD Project has a security team which is

responsible for determining the End-of-Life (EoL) date for each FreeBSD release and to provide

security updates for supported releases which have not yet reached their EoL. More information

about the FreeBSD security team and the supported releases is available on the FreeBSD security

page .

One task of the security team is to respond to reported security vulnerabilities in the FreeBSD

operating system. Once a vulnerability is confirmed, the security team verifies the steps necessary

353

https://www.FreeBSD.org/security
https://www.FreeBSD.org/security

to fix the vulnerability and updates the source code with the fix. It then publishes the details as a

"Security Advisory". Security advisories are published on the FreeBSD website and mailed to the

FreeBSD security notifications mailing list , FreeBSD security mailing list , and FreeBSD

announcements mailing list mailing lists.

This section describes the format of a FreeBSD security advisory.

14.11.1. Format of a Security Advisory

Here is an example of a FreeBSD security advisory:

===

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA512

===

FreeBSD-SA-14:04.bind Security Advisory

Ê The FreeBSD Project

Topic: BIND remote denial of service vulnerability

Category: contrib

Module: bind

Announced: 2014-01-14

Credits: ISC

Affects: FreeBSD 8.x and FreeBSD 9.x

Corrected: 2014-01-14 19:38:37 UTC (stable/9, 9.2-STABLE)

Ê 2014-01-14 19:42:28 UTC (releng/9.2, 9.2-RELEASE-p3)

Ê 2014-01-14 19:42:28 UTC (releng/9.1, 9.1-RELEASE-p10)

Ê 2014-01-14 19:38:37 UTC (stable/8, 8.4-STABLE)

Ê 2014-01-14 19:42:28 UTC (releng/8.4, 8.4-RELEASE-p7)

Ê 2014-01-14 19:42:28 UTC (releng/8.3, 8.3-RELEASE-p14)

CVE Name: CVE-2014-0591

For general information regarding FreeBSD Security Advisories,

including descriptions of the fields above, security branches, and the

following sections, please visit <URL:http://security.FreeBSD.org/>.

I. Background

BIND 9 is an implementation of the Domain Name System (DNS) protocols.

The named(8) daemon is an Internet Domain Name Server.

II. Problem Description

Because of a defect in handling queries for NSEC3-signed zones, BIND can

crash with an "INSIST" failure in name.c when processing queries possessing

certain properties. This issue only affects authoritative nameservers with

at least one NSEC3-signed zone. Recursive-only servers are not at risk.

354

https://www.FreeBSD.org/security/advisories/
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security-notifications
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security
http://lists.FreeBSD.org/mailman/listinfo/freebsd-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-announce

III. Impact

An attacker who can send a specially crafted query could cause named(8)

to crash, resulting in a denial of service.

IV. Workaround

No workaround is available, but systems not running authoritative DNS service

with at least one NSEC3-signed zone using named(8) are not vulnerable.

V. Solution

Perform one of the following:

1) Upgrade your vulnerable system to a supported FreeBSD stable or

release / security branch (releng) dated after the correction date.

2) To update your vulnerable system via a source code patch:

The following patches have been verified to apply to the applicable

FreeBSD release branches.

a) Download the relevant patch from the location below, and verify the

detached PGP signature using your PGP utility.

[FreeBSD 8.3, 8.4, 9.1, 9.2-RELEASE and 8.4-STABLE]

fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch

fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch.asc

gpg --verify bind-release.patch.asc

[FreeBSD 9.2-STABLE]

fetch http://security.FreeBSD.org/patches/SA-14:04/bind-stable-9.patch

fetch http://security.FreeBSD.org/patches/SA-14:04/bind-stable-9.patch.asc

gpg --verify bind-stable-9.patch.asc

b) Execute the following commands as root:

cd /usr/src

patch < /path/to/patch

Recompile the operating system using buildworld and installworld as

described in <URL:https://www.FreeBSD.org/handbook/makeworld.html>.

Restart the applicable daemons, or reboot the system.

3) To update your vulnerable system via a binary patch:

Systems running a RELEASE version of FreeBSD on the i386 or amd64

platforms can be updated via the freebsd-update(8) utility:

freebsd-update fetch

355

freebsd-update install

VI. Correction details

The following list contains the correction revision numbers for each

affected branch.

Branch/path Revision

- ---

stable/8/ r260646

releng/8.3/ r260647

releng/8.4/ r260647

stable/9/ r260646

releng/9.1/ r260647

releng/9.2/ r260647

- ---

To see which files were modified by a particular revision, run the

following command, replacing NNNNNN with the revision number, on a

machine with Subversion installed:

svn diff -cNNNNNN --summarize svn://svn.freebsd.org/base

Or visit the following URL, replacing NNNNNN with the revision number:

<URL:https://svnweb.freebsd.org/base?view=revision&revision=NNNNNN>

VII. References

<URL:https://kb.isc.org/article/AA-01078>

<URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0591>

The latest revision of this advisory is available at

<URL:http://security.FreeBSD.org/advisories/FreeBSD-SA-14:04.bind.asc>

-----BEGIN PGP SIGNATURE-----

iQIcBAEBCgAGBQJS1ZTYAAoJEO1n7NZdz2rnOvQP/2/68/s9Cu35PmqNtSZVVxVG

ZSQP5EGWx/lramNf9566iKxOrLRMq/h3XWcC4goVd+gZFrvITJSVOWSa7ntDQ7TO

XcinfRZ/iyiJbs/Rg2wLHc/t5oVSyeouyccqODYFbOwOlk35JjOTMUG1YcX+Zasg

ax8RV+7Zt1QSBkMlOz/myBLXUjlTZ3Xg2FXVsfFQW5/g2CjuHpRSFx1bVNX6ysoG

9DT58EQcYxIS8WfkHRbbXKh9I1nSfZ7/Hky/kTafRdRMrjAgbqFgHkYTYsBZeav5

fYWKGQRJulYfeZQ90yMTvlpF42DjCC3uJYamJnwDIu8OhS1WRBI8fQfr9DRzmRua

OK3BK9hUiScDZOJB6OqeVzUTfe7MAA4/UwrDtTYQ+PqAenv1PK8DZqwXyxA9ThHb

zKO3OwuKOVHJnKvpOcr+eNwo7jbnHlis0oBksj/mrq2P9m2ueF9gzCiq5Ri5Syag

Wssb1HUoMGwqU0roS8+pRpNC8YgsWpsttvUWSZ8u6Vj/FLeHpiV3mYXPVMaKRhVm

067BA2uj4Th1JKtGleox+Em0R7OFbCc/9aWC67wiqI6KRyit9pYiF3npph+7D5Eq

7zPsUdDd+qc+UTiLp3liCRp5w6484wWdhZO6wRtmUgxGjNkxFoNnX8CitzF8AaqO

UWWemqWuz3lAZuORQ9KX

=OQzQ

-----END PGP SIGNATURE-----

356

Every security advisory uses the following format:

¥ Each security advisory is signed by the PGP key of the Security Officer. The public key for the

Security Officer can be verified at crossref:pgpkeys[pgpkeys,OpenPGP Keys].

¥ The name of the security advisory always begins with FreeBSD-SA- (for FreeBSD Security

Advisory), followed by the year in two digit format (14:), followed by the advisory number for

that year (04.), followed by the name of the affected application or subsystem (bind). The

advisory shown here is the fourth advisory for 2014 and it affects BIND.

¥ The Topic field summarizes the vulnerability.

¥ The Category refers to the affected part of the system which may be one of core , contrib , or

ports . The core category means that the vulnerability affects a core component of the FreeBSD

operating system. The contrib category means that the vulnerability affects software included

with FreeBSD, such as BIND. The ports category indicates that the vulnerability affects software

available through the Ports Collection.

¥ The Module field refers to the component location. In this example, the bind module is affected;

therefore, this vulnerability affects an application installed with the operating system.

¥ The Announced field reflects the date the security advisory was published. This means that the

security team has verified that the problem exists and that a patch has been committed to the

FreeBSD source code repository.

¥ The Credits field gives credit to the individual or organization who noticed the vulnerability

and reported it.

¥ The Affects field explains which releases of FreeBSD are affected by this vulnerability.

¥ The Corrected field indicates the date, time, time offset, and releases that were corrected. The

section in parentheses shows each branch for which the fix has been merged, and the version

number of the corresponding release from that branch. The release identifier itself includes the

version number and, if appropriate, the patch level. The patch level is the letter p followed by a

number, indicating the sequence number of the patch, allowing users to track which patches

have already been applied to the system.

¥ The CVE Name field lists the advisory number, if one exists, in the public cve.mitre.org security

vulnerabilities database.

¥ The Background field provides a description of the affected module.

¥ The Problem Description field explains the vulnerability. This can include information about the

flawed code and how the utility could be maliciously used.

¥ The Impact field describes what type of impact the problem could have on a system.

¥ The Workaround field indicates if a workaround is available to system administrators who cannot

immediately patch the system .

¥ The Solution field provides the instructions for patching the affected system. This is a step by

step tested and verified method for getting a system patched and working securely.

¥ The Correction Details field displays each affected Subversion branch with the revision

number that contains the corrected code.

¥ The References field offers sources of additional information regarding the vulnerability.

357

http://cve.mitre.org

14.12. Process Accounting

Process accounting is a security method in which an administrator may keep track of system

resources used and their allocation among users, provide for system monitoring, and minimally

track a userÕs commands.

Process accounting has both positive and negative points. One of the positives is that an intrusion

may be narrowed down to the point of entry. A negative is the amount of logs generated by process

accounting, and the disk space they may require. This section walks an administrator through the

basics of process accounting.

!

If more fine-grained accounting is needed, refer to crossref:audit[audit,Security

Event Auditing].

14.12.1. Enabling and Utilizing Process Accounting

Before using process accounting, it must be enabled using the following commands:

sysrc accounting_enable=yes

service accounting start

The accounting information is stored in files located in /var/account , which is automatically

created, if necessary, the first time the accounting service starts. These files contain sensitive

information, including all the commands issued by all users. Write access to the files is limited to

root , and read access is limited to root and members of the wheel group. To also prevent members

of wheel from reading the files, change the mode of the /var/account directory to allow access only

by root .

Once enabled, accounting will begin to track information such as CPU statistics and executed

commands. All accounting logs are in a non-human readable format which can be viewed using sa .

If issued without any options, sa prints information relating to the number of per-user calls, the

total elapsed time in minutes, total CPU and user time in minutes, and the average number of I/O

operations. Refer to man:sa[8] for the list of available options which control the output.

To display the commands issued by users, use lastcomm . For example, this command prints out all

usage of ls by trhodes on the ttyp1 terminal:

lastcomm ls trhodes ttyp1

Many other useful options exist and are explained in man:lastcomm[1], man:acct[5], and man:sa[8].

14.13. Resource Limits

FreeBSD provides several methods for an administrator to limit the amount of system resources an

individual may use. Disk quotas limit the amount of disk space available to users. Quotas are

discussed in crossref:disks[quotas,"Disk Quotas"].

358

Limits to other resources, such as CPU and memory, can be set using either a flat file or a command

to configure a resource limits database. The traditional method defines login classes by editing

/etc/login.conf . While this method is still supported, any changes require a multi-step process of

editing this file, rebuilding the resource database, making necessary changes to /etc/master.passwd ,

and rebuilding the password database. This can become time consuming, depending upon the

number of users to configure.

rctl can be used to provide a more fine-grained method for controlling resource limits. This

command supports more than user limits as it can also be used to set resource constraints on

processes and jails.

This section demonstrates both methods for controlling resources, beginning with the traditional

method.

14.13.1. Configuring Login Classes

In the traditional method, login classes and the resource limits to apply to a login class are defined

in /etc/login.conf . Each user account can be assigned to a login class, where default is the default

login class. Each login class has a set of login capabilities associated with it. A login capability is a

name = value pair, where name is a well-known identifier and value is an arbitrary string which is

processed accordingly depending on the name .

!

Whenever /etc/login.conf is edited, the /etc/login.conf.db must be updated by

executing the following command:

cap_mkdb /etc/login.conf

Resource limits differ from the default login capabilities in two ways. First, for every limit, there is

a soft and hard limit. A soft limit may be adjusted by the user or application, but may not be set

higher than the hard limit. The hard limit may be lowered by the user, but can only be raised by the

superuser. Second, most resource limits apply per process to a specific user.

Login Class Resource Limits lists the most commonly used resource limits. All of the available

resource limits and capabilities are described in detail in man:login.conf[5].

Table 12. Login Class Resource Limits

Resource Limit Description

coredumpsize The limit on the size of a core file generated by a program is subordinate to

other limits on disk usage, such as filesize or disk quotas. This limit is often

used as a less severe method of controlling disk space consumption. Since

users do not generate core files and often do not delete them, this setting may

save them from running out of disk space should a large program crash.

cputime The maximum amount of CPU time a userÕs process may consume. Offending

processes will be killed by the kernel. This is a limit on CPU time consumed,

not the percentage of the CPU as displayed in some of the fields generated by

top and ps .

359

Resource Limit Description

filesize The maximum size of a file the user may own. Unlike disk quotas

(crossref:disks[quotas,"Disk Quotas"]), this limit is enforced on individual files,

not the set of all files a user owns.

maxproc The maximum number of foreground and background processes a user can

run. This limit may not be larger than the system limit specified by

kern.maxproc . Setting this limit too small may hinder a userÕs productivity as

some tasks, such as compiling a large program, start lots of processes.

memorylocked The maximum amount of memory a process may request to be locked into

main memory using man:mlock[2]. Some system-critical programs, such as

man:amd[8], lock into main memory so that if the system begins to swap, they

do not contribute to disk thrashing.

memoryuse The maximum amount of memory a process may consume at any given time.

It includes both core memory and swap usage. This is not a catch-all limit for

restricting memory consumption, but is a good start.

openfiles The maximum number of files a process may have open. In FreeBSD, files are

used to represent sockets and IPC channels, so be careful not to set this too

low. The system-wide limit for this is defined by kern.maxfiles .

sbsize The limit on the amount of network memory a user may consume. This can be

generally used to limit network communications.

stacksize The maximum size of a process stack. This alone is not sufficient to limit the

amount of memory a program may use, so it should be used in conjunction

with other limits.

There are a few other things to remember when setting resource limits:

¥ Processes started at system startup by /etc/rc are assigned to the daemon login class.

¥ Although the default /etc/login.conf is a good source of reasonable values for most limits, they

may not be appropriate for every system. Setting a limit too high may open the system up to

abuse, while setting it too low may put a strain on productivity.

¥ Xorg takes a lot of resources and encourages users to run more programs simultaneously.

¥ Many limits apply to individual processes, not the user as a whole. For example, setting

openfiles to 50 means that each process the user runs may open up to 50 files. The total amount

of files a user may open is the value of openfiles multiplied by the value of maxproc . This also

applies to memory consumption.

For further information on resource limits and login classes and capabilities in general, refer to

man:cap.mkdb[1], man:getrlimit[2], and man:login.conf[5].

14.13.2. Enabling and Configuring Resource Limits

The kern.racct.enable tunable must be set to a non-zero value. Custom kernels require specific

configuration:

360

options RACCT

options RCTL

Once the system has rebooted into the new kernel, rctl may be used to set rules for the system.

Rule syntax is controlled through the use of a subject, subject-id, resource, and action, as seen in

this example rule:

user:trhodes:maxproc:deny=10/user

In this rule, the subject is user , the subject-id is trhodes , the resource, maxproc , is the maximum

number of processes, and the action is deny , which blocks any new processes from being created.

This means that the user, trhodes , will be constrained to no greater than 10 processes. Other

possible actions include logging to the console, passing a notification to man:devd[8], or sending a

sigterm to the process.

Some care must be taken when adding rules. Since this user is constrained to 10 processes, this

example will prevent the user from performing other tasks after logging in and executing a screen

session. Once a resource limit has been hit, an error will be printed, as in this example:

% man test

Ê /usr/bin/man: Cannot fork: Resource temporarily unavailable

eval: Cannot fork: Resource temporarily unavailable

As another example, a jail can be prevented from exceeding a memory limit. This rule could be

written as:

rctl -a jail:httpd:memoryuse:deny=2G/jail

Rules will persist across reboots if they have been added to /etc/rctl.conf . The format is a rule,

without the preceding command. For example, the previous rule could be added as:

Block jail from using more than 2G memory:

jail:httpd:memoryuse:deny=2G/jail

To remove a rule, use rctl to remove it from the list:

rctl -r user:trhodes:maxproc:deny=10/user

A method for removing all rules is documented in man:rctl[8]. However, if removing all rules for a

single user is required, this command may be issued:

361

rctl -r user:trhodes

Many other resources exist which can be used to exert additional control over various subjects . See

man:rctl[8] to learn about them.

14.14. Shared Administration with Sudo

System administrators often need the ability to grant enhanced permissions to users so they may

perform privileged tasks. The idea that team members are provided access to a FreeBSD system to

perform their specific tasks opens up unique challenges to every administrator. These team

members only need a subset of access beyond normal end user levels; however, they almost always

tell management they are unable to perform their tasks without superuser access. Thankfully, there

is no reason to provide such access to end users because tools exist to manage this exact

requirement.

Up to this point, the security chapter has covered permitting access to authorized users and

attempting to prevent unauthorized access. Another problem arises once authorized users have

access to the system resources. In many cases, some users may need access to application startup

scripts, or a team of administrators need to maintain the system. Traditionally, the standard users

and groups, file permissions, and even the man:su[1] command would manage this access. And as

applications required more access, as more users needed to use system resources, a better solution

was required. The most used application is currently Sudo.

Sudo allows administrators to configure more rigid access to system commands and provide for

some advanced logging features. As a tool, it is available from the Ports Collection as

package:security/sudo[] or by use of the man:pkg[8] utility. To use the man:pkg[8] tool:

pkg install sudo

After the installation is complete, the installed visudo will open the configuration file with a text

editor. Using visudo is highly recommended as it comes with a built in syntax checker to verify

there are no errors before the file is saved.

The configuration file is made up of several small sections which allow for extensive configuration.

In the following example, web application maintainer, user1, needs to start, stop, and restart the

web application known as webservice . To grant this user permission to perform these tasks, add this

line to the end of /usr/local/etc/sudoers :

user1 ALL=(ALL) /usr/sbin/service webservice *

The user may now start webservice using this command:

% sudo /usr/sbin/service webservice start

362

While this configuration allows a single user access to the webservice service; however, in most

organizations, there is an entire web team in charge of managing the service. A single line can also

give access to an entire group. These steps will create a web group, add a user to this group, and

allow all members of the group to manage the service:

pw groupadd -g 6001 -n webteam

Using the same man:pw[8] command, the user is added to the webteam group:

pw groupmod -m user1 -n webteam

Finally, this line in /usr/local/etc/sudoers allows any member of the webteam group to manage

webservice :

%webteam ALL=(ALL) /usr/sbin/service webservice *

Unlike man:su[1], Sudo only requires the end user password. This adds an advantage where users

will not need shared passwords, a finding in most security audits and just bad all the way around.

Users permitted to run applications with Sudo only enter their own passwords. This is more secure

and gives better control than man:su[1], where the root password is entered and the user acquires

all root permissions.

!

Most organizations are moving or have moved toward a two factor authentication

model. In these cases, the user may not have a password to enter. Sudo provides

for these cases with the NOPASSWD variable. Adding it to the configuration above will

allow all members of the webteam group to manage the service without the

password requirement:

%webteam ALL=(ALL) NOPASSWD: /usr/sbin/service webservice *

14.14.1. Logging Output

An advantage to implementing Sudo is the ability to enable session logging. Using the built in log

mechanisms and the included sudoreplay command, all commands initiated through Sudo are

logged for later verification. To enable this feature, add a default log directory entry, this example

uses a user variable. Several other log filename conventions exist, consult the manual page for

sudoreplay for additional information.

Defaults iolog_dir=/var/log/sudo-io/%{user}

363

!

This directory will be created automatically after the logging is configured. It is

best to let the system create directory with default permissions just to be safe. In

addition, this entry will also log administrators who use the sudoreplay command.

To change this behavior, read and uncomment the logging options inside sudoers .

Once this directive has been added to the sudoers file, any user configuration can be updated with

the request to log access. In the example shown, the updated webteam entry would have the

following additional changes:

%webteam ALL=(ALL) NOPASSWD: LOG_INPUT: LOG_OUTPUT: /usr/sbin/service webservice *

From this point on, all webteam members altering the status of the webservice application will be

logged. The list of previous and current sessions can be displayed with:

sudoreplay -l

In the output, to replay a specific session, search for the TSID= entry, and pass that to sudoreplay

with no other options to replay the session at normal speed. For example:

sudoreplay user1/00/00/02

"

While sessions are logged, any administrator is able to remove sessions and leave

only a question of why they had done so. It is worthwhile to add a daily check

through an intrusion detection system (IDS) or similar software so that other

administrators are alerted to manual alterations.

The sudoreplay is extremely extendable. Consult the documentation for more information.

364

Chapter 15. Jails

15.1. Synopsis

Since system administration is a difficult task, many tools have been developed to make life easier

for the administrator. These tools often enhance the way systems are installed, configured, and

maintained. One of the tools which can be used to enhance the security of a FreeBSD system is jails .

Jails have been available since FreeBSD 4.X and continue to be enhanced in their usefulness,

performance, reliability, and security.

Jails build upon the man:chroot[2] concept, which is used to change the root directory of a set of

processes. This creates a safe environment, separate from the rest of the system. Processes created

in the chrooted environment can not access files or resources outside of it. For that reason,

compromising a service running in a chrooted environment should not allow the attacker to

compromise the entire system. However, a chroot has several limitations. It is suited to easy tasks

which do not require much flexibility or complex, advanced features. Over time, many ways have

been found to escape from a chrooted environment, making it a less than ideal solution for

securing services.

Jails improve on the concept of the traditional chroot environment in several ways. In a traditional

chroot environment, processes are only limited in the part of the file system they can access. The

rest of the system resources, system users, running processes, and the networking subsystem are

shared by the chrooted processes and the processes of the host system. Jails expand this model by

virtualizing access to the file system, the set of users, and the networking subsystem. More fine-

grained controls are available for tuning the access of a jailed environment. Jails can be considered

as a type of operating system-level virtualization.

A jail is characterized by four elements:

¥ A directory subtree: the starting point from which a jail is entered. Once inside the jail, a

process is not permitted to escape outside of this subtree.

¥ A hostname: which will be used by the jail.

¥ An IP address: which is assigned to the jail. The IP address of a jail is often an alias address for

an existing network interface.

¥ A command: the path name of an executable to run inside the jail. The path is relative to the

root directory of the jail environment.

Jails have their own set of users and their own root account which are limited to the jail

environment. The root account of a jail is not allowed to perform operations to the system outside

of the associated jail environment.

This chapter provides an overview of the terminology and commands for managing FreeBSD jails.

Jails are a powerful tool for both system administrators, and advanced users.

After reading this chapter, you will know:

¥ What a jail is and what purpose it may serve in FreeBSD installations.

365

¥ How to build, start, and stop a jail.

¥ The basics of jail administration, both from inside and outside the jail.

#

Jails are a powerful tool, but they are not a security panacea. While it is not

possible for a jailed process to break out on its own, there are several ways in

which an unprivileged user outside the jail can cooperate with a privileged user

inside the jail to obtain elevated privileges in the host environment.

Most of these attacks can be mitigated by ensuring that the jail root is not

accessible to unprivileged users in the host environment. As a general rule,

untrusted users with privileged access to a jail should not be given access to the

host environment.

15.2. Terms Related to Jails

To facilitate better understanding of parts of the FreeBSD system related to jails, their internals and

the way they interact with the rest of FreeBSD, the following terms are used further in this chapter:

man:chroot[8] (command)

Utility, which uses man:chroot[2] FreeBSD system call to change the root directory of a process

and all its descendants.

man:chroot[2] (environment)

The environment of processes running in a "chroot". This includes resources such as the part of

the file system which is visible, user and group IDs which are available, network interfaces and

other IPC mechanisms, etc.

man:jail[8] (command)

The system administration utility which allows launching of processes within a jail

environment.

host (system, process, user, etc.)

The controlling system of a jail environment. The host system has access to all the hardware

resources available, and can control processes both outside of and inside a jail environment.

One of the important differences of the host system from a jail is that the limitations which

apply to superuser processes inside a jail are not enforced for processes of the host system.

hosted (system, process, user, etc.)

A process, user or other entity, whose access to resources is restricted by a FreeBSD jail.

15.3. Creating and Controlling Jails

Some administrators divide jails into the following two types: "complete" jails, which resemble a

real FreeBSD system, and "service" jails, dedicated to one application or service, possibly running

with privileges. This is only a conceptual division and the process of building a jail is not affected by

it. When creating a "complete" jail there are two options for the source of the userland: use prebuilt

binaries (such as those supplied on an install media) or build from source.

366

15.3.1. Installing a Jail

15.3.1.1. To install a Jail from the Internet

The man:bsdinstall[8] tool can be used to fetch and install the binaries needed for a jail. This will

walk through the picking of a mirror, which distributions will be installed into the destination

directory, and some basic configuration of the jail:

bsdinstall jail /here/is/the/jail

Once the command is complete, the next step is configuring the host to run the jail.

15.3.1.2. To install a Jail from an ISO

To install the userland from installation media, first create the root directory for the jail. This can

be done by setting the DESTDIR variable to the proper location.

Start a shell and define DESTDIR :

sh

export DESTDIR=/here/is/the/jail

Mount the install media as covered in man:mdconfig[8] when using the install ISO:

mount -t cd9660 /dev/`mdconfig -f cdimage.iso` /mnt

cd /mnt/usr/freebsd-dist/

Extract the binaries from the tarballs on the install media into the declared destination. Minimally,

only the base set needs to be extracted, but a complete install can be performed when preferred.

To install just the base system:

tar -xf base.txz -C $DESTDIR

To install everything except the kernel:

for set in base ports; do tar -xf $set.txz -C $DESTDIR ; done

15.3.1.3. To build and install a Jail from source

The man:jail[8] manual page explains the procedure for building a jail:

367

setenv D /here/is/the/jail

mkdir -p $D !

cd /usr/src

make buildworld "

make installworld DESTDIR=$D

make distribution DESTDIR=$D $

mount -t devfs devfs $D/dev %

!

Selecting a location for a jail is the best starting point. This is where the jail will physically reside

within the file system of the jailÕs host. A good choice can be /usr/jail/jailname , where jailname is

the hostname identifying the jail. Usually, /usr/ has enough space for the jail file system, which

for "complete" jails is, essentially, a replication of every file present in a default installation of

the FreeBSD base system.

"

If you have already rebuilt your userland using make world or make buildworld , you can skip this

step and install your existing userland into the new jail.

#

This command will populate the directory subtree chosen as jailÕs physical location on the file

system with the necessary binaries, libraries, manual pages and so on.

$

The distribution target for make installs every needed configuration file. In simple words, it

installs every installable file of /usr/src/etc/ to the /etc directory of the jail environment: $D/etc/ .

%

Mounting the man:devfs[8] file system inside a jail is not required. On the other hand, any, or

almost any application requires access to at least one device, depending on the purpose of the

given application. It is very important to control access to devices from inside a jail, as improper

settings could permit an attacker to do nasty things in the jail. Control over man:devfs[8] is

managed through rulesets which are described in the man:devfs[8] and man:devfs.conf[5]

manual pages.

15.3.2. Configuring the Host

Once a jail is installed, it can be started by using the man:jail[8] utility. The man:jail[8] utility takes

four mandatory arguments which are described in the Synopsis . Other arguments may be specified

too, e.g., to run the jailed process with the credentials of a specific user. The command argument

depends on the type of the jail; for a virtual system , /etc/rc is a good choice, since it will replicate the

startup sequence of a real FreeBSD system. For a service jail, it depends on the service or

application that will run within the jail.

Jails are often started at boot time and the FreeBSD rc mechanism provides an easy way to do this.

¥ Configure jail parameters in jail.conf :

368

www {

Ê host.hostname = www.example.org; # Hostname

Ê ip4.addr = 192.168.0.10; # IP address of the jail

Ê path = "/usr/jail/www"; # Path to the jail

Ê devfs_ruleset = "www_ruleset"; # devfs ruleset

Ê mount.devfs; # Mount devfs inside the jail

Ê exec.start = "/bin/sh /etc/rc"; # Start command

Ê exec.stop = "/bin/sh /etc/rc.shutdown"; # Stop command

}

Configure jails to start at boot time in rc.conf :

jail_enable="YES" # Set to NO to disable starting of any jails

The default startup of jails configured in man:jail.conf[5], will run the /etc/rc script of the jail,

which assumes the jail is a complete virtual system. For service jails, the default startup

command of the jail should be changed, by setting the exec.start option appropriately.

!

For a full list of available options, please see the man:jail.conf[5] manual page.

man:service[8] can be used to start or stop a jail by hand, if an entry for it exists in jail.conf :

service jail start www

service jail stop www

Jails can be shut down with man:jexec[8]. Use man:jls[8] to identify the jailÕs JID , then use

man:jexec[8] to run the shutdown script in that jail.

jls

Ê JID IP Address Hostname Path

Ê 3 192.168.0.10 www /usr/jail/www

jexec 3 /etc/rc.shutdown

More information about this can be found in the man:jail[8] manual page.

15.4. Fine Tuning and Administration

There are several options which can be set for any jail, and various ways of combining a host

FreeBSD system with jails, to produce higher level applications. This section presents:

¥ Some of the options available for tuning the behavior and security restrictions implemented by

a jail installation.

¥ Some of the high-level applications for jail management, which are available through the

FreeBSD Ports Collection, and can be used to implement overall jail-based solutions.

369

15.4.1. System Tools for Jail Tuning in FreeBSD

Fine tuning of a jailÕs configuration is mostly done by setting man:sysctl[8] variables. A special

subtree of sysctl exists as a basis for organizing all the relevant options: the security.jail.*

hierarchy of FreeBSD kernel options. Here is a list of the main jail-related sysctls, complete with

their default value. Names should be self-explanatory, but for more information about them, please

refer to the man:jail[8] and man:sysctl[8] manual pages.

¥ security.jail.set_hostname_allowed: 1

¥ security.jail.socket_unixiproute_only: 1

¥ security.jail.sysvipc_allowed: 0

¥ security.jail.enforce_statfs: 2

¥ security.jail.allow_raw_sockets: 0

¥ security.jail.chflags_allowed: 0

¥ security.jail.jailed: 0

These variables can be used by the system administrator of the host system to add or remove some

of the limitations imposed by default on the root user. Note that there are some limitations which

cannot be removed. The root user is not allowed to mount or unmount file systems from within a

man:jail[8]. The root inside a jail may not load or unload man:devfs[8] rulesets, set firewall rules, or

do many other administrative tasks which require modifications of in-kernel data, such as setting

the securelevel of the kernel.

The base system of FreeBSD contains a basic set of tools for viewing information about the active

jails, and attaching to a jail to run administrative commands. The man:jls[8] and man:jexec[8]

commands are part of the base FreeBSD system, and can be used to perform the following simple

tasks:

¥ Print a list of active jails and their corresponding jail identifier (JID), IP address, hostname and

path.

¥ Attach to a running jail, from its host system, and run a command inside the jail or perform

administrative tasks inside the jail itself. This is especially useful when the root user wants to

cleanly shut down a jail. The man:jexec[8] utility can also be used to start a shell in a jail to do

administration in it; for example:

jexec 1 tcsh

15.4.2. High-Level Administrative Tools in the FreeBSD Ports Collection

Among the many third-party utilities for jail administration, one of the most complete and useful is

package:sysutils/ezjail[]. It is a set of scripts that contribute to man:jail[8] management. Please refer

to the handbook section on ezjail for more information.

370

15.4.3. Keeping Jails Patched and up to Date

Jails should be kept up to date from the host operating system as attempting to patch userland from

within the jail may likely fail as the default behavior in FreeBSD is to disallow the use of

man:chflags[1] in a jail which prevents the replacement of some files. It is possible to change this

behavior but it is recommended to use man:freebsd-update[8] to maintain jails instead. Use -b to

specify the path of the jail to be updated.

To update the jail to the latest patch release of the version of FreeBSD it is already running, then

execute the following commands on the host:

freebsd-update -b /here/is/the/jail fetch

freebsd-update -b /here/is/the/jail install

To upgrade the jail to a new major or minor version, first upgrade the host system as described in

crossref:cutting-edge[freebsdupdate-upgrade,ÒPerforming Major and Minor Version UpgradesÓ].

Once the host has been upgraded and rebooted, the jail can then be upgraded. For example to

upgrade from 12.0-RELEASE to 12.1-RELEASE, on the host run:

freebsd-update -b /here/is/the/jail --currently-running 12.0-RELEASE -r 12.1-RELEASE

upgrade

freebsd-update -b /here/is/the/jail install

service jail restart myjail

freebsd-update -b /here/is/the/jail install

Then, if it was a major version upgrade, reinstall all installed packages and restart the jail again.

This is required because the ABI version changes when upgrading between major versions of

FreeBSD. From the host:

pkg -j myjail upgrade -f

service jail restart myjail

15.5. Updating Multiple Jails

The management of multiple jails can become problematic because every jail has to be rebuilt from

scratch whenever it is upgraded. This can be time consuming and tedious if a lot of jails are created

and manually updated.

This section demonstrates one method to resolve this issue by safely sharing as much as is possible

between jails using read-only man:mount_nullfs[8] mounts, so that updating is simpler. This makes

it more attractive to put single services, such as HTTP, DNS, and SMTP, into individual jails.

Additionally, it provides a simple way to add, remove, and upgrade jails.

371

!

Simpler solutions exist, such as ezjail, which provides an easier method of

administering FreeBSD jails but is less versatile than this setup. ezjail is covered in

more detail in Managing Jails with ezjail .

The goals of the setup described in this section are:

¥ Create a simple and easy to understand jail structure that does not require running a full

installworld on each and every jail.

¥ Make it easy to add new jails or remove existing ones.

¥ Make it easy to update or upgrade existing jails.

¥ Make it possible to run a customized FreeBSD branch.

¥ Be paranoid about security, reducing as much as possible the possibility of compromise.

¥ Save space and inodes, as much as possible.

This design relies on a single, read-only master template which is mounted into each jail and one

read-write device per jail. A device can be a separate physical disc, a partition, or a vnode backed

memory device. This example uses read-write nullfs mounts.

The file system layout is as follows:

¥ The jails are based under the /home partition.

¥ Each jail will be mounted under the /home/j directory.

¥ The template for each jail and the read-only partition for all of the jails is /home/j/mroot .

¥ A blank directory will be created for each jail under the /home/j directory.

¥ Each jail will have a /s directory that will be linked to the read-write portion of the system.

¥ Each jail will have its own read-write system that is based upon /home/j/skel .

¥ The read-write portion of each jail will be created in /home/js .

15.5.1. Creating the Template

This section describes the steps needed to create the master template.

It is recommended to first update the host FreeBSD system to the latest -RELEASE branch using the

instructions in crossref:cutting-edge[makeworld,ÒUpdating FreeBSD from SourceÓ]. Additionally,

this template uses the package:sysutils/cpdup[] package or port and portsnap will be used to

download the FreeBSD Ports Collection.

1. First, create a directory structure for the read-only file system which will contain the FreeBSD

binaries for the jails. Then, change directory to the FreeBSD source tree and install the read-

only file system to the jail template:

mkdir /home/j /home/j/mroot

cd /usr/src

make installworld DESTDIR=/home/j/mroot

372

2. Next, prepare a FreeBSD Ports Collection for the jails as well as a FreeBSD source tree, which is

required for mergemaster:

cd /home/j/mroot

mkdir usr/ports

portsnap -p /home/j/mroot/usr/ports fetch extract

cpdup /usr/src /home/j/mroot/usr/src

3. Create a skeleton for the read-write portion of the system:

mkdir /home/j/skel /home/j/skel/home /home/j/skel/usr-X11R6

/home/j/skel/distfiles

mv etc /home/j/skel

mv usr/local /home/j/skel/usr-local

mv tmp /home/j/skel

mv var /home/j/skel

mv root /home/j/skel

4. Use mergemaster to install missing configuration files. Then, remove the extra directories that

mergemaster creates:

mergemaster -t /home/j/skel/var/tmp/temproot -D /home/j/skel -i

cd /home/j/skel

rm -R bin boot lib libexec mnt proc rescue sbin sys usr dev

5. Now, symlink the read-write file system to the read-only file system. Ensure that the symlinks

are created in the correct s/ locations as the creation of directories in the wrong locations will

cause the installation to fail.

cd /home/j/mroot

mkdir s

ln -s s/etc etc

ln -s s/home home

ln -s s/root root

ln -s ../s/usr-local usr/local

ln -s ../s/usr-X11R6 usr/X11R6

ln -s ../../s/distfiles usr/ports/distfiles

ln -s s/tmp tmp

ln -s s/var var

6. As a last step, create a generic /home/j/skel/etc/make.conf containing this line:

WRKDIRPREFIX?= /s/portbuild

This makes it possible to compile FreeBSD ports inside each jail. Remember that the ports

373

directory is part of the read-only system. The custom path for WRKDIRPREFIX allows builds to be

done in the read-write portion of every jail.

15.5.2. Creating Jails

The jail template can now be used to setup and configure the jails in /etc/rc.conf . This example

demonstrates the creation of 3 jails: NS , MAIL and WWW .

1. Add the following lines to /etc/fstab , so that the read-only template for the jails and the read-

write space will be available in the respective jails:

/home/j/mroot /home/j/ns nullfs ro 0 0

/home/j/mroot /home/j/mail nullfs ro 0 0

/home/j/mroot /home/j/www nullfs ro 0 0

/home/js/ns /home/j/ns/s nullfs rw 0 0

/home/js/mail /home/j/mail/s nullfs rw 0 0

/home/js/www /home/j/www/s nullfs rw 0 0

To prevent fsck from checking nullfs mounts during boot and dump from backing up the read-

only nullfs mounts of the jails, the last two columns are both set to 0 .

2. Configure the jails in /etc/rc.conf :

jail_enable="YES"

jail_set_hostname_allow="NO"

jail_list="ns mail www"

jail_ns_hostname="ns.example.org"

jail_ns_ip="192.168.3.17"

jail_ns_rootdir="/usr/home/j/ns"

jail_ns_devfs_enable="YES"

jail_mail_hostname="mail.example.org"

jail_mail_ip="192.168.3.18"

jail_mail_rootdir="/usr/home/j/mail"

jail_mail_devfs_enable="YES"

jail_www_hostname="www.example.org"

jail_www_ip="62.123.43.14"

jail_www_rootdir="/usr/home/j/www"

jail_www_devfs_enable="YES"

The jail name rootdir variable is set to /usr/home instead of /home because the physical path of

/home on a default FreeBSD installation is /usr/home . The jail name rootdir variable must not be

set to a path which includes a symbolic link, otherwise the jails will refuse to start.

3. Create the required mount points for the read-only file system of each jail:

mkdir /home/j/ns /home/j/mail /home/j/www

374

4. Install the read-write template into each jail using package:sysutils/cpdup[]:

mkdir /home/js

cpdup /home/j/skel /home/js/ns

cpdup /home/j/skel /home/js/mail

cpdup /home/j/skel /home/js/www

5. In this phase, the jails are built and prepared to run. First, mount the required file systems for

each jail, and then start them:

mount -a

service jail start

The jails should be running now. To check if they have started correctly, use jls . Its output should

be similar to the following:

jls

Ê JID IP Address Hostname Path

Ê 3 192.168.3.17 ns.example.org /home/j/ns

Ê 2 192.168.3.18 mail.example.org /home/j/mail

Ê 1 62.123.43.14 www.example.org /home/j/www

At this point, it should be possible to log onto each jail, add new users, or configure daemons. The

JID column indicates the jail identification number of each running jail. Use the following

command to perform administrative tasks in the jail whose JID is 3 :

jexec 3 tcsh

15.5.3. Upgrading

The design of this setup provides an easy way to upgrade existing jails while minimizing their

downtime. Also, it provides a way to roll back to the older version should a problem occur.

1. The first step is to upgrade the host system. Then, create a new temporary read-only template in

/home/j/mroot2 .

mkdir /home/j/mroot2

cd /usr/src

make installworld DESTDIR=/home/j/mroot2

cd /home/j/mroot2

cpdup /usr/src usr/src

mkdir s

The installworld creates a few unnecessary directories, which should be removed:

375

chflags -R 0 var

rm -R etc var root usr/local tmp

2. Recreate the read-write symlinks for the master file system:

ln -s s/etc etc

ln -s s/root root

ln -s s/home home

ln -s ../s/usr-local usr/local

ln -s ../s/usr-X11R6 usr/X11R6

ln -s s/tmp tmp

ln -s s/var var

3. Next, stop the jails:

service jail stop

4. Unmount the original file systems as the read-write systems are attached to the read-only

system (/s):

umount /home/j/ns/s

umount /home/j/ns

umount /home/j/mail/s

umount /home/j/mail

umount /home/j/www/s

umount /home/j/www

5. Move the old read-only file system and replace it with the new one. This will serve as a backup

and archive of the old read-only file system should something go wrong. The naming

convention used here corresponds to when a new read-only file system has been created. Move

the original FreeBSD Ports Collection over to the new file system to save some space and inodes:

cd /home/j

mv mroot mroot.20060601

mv mroot2 mroot

mv mroot.20060601/usr/ports mroot/usr

6. At this point the new read-only template is ready, so the only remaining task is to remount the

file systems and start the jails:

mount -a

service jail start

376

Use jls to check if the jails started correctly. Run mergemaster in each jail to update the

configuration files.

15.6. Managing Jails with ezjail

Creating and managing multiple jails can quickly become tedious and error-prone. Dirk EnglingÕs

ezjail automates and greatly simplifies many jail tasks. A basejail is created as a template.

Additional jails use man:mount_nullfs[8] to share many of the basejail directories without using

additional disk space. Each additional jail takes only a few megabytes of disk space before

applications are installed. Upgrading the copy of the userland in the basejail automatically

upgrades all of the other jails.

Additional benefits and features are described in detail on the ezjail web site, https://erdgeist.org/

arts/software/ezjail/ .

15.6.1. Installing ezjail

Installing ezjail consists of adding a loopback interface for use in jails, installing the port or

package, and enabling the service.

1. To keep jail loopback traffic off the hostÕs loopback network interface lo0 , a second loopback

interface is created by adding an entry to /etc/rc.conf :

cloned_interfaces="lo1"

The second loopback interface lo1 will be created when the system starts. It can also be created

manually without a restart:

service netif cloneup

Created clone interfaces: lo1.

Jails can be allowed to use aliases of this secondary loopback interface without interfering with

the host.

Inside a jail, access to the loopback address 127.0.0.1 is redirected to the first IP address

assigned to the jail. To make the jail loopback correspond with the new lo1 interface, that

interface must be specified first in the list of interfaces and IP addresses given when creating a

new jail.

Give each jail a unique loopback address in the 127.0.0.0/8 netblock.

2. Install package:sysutils/ezjail[]:

cd /usr/ports/sysutils/ezjail

make install clean

377

https://erdgeist.org/arts/software/ezjail/
https://erdgeist.org/arts/software/ezjail/

3. Enable ezjail by adding this line to /etc/rc.conf :

ezjail_enable="YES"

4. The service will automatically start on system boot. It can be started immediately for the

current session:

service ezjail start

15.6.2. Initial Setup

With ezjail installed, the basejail directory structure can be created and populated. This step is only

needed once on the jail host computer.

In both of these examples, -p causes the ports tree to be retrieved with man:portsnap[8] into the

basejail. That single copy of the ports directory will be shared by all the jails. Using a separate copy

of the ports directory for jails isolates them from the host. The ezjailFAQ explains in more detail:

http://erdgeist.org/arts/software/ezjail/#FAQ .

1. To Populate the Jail with FreeBSD-RELEASE

For a basejail based on the FreeBSD RELEASE matching that of the host computer, use install .

For example, on a host computer running FreeBSD 10-STABLE, the latest RELEASE version of

FreeBSD -10 will be installed in the jail):

ezjail-admin install -p

2. To Populate the Jail with installworld

The basejail can be installed from binaries created by buildworld on the host with ezjail-admin

update .

In this example, FreeBSD 10-STABLE has been built from source. The jail directories are created.

Then installworld is executed, installing the hostÕs /usr/obj into the basejail.

ezjail-admin update -i -p

The hostÕs /usr/src is used by default. A different source directory on the host can be specified

with -s and a path, or set with ezjail_sourcetree in /usr/local/etc/ezjail.conf .

!

The basejailÕs ports tree is shared by other jails. However, downloaded distfiles are

stored in the jail that downloaded them. By default, these files are stored in

/var/ports/distfiles within each jail. /var/ports inside each jail is also used as a work

directory when building ports.

378

http://erdgeist.org/arts/software/ezjail/#FAQ

!

The FTP protocol is used by default to download packages for the installation of

the basejail. Firewall or proxy configurations can prevent or interfere with FTP

transfers. The HTTP protocol works differently and avoids these problems. It can

be chosen by specifying a full URL for a particular download mirror in

/usr/local/etc/ezjail.conf :

ezjail_ftphost=http://ftp.FreeBSD.org

See crossref:mirrors[mirrors-ftp,ÒFTP SitesÓ] for a list of sites.

15.6.3. Creating and Starting a New Jail

New jails are created with ezjail-admin create . In these examples, the lo1 loopback interface is

used as described above.

Procedure: Create and Start a New Jail

1. Create the jail, specifying a name and the loopback and network interfaces to use, along with

their IP addresses. In this example, the jail is named dnsjail .

ezjail-admin create dnsjail 'lo1|127.0.1.1,em0|192.168.1.50'

!

Most network services run in jails without problems. A few network services,

most notably man:ping[8], use raw network sockets . In jails, raw network

sockets are disabled by default for security. Services that require them will not

work.

Occasionally, a jail genuinely needs raw sockets. For example, network

monitoring applications often use man:ping[8] to check the availability of

other computers. When raw network sockets are actually needed in a jail, they

can be enabled by editing the ezjail configuration file for the individual jail,

/usr/local/etc/ezjail/jailname . Modify the parameters entry:

export jail_jailname_parameters="allow.raw_sockets=1"

Do not enable raw network sockets unless services in the jail actually require

them.

2. Start the jail:

ezjail-admin start dnsjail

3. Use a console on the jail:

379

ezjail-admin console dnsjail

The jail is operating and additional configuration can be completed. Typical settings added at this

point include:

1. Set the root Password

Connect to the jail and set the root userÕs password:

ezjail-admin console dnsjail

passwd

Changing local password for root

New Password:

Retype New Password:

2. Time Zone Configuration

The jailÕs time zone can be set with man:tzsetup[8]. To avoid spurious error messages, the

man:adjkerntz[8] entry in /etc/crontab can be commented or removed. This job attempts to

update the computerÕs hardware clock with time zone changes, but jails are not allowed to

access that hardware.

3. DNS Servers

Enter domain name server lines in /etc/resolv.conf so DNS works in the jail.

4. Edit /etc/hosts

Change the address and add the jail name to the localhost entries in /etc/hosts .

5. Configure /etc/rc.conf

Enter configuration settings in /etc/rc.conf . This is much like configuring a full computer. The

host name and IP address are not set here. Those values are already provided by the jail

configuration.

With the jail configured, the applications for which the jail was created can be installed.

!

Some ports must be built with special options to be used in a jail. For example,

both of the network monitoring plugin packages package:net-mgmt/nagios-

plugins[] and package:net-mgmt/monitoring-plugins[] have a JAIL option which

must be enabled for them to work correctly inside a jail.

15.6.4. Updating Jails

380

15.6.4.1. Updating the Operating System

Because the basejailÕs copy of the userland is shared by the other jails, updating the basejail

automatically updates all of the other jails. Either source or binary updates can be used.

To build the world from source on the host, then install it in the basejail, use:

ezjail-admin update -b

If the world has already been compiled on the host, install it in the basejail with:

ezjail-admin update -i

Binary updates use man:freebsd-update[8]. These updates have the same limitations as if

man:freebsd-update[8] were being run directly. The most important one is that only -RELEASE

versions of FreeBSD are available with this method.

Update the basejail to the latest patched release of the version of FreeBSD on the host. For example,

updating from RELEASE-p1 to RELEASE-p2.

ezjail-admin update -u

To upgrade the basejail to a new version, first upgrade the host system as described in

crossref:cutting-edge[freebsdupdate-upgrade,ÒPerforming Major and Minor Version UpgradesÓ].

Once the host has been upgraded and rebooted, the basejail can then be upgraded. man:freebsd-

update[8] has no way of determining which version is currently installed in the basejail, so the

original version must be specified. Use man:file[1] to determine the original version in the basejail:

file /usr/jails/basejail/bin/sh

/usr/jails/basejail/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),

dynamically linked (uses shared libs), for FreeBSD 9.3, stripped

Now use this information to perform the upgrade from 9.3-RELEASE to the current version of the

host system:

ezjail-admin update -U -s 9.3-RELEASE

After updating the basejail, man:mergemaster[8] must be run to update each jailÕs configuration

files.

How to use man:mergemaster[8] depends on the purpose and trustworthiness of a jail. If a jailÕs

services or users are not trusted, then man:mergemaster[8] should only be run from within that

jail:

381

Example 32. man:mergemaster[8] on Untrusted Jail

Delete the link from the jailÕs /usr/src into the basejail and create a new /usr/src in the jail as a

mountpoint. Mount the host computerÕs /usr/src read-only on the jailÕs new /usr/src

mountpoint:

rm /usr/jails/jailname/usr/src

mkdir /usr/jails/jailname/usr/src

mount -t nullfs -o ro /usr/src /usr/jails/jailname/usr/src

Get a console in the jail:

ezjail-admin console jailname

Inside the jail, run mergemaster . Then exit the jail console:

cd /usr/src

mergemaster -U

exit

Finally, unmount the jailÕs /usr/src :

umount /usr/jails/jailname/usr/src

Example 33. man:mergemaster[8] on Trusted Jail

If the users and services in a jail are trusted, man:mergemaster[8] can be run from the host:

mergemaster -U -D /usr/jails/jailname

!

After a major version update it is recommended by package:sysutils/ezjail[] to

make sure your pkg is of the correct version. Therefore enter:

pkg-static upgrade -f pkg

to upgrade or downgrade to the appropriate version.

15.6.4.2. Updating Ports

The ports tree in the basejail is shared by the other jails. Updating that copy of the ports tree gives

the other jails the updated version also.

382

The basejail ports tree is updated with man:portsnap[8]:

ezjail-admin update -P

15.6.5. Controlling Jails

15.6.5.1. Stopping and Starting Jails

ezjail automatically starts jails when the computer is started. Jails can be manually stopped and

restarted with stop and start :

ezjail-admin stop sambajail

Stopping jails: sambajail.

By default, jails are started automatically when the host computer starts. Autostarting can be

disabled with config :

ezjail-admin config -r norun seldomjail

This takes effect the next time the host computer is started. A jail that is already running will not be

stopped.

Enabling autostart is very similar:

ezjail-admin config -r run oftenjail

15.6.5.2. Archiving and Restoring Jails

Use archive to create a .tar.gz archive of a jail. The file name is composed from the name of the jail

and the current date. Archive files are written to the archive directory, /usr/jails/ezjail_archives . A

different archive directory can be chosen by setting ezjail_archivedir in the configuration file.

The archive file can be copied elsewhere as a backup, or an existing jail can be restored from it

with restore . A new jail can be created from the archive, providing a convenient way to clone

existing jails.

Stop and archive a jail named wwwserver :

ezjail-admin stop wwwserver

Stopping jails: wwwserver.

ezjail-admin archive wwwserver

ls /usr/jails/ezjail-archives/

wwwserver-201407271153.13.tar.gz

383

Create a new jail named wwwserver-clone from the archive created in the previous step. Use the em1

interface and assign a new IP address to avoid conflict with the original:

ezjail-admin create -a /usr/jails/ezjail_archives/wwwserver-201407271153.13.tar.gz

wwwserver-clone 'lo1|127.0.3.1,em1|192.168.1.51'

15.6.6. Full Example: BIND in a Jail

Putting the BINDDNS server in a jail improves security by isolating it. This example creates a simple

caching-only name server.

¥ The jail will be called dns1 .

¥ The jail will use IP address 192.168.1.240 on the hostÕs re0 interface.

¥ The upstream ISPÕs DNS servers are at 10.0.0.62 and 10.0.0.61 .

¥ The basejail has already been created and a ports tree installed as shown in Initial Setup .

384

Example 34. Running BIND in a Jail

Create a cloned loopback interface by adding a line to /etc/rc.conf :

cloned_interfaces="lo1"

Immediately create the new loopback interface:

service netif cloneup

Created clone interfaces: lo1.

Create the jail:

ezjail-admin create dns1 'lo1|127.0.2.1,re0|192.168.1.240'

Start the jail, connect to a console running on it, and perform some basic configuration:

ezjail-admin start dns1

ezjail-admin console dns1

passwd

Changing local password for root

New Password:

Retype New Password:

tzsetup

sed -i .bak -e '/adjkerntz/ s/^/#/' /etc/crontab

sed -i .bak -e 's/127.0.0.1/127.0.2.1/g; s/localhost.my.domain/dns1.my.domain

dns1/' /etc/hosts

Temporarily set the upstream DNS servers in /etc/resolv.conf so ports can be downloaded:

nameserver 10.0.0.62

nameserver 10.0.0.61

Still using the jail console, install package:dns/bind99[].

make -C /usr/ports/dns/bind99 install clean

Configure the name server by editing /usr/local/etc/namedb/named.conf .

Create an Access Control List (ACL) of addresses and networks that are permitted to send DNS

queries to this name server. This section is added just before the options section already in the

file:

385

...

// or cause huge amounts of useless Internet traffic.

acl "trusted" {

Ê 192.168.1.0/24;

Ê localhost;

Ê localnets;

};

options {

...

Use the jail IP address in the listen-on setting to accept DNS queries from other computers on

the network:

Ê listen-on { 192.168.1.240; };

A simple caching-only DNS name server is created by changing the forwarders section. The

original file contains:

/*

Ê forwarders {

Ê 127.0.0.1;

Ê };

*/

Uncomment the section by removing the /* and */ lines. Enter the IP addresses of the

upstream DNS servers. Immediately after the forwarders section, add references to the trusted

ACL defined earlier:

Ê forwarders {

Ê 10.0.0.62;

Ê 10.0.0.61;

Ê };

Ê allow-query { any; };

Ê allow-recursion { trusted; };

Ê allow-query-cache { trusted; };

Enable the service in /etc/rc.conf :

named_enable="YES"

Start and test the name server:

386

service named start

wrote key file "/usr/local/etc/namedb/rndc.key"

Starting named.

/usr/local/bin/dig @192.168.1.240 freebsd.org

A response that includes

;; Got answer;

shows that the new DNS server is working. A long delay followed by a response including

;; connection timed out; no servers could be reached

shows a problem. Check the configuration settings and make sure any local firewalls allow the

new DNS access to the upstream DNS servers.

The new DNS server can use itself for local name resolution, just like other local computers. Set

the address of the DNS server in the client computerÕs /etc/resolv.conf :

nameserver 192.168.1.240

A local DHCP server can be configured to provide this address for a local DNS server,

providing automatic configuration on DHCP clients.

387

Chapter 16. Mandatory Access Control

16.1. Synopsis

FreeBSD supports security extensions based on the POSIX¨.1e draft. These security mechanisms

include file system Access Control Lists (crossref:security[fs-acl,ÒAccess Control ListsÓ]) and

Mandatory Access Control (MAC). MAC allows access control modules to be loaded in order to

implement security policies. Some modules provide protections for a narrow subset of the system,

hardening a particular service. Others provide comprehensive labeled security across all subjects

and objects. The mandatory part of the definition indicates that enforcement of controls is

performed by administrators and the operating system. This is in contrast to the default security

mechanism of Discretionary Access Control (DAC) where enforcement is left to the discretion of

users.

This chapter focuses on the MAC framework and the set of pluggable security policy modules

FreeBSD provides for enabling various security mechanisms.

After reading this chapter, you will know:

¥ The terminology associated with the MAC framework.

¥ The capabilities of MAC security policy modules as well as the difference between a labeled and

non-labeled policy.

¥ The considerations to take into account before configuring a system to use the MAC framework.

¥ Which MAC security policy modules are included in FreeBSD and how to configure them.

¥ How to implement a more secure environment using the MAC framework.

¥ How to test the MAC configuration to ensure the framework has been properly implemented.

Before reading this chapter, you should:

¥ Understand UNIX¨ and FreeBSD basics (crossref:basics[basics,FreeBSD Basics]).

¥ Have some familiarity with security and how it pertains to FreeBSD

(crossref:security[security,Security]).

"

Improper MAC configuration may cause loss of system access, aggravation of

users, or inability to access the features provided by Xorg. More importantly, MAC

should not be relied upon to completely secure a system. The MAC framework only

augments an existing security policy. Without sound security practices and regular

security checks, the system will never be completely secure.

The examples contained within this chapter are for demonstration purposes and

the example settings should not be implemented on a production system.

Implementing any security policy takes a good deal of understanding, proper

design, and thorough testing.

While this chapter covers a broad range of security issues relating to the MAC framework, the

development of new MAC security policy modules will not be covered. A number of security policy

388

modules included with the MAC framework have specific characteristics which are provided for

both testing and new module development. Refer to man:mac_test[4], man:mac_stub[4] and

man:mac_none[4] for more information on these security policy modules and the various

mechanisms they provide.

16.2. Key Terms

The following key terms are used when referring to the MAC framework:

¥ compartment : a set of programs and data to be partitioned or separated, where users are given

explicit access to specific component of a system. A compartment represents a grouping, such as

a work group, department, project, or topic. Compartments make it possible to implement a

need-to-know-basis security policy.

¥ integrity : the level of trust which can be placed on data. As the integrity of the data is elevated,

so does the ability to trust that data.

¥ level : the increased or decreased setting of a security attribute. As the level increases, its

security is considered to elevate as well.

¥ label : a security attribute which can be applied to files, directories, or other items in the system.

It could be considered a confidentiality stamp. When a label is placed on a file, it describes the

security properties of that file and will only permit access by files, users, and resources with a

similar security setting. The meaning and interpretation of label values depends on the policy

configuration. Some policies treat a label as representing the integrity or secrecy of an object

while other policies might use labels to hold rules for access.

¥ multilabel : this property is a file system option which can be set in single-user mode using

man:tunefs[8], during boot using man:fstab[5], or during the creation of a new file system. This

option permits an administrator to apply different MAC labels on different objects. This option

only applies to security policy modules which support labeling.

¥ single label : a policy where the entire file system uses one label to enforce access control over

the flow of data. Whenever multilabel is not set, all files will conform to the same label setting.

¥ object : an entity through which information flows under the direction of a subject . This includes

directories, files, fields, screens, keyboards, memory, magnetic storage, printers or any other

data storage or moving device. An object is a data container or a system resource. Access to an

object effectively means access to its data.

¥ subject : any active entity that causes information to flow between objects such as a user, user

process, or system process. On FreeBSD, this is almost always a thread acting in a process on

behalf of a user.

¥ policy : a collection of rules which defines how objectives are to be achieved. A policy usually

documents how certain items are to be handled. This chapter considers a policy to be a

collection of rules which controls the flow of data and information and defines who has access

to that data and information.

¥ high-watermark : this type of policy permits the raising of security levels for the purpose of

accessing higher level information. In most cases, the original level is restored after the process

is complete. Currently, the FreeBSD MAC framework does not include this type of policy.

¥ low-watermark : this type of policy permits lowering security levels for the purpose of accessing

389

information which is less secure. In most cases, the original security level of the user is restored

after the process is complete. The only security policy module in FreeBSD to use this is

man:mac_lomac[4].

¥ sensitivity : usually used when discussing Multilevel Security (MLS). A sensitivity level describes

how important or secret the data should be. As the sensitivity level increases, so does the

importance of the secrecy, or confidentiality, of the data.

16.3. Understanding MAC Labels

A MAC label is a security attribute which may be applied to subjects and objects throughout the

system. When setting a label, the administrator must understand its implications in order to

prevent unexpected or undesired behavior of the system. The attributes available on an object

depend on the loaded policy module, as policy modules interpret their attributes in different ways.

The security label on an object is used as a part of a security access control decision by a policy.

With some policies, the label contains all of the information necessary to make a decision. In other

policies, the labels may be processed as part of a larger rule set.

There are two types of label policies: single label and multi label. By default, the system will use

single label. The administrator should be aware of the pros and cons of each in order to implement

policies which meet the requirements of the systemÕs security model.

A single label security policy only permits one label to be used for every subject or object. Since a

single label policy enforces one set of access permissions across the entire system, it provides lower

administration overhead, but decreases the flexibility of policies which support labeling. However,

in many environments, a single label policy may be all that is required.

A single label policy is somewhat similar to DAC as root configures the policies so that users are

placed in the appropriate categories and access levels. A notable difference is that many policy

modules can also restrict root . Basic control over objects will then be released to the group, but root

may revoke or modify the settings at any time.

When appropriate, a multi label policy can be set on a UFS file system by passing multilabel to

man:tunefs[8]. A multi label policy permits each subject or object to have its own independent MAC

label. The decision to use a multi label or single label policy is only required for policies which

implement the labeling feature, such as biba , lomac , and mls . Some policies, such as seeotheruids ,

portacl and partition , do not use labels at all.

Using a multi label policy on a partition and establishing a multi label security model can increase

administrative overhead as everything in that file system has a label. This includes directories, files,

and even device nodes.

The following command will set multilabel on the specified UFS file system. This may only be done

in single-user mode and is not a requirement for the swap file system:

tunefs -l enable /

390

!

Some users have experienced problems with setting the multilabel flag on the root

partition. If this is the case, please review Troubleshooting the MAC Framework .

Since the multi label policy is set on a per-file system basis, a multi label policy may not be needed

if the file system layout is well designed. Consider an example security MAC model for a FreeBSD

web server. This machine uses the single label, biba/high , for everything in the default file systems.

If the web server needs to run at biba/low to prevent write up capabilities, it could be installed to a

separate UFS /usr/local file system set at biba/low .

16.3.1. Label Configuration

Virtually all aspects of label policy module configuration will be performed using the base system

utilities. These commands provide a simple interface for object or subject configuration or the

manipulation and verification of the configuration.

All configuration may be done using setfmac , which is used to set MAC labels on system objects, and

setpmac , which is used to set the labels on system subjects. For example, to set the biba MAC label to

high on test :

setfmac biba/high test

If the configuration is successful, the prompt will be returned without error. A common error is

Permission denied which usually occurs when the label is being set or modified on a restricted

object. Other conditions may produce different failures. For instance, the file may not be owned by

the user attempting to relabel the object, the object may not exist, or the object may be read-only. A

mandatory policy will not allow the process to relabel the file, maybe because of a property of the

file, a property of the process, or a property of the proposed new label value. For example, if a user

running at low integrity tries to change the label of a high integrity file, or a user running at low

integrity tries to change the label of a low integrity file to a high integrity label, these operations

will fail.

The system administrator may use setpmac to override the policy moduleÕs settings by assigning a

different label to the invoked process:

setfmac biba/high test

Permission denied

setpmac biba/low setfmac biba/high test

getfmac test

test: biba/high

For currently running processes, such as sendmail, getpmac is usually used instead. This command

takes a process ID (PID) in place of a command name. If users attempt to manipulate a file not in

their access, subject to the rules of the loaded policy modules, the Operation not permitted error

will be displayed.

391

16.3.2. Predefined Labels

A few FreeBSD policy modules which support the labeling feature offer three predefined labels: low ,

equal , and high , where:

¥ low is considered the lowest label setting an object or subject may have. Setting this on objects

or subjects blocks their access to objects or subjects marked high.

¥ equal sets the subject or object to be disabled or unaffected and should only be placed on objects

considered to be exempt from the policy.

¥ high grants an object or subject the highest setting available in the Biba and MLS policy

modules.

Such policy modules include man:mac_biba[4], man:mac_mls[4] and man:mac_lomac[4]. Each of

the predefined labels establishes a different information flow directive. Refer to the manual page of

the module to determine the traits of the generic label configurations.

16.3.3. Numeric Labels

The Biba and MLS policy modules support a numeric label which may be set to indicate the precise

level of hierarchical control. This numeric level is used to partition or sort information into

different groups of classification, only permitting access to that group or a higher group level. For

example:

biba/10:2+3+6(5:2+3-20:2+3+4+5+6)

may be interpreted as "Biba Policy Label/Grade 10:Compartments 2, 3 and 6: (grade 5 É")

In this example, the first grade would be considered the effective grade with effective

compartments, the second grade is the low grade, and the last one is the high grade. In most

configurations, such fine-grained settings are not needed as they are considered to be advanced

configurations.

System objects only have a current grade and compartment. System subjects reflect the range of

available rights in the system, and network interfaces, where they are used for access control.

The grade and compartments in a subject and object pair are used to construct a relationship

known as dominance , in which a subject dominates an object, the object dominates the subject,

neither dominates the other, or both dominate each other. The "both dominate" case occurs when

the two labels are equal. Due to the information flow nature of Biba, a user has rights to a set of

compartments that might correspond to projects, but objects also have a set of compartments. Users

may have to subset their rights using su or setpmac in order to access objects in a compartment from

which they are not restricted.

16.3.4. User Labels

Users are required to have labels so that their files and processes properly interact with the

security policy defined on the system. This is configured in /etc/login.conf using login classes. Every

policy module that uses labels will implement the user class setting.

392

To set the user class default label which will be enforced by MAC, add a label entry. An example

label entry containing every policy module is displayed below. Note that in a real configuration, the

administrator would never enable every policy module. It is recommended that the rest of this

chapter be reviewed before any configuration is implemented.

default:\

Ê :copyright=/etc/COPYRIGHT:\

Ê :welcome=/etc/motd:\

Ê :setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\

Ê :path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:\

Ê :manpath=/usr/shared/man /usr/local/man:\

Ê :nologin=/usr/sbin/nologin:\

Ê :cputime=1h30m:\

Ê :datasize=8M:\

Ê :vmemoryuse=100M:\

Ê :stacksize=2M:\

Ê :memorylocked=4M:\

Ê :memoryuse=8M:\

Ê :filesize=8M:\

Ê :coredumpsize=8M:\

Ê :openfiles=24:\

Ê :maxproc=32:\

Ê :priority=0:\

Ê :requirehome:\

Ê :passwordtime=91d:\

Ê :umask=022:\

Ê :ignoretime@:\

Ê :label=partition/13,mls/5,biba/10(5-15),lomac/10[2]:

While users can not modify the default value, they may change their label after they login, subject

to the constraints of the policy. The example above tells the Biba policy that a processÕs minimum

integrity is 5 , its maximum is 15 , and the default effective label is 10 . The process will run at 10 until

it chooses to change label, perhaps due to the user using setpmac , which will be constrained by Biba

to the configured range.

After any change to login.conf , the login class capability database must be rebuilt using cap_mkdb .

Many sites have a large number of users requiring several different user classes. In depth planning

is required as this can become difficult to manage.

16.3.5. Network Interface Labels

Labels may be set on network interfaces to help control the flow of data across the network.

Policies using network interface labels function in the same way that policies function with respect

to objects. Users at high settings in Biba, for example, will not be permitted to access network

interfaces with a label of low .

When setting the MAC label on network interfaces, maclabel may be passed to ifconfig :

393

ifconfig bge0 maclabel biba/equal

This example will set the MAC label of biba/equal on the bge0 interface. When using a setting

similar to biba/high(low-high) , the entire label should be quoted to prevent an error from being

returned.

Each policy module which supports labeling has a tunable which may be used to disable the MAC

label on network interfaces. Setting the label to equal will have a similar effect. Review the output

of sysctl , the policy manual pages, and the information in the rest of this chapter for more

information on those tunables.

16.4. Planning the Security Configuration

Before implementing any MAC policies, a planning phase is recommended. During the planning

stages, an administrator should consider the implementation requirements and goals, such as:

¥ How to classify information and resources available on the target systems.

¥ Which information or resources to restrict access to along with the type of restrictions that

should be applied.

¥ Which MAC modules will be required to achieve this goal.

A trial run of the trusted system and its configuration should occur before a MAC implementation is

used on production systems. Since different environments have different needs and requirements,

establishing a complete security profile will decrease the need of changes once the system goes live.

Consider how the MAC framework augments the security of the system as a whole. The various

security policy modules provided by the MAC framework could be used to protect the network and

file systems or to block users from accessing certain ports and sockets. Perhaps the best use of the

policy modules is to load several security policy modules at a time in order to provide a MLS

environment. This approach differs from a hardening policy, which typically hardens elements of a

system which are used only for specific purposes. The downside to MLS is increased administrative

overhead.

The overhead is minimal when compared to the lasting effect of a framework which provides the

ability to pick and choose which policies are required for a specific configuration and which keeps

performance overhead down. The reduction of support for unneeded policies can increase the

overall performance of the system as well as offer flexibility of choice. A good implementation

would consider the overall security requirements and effectively implement the various security

policy modules offered by the framework.

A system utilizing MAC guarantees that a user will not be permitted to change security attributes at

will. All user utilities, programs, and scripts must work within the constraints of the access rules

provided by the selected security policy modules and control of the MAC access rules is in the hands

of the system administrator.

It is the duty of the system administrator to carefully select the correct security policy modules. For

an environment that needs to limit access control over the network, the man:mac_portacl[4],

394

man:mac_ifoff[4], and man:mac_biba[4] policy modules make good starting points. For an

environment where strict confidentiality of file system objects is required, consider the

man:mac_bsdextended[4] and man:mac_mls[4] policy modules.

Policy decisions could be made based on network configuration. If only certain users should be

permitted access to man:ssh[1], the man:mac_portacl[4] policy module is a good choice. In the case

of file systems, access to objects might be considered confidential to some users, but not to others.

As an example, a large development team might be broken off into smaller projects where

developers in project A might not be permitted to access objects written by developers in project B.

Yet both projects might need to access objects created by developers in project C. Using the different

security policy modules provided by the MAC framework, users could be divided into these groups

and then given access to the appropriate objects.

Each security policy module has a unique way of dealing with the overall security of a system.

Module selection should be based on a well thought out security policy which may require revision

and reimplementation. Understanding the different security policy modules offered by the MAC

framework will help administrators choose the best policies for their situations.

The rest of this chapter covers the available modules, describes their use and configuration, and in

some cases, provides insight on applicable situations.

$

Implementing MAC is much like implementing a firewall since care must be taken

to prevent being completely locked out of the system. The ability to revert back to

a previous configuration should be considered and the implementation of MAC

over a remote connection should be done with extreme caution.

16.5. Available MAC Policies

The default FreeBSD kernel includes options MAC . This means that every module included with the

MAC framework can be loaded with kldload as a run-time kernel module. After testing the module,

add the module name to /boot/loader.conf so that it will load during boot. Each module also

provides a kernel option for those administrators who choose to compile their own custom kernel.

FreeBSD includes a group of policies that will cover most security requirements. Each policy is

summarized below. The last three policies support integer settings in place of the three default

labels.

16.5.1. The MAC See Other UIDs Policy

Module name: mac_seeotheruids.ko

Kernel configuration line: options MAC_SEEOTHERUIDS

Boot option: mac_seeotheruids_load="YES"

The man:mac_seeotheruids[4] module extends the security.bsd.see_other_uids and

security.bsd.see_other_gids sysctl tunables. This option does not require any labels to be set

before configuration and can operate transparently with other modules.

395

After loading the module, the following sysctl tunables may be used to control its features:

¥ security.mac.seeotheruids.enabled enables the module and implements the default settings

which deny users the ability to view processes and sockets owned by other users.

¥ security.mac.seeotheruids.specificgid_enabled allows specified groups to be exempt from this

policy. To exempt specific groups, use the security.mac.seeotheruids.specificgid= XXX sysctl

tunable, replacing XXX with the numeric group ID to be exempted.

¥ security.mac.seeotheruids.primarygroup_enabled is used to exempt specific primary groups from

this policy. When using this tunable, security.mac.seeotheruids.specificgid_enabled may not be

set.

16.5.2. The MAC BSD Extended Policy

Module name: mac_bsdextended.ko

Kernel configuration line: options MAC_BSDEXTENDED

Boot option: mac_bsdextended_load="YES"

The man:mac_bsdextended[4] module enforces a file system firewall. It provides an extension to

the standard file system permissions model, permitting an administrator to create a firewall-like

ruleset to protect files, utilities, and directories in the file system hierarchy. When access to a file

system object is attempted, the list of rules is iterated until either a matching rule is located or the

end is reached. This behavior may be changed using security.mac.bsdextended.firstmatch_enabled .

Similar to other firewall modules in FreeBSD, a file containing the access control rules can be

created and read by the system at boot time using an man:rc.conf[5] variable.

The rule list may be entered using man:ugidfw[8] which has a syntax similar to man:ipfw[8]. More

tools can be written by using the functions in the man:libugidfw[3] library.

After the man:mac_bsdextended[4] module has been loaded, the following command may be used

to list the current rule configuration:

ugidfw list

0 slots, 0 rules

By default, no rules are defined and everything is completely accessible. To create a rule which

blocks all access by users but leaves root unaffected:

ugidfw add subject not uid root new object not uid root mode n

While this rule is simple to implement, it is a very bad idea as it blocks all users from issuing any

commands. A more realistic example blocks user1 all access, including directory listings, to user2 's

home directory:

396

ugidfw set 2 subject uid user1 object uid user2 mode n

ugidfw set 3 subject uid user1 object gid user2 mode n

Instead of user1 , not uid user2 could be used in order to enforce the same access restrictions for all

users. However, the root user is unaffected by these rules.

!

Extreme caution should be taken when working with this module as incorrect use

could block access to certain parts of the file system.

16.5.3. The MAC Interface Silencing Policy

Module name: mac_ifoff.ko

Kernel configuration line: options MAC_IFOFF

Boot option: mac_ifoff_load="YES"

The man:mac_ifoff[4] module is used to disable network interfaces on the fly and to keep network

interfaces from being brought up during system boot. It does not use labels and does not depend on

any other MAC modules.

Most of this moduleÕs control is performed through these sysctl tunables:

¥ security.mac.ifoff.lo_enabled enables or disables all traffic on the loopback, man:lo[4],

interface.

¥ security.mac.ifoff.bpfrecv_enabled enables or disables all traffic on the Berkeley Packet Filter

interface, man:bpf[4].

¥ security.mac.ifoff.other_enabled enables or disables traffic on all other interfaces.

One of the most common uses of man:mac_ifoff[4] is network monitoring in an environment where

network traffic should not be permitted during the boot sequence. Another use would be to write a

script which uses an application such as package:security/aide[] to automatically block network

traffic if it finds new or altered files in protected directories.

16.5.4. The MAC Port Access Control List Policy

Module name: mac_portacl.ko

Kernel configuration line: MAC_PORTACL

Boot option: mac_portacl_load="YES"

The man:mac_portacl[4] module is used to limit binding to local TCP and UDP ports, making it

possible to allow non- root users to bind to specified privileged ports below 1024.

Once loaded, this module enables the MAC policy on all sockets. The following tunables are

available:

397

¥ security.mac.portacl.enabled enables or disables the policy completely.

¥ security.mac.portacl.port_high sets the highest port number that man:mac_portacl[4] protects.

¥ security.mac.portacl.suser_exempt , when set to a non-zero value, exempts the root user from

this policy.

¥ security.mac.portacl.rules specifies the policy as a text string of the form rule[,rule,É] , with

as many rules as needed, and where each rule is of the form idtype:id:protocol:port . The

idtype is either uid or gid . The protocol parameter can be tcp or udp . The port parameter is the

port number to allow the specified user or group to bind to. Only numeric values can be used

for the user ID, group ID, and port parameters.

By default, ports below 1024 can only be used by privileged processes which run as root . For

man:mac_portacl[4] to allow non-privileged processes to bind to ports below 1024, set the following

tunables as follows:

sysctl security.mac.portacl.port_high=1023

sysctl net.inet.ip.portrange.reservedlow=0

sysctl net.inet.ip.portrange.reservedhigh=0

To prevent the root user from being affected by this policy, set security.mac.portacl.suser_exempt to

a non-zero value.

sysctl security.mac.portacl.suser_exempt=1

To allow the www user with UID 80 to bind to port 80 without ever needing root privilege:

sysctl security.mac.portacl.rules=uid:80:tcp:80

This next example permits the user with the UID of 1001 to bind to TCP ports 110 (POP3) and 995

(POP3s):

sysctl security.mac.portacl.rules=uid:1001:tcp:110,uid:1001:tcp:995

16.5.5. The MAC Partition Policy

Module name: mac_partition.ko

Kernel configuration line: options MAC_PARTITION

Boot option: mac_partition_load="YES"

The man:mac_partition[4] policy drops processes into specific "partitions" based on their MAC

label. Most configuration for this policy is done using man:setpmac[8]. One sysctl tunable is

available for this policy:

398

¥ security.mac.partition.enabled enables the enforcement of MAC process partitions.

When this policy is enabled, users will only be permitted to see their processes, and any others

within their partition, but will not be permitted to work with utilities outside the scope of this

partition. For instance, a user in the insecure class will not be permitted to access top as well as

many other commands that must spawn a process.

This example adds top to the label set on users in the insecure class. All processes spawned by users

in the insecure class will stay in the partition/13 label.

setpmac partition/13 top

This command displays the partition label and the process list:

ps Zax

This command displays another userÕs process partition label and that userÕs currently running

processes:

ps -ZU trhodes

!

Users can see processes in root 's label unless the man:mac_seeotheruids[4] policy

is loaded.

16.5.6. The MAC Multi-Level Security Module

Module name: mac_mls.ko

Kernel configuration line: options MAC_MLS

Boot option: mac_mls_load="YES"

The man:mac_mls[4] policy controls access between subjects and objects in the system by enforcing

a strict information flow policy.

In MLS environments, a "clearance" level is set in the label of each subject or object, along with

compartments. Since these clearance levels can reach numbers greater than several thousand, it

would be a daunting task to thoroughly configure every subject or object. To ease this

administrative overhead, three labels are included in this policy: mls/low , mls/equal , and mls/high ,

where:

¥ Anything labeled with mls/low will have a low clearance level and not be permitted to access

information of a higher level. This label also prevents objects of a higher clearance level from

writing or passing information to a lower level.

¥ mls/equal should be placed on objects which should be exempt from the policy.

¥ mls/high is the highest level of clearance possible. Objects assigned this label will hold

399

dominance over all other objects in the system; however, they will not permit the leaking of

information to objects of a lower class.

MLS provides:

¥ A hierarchical security level with a set of non-hierarchical categories.

¥ Fixed rules of no read up, no write down . This means that a subject can have read access to

objects on its own level or below, but not above. Similarly, a subject can have write access to

objects on its own level or above, but not beneath.

¥ Secrecy, or the prevention of inappropriate disclosure of data.

¥ A basis for the design of systems that concurrently handle data at multiple sensitivity levels

without leaking information between secret and confidential.

The following sysctl tunables are available:

¥ security.mac.mls.enabled is used to enable or disable the MLS policy.

¥ security.mac.mls.ptys_equal labels all man:pty[4] devices as mls/equal during creation.

¥ security.mac.mls.revocation_enabled revokes access to objects after their label changes to a

label of a lower grade.

¥ security.mac.mls.max_compartments sets the maximum number of compartment levels allowed

on a system.

To manipulate MLS labels, use man:setfmac[8]. To assign a label to an object:

setfmac mls/5 test

To get the MLS label for the file test :

getfmac test

Another approach is to create a master policy file in /etc/ which specifies the MLS policy

information and to feed that file to setfmac .

When using the MLS policy module, an administrator plans to control the flow of sensitive

information. The default block read up block write down sets everything to a low state. Everything

is accessible and an administrator slowly augments the confidentiality of the information.

Beyond the three basic label options, an administrator may group users and groups as required to

block the information flow between them. It might be easier to look at the information in clearance

levels using descriptive words, such as classifications of Confidential , Secret , and Top Secret . Some

administrators instead create different groups based on project levels. Regardless of the

classification method, a well thought out plan must exist before implementing a restrictive policy.

Some example situations for the MLS policy module include an e-commerce web server, a file

server holding critical company information, and financial institution environments.

400

16.5.7. The MAC Biba Module

Module name: mac_biba.ko

Kernel configuration line: options MAC_BIBA

Boot option: mac_biba_load="YES"

The man:mac_biba[4] module loads the MAC Biba policy. This policy is similar to the MLS policy

with the exception that the rules for information flow are slightly reversed. This is to prevent the

downward flow of sensitive information whereas the MLS policy prevents the upward flow of

sensitive information.

In Biba environments, an "integrity" label is set on each subject or object. These labels are made up

of hierarchical grades and non-hierarchical components. As a grade ascends, so does its integrity.

Supported labels are biba/low , biba/equal , and biba/high , where:

¥ biba/low is considered the lowest integrity an object or subject may have. Setting this on objects

or subjects blocks their write access to objects or subjects marked as biba/high , but will not

prevent read access.

¥ biba/equal should only be placed on objects considered to be exempt from the policy.

¥ biba/high permits writing to objects set at a lower label, but does not permit reading that object.

It is recommended that this label be placed on objects that affect the integrity of the entire

system.

Biba provides:

¥ Hierarchical integrity levels with a set of non-hierarchical integrity categories.

¥ Fixed rules are no write up, no read down , the opposite of MLS. A subject can have write access

to objects on its own level or below, but not above. Similarly, a subject can have read access to

objects on its own level or above, but not below.

¥ Integrity by preventing inappropriate modification of data.

¥ Integrity levels instead of MLS sensitivity levels.

The following tunables can be used to manipulate the Biba policy:

¥ security.mac.biba.enabled is used to enable or disable enforcement of the Biba policy on the

target machine.

¥ security.mac.biba.ptys_equal is used to disable the Biba policy on man:pty[4] devices.

¥ security.mac.biba.revocation_enabled forces the revocation of access to objects if the label is

changed to dominate the subject.

To access the Biba policy setting on system objects, use setfmac and getfmac :

401

setfmac biba/low test

getfmac test

test: biba/low

Integrity, which is different from sensitivity, is used to guarantee that information is not

manipulated by untrusted parties. This includes information passed between subjects and objects.

It ensures that users will only be able to modify or access information they have been given explicit

access to. The man:mac_biba[4] security policy module permits an administrator to configure

which files and programs a user may see and invoke while assuring that the programs and files are

trusted by the system for that user.

During the initial planning phase, an administrator must be prepared to partition users into grades,

levels, and areas. The system will default to a high label once this policy module is enabled, and it is

up to the administrator to configure the different grades and levels for users. Instead of using

clearance levels, a good planning method could include topics. For instance, only allow developers

modification access to the source code repository, source code compiler, and other development

utilities. Other users would be grouped into other categories such as testers, designers, or end users

and would only be permitted read access.

A lower integrity subject is unable to write to a higher integrity subject and a higher integrity

subject cannot list or read a lower integrity object. Setting a label at the lowest possible grade could

make it inaccessible to subjects. Some prospective environments for this security policy module

would include a constrained web server, a development and test machine, and a source code

repository. A less useful implementation would be a personal workstation, a machine used as a

router, or a network firewall.

16.5.8. The MAC Low-watermark Module

Module name: mac_lomac.ko

Kernel configuration line: options MAC_LOMAC

Boot option: mac_lomac_load="YES"

Unlike the MAC Biba policy, the man:mac_lomac[4] policy permits access to lower integrity objects

only after decreasing the integrity level to not disrupt any integrity rules.

The Low-watermark integrity policy works almost identically to Biba, with the exception of using

floating labels to support subject demotion via an auxiliary grade compartment. This secondary

compartment takes the form [auxgrade] . When assigning a policy with an auxiliary grade, use the

syntax lomac/10[2] , where 2 is the auxiliary grade.

This policy relies on the ubiquitous labeling of all system objects with integrity labels, permitting

subjects to read from low integrity objects and then downgrading the label on the subject to

prevent future writes to high integrity objects using [auxgrade] . The policy may provide greater

compatibility and require less initial configuration than Biba.

Like the Biba and MLS policies, setfmac and setpmac are used to place labels on system objects:

402

setfmac /usr/home/trhodes lomac/high[low]

getfmac /usr/home/trhodes lomac/high[low]

The auxiliary grade low is a feature provided only by the MACLOMAC policy.

16.6. User Lock Down

This example considers a relatively small storage system with fewer than fifty users. Users will

have login capabilities and are permitted to store data and access resources.

For this scenario, the man:mac_bsdextended[4] and man:mac_seeotheruids[4] policy modules could

co-exist and block access to system objects while hiding user processes.

Begin by adding the following line to /boot/loader.conf :

mac_seeotheruids_load="YES"

The man:mac_bsdextended[4] security policy module may be activated by adding this line to

/etc/rc.conf :

ugidfw_enable="YES"

Default rules stored in /etc/rc.bsdextended will be loaded at system initialization. However, the

default entries may need modification. Since this machine is expected only to service users,

everything may be left commented out except the last two lines in order to force the loading of user

owned system objects by default.

Add the required users to this machine and reboot. For testing purposes, try logging in as a

different user across two consoles. Run ps aux to see if processes of other users are visible. Verify

that running man:ls[1] on another userÕs home directory fails.

Do not try to test with the root user unless the specific sysctl s have been modified to block super

user access.

!

When a new user is added, their man:mac_bsdextended[4] rule will not be in the

ruleset list. To update the ruleset quickly, unload the security policy module and

reload it again using man:kldunload[8] and man:kldload[8].

16.7. Nagios in a MAC Jail

This section demonstrates the steps that are needed to implement the Nagios network monitoring

system in a MAC environment. This is meant as an example which still requires the administrator

to test that the implemented policy meets the security requirements of the network before using in

a production environment.

403

This example requires multilabel to be set on each file system. It also assumes that package:net-

mgmt/nagios-plugins[], package:net-mgmt/nagios[], and package:www/apache22[] are all installed,

configured, and working correctly before attempting the integration into the MAC framework.

16.7.1. Create an Insecure User Class

Begin the procedure by adding the following user class to /etc/login.conf :

insecure:\

:copyright=/etc/COPYRIGHT:\

:welcome=/etc/motd:\

:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\

:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin

:manpath=/usr/shared/man /usr/local/man:\

:nologin=/usr/sbin/nologin:\

:cputime=1h30m:\

:datasize=8M:\

:vmemoryuse=100M:\

:stacksize=2M:\

:memorylocked=4M:\

:memoryuse=8M:\

:filesize=8M:\

:coredumpsize=8M:\

:openfiles=24:\

:maxproc=32:\

:priority=0:\

:requirehome:\

:passwordtime=91d:\

:umask=022:\

:ignoretime@:\

:label=biba/10(10-10):

Then, add the following line to the default user class section:

:label=biba/high:

Save the edits and issue the following command to rebuild the database:

cap_mkdb /etc/login.conf

16.7.2. Configure Users

Set the root user to the default class using:

pw usermod root -L default

404

All user accounts that are not root will now require a login class. The login class is required,

otherwise users will be refused access to common commands. The following sh script should do the

trick:

for x in `awk -F: '($3 >= 1001) && ($3 != 65534) { print $1 }' \

Ê /etc/passwd`; do pw usermod $x -L default; done;

Next, drop the nagios and www accounts into the insecure class:

pw usermod nagios -L insecure

pw usermod www -L insecure

16.7.3. Create the Contexts File

A contexts file should now be created as /etc/policy.contexts :

This is the default BIBA policy for this system.

System:

/var/run(/.*)? biba/equal

/dev/(/.*)? biba/equal

/var biba/equal

/var/spool(/.*)? biba/equal

/var/log(/.*)? biba/equal

/tmp(/.*)? biba/equal

/var/tmp(/.*)? biba/equal

/var/spool/mqueue biba/equal

/var/spool/clientmqueue biba/equal

For Nagios:

/usr/local/etc/nagios(/.*)? biba/10

/var/spool/nagios(/.*)? biba/10

For apache

/usr/local/etc/apache(/.*)? biba/10

This policy enforces security by setting restrictions on the flow of information. In this specific

configuration, users, including root , should never be allowed to access Nagios. Configuration files

and processes that are a part of Nagios will be completely self contained or jailed.

This file will be read after running setfsmac on every file system. This example sets the policy on

405

the root file system:

setfsmac -ef /etc/policy.contexts /

Next, add these edits to the main section of /etc/mac.conf :

default_labels file ?biba

default_labels ifnet ?biba

default_labels process ?biba

default_labels socket ?biba

16.7.4. Loader Configuration

To finish the configuration, add the following lines to /boot/loader.conf :

mac_biba_load="YES"

mac_seeotheruids_load="YES"

security.mac.biba.trust_all_interfaces=1

And the following line to the network card configuration stored in /etc/rc.conf . If the primary

network configuration is done via DHCP, this may need to be configured manually after every

system boot:

maclabel biba/equal

16.7.5. Testing the Configuration

First, ensure that the web server and Nagios will not be started on system initialization and reboot.

Ensure that root cannot access any of the files in the Nagios configuration directory. If root can list

the contents of /var/spool/nagios , something is wrong. Instead, a "permission denied" error should

be returned.

If all seems well, Nagios, Apache, and Sendmail can now be started:

cd /etc/mail && make stop && \

setpmac biba/equal make start && setpmac biba/10\(10-10\) apachectl start && \

setpmac biba/10\(10-10\) /usr/local/etc/rc.d/nagios.sh forcestart

Double check to ensure that everything is working properly. If not, check the log files for error

messages. If needed, use man:sysctl[8] to disable the man:mac_biba[4] security policy module and

try starting everything again as usual.

406

!

The root user can still change the security enforcement and edit its configuration

files. The following command will permit the degradation of the security policy to

a lower grade for a newly spawned shell:

setpmac biba/10 csh

To block this from happening, force the user into a range using man:login.conf[5].

If man:setpmac[8] attempts to run a command outside of the compartmentÕs

range, an error will be returned and the command will not be executed. In this

case, set root to biba/high(high-high) .

16.8. Troubleshooting the MAC Framework

This section discusses common configuration errors and how to resolve them.

The multilabel flag does not stay enabled on the root (/) partition

The following steps may resolve this transient error:

1. Edit /etc/fstab and set the root partition to ro for read-only.

2. Reboot into single user mode.

3. Run tunefs -l enable on / .

4. Reboot the system.

5. Run mount -urw / and change the ro back to rw in /etc/fstab and reboot the system again.

6. Double-check the output from mount to ensure that multilabel has been properly set on the

root file system.

After establishing a secure environment with MAC, Xorg no longer starts

This could be caused by the MAC partition policy or by a mislabeling in one of the MAC labeling

policies. To debug, try the following:

1. Check the error message. If the user is in the insecure class, the partition policy may be the

culprit. Try setting the userÕs class back to the default class and rebuild the database with

cap_mkdb . If this does not alleviate the problem, go to step two.

2. Double-check that the label policies are set correctly for the user, Xorg, and the /dev

entries.

3. If neither of these resolve the problem, send the error message and a description of the

environment to the FreeBSD general questions mailing list .

The _secure_path: unable to stat .login_conf error appears

This error can appear when a user attempts to switch from the root user to another user in the

system. This message usually occurs when the user has a higher label setting than that of the

407

http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions

user they are attempting to become. For instance, if joe has a default label of biba/low and root

has a label of biba/high , root cannot view joe 's home directory. This will happen whether or not

root has used su to become joe as the Biba integrity model will not permit root to view objects

set at a lower integrity level.

The system no longer recognizes root

When this occurs, whoami returns 0 and su returns who are you? .

This can happen if a labeling policy has been disabled by man:sysctl[8] or the policy module was

unloaded. If the policy is disabled, the login capabilities database needs to be reconfigured.

Double check /etc/login.conf to ensure that all label options have been removed and rebuild the

database with cap_mkdb .

This may also happen if a policy restricts access to master.passwd . This is usually caused by an

administrator altering the file under a label which conflicts with the general policy being used

by the system. In these cases, the user information would be read by the system and access

would be blocked as the file has inherited the new label. Disable the policy using man:sysctl[8]

and everything should return to normal.

408

Chapter 17. Security Event Auditing

17.1. Synopsis

The FreeBSD operating system includes support for security event auditing. Event auditing

supports reliable, fine-grained, and configurable logging of a variety of security-relevant system

events, including logins, configuration changes, and file and network access. These log records can

be invaluable for live system monitoring, intrusion detection, and postmortem analysis. FreeBSD

implements Sunª's published Basic Security Module (BSM) Application Programming Interface

(API) and file format, and is interoperable with the Solarisª and Mac OS¨ X audit implementations.

This chapter focuses on the installation and configuration of event auditing. It explains audit

policies and provides an example audit configuration.

After reading this chapter, you will know:

¥ What event auditing is and how it works.

¥ How to configure event auditing on FreeBSD for users and processes.

¥ How to review the audit trail using the audit reduction and review tools.

Before reading this chapter, you should:

¥ Understand UNIX¨ and FreeBSD basics (crossref:basics[basics,FreeBSD Basics]).

¥ Be familiar with the basics of kernel configuration/compilation

(crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]).

¥ Have some familiarity with security and how it pertains to FreeBSD

(crossref:security[security,Security]).

"

The audit facility has some known limitations. Not all security-relevant system

events are auditable and some login mechanisms, such as Xorg-based display

managers and third-party daemons, do not properly configure auditing for user

login sessions.

The security event auditing facility is able to generate very detailed logs of system

activity. On a busy system, trail file data can be very large when configured for

high detail, exceeding gigabytes a week in some configurations. Administrators

should take into account the disk space requirements associated with high volume

audit configurations. For example, it may be desirable to dedicate a file system to

/var/audit so that other file systems are not affected if the audit file system

becomes full.

17.2. Key Terms

The following terms are related to security event auditing:

¥ event : an auditable event is any event that can be logged using the audit subsystem. Examples of

409

security-relevant events include the creation of a file, the building of a network connection, or a

user logging in. Events are either "attributable", meaning that they can be traced to an

authenticated user, or "non-attributable". Examples of non-attributable events are any events

that occur before authentication in the login process, such as bad password attempts.

¥ class : a named set of related events which are used in selection expressions. Commonly used

classes of events include "file creation" (fc), "exec" (ex), and "login_logout" (lo).

¥ record : an audit log entry describing a security event. Records contain a record event type,

information on the subject (user) performing the action, date and time information,

information on any objects or arguments, and a success or failure condition.

¥ trail : a log file consisting of a series of audit records describing security events. Trails are in

roughly chronological order with respect to the time events completed. Only authorized

processes are allowed to commit records to the audit trail.

¥ selection expression : a string containing a list of prefixes and audit event class names used to

match events.

¥ preselection : the process by which the system identifies which events are of interest to the

administrator. The preselection configuration uses a series of selection expressions to identify

which classes of events to audit for which users, as well as global settings that apply to both

authenticated and unauthenticated processes.

¥ reduction : the process by which records from existing audit trails are selected for preservation,

printing, or analysis. Likewise, the process by which undesired audit records are removed from

the audit trail. Using reduction, administrators can implement policies for the preservation of

audit data. For example, detailed audit trails might be kept for one month, but after that, trails

might be reduced in order to preserve only login information for archival purposes.

17.3. Audit Configuration

User space support for event auditing is installed as part of the base FreeBSD operating system.

Kernel support is available in the GENERIC kernel by default, and man:auditd[8] can be enabled by

adding the following line to /etc/rc.conf :

auditd_enable="YES"

Then, start the audit daemon:

service auditd start

Users who prefer to compile a custom kernel must include the following line in their custom kernel

configuration file:

options AUDIT

410

17.3.1. Event Selection Expressions

Selection expressions are used in a number of places in the audit configuration to determine which

events should be audited. Expressions contain a list of event classes to match. Selection expressions

are evaluated from left to right, and two expressions are combined by appending one onto the

other.

Default Audit Event Classes summarizes the default audit event classes:

Table 13. Default Audit Event Classes

Class Name Description Action

all all Match all event classes.

aa authentication and

authorization

ad administrative Administrative actions

performed on the system as a

whole.

ap application Application defined action.

cl file close Audit calls to the close system

call.

ex exec Audit program execution.

Auditing of command line

arguments and environmental

variables is controlled via

man:audit_control[5] using the

argv and envv parameters to the

policy setting.

fa file attribute access Audit the access of object

attributes such as man:stat[1]

and man:pathconf[2].

fc file create Audit events where a file is

created as a result.

fd file delete Audit events where file deletion

occurs.

fm file attribute modify Audit events where file

attribute modification occurs,

such as by man:chown[8],

man:chflags[1], and

man:flock[2].

fr file read Audit events in which data is

read or files are opened for

reading.

411

Class Name Description Action

fw file write Audit events in which data is

written or files are written or

modified.

io ioctl Audit use of the ioctl system

call.

ip ipc Audit various forms of Inter-

Process Communication,

including POSIX pipes and

System V IPC operations.

lo login_logout Audit man:login[1] and

man:logout[1] events.

na non attributable Audit non-attributable events.

no invalid class Match no audit events.

nt network Audit events related to network

actions such as man:connect[2]

and man:accept[2].

ot other Audit miscellaneous events.

pc process Audit process operations such

as man:exec[3] and man:exit[3].

These audit event classes may be customized by modifying the audit_class and audit_event

configuration files.

Each audit event class may be combined with a prefix indicating whether successful/failed

operations are matched, and whether the entry is adding or removing matching for the class and

type. Prefixes for Audit Event Classes summarizes the available prefixes:

Table 14. Prefixes for Audit Event Classes

Prefix Action

+ Audit successful events in this class.

- Audit failed events in this class.

^ Audit neither successful nor failed events in this

class.

^+ Do not audit successful events in this class.

^- Do not audit failed events in this class.

If no prefix is present, both successful and failed instances of the event will be audited.

The following example selection string selects both successful and failed login/logout events, but

only successful execution events:

412

lo,+ex

17.3.2. Configuration Files

The following configuration files for security event auditing are found in /etc/security :

¥ audit_class : contains the definitions of the audit classes.

¥ audit_control : controls aspects of the audit subsystem, such as default audit classes, minimum

disk space to leave on the audit log volume, and maximum audit trail size.

¥ audit_event : textual names and descriptions of system audit events and a list of which classes

each event is in.

¥ audit_user : user-specific audit requirements to be combined with the global defaults at login.

¥ audit_warn : a customizable shell script used by man:auditd[8] to generate warning messages in

exceptional situations, such as when space for audit records is running low or when the audit

trail file has been rotated.

"

Audit configuration files should be edited and maintained carefully, as errors in

configuration may result in improper logging of events.

In most cases, administrators will only need to modify audit_control and audit_user . The first file

controls system-wide audit properties and policies and the second file may be used to fine-tune

auditing by user.

17.3.2.1. The audit_control File

A number of defaults for the audit subsystem are specified in audit_control :

dir:/var/audit

dist:off

flags:lo,aa

minfree:5

naflags:lo,aa

policy:cnt,argv

filesz:2M

expire-after:10M

The dir entry is used to set one or more directories where audit logs will be stored. If more than

one directory entry appears, they will be used in order as they fill. It is common to configure audit

so that audit logs are stored on a dedicated file system, in order to prevent interference between

the audit subsystem and other subsystems if the file system fills.

If the dist field is set to on or yes , hard links will be created to all trail files in /var/audit/dist .

The flags field sets the system-wide default preselection mask for attributable events. In the

example above, successful and failed login/logout events as well as authentication and

413

authorization are audited for all users.

The minfree entry defines the minimum percentage of free space for the file system where the audit

trail is stored.

The naflags entry specifies audit classes to be audited for non-attributed events, such as the

login/logout process and authentication and authorization.

The policy entry specifies a comma-separated list of policy flags controlling various aspects of audit

behavior. The cnt indicates that the system should continue running despite an auditing failure

(this flag is highly recommended). The other flag, argv , causes command line arguments to the

man:execve[2] system call to be audited as part of command execution.

The filesz entry specifies the maximum size for an audit trail before automatically terminating

and rotating the trail file. A value of 0 disables automatic log rotation. If the requested file size is

below the minimum of 512k, it will be ignored and a log message will be generated.

The expire-after field specifies when audit log files will expire and be removed.

17.3.2.2. The audit_user File

The administrator can specify further audit requirements for specific users in audit_user . Each line

configures auditing for a user via two fields: the alwaysaudit field specifies a set of events that

should always be audited for the user, and the neveraudit field specifies a set of events that should

never be audited for the user.

The following example entries audit login/logout events and successful command execution for

root and file creation and successful command execution for www . If used with the default

audit_control , the lo entry for root is redundant, and login/logout events will also be audited for

www .

root:lo,+ex:no

www:fc,+ex:no

17.4. Working with Audit Trails

Since audit trails are stored in the BSM binary format, several built-in tools are available to modify

or convert these trails to text. To convert trail files to a simple text format, use praudit . To reduce

the audit trail file for analysis, archiving, or printing purposes, use auditreduce . This utility supports

a variety of selection parameters, including event type, event class, user, date or time of the event,

and the file path or object acted on.

For example, to dump the entire contents of a specified audit log in plain text:

praudit /var/audit/AUDITFILE

Where AUDITFILE is the audit log to dump.

414

Audit trails consist of a series of audit records made up of tokens, which praudit prints sequentially,

one per line. Each token is of a specific type, such as header (an audit record header) or path (a file

path from a name lookup). The following is an example of an execve event:

header,133,10,execve(2),0,Mon Sep 25 15:58:03 2006, + 384 msec

exec arg,finger,doug

path,/usr/bin/finger

attribute,555,root,wheel,90,24918,104944

subject,robert,root,wheel,root,wheel,38439,38032,42086,128.232.9.100

return,success,0

trailer,133

This audit represents a successful execve call, in which the command finger doug has been run. The

exec arg token contains the processed command line presented by the shell to the kernel. The path

token holds the path to the executable as looked up by the kernel. The attribute token describes the

binary and includes the file mode. The subject token stores the audit user ID, effective user ID and

group ID, real user ID and group ID, process ID, session ID, port ID, and login address. Notice that

the audit user ID and real user ID differ as the user robert switched to the root account before

running this command, but it is audited using the original authenticated user. The return token

indicates the successful execution and the trailer concludes the record.

XML output format is also supported and can be selected by including -x .

Since audit logs may be very large, a subset of records can be selected using auditreduce . This

example selects all audit records produced for the user trhodes stored in AUDITFILE :

auditreduce -u trhodes /var/audit/AUDITFILE | praudit

Members of the audit group have permission to read audit trails in /var/audit . By default, this group

is empty, so only the root user can read audit trails. Users may be added to the audit group in order

to delegate audit review rights. As the ability to track audit log contents provides significant insight

into the behavior of users and processes, it is recommended that the delegation of audit review

rights be performed with caution.

17.4.1. Live Monitoring Using Audit Pipes

Audit pipes are cloning pseudo-devices which allow applications to tap the live audit record stream.

This is primarily of interest to authors of intrusion detection and system monitoring applications.

However, the audit pipe device is a convenient way for the administrator to allow live monitoring

without running into problems with audit trail file ownership or log rotation interrupting the event

stream. To track the live audit event stream:

praudit /dev/auditpipe

By default, audit pipe device nodes are accessible only to the root user. To make them accessible to

the members of the audit group, add a devfs rule to /etc/devfs.rules :

415

add path 'auditpipe*' mode 0440 group audit

See man:devfs.rules[5] for more information on configuring the devfs file system.

"

It is easy to produce audit event feedback cycles, in which the viewing of each

audit event results in the generation of more audit events. For example, if all

network I/O is audited, and praudit is run from an SSH session, a continuous

stream of audit events will be generated at a high rate, as each event being printed

will generate another event. For this reason, it is advisable to run praudit on an

audit pipe device from sessions without fine-grained I/O auditing.

17.4.2. Rotating and Compressing Audit Trail Files

Audit trails are written to by the kernel and managed by the audit daemon, man:auditd[8].

Administrators should not attempt to use man:newsyslog.conf[5] or other tools to directly rotate

audit logs. Instead, audit should be used to shut down auditing, reconfigure the audit system, and

perform log rotation. The following command causes the audit daemon to create a new audit log

and signal the kernel to switch to using the new log. The old log will be terminated and renamed, at

which point it may then be manipulated by the administrator:

audit -n

If man:auditd[8] is not currently running, this command will fail and an error message will be

produced.

Adding the following line to /etc/crontab will schedule this rotation every twelve hours:

0 */12 * * * root /usr/sbin/audit -n

The change will take effect once /etc/crontab is saved.

Automatic rotation of the audit trail file based on file size is possible using filesz in audit_control

as described in The audit_control File .

As audit trail files can become very large, it is often desirable to compress or otherwise archive

trails once they have been closed by the audit daemon. The audit_warn script can be used to

perform customized operations for a variety of audit-related events, including the clean

termination of audit trails when they are rotated. For example, the following may be added to

/etc/security/audit_warn to compress audit trails on close:

416

#

Compress audit trail files on close.

#

if ["$1" = closefile]; then

Ê gzip -9 $2

fi

Other archiving activities might include copying trail files to a centralized server, deleting old trail

files, or reducing the audit trail to remove unneeded records. This script will be run only when

audit trail files are cleanly terminated. It will not be run on trails left unterminated following an

improper shutdown.

417

Chapter 18. Storage

18.1. Synopsis

This chapter covers the use of disks and storage media in FreeBSD. This includes SCSI and IDE disks,

CD and DVD media, memory-backed disks, and USB storage devices.

After reading this chapter, you will know:

¥ How to add additional hard disks to a FreeBSD system.

¥ How to grow the size of a diskÕs partition on FreeBSD.

¥ How to configure FreeBSD to use USB storage devices.

¥ How to use CD and DVD media on a FreeBSD system.

¥ How to use the backup programs available under FreeBSD.

¥ How to set up memory disks.

¥ What file system snapshots are and how to use them efficiently.

¥ How to use quotas to limit disk space usage.

¥ How to encrypt disks and swap to secure them against attackers.

¥ How to configure a highly available storage network.

Before reading this chapter, you should:

¥ Know how to crossref:kernelconfig[kernelconfig,configure and install a new FreeBSD kernel].

18.2. Adding Disks

This section describes how to add a new SATA disk to a machine that currently only has a single

drive. First, turn off the computer and install the drive in the computer following the instructions of

the computer, controller, and drive manufacturers. Reboot the system and become root .

Inspect /var/run/dmesg.boot to ensure the new disk was found. In this example, the newly added

SATA drive will appear as ada1 .

For this example, a single large partition will be created on the new disk. The GPT partitioning

scheme will be used in preference to the older and less versatile MBR scheme.

!

If the disk to be added is not blank, old partition information can be removed with

gpart delete . See man:gpart[8] for details.

The partition scheme is created, and then a single partition is added. To improve performance on

newer disks with larger hardware block sizes, the partition is aligned to one megabyte boundaries:

418

http://en.wikipedia.org/wiki/GUID_Partition_Table

gpart create -s GPT ada1

gpart add -t freebsd-ufs -a 1M ada1

Depending on use, several smaller partitions may be desired. See man:gpart[8] for options to create

partitions smaller than a whole disk.

The disk partition information can be viewed with gpart show :

% gpart show ada1

=> 34 1465146988 ada1 GPT (699G)

Ê 34 2014 - free - (1.0M)

Ê 2048 1465143296 1 freebsd-ufs (699G)

Ê 1465145344 1678 - free - (839K)

A file system is created in the new partition on the new disk:

newfs -U /dev/ada1p1

An empty directory is created as a mountpoint , a location for mounting the new disk in the original

diskÕs file system:

mkdir /newdisk

Finally, an entry is added to /etc/fstab so the new disk will be mounted automatically at startup:

/dev/ada1p1 /newdisk ufs rw 2 2

The new disk can be mounted manually, without restarting the system:

mount /newdisk

18.3. Resizing and Growing Disks

A diskÕs capacity can increase without any changes to the data already present. This happens

commonly with virtual machines, when the virtual disk turns out to be too small and is enlarged.

Sometimes a disk image is written to a USB memory stick, but does not use the full capacity. Here

we describe how to resize or grow disk contents to take advantage of increased capacity.

Determine the device name of the disk to be resized by inspecting /var/run/dmesg.boot . In this

example, there is only one SATA disk in the system, so the drive will appear as ada0 .

List the partitions on the disk to see the current configuration:

419

gpart show ada0

=> 34 83886013 ada0 GPT (48G) [CORRUPT]

Ê 34 128 1 freebsd-boot (64k)

Ê 162 79691648 2 freebsd-ufs (38G)

Ê 79691810 4194236 3 freebsd-swap (2G)

Ê 83886046 1 - free - (512B)

!

If the disk was formatted with the GPT partitioning scheme, it may show as

"corrupted" because the GPT backup partition table is no longer at the end of the

drive. Fix the backup partition table with gpart :

gpart recover ada0

ada0 recovered

Now the additional space on the disk is available for use by a new partition, or an existing partition

can be expanded:

gpart show ada0

=> 34 102399933 ada0 GPT (48G)

Ê 34 128 1 freebsd-boot (64k)

Ê 162 79691648 2 freebsd-ufs (38G)

Ê 79691810 4194236 3 freebsd-swap (2G)

Ê 83886046 18513921 - free - (8.8G)

Partitions can only be resized into contiguous free space. Here, the last partition on the disk is the

swap partition, but the second partition is the one that needs to be resized. Swap partitions only

contain temporary data, so it can safely be unmounted, deleted, and then recreate the third

partition after resizing the second partition.

Disable the swap partition:

swapoff /dev/ada0p3

Delete the third partition, specified by the -i flag, from the disk ada0 .

gpart delete -i 3 ada0

ada0p3 deleted

gpart show ada0

=> 34 102399933 ada0 GPT (48G)

Ê 34 128 1 freebsd-boot (64k)

Ê 162 79691648 2 freebsd-ufs (38G)

Ê 79691810 22708157 - free - (10G)

420

http://en.wikipedia.org/wiki/GUID_Partition_Table

"

There is risk of data loss when modifying the partition table of a mounted file

system. It is best to perform the following steps on an unmounted file system while

running from a live CD-ROM or USB device. However, if absolutely necessary, a

mounted file system can be resized after disabling GEOM safety features:

sysctl kern.geom.debugflags=16

Resize the partition, leaving room to recreate a swap partition of the desired size. The partition to

resize is specified with -i , and the new desired size with -s . Optionally, alignment of the partition is

controlled with -a . This only modifies the size of the partition. The file system in the partition will

be expanded in a separate step.

gpart resize -i 2 -s 47G -a 4k ada0

ada0p2 resized

gpart show ada0

=> 34 102399933 ada0 GPT (48G)

Ê 34 128 1 freebsd-boot (64k)

Ê 162 98566144 2 freebsd-ufs (47G)

Ê 98566306 3833661 - free - (1.8G)

Recreate the swap partition and activate it. If no size is specified with -s , all remaining space is

used:

gpart add -t freebsd-swap -a 4k ada0

ada0p3 added

gpart show ada0

=> 34 102399933 ada0 GPT (48G)

Ê 34 128 1 freebsd-boot (64k)

Ê 162 98566144 2 freebsd-ufs (47G)

Ê 98566306 3833661 3 freebsd-swap (1.8G)

swapon /dev/ada0p3

Grow the UFS file system to use the new capacity of the resized partition:

growfs /dev/ada0p2

Device is mounted read-write; resizing will result in temporary write suspension for

/.

It's strongly recommended to make a backup before growing the file system.

OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] Yes

super-block backups (for fsck -b #) at:

Ê80781312, 82063552, 83345792, 84628032, 85910272, 87192512, 88474752,

Ê89756992, 91039232, 92321472, 93603712, 94885952, 96168192, 97450432

If the file system is ZFS, the resize is triggered by running the online subcommand with -e :

421

zpool online -e zroot /dev/ada0p2

Both the partition and the file system on it have now been resized to use the newly-available disk

space.

18.4. USB Storage Devices

Many external storage solutions, such as hard drives, USB thumbdrives, and CD and DVD burners,

use the Universal Serial Bus (USB). FreeBSD provides support for USB 1.x, 2.0, and 3.0 devices.

!

USB 3.0 support is not compatible with some hardware, including Haswell (Lynx

point) chipsets. If FreeBSD boots with a failed with error 19 message, disable

xHCI/USB3 in the system BIOS.

Support for USB storage devices is built into the GENERIC kernel. For a custom kernel, be sure that

the following lines are present in the kernel configuration file:

device scbus # SCSI bus (required for ATA/SCSI)

device da # Direct Access (disks)

device pass # Passthrough device (direct ATA/SCSI access)

device uhci # provides USB 1.x support

device ohci # provides USB 1.x support

device ehci # provides USB 2.0 support

device xhci # provides USB 3.0 support

device usb # USB Bus (required)

device umass # Disks/Mass storage - Requires scbus and da

device cd # needed for CD and DVD burners

FreeBSD uses the man:umass[4] driver which uses the SCSI subsystem to access USB storage

devices. Since any USB device will be seen as a SCSI device by the system, if the USB device is a CD

or DVD burner, do not include device atapicam in a custom kernel configuration file.

The rest of this section demonstrates how to verify that a USB storage device is recognized by

FreeBSD and how to configure the device so that it can be used.

18.4.1. Device Configuration

To test the USB configuration, plug in the USB device. Use dmesg to confirm that the drive appears in

the system message buffer. It should look something like this:

422

umass0: <STECH Simple Drive, class 0/0, rev 2.00/1.04, addr 3> on usbus0

umass0: SCSI over Bulk-Only; quirks = 0x0100

umass0:4:0:-1: Attached to scbus4

da0 at umass-sim0 bus 0 scbus4 target 0 lun 0

da0: <STECH Simple Drive 1.04> Fixed Direct Access SCSI-4 device

da0: Serial Number WD-WXE508CAN263

da0: 40.000MB/s transfers

da0: 152627MB (312581808 512 byte sectors: 255H 63S/T 19457C)

da0: quirks=0x2<NO_6_BYTE>

The brand, device node (da0), speed, and size will differ according to the device.

Since the USB device is seen as a SCSI one, camcontrol can be used to list the USB storage devices

attached to the system:

camcontrol devlist

<STECH Simple Drive 1.04> at scbus4 target 0 lun 0 (pass3,da0)

Alternately, usbconfig can be used to list the device. Refer to man:usbconfig[8] for more information

about this command.

usbconfig

ugen0.3: <Simple Drive STECH> at usbus0, cfg=0 md=HOST spd=HIGH (480Mbps) pwr=ON (2mA)

If the device has not been formatted, refer to Adding Disks for instructions on how to format and

create partitions on the USB drive. If the drive comes with a file system, it can be mounted by root

using the instructions in crossref:basics[mount-unmount,ÒMounting and Unmounting File

SystemsÓ].

"

Allowing untrusted users to mount arbitrary media, by enabling vfs.usermount as

described below, should not be considered safe from a security point of view. Most

file systems were not built to safeguard against malicious devices.

To make the device mountable as a normal user, one solution is to make all users of the device a

member of the operator group using man:pw[8]. Next, ensure that operator is able to read and write

the device by adding these lines to /etc/devfs.rules :

[localrules=5]

add path 'da*' mode 0660 group operator

423

!

If internal SCSI disks are also installed in the system, change the second line as

follows:

add path 'da[3-9]*' mode 0660 group operator

This will exclude the first three SCSI disks (da0 to da2)from belonging to the

operator group. Replace 3 with the number of internal SCSI disks. Refer to

man:devfs.rules[5] for more information about this file.

Next, enable the ruleset in /etc/rc.conf :

devfs_system_ruleset="localrules"

Then, instruct the system to allow regular users to mount file systems by adding the following line

to /etc/sysctl.conf :

vfs.usermount=1

Since this only takes effect after the next reboot, use sysctl to set this variable now:

sysctl vfs.usermount=1

vfs.usermount: 0 -> 1

The final step is to create a directory where the file system is to be mounted. This directory needs to

be owned by the user that is to mount the file system. One way to do that is for root to create a

subdirectory owned by that user as /mnt/username . In the following example, replace username

with the login name of the user and usergroup with the userÕs primary group:

mkdir /mnt/username

chown username:usergroup /mnt/username

Suppose a USB thumbdrive is plugged in, and a device /dev/da0s1 appears. If the device is formatted

with a FAT file system, the user can mount it using:

% mount -t msdosfs -o -m=644,-M=755 /dev/da0s1 /mnt/username

Before the device can be unplugged, it must be unmounted first:

% umount /mnt/username

After device removal, the system message buffer will show messages similar to the following:

424

umass0: at uhub3, port 2, addr 3 (disconnected)

da0 at umass-sim0 bus 0 scbus4 target 0 lun 0

da0: <STECH Simple Drive 1.04> s/n WD-WXE508CAN263 detached

(da0:umass-sim0:0:0:0): Periph destroyed

18.4.2. Automounting Removable Media

USB devices can be automatically mounted by uncommenting this line in /etc/auto_master :

/media -media -nosuid

Then add these lines to /etc/devd.conf :

notify 100 {

Ê match "system" "GEOM";

Ê match "subsystem" "DEV";

Ê action "/usr/sbin/automount -c";

};

Reload the configuration if man:autofs[5] and man:devd[8] are already running:

service automount restart

service devd restart

man:autofs[5] can be set to start at boot by adding this line to /etc/rc.conf :

autofs_enable="YES"

man:autofs[5] requires man:devd[8] to be enabled, as it is by default.

Start the services immediately with:

service automount start

service automountd start

service autounmountd start

service devd start

Each file system that can be automatically mounted appears as a directory in /media/ . The directory

is named after the file system label. If the label is missing, the directory is named after the device

node.

The file system is transparently mounted on the first access, and unmounted after a period of

inactivity. Automounted drives can also be unmounted manually:

425

automount -fu

This mechanism is typically used for memory cards and USB memory sticks. It can be used with any

block device, including optical drives or iSCSILUNs.

18.5. Creating and Using CD Media

Compact Disc (CD) media provide a number of features that differentiate them from conventional

disks. They are designed so that they can be read continuously without delays to move the head

between tracks. While CD media do have tracks, these refer to a section of data to be read

continuously, and not a physical property of the disk. The ISO 9660 file system was designed to deal

with these differences.

The FreeBSD Ports Collection provides several utilities for burning and duplicating audio and data

CDs. This chapter demonstrates the use of several command line utilities. For CD burning software

with a graphical utility, consider installing the package:sysutils/xcdroast[] or package:sysutils/k3b[]

packages or ports.

18.5.1. Supported Devices

The GENERIC kernel provides support for SCSI, USB, and ATAPICD readers and burners. If a custom

kernel is used, the options that need to be present in the kernel configuration file vary by the type

of device.

For a SCSI burner, make sure these options are present:

device scbus # SCSI bus (required for ATA/SCSI)

device da # Direct Access (disks)

device pass # Passthrough device (direct ATA/SCSI access)

device cd # needed for CD and DVD burners

For a USB burner, make sure these options are present:

device scbus # SCSI bus (required for ATA/SCSI)

device da # Direct Access (disks)

device pass # Passthrough device (direct ATA/SCSI access)

device cd # needed for CD and DVD burners

device uhci # provides USB 1.x support

device ohci # provides USB 1.x support

device ehci # provides USB 2.0 support

device xhci # provides USB 3.0 support

device usb # USB Bus (required)

device umass # Disks/Mass storage - Requires scbus and da

For an ATAPI burner, make sure these options are present:

426

device ata # Legacy ATA/SATA controllers

device scbus # SCSI bus (required for ATA/SCSI)

device pass # Passthrough device (direct ATA/SCSI access)

device cd # needed for CD and DVD burners

!

On FreeBSD versions prior to 10.x, this line is also needed in the kernel

configuration file if the burner is an ATAPI device:

device atapicam

Alternately, this driver can be loaded at boot time by adding the following line to

/boot/loader.conf :

atapicam_load="YES"

This will require a reboot of the system as this driver can only be loaded at boot

time.

To verify that FreeBSD recognizes the device, run dmesg and look for an entry for the device. On

systems prior to 10.x, the device name in the first line of the output will be acd0 instead of cd0 .

% dmesg | grep cd

cd0 at ahcich1 bus 0 scbus1 target 0 lun 0

cd0: <HL-DT-ST DVDRAM GU70N LT20> Removable CD-ROM SCSI-0 device

cd0: Serial Number M3OD3S34152

cd0: 150.000MB/s transfers (SATA 1.x, UDMA6, ATAPI 12bytes, PIO 8192bytes)

cd0: Attempt to query device size failed: NOT READY, Medium not present - tray closed

18.5.2. Burning a CD

In FreeBSD, cdrecord can be used to burn CDs. This command is installed with the

package:sysutils/cdrtools[] package or port.

While cdrecord has many options, basic usage is simple. Specify the name of the ISO file to burn

and, if the system has multiple burner devices, specify the name of the device to use:

cdrecord dev=device imagefile.iso

To determine the device name of the burner, use -scanbus which might produce results like this:

427

cdrecord -scanbus

ProDVD-ProBD-Clone 3.00 (amd64-unknown-freebsd10.0) Copyright (C) 1995-2010 Jšrg

Schilling

Using libscg version 'schily-0.9'

scsibus0:

Ê 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk

Ê 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk

Ê 0,2,0 2) *

Ê 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk

Ê 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM

Ê 0,5,0 5) *

Ê 0,6,0 6) *

Ê 0,7,0 7) *

scsibus1:

Ê 1,0,0 100) *

Ê 1,1,0 101) *

Ê 1,2,0 102) *

Ê 1,3,0 103) *

Ê 1,4,0 104) *

Ê 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM

Ê 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner

Ê 1,7,0 107) *

Locate the entry for the CD burner and use the three numbers separated by commas as the value

for dev . In this case, the Yamaha burner device is 1,5,0 , so the appropriate input to specify that

device is dev=1,5,0 . Refer to the manual page for cdrecord for other ways to specify this value and

for information on writing audio tracks and controlling the write speed.

Alternately, run the following command to get the device address of the burner:

camcontrol devlist

<MATSHITA CDRW/DVD UJDA740 1.00> at scbus1 target 0 lun 0 (cd0,pass0)

Use the numeric values for scbus , target , and lun . For this example, 1,0,0 is the device name to use.

18.5.3. Writing Data to an ISO File System

In order to produce a data CD, the data files that are going to make up the tracks on the CD must be

prepared before they can be burned to the CD. In FreeBSD, package:sysutils/cdrtools[] installs

mkisofs , which can be used to produce an ISO 9660 file system that is an image of a directory tree

within a UNIX¨ file system. The simplest usage is to specify the name of the ISO file to create and

the path to the files to place into the ISO 9660 file system:

mkisofs -o imagefile.iso /path/to/tree

This command maps the file names in the specified path to names that fit the limitations of the

standard ISO 9660 file system, and will exclude files that do not meet the standard for ISO file

428

systems.

A number of options are available to overcome the restrictions imposed by the standard. In

particular, -R enables the Rock Ridge extensions common to UNIX¨ systems and -J enables Joliet

extensions used by Microsoft¨ systems.

For CDs that are going to be used only on FreeBSD systems, -U can be used to disable all filename

restrictions. When used with -R , it produces a file system image that is identical to the specified

FreeBSD tree, even if it violates the ISO 9660 standard.

The last option of general use is -b . This is used to specify the location of a boot image for use in

producing an "El Torito" bootable CD. This option takes an argument which is the path to a boot

image from the top of the tree being written to the CD. By default, mkisofs creates an ISO image in

"floppy disk emulation" mode, and thus expects the boot image to be exactly 1200, 1440 or 2880 KB

in size. Some boot loaders, like the one used by the FreeBSD distribution media, do not use

emulation mode. In this case, -no-emul-boot should be used. So, if /tmp/myboot holds a bootable

FreeBSD system with the boot image in /tmp/myboot/boot/cdboot , this command would produce

/tmp/bootable.iso :

mkisofs -R -no-emul-boot -b boot/cdboot -o /tmp/bootable.iso /tmp/myboot

The resulting ISO image can be mounted as a memory disk with:

mdconfig -a -t vnode -f /tmp/bootable.iso -u 0

mount -t cd9660 /dev/md0 /mnt

One can then verify that /mnt and /tmp/myboot are identical.

There are many other options available for mkisofs to fine-tune its behavior. Refer to

man:mkisofs[8] for details.

!

It is possible to copy a data CD to an image file that is functionally equivalent to the

image file created with mkisofs . To do so, use dd with the device name as the input

file and the name of the ISO to create as the output file:

dd if=/dev/cd0 of=file.iso bs=2048

The resulting image file can be burned to CD as described in Burning a CD .

18.5.4. Using Data CDs

Once an ISO has been burned to a CD, it can be mounted by specifying the file system type, the

name of the device containing the CD, and an existing mount point:

mount -t cd9660 /dev/cd0 /mnt

429

Since mount assumes that a file system is of type ufs , a Incorrect super block error will occur if -t

cd9660 is not included when mounting a data CD.

While any data CD can be mounted this way, disks with certain ISO 9660 extensions might behave

oddly. For example, Joliet disks store all filenames in two-byte Unicode characters. If some non-

English characters show up as question marks, specify the local charset with -C . For more

information, refer to man:mount_cd9660[8].

!

In order to do this character conversion with the help of -C , the kernel requires the

cd9660_iconv.ko module to be loaded. This can be done either by adding this line

to loader.conf :

cd9660_iconv_load="YES"

and then rebooting the machine, or by directly loading the module with kldload .

Occasionally, Device not configured will be displayed when trying to mount a data CD. This usually

means that the CD drive has not detected a disk in the tray, or that the drive is not visible on the

bus. It can take a couple of seconds for a CD drive to detect media, so be patient.

Sometimes, a SCSICD drive may be missed because it did not have enough time to answer the bus

reset. To resolve this, a custom kernel can be created which increases the default SCSI delay. Add

the following option to the custom kernel configuration file and rebuild the kernel using the

instructions in crossref:kernelconfig[kernelconfig-building,ÒBuilding and Installing a Custom

KernelÓ]:

options SCSI_DELAY=15000

This tells the SCSI bus to pause 15 seconds during boot, to give the CD drive every possible chance to

answer the bus reset.

!

It is possible to burn a file directly to CD, without creating an ISO 9660 file system.

This is known as burning a raw data CD and some people do this for backup

purposes.

This type of disk can not be mounted as a normal data CD. In order to retrieve the

data burned to such a CD, the data must be read from the raw device node. For

example, this command will extract a compressed tar file located on the second CD

device into the current working directory:

tar xzvf /dev/cd1

In order to mount a data CD, the data must be written using mkisofs .

430

18.5.5. Duplicating Audio CDs

To duplicate an audio CD, extract the audio data from the CD to a series of files, then write these

files to a blank CD.

Procedure: Duplicating an Audio CD describes how to duplicate and burn an audio CD. If the

FreeBSD version is less than 10.0 and the device is ATAPI, the atapicam module must be first loaded

using the instructions in Supported Devices .

Procedure: Duplicating an Audio CD

1. The package:sysutils/cdrtools[] package or port installs cdda2wav . This command can be used to

extract all of the audio tracks, with each track written to a separate WAV file in the current

working directory:

% cdda2wav -vall -B -Owav

A device name does not need to be specified if there is only one CD device on the system. Refer

to the cdda2wav manual page for instructions on how to specify a device and to learn more about

the other options available for this command.

2. Use cdrecord to write the .wav files:

% cdrecord -v dev=2,0 -dao -useinfo *.wav

Make sure that 2,0 is set appropriately, as described in Burning a CD .

18.6. Creating and Using DVD Media

Compared to the CD, the DVD is the next generation of optical media storage technology. The DVD

can hold more data than any CD and is the standard for video publishing.

Five physical recordable formats can be defined for a recordable DVD:

¥ DVD-R: This was the first DVD recordable format available. The DVD-R standard is defined by

the DVD Forum . This format is write once.

¥ DVD-RW: This is the rewritable version of the DVD-R standard. A DVD-RW can be rewritten

about 1000 times.

¥ DVD-RAM: This is a rewritable format which can be seen as a removable hard drive. However,

this media is not compatible with most DVD-ROM drives and DVD-Video players as only a few

DVD writers support the DVD-RAM format. Refer to Using a DVD-RAM for more information on

DVD-RAM use.

¥ DVD+RW: This is a rewritable format defined by the DVD+RW Alliance . A DVD+RW can be

rewritten about 1000 times.

¥ DVD+R: This format is the write once variation of the DVD+RW format.

431

http://www.dvdforum.org/forum.shtml
https://en.wikipedia.org/wiki/DVD%2BRW_Alliance

A single layer recordable DVD can hold up to 4,700,000,000 bytes which is actually 4.38 GB or 4485

MB as 1 kilobyte is 1024 bytes.

!

A distinction must be made between the physical media and the application. For

example, a DVD-Video is a specific file layout that can be written on any

recordable DVD physical media such as DVD-R, DVD+R, or DVD-RW. Before

choosing the type of media, ensure that both the burner and the DVD-Video player

are compatible with the media under consideration.

18.6.1. Configuration

To perform DVD recording, use man:growisofs[1]. This command is part of the

package:sysutils/dvd+rw-tools[] utilities which support all DVD media types.

These tools use the SCSI subsystem to access the devices, therefore ATAPI/CAM support must be

loaded or statically compiled into the kernel. This support is not needed if the burner uses the USB

interface. Refer to USB Storage Devices for more details on USB device configuration.

DMA access must also be enabled for ATAPI devices, by adding the following line to

/boot/loader.conf :

hw.ata.atapi_dma="1"

Before attempting to use dvd+rw-tools, consult the Hardware Compatibility Notes .

!

For a graphical user interface, consider using package:sysutils/k3b[] which

provides a user friendly interface to man:growisofs[1] and many other burning

tools.

18.6.2. Burning Data DVDs

Since man:growisofs[1] is a front-end to mkisofs , it will invoke man:mkisofs[8] to create the file

system layout and perform the write on the DVD. This means that an image of the data does not

need to be created before the burning process.

To burn to a DVD+R or a DVD-R the data in /path/to/data , use the following command:

growisofs -dvd-compat -Z /dev/cd0 -J -R /path/to/data

In this example, -J -R is passed to man:mkisofs[8] to create an ISO 9660 file system with Joliet and

Rock Ridge extensions. Refer to man:mkisofs[8] for more details.

For the initial session recording, -Z is used for both single and multiple sessions. Replace /dev/cd0 ,

with the name of the DVD device. Using -dvd-compat indicates that the disk will be closed and that

the recording will be unappendable. This should also provide better media compatibility with DVD-

ROM drives.

432

http://fy.chalmers.se/~appro/linux/DVD+RW/hcn.html

To burn a pre-mastered image, such as imagefile.iso , use:

growisofs -dvd-compat -Z /dev/cd0=imagefile.iso

The write speed should be detected and automatically set according to the media and the drive

being used. To force the write speed, use -speed= . Refer to man:growisofs[1] for example usage.

!

In order to support working files larger than 4.38GB, an UDF/ISO-9660 hybrid file

system must be created by passing -udf -iso-level 3 to man:mkisofs[8] and all

related programs, such as man:growisofs[1]. This is required only when creating

an ISO image file or when writing files directly to a disk. Since a disk created this

way must be mounted as an UDF file system with man:mount_udf[8], it will be

usable only on an UDF aware operating system. Otherwise it will look as if it

contains corrupted files.

To create this type of ISO file:

% mkisofs -R -J -udf -iso-level 3 -o imagefile.iso /path/to/data

To burn files directly to a disk:

growisofs -dvd-compat -udf -iso-level 3 -Z /dev/cd0 -J -R

/path/to/data

When an ISO image already contains large files, no additional options are required

for man:growisofs[1] to burn that image on a disk.

Be sure to use an up-to-date version of package:sysutils/cdrtools[], which contains

man:mkisofs[8], as an older version may not contain large files support. If the

latest version does not work, install package:sysutils/cdrtools-devel[] and read its

man:mkisofs[8].

18.6.3. Burning a DVD-Video

A DVD-Video is a specific file layout based on the ISO 9660 and micro-UDF (M-UDF) specifications.

Since DVD-Video presents a specific data structure hierarchy, a particular program such as

package:multimedia/dvdauthor[] is needed to author the DVD.

If an image of the DVD-Video file system already exists, it can be burned in the same way as any

other image. If dvdauthor was used to make the DVD and the result is in /path/to/video , the following

command should be used to burn the DVD-Video:

growisofs -Z /dev/cd0 -dvd-video /path/to/video

-dvd-video is passed to man:mkisofs[8] to instruct it to create a DVD-Video file system layout. This

433

option implies the -dvd-compat man:growisofs[1] option.

18.6.4. Using a DVD+RW

Unlike CD-RW, a virgin DVD+RW needs to be formatted before first use. It is recommended to let

man:growisofs[1] take care of this automatically whenever appropriate. However, it is possible to

use dvd+rw-format to format the DVD+RW:

dvd+rw-format /dev/cd0

Only perform this operation once and keep in mind that only virgin DVD+RW medias need to be

formatted. Once formatted, the DVD+RW can be burned as usual.

To burn a totally new file system and not just append some data onto a DVD+RW, the media does

not need to be blanked first. Instead, write over the previous recording like this:

growisofs -Z /dev/cd0 -J -R /path/to/newdata

The DVD+RW format supports appending data to a previous recording. This operation consists of

merging a new session to the existing one as it is not considered to be multi-session writing.

man:growisofs[1] will grow the ISO 9660 file system present on the media.

For example, to append data to a DVD+RW, use the following:

growisofs -M /dev/cd0 -J -R /path/to/nextdata

The same man:mkisofs[8] options used to burn the initial session should be used during next

writes.

!

Use -dvd-compat for better media compatibility with DVD-ROM drives. When using

DVD+RW, this option will not prevent the addition of data.

To blank the media, use:

growisofs -Z /dev/cd0=/dev/zero

18.6.5. Using a DVD-RW

A DVD-RW accepts two disc formats: incremental sequential and restricted overwrite. By default,

DVD-RW discs are in sequential format.

A virgin DVD-RW can be directly written without being formatted. However, a non-virgin DVD-RW

in sequential format needs to be blanked before writing a new initial session.

To blank a DVD-RW in sequential mode:

434

dvd+rw-format -blank=full /dev/cd0

!

A full blanking using -blank=full will take about one hour on a 1x media. A fast

blanking can be performed using -blank , if the DVD-RW will be recorded in Disk-

At-Once (DAO) mode. To burn the DVD-RW in DAO mode, use the command:

growisofs -use-the-force-luke=dao -Z /dev/cd0=imagefile.iso

Since man:growisofs[1] automatically attempts to detect fast blanked media and

engage DAO write, -use-the-force-luke=dao should not be required.

One should instead use restricted overwrite mode with any DVD-RW as this format

is more flexible than the default of incremental sequential.

To write data on a sequential DVD-RW, use the same instructions as for the other DVD formats:

growisofs -Z /dev/cd0 -J -R /path/to/data

To append some data to a previous recording, use -M with man:growisofs[1]. However, if data is

appended on a DVD-RW in incremental sequential mode, a new session will be created on the disc

and the result will be a multi-session disc.

A DVD-RW in restricted overwrite format does not need to be blanked before a new initial session.

Instead, overwrite the disc with -Z . It is also possible to grow an existing ISO 9660 file system

written on the disc with -M . The result will be a one-session DVD.

To put a DVD-RW in restricted overwrite format, the following command must be used:

dvd+rw-format /dev/cd0

To change back to sequential format, use:

dvd+rw-format -blank=full /dev/cd0

18.6.6. Multi-Session

Few DVD-ROM drives support multi-session DVDs and most of the time only read the first session.

DVD+R, DVD-R and DVD-RW in sequential format can accept multiple sessions. The notion of

multiple sessions does not exist for the DVD+RW and the DVD-RW restricted overwrite formats.

Using the following command after an initial non-closed session on a DVD+R, DVD-R, or DVD-RW in

sequential format, will add a new session to the disc:

435

growisofs -M /dev/cd0 -J -R /path/to/nextdata

Using this command with a DVD+RW or a DVD-RW in restricted overwrite mode will append data

while merging the new session to the existing one. The result will be a single-session disc. Use this

method to add data after an initial write on these types of media.

!

Since some space on the media is used between each session to mark the end and

start of sessions, one should add sessions with a large amount of data to optimize

media space. The number of sessions is limited to 154 for a DVD+R, about 2000 for

a DVD-R, and 127 for a DVD+R Double Layer.

18.6.7. For More Information

To obtain more information about a DVD, use dvd+rw-mediainfo /dev/cd0 while the disc in the

specified drive.

More information about dvd+rw-tools can be found in man:growisofs[1], on the dvd+rw-tools web

site , and in the cdwrite mailing list archives.

!

When creating a problem report related to the use of dvd+rw-tools, always include

the output of dvd+rw-mediainfo .

18.6.8. Using a DVD-RAM

DVD-RAM writers can use either a SCSI or ATAPI interface. For ATAPI devices, DMA access has to be

enabled by adding the following line to /boot/loader.conf :

hw.ata.atapi_dma="1"

A DVD-RAM can be seen as a removable hard drive. Like any other hard drive, the DVD-RAM must

be formatted before it can be used. In this example, the whole disk space will be formatted with a

standard UFS2 file system:

dd if=/dev/zero of=/dev/acd0 bs=2k count=1

bsdlabel -Bw acd0

newfs /dev/acd0

The DVD device, acd0 , must be changed according to the configuration.

Once the DVD-RAM has been formatted, it can be mounted as a normal hard drive:

mount /dev/acd0 /mnt

Once mounted, the DVD-RAM will be both readable and writeable.

436

http://fy.chalmers.se/~appro/linux/DVD+RW/
http://fy.chalmers.se/~appro/linux/DVD+RW/
http://lists.debian.org/cdwrite/

18.7. Creating and Using Floppy Disks

This section explains how to format a 3.5 inch floppy disk in FreeBSD.

Procedure: Steps to Format a Floppy

A floppy disk needs to be low-level formatted before it can be used. This is usually done by the

vendor, but formatting is a good way to check media integrity. To low-level format the floppy

disk on FreeBSD, use man:fdformat[1]. When using this utility, make note of any error

messages, as these can help determine if the disk is good or bad.

1. To format the floppy, insert a new 3.5 inch floppy disk into the first floppy drive and issue:

/usr/sbin/fdformat -f 1440 /dev/fd0

2. After low-level formatting the disk, create a disk label as it is needed by the system to

determine the size of the disk and its geometry. The supported geometry values are listed

in /etc/disktab .

To write the disk label, use man:bsdlabel[8]:

/sbin/bsdlabel -B -w /dev/fd0 fd1440

3. The floppy is now ready to be high-level formatted with a file system. The floppyÕs file

system can be either UFS or FAT, where FAT is generally a better choice for floppies.

To format the floppy with FAT, issue:

/sbin/newfs_msdos /dev/fd0

The disk is now ready for use. To use the floppy, mount it with man:mount_msdosfs[8]. One can also

install and use package:emulators/mtools[] from the Ports Collection.

18.8. Using NTFS Disks

This section explains how to mount NTFS disks in FreeBSD.

NTFS (New Technology File System) is a proprietary journaling file system developed by

Microsoft¨. It has been the default file system in Microsoft Windows¨ for many years. FreeBSD

can mount NTFS volumes using a FUSE file system. These file systems are implemented as user

space programs which interact with the man:fusefs[5] kernel module via a well defined interface.

437

Procedure: Steps to Mount a NTFS Disk

1. Before using a FUSE file system we need to load the man:fusefs[5] kernel module:

kldload fusefs

Use man:sysrc[8] to load the module at startup:

sysrc kld_list+=fusefs

2. Install the actual NTFS file system from packages as in the example (see

crossref:ports[pkgng-intro,Using pkg for Binary Package Management]) or from ports (see

crossref:ports[ports-using,Using the Ports Collection]):

pkg install fusefs-ntfs

3. Last we need to create a directory where the file system will be mounted:

mkdir /mnt/usb

4. Suppose a USB disk is plugged in. The disk partition information can be viewed with

man:gpart[8]:

gpart show da0

=> 63 1953525105 da0 MBR (932G)

Ê 63 1953525105 1 ntfs (932G)

5. We can mount the disk using the following command:

ntfs-3g /dev/da0s1 /mnt/usb/

The disk is now ready to use.

6. Additionally, an entry can be added to /etc/fstab:

/dev/da0s1 /mnt/usb ntfs mountprog=/usr/local/bin/ntfs-3g,noauto,rw 0 0

Now the disk can be now mounted with:

mount /mnt/usb

438

7. The disk can be unmounted with:

umount /mnt/usb/

18.9. Backup Basics

Implementing a backup plan is essential in order to have the ability to recover from disk failure,

accidental file deletion, random file corruption, or complete machine destruction, including

destruction of on-site backups.

The backup type and schedule will vary, depending upon the importance of the data, the

granularity needed for file restores, and the amount of acceptable downtime. Some possible backup

techniques include:

¥ Archives of the whole system, backed up onto permanent, off-site media. This provides

protection against all of the problems listed above, but is slow and inconvenient to restore from,

especially for non-privileged users.

¥ File system snapshots, which are useful for restoring deleted files or previous versions of files.

¥ Copies of whole file systems or disks which are synchronized with another system on the

network using a scheduled package:net/rsync[].

¥ Hardware or software RAID, which minimizes or avoids downtime when a disk fails.

Typically, a mix of backup techniques is used. For example, one could create a schedule to automate

a weekly, full system backup that is stored off-site and to supplement this backup with hourly ZFS

snapshots. In addition, one could make a manual backup of individual directories or files before

making file edits or deletions.

This section describes some of the utilities which can be used to create and manage backups on a

FreeBSD system.

18.9.1. File System Backups

The traditional UNIX¨ programs for backing up a file system are man:dump[8], which creates the

backup, and man:restore[8], which restores the backup. These utilities work at the disk block level,

below the abstractions of the files, links, and directories that are created by file systems. Unlike

other backup software, dump backs up an entire file system and is unable to backup only part of a

file system or a directory tree that spans multiple file systems. Instead of writing files and

directories, dump writes the raw data blocks that comprise files and directories.

!

If dump is used on the root directory, it will not back up /home , /usr or many other

directories since these are typically mount points for other file systems or

symbolic links into those file systems.

When used to restore data, restore stores temporary files in /tmp/ by default. When using a

recovery disk with a small /tmp , set TMPDIR to a directory with more free space in order for the

439

restore to succeed.

When using dump , be aware that some quirks remain from its early days in Version 6 of AT&T

UNIX¨,circa 1975. The default parameters assume a backup to a 9-track tape, rather than to

another type of media or to the high-density tapes available today. These defaults must be

overridden on the command line.

It is possible to backup a file system across the network to a another system or to a tape drive

attached to another computer. While the man:rdump[8] and man:rrestore[8] utilities can be used

for this purpose, they are not considered to be secure.

Instead, one can use dump and restore in a more secure fashion over an SSH connection. This

example creates a full, compressed backup of /usr and sends the backup file to the specified host

over a SSH connection.

Example 35. Using dump over ssh

/sbin/dump -0uan -f - /usr | gzip -2 | ssh -c blowfish \

Ê targetuser@targetmachine.example.com dd of=/mybigfiles/dump-usr-l0.gz

This example sets RSH in order to write the backup to a tape drive on a remote system over a SSH

connection:

Example 36. Using dump over ssh with RSH Set

env RSH=/usr/bin/ssh /sbin/dump -0uan -f

targetuser@targetmachine.example.com:/dev/sa0 /usr

18.9.2. Directory Backups

Several built-in utilities are available for backing up and restoring specified files and directories as

needed.

A good choice for making a backup of all of the files in a directory is man:tar[1]. This utility dates

back to Version 6 of AT&T UNIX¨ and by default assumes a recursive backup to a local tape device.

Switches can be used to instead specify the name of a backup file.

This example creates a compressed backup of the current directory and saves it to

/tmp/mybackup.tgz . When creating a backup file, make sure that the backup is not saved to the

same directory that is being backed up.

Example 37. Backing Up the Current Directory with tar

tar czvf /tmp/mybackup.tgz .

440

To restore the entire backup, cd into the directory to restore into and specify the name of the

backup. Note that this will overwrite any newer versions of files in the restore directory. When in

doubt, restore to a temporary directory or specify the name of the file within the backup to restore.

Example 38. Restoring Up the Current Directory with tar

tar xzvf /tmp/mybackup.tgz

There are dozens of available switches which are described in man:tar[1]. This utility also supports

the use of exclude patterns to specify which files should not be included when backing up the

specified directory or restoring files from a backup.

To create a backup using a specified list of files and directories, man:cpio[1] is a good choice. Unlike

tar , cpio does not know how to walk the directory tree and it must be provided the list of files to

backup.

For example, a list of files can be created using ls or find . This example creates a recursive listing of

the current directory which is then piped to cpio in order to create an output backup file named

/tmp/mybackup.cpio .

Example 39. Using ls and cpio to Make a Recursive Backup of the Current Directory

ls -R | cpio -ovF /tmp/mybackup.cpio

A backup utility which tries to bridge the features provided by tar and cpio is man:pax[1]. Over the

years, the various versions of tar and cpio became slightly incompatible. POSIX¨ created pax which

attempts to read and write many of the various cpio and tar formats, plus new formats of its own.

The pax equivalent to the previous examples would be:

Example 40. Backing Up the Current Directory with pax

pax -wf /tmp/mybackup.pax .

18.9.3. Using Data Tapes for Backups

While tape technology has continued to evolve, modern backup systems tend to combine off-site

backups with local removable media. FreeBSD supports any tape drive that uses SCSI, such as LTO

or DAT. There is limited support for SATA and USB tape drives.

For SCSI tape devices, FreeBSD uses the man:sa[4] driver and the /dev/sa0 , /dev/nsa0 , and /dev/esa0

devices. The physical device name is /dev/sa0 . When /dev/nsa0 is used, the backup application will

not rewind the tape after writing a file, which allows writing more than one file to a tape. Using

/dev/esa0 ejects the tape after the device is closed.

441

In FreeBSD, mt is used to control operations of the tape drive, such as seeking through files on a tape

or writing tape control marks to the tape. For example, the first three files on a tape can be

preserved by skipping past them before writing a new file:

mt -f /dev/nsa0 fsf 3

This utility supports many operations. Refer to man:mt[1] for details.

To write a single file to tape using tar , specify the name of the tape device and the file to backup:

tar cvf /dev/sa0 file

To recover files from a tar archive on tape into the current directory:

tar xvf /dev/sa0

To backup a UFS file system, use dump . This examples backs up /usr without rewinding the tape

when finished:

dump -0aL -b64 -f /dev/nsa0 /usr

To interactively restore files from a dump file on tape into the current directory:

restore -i -f /dev/nsa0

18.9.4. Third-Party Backup Utilities

The FreeBSD Ports Collection provides many third-party utilities which can be used to schedule the

creation of backups, simplify tape backup, and make backups easier and more convenient. Many of

these applications are client/server based and can be used to automate the backups of a single

system or all of the computers in a network.

Popular utilities include Amanda, Bacula, rsync, and duplicity.

18.9.5. Emergency Recovery

In addition to regular backups, it is recommended to perform the following steps as part of an

emergency preparedness plan.

Create a print copy of the output of the following commands:

¥ gpart show

¥ more /etc/fstab

¥ dmesg

442

Store this printout and a copy of the installation media in a secure location. Should an emergency

restore be needed, boot into the installation media and select Live CD to access a rescue shell. This

rescue mode can be used to view the current state of the system, and if needed, to reformat disks

and restore data from backups.

!

The installation media for FreeBSD/i386 11.2-RELEASE does not include a rescue

shell. For this version, instead download and burn a Livefs CD image from

ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/i386/ISO-IMAGES/11.2/FreeBSD-11.2-

RELEASE-i386-livefs.iso .

Next, test the rescue shell and the backups. Make notes of the procedure. Store these notes with the

media, the printouts, and the backups. These notes may prevent the inadvertent destruction of the

backups while under the stress of performing an emergency recovery.

For an added measure of security, store the latest backup at a remote location which is physically

separated from the computers and disk drives by a significant distance.

18.10. Memory Disks

In addition to physical disks, FreeBSD also supports the creation and use of memory disks. One

possible use for a memory disk is to access the contents of an ISO file system without the overhead

of first burning it to a CD or DVD, then mounting the CD/DVD media.

In FreeBSD, the man:md[4] driver is used to provide support for memory disks. The GENERIC

kernel includes this driver. When using a custom kernel configuration file, ensure it includes this

line:

device md

18.10.1. Attaching and Detaching Existing Images

To mount an existing file system image, use mdconfig to specify the name of the ISO file and a free

unit number. Then, refer to that unit number to mount it on an existing mount point. Once

mounted, the files in the ISO will appear in the mount point. This example attaches diskimage.iso to

the memory device /dev/md0 then mounts that memory device on /mnt :

mdconfig -f diskimage.iso -u 0

mount -t cd9660 /dev/md0 /mnt

Notice that -t cd9660 was used to mount an ISO format. If a unit number is not specified with -u ,

mdconfig will automatically allocate an unused memory device and output the name of the allocated

unit, such as md4 . Refer to man:mdconfig[8] for more details about this command and its options.

When a memory disk is no longer in use, its resources should be released back to the system. First,

unmount the file system, then use mdconfig to detach the disk from the system and release its

resources. To continue this example:

443

ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/i386/ISO-IMAGES/11.2/FreeBSD-11.2-RELEASE-i386-livefs.iso
ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/i386/ISO-IMAGES/11.2/FreeBSD-11.2-RELEASE-i386-livefs.iso

umount /mnt

mdconfig -d -u 0

To determine if any memory disks are still attached to the system, type mdconfig -l .

18.10.2. Creating a File- or Memory-Backed Memory Disk

FreeBSD also supports memory disks where the storage to use is allocated from either a hard disk

or an area of memory. The first method is commonly referred to as a file-backed file system and the

second method as a memory-backed file system. Both types can be created using mdconfig .

To create a new memory-backed file system, specify a type of swap and the size of the memory disk

to create. Then, format the memory disk with a file system and mount as usual. This example

creates a 5M memory disk on unit 1 . That memory disk is then formatted with the UFS file system

before it is mounted:

mdconfig -a -t swap -s 5m -u 1

newfs -U md1

/dev/md1: 5.0MB (10240 sectors) block size 16384, fragment size 2048

Ê using 4 cylinder groups of 1.27MB, 81 blks, 192 inodes.

Ê with soft updates

super-block backups (for fsck -b #) at:

Ê160, 2752, 5344, 7936

mount /dev/md1 /mnt

df /mnt

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/md1 4718 4 4338 0% /mnt

To create a new file-backed memory disk, first allocate an area of disk to use. This example creates

an empty 5MB file named newimage :

dd if=/dev/zero of=newimage bs=1k count=5k

5120+0 records in

5120+0 records out

Next, attach that file to a memory disk, label the memory disk and format it with the UFS file

system, mount the memory disk, and verify the size of the file-backed disk:

444

mdconfig -f newimage -u 0

bsdlabel -w md0 auto

newfs -U md0a

/dev/md0a: 5.0MB (10224 sectors) block size 16384, fragment size 2048

Ê using 4 cylinder groups of 1.25MB, 80 blks, 192 inodes.

super-block backups (for fsck -b #) at:

Ê160, 2720, 5280, 7840

mount /dev/md0a /mnt

df /mnt

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/md0a 4710 4 4330 0% /mnt

It takes several commands to create a file- or memory-backed file system using mdconfig . FreeBSD

also comes with mdmfs which automatically configures a memory disk, formats it with the UFS file

system, and mounts it. For example, after creating newimage with dd , this one command is

equivalent to running the bsdlabel , newfs , and mount commands shown above:

mdmfs -F newimage -s 5m md0 /mnt

To instead create a new memory-based memory disk with mdmfs , use this one command:

mdmfs -s 5m md1 /mnt

If the unit number is not specified, mdmfs will automatically select an unused memory device. For

more details about mdmfs , refer to man:mdmfs[8].

18.11. File System Snapshots

FreeBSD offers a feature in conjunction with crossref:config[soft-updates,Soft Updates]: file system

snapshots.

UFS snapshots allow a user to create images of specified file systems, and treat them as a file.

Snapshot files must be created in the file system that the action is performed on, and a user may

create no more than 20 snapshots per file system. Active snapshots are recorded in the superblock

so they are persistent across unmount and remount operations along with system reboots. When a

snapshot is no longer required, it can be removed using man:rm[1]. While snapshots may be

removed in any order, all the used space may not be acquired because another snapshot will

possibly claim some of the released blocks.

The un-alterable snapshot file flag is set by man:mksnap_ffs[8] after initial creation of a snapshot

file. man:unlink[1] makes an exception for snapshot files since it allows them to be removed.

Snapshots are created using man:mount[8]. To place a snapshot of /var in the file

/var/snapshot/snap , use the following command:

445

mount -u -o snapshot /var/snapshot/snap /var

Alternatively, use man:mksnap_ffs[8] to create the snapshot:

mksnap_ffs /var /var/snapshot/snap

One can find snapshot files on a file system, such as /var , using man:find[1]:

find /var -flags snapshot

Once a snapshot has been created, it has several uses:

¥ Some administrators will use a snapshot file for backup purposes, because the snapshot can be

transferred to CDs or tape.

¥ The file system integrity checker, man:fsck[8], may be run on the snapshot. Assuming that the

file system was clean when it was mounted, this should always provide a clean and unchanging

result.

¥ Running man:dump[8] on the snapshot will produce a dump file that is consistent with the file

system and the timestamp of the snapshot. man:dump[8] can also take a snapshot, create a

dump image, and then remove the snapshot in one command by using -L .

¥ The snapshot can be mounted as a frozen image of the file system. To man:mount[8] the

snapshot /var/snapshot/snap run:

mdconfig -a -t vnode -o readonly -f /var/snapshot/snap -u 4

mount -r /dev/md4 /mnt

The frozen /var is now available through /mnt . Everything will initially be in the same state it was

during the snapshot creation time. The only exception is that any earlier snapshots will appear as

zero length files. To unmount the snapshot, use:

umount /mnt

mdconfig -d -u 4

For more information about softupdates and file system snapshots, including technical papers, visit

Marshall Kirk McKusickÕs website at http://www.mckusick.com/ .

18.12. Disk Quotas

Disk quotas can be used to limit the amount of disk space or the number of files a user or members

of a group may allocate on a per-file system basis. This prevents one user or group of users from

consuming all of the available disk space.

446

http://www.mckusick.com/

This section describes how to configure disk quotas for the UFS file system. To configure quotas on

the ZFS file system, refer to crossref:zfs[zfs-zfs-quota,"Dataset, User, and Group Quotas"]

18.12.1. Enabling Disk Quotas

To determine if the FreeBSD kernel provides support for disk quotas:

% sysctl kern.features.ufs_quota

kern.features.ufs_quota: 1

In this example, the 1 indicates quota support. If the value is instead 0 , add the following line to a

custom kernel configuration file and rebuild the kernel using the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]:

options QUOTA

Next, enable disk quotas in /etc/rc.conf :

quota_enable="YES"

Normally on bootup, the quota integrity of each file system is checked by man:quotacheck[8]. This

program insures that the data in the quota database properly reflects the data on the file system.

This is a time consuming process that will significantly affect the time the system takes to boot. To

skip this step, add this variable to /etc/rc.conf :

check_quotas="NO"

Finally, edit /etc/fstab to enable disk quotas on a per-file system basis. To enable per-user quotas on

a file system, add userquota to the options field in the /etc/fstab entry for the file system to enable

quotas on. For example:

/dev/da1s2g /home ufs rw,userquota 1 2

To enable group quotas, use groupquota instead. To enable both user and group quotas, separate the

options with a comma:

/dev/da1s2g /home ufs rw,userquota,groupquota 1 2

By default, quota files are stored in the root directory of the file system as quota.user and

quota.group . Refer to man:fstab[5] for more information. Specifying an alternate location for the

quota files is not recommended.

Once the configuration is complete, reboot the system and /etc/rc will automatically run the

447

appropriate commands to create the initial quota files for all of the quotas enabled in /etc/fstab .

In the normal course of operations, there should be no need to manually run man:quotacheck[8],

man:quotaon[8], or man:quotaoff[8]. However, one should read these manual pages to be familiar

with their operation.

18.12.2. Setting Quota Limits

To verify that quotas are enabled, run:

quota -v

There should be a one line summary of disk usage and current quota limits for each file system that

quotas are enabled on.

The system is now ready to be assigned quota limits with edquota .

Several options are available to enforce limits on the amount of disk space a user or group may

allocate, and how many files they may create. Allocations can be limited based on disk space (block

quotas), number of files (inode quotas), or a combination of both. Each limit is further broken down

into two categories: hard and soft limits.

A hard limit may not be exceeded. Once a user reaches a hard limit, no further allocations can be

made on that file system by that user. For example, if the user has a hard limit of 500 kbytes on a

file system and is currently using 490 kbytes, the user can only allocate an additional 10 kbytes.

Attempting to allocate an additional 11 kbytes will fail.

Soft limits can be exceeded for a limited amount of time, known as the grace period, which is one

week by default. If a user stays over their limit longer than the grace period, the soft limit turns into

a hard limit and no further allocations are allowed. When the user drops back below the soft limit,

the grace period is reset.

In the following example, the quota for the test account is being edited. When edquota is invoked,

the editor specified by EDITOR is opened in order to edit the quota limits. The default editor is set to

vi.

edquota -u test

Quotas for user test:

/usr: kbytes in use: 65, limits (soft = 50, hard = 75)

Ê inodes in use: 7, limits (soft = 50, hard = 60)

/usr/var: kbytes in use: 0, limits (soft = 50, hard = 75)

Ê inodes in use: 0, limits (soft = 50, hard = 60)

There are normally two lines for each file system that has quotas enabled. One line represents the

block limits and the other represents the inode limits. Change the value to modify the quota limit.

For example, to raise the block limit on /usr to a soft limit of 500 and a hard limit of 600 , change the

values in that line as follows:

448

/usr: kbytes in use: 65, limits (soft = 500, hard = 600)

The new quota limits take effect upon exiting the editor.

Sometimes it is desirable to set quota limits on a range of users. This can be done by first assigning

the desired quota limit to a user. Then, use -p to duplicate that quota to a specified range of user IDs

(UIDs). The following command will duplicate those quota limits for UIDs 10,000 through 19,999 :

edquota -p test 10000-19999

For more information, refer to man:edquota[8].

18.12.3. Checking Quota Limits and Disk Usage

To check individual user or group quotas and disk usage, use man:quota[1]. A user may only

examine their own quota and the quota of a group they are a member of. Only the superuser may

view all user and group quotas. To get a summary of all quotas and disk usage for file systems with

quotas enabled, use man:repquota[8].

Normally, file systems that the user is not using any disk space on will not show in the output of

quota , even if the user has a quota limit assigned for that file system. Use -v to display those file

systems. The following is sample output from quota -v for a user that has quota limits on two file

systems.

Disk quotas for user test (uid 1002):

Ê Filesystem usage quota limit grace files quota limit grace

Ê /usr 65* 50 75 5days 7 50 60

Ê /usr/var 0 50 75 0 50 60

In this example, the user is currently 15 kbytes over the soft limit of 50 kbytes on /usr and has 5

days of grace period left. The asterisk * indicates that the user is currently over the quota limit.

18.12.4. Quotas over NFS

Quotas are enforced by the quota subsystem on the NFS server. The man:rpc.rquotad[8] daemon

makes quota information available to quota on NFS clients, allowing users on those machines to see

their quota statistics.

On the NFS server, enable rpc.rquotad by removing the # from this line in /etc/inetd.conf :

rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad

Then, restart inetd :

449

service inetd restart

18.13. Encrypting Disk Partitions

FreeBSD offers excellent online protections against unauthorized data access. File permissions and

crossref:mac[mac,Mandatory Access Control] (MAC) help prevent unauthorized users from

accessing data while the operating system is active and the computer is powered up. However, the

permissions enforced by the operating system are irrelevant if an attacker has physical access to a

computer and can move the computerÕs hard drive to another system to copy and analyze the data.

Regardless of how an attacker may have come into possession of a hard drive or powered-down

computer, the GEOM-based cryptographic subsystems built into FreeBSD are able to protect the

data on the computerÕs file systems against even highly-motivated attackers with significant

resources. Unlike encryption methods that encrypt individual files, the built-in gbde and geli

utilities can be used to transparently encrypt entire file systems. No cleartext ever touches the hard

driveÕs platter.

This chapter demonstrates how to create an encrypted file system on FreeBSD. It first demonstrates

the process using gbde and then demonstrates the same example using geli .

18.13.1. Disk Encryption with gbde

The objective of the man:gbde[4] facility is to provide a formidable challenge for an attacker to gain

access to the contents of a cold storage device. However, if the computer is compromised while up

and running and the storage device is actively attached, or the attacker has access to a valid

passphrase, it offers no protection to the contents of the storage device. Thus, it is important to

provide physical security while the system is running and to protect the passphrase used by the

encryption mechanism.

This facility provides several barriers to protect the data stored in each disk sector. It encrypts the

contents of a disk sector using 128-bit AES in CBC mode. Each sector on the disk is encrypted with a

different AES key. For more information on the cryptographic design, including how the sector keys

are derived from the user-supplied passphrase, refer to man:gbde[4].

FreeBSD provides a kernel module for gbde which can be loaded with this command:

kldload geom_bde

If using a custom kernel configuration file, ensure it contains this line:

options GEOM_BDE

The following example demonstrates adding a new hard drive to a system that will hold a single

encrypted partition that will be mounted as /private .

Procedure: Encrypting a Partition with gbde

1. Add the New Hard Drive

450

Install the new drive to the system as explained in Adding Disks . For the purposes of this

example, a new hard drive partition has been added as /dev/ad4s1c and /dev/ad0s1* represents

the existing standard FreeBSD partitions.

ls /dev/ad*

/dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1

/dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c

/dev/ad0s1a /dev/ad0s1d /dev/ad4

2. Create a Directory to Hold gbde Lock Files

mkdir /etc/gbde

The gbde lock file contains information that gbde requires to access encrypted partitions.

Without access to the lock file, gbde will not be able to decrypt the data contained in the

encrypted partition without significant manual intervention which is not supported by the

software. Each encrypted partition uses a separate lock file.

3. Initialize the gbde Partition

A gbde partition must be initialized before it can be used. This initialization needs to be

performed only once. This command will open the default editor, in order to set various

configuration options in a template. For use with the UFS file system, set the sector_size to 2048:

gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock

$FreeBSD: src/sbin/gbde/template.txt,v 1.1.36.1 2009/08/03 08:13:06 kensmith Exp

$

#

Sector size is the smallest unit of data which can be read or written.

Making it too small decreases performance and decreases available space.

Making it too large may prevent filesystems from working. 512 is the

minimum and always safe. For UFS, use the fragment size

#

sector_size = 2048

[...]

Once the edit is saved, the user will be asked twice to type the passphrase used to secure the

data. The passphrase must be the same both times. The ability of gbde to protect data depends

entirely on the quality of the passphrase. For tips on how to select a secure passphrase that is

easy to remember, see http://world.std.com/~reinhold/diceware.htm .

This initialization creates a lock file for the gbde partition. In this example, it is stored as

/etc/gbde/ad4s1c.lock . Lock files must end in ".lock" in order to be correctly detected by the

/etc/rc.d/gbde start up script.

451

http://world.std.com/~reinhold/diceware.html

$

Lock files must be backed up together with the contents of any encrypted

partitions. Without the lock file, the legitimate owner will be unable to access

the data on the encrypted partition.

4. Attach the Encrypted Partition to the Kernel

gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock

This command will prompt to input the passphrase that was selected during the initialization of

the encrypted partition. The new encrypted device will appear in /dev as /dev/device_name.bde :

ls /dev/ad*

/dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1

/dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c

/dev/ad0s1a /dev/ad0s1d /dev/ad4 /dev/ad4s1c.bde

5. Create a File System on the Encrypted Device

Once the encrypted device has been attached to the kernel, a file system can be created on the

device. This example creates a UFS file system with soft updates enabled. Be sure to specify the

partition which has a *.bde extension:

newfs -U /dev/ad4s1c.bde

6. Mount the Encrypted Partition

Create a mount point and mount the encrypted file system:

mkdir /private

mount /dev/ad4s1c.bde /private

7. Verify That the Encrypted File System is Available

The encrypted file system should now be visible and available for use:

% df -H

Filesystem Size Used Avail Capacity Mounted on

/dev/ad0s1a 1037M 72M 883M 8% /

/devfs 1.0K 1.0K 0B 100% /dev

/dev/ad0s1f 8.1G 55K 7.5G 0% /home

/dev/ad0s1e 1037M 1.1M 953M 0% /tmp

/dev/ad0s1d 6.1G 1.9G 3.7G 35% /usr

/dev/ad4s1c.bde 150G 4.1K 138G 0% /private

452

After each boot, any encrypted file systems must be manually re-attached to the kernel, checked for

errors, and mounted, before the file systems can be used. To configure these steps, add the

following lines to /etc/rc.conf :

gbde_autoattach_all="YES"

gbde_devices="ad4s1c"

gbde_lockdir="/etc/gbde"

This requires that the passphrase be entered at the console at boot time. After typing the correct

passphrase, the encrypted partition will be mounted automatically. Additional gbde boot options

are available and listed in man:rc.conf[5].

!

sysinstall is incompatible with gbde-encrypted devices. All *.bde devices must be

detached from the kernel before starting sysinstall or it will crash during its initial

probing for devices. To detach the encrypted device used in the example, use the

following command:

gbde detach /dev/ad4s1c

18.13.2. Disk Encryption with geli

An alternative cryptographic GEOM class is available using geli . This control utility adds some

features and uses a different scheme for doing cryptographic work. It provides the following

features:

¥ Utilizes the man:crypto[9] framework and automatically uses cryptographic hardware when it

is available.

¥ Supports multiple cryptographic algorithms such as AES, Blowfish, and 3DES.

¥ Allows the root partition to be encrypted. The passphrase used to access the encrypted root

partition will be requested during system boot.

¥ Allows the use of two independent keys.

¥ It is fast as it performs simple sector-to-sector encryption.

¥ Allows backup and restore of master keys. If a user destroys their keys, it is still possible to get

access to the data by restoring keys from the backup.

¥ Allows a disk to attach with a random, one-time key which is useful for swap partitions and

temporary file systems.

More features and usage examples can be found in man:geli[8].

The following example describes how to generate a key file which will be used as part of the master

key for the encrypted provider mounted under /private . The key file will provide some random

data used to encrypt the master key. The master key will also be protected by a passphrase. The

providerÕs sector size will be 4kB. The example describes how to attach to the geli provider, create

a file system on it, mount it, work with it, and finally, how to detach it.

453

Procedure: Encrypting a Partition with geli

1. Load geli Support

Support for geli is available as a loadable kernel module. To configure the system to

automatically load the module at boot time, add the following line to /boot/loader.conf :

geom_eli_load="YES"

To load the kernel module now:

kldload geom_eli

For a custom kernel, ensure the kernel configuration file contains these lines:

options GEOM_ELI

device crypto

2. Generate the Master Key

The following commands generate a master key that all data will be encrypted with. This key

can never be changed. Rather than using it directly, it is encrypted with one or more user keys.

The user keys are made up of an optional combination of random bytes from a file,

/root/da2.key , and/or a passphrase. In this case, the data source for the key file is /dev/random .

This command also configures the sector size of the provider (/dev/da2.eli) as 4kB, for better

performance:

dd if=/dev/random of=/root/da2.key bs=64 count=1

geli init -K /root/da2.key -s 4096 /dev/da2

Enter new passphrase:

Reenter new passphrase:

It is not mandatory to use both a passphrase and a key file as either method of securing the

master key can be used in isolation.

If the key file is given as "-", standard input will be used. For example, this command generates

three key files:

cat keyfile1 keyfile2 keyfile3 | geli init -K - /dev/da2

3. Attach the Provider with the Generated Key

To attach the provider, specify the key file, the name of the disk, and the passphrase:

454

geli attach -k /root/da2.key /dev/da2

Enter passphrase:

This creates a new device with an .eli extension:

ls /dev/da2*

/dev/da2 /dev/da2.eli

4. Create the New File System

Next, format the device with the UFS file system and mount it on an existing mount point:

dd if=/dev/random of=/dev/da2.eli bs=1m

newfs /dev/da2.eli

mount /dev/da2.eli /private

The encrypted file system should now be available for use:

df -H

Filesystem Size Used Avail Capacity Mounted on

/dev/ad0s1a 248M 89M 139M 38% /

/devfs 1.0K 1.0K 0B 100% /dev

/dev/ad0s1f 7.7G 2.3G 4.9G 32% /usr

/dev/ad0s1d 989M 1.5M 909M 0% /tmp

/dev/ad0s1e 3.9G 1.3G 2.3G 35% /var

/dev/da2.eli 150G 4.1K 138G 0% /private

Once the work on the encrypted partition is done, and the /private partition is no longer needed, it

is prudent to put the device into cold storage by unmounting and detaching the geli encrypted

partition from the kernel:

umount /private

geli detach da2.eli

An rc.d script is provided to simplify the mounting of geli -encrypted devices at boot time. For this

example, add these lines to /etc/rc.conf :

geli_devices="da2"

geli_da2_flags="-k /root/da2.key"

This configures /dev/da2 as a geli provider with a master key of /root/da2.key . The system will

automatically detach the provider from the kernel before the system shuts down. During the

startup process, the script will prompt for the passphrase before attaching the provider. Other

455

kernel messages might be shown before and after the password prompt. If the boot process seems

to stall, look carefully for the password prompt among the other messages. Once the correct

passphrase is entered, the provider is attached. The file system is then mounted, typically by an

entry in /etc/fstab . Refer to crossref:basics[mount-unmount,ÒMounting and Unmounting File

SystemsÓ] for instructions on how to configure a file system to mount at boot time.

18.14. Encrypting Swap

Like the encryption of disk partitions, encryption of swap space is used to protect sensitive

information. Consider an application that deals with passwords. As long as these passwords stay in

physical memory, they are not written to disk and will be cleared after a reboot. However, if

FreeBSD starts swapping out memory pages to free space, the passwords may be written to the disk

unencrypted. Encrypting swap space can be a solution for this scenario.

This section demonstrates how to configure an encrypted swap partition using man:gbde[8] or

man:geli[8] encryption. It assumes that /dev/ada0s1b is the swap partition.

18.14.1. Configuring Encrypted Swap

Swap partitions are not encrypted by default and should be cleared of any sensitive data before

continuing. To overwrite the current swap partition with random garbage, execute the following

command:

dd if=/dev/random of=/dev/ada0s1b bs=1m

To encrypt the swap partition using man:gbde[8], add the .bde suffix to the swap line in /etc/fstab :

Device Mountpoint FStype Options Dump Pass#

/dev/ada0s1b.bde none swap sw 0 0

To instead encrypt the swap partition using man:geli[8], use the .eli suffix:

Device Mountpoint FStype Options Dump Pass#

/dev/ada0s1b.eli none swap sw 0 0

By default, man:geli[8] uses the AES algorithm with a key length of 128 bits. Normally the default

settings will suffice. If desired, these defaults can be altered in the options field in /etc/fstab . The

possible flags are:

aalgo

Data integrity verification algorithm used to ensure that the encrypted data has not been

tampered with. See man:geli[8] for a list of supported algorithms.

ealgo

Encryption algorithm used to protect the data. See man:geli[8] for a list of supported algorithms.

456

keylen

The length of the key used for the encryption algorithm. See man:geli[8] for the key lengths that

are supported by each encryption algorithm.

sectorsize

The size of the blocks data is broken into before it is encrypted. Larger sector sizes increase

performance at the cost of higher storage overhead. The recommended size is 4096 bytes.

This example configures an encrypted swap partition using the Blowfish algorithm with a key

length of 128 bits and a sectorsize of 4 kilobytes:

Device Mountpoint FStype Options Dump Pass#

/dev/ada0s1b.eli none swap sw,ealgo=blowfish,keylen=128,sectorsize=4096

0 0

18.14.2. Encrypted Swap Verification

Once the system has rebooted, proper operation of the encrypted swap can be verified using

swapinfo .

If man:gbde[8] is being used:

% swapinfo

Device 1K-blocks Used Avail Capacity

/dev/ada0s1b.bde 542720 0 542720 0

If man:geli[8] is being used:

% swapinfo

Device 1K-blocks Used Avail Capacity

/dev/ada0s1b.eli 542720 0 542720 0

18.15. Highly Available Storage (HAST)

High availability is one of the main requirements in serious business applications and highly-

available storage is a key component in such environments. In FreeBSD, the Highly Available

STorage (HAST) framework allows transparent storage of the same data across several physically

separated machines connected by a TCP/IP network. HAST can be understood as a network-based

RAID1 (mirror), and is similar to the DRBD¨ storage system used in the GNU/Linux¨ platform. In

combination with other high-availability features of FreeBSD like CARP, HAST makes it possible to

build a highly-available storage cluster that is resistant to hardware failures.

The following are the main features of HAST:

¥ Can be used to mask I/O errors on local hard drives.

457

¥ File system agnostic as it works with any file system supported by FreeBSD.

¥ Efficient and quick resynchronization as only the blocks that were modified during the

downtime of a node are synchronized.

¥ Can be used in an already deployed environment to add additional redundancy.

¥ Together with CARP, Heartbeat, or other tools, it can be used to build a robust and durable

storage system.

After reading this section, you will know:

¥ What HAST is, how it works, and which features it provides.

¥ How to set up and use HAST on FreeBSD.

¥ How to integrate CARP and man:devd[8] to build a robust storage system.

Before reading this section, you should:

¥ Understand UNIX¨ and FreeBSD basics (crossref:basics[basics,FreeBSD Basics]).

¥ Know how to configure network interfaces and other core FreeBSD subsystems

(crossref:config[config-tuning,Configuration and Tuning]).

¥ Have a good understanding of FreeBSD networking (crossref:partiv[network-

communication,"Network Communication"]).

The HAST project was sponsored by The FreeBSD Foundation with support from

http://www.omc.net/ and http://www.transip.nl/ .

18.15.1. HAST Operation

HAST provides synchronous block-level replication between two physical machines: the primary ,

also known as the master node, and the secondary , or slave node. These two machines together are

referred to as a cluster.

Since HAST works in a primary-secondary configuration, it allows only one of the cluster nodes to

be active at any given time. The primary node, also called active , is the one which will handle all the

I/O requests to HAST-managed devices. The secondary node is automatically synchronized from the

primary node.

The physical components of the HAST system are the local disk on primary node, and the disk on

the remote, secondary node.

HAST operates synchronously on a block level, making it transparent to file systems and

applications. HAST provides regular GEOM providers in /dev/hast/ for use by other tools or

applications. There is no difference between using HAST-provided devices and raw disks or

partitions.

Each write, delete, or flush operation is sent to both the local disk and to the remote disk over

TCP/IP. Each read operation is served from the local disk, unless the local disk is not up-to-date or

an I/O error occurs. In such cases, the read operation is sent to the secondary node.

458

http://www.omc.net/
http://www.transip.nl/

HAST tries to provide fast failure recovery. For this reason, it is important to reduce

synchronization time after a nodeÕs outage. To provide fast synchronization, HAST manages an on-

disk bitmap of dirty extents and only synchronizes those during a regular synchronization, with an

exception of the initial sync.

There are many ways to handle synchronization. HAST implements several replication modes to

handle different synchronization methods:

¥ memsync : This mode reports a write operation as completed when the local write operation is

finished and when the remote node acknowledges data arrival, but before actually storing the

data. The data on the remote node will be stored directly after sending the acknowledgement.

This mode is intended to reduce latency, but still provides good reliability. This mode is the

default.

¥ fullsync : This mode reports a write operation as completed when both the local write and the

remote write complete. This is the safest and the slowest replication mode.

¥ async : This mode reports a write operation as completed when the local write completes. This is

the fastest and the most dangerous replication mode. It should only be used when replicating to

a distant node where latency is too high for other modes.

18.15.2. HAST Configuration

The HAST framework consists of several components:

¥ The man:hastd[8] daemon which provides data synchronization. When this daemon is started,

it will automatically load geom_gate.ko .

¥ The userland management utility, man:hastctl[8].

¥ The man:hast.conf[5] configuration file. This file must exist before starting hastd.

Users who prefer to statically build GEOM_GATE support into the kernel should add this line to the

custom kernel configuration file, then rebuild the kernel using the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]:

options GEOM_GATE

The following example describes how to configure two nodes in master-slave/primary-secondary

operation using HAST to replicate the data between the two. The nodes will be called hasta , with an

IP address of 172.16.0.1 , and hastb , with an IP address of 172.16.0.2 . Both nodes will have a

dedicated hard drive /dev/ad6 of the same size for HAST operation. The HAST pool, sometimes

referred to as a resource or the GEOM provider in /dev/hast/ , will be called test .

Configuration of HAST is done using /etc/hast.conf . This file should be identical on both nodes. The

simplest configuration is:

459

resource test {

Ê on hasta {

Ê local /dev/ad6

Ê remote 172.16.0.2

Ê }

Ê on hastb {

Ê local /dev/ad6

Ê remote 172.16.0.1

Ê }

}

For more advanced configuration, refer to man:hast.conf[5].

!

It is also possible to use host names in the remote statements if the hosts are

resolvable and defined either in /etc/hosts or in the local DNS.

Once the configuration exists on both nodes, the HAST pool can be created. Run these commands on

both nodes to place the initial metadata onto the local disk and to start man:hastd[8]:

hastctl create test

service hastd onestart

!

It is not possible to use GEOM providers with an existing file system or to convert

an existing storage to a HAST-managed pool. This procedure needs to store some

metadata on the provider and there will not be enough required space available

on an existing provider.

A HAST nodeÕs primary or secondary role is selected by an administrator, or software like Heartbeat,

using man:hastctl[8]. On the primary node, hasta , issue this command:

hastctl role primary test

Run this command on the secondary node, hastb :

hastctl role secondary test

Verify the result by running hastctl on each node:

hastctl status test

Check the status line in the output. If it says degraded , something is wrong with the configuration

file. It should say complete on each node, meaning that the synchronization between the nodes has

started. The synchronization completes when hastctl status reports 0 bytes of dirty extents.

460

The next step is to create a file system on the GEOM provider and mount it. This must be done on

the primary node. Creating the file system can take a few minutes, depending on the size of the hard

drive. This example creates a UFS file system on /dev/hast/test :

newfs -U /dev/hast/test

mkdir /hast/test

mount /dev/hast/test /hast/test

Once the HAST framework is configured properly, the final step is to make sure that HAST is started

automatically during system boot. Add this line to /etc/rc.conf :

hastd_enable="YES"

18.15.2.1. Failover Configuration

The goal of this example is to build a robust storage system which is resistant to the failure of any

given node. If the primary node fails, the secondary node is there to take over seamlessly, check and

mount the file system, and continue to work without missing a single bit of data.

To accomplish this task, the Common Address Redundancy Protocol (CARP) is used to provide for

automatic failover at the IP layer. CARP allows multiple hosts on the same network segment to

share an IP address. Set up CARP on both nodes of the cluster according to the documentation

available in crossref:advanced-networking[carp,ÒCommon Address Redundancy Protocol (CARP)Ó].

In this example, each node will have its own management IP address and a shared IP address of

172.16.0.254 . The primary HAST node of the cluster must be the master CARP node.

The HAST pool created in the previous section is now ready to be exported to the other hosts on the

network. This can be accomplished by exporting it through NFS or Samba, using the shared IP

address 172.16.0.254 . The only problem which remains unresolved is an automatic failover should

the primary node fail.

In the event of CARP interfaces going up or down, the FreeBSD operating system generates a

man:devd[8] event, making it possible to watch for state changes on the CARP interfaces. A state

change on the CARP interface is an indication that one of the nodes failed or came back online.

These state change events make it possible to run a script which will automatically handle the HAST

failover.

To catch state changes on the CARP interfaces, add this configuration to /etc/devd.conf on each

node:

461

notify 30 {

Ê match "system" "IFNET";

Ê match "subsystem" "carp0";

Ê match "type" "LINK_UP";

Ê action "/usr/local/sbin/carp-hast-switch master";

};

notify 30 {

Ê match "system" "IFNET";

Ê match "subsystem" "carp0";

Ê match "type" "LINK_DOWN";

Ê action "/usr/local/sbin/carp-hast-switch slave";

};

!

If the systems are running FreeBSD 10 or higher, replace carp0 with the name of

the CARP-configured interface.

Restart man:devd[8] on both nodes to put the new configuration into effect:

service devd restart

When the specified interface state changes by going up or down , the system generates a

notification, allowing the man:devd[8] subsystem to run the specified automatic failover script,

/usr/local/sbin/carp-hast-switch . For further clarification about this configuration, refer to

man:devd.conf[5].

Here is an example of an automated failover script:

#!/bin/sh

Original script by Freddie Cash <fjwcash@gmail.com>

Modified by Michael W. Lucas <mwlucas@BlackHelicopters.org>

and Viktor Petersson <vpetersson@wireload.net>

The names of the HAST resources, as listed in /etc/hast.conf

resources="test"

delay in mounting HAST resource after becoming master

make your best guess

delay=3

logging

log="local0.debug"

name="carp-hast"

end of user configurable stuff

462

case "$1" in

Ê master)

Ê logger -p $log -t $name "Switching to primary provider for ${resources}."

Ê sleep ${delay}

Ê # Wait for any "hastd secondary" processes to stop

Ê for disk in ${resources}; do

Ê while $(pgrep -lf "hastd: ${disk} \(secondary\)" > /dev/null 2>&1); do

Ê sleep 1

Ê done

Ê # Switch role for each disk

Ê hastctl role primary ${disk}

Ê if [$? -ne 0]; then

Ê logger -p $log -t $name "Unable to change role to primary for resource

${disk}."

Ê exit 1

Ê fi

Ê done

Ê # Wait for the /dev/hast/* devices to appear

Ê for disk in ${resources}; do

Ê for I in $(jot 60); do

Ê [-c "/dev/hast/${disk}"] && break

Ê sleep 0.5

Ê done

Ê if [! -c "/dev/hast/${disk}"]; then

Ê logger -p $log -t $name "GEOM provider /dev/hast/${disk} did not

appear."

Ê exit 1

Ê fi

Ê done

Ê logger -p $log -t $name "Role for HAST resources ${resources} switched to

primary."

Ê logger -p $log -t $name "Mounting disks."

Ê for disk in ${resources}; do

Ê mkdir -p /hast/${disk}

Ê fsck -p -y -t ufs /dev/hast/${disk}

Ê mount /dev/hast/${disk} /hast/${disk}

Ê done

Ê ;;

Ê slave)

Ê logger -p $log -t $name "Switching to secondary provider for ${resources}."

Ê # Switch roles for the HAST resources

Ê for disk in ${resources}; do

463

Ê if ! mount | grep -q "^/dev/hast/${disk} on "

Ê then

Ê else

Ê umount -f /hast/${disk}

Ê fi

Ê sleep $delay

Ê hastctl role secondary ${disk} 2>&1

Ê if [$? -ne 0]; then

Ê logger -p $log -t $name "Unable to switch role to secondary for

resource ${disk}."

Ê exit 1

Ê fi

Ê logger -p $log -t $name "Role switched to secondary for resource ${disk}."

Ê done

Ê ;;

esac

In a nutshell, the script takes these actions when a node becomes master:

¥ Promotes the HAST pool to primary on the other node.

¥ Checks the file system under the HAST pool.

¥ Mounts the pool.

When a node becomes secondary:

¥ Unmounts the HAST pool.

¥ Degrades the HAST pool to secondary.

$

This is just an example script which serves as a proof of concept. It does not handle

all the possible scenarios and can be extended or altered in any way, for example,

to start or stop required services.

!

For this example, a standard UFS file system was used. To reduce the time needed

for recovery, a journal-enabled UFS or ZFS file system can be used instead.

More detailed information with additional examples can be found at http://wiki.FreeBSD.org/HAST .

18.15.3. Troubleshooting

HAST should generally work without issues. However, as with any other software product, there

may be times when it does not work as supposed. The sources of the problems may be different, but

the rule of thumb is to ensure that the time is synchronized between the nodes of the cluster.

When troubleshooting HAST, the debugging level of man:hastd[8] should be increased by starting

hastd with -d . This argument may be specified multiple times to further increase the debugging

level. Consider also using -F , which starts hastd in the foreground.

464

http://wiki.FreeBSD.org/HAST

18.15.3.1. Recovering from the Split-brain Condition

Split-brain occurs when the nodes of the cluster are unable to communicate with each other, and

both are configured as primary. This is a dangerous condition because it allows both nodes to make

incompatible changes to the data. This problem must be corrected manually by the system

administrator.

The administrator must either decide which node has more important changes, or perform the

merge manually. Then, let HAST perform full synchronization of the node which has the broken

data. To do this, issue these commands on the node which needs to be resynchronized:

hastctl role init test

hastctl create test

hastctl role secondary test

465

Chapter 19. GEOM: Modular Disk

Transformation Framework

19.1. Synopsis

In FreeBSD, the GEOM framework permits access and control to classes, such as Master Boot

Records and BSD labels, through the use of providers, or the disk devices in /dev . By supporting

various software RAID configurations, GEOM transparently provides access to the operating system

and operating system utilities.

This chapter covers the use of disks under the GEOM framework in FreeBSD. This includes the

major RAID control utilities which use the framework for configuration. This chapter is not a

definitive guide to RAID configurations and only GEOM-supported RAID classifications are

discussed.

After reading this chapter, you will know:

¥ What type of RAID support is available through GEOM.

¥ How to use the base utilities to configure, maintain, and manipulate the various RAID levels.

¥ How to mirror, stripe, encrypt, and remotely connect disk devices through GEOM.

¥ How to troubleshoot disks attached to the GEOM framework.

Before reading this chapter, you should:

¥ Understand how FreeBSD treats disk devices (crossref:disks[disks,Storage]).

¥ Know how to configure and install a new kernel

(crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]).

19.2. RAID0 - Striping

Striping combines several disk drives into a single volume. Striping can be performed through the

use of hardware RAID controllers. The GEOM disk subsystem provides software support for disk

striping, also known as RAID0, without the need for a RAID disk controller.

In RAID0, data is split into blocks that are written across all the drives in the array. As seen in the

following illustration, instead of having to wait on the system to write 256k to one disk, RAID0 can

simultaneously write 64k to each of the four disks in the array, offering superior I/O performance.

This performance can be enhanced further by using multiple disk controllers.

466

Each disk in a RAID0 stripe must be of the same size, since I/O requests are interleaved to read or

write to multiple disks in parallel.

!

RAID0 does not provide any redundancy. This means that if one disk in the array

fails, all of the data on the disks is lost. If the data is important, implement a

backup strategy that regularly saves backups to a remote system or device.

The process for creating a software, GEOM-based RAID0 on a FreeBSD system using commodity

disks is as follows. Once the stripe is created, refer to man:gstripe[8] for more information on how

to control an existing stripe.

467

Procedure: Creating a Stripe of Unformatted ATA Disks

1. Load the geom_stripe.ko module:

kldload geom_stripe

2. Ensure that a suitable mount point exists. If this volume will become a root partition, then

temporarily use another mount point such as /mnt .

3. Determine the device names for the disks which will be striped, and create the new stripe

device. For example, to stripe two unused and unpartitioned ATA disks with device names

of /dev/ad2 and /dev/ad3 :

gstripe label -v st0 /dev/ad2 /dev/ad3

Metadata value stored on /dev/ad2.

Metadata value stored on /dev/ad3.

Done.

4. Write a standard label, also known as a partition table, on the new volume and install the

default bootstrap code:

bsdlabel -wB /dev/stripe/st0

5. This process should create two other devices in /dev/stripe in addition to st0 . Those

include st0a and st0c . At this point, a UFS file system can be created on st0a using newfs :

newfs -U /dev/stripe/st0a

Many numbers will glide across the screen, and after a few seconds, the process will be

complete. The volume has been created and is ready to be mounted.

6. To manually mount the created disk stripe:

mount /dev/stripe/st0a /mnt

7. To mount this striped file system automatically during the boot process, place the volume

information in /etc/fstab . In this example, a permanent mount point, named stripe , is

created:

mkdir /stripe

echo "/dev/stripe/st0a /stripe ufs rw 2 2" \

>> /etc/fstab

468

8. The geom_stripe.ko module must also be automatically loaded during system

initialization, by adding a line to /boot/loader.conf :

echo 'geom_stripe_load="YES"' >> /boot/loader.conf

19.3. RAID1 - Mirroring

RAID1, or mirroring , is the technique of writing the same data to more than one disk drive. Mirrors

are usually used to guard against data loss due to drive failure. Each drive in a mirror contains an

identical copy of the data. When an individual drive fails, the mirror continues to work, providing

data from the drives that are still functioning. The computer keeps running, and the administrator

has time to replace the failed drive without user interruption.

Two common situations are illustrated in these examples. The first creates a mirror out of two new

drives and uses it as a replacement for an existing single drive. The second example creates a

mirror on a single new drive, copies the old driveÕs data to it, then inserts the old drive into the

mirror. While this procedure is slightly more complicated, it only requires one new drive.

Traditionally, the two drives in a mirror are identical in model and capacity, but man:gmirror[8]

does not require that. Mirrors created with dissimilar drives will have a capacity equal to that of

the smallest drive in the mirror. Extra space on larger drives will be unused. Drives inserted into

the mirror later must have at least as much capacity as the smallest drive already in the mirror.

"

The mirroring procedures shown here are non-destructive, but as with any major

disk operation, make a full backup first.

"

While man:dump[8] is used in these procedures to copy file systems, it does not

work on file systems with soft updates journaling. See man:tunefs[8] for

information on detecting and disabling soft updates journaling.

19.3.1. Metadata Issues

Many disk systems store metadata at the end of each disk. Old metadata should be erased before

reusing the disk for a mirror. Most problems are caused by two particular types of leftover

metadata: GPT partition tables and old metadata from a previous mirror.

GPT metadata can be erased with man:gpart[8]. This example erases both primary and backup GPT

partition tables from disk ada8 :

gpart destroy -F ada8

A disk can be removed from an active mirror and the metadata erased in one step using

man:gmirror[8]. Here, the example disk ada8 is removed from the active mirror gm4 :

469

gmirror remove gm4 ada8

If the mirror is not running, but old mirror metadata is still on the disk, use gmirror clear to

remove it:

gmirror clear ada8

man:gmirror[8] stores one block of metadata at the end of the disk. As GPT partition schemes also

store metadata at the end of the disk, mirroring entire GPT disks with man:gmirror[8] is not

recommended. MBR partitioning is used here because it only stores a partition table at the start of

the disk and does not conflict with the mirror metadata.

19.3.2. Creating a Mirror with Two New Disks

In this example, FreeBSD has already been installed on a single disk, ada0 . Two new disks, ada1 and

ada2 , have been connected to the system. A new mirror will be created on these two disks and used

to replace the old single disk.

The geom_mirror.ko kernel module must either be built into the kernel or loaded at boot- or run-

time. Manually load the kernel module now:

gmirror load

Create the mirror with the two new drives:

gmirror label -v gm0 /dev/ada1 /dev/ada2

gm0 is a user-chosen device name assigned to the new mirror. After the mirror has been started,

this device name appears in /dev/mirror/ .

MBR and bsdlabel partition tables can now be created on the mirror with man:gpart[8]. This

example uses a traditional file system layout, with partitions for / , swap, /var , /tmp , and /usr . A

single / and a swap partition will also work.

Partitions on the mirror do not have to be the same size as those on the existing disk, but they must

be large enough to hold all the data already present on ada0 .

gpart create -s MBR mirror/gm0

gpart add -t freebsd -a 4k mirror/gm0

gpart show mirror/gm0

=> 63 156301423 mirror/gm0 MBR (74G)

Ê 63 63 - free - (31k)

Ê 126 156301299 1 freebsd (74G)

Ê 156301425 61 - free - (30k)

470

gpart create -s BSD mirror/gm0s1

gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1

gpart add -t freebsd-swap -a 4k -s 4g mirror/gm0s1

gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1

gpart add -t freebsd-ufs -a 4k -s 1g mirror/gm0s1

gpart add -t freebsd-ufs -a 4k mirror/gm0s1

gpart show mirror/gm0s1

=> 0 156301299 mirror/gm0s1 BSD (74G)

Ê 0 2 - free - (1.0k)

Ê 2 4194304 1 freebsd-ufs (2.0G)

Ê 4194306 8388608 2 freebsd-swap (4.0G)

Ê 12582914 4194304 4 freebsd-ufs (2.0G)

Ê 16777218 2097152 5 freebsd-ufs (1.0G)

Ê 18874370 137426928 6 freebsd-ufs (65G)

Ê 156301298 1 - free - (512B)

Make the mirror bootable by installing bootcode in the MBR and bsdlabel and setting the active

slice:

gpart bootcode -b /boot/mbr mirror/gm0

gpart set -a active -i 1 mirror/gm0

gpart bootcode -b /boot/boot mirror/gm0s1

Format the file systems on the new mirror, enabling soft-updates.

newfs -U /dev/mirror/gm0s1a

newfs -U /dev/mirror/gm0s1d

newfs -U /dev/mirror/gm0s1e

newfs -U /dev/mirror/gm0s1f

File systems from the original ada0 disk can now be copied onto the mirror with man:dump[8] and

man:restore[8].

mount /dev/mirror/gm0s1a /mnt

dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -)

mount /dev/mirror/gm0s1d /mnt/var

mount /dev/mirror/gm0s1e /mnt/tmp

mount /dev/mirror/gm0s1f /mnt/usr

dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -)

dump -C16 -b64 -0aL -f - /tmp | (cd /mnt/tmp && restore -rf -)

dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -)

Edit /mnt/etc/fstab to point to the new mirror file systems:

471

Device Mountpoint FStype Options Dump Pass#

/dev/mirror/gm0s1a / ufs rw 1 1

/dev/mirror/gm0s1b none swap sw 0 0

/dev/mirror/gm0s1d /var ufs rw 2 2

/dev/mirror/gm0s1e /tmp ufs rw 2 2

/dev/mirror/gm0s1f /usr ufs rw 2 2

If the geom_mirror.ko kernel module has not been built into the kernel, /mnt/boot/loader.conf is

edited to load the module at boot:

geom_mirror_load="YES"

Reboot the system to test the new mirror and verify that all data has been copied. The BIOS will see

the mirror as two individual drives rather than a mirror. Since the drives are identical, it does not

matter which is selected to boot.

See Troubleshooting if there are problems booting. Powering down and disconnecting the original

ada0 disk will allow it to be kept as an offline backup.

In use, the mirror will behave just like the original single drive.

19.3.3. Creating a Mirror with an Existing Drive

In this example, FreeBSD has already been installed on a single disk, ada0 . A new disk, ada1 , has

been connected to the system. A one-disk mirror will be created on the new disk, the existing

system copied onto it, and then the old disk will be inserted into the mirror. This slightly complex

procedure is required because gmirror needs to put a 512-byte block of metadata at the end of each

disk, and the existing ada0 has usually had all of its space already allocated.

Load the geom_mirror.ko kernel module:

gmirror load

Check the media size of the original disk with diskinfo :

diskinfo -v ada0 | head -n3

/dev/ada0

Ê 512 # sectorsize

Ê 1000204821504 # mediasize in bytes (931G)

Create a mirror on the new disk. To make certain that the mirror capacity is not any larger than the

original ada0 drive, man:gnop[8] is used to create a fake drive of the exact same size. This drive

does not store any data, but is used only to limit the size of the mirror. When man:gmirror[8]

creates the mirror, it will restrict the capacity to the size of gzero.nop , even if the new ada1 drive

has more space. Note that the 1000204821504 in the second line is equal to ada0 's media size as

472

shown by diskinfo above.

geom zero load

gnop create -s 1000204821504 gzero

gmirror label -v gm0 gzero.nop ada1

gmirror forget gm0

Since gzero.nop does not store any data, the mirror does not see it as connected. The mirror is told

to "forget" unconnected components, removing references to gzero.nop . The result is a mirror

device containing only a single disk, ada1 .

After creating gm0 , view the partition table on ada0 . This output is from a 1 TB drive. If there is

some unallocated space at the end of the drive, the contents may be copied directly from ada0 to

the new mirror.

However, if the output shows that all of the space on the disk is allocated, as in the following listing,

there is no space available for the 512-byte mirror metadata at the end of the disk.

gpart show ada0

=> 63 1953525105 ada0 MBR (931G)

Ê 63 1953525105 1 freebsd [active] (931G)

In this case, the partition table must be edited to reduce the capacity by one sector on mirror/gm0 .

The procedure will be explained later.

In either case, partition tables on the primary disk should be first copied using gpart backup and

gpart restore .

gpart backup ada0 > table.ada0

gpart backup ada0s1 > table.ada0s1

These commands create two files, table.ada0 and table.ada0s1 . This example is from a 1 TB drive:

cat table.ada0

MBR 4

1 freebsd 63 1953525105 [active]

cat table.ada0s1

BSD 8

1 freebsd-ufs 0 4194304

2 freebsd-swap 4194304 33554432

4 freebsd-ufs 37748736 50331648

5 freebsd-ufs 88080384 41943040

6 freebsd-ufs 130023424 838860800

7 freebsd-ufs 968884224 984640881

473

If no free space is shown at the end of the disk, the size of both the slice and the last partition must

be reduced by one sector. Edit the two files, reducing the size of both the slice and last partition by

one. These are the last numbers in each listing.

cat table.ada0

MBR 4

1 freebsd 63 1953525104 [active]

cat table.ada0s1

BSD 8

1 freebsd-ufs 0 4194304

2 freebsd-swap 4194304 33554432

4 freebsd-ufs 37748736 50331648

5 freebsd-ufs 88080384 41943040

6 freebsd-ufs 130023424 838860800

7 freebsd-ufs 968884224 984640880

If at least one sector was unallocated at the end of the disk, these two files can be used without

modification.

Now restore the partition table into mirror/gm0 :

gpart restore mirror/gm0 < table.ada0

gpart restore mirror/gm0s1 < table.ada0s1

Check the partition table with gpart show . This example has gm0s1a for / , gm0s1d for /var , gm0s1e

for /usr , gm0s1f for /data1 , and gm0s1g for /data2 .

gpart show mirror/gm0

=> 63 1953525104 mirror/gm0 MBR (931G)

Ê 63 1953525042 1 freebsd [active] (931G)

Ê 1953525105 62 - free - (31k)

gpart show mirror/gm0s1

=> 0 1953525042 mirror/gm0s1 BSD (931G)

Ê 0 2097152 1 freebsd-ufs (1.0G)

Ê 2097152 16777216 2 freebsd-swap (8.0G)

Ê 18874368 41943040 4 freebsd-ufs (20G)

Ê 60817408 20971520 5 freebsd-ufs (10G)

Ê 81788928 629145600 6 freebsd-ufs (300G)

Ê 710934528 1242590514 7 freebsd-ufs (592G)

Ê 1953525042 63 - free - (31k)

Both the slice and the last partition must have at least one free block at the end of the disk.

Create file systems on these new partitions. The number of partitions will vary to match the

474

original disk, ada0 .

newfs -U /dev/mirror/gm0s1a

newfs -U /dev/mirror/gm0s1d

newfs -U /dev/mirror/gm0s1e

newfs -U /dev/mirror/gm0s1f

newfs -U /dev/mirror/gm0s1g

Make the mirror bootable by installing bootcode in the MBR and bsdlabel and setting the active

slice:

gpart bootcode -b /boot/mbr mirror/gm0

gpart set -a active -i 1 mirror/gm0

gpart bootcode -b /boot/boot mirror/gm0s1

Adjust /etc/fstab to use the new partitions on the mirror. Back up this file first by copying it to

/etc/fstab.orig .

cp /etc/fstab /etc/fstab.orig

Edit /etc/fstab , replacing /dev/ada0 with mirror/gm0 .

Device Mountpoint FStype Options Dump Pass#

/dev/mirror/gm0s1a / ufs rw 1 1

/dev/mirror/gm0s1b none swap sw 0 0

/dev/mirror/gm0s1d /var ufs rw 2 2

/dev/mirror/gm0s1e /usr ufs rw 2 2

/dev/mirror/gm0s1f /data1 ufs rw 2 2

/dev/mirror/gm0s1g /data2 ufs rw 2 2

If the geom_mirror.ko kernel module has not been built into the kernel, edit /boot/loader.conf to

load it at boot:

geom_mirror_load="YES"

File systems from the original disk can now be copied onto the mirror with man:dump[8] and

man:restore[8]. Each file system dumped with dump -L will create a snapshot first, which can take

some time.

475

mount /dev/mirror/gm0s1a /mnt

dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -)

mount /dev/mirror/gm0s1d /mnt/var

mount /dev/mirror/gm0s1e /mnt/usr

mount /dev/mirror/gm0s1f /mnt/data1

mount /dev/mirror/gm0s1g /mnt/data2

dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -)

dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -)

dump -C16 -b64 -0aL -f - /data1 | (cd /mnt/data1 && restore -rf -)

dump -C16 -b64 -0aL -f - /data2 | (cd /mnt/data2 && restore -rf -)

Restart the system, booting from ada1 . If everything is working, the system will boot from

mirror/gm0 , which now contains the same data as ada0 had previously. See Troubleshooting if

there are problems booting.

At this point, the mirror still consists of only the single ada1 disk.

After booting from mirror/gm0 successfully, the final step is inserting ada0 into the mirror.

#

When ada0 is inserted into the mirror, its former contents will be overwritten by

data from the mirror. Make certain that mirror/gm0 has the same contents as ada0

before adding ada0 to the mirror. If the contents previously copied by

man:dump[8] and man:restore[8] are not identical to what was on ada0 , revert

/etc/fstab to mount the file systems on ada0 , reboot, and start the whole procedure

again.

gmirror insert gm0 ada0

GEOM_MIRROR: Device gm0: rebuilding provider ada0

Synchronization between the two disks will start immediately. Use gmirror status to view the

progress.

gmirror status

Ê Name Status Components

girror/gm0 DEGRADED ada1 (ACTIVE)

Ê ada0 (SYNCHRONIZING, 64%)

After a while, synchronization will finish.

GEOM_MIRROR: Device gm0: rebuilding provider ada0 finished.

gmirror status

Ê Name Status Components

mirror/gm0 COMPLETE ada1 (ACTIVE)

Ê ada0 (ACTIVE)

476

mirror/gm0 now consists of the two disks ada0 and ada1 , and the contents are automatically

synchronized with each other. In use, mirror/gm0 will behave just like the original single drive.

19.3.4. Troubleshooting

If the system no longer boots, BIOS settings may have to be changed to boot from one of the new

mirrored drives. Either mirror drive can be used for booting, as they contain identical data.

If the boot stops with this message, something is wrong with the mirror device:

Mounting from ufs:/dev/mirror/gm0s1a failed with error 19.

Loader variables:

Ê vfs.root.mountfrom=ufs:/dev/mirror/gm0s1a

Ê vfs.root.mountfrom.options=rw

Manual root filesystem specification:

Ê <fstype>:<device> [options]

Ê Mount <device> using filesystem <fstype>

Ê and with the specified (optional) option list.

Ê eg. ufs:/dev/da0s1a

Ê zfs:tank

Ê cd9660:/dev/acd0 ro

Ê (which is equivalent to: mount -t cd9660 -o ro /dev/acd0 /)

Ê ? List valid disk boot devices

Ê . Yield 1 second (for background tasks)

Ê <empty line> Abort manual input

mountroot>

Forgetting to load the geom_mirror.ko module in /boot/loader.conf can cause this problem. To fix it,

boot from a FreeBSD installation media and choose Shell at the first prompt. Then load the mirror

module and mount the mirror device:

gmirror load

mount /dev/mirror/gm0s1a /mnt

Edit /mnt/boot/loader.conf , adding a line to load the mirror module:

geom_mirror_load="YES"

Save the file and reboot.

Other problems that cause error 19 require more effort to fix. Although the system should boot

from ada0 , another prompt to select a shell will appear if /etc/fstab is incorrect. Enter

477

ufs:/dev/ada0s1a at the boot loader prompt and press Enter . Undo the edits in /etc/fstab then mount

the file systems from the original disk (ada0) instead of the mirror. Reboot the system and try the

procedure again.

Enter full pathname of shell or RETURN for /bin/sh:

cp /etc/fstab.orig /etc/fstab

reboot

19.3.5. Recovering from Disk Failure

The benefit of disk mirroring is that an individual disk can fail without causing the mirror to lose

any data. In the above example, if ada0 fails, the mirror will continue to work, providing data from

the remaining working drive, ada1 .

To replace the failed drive, shut down the system and physically replace the failed drive with a new

drive of equal or greater capacity. Manufacturers use somewhat arbitrary values when rating

drives in gigabytes, and the only way to really be sure is to compare the total count of sectors

shown by diskinfo -v . A drive with larger capacity than the mirror will work, although the extra

space on the new drive will not be used.

After the computer is powered back up, the mirror will be running in a "degraded" mode with only

one drive. The mirror is told to forget drives that are not currently connected:

gmirror forget gm0

Any old metadata should be cleared from the replacement disk using the instructions in Metadata

Issues . Then the replacement disk, ada4 for this example, is inserted into the mirror:

gmirror insert gm0 /dev/ada4

Resynchronization begins when the new drive is inserted into the mirror. This process of copying

mirror data to a new drive can take a while. Performance of the mirror will be greatly reduced

during the copy, so inserting new drives is best done when there is low demand on the computer.

Progress can be monitored with gmirror status , which shows drives that are being synchronized

and the percentage of completion. During resynchronization, the status will be DEGRADED , changing

to COMPLETE when the process is finished.

19.4. RAID3 - Byte-level Striping with Dedicated Parity

RAID3 is a method used to combine several disk drives into a single volume with a dedicated parity

disk. In a RAID3 system, data is split up into a number of bytes that are written across all the drives

in the array except for one disk which acts as a dedicated parity disk. This means that disk reads

from a RAID3 implementation access all disks in the array. Performance can be enhanced by using

multiple disk controllers. The RAID3 array provides a fault tolerance of 1 drive, while providing a

capacity of 1 - 1/n times the total capacity of all drives in the array, where n is the number of hard

478

drives in the array. Such a configuration is mostly suitable for storing data of larger sizes such as

multimedia files.

At least 3 physical hard drives are required to build a RAID3 array. Each disk must be of the same

size, since I/O requests are interleaved to read or write to multiple disks in parallel. Also, due to the

nature of RAID3, the number of drives must be equal to 3, 5, 9, 17, and so on, or 2^n + 1.

This section demonstrates how to create a software RAID3 on a FreeBSD system.

!

While it is theoretically possible to boot from a RAID3 array on FreeBSD, that

configuration is uncommon and is not advised.

19.4.1. Creating a Dedicated RAID3 Array

In FreeBSD, support for RAID3 is implemented by the man:graid3[8] GEOM class. Creating a

dedicated RAID3 array on FreeBSD requires the following steps.

1. First, load the geom_raid3.ko kernel module by issuing one of the following commands:

graid3 load

or:

kldload geom_raid3

2. Ensure that a suitable mount point exists. This command creates a new directory to use as the

mount point:

mkdir /multimedia

3. Determine the device names for the disks which will be added to the array, and create the new

RAID3 device. The final device listed will act as the dedicated parity disk. This example uses

three unpartitioned ATA drives: ada1 and ada2 for data, and ada3 for parity.

graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3

Metadata value stored on /dev/ada1.

Metadata value stored on /dev/ada2.

Metadata value stored on /dev/ada3.

Done.

4. Partition the newly created gr0 device and put a UFS file system on it:

479

gpart create -s GPT /dev/raid3/gr0

gpart add -t freebsd-ufs /dev/raid3/gr0

newfs -j /dev/raid3/gr0p1

Many numbers will glide across the screen, and after a bit of time, the process will be complete.

The volume has been created and is ready to be mounted:

mount /dev/raid3/gr0p1 /multimedia/

The RAID3 array is now ready to use.

Additional configuration is needed to retain this setup across system reboots.

1. The geom_raid3.ko module must be loaded before the array can be mounted. To automatically

load the kernel module during system initialization, add the following line to /boot/loader.conf :

geom_raid3_load="YES"

2. The following volume information must be added to /etc/fstab in order to automatically mount

the arrayÕs file system during the system boot process:

/dev/raid3/gr0p1 /multimedia ufs rw 2 2

19.5. Software RAID Devices

Some motherboards and expansion cards add some simple hardware, usually just a ROM, that

allows the computer to boot from a RAID array. After booting, access to the RAID array is handled

by software running on the computerÕs main processor. This "hardware-assisted software RAID"

gives RAID arrays that are not dependent on any particular operating system, and which are

functional even before an operating system is loaded.

Several levels of RAID are supported, depending on the hardware in use. See man:graid[8] for a

complete list.

man:graid[8] requires the geom_raid.ko kernel module, which is included in the GENERIC kernel

starting with FreeBSD 9.1. If needed, it can be loaded manually with graid load .

19.5.1. Creating an Array

Software RAID devices often have a menu that can be entered by pressing special keys when the

computer is booting. The menu can be used to create and delete RAID arrays. man:graid[8] can also

create arrays directly from the command line.

graid label is used to create a new array. The motherboard used for this example has an Intel

480

software RAID chipset, so the Intel metadata format is specified. The new array is given a label of

gm0 , it is a mirror (RAID1), and uses drives ada0 and ada1 .

$

Some space on the drives will be overwritten when they are made into a new

array. Back up existing data first!

graid label Intel gm0 RAID1 ada0 ada1

GEOM_RAID: Intel-a29ea104: Array Intel-a29ea104 created.

GEOM_RAID: Intel-a29ea104: Disk ada0 state changed from NONE to ACTIVE.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:0-ada0 state changed from NONE to ACTIVE.

GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to ACTIVE.

GEOM_RAID: Intel-a29ea104: Array started.

GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from STARTING to OPTIMAL.

Intel-a29ea104 created

GEOM_RAID: Intel-a29ea104: Provider raid/r0 for volume gm0 created.

A status check shows the new mirror is ready for use:

graid status

Ê Name Status Components

raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE))

Ê ada1 (ACTIVE (ACTIVE))

The array device appears in /dev/raid/ . The first array is called r0 . Additional arrays, if present, will

be r1 , r2 , and so on.

The BIOS menu on some of these devices can create arrays with special characters in their names.

To avoid problems with those special characters, arrays are given simple numbered names like r0 .

To show the actual labels, like gm0 in the example above, use man:sysctl[8]:

sysctl kern.geom.raid.name_format=1

19.5.2. Multiple Volumes

Some software RAID devices support more than one volume on an array. Volumes work like

partitions, allowing space on the physical drives to be split and used in different ways. For example,

Intel software RAID devices support two volumes. This example creates a 40 G mirror for safely

storing the operating system, followed by a 20 G RAID0 (stripe) volume for fast temporary storage:

graid label -S 40G Intel gm0 RAID1 ada0 ada1

graid add -S 20G gm0 RAID0

Volumes appear as additional rX entries in /dev/raid/ . An array with two volumes will show r0 and

r1 .

481

See man:graid[8] for the number of volumes supported by different software RAID devices.

19.5.3. Converting a Single Drive to a Mirror

Under certain specific conditions, it is possible to convert an existing single drive to a man:graid[8]

array without reformatting. To avoid data loss during the conversion, the existing drive must meet

these minimum requirements:

¥ The drive must be partitioned with the MBR partitioning scheme. GPT or other partitioning

schemes with metadata at the end of the drive will be overwritten and corrupted by the

man:graid[8] metadata.

¥ There must be enough unpartitioned and unused space at the end of the drive to hold the

man:graid[8] metadata. This metadata varies in size, but the largest occupies 64 M, so at least

that much free space is recommended.

If the drive meets these requirements, start by making a full backup. Then create a single-drive

mirror with that drive:

graid label Intel gm0 RAID1 ada0 NONE

man:graid[8] metadata was written to the end of the drive in the unused space. A second drive can

now be inserted into the mirror:

graid insert raid/r0 ada1

Data from the original drive will immediately begin to be copied to the second drive. The mirror

will operate in degraded status until the copy is complete.

19.5.4. Inserting New Drives into the Array

Drives can be inserted into an array as replacements for drives that have failed or are missing. If

there are no failed or missing drives, the new drive becomes a spare. For example, inserting a new

drive into a working two-drive mirror results in a two-drive mirror with one spare drive, not a

three-drive mirror.

In the example mirror array, data immediately begins to be copied to the newly-inserted drive. Any

existing information on the new drive will be overwritten.

graid insert raid/r0 ada1

GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to NEW.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NEW to REBUILD.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 rebuild start at 0.

482

19.5.5. Removing Drives from the Array

Individual drives can be permanently removed from a from an array and their metadata erased:

graid remove raid/r0 ada1

GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from ACTIVE to OFFLINE.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-[unknown] state changed from ACTIVE to NONE.

GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from OPTIMAL to DEGRADED.

19.5.6. Stopping the Array

An array can be stopped without removing metadata from the drives. The array will be restarted

when the system is booted.

graid stop raid/r0

19.5.7. Checking Array Status

Array status can be checked at any time. After a drive was added to the mirror in the example

above, data is being copied from the original drive to the new drive:

graid status

Ê Name Status Components

raid/r0 DEGRADED ada0 (ACTIVE (ACTIVE))

Ê ada1 (ACTIVE (REBUILD 28%))

Some types of arrays, like RAID0 or CONCAT , may not be shown in the status report if disks have failed.

To see these partially-failed arrays, add -ga :

graid status -ga

Ê Name Status Components

Intel-e2d07d9a BROKEN ada6 (ACTIVE (ACTIVE))

19.5.8. Deleting Arrays

Arrays are destroyed by deleting all of the volumes from them. When the last volume present is

deleted, the array is stopped and metadata is removed from the drives:

graid delete raid/r0

19.5.9. Deleting Unexpected Arrays

Drives may unexpectedly contain man:graid[8] metadata, either from previous use or

manufacturer testing. man:graid[8] will detect these drives and create an array, interfering with

483

access to the individual drive. To remove the unwanted metadata:

1. Boot the system. At the boot menu, select 2 for the loader prompt. Enter:

OK set kern.geom.raid.enable=0

OK boot

The system will boot with man:graid[8] disabled.

2. Back up all data on the affected drive.

3. As a workaround, man:graid[8] array detection can be disabled by adding

kern.geom.raid.enable=0

to /boot/loader.conf .

To permanently remove the man:graid[8] metadata from the affected drive, boot a FreeBSD

installation CD-ROM or memory stick, and select Shell . Use status to find the name of the array,

typically raid/r0 :

graid status

Ê Name Status Components

raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE))

Ê ada1 (ACTIVE (ACTIVE))

Delete the volume by name:

graid delete raid/r0

If there is more than one volume shown, repeat the process for each volume. After the last array

has been deleted, the volume will be destroyed.

Reboot and verify data, restoring from backup if necessary. After the metadata has been

removed, the kern.geom.raid.enable=0 entry in /boot/loader.conf can also be removed.

19.6. GEOM Gate Network

GEOM provides a simple mechanism for providing remote access to devices such as disks, CDs, and

file systems through the use of the GEOM Gate network daemon, ggated. The system with the device

runs the server daemon which handles requests made by clients using ggatec. The devices should

not contain any sensitive data as the connection between the client and the server is not encrypted.

Similar to NFS, which is discussed in crossref:network-servers[network-nfs,"Network File System

(NFS)"], ggated is configured using an exports file. This file specifies which systems are permitted to

access the exported resources and what level of access they are offered. For example, to give the

484

client 192.168.1.5 read and write access to the fourth slice on the first SCSI disk, create

/etc/gg.exports with this line:

192.168.1.5 RW /dev/da0s4d

Before exporting the device, ensure it is not currently mounted. Then, start ggated:

ggated

Several options are available for specifying an alternate listening port or changing the default

location of the exports file. Refer to man:ggated[8] for details.

To access the exported device on the client machine, first use ggatec to specify the IP address of the

server and the device name of the exported device. If successful, this command will display a ggate

device name to mount. Mount that specified device name on a free mount point. This example

connects to the /dev/da0s4d partition on 192.168.1.1 , then mounts /dev/ggate0 on /mnt :

ggatec create -o rw 192.168.1.1 /dev/da0s4d

ggate0

mount /dev/ggate0 /mnt

The device on the server may now be accessed through /mnt on the client. For more details about

ggatec and a few usage examples, refer to man:ggatec[8].

!

The mount will fail if the device is currently mounted on either the server or any

other client on the network. If simultaneous access is needed to network

resources, use NFS instead.

When the device is no longer needed, unmount it with umount so that the resource is available to

other clients.

19.7. Labeling Disk Devices

During system initialization, the FreeBSD kernel creates device nodes as devices are found. This

method of probing for devices raises some issues. For instance, what if a new disk device is added

via USB? It is likely that a flash device may be handed the device name of da0 and the original da0

shifted to da1 . This will cause issues mounting file systems if they are listed in /etc/fstab which may

also prevent the system from booting.

One solution is to chain SCSI devices in order so a new device added to the SCSI card will be issued

unused device numbers. But what about USB devices which may replace the primary SCSI disk?

This happens because USB devices are usually probed before the SCSI card. One solution is to only

insert these devices after the system has been booted. Another method is to use only a single ATA

drive and never list the SCSI devices in /etc/fstab .

A better solution is to use glabel to label the disk devices and use the labels in /etc/fstab . Since

485

glabel stores the label in the last sector of a given provider, the label will remain persistent across

reboots. By using this label as a device, the file-system may always be mounted regardless of what

device node it is accessed through.

!

glabel can create both transient and permanent labels. Only permanent labels are

consistent across reboots. Refer to man:glabel[8] for more information on the

differences between labels.

19.7.1. Label Types and Examples

Permanent labels can be a generic or a file system label. Permanent file system labels can be

created with man:tunefs[8] or man:newfs[8]. These types of labels are created in a sub-directory of

/dev , and will be named according to the file system type. For example, UFS2 file system labels will

be created in /dev/ufs . Generic permanent labels can be created with glabel label . These are not

file system specific and will be created in /dev/label .

Temporary labels are destroyed at the next reboot. These labels are created in /dev/label and are

suited to experimentation. A temporary label can be created using glabel create .

To create a permanent label for a UFS2 file system without destroying any data, issue the following

command:

tunefs -L home /dev/da3

A label should now exist in /dev/ufs which may be added to /etc/fstab :

/dev/ufs/home /home ufs rw 2 2

!

The file system must not be mounted while attempting to run tunefs .

Now the file system may be mounted:

mount /home

From this point on, so long as the geom_label.ko kernel module is loaded at boot with

/boot/loader.conf or the GEOM_LABEL kernel option is present, the device node may change without

any ill effect on the system.

File systems may also be created with a default label by using the -L flag with newfs . Refer to

man:newfs[8] for more information.

The following command can be used to destroy the label:

glabel destroy home

486

The following example shows how to label the partitions of a boot disk.

Example 41. Labeling Partitions on the Boot Disk

By permanently labeling the partitions on the boot disk, the system should be able to continue

to boot normally, even if the disk is moved to another controller or transferred to a different

system. For this example, it is assumed that a single ATA disk is used, which is currently

recognized by the system as ad0 . It is also assumed that the standard FreeBSD partition scheme

is used, with / , /var , /usr and /tmp , as well as a swap partition.

Reboot the system, and at the man:loader[8] prompt, press 4 to boot into single user mode.

Then enter the following commands:

glabel label rootfs /dev/ad0s1a

GEOM_LABEL: Label for provider /dev/ad0s1a is label/rootfs

glabel label var /dev/ad0s1d

GEOM_LABEL: Label for provider /dev/ad0s1d is label/var

glabel label usr /dev/ad0s1f

GEOM_LABEL: Label for provider /dev/ad0s1f is label/usr

glabel label tmp /dev/ad0s1e

GEOM_LABEL: Label for provider /dev/ad0s1e is label/tmp

glabel label swap /dev/ad0s1b

GEOM_LABEL: Label for provider /dev/ad0s1b is label/swap

exit

The system will continue with multi-user boot. After the boot completes, edit /etc/fstab and

replace the conventional device names, with their respective labels. The final /etc/fstab will

look like this:

Device Mountpoint FStype Options Dump Pass#

/dev/label/swap none swap sw 0 0

/dev/label/rootfs / ufs rw 1 1

/dev/label/tmp /tmp ufs rw 2 2

/dev/label/usr /usr ufs rw 2 2

/dev/label/var /var ufs rw 2 2

The system can now be rebooted. If everything went well, it will come up normally and mount

will show:

mount

/dev/label/rootfs on / (ufs, local)

devfs on /dev (devfs, local)

/dev/label/tmp on /tmp (ufs, local, soft-updates)

/dev/label/usr on /usr (ufs, local, soft-updates)

/dev/label/var on /var (ufs, local, soft-updates)

487

The man:glabel[8] class supports a label type for UFS file systems, based on the unique file system

id, ufsid . These labels may be found in /dev/ufsid and are created automatically during system

startup. It is possible to use ufsid labels to mount partitions using /etc/fstab . Use glabel status to

receive a list of file systems and their corresponding ufsid labels:

% glabel status

Ê Name Status Components

ufsid/486b6fc38d330916 N/A ad4s1d

ufsid/486b6fc16926168e N/A ad4s1f

In the above example, ad4s1d represents /var , while ad4s1f represents /usr . Using the ufsid values

shown, these partitions may now be mounted with the following entries in /etc/fstab :

/dev/ufsid/486b6fc38d330916 /var ufs rw 2 2

/dev/ufsid/486b6fc16926168e /usr ufs rw 2 2

Any partitions with ufsid labels can be mounted in this way, eliminating the need to manually

create permanent labels, while still enjoying the benefits of device name independent mounting.

19.8. UFS Journaling Through GEOM

Support for journals on UFS file systems is available on FreeBSD. The implementation is provided

through the GEOM subsystem and is configured using gjournal . Unlike other file system journaling

implementations, the gjournal method is block based and not implemented as part of the file

system. It is a GEOM extension.

Journaling stores a log of file system transactions, such as changes that make up a complete disk

write operation, before meta-data and file writes are committed to the disk. This transaction log can

later be replayed to redo file system transactions, preventing file system inconsistencies.

This method provides another mechanism to protect against data loss and inconsistencies of the file

system. Unlike Soft Updates, which tracks and enforces meta-data updates, and snapshots, which

create an image of the file system, a log is stored in disk space specifically for this task. For better

performance, the journal may be stored on another disk. In this configuration, the journal provider

or storage device should be listed after the device to enable journaling on.

The GENERIC kernel provides support for gjournal . To automatically load the geom_journal.ko

kernel module at boot time, add the following line to /boot/loader.conf :

geom_journal_load="YES"

If a custom kernel is used, ensure the following line is in the kernel configuration file:

options GEOM_JOURNAL

488

Once the module is loaded, a journal can be created on a new file system using the following steps.

In this example, da4 is a new SCSI disk:

gjournal load

gjournal label /dev/da4

This will load the module and create a /dev/da4.journal device node on /dev/da4 .

A UFS file system may now be created on the journaled device, then mounted on an existing mount

point:

newfs -O 2 -J /dev/da4.journal

mount /dev/da4.journal /mnt

!

In the case of several slices, a journal will be created for each individual slice. For

instance, if ad4s1 and ad4s2 are both slices, then gjournal will create ad4s1.journal

and ad4s2.journal .

Journaling may also be enabled on current file systems by using tunefs . However, always make a

backup before attempting to alter an existing file system. In most cases, gjournal will fail if it is

unable to create the journal, but this does not protect against data loss incurred as a result of

misusing tunefs . Refer to man:gjournal[8] and man:tunefs[8] for more information about these

commands.

It is possible to journal the boot disk of a FreeBSD system. Refer to the article Implementing UFS

Journaling on a Desktop PC for detailed instructions.

489

https://docs.freebsd.org/en/articles/gjournal-desktop/
https://docs.freebsd.org/en/articles/gjournal-desktop/

Chapter 20. The Z File System (ZFS)

The Z File System , or ZFS, is an advanced file system designed to overcome many of the major

problems found in previous designs.

Originally developed at Sunª, ongoing open source ZFS development has moved to the OpenZFS

Project .

ZFS has three major design goals:

¥ Data integrity: All data includes a checksum of the data. When data is written, the checksum is

calculated and written along with it. When that data is later read back, the checksum is

calculated again. If the checksums do not match, a data error has been detected. ZFS will

attempt to automatically correct errors when data redundancy is available.

¥ Pooled storage: physical storage devices are added to a pool, and storage space is allocated from

that shared pool. Space is available to all file systems, and can be increased by adding new

storage devices to the pool.

¥ Performance: multiple caching mechanisms provide increased performance. ARC is an

advanced memory-based read cache. A second level of disk-based read cache can be added with

L2ARC , and disk-based synchronous write cache is available with ZIL .

A complete list of features and terminology is shown in ZFS Features and Terminology .

20.1. What Makes ZFS Different

ZFS is significantly different from any previous file system because it is more than just a file system.

Combining the traditionally separate roles of volume manager and file system provides ZFS with

unique advantages. The file system is now aware of the underlying structure of the disks.

Traditional file systems could only be created on a single disk at a time. If there were two disks then

two separate file systems would have to be created. In a traditional hardware RAID configuration,

this problem was avoided by presenting the operating system with a single logical disk made up of

the space provided by a number of physical disks, on top of which the operating system placed a

file system. Even in the case of software RAID solutions like those provided by GEOM, the UFS file

system living on top of the RAID transform believed that it was dealing with a single device. ZFSÕs

combination of the volume manager and the file system solves this and allows the creation of many

file systems all sharing a pool of available storage. One of the biggest advantages to ZFSÕs awareness

of the physical layout of the disks is that existing file systems can be grown automatically when

additional disks are added to the pool. This new space is then made available to all of the file

systems. ZFS also has a number of different properties that can be applied to each file system,

giving many advantages to creating a number of different file systems and datasets rather than a

single monolithic file system.

20.2. Quick Start Guide

There is a startup mechanism that allows FreeBSD to mount ZFS pools during system initialization.

To enable it, add this line to /etc/rc.conf :

490

http://open-zfs.org
http://open-zfs.org

zfs_enable="YES"

Then start the service:

service zfs start

The examples in this section assume three SCSI disks with the device names da0 , da1 , and da2 .

Users of SATA hardware should instead use ada device names.

20.2.1. Single Disk Pool

To create a simple, non-redundant pool using a single disk device:

zpool create example /dev/da0

To view the new pool, review the output of df :

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s1a 2026030 235230 1628718 13% /

devfs 1 1 0 100% /dev

/dev/ad0s1d 54098308 1032846 48737598 2% /usr

example 17547136 0 17547136 0% /example

This output shows that the example pool has been created and mounted. It is now accessible as a file

system. Files can be created on it and users can browse it:

cd /example

ls

touch testfile

ls -al

total 4

drwxr-xr-x 2 root wheel 3 Aug 29 23:15 .

drwxr-xr-x 21 root wheel 512 Aug 29 23:12 ..

-rw-r--r-- 1 root wheel 0 Aug 29 23:15 testfile

However, this pool is not taking advantage of any ZFS features. To create a dataset on this pool with

compression enabled:

zfs create example/compressed

zfs set compression=gzip example/compressed

The example/compressed dataset is now a ZFS compressed file system. Try copying some large files to

491

/example/compressed .

Compression can be disabled with:

zfs set compression=off example/compressed

To unmount a file system, use zfs umount and then verify with df :

zfs umount example/compressed

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s1a 2026030 235232 1628716 13% /

devfs 1 1 0 100% /dev

/dev/ad0s1d 54098308 1032864 48737580 2% /usr

example 17547008 0 17547008 0% /example

To re-mount the file system to make it accessible again, use zfs mount and verify with df :

zfs mount example/compressed

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s1a 2026030 235234 1628714 13% /

devfs 1 1 0 100% /dev

/dev/ad0s1d 54098308 1032864 48737580 2% /usr

example 17547008 0 17547008 0% /example

example/compressed 17547008 0 17547008 0% /example/compressed

The pool and file system may also be observed by viewing the output from mount :

mount

/dev/ad0s1a on / (ufs, local)

devfs on /dev (devfs, local)

/dev/ad0s1d on /usr (ufs, local, soft-updates)

example on /example (zfs, local)

example/compressed on /example/compressed (zfs, local)

After creation, ZFS datasets can be used like any file systems. However, many other features are

available which can be set on a per-dataset basis. In the example below, a new file system called

data is created. Important files will be stored here, so it is configured to keep two copies of each

data block:

zfs create example/data

zfs set copies=2 example/data

It is now possible to see the data and space utilization by issuing df :

492

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s1a 2026030 235234 1628714 13% /

devfs 1 1 0 100% /dev

/dev/ad0s1d 54098308 1032864 48737580 2% /usr

example 17547008 0 17547008 0% /example

example/compressed 17547008 0 17547008 0% /example/compressed

example/data 17547008 0 17547008 0% /example/data

Notice that each file system on the pool has the same amount of available space. This is the reason

for using df in these examples, to show that the file systems use only the amount of space they need

and all draw from the same pool. ZFS eliminates concepts such as volumes and partitions, and

allows multiple file systems to occupy the same pool.

To destroy the file systems and then destroy the pool as it is no longer needed:

zfs destroy example/compressed

zfs destroy example/data

zpool destroy example

20.2.2. RAID-Z

Disks fail. One method of avoiding data loss from disk failure is to implement RAID. ZFS supports

this feature in its pool design. RAID-Z pools require three or more disks but provide more usable

space than mirrored pools.

This example creates a RAID-Z pool, specifying the disks to add to the pool:

zpool create storage raidz da0 da1 da2

!

Sunª recommends that the number of devices used in a RAID-Z configuration be

between three and nine. For environments requiring a single pool consisting of 10

disks or more, consider breaking it up into smaller RAID-Z groups. If only two

disks are available and redundancy is a requirement, consider using a ZFS mirror.

Refer to man:zpool[8] for more details.

The previous example created the storage zpool. This example makes a new file system called home

in that pool:

zfs create storage/home

Compression and keeping extra copies of directories and files can be enabled:

493

zfs set copies=2 storage/home

zfs set compression=gzip storage/home

To make this the new home directory for users, copy the user data to this directory and create the

appropriate symbolic links:

cp -rp /home/* /storage/home

rm -rf /home /usr/home

ln -s /storage/home /home

ln -s /storage/home /usr/home

Users data is now stored on the freshly-created /storage/home . Test by adding a new user and

logging in as that user.

Try creating a file system snapshot which can be rolled back later:

zfs snapshot storage/home@08-30-08

Snapshots can only be made of a full file system, not a single directory or file.

The @ character is a delimiter between the file system name or the volume name. If an important

directory has been accidentally deleted, the file system can be backed up, then rolled back to an

earlier snapshot when the directory still existed:

zfs rollback storage/home@08-30-08

To list all available snapshots, run ls in the file systemÕs .zfs/snapshot directory. For example, to see

the previously taken snapshot:

ls /storage/home/.zfs/snapshot

It is possible to write a script to perform regular snapshots on user data. However, over time,

snapshots can consume a great deal of disk space. The previous snapshot can be removed using the

command:

zfs destroy storage/home@08-30-08

After testing, /storage/home can be made the real /home using this command:

zfs set mountpoint=/home storage/home

Run df and mount to confirm that the system now treats the file system as the real /home :

494

mount

/dev/ad0s1a on / (ufs, local)

devfs on /dev (devfs, local)

/dev/ad0s1d on /usr (ufs, local, soft-updates)

storage on /storage (zfs, local)

storage/home on /home (zfs, local)

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s1a 2026030 235240 1628708 13% /

devfs 1 1 0 100% /dev

/dev/ad0s1d 54098308 1032826 48737618 2% /usr

storage 26320512 0 26320512 0% /storage

storage/home 26320512 0 26320512 0% /home

This completes the RAID-Z configuration. Daily status updates about the file systems created can be

generated as part of the nightly man:periodic[8] runs. Add this line to /etc/periodic.conf :

daily_status_zfs_enable="YES"

20.2.3. Recovering RAID-Z

Every software RAID has a method of monitoring its state . The status of RAID-Z devices may be

viewed with this command:

zpool status -x

If all pools are Online and everything is normal, the message shows:

all pools are healthy

If there is an issue, perhaps a disk is in the Offline state, the pool state will look similar to:

495

Ê pool: storage

Êstate: DEGRADED

status: One or more devices has been taken offline by the administrator.

Ê Sufficient replicas exist for the pool to continue functioning in a

Ê degraded state.

action: Online the device using 'zpool online' or replace the device with

Ê 'zpool replace'.

Êscrub: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê storage DEGRADED 0 0 0

Ê raidz1 DEGRADED 0 0 0

Ê da0 ONLINE 0 0 0

Ê da1 OFFLINE 0 0 0

Ê da2 ONLINE 0 0 0

errors: No known data errors

This indicates that the device was previously taken offline by the administrator with this command:

zpool offline storage da1

Now the system can be powered down to replace da1 . When the system is back online, the failed

disk can replaced in the pool:

zpool replace storage da1

From here, the status may be checked again, this time without -x so that all pools are shown:

zpool status storage

Êpool: storage

Êstate: ONLINE

Êscrub: resilver completed with 0 errors on Sat Aug 30 19:44:11 2008

config:

Ê NAME STATE READ WRITE CKSUM

Ê storage ONLINE 0 0 0

Ê raidz1 ONLINE 0 0 0

Ê da0 ONLINE 0 0 0

Ê da1 ONLINE 0 0 0

Ê da2 ONLINE 0 0 0

errors: No known data errors

In this example, everything is normal.

496

20.2.4. Data Verification

ZFS uses checksums to verify the integrity of stored data. These are enabled automatically upon

creation of file systems.

"

Checksums can be disabled, but it is not recommended! Checksums take very little

storage space and provide data integrity. Many ZFS features will not work properly

with checksums disabled. There is no noticeable performance gain from disabling

these checksums.

Checksum verification is known as scrubbing . Verify the data integrity of the storage pool with this

command:

zpool scrub storage

The duration of a scrub depends on the amount of data stored. Larger amounts of data will take

proportionally longer to verify. Scrubs are very I/O intensive, and only one scrub is allowed to run

at a time. After the scrub completes, the status can be viewed with status :

zpool status storage

Êpool: storage

Êstate: ONLINE

Êscrub: scrub completed with 0 errors on Sat Jan 26 19:57:37 2013

config:

Ê NAME STATE READ WRITE CKSUM

Ê storage ONLINE 0 0 0

Ê raidz1 ONLINE 0 0 0

Ê da0 ONLINE 0 0 0

Ê da1 ONLINE 0 0 0

Ê da2 ONLINE 0 0 0

errors: No known data errors

The completion date of the last scrub operation is displayed to help track when another scrub is

required. Routine scrubs help protect data from silent corruption and ensure the integrity of the

pool.

Refer to man:zfs[8] and man:zpool[8] for other ZFS options.

20.3. zpool Administration

ZFS administration is divided between two main utilities. The zpool utility controls the operation of

the pool and deals with adding, removing, replacing, and managing disks. The zfs utility deals with

creating, destroying, and managing datasets, both file systems and volumes .

497

20.3.1. Creating and Destroying Storage Pools

Creating a ZFS storage pool (zpool) involves making a number of decisions that are relatively

permanent because the structure of the pool cannot be changed after the pool has been created.

The most important decision is what types of vdevs into which to group the physical disks. See the

list of vdev types for details about the possible options. After the pool has been created, most vdev

types do not allow additional disks to be added to the vdev. The exceptions are mirrors, which allow

additional disks to be added to the vdev, and stripes, which can be upgraded to mirrors by

attaching an additional disk to the vdev. Although additional vdevs can be added to expand a pool,

the layout of the pool cannot be changed after pool creation. Instead, the data must be backed up

and the pool destroyed and recreated.

Create a simple mirror pool:

zpool create mypool mirror /dev/ada1 /dev/ada2

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 0

Ê ada2 ONLINE 0 0 0

errors: No known data errors

Multiple vdevs can be created at once. Specify multiple groups of disks separated by the vdev type

keyword, mirror in this example:

498

zpool create mypool mirror /dev/ada1 /dev/ada2 mirror /dev/ada3 /dev/ada4

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 0

Ê ada2 ONLINE 0 0 0

Ê mirror-1 ONLINE 0 0 0

Ê ada3 ONLINE 0 0 0

Ê ada4 ONLINE 0 0 0

errors: No known data errors

Pools can also be constructed using partitions rather than whole disks. Putting ZFS in a separate

partition allows the same disk to have other partitions for other purposes. In particular, partitions

with bootcode and file systems needed for booting can be added. This allows booting from disks

that are also members of a pool. There is no performance penalty on FreeBSD when using a

partition rather than a whole disk. Using partitions also allows the administrator to under-provision

the disks, using less than the full capacity. If a future replacement disk of the same nominal size as

the original actually has a slightly smaller capacity, the smaller partition will still fit, and the

replacement disk can still be used.

Create a RAID-Z2 pool using partitions:

zpool create mypool raidz2 /dev/ada0p3 /dev/ada1p3 /dev/ada2p3 /dev/ada3p3

/dev/ada4p3 /dev/ada5p3

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê raidz2-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

Ê ada3p3 ONLINE 0 0 0

Ê ada4p3 ONLINE 0 0 0

Ê ada5p3 ONLINE 0 0 0

errors: No known data errors

499

A pool that is no longer needed can be destroyed so that the disks can be reused. Destroying a pool

involves first unmounting all of the datasets in that pool. If the datasets are in use, the unmount

operation will fail and the pool will not be destroyed. The destruction of the pool can be forced with

-f , but this can cause undefined behavior in applications which had open files on those datasets.

20.3.2. Adding and Removing Devices

There are two cases for adding disks to a zpool: attaching a disk to an existing vdev with zpool

attach , or adding vdevs to the pool with zpool add . Only some vdev types allow disks to be added to

the vdev after creation.

A pool created with a single disk lacks redundancy. Corruption can be detected but not repaired,

because there is no other copy of the data. The copies property may be able to recover from a small

failure such as a bad sector, but does not provide the same level of protection as mirroring or RAID-

Z. Starting with a pool consisting of a single disk vdev, zpool attach can be used to add an

additional disk to the vdev, creating a mirror. zpool attach can also be used to add additional disks

to a mirror group, increasing redundancy and read performance. If the disks being used for the

pool are partitioned, replicate the layout of the first disk on to the second, gpart backup and gpart

restore can be used to make this process easier.

Upgrade the single disk (stripe) vdev ada0p3 to a mirror by attaching ada1p3 :

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

errors: No known data errors

zpool attach mypool ada0p3 ada1p3

Make sure to wait until resilver is done before rebooting.

If you boot from pool 'mypool', you may need to update

boot code on newly attached disk 'ada1p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk

you may use the following command:

Ê gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1

bootcode written to ada1

zpool status

Ê pool: mypool

Êstate: ONLINE

status: One or more devices is currently being resilvered. The pool will

Ê continue to function, possibly in a degraded state.

500

action: Wait for the resilver to complete.

Ê scan: resilver in progress since Fri May 30 08:19:19 2014

Ê 527M scanned out of 781M at 47.9M/s, 0h0m to go

Ê 527M resilvered, 67.53% done

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:15:58 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

errors: No known data errors

When adding disks to the existing vdev is not an option, as for RAID-Z, an alternative method is to

add another vdev to the pool. Additional vdevs provide higher performance, distributing writes

across the vdevs. Each vdev is responsible for providing its own redundancy. It is possible, but

discouraged, to mix vdev types, like mirror and RAID-Z . Adding a non-redundant vdev to a pool

containing mirror or RAID-Z vdevs risks the data on the entire pool. Writes are distributed, so the

failure of the non-redundant disk will result in the loss of a fraction of every block that has been

written to the pool.

Data is striped across each of the vdevs. For example, with two mirror vdevs, this is effectively a

RAID 10 that stripes writes across two sets of mirrors. Space is allocated so that each vdev reaches

100% full at the same time. There is a performance penalty if the vdevs have different amounts of

free space, as a disproportionate amount of the data is written to the less full vdev.

When attaching additional devices to a boot pool, remember to update the bootcode.

Attach a second mirror group (ada2p3 and ada3p3) to the existing mirror:

501

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:19:35 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

errors: No known data errors

zpool add mypool mirror ada2p3 ada3p3

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2

bootcode written to ada2

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada3

bootcode written to ada3

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

Ê mirror-1 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

Ê ada3p3 ONLINE 0 0 0

errors: No known data errors

Currently, vdevs cannot be removed from a pool, and disks can only be removed from a mirror if

there is enough remaining redundancy. If only one disk in a mirror group remains, it ceases to be a

mirror and reverts to being a stripe, risking the entire pool if that remaining disk fails.

Remove a disk from a three-way mirror group:

502

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

errors: No known data errors

zpool detach mypool ada2p3

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

errors: No known data errors

20.3.3. Checking the Status of a Pool

Pool status is important. If a drive goes offline or a read, write, or checksum error is detected, the

corresponding error count increases. The status output shows the configuration and status of each

device in the pool and the status of the entire pool. Actions that need to be taken and details about

the last scrub are also shown.

503

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: scrub repaired 0 in 2h25m with 0 errors on Sat Sep 14 04:25:50 2013

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê raidz2-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

Ê ada3p3 ONLINE 0 0 0

Ê ada4p3 ONLINE 0 0 0

Ê ada5p3 ONLINE 0 0 0

errors: No known data errors

20.3.4. Clearing Errors

When an error is detected, the read, write, or checksum counts are incremented. The error message

can be cleared and the counts reset with zpool clear mypool . Clearing the error state can be

important for automated scripts that alert the administrator when the pool encounters an error.

Further errors may not be reported if the old errors are not cleared.

20.3.5. Replacing a Functioning Device

There are a number of situations where it may be desirable to replace one disk with a different

disk. When replacing a working disk, the process keeps the old disk online during the replacement.

The pool never enters a degraded state, reducing the risk of data loss. zpool replace copies all of the

data from the old disk to the new one. After the operation completes, the old disk is disconnected

from the vdev. If the new disk is larger than the old disk, it may be possible to grow the zpool, using

the new space. See Growing a Pool .

Replace a functioning device in the pool:

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

504

errors: No known data errors

zpool replace mypool ada1p3 ada2p3

Make sure to wait until resilver is done before rebooting.

If you boot from pool 'zroot', you may need to update

boot code on newly attached disk 'ada2p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk

you may use the following command:

Ê gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2

zpool status

Ê pool: mypool

Êstate: ONLINE

status: One or more devices is currently being resilvered. The pool will

Ê continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

Ê scan: resilver in progress since Mon Jun 2 14:21:35 2014

Ê 604M scanned out of 781M at 46.5M/s, 0h0m to go

Ê 604M resilvered, 77.39% done

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê replacing-1 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:21:52 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

errors: No known data errors

20.3.6. Dealing with Failed Devices

When a disk in a pool fails, the vdev to which the disk belongs enters the degraded state. All of the

data is still available, but performance may be reduced because missing data must be calculated

505

from the available redundancy. To restore the vdev to a fully functional state, the failed physical

device must be replaced. ZFS is then instructed to begin the resilver operation. Data that was on the

failed device is recalculated from available redundancy and written to the replacement device.

After completion, the vdev returns to online status.

If the vdev does not have any redundancy, or if multiple devices have failed and there is not

enough redundancy to compensate, the pool enters the faulted state. If a sufficient number of

devices cannot be reconnected to the pool, the pool becomes inoperative and data must be restored

from backups.

When replacing a failed disk, the name of the failed disk is replaced with the GUID of the device. A

new device name parameter for zpool replace is not required if the replacement device has the

same device name.

Replace a failed disk using zpool replace :

zpool status

Ê pool: mypool

Êstate: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

Ê the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using 'zpool online'.

Ê see: http://illumos.org/msg/ZFS-8000-2Q

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool DEGRADED 0 0 0

Ê mirror-0 DEGRADED 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê 316502962686821739 UNAVAIL 0 0 0 was /dev/ada1p3

errors: No known data errors

zpool replace mypool 316502962686821739 ada2p3

zpool status

Ê pool: mypool

Êstate: DEGRADED

status: One or more devices is currently being resilvered. The pool will

Ê continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

Ê scan: resilver in progress since Mon Jun 2 14:52:21 2014

Ê 641M scanned out of 781M at 49.3M/s, 0h0m to go

Ê 640M resilvered, 82.04% done

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool DEGRADED 0 0 0

Ê mirror-0 DEGRADED 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê replacing-1 UNAVAIL 0 0 0

506

Ê 15732067398082357289 UNAVAIL 0 0 0 was /dev/ada1p3/old

Ê ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:52:38 2014

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

errors: No known data errors

20.3.7. Scrubbing a Pool

It is recommended that pools be scrubbed regularly, ideally at least once every month. The scrub

operation is very disk-intensive and will reduce performance while running. Avoid high-demand

periods when scheduling scrub or use vfs.zfs.scrub_delay to adjust the relative priority of the scrub

to prevent it interfering with other workloads.

zpool scrub mypool

zpool status

Ê pool: mypool

Êstate: ONLINE

Ê scan: scrub in progress since Wed Feb 19 20:52:54 2014

Ê 116G scanned out of 8.60T at 649M/s, 3h48m to go

Ê 0 repaired, 1.32% done

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê raidz2-0 ONLINE 0 0 0

Ê ada0p3 ONLINE 0 0 0

Ê ada1p3 ONLINE 0 0 0

Ê ada2p3 ONLINE 0 0 0

Ê ada3p3 ONLINE 0 0 0

Ê ada4p3 ONLINE 0 0 0

Ê ada5p3 ONLINE 0 0 0

errors: No known data errors

In the event that a scrub operation needs to be cancelled, issue zpool scrub -s mypool .

507

20.3.8. Self-Healing

The checksums stored with data blocks enable the file system to self-heal . This feature will

automatically repair data whose checksum does not match the one recorded on another device that

is part of the storage pool. For example, a mirror with two disks where one drive is starting to

malfunction and cannot properly store the data any more. This is even worse when the data has not

been accessed for a long time, as with long term archive storage. Traditional file systems need to

run algorithms that check and repair the data like man:fsck[8]. These commands take time, and in

severe cases, an administrator has to manually decide which repair operation must be performed.

When ZFS detects a data block with a checksum that does not match, it tries to read the data from

the mirror disk. If that disk can provide the correct data, it will not only give that data to the

application requesting it, but also correct the wrong data on the disk that had the bad checksum.

This happens without any interaction from a system administrator during normal pool operation.

The next example demonstrates this self-healing behavior. A mirrored pool of disks /dev/ada0 and

/dev/ada1 is created.

zpool create healer mirror /dev/ada0 /dev/ada1

zpool status healer

Ê pool: healer

Êstate: ONLINE

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê healer ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 0

errors: No known data errors

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

healer 960M 92.5K 960M - - 0% 0% 1.00x ONLINE -

Some important data that to be protected from data errors using the self-healing feature is copied

to the pool. A checksum of the pool is created for later comparison.

cp /some/important/data /healer

zfs list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

healer 960M 67.7M 892M 7% 1.00x ONLINE -

sha1 /healer > checksum.txt

cat checksum.txt

SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f

Data corruption is simulated by writing random data to the beginning of one of the disks in the

mirror. To prevent ZFS from healing the data as soon as it is detected, the pool is exported before

508

the corruption and imported again afterwards.

"

This is a dangerous operation that can destroy vital data. It is shown here for

demonstrational purposes only and should not be attempted during normal

operation of a storage pool. Nor should this intentional corruption example be run

on any disk with a different file system on it. Do not use any other disk device

names other than the ones that are part of the pool. Make certain that proper

backups of the pool are created before running the command!

zpool export healer

dd if=/dev/random of=/dev/ada1 bs=1m count=200

200+0 records in

200+0 records out

209715200 bytes transferred in 62.992162 secs (3329227 bytes/sec)

zpool import healer

The pool status shows that one device has experienced an error. Note that applications reading data

from the pool did not receive any incorrect data. ZFS provided data from the ada0 device with the

correct checksums. The device with the wrong checksum can be found easily as the CKSUM column

contains a nonzero value.

zpool status healer

Ê pool: healer

Ê state: ONLINE

Ê status: One or more devices has experienced an unrecoverable error. An

Ê attempt was made to correct the error. Applications are unaffected.

Ê action: Determine if the device needs to be replaced, and clear the errors

Ê using 'zpool clear' or replace the device with 'zpool replace'.

Ê see: http://illumos.org/msg/ZFS-8000-4J

Ê scan: none requested

Ê config:

Ê NAME STATE READ WRITE CKSUM

Ê healer ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 1

errors: No known data errors

The error was detected and handled by using the redundancy present in the unaffected ada0

mirror disk. A checksum comparison with the original one will reveal whether the pool is

consistent again.

509

sha1 /healer >> checksum.txt

cat checksum.txt

SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f

SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f

The two checksums that were generated before and after the intentional tampering with the pool

data still match. This shows how ZFS is capable of detecting and correcting any errors automatically

when the checksums differ. Note that this is only possible when there is enough redundancy

present in the pool. A pool consisting of a single device has no self-healing capabilities. That is also

the reason why checksums are so important in ZFS and should not be disabled for any reason. No

man:fsck[8] or similar file system consistency check program is required to detect and correct this

and the pool was still available during the time there was a problem. A scrub operation is now

required to overwrite the corrupted data on ada1 .

zpool scrub healer

zpool status healer

Ê pool: healer

Êstate: ONLINE

status: One or more devices has experienced an unrecoverable error. An

Ê attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

Ê using 'zpool clear' or replace the device with 'zpool replace'.

Ê see: http://illumos.org/msg/ZFS-8000-4J

Ê scan: scrub in progress since Mon Dec 10 12:23:30 2012

Ê 10.4M scanned out of 67.0M at 267K/s, 0h3m to go

Ê 9.63M repaired, 15.56% done

config:

Ê NAME STATE READ WRITE CKSUM

Ê healer ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 627 (repairing)

errors: No known data errors

The scrub operation reads data from ada0 and rewrites any data with an incorrect checksum on

ada1 . This is indicated by the (repairing) output from zpool status . After the operation is complete,

the pool status changes to:

510

zpool status healer

Ê pool: healer

Êstate: ONLINE

status: One or more devices has experienced an unrecoverable error. An

Ê attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

Ê using 'zpool clear' or replace the device with 'zpool replace'.

Ê see: http://illumos.org/msg/ZFS-8000-4J

Ê scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012

config:

Ê NAME STATE READ WRITE CKSUM

Ê healer ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 2.72K

errors: No known data errors

After the scrub operation completes and all the data has been synchronized from ada0 to ada1 , the

error messages can be cleared from the pool status by running zpool clear .

zpool clear healer

zpool status healer

Ê pool: healer

Êstate: ONLINE

Ê scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012

config:

Ê NAME STATE READ WRITE CKSUM

Ê healer ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 0

errors: No known data errors

The pool is now back to a fully working state and all the errors have been cleared.

20.3.9. Growing a Pool

The usable size of a redundant pool is limited by the capacity of the smallest device in each vdev.

The smallest device can be replaced with a larger device. After completing a replace or resilver

operation, the pool can grow to use the capacity of the new device. For example, consider a mirror

of a 1 TB drive and a 2 TB drive. The usable space is 1 TB. When the 1 TB drive is replaced with

another 2 TB drive, the resilvering process copies the existing data onto the new drive. As both of

the devices now have 2 TB capacity, the mirrorÕs available space can be grown to 2 TB.

511

Expansion is triggered by using zpool online -e on each device. After expansion of all devices, the

additional space becomes available to the pool.

20.3.10. Importing and Exporting Pools

Pools are exported before moving them to another system. All datasets are unmounted, and each

device is marked as exported but still locked so it cannot be used by other disk subsystems. This

allows pools to be imported on other machines, other operating systems that support ZFS, and even

different hardware architectures (with some caveats, see man:zpool[8]). When a dataset has open

files, zpool export -f can be used to force the export of a pool. Use this with caution. The datasets

are forcibly unmounted, potentially resulting in unexpected behavior by the applications which

had open files on those datasets.

Export a pool that is not in use:

zpool export mypool

Importing a pool automatically mounts the datasets. This may not be the desired behavior, and can

be prevented with zpool import -N . zpool import -o sets temporary properties for this import only.

zpool import altroot= allows importing a pool with a base mount point instead of the root of the

file system. If the pool was last used on a different system and was not properly exported, an

import might have to be forced with zpool import -f . zpool import -a imports all pools that do not

appear to be in use by another system.

List all available pools for import:

zpool import

Ê pool: mypool

Ê id: 9930174748043525076

Ê state: ONLINE

Êaction: The pool can be imported using its name or numeric identifier.

Êconfig:

Ê mypool ONLINE

Ê ada2p3 ONLINE

Import the pool with an alternative root directory:

zpool import -o altroot=/mnt mypool

zfs list

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 110K 47.0G 31K /mnt/mypool

512

20.3.11. Upgrading a Storage Pool

After upgrading FreeBSD, or if a pool has been imported from a system using an older version of

ZFS, the pool can be manually upgraded to the latest version of ZFS to support newer features.

Consider whether the pool may ever need to be imported on an older system before upgrading.

Upgrading is a one-way process. Older pools can be upgraded, but pools with newer features cannot

be downgraded.

Upgrade a v28 pool to support Feature Flags :

513

zpool status

Ê pool: mypool

Êstate: ONLINE

status: The pool is formatted using a legacy on-disk format. The pool can

Ê still be used, but some features are unavailable.

action: Upgrade the pool using 'zpool upgrade'. Once this is done, the

Ê pool will no longer be accessible on software that does not support feat

Ê flags.

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 0

errors: No known data errors

zpool upgrade

This system supports ZFS pool feature flags.

The following pools are formatted with legacy version numbers and can

be upgraded to use feature flags. After being upgraded, these pools

will no longer be accessible by software that does not support feature

flags.

VER POOL

--- ------------

28 mypool

Use 'zpool upgrade -v' for a list of available legacy versions.

Every feature flags pool has all supported features enabled.

zpool upgrade mypool

This system supports ZFS pool feature flags.

Successfully upgraded 'mypool' from version 28 to feature flags.

Enabled the following features on 'mypool':

Ê async_destroy

Ê empty_bpobj

Ê lz4_compress

Ê multi_vdev_crash_dump

The newer features of ZFS will not be available until zpool upgrade has completed. zpool upgrade -v

can be used to see what new features will be provided by upgrading, as well as which features are

already supported.

Upgrade a pool to support additional feature flags:

514

zpool status

Ê pool: mypool

Êstate: ONLINE

status: Some supported features are not enabled on the pool. The pool can

Ê still be used, but some features are unavailable.

action: Enable all features using 'zpool upgrade'. Once this is done,

Ê the pool may no longer be accessible by software that does not support

Ê the features. See zpool-features(7) for details.

Ê scan: none requested

config:

Ê NAME STATE READ WRITE CKSUM

Ê mypool ONLINE 0 0 0

Ê mirror-0 ONLINE 0 0 0

Ê ada0 ONLINE 0 0 0

Ê ada1 ONLINE 0 0 0

errors: No known data errors

zpool upgrade

This system supports ZFS pool feature flags.

All pools are formatted using feature flags.

Some supported features are not enabled on the following pools. Once a

feature is enabled the pool may become incompatible with software

that does not support the feature. See zpool-features(7) for details.

POOL FEATURE

zstore

Ê multi_vdev_crash_dump

Ê spacemap_histogram

Ê enabled_txg

Ê hole_birth

Ê extensible_dataset

Ê bookmarks

Ê filesystem_limits

zpool upgrade mypool

This system supports ZFS pool feature flags.

Enabled the following features on 'mypool':

Ê spacemap_histogram

Ê enabled_txg

Ê hole_birth

Ê extensible_dataset

Ê bookmarks

Ê filesystem_limits

515

"

The boot code on systems that boot from a pool must be updated to support the

new pool version. Use gpart bootcode on the partition that contains the boot code.

There are two types of bootcode available, depending on way the system boots:

GPT (the most common option) and EFI (for more modern systems).

For legacy boot using GPT, use the following command:

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1

For systems using EFI to boot, execute the following command:

gpart bootcode -p /boot/boot1.efifat -i 1 ada1

Apply the bootcode to all bootable disks in the pool. See man:gpart[8] for more

information.

20.3.12. Displaying Recorded Pool History

Commands that modify the pool are recorded. Recorded actions include the creation of datasets,

changing properties, or replacement of a disk. This history is useful for reviewing how a pool was

created and which user performed a specific action and when. History is not kept in a log file, but is

part of the pool itself. The command to review this history is aptly named zpool history :

zpool history

History for 'tank':

2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1

2013-02-27.18:50:58 zfs set atime=off tank

2013-02-27.18:51:09 zfs set checksum=fletcher4 tank

2013-02-27.18:51:18 zfs create tank/backup

The output shows zpool and zfs commands that were executed on the pool along with a timestamp.

Only commands that alter the pool in some way are recorded. Commands like zfs list are not

included. When no pool name is specified, the history of all pools is displayed.

zpool history can show even more information when the options -i or -l are provided. -i displays

user-initiated events as well as internally logged ZFS events.

516

zpool history -i

History for 'tank':

2013-02-26.23:02:35 [internal pool create txg:5] pool spa 28; zfs spa 28; zpl 5;uts

9.1-RELEASE 901000 amd64

2013-02-27.18:50:53 [internal property set txg:50] atime=0 dataset = 21

2013-02-27.18:50:58 zfs set atime=off tank

2013-02-27.18:51:04 [internal property set txg:53] checksum=7 dataset = 21

2013-02-27.18:51:09 zfs set checksum=fletcher4 tank

2013-02-27.18:51:13 [internal create txg:55] dataset = 39

2013-02-27.18:51:18 zfs create tank/backup

More details can be shown by adding -l . History records are shown in a long format, including

information like the name of the user who issued the command and the hostname on which the

change was made.

zpool history -l

History for 'tank':

2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1 [user 0 (root) on

:global]

2013-02-27.18:50:58 zfs set atime=off tank [user 0 (root) on myzfsbox:global]

2013-02-27.18:51:09 zfs set checksum=fletcher4 tank [user 0 (root) on myzfsbox:global]

2013-02-27.18:51:18 zfs create tank/backup [user 0 (root) on myzfsbox:global]

The output shows that the root user created the mirrored pool with disks /dev/ada0 and /dev/ada1 .

The hostname myzfsbox is also shown in the commands after the poolÕs creation. The hostname

display becomes important when the pool is exported from one system and imported on another.

The commands that are issued on the other system can clearly be distinguished by the hostname

that is recorded for each command.

Both options to zpool history can be combined to give the most detailed information possible for

any given pool. Pool history provides valuable information when tracking down the actions that

were performed or when more detailed output is needed for debugging.

20.3.13. Performance Monitoring

A built-in monitoring system can display pool I/O statistics in real time. It shows the amount of free

and used space on the pool, how many read and write operations are being performed per second,

and how much I/O bandwidth is currently being utilized. By default, all pools in the system are

monitored and displayed. A pool name can be provided to limit monitoring to just that pool. A basic

example:

zpool iostat

Ê capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

data 288G 1.53T 2 11 11.3K 57.1K

517

To continuously monitor I/O activity, a number can be specified as the last parameter, indicating a

interval in seconds to wait between updates. The next statistic line is printed after each interval.

Press Ctrl "+" C to stop this continuous monitoring. Alternatively, give a second number on the

command line after the interval to specify the total number of statistics to display.

Even more detailed I/O statistics can be displayed with -v . Each device in the pool is shown with a

statistics line. This is useful in seeing how many read and write operations are being performed on

each device, and can help determine if any individual device is slowing down the pool. This

example shows a mirrored pool with two devices:

zpool iostat -v

Ê capacity operations bandwidth

pool alloc free read write read write

----------------------- ----- ----- ----- ----- ----- -----

data 288G 1.53T 2 12 9.23K 61.5K

Ê mirror 288G 1.53T 2 12 9.23K 61.5K

Ê ada1 - - 0 4 5.61K 61.7K

Ê ada2 - - 1 4 5.04K 61.7K

----------------------- ----- ----- ----- ----- ----- -----

20.3.14. Splitting a Storage Pool

A pool consisting of one or more mirror vdevs can be split into two pools. Unless otherwise

specified, the last member of each mirror is detached and used to create a new pool containing the

same data. The operation should first be attempted with -n . The details of the proposed operation

are displayed without it actually being performed. This helps confirm that the operation will do

what the user intends.

20.4. zfs Administration

The zfs utility is responsible for creating, destroying, and managing all ZFS datasets that exist

within a pool. The pool is managed using zpool .

20.4.1. Creating and Destroying Datasets

Unlike traditional disks and volume managers, space in ZFS is not preallocated. With traditional file

systems, after all of the space is partitioned and assigned, there is no way to add an additional file

system without adding a new disk. With ZFS, new file systems can be created at any time. Each

dataset has properties including features like compression, deduplication, caching, and quotas, as

well as other useful properties like readonly, case sensitivity, network file sharing, and a mount

point. Datasets can be nested inside each other, and child datasets will inherit properties from their

parents. Each dataset can be administered, delegated , replicated , snapshotted , jailed , and destroyed

as a unit. There are many advantages to creating a separate dataset for each different type or set of

files. The only drawbacks to having an extremely large number of datasets is that some commands

like zfs list will be slower, and the mounting of hundreds or even thousands of datasets can slow

the FreeBSD boot process.

518

Create a new dataset and enable LZ4 compression on it:

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 781M 93.2G 144K none

mypool/ROOT 777M 93.2G 144K none

mypool/ROOT/default 777M 93.2G 777M /

mypool/tmp 176K 93.2G 176K /tmp

mypool/usr 616K 93.2G 144K /usr

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/ports 144K 93.2G 144K /usr/ports

mypool/usr/src 144K 93.2G 144K /usr/src

mypool/var 1.20M 93.2G 608K /var

mypool/var/crash 148K 93.2G 148K /var/crash

mypool/var/log 178K 93.2G 178K /var/log

mypool/var/mail 144K 93.2G 144K /var/mail

mypool/var/tmp 152K 93.2G 152K /var/tmp

zfs create -o compress=lz4 mypool/usr/mydataset

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 781M 93.2G 144K none

mypool/ROOT 777M 93.2G 144K none

mypool/ROOT/default 777M 93.2G 777M /

mypool/tmp 176K 93.2G 176K /tmp

mypool/usr 704K 93.2G 144K /usr

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/mydataset 87.5K 93.2G 87.5K /usr/mydataset

mypool/usr/ports 144K 93.2G 144K /usr/ports

mypool/usr/src 144K 93.2G 144K /usr/src

mypool/var 1.20M 93.2G 610K /var

mypool/var/crash 148K 93.2G 148K /var/crash

mypool/var/log 178K 93.2G 178K /var/log

mypool/var/mail 144K 93.2G 144K /var/mail

mypool/var/tmp 152K 93.2G 152K /var/tmp

Destroying a dataset is much quicker than deleting all of the files that reside on the dataset, as it

does not involve scanning all of the files and updating all of the corresponding metadata.

Destroy the previously-created dataset:

519

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 880M 93.1G 144K none

mypool/ROOT 777M 93.1G 144K none

mypool/ROOT/default 777M 93.1G 777M /

mypool/tmp 176K 93.1G 176K /tmp

mypool/usr 101M 93.1G 144K /usr

mypool/usr/home 184K 93.1G 184K /usr/home

mypool/usr/mydataset 100M 93.1G 100M /usr/mydataset

mypool/usr/ports 144K 93.1G 144K /usr/ports

mypool/usr/src 144K 93.1G 144K /usr/src

mypool/var 1.20M 93.1G 610K /var

mypool/var/crash 148K 93.1G 148K /var/crash

mypool/var/log 178K 93.1G 178K /var/log

mypool/var/mail 144K 93.1G 144K /var/mail

mypool/var/tmp 152K 93.1G 152K /var/tmp

zfs destroy mypool/usr/mydataset

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 781M 93.2G 144K none

mypool/ROOT 777M 93.2G 144K none

mypool/ROOT/default 777M 93.2G 777M /

mypool/tmp 176K 93.2G 176K /tmp

mypool/usr 616K 93.2G 144K /usr

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/ports 144K 93.2G 144K /usr/ports

mypool/usr/src 144K 93.2G 144K /usr/src

mypool/var 1.21M 93.2G 612K /var

mypool/var/crash 148K 93.2G 148K /var/crash

mypool/var/log 178K 93.2G 178K /var/log

mypool/var/mail 144K 93.2G 144K /var/mail

mypool/var/tmp 152K 93.2G 152K /var/tmp

In modern versions of ZFS, zfs destroy is asynchronous, and the free space might take several

minutes to appear in the pool. Use zpool get freeing poolname to see the freeing property,

indicating how many datasets are having their blocks freed in the background. If there are child

datasets, like snapshots or other datasets, then the parent cannot be destroyed. To destroy a dataset

and all of its children, use -r to recursively destroy the dataset and all of its children. Use -n -v to

list datasets and snapshots that would be destroyed by this operation, but do not actually destroy

anything. Space that would be reclaimed by destruction of snapshots is also shown.

20.4.2. Creating and Destroying Volumes

A volume is a special type of dataset. Rather than being mounted as a file system, it is exposed as a

block device under /dev/zvol/poolname/dataset . This allows the volume to be used for other file

systems, to back the disks of a virtual machine, or to be exported using protocols like iSCSI or HAST.

A volume can be formatted with any file system, or used without a file system to store raw data. To

the user, a volume appears to be a regular disk. Putting ordinary file systems on these zvols

520

provides features that ordinary disks or file systems do not normally have. For example, using the

compression property on a 250 MB volume allows creation of a compressed FAT file system.

zfs create -V 250m -o compression=on tank/fat32

zfs list tank

NAME USED AVAIL REFER MOUNTPOINT

tank 258M 670M 31K /tank

newfs_msdos -F32 /dev/zvol/tank/fat32

mount -t msdosfs /dev/zvol/tank/fat32 /mnt

df -h /mnt | grep fat32

Filesystem Size Used Avail Capacity Mounted on

/dev/zvol/tank/fat32 249M 24k 249M 0% /mnt

mount | grep fat32

/dev/zvol/tank/fat32 on /mnt (msdosfs, local)

Destroying a volume is much the same as destroying a regular file system dataset. The operation is

nearly instantaneous, but it may take several minutes for the free space to be reclaimed in the

background.

20.4.3. Renaming a Dataset

The name of a dataset can be changed with zfs rename . The parent of a dataset can also be changed

with this command. Renaming a dataset to be under a different parent dataset will change the

value of those properties that are inherited from the parent dataset. When a dataset is renamed, it

is unmounted and then remounted in the new location (which is inherited from the new parent

dataset). This behavior can be prevented with -u .

Rename a dataset and move it to be under a different parent dataset:

521

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 780M 93.2G 144K none

mypool/ROOT 777M 93.2G 144K none

mypool/ROOT/default 777M 93.2G 777M /

mypool/tmp 176K 93.2G 176K /tmp

mypool/usr 704K 93.2G 144K /usr

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/mydataset 87.5K 93.2G 87.5K /usr/mydataset

mypool/usr/ports 144K 93.2G 144K /usr/ports

mypool/usr/src 144K 93.2G 144K /usr/src

mypool/var 1.21M 93.2G 614K /var

mypool/var/crash 148K 93.2G 148K /var/crash

mypool/var/log 178K 93.2G 178K /var/log

mypool/var/mail 144K 93.2G 144K /var/mail

mypool/var/tmp 152K 93.2G 152K /var/tmp

zfs rename mypool/usr/mydataset mypool/var/newname

zfs list

NAME USED AVAIL REFER MOUNTPOINT

mypool 780M 93.2G 144K none

mypool/ROOT 777M 93.2G 144K none

mypool/ROOT/default 777M 93.2G 777M /

mypool/tmp 176K 93.2G 176K /tmp

mypool/usr 616K 93.2G 144K /usr

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/ports 144K 93.2G 144K /usr/ports

mypool/usr/src 144K 93.2G 144K /usr/src

mypool/var 1.29M 93.2G 614K /var

mypool/var/crash 148K 93.2G 148K /var/crash

mypool/var/log 178K 93.2G 178K /var/log

mypool/var/mail 144K 93.2G 144K /var/mail

mypool/var/newname 87.5K 93.2G 87.5K /var/newname

mypool/var/tmp 152K 93.2G 152K /var/tmp

Snapshots can also be renamed like this. Due to the nature of snapshots, they cannot be renamed

into a different parent dataset. To rename a recursive snapshot, specify -r , and all snapshots with

the same name in child datasets will also be renamed.

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

mypool/var/newname@first_snapshot 0 - 87.5K -

zfs rename mypool/var/newname@first_snapshot new_snapshot_name

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

mypool/var/newname@new_snapshot_name 0 - 87.5K -

522

20.4.4. Setting Dataset Properties

Each ZFS dataset has a number of properties that control its behavior. Most properties are

automatically inherited from the parent dataset, but can be overridden locally. Set a property on a

dataset with zfs set property=value dataset . Most properties have a limited set of valid values, zfs

get will display each possible property and valid values. Most properties can be reverted to their

inherited values using zfs inherit .

User-defined properties can also be set. They become part of the dataset configuration and can be

used to provide additional information about the dataset or its contents. To distinguish these

custom properties from the ones supplied as part of ZFS, a colon (:) is used to create a custom

namespace for the property.

zfs set custom:costcenter=1234 tank

zfs get custom:costcenter tank

NAME PROPERTY VALUE SOURCE

tank custom:costcenter 1234 local

To remove a custom property, use zfs inherit with -r . If the custom property is not defined in any

of the parent datasets, it will be removed completely (although the changes are still recorded in the

poolÕs history).

zfs inherit -r custom:costcenter tank

zfs get custom:costcenter tank

NAME PROPERTY VALUE SOURCE

tank custom:costcenter - -

zfs get all tank | grep custom:costcenter

#

20.4.4.1. Getting and Setting Share Properties

Two commonly used and useful dataset properties are the NFS and SMB share options. Setting these

define if and how ZFS datasets may be shared on the network. At present, only setting sharing via

NFS is supported on FreeBSD. To get the current status of a share, enter:

zfs get sharenfs mypool/usr/home

NAME PROPERTY VALUE SOURCE

mypool/usr/home sharenfs on local

zfs get sharesmb mypool/usr/home

NAME PROPERTY VALUE SOURCE

mypool/usr/home sharesmb off local

To enable sharing of a dataset, enter:

zfs set sharenfs=on mypool/usr/home

523

It is also possible to set additional options for sharing datasets through NFS, such as -alldirs ,

-maproot and -network . To set additional options to a dataset shared through NFS, enter:

zfs set sharenfs="-alldirs,-maproot=root,-network=192.168.1.0/24" mypool/usr/home

20.4.5. Managing Snapshots

Snapshots are one of the most powerful features of ZFS. A snapshot provides a read-only, point-in-

time copy of the dataset. With Copy-On-Write (COW), snapshots can be created quickly by

preserving the older version of the data on disk. If no snapshots exist, space is reclaimed for future

use when data is rewritten or deleted. Snapshots preserve disk space by recording only the

differences between the current dataset and a previous version. Snapshots are allowed only on

whole datasets, not on individual files or directories. When a snapshot is created from a dataset,

everything contained in it is duplicated. This includes the file system properties, files, directories,

permissions, and so on. Snapshots use no additional space when they are first created, only

consuming space as the blocks they reference are changed. Recursive snapshots taken with -r

create a snapshot with the same name on the dataset and all of its children, providing a consistent

moment-in-time snapshot of all of the file systems. This can be important when an application has

files on multiple datasets that are related or dependent upon each other. Without snapshots, a

backup would have copies of the files from different points in time.

Snapshots in ZFS provide a variety of features that even other file systems with snapshot

functionality lack. A typical example of snapshot use is to have a quick way of backing up the

current state of the file system when a risky action like a software installation or a system upgrade

is performed. If the action fails, the snapshot can be rolled back and the system has the same state

as when the snapshot was created. If the upgrade was successful, the snapshot can be deleted to

free up space. Without snapshots, a failed upgrade often requires a restore from backup, which is

tedious, time consuming, and may require downtime during which the system cannot be used.

Snapshots can be rolled back quickly, even while the system is running in normal operation, with

little or no downtime. The time savings are enormous with multi-terabyte storage systems and the

time required to copy the data from backup. Snapshots are not a replacement for a complete

backup of a pool, but can be used as a quick and easy way to store a copy of the dataset at a specific

point in time.

20.4.5.1. Creating Snapshots

Snapshots are created with zfs snapshot dataset @ snapshotname . Adding -r creates a snapshot

recursively, with the same name on all child datasets.

Create a recursive snapshot of the entire pool:

524

zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

mypool 780M 93.2G 144K none

mypool/ROOT 777M 93.2G 144K none

mypool/ROOT/default 777M 93.2G 777M /

mypool/tmp 176K 93.2G 176K /tmp

mypool/usr 616K 93.2G 144K /usr

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/ports 144K 93.2G 144K /usr/ports

mypool/usr/src 144K 93.2G 144K /usr/src

mypool/var 1.29M 93.2G 616K /var

mypool/var/crash 148K 93.2G 148K /var/crash

mypool/var/log 178K 93.2G 178K /var/log

mypool/var/mail 144K 93.2G 144K /var/mail

mypool/var/newname 87.5K 93.2G 87.5K /var/newname

mypool/var/newname@new_snapshot_name 0 - 87.5K -

mypool/var/tmp 152K 93.2G 152K /var/tmp

zfs snapshot -r mypool@my_recursive_snapshot

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

mypool@my_recursive_snapshot 0 - 144K -

mypool/ROOT@my_recursive_snapshot 0 - 144K -

mypool/ROOT/default@my_recursive_snapshot 0 - 777M -

mypool/tmp@my_recursive_snapshot 0 - 176K -

mypool/usr@my_recursive_snapshot 0 - 144K -

mypool/usr/home@my_recursive_snapshot 0 - 184K -

mypool/usr/ports@my_recursive_snapshot 0 - 144K -

mypool/usr/src@my_recursive_snapshot 0 - 144K -

mypool/var@my_recursive_snapshot 0 - 616K -

mypool/var/crash@my_recursive_snapshot 0 - 148K -

mypool/var/log@my_recursive_snapshot 0 - 178K -

mypool/var/mail@my_recursive_snapshot 0 - 144K -

mypool/var/newname@new_snapshot_name 0 - 87.5K -

mypool/var/newname@my_recursive_snapshot 0 - 87.5K -

mypool/var/tmp@my_recursive_snapshot 0 - 152K -

Snapshots are not shown by a normal zfs list operation. To list snapshots, -t snapshot is appended

to zfs list . -t all displays both file systems and snapshots.

Snapshots are not mounted directly, so no path is shown in the MOUNTPOINT column. There is no

mention of available disk space in the AVAIL column, as snapshots cannot be written to after they

are created. Compare the snapshot to the original dataset from which it was created:

zfs list -rt all mypool/usr/home

NAME USED AVAIL REFER MOUNTPOINT

mypool/usr/home 184K 93.2G 184K /usr/home

mypool/usr/home@my_recursive_snapshot 0 - 184K -

525

Displaying both the dataset and the snapshot together reveals how snapshots work in COW fashion.

They save only the changes (delta) that were made and not the complete file system contents all

over again. This means that snapshots take little space when few changes are made. Space usage

can be made even more apparent by copying a file to the dataset, then making a second snapshot:

cp /etc/passwd /var/tmp

zfs snapshot mypool/var/tmp@after_cp

zfs list -rt all mypool/var/tmp

NAME USED AVAIL REFER MOUNTPOINT

mypool/var/tmp 206K 93.2G 118K /var/tmp

mypool/var/tmp@my_recursive_snapshot 88K - 152K -

mypool/var/tmp@after_cp 0 - 118K -

The second snapshot contains only the changes to the dataset after the copy operation. This yields

enormous space savings. Notice that the size of the snapshot mypool/var/tmp@my_recursive_snapshot

also changed in the USED column to indicate the changes between itself and the snapshot taken

afterwards.

20.4.5.2. Comparing Snapshots

ZFS provides a built-in command to compare the differences in content between two snapshots.

This is helpful when many snapshots were taken over time and the user wants to see how the file

system has changed over time. For example, zfs diff lets a user find the latest snapshot that still

contains a file that was accidentally deleted. Doing this for the two snapshots that were created in

the previous section yields this output:

zfs list -rt all mypool/var/tmp

NAME USED AVAIL REFER MOUNTPOINT

mypool/var/tmp 206K 93.2G 118K /var/tmp

mypool/var/tmp@my_recursive_snapshot 88K - 152K -

mypool/var/tmp@after_cp 0 - 118K -

zfs diff mypool/var/tmp@my_recursive_snapshot

M /var/tmp/

+ /var/tmp/passwd

The command lists the changes between the specified snapshot (in this case

mypool/var/tmp@my_recursive_snapshot) and the live file system. The first column shows the type of

change:

+ The path or file was added.

- The path or file was deleted.

M The path or file was modified.

R The path or file was renamed.

Comparing the output with the table, it becomes clear that passwd was added after the snapshot

mypool/var/tmp@my_recursive_snapshot was created. This also resulted in a modification to the

526

parent directory mounted at /var/tmp .

Comparing two snapshots is helpful when using the ZFS replication feature to transfer a dataset to

a different host for backup purposes.

Compare two snapshots by providing the full dataset name and snapshot name of both datasets:

cp /var/tmp/passwd /var/tmp/passwd.copy

zfs snapshot mypool/var/tmp@diff_snapshot

zfs diff mypool/var/tmp@my_recursive_snapshot mypool/var/tmp@diff_snapshot

M /var/tmp/

+ /var/tmp/passwd

+ /var/tmp/passwd.copy

zfs diff mypool/var/tmp@my_recursive_snapshot mypool/var/tmp@after_cp

M /var/tmp/

+ /var/tmp/passwd

A backup administrator can compare two snapshots received from the sending host and determine

the actual changes in the dataset. See the Replication section for more information.

20.4.5.3. Snapshot Rollback

When at least one snapshot is available, it can be rolled back to at any time. Most of the time this is

the case when the current state of the dataset is no longer required and an older version is

preferred. Scenarios such as local development tests have gone wrong, botched system updates

hampering the systemÕs overall functionality, or the requirement to restore accidentally deleted

files or directories are all too common occurrences. Luckily, rolling back a snapshot is just as easy

as typing zfs rollback snapshotname . Depending on how many changes are involved, the operation

will finish in a certain amount of time. During that time, the dataset always remains in a consistent

state, much like a database that conforms to ACID principles is performing a rollback. This is

happening while the dataset is live and accessible without requiring a downtime. Once the

snapshot has been rolled back, the dataset has the same state as it had when the snapshot was

originally taken. All other data in that dataset that was not part of the snapshot is discarded. Taking

a snapshot of the current state of the dataset before rolling back to a previous one is a good idea

when some data is required later. This way, the user can roll back and forth between snapshots

without losing data that is still valuable.

In the first example, a snapshot is rolled back because of a careless rm operation that removes too

much data than was intended.

527

zfs list -rt all mypool/var/tmp

NAME USED AVAIL REFER MOUNTPOINT

mypool/var/tmp 262K 93.2G 120K /var/tmp

mypool/var/tmp@my_recursive_snapshot 88K - 152K -

mypool/var/tmp@after_cp 53.5K - 118K -

mypool/var/tmp@diff_snapshot 0 - 120K -

ls /var/tmp

passwd passwd.copy vi.recover

rm /var/tmp/passwd*

ls /var/tmp

vi.recover

At this point, the user realized that too many files were deleted and wants them back. ZFS provides

an easy way to get them back using rollbacks, but only when snapshots of important data are

performed on a regular basis. To get the files back and start over from the last snapshot, issue the

command:

zfs rollback mypool/var/tmp@diff_snapshot

ls /var/tmp

passwd passwd.copy vi.recover

The rollback operation restored the dataset to the state of the last snapshot. It is also possible to roll

back to a snapshot that was taken much earlier and has other snapshots that were created after it.

When trying to do this, ZFS will issue this warning:

zfs list -rt snapshot mypool/var/tmp

AME USED AVAIL REFER MOUNTPOINT

mypool/var/tmp@my_recursive_snapshot 88K - 152K -

mypool/var/tmp@after_cp 53.5K - 118K -

mypool/var/tmp@diff_snapshot 0 - 120K -

zfs rollback mypool/var/tmp@my_recursive_snapshot

cannot rollback to 'mypool/var/tmp@my_recursive_snapshot': more recent snapshots exist

use '-r' to force deletion of the following snapshots:

mypool/var/tmp@after_cp

mypool/var/tmp@diff_snapshot

This warning means that snapshots exist between the current state of the dataset and the snapshot

to which the user wants to roll back. To complete the rollback, these snapshots must be deleted. ZFS

cannot track all the changes between different states of the dataset, because snapshots are read-

only. ZFS will not delete the affected snapshots unless the user specifies -r to indicate that this is the

desired action. If that is the intention, and the consequences of losing all intermediate snapshots is

understood, the command can be issued:

528

zfs rollback -r mypool/var/tmp@my_recursive_snapshot

zfs list -rt snapshot mypool/var/tmp

NAME USED AVAIL REFER MOUNTPOINT

mypool/var/tmp@my_recursive_snapshot 8K - 152K -

ls /var/tmp

vi.recover

The output from zfs list -t snapshot confirms that the intermediate snapshots were removed as a

result of zfs rollback -r .

20.4.5.4. Restoring Individual Files from Snapshots

Snapshots are mounted in a hidden directory under the parent dataset:

.zfs/snapshots/snapshotname . By default, these directories will not be displayed even when a

standard ls -a is issued. Although the directory is not displayed, it is there nevertheless and can be

accessed like any normal directory. The property named snapdir controls whether these hidden

directories show up in a directory listing. Setting the property to visible allows them to appear in

the output of ls and other commands that deal with directory contents.

zfs get snapdir mypool/var/tmp

NAME PROPERTY VALUE SOURCE

mypool/var/tmp snapdir hidden default

ls -a /var/tmp

. .. passwd vi.recover

zfs set snapdir=visible mypool/var/tmp

ls -a /var/tmp

. .. .zfs passwd vi.recover

Individual files can easily be restored to a previous state by copying them from the snapshot back

to the parent dataset. The directory structure below .zfs/snapshot has a directory named exactly

like the snapshots taken earlier to make it easier to identify them. In the next example, it is

assumed that a file is to be restored from the hidden .zfs directory by copying it from the snapshot

that contained the latest version of the file:

rm /var/tmp/passwd

ls -a /var/tmp

. .. .zfs vi.recover

ls /var/tmp/.zfs/snapshot

after_cp my_recursive_snapshot

ls /var/tmp/.zfs/snapshot/after_cp

passwd vi.recover

cp /var/tmp/.zfs/snapshot/after_cp/passwd /var/tmp

When ls .zfs/snapshot was issued, the snapdir property might have been set to hidden, but it

would still be possible to list the contents of that directory. It is up to the administrator to decide

whether these directories will be displayed. It is possible to display these for certain datasets and

529

prevent it for others. Copying files or directories from this hidden .zfs/snapshot is simple enough.

Trying it the other way around results in this error:

cp /etc/rc.conf /var/tmp/.zfs/snapshot/after_cp/

cp: /var/tmp/.zfs/snapshot/after_cp/rc.conf: Read-only file system

The error reminds the user that snapshots are read-only and cannot be changed after creation.

Files cannot be copied into or removed from snapshot directories because that would change the

state of the dataset they represent.

Snapshots consume space based on how much the parent file system has changed since the time of

the snapshot. The written property of a snapshot tracks how much space is being used by the

snapshot.

Snapshots are destroyed and the space reclaimed with zfs destroy dataset @ snapshot . Adding -r

recursively removes all snapshots with the same name under the parent dataset. Adding -n -v to

the command displays a list of the snapshots that would be deleted and an estimate of how much

space would be reclaimed without performing the actual destroy operation.

20.4.6. Managing Clones

A clone is a copy of a snapshot that is treated more like a regular dataset. Unlike a snapshot, a clone

is not read only, is mounted, and can have its own properties. Once a clone has been created using

zfs clone , the snapshot it was created from cannot be destroyed. The child/parent relationship

between the clone and the snapshot can be reversed using zfs promote . After a clone has been

promoted, the snapshot becomes a child of the clone, rather than of the original parent dataset.

This will change how the space is accounted, but not actually change the amount of space

consumed. The clone can be mounted at any point within the ZFS file system hierarchy, not just

below the original location of the snapshot.

To demonstrate the clone feature, this example dataset is used:

zfs list -rt all camino/home/joe

NAME USED AVAIL REFER MOUNTPOINT

camino/home/joe 108K 1.3G 87K /usr/home/joe

camino/home/joe@plans 21K - 85.5K -

camino/home/joe@backup 0K - 87K -

A typical use for clones is to experiment with a specific dataset while keeping the snapshot around

to fall back to in case something goes wrong. Since snapshots cannot be changed, a read/write clone

of a snapshot is created. After the desired result is achieved in the clone, the clone can be promoted

to a dataset and the old file system removed. This is not strictly necessary, as the clone and dataset

can coexist without problems.

530

zfs clone camino/home/joe@backup camino/home/joenew

ls /usr/home/joe*

/usr/home/joe:

backup.txz plans.txt

/usr/home/joenew:

backup.txz plans.txt

df -h /usr/home

Filesystem Size Used Avail Capacity Mounted on

usr/home/joe 1.3G 31k 1.3G 0% /usr/home/joe

usr/home/joenew 1.3G 31k 1.3G 0% /usr/home/joenew

After a clone is created it is an exact copy of the state the dataset was in when the snapshot was

taken. The clone can now be changed independently from its originating dataset. The only

connection between the two is the snapshot. ZFS records this connection in the property origin .

Once the dependency between the snapshot and the clone has been removed by promoting the

clone using zfs promote , the origin of the clone is removed as it is now an independent dataset. This

example demonstrates it:

zfs get origin camino/home/joenew

NAME PROPERTY VALUE SOURCE

camino/home/joenew origin camino/home/joe@backup -

zfs promote camino/home/joenew

zfs get origin camino/home/joenew

NAME PROPERTY VALUE SOURCE

camino/home/joenew origin - -

After making some changes like copying loader.conf to the promoted clone, for example, the old

directory becomes obsolete in this case. Instead, the promoted clone can replace it. This can be

achieved by two consecutive commands: zfs destroy on the old dataset and zfs rename on the clone

to name it like the old dataset (it could also get an entirely different name).

cp /boot/defaults/loader.conf /usr/home/joenew

zfs destroy -f camino/home/joe

zfs rename camino/home/joenew camino/home/joe

ls /usr/home/joe

backup.txz loader.conf plans.txt

df -h /usr/home

Filesystem Size Used Avail Capacity Mounted on

usr/home/joe 1.3G 128k 1.3G 0% /usr/home/joe

The cloned snapshot is now handled like an ordinary dataset. It contains all the data from the

original snapshot plus the files that were added to it like loader.conf . Clones can be used in

different scenarios to provide useful features to ZFS users. For example, jails could be provided as

snapshots containing different sets of installed applications. Users can clone these snapshots and

add their own applications as they see fit. Once they are satisfied with the changes, the clones can

531

be promoted to full datasets and provided to end users to work with like they would with a real

dataset. This saves time and administrative overhead when providing these jails.

20.4.7. Replication

Keeping data on a single pool in one location exposes it to risks like theft and natural or human

disasters. Making regular backups of the entire pool is vital. ZFS provides a built-in serialization

feature that can send a stream representation of the data to standard output. Using this technique,

it is possible to not only store the data on another pool connected to the local system, but also to

send it over a network to another system. Snapshots are the basis for this replication (see the

section on ZFS snapshots). The commands used for replicating data are zfs send and zfs receive .

These examples demonstrate ZFS replication with these two pools:

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

backup 960M 77K 896M - - 0% 0% 1.00x ONLINE -

mypool 984M 43.7M 940M - - 0% 4% 1.00x ONLINE -

The pool named mypool is the primary pool where data is written to and read from on a regular

basis. A second pool, backup is used as a standby in case the primary pool becomes unavailable.

Note that this fail-over is not done automatically by ZFS, but must be manually done by a system

administrator when needed. A snapshot is used to provide a consistent version of the file system to

be replicated. Once a snapshot of mypool has been created, it can be copied to the backup pool. Only

snapshots can be replicated. Changes made since the most recent snapshot will not be included.

zfs snapshot mypool@backup1

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

mypool@backup1 0 - 43.6M -

Now that a snapshot exists, zfs send can be used to create a stream representing the contents of the

snapshot. This stream can be stored as a file or received by another pool. The stream is written to

standard output, but must be redirected to a file or pipe or an error is produced:

zfs send mypool@backup1

Error: Stream can not be written to a terminal.

You must redirect standard output.

To back up a dataset with zfs send , redirect to a file located on the mounted backup pool. Ensure

that the pool has enough free space to accommodate the size of the snapshot being sent, which

means all of the data contained in the snapshot, not just the changes from the previous snapshot.

532

zfs send mypool@backup1 > /backup/backup1

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

backup 960M 63.7M 896M - - 0% 6% 1.00x ONLINE -

mypool 984M 43.7M 940M - - 0% 4% 1.00x ONLINE -

The zfs send transferred all the data in the snapshot called backup1 to the pool named backup .

Creating and sending these snapshots can be done automatically with a man:cron[8] job.

Instead of storing the backups as archive files, ZFS can receive them as a live file system, allowing

the backed up data to be accessed directly. To get to the actual data contained in those streams, zfs

receive is used to transform the streams back into files and directories. The example below

combines zfs send and zfs receive using a pipe to copy the data from one pool to another. The data

can be used directly on the receiving pool after the transfer is complete. A dataset can only be

replicated to an empty dataset.

zfs snapshot mypool@replica1

zfs send -v mypool@replica1 | zfs receive backup/mypool

send from @ to mypool@replica1 estimated size is 50.1M

total estimated size is 50.1M

TIME SENT SNAPSHOT

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

backup 960M 63.7M 896M - - 0% 6% 1.00x ONLINE -

mypool 984M 43.7M 940M - - 0% 4% 1.00x ONLINE -

20.4.7.1. Incremental Backups

zfs send can also determine the difference between two snapshots and send only the differences

between the two. This saves disk space and transfer time. For example:

zfs snapshot mypool@replica2

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

mypool@replica1 5.72M - 43.6M -

mypool@replica2 0 - 44.1M -

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

backup 960M 61.7M 898M - - 0% 6% 1.00x ONLINE -

mypool 960M 50.2M 910M - - 0% 5% 1.00x ONLINE -

A second snapshot called replica2 was created. This second snapshot contains only the changes that

were made to the file system between now and the previous snapshot, replica1 . Using zfs send -i

and indicating the pair of snapshots generates an incremental replica stream containing only the

data that has changed. This can only succeed if the initial snapshot already exists on the receiving

side.

533

zfs send -v -i mypool@replica1 mypool@replica2 | zfs receive /backup/mypool

send from @replica1 to mypool@replica2 estimated size is 5.02M

total estimated size is 5.02M

TIME SENT SNAPSHOT

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

backup 960M 80.8M 879M - - 0% 8% 1.00x ONLINE -

mypool 960M 50.2M 910M - - 0% 5% 1.00x ONLINE -

zfs list

NAME USED AVAIL REFER MOUNTPOINT

backup 55.4M 240G 152K /backup

backup/mypool 55.3M 240G 55.2M /backup/mypool

mypool 55.6M 11.6G 55.0M /mypool

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

backup/mypool@replica1 104K - 50.2M -

backup/mypool@replica2 0 - 55.2M -

mypool@replica1 29.9K - 50.0M -

mypool@replica2 0 - 55.0M -

The incremental stream was successfully transferred. Only the data that had changed was

replicated, rather than the entirety of replica1 . Only the differences were sent, which took much

less time to transfer and saved disk space by not copying the complete pool each time. This is useful

when having to rely on slow networks or when costs per transferred byte must be considered.

A new file system, backup/mypool , is available with all of the files and data from the pool mypool . If

-P is specified, the properties of the dataset will be copied, including compression settings, quotas,

and mount points. When -R is specified, all child datasets of the indicated dataset will be copied,

along with all of their properties. Sending and receiving can be automated so that regular backups

are created on the second pool.

20.4.7.2. Sending Encrypted Backups over SSH

Sending streams over the network is a good way to keep a remote backup, but it does come with a

drawback. Data sent over the network link is not encrypted, allowing anyone to intercept and

transform the streams back into data without the knowledge of the sending user. This is

undesirable, especially when sending the streams over the internet to a remote host. SSH can be

used to securely encrypt data send over a network connection. Since ZFS only requires the stream

to be redirected from standard output, it is relatively easy to pipe it through SSH. To keep the

contents of the file system encrypted in transit and on the remote system, consider using PEFS .

A few settings and security precautions must be completed first. Only the necessary steps required

for the zfs send operation are shown here. For more information on SSH, see

crossref:security[openssh,"OpenSSH"].

This configuration is required:

534

https://wiki.freebsd.org/PEFS

¥ Passwordless SSH access between sending and receiving host using SSH keys

¥ Normally, the privileges of the root user are needed to send and receive streams. This requires

logging in to the receiving system as root . However, logging in as root is disabled by default for

security reasons. The ZFS Delegation system can be used to allow a non- root user on each

system to perform the respective send and receive operations.

¥ On the sending system:

zfs allow -u someuser send,snapshot mypool

¥ To mount the pool, the unprivileged user must own the directory, and regular users must be

allowed to mount file systems. On the receiving system:

sysctl vfs.usermount=1

vfs.usermount: 0 -> 1

echo vfs.usermount=1 >> /etc/sysctl.conf

zfs create recvpool/backup

zfs allow -u someuser create,mount,receive recvpool/backup

chown someuser /recvpool/backup

The unprivileged user now has the ability to receive and mount datasets, and the home dataset can

be replicated to the remote system:

% zfs snapshot -r mypool/home@monday

% zfs send -R mypool/home@monday | ssh someuser@backuphost zfs recv -dvu

recvpool/backup

A recursive snapshot called monday is made of the file system dataset home that resides on the pool

mypool . Then it is sent with zfs send -R to include the dataset, all child datasets, snapshots, clones,

and settings in the stream. The output is piped to the waiting zfs receive on the remote host

backuphost through SSH. Using a fully qualified domain name or IP address is recommended. The

receiving machine writes the data to the backup dataset on the recvpool pool. Adding -d to zfs recv

overwrites the name of the pool on the receiving side with the name of the snapshot. -u causes the

file systems to not be mounted on the receiving side. When -v is included, more detail about the

transfer is shown, including elapsed time and the amount of data transferred.

20.4.8. Dataset, User, and Group Quotas

Dataset quotas are used to restrict the amount of space that can be consumed by a particular

dataset. Reference Quotas work in very much the same way, but only count the space used by the

dataset itself, excluding snapshots and child datasets. Similarly, user and group quotas can be used

to prevent users or groups from using all of the space in the pool or dataset.

The following examples assume that the users already exist in the system. Before adding a user to

the system, make sure to create their home dataset first and set the mountpoint to /home/ bob . Then,

create the user and make the home directory point to the datasetÕs mountpoint location. This will

535

properly set owner and group permissions without shadowing any pre-existing home directory

paths that might exist.

To enforce a dataset quota of 10 GB for storage/home/bob :

zfs set quota=10G storage/home/bob

To enforce a reference quota of 10 GB for storage/home/bob :

zfs set refquota=10G storage/home/bob

To remove a quota of 10 GB for storage/home/bob :

zfs set quota=none storage/home/bob

The general format is userquota@ user = size , and the userÕs name must be in one of these formats:

¥ POSIX compatible name such as joe .

¥ POSIX numeric ID such as 789 .

¥ SID name such as joe.bloggs@example.com .

¥ SID numeric ID such as S-1-123-456-789 .

For example, to enforce a user quota of 50 GB for the user named joe :

zfs set userquota@joe=50G

To remove any quota:

zfs set userquota@joe=none

!

User quota properties are not displayed by zfs get all . Non- root users can only

see their own quotas unless they have been granted the userquota privilege. Users

with this privilege are able to view and set everyoneÕs quota.

The general format for setting a group quota is: groupquota@ group = size .

To set the quota for the group firstgroup to 50 GB, use:

zfs set groupquota@firstgroup=50G

To remove the quota for the group firstgroup , or to make sure that one is not set, instead use:

536

zfs set groupquota@firstgroup=none

As with the user quota property, non- root users can only see the quotas associated with the groups

to which they belong. However, root or a user with the groupquota privilege can view and set all

quotas for all groups.

To display the amount of space used by each user on a file system or snapshot along with any

quotas, use zfs userspace . For group information, use zfs groupspace . For more information about

supported options or how to display only specific options, refer to man:zfs[1].

Users with sufficient privileges, and root , can list the quota for storage/home/bob using:

zfs get quota storage/home/bob

20.4.9. Reservations

Reservations guarantee a minimum amount of space will always be available on a dataset. The

reserved space will not be available to any other dataset. This feature can be especially useful to

ensure that free space is available for an important dataset or log files.

The general format of the reservation property is reservation= size , so to set a reservation of 10 GB

on storage/home/bob , use:

zfs set reservation=10G storage/home/bob

To clear any reservation:

zfs set reservation=none storage/home/bob

The same principle can be applied to the refreservation property for setting a Reference

Reservation , with the general format refreservation= size .

This command shows any reservations or refreservations that exist on storage/home/bob :

zfs get reservation storage/home/bob

zfs get refreservation storage/home/bob

20.4.10. Compression

ZFS provides transparent compression. Compressing data at the block level as it is written not only

saves space, but can also increase disk throughput. If data is compressed by 25%, but the

compressed data is written to the disk at the same rate as the uncompressed version, resulting in an

effective write speed of 125%. Compression can also be a great alternative to Deduplication because

it does not require additional memory.

537

ZFS offers several different compression algorithms, each with different trade-offs. With the

introduction of LZ4 compression in ZFS v5000, it is possible to enable compression for the entire

pool without the large performance trade-off of other algorithms. The biggest advantage to LZ4 is

the early abort feature. If LZ4 does not achieve at least 12.5% compression in the first part of the

data, the block is written uncompressed to avoid wasting CPU cycles trying to compress data that is

either already compressed or uncompressible. For details about the different compression

algorithms available in ZFS, see the Compression entry in the terminology section.

The administrator can monitor the effectiveness of compression using a number of dataset

properties.

zfs get used,compressratio,compression,logicalused mypool/compressed_dataset

NAME PROPERTY VALUE SOURCE

mypool/compressed_dataset used 449G -

mypool/compressed_dataset compressratio 1.11x -

mypool/compressed_dataset compression lz4 local

mypool/compressed_dataset logicalused 496G -

The dataset is currently using 449 GB of space (the used property). Without compression, it would

have taken 496 GB of space (the logicalused property). This results in the 1.11:1 compression ratio.

Compression can have an unexpected side effect when combined with User Quotas . User quotas

restrict how much space a user can consume on a dataset, but the measurements are based on how

much space is used after compression . So if a user has a quota of 10 GB, and writes 10 GB of

compressible data, they will still be able to store additional data. If they later update a file, say a

database, with more or less compressible data, the amount of space available to them will change.

This can result in the odd situation where a user did not increase the actual amount of data (the

logicalused property), but the change in compression caused them to reach their quota limit.

Compression can have a similar unexpected interaction with backups. Quotas are often used to

limit how much data can be stored to ensure there is sufficient backup space available. However

since quotas do not consider compression, more data may be written than would fit with

uncompressed backups.

20.4.11. Zstandard Compression

In OpenZFS 2.0, a new compression algorithm was added. Zstandard (Zstd) offers higher

compression ratios than the default LZ4 while offering much greater speeds than the alternative,

gzip. OpenZFS 2.0 is available starting with FreeBSD 12.1-RELEASE via package:sysutils/openzfs[]

and has been the default in FreeBSD 13-CURRENT since September 2020, and will by in FreeBSD

13.0-RELEASE.

Zstd provides a large selection of compression levels, providing fine-grained control over

performance versus compression ratio. One of the main advantages of Zstd is that the

decompression speed is independent of the compression level. For data that is written once but

read many times, Zstd allows the use of the highest compression levels without a read performance

penalty.

538

Even when data is updated frequently, there are often performance gains that come from enabling

compression. One of the biggest advantages comes from the compressed ARC feature. ZFSÕs

Adaptive Replacement Cache (ARC) caches the compressed version of the data in RAM,

decompressing it each time it is needed. This allows the same amount of RAM to store more data

and metadata, increasing the cache hit ratio.

ZFS offers 19 levels of Zstd compression, each offering incrementally more space savings in

exchange for slower compression. The default level is zstd-3 and offers greater compression than

LZ4 without being significantly slower. Levels above 10 require significant amounts of memory to

compress each block, so they are discouraged on systems with less than 16 GB of RAM. ZFS also

implements a selection of the Zstd_fast_ levels, which get correspondingly faster but offer lower

compression ratios. ZFS supports zstd-fast-1 through zstd-fast-10 , zstd-fast-20 through zstd-

fast-100 in increments of 10, and finally zstd-fast-500 and zstd-fast-1000 which provide minimal

compression, but offer very high performance.

If ZFS is not able to allocate the required memory to compress a block with Zstd, it will fall back to

storing the block uncompressed. This is unlikely to happen outside of the highest levels of Zstd on

systems that are memory constrained. The sysctl kstat.zfs.misc.zstd.compress_alloc_fail counts

how many times this has occurred since the ZFS module was loaded.

20.4.12. Deduplication

When enabled, deduplication uses the checksum of each block to detect duplicate blocks. When a

new block is a duplicate of an existing block, ZFS writes an additional reference to the existing data

instead of the whole duplicate block. Tremendous space savings are possible if the data contains

many duplicated files or repeated information. Be warned: deduplication requires an extremely

large amount of memory, and most of the space savings can be had without the extra cost by

enabling compression instead.

To activate deduplication, set the dedup property on the target pool:

zfs set dedup=on pool

Only new data being written to the pool will be deduplicated. Data that has already been written to

the pool will not be deduplicated merely by activating this option. A pool with a freshly activated

deduplication property will look like this example:

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

pool 2.84G 2.19M 2.83G - - 0% 0% 1.00x ONLINE -

The DEDUP column shows the actual rate of deduplication for the pool. A value of 1.00x shows that

data has not been deduplicated yet. In the next example, the ports tree is copied three times into

different directories on the deduplicated pool created above.

539

for d in dir1 dir2 dir3; do

> mkdir $d && cp -R /usr/ports $d &

> done

Redundant data is detected and deduplicated:

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

pool 2.84G 20.9M 2.82G - - 0% 0% 3.00x ONLINE -

The DEDUP column shows a factor of 3.00x . Multiple copies of the ports tree data was detected and

deduplicated, using only a third of the space. The potential for space savings can be enormous, but

comes at the cost of having enough memory to keep track of the deduplicated blocks.

Deduplication is not always beneficial, especially when the data on a pool is not redundant. ZFS can

show potential space savings by simulating deduplication on an existing pool:

zdb -S pool

Simulated DDT histogram:

bucket allocated referenced

______ ______________________________ ______________________________

refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE

------ ------ ----- ----- ----- ------ ----- ----- -----

Ê 1 2.58M 289G 264G 264G 2.58M 289G 264G 264G

Ê 2 206K 12.6G 10.4G 10.4G 430K 26.4G 21.6G 21.6G

Ê 4 37.6K 692M 276M 276M 170K 3.04G 1.26G 1.26G

Ê 8 2.18K 45.2M 19.4M 19.4M 20.0K 425M 176M 176M

Ê 16 174 2.83M 1.20M 1.20M 3.33K 48.4M 20.4M 20.4M

Ê 32 40 2.17M 222K 222K 1.70K 97.2M 9.91M 9.91M

Ê 64 9 56K 10.5K 10.5K 865 4.96M 948K 948K

Ê 128 2 9.50K 2K 2K 419 2.11M 438K 438K

Ê 256 5 61.5K 12K 12K 1.90K 23.0M 4.47M 4.47M

Ê 1K 2 1K 1K 1K 2.98K 1.49M 1.49M 1.49M

ÊTotal 2.82M 303G 275G 275G 3.20M 319G 287G 287G

dedup = 1.05, compress = 1.11, copies = 1.00, dedup * compress / copies = 1.16

After zdb -S finishes analyzing the pool, it shows the space reduction ratio that would be achieved

by activating deduplication. In this case, 1.16 is a very poor space saving ratio that is mostly

provided by compression. Activating deduplication on this pool would not save any significant

amount of space, and is not worth the amount of memory required to enable deduplication. Using

the formula ratio = dedup * compress / copies , system administrators can plan the storage allocation,

deciding whether the workload will contain enough duplicate blocks to justify the memory

requirements. If the data is reasonably compressible, the space savings may be very good. Enabling

compression first is recommended, and compression can also provide greatly increased

performance. Only enable deduplication in cases where the additional savings will be considerable

540

and there is sufficient memory for the DDT .

20.4.13. ZFS and Jails

zfs jail and the corresponding jailed property are used to delegate a ZFS dataset to a

crossref:jails[jails,Jail]. zfs jail jailid attaches a dataset to the specified jail, and zfs unjail

detaches it. For the dataset to be controlled from within a jail, the jailed property must be set. Once

a dataset is jailed, it can no longer be mounted on the host because it may have mount points that

would compromise the security of the host.

20.5. Delegated Administration

A comprehensive permission delegation system allows unprivileged users to perform ZFS

administration functions. For example, if each userÕs home directory is a dataset, users can be given

permission to create and destroy snapshots of their home directories. A backup user can be given

permission to use replication features. A usage statistics script can be allowed to run with access

only to the space utilization data for all users. It is even possible to delegate the ability to delegate

permissions. Permission delegation is possible for each subcommand and most properties.

20.5.1. Delegating Dataset Creation

zfs allow someuser create mydataset gives the specified user permission to create child datasets

under the selected parent dataset. There is a caveat: creating a new dataset involves mounting it.

That requires setting the FreeBSD vfs.usermount man:sysctl[8] to 1 to allow non-root users to mount

a file system. There is another restriction aimed at preventing abuse: non- root users must own the

mountpoint where the file system is to be mounted.

20.5.2. Delegating Permission Delegation

zfs allow someuser allow mydataset gives the specified user the ability to assign any permission

they have on the target dataset, or its children, to other users. If a user has the snapshot permission

and the allow permission, that user can then grant the snapshot permission to other users.

20.6. Advanced Topics

20.6.1. Tuning

There are a number of tunables that can be adjusted to make ZFS perform best for different

workloads.

¥ vfs.zfs.arc_max - Maximum size of the ARC . The default is all RAM but 1 GB, or 5/8 of all RAM,

whichever is more. However, a lower value should be used if the system will be running any

other daemons or processes that may require memory. This value can be adjusted at runtime

with man:sysctl[8] and can be set in /boot/loader.conf or /etc/sysctl.conf .

¥ vfs.zfs.arc_meta_limit - Limit the portion of the ARC that can be used to store metadata. The

default is one fourth of vfs.zfs.arc_max . Increasing this value will improve performance if the

workload involves operations on a large number of files and directories, or frequent metadata

541

operations, at the cost of less file data fitting in the ARC . This value can be adjusted at runtime

with man:sysctl[8] and can be set in /boot/loader.conf or /etc/sysctl.conf .

¥ vfs.zfs.arc_min - Minimum size of the ARC . The default is one half of vfs.zfs.arc_meta_limit .

Adjust this value to prevent other applications from pressuring out the entire ARC . This value

can be adjusted at runtime with man:sysctl[8] and can be set in /boot/loader.conf or

/etc/sysctl.conf .

¥ vfs.zfs.vdev.cache.size - A preallocated amount of memory reserved as a cache for each device

in the pool. The total amount of memory used will be this value multiplied by the number of

devices. This value can only be adjusted at boot time, and is set in /boot/loader.conf .

¥ vfs.zfs.min_auto_ashift - Minimum ashift (sector size) that will be used automatically at pool

creation time. The value is a power of two. The default value of 9 represents 2^9 = 512 , a sector

size of 512 bytes. To avoid write amplification and get the best performance, set this value to the

largest sector size used by a device in the pool.

Many drives have 4 KB sectors. Using the default ashift of 9 with these drives results in write

amplification on these devices. Data that could be contained in a single 4 KB write must instead

be written in eight 512-byte writes. ZFS tries to read the native sector size from all devices when

creating a pool, but many drives with 4 KB sectors report that their sectors are 512 bytes for

compatibility. Setting vfs.zfs.min_auto_ashift to 12 (2^12 = 4096) before creating a pool forces

ZFS to use 4 KB blocks for best performance on these drives.

Forcing 4 KB blocks is also useful on pools where disk upgrades are planned. Future disks are

likely to use 4 KB sectors, and ashift values cannot be changed after a pool is created.

In some specific cases, the smaller 512-byte block size might be preferable. When used with 512-

byte disks for databases, or as storage for virtual machines, less data is transferred during small

random reads. This can provide better performance, especially when using a smaller ZFS record

size.

¥ vfs.zfs.prefetch_disable - Disable prefetch. A value of 0 is enabled and 1 is disabled. The

default is 0 , unless the system has less than 4 GB of RAM. Prefetch works by reading larger

blocks than were requested into the ARC in hopes that the data will be needed soon. If the

workload has a large number of random reads, disabling prefetch may actually improve

performance by reducing unnecessary reads. This value can be adjusted at any time with

man:sysctl[8].

¥ vfs.zfs.vdev.trim_on_init - Control whether new devices added to the pool have the TRIM

command run on them. This ensures the best performance and longevity for SSDs, but takes

extra time. If the device has already been secure erased, disabling this setting will make the

addition of the new device faster. This value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.vdev.max_pending - Limit the number of pending I/O requests per device. A higher value

will keep the device command queue full and may give higher throughput. A lower value will

reduce latency. This value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.top_maxinflight - Maxmimum number of outstanding I/Os per top-level vdev . Limits the

depth of the command queue to prevent high latency. The limit is per top-level vdev, meaning

the limit applies to each mirror , RAID-Z , or other vdev independently. This value can be

adjusted at any time with man:sysctl[8].

542

¥ vfs.zfs.l2arc_write_max - Limit the amount of data written to the L2ARC per second. This

tunable is designed to extend the longevity of SSDs by limiting the amount of data written to the

device. This value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.l2arc_write_boost - The value of this tunable is added to vfs.zfs.l2arc_write_max and

increases the write speed to the SSD until the first block is evicted from the L2ARC . This "Turbo

Warmup Phase" is designed to reduce the performance loss from an empty L2ARC after a

reboot. This value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.scrub_delay - Number of ticks to delay between each I/O during a scrub . To ensure that a

scrub does not interfere with the normal operation of the pool, if any other I/O is happening the

scrub will delay between each command. This value controls the limit on the total IOPS (I/Os Per

Second) generated by the scrub . The granularity of the setting is determined by the value of

kern.hz which defaults to 1000 ticks per second. This setting may be changed, resulting in a

different effective IOPS limit. The default value is 4 , resulting in a limit of: 1000 ticks/sec / 4 =

250 IOPS. Using a value of 20 would give a limit of: 1000 ticks/sec / 20 = 50 IOPS. The speed of

scrub is only limited when there has been recent activity on the pool, as determined by

vfs.zfs.scan_idle . This value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.resilver_delay - Number of milliseconds of delay inserted between each I/O during a

resilver . To ensure that a resilver does not interfere with the normal operation of the pool, if

any other I/O is happening the resilver will delay between each command. This value controls

the limit of total IOPS (I/Os Per Second) generated by the resilver. The granularity of the setting

is determined by the value of kern.hz which defaults to 1000 ticks per second. This setting may

be changed, resulting in a different effective IOPS limit. The default value is 2, resulting in a

limit of: 1000 ticks/sec / 2 = 500 IOPS. Returning the pool to an Online state may be more

important if another device failing could Fault the pool, causing data loss. A value of 0 will give

the resilver operation the same priority as other operations, speeding the healing process. The

speed of resilver is only limited when there has been other recent activity on the pool, as

determined by vfs.zfs.scan_idle . This value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.scan_idle - Number of milliseconds since the last operation before the pool is

considered idle. When the pool is idle the rate limiting for scrub and resilver are disabled. This

value can be adjusted at any time with man:sysctl[8].

¥ vfs.zfs.txg.timeout - Maximum number of seconds between transaction group s. The current

transaction group will be written to the pool and a fresh transaction group started if this

amount of time has elapsed since the previous transaction group. A transaction group my be

triggered earlier if enough data is written. The default value is 5 seconds. A larger value may

improve read performance by delaying asynchronous writes, but this may cause uneven

performance when the transaction group is written. This value can be adjusted at any time with

man:sysctl[8].

20.6.2. ZFS on i386

Some of the features provided by ZFS are memory intensive, and may require tuning for maximum

efficiency on systems with limited RAM.

20.6.2.1. Memory

As a bare minimum, the total system memory should be at least one gigabyte. The amount of

543

recommended RAM depends upon the size of the pool and which ZFS features are used. A general

rule of thumb is 1 GB of RAM for every 1 TB of storage. If the deduplication feature is used, a

general rule of thumb is 5 GB of RAM per TB of storage to be deduplicated. While some users

successfully use ZFS with less RAM, systems under heavy load may panic due to memory

exhaustion. Further tuning may be required for systems with less than the recommended RAM

requirements.

20.6.2.2. Kernel Configuration

Due to the address space limitations of the i386ª platform, ZFS users on the i386ª architecture

must add this option to a custom kernel configuration file, rebuild the kernel, and reboot:

options KVA_PAGES=512

This expands the kernel address space, allowing the vm.kvm_size tunable to be pushed beyond the

currently imposed limit of 1 GB, or the limit of 2 GB for PAE. To find the most suitable value for this

option, divide the desired address space in megabytes by four. In this example, it is 512 for 2 GB.

20.6.2.3. Loader Tunables

The kmem address space can be increased on all FreeBSD architectures. On a test system with 1 GB

of physical memory, success was achieved with these options added to /boot/loader.conf , and the

system restarted:

vm.kmem_size="330M"

vm.kmem_size_max="330M"

vfs.zfs.arc_max="40M"

vfs.zfs.vdev.cache.size="5M"

For a more detailed list of recommendations for ZFS-related tuning, see https://wiki.freebsd.org/

ZFSTuningGuide .

20.7. Additional Resources

¥ OpenZFS

¥ FreeBSD Wiki - ZFS Tuning

¥ Oracle Solaris ZFS Administration Guide

¥ Calomel Blog - ZFS Raidz Performance, Capacity and Integrity

20.8. ZFS Features and Terminology

ZFS is a fundamentally different file system because it is more than just a file system. ZFS combines

the roles of file system and volume manager, enabling additional storage devices to be added to a

live system and having the new space available on all of the existing file systems in that pool

immediately. By combining the traditionally separate roles, ZFS is able to overcome previous

544

https://wiki.freebsd.org/ZFSTuningGuide
https://wiki.freebsd.org/ZFSTuningGuide
http://open-zfs.org
https://wiki.freebsd.org/ZFSTuningGuide
http://docs.oracle.com/cd/E19253-01/819-5461/index.html
https://calomel.org/zfs_raid_speed_capacity.html

limitations that prevented RAID groups being able to grow. Each top level device in a pool is called

a vdev , which can be a simple disk or a RAID transformation such as a mirror or RAID-Z array. ZFS

file systems (called datasets) each have access to the combined free space of the entire pool. As

blocks are allocated from the pool, the space available to each file system decreases. This approach

avoids the common pitfall with extensive partitioning where free space becomes fragmented across

the partitions.

pool A storage pool is the most basic building block of ZFS. A pool is made up of one or more

vdevs, the underlying devices that store the data. A pool is then used to create one or

more file systems (datasets) or block devices (volumes). These datasets and volumes

share the pool of remaining free space. Each pool is uniquely identified by a name and a

GUID. The features available are determined by the ZFS version number on the pool.

545

vdev

Types

A pool is made up of one or more vdevs, which themselves can be a single disk or a

group of disks, in the case of a RAID transform. When multiple vdevs are used, ZFS

spreads data across the vdevs to increase performance and maximize usable space.

¥ Disk - The most basic type of vdev is a standard block device. This can be an entire

disk (such as /dev/ada0 or /dev/da0) or a partition (/dev/ada0p3). On FreeBSD, there is

no performance penalty for using a partition rather than the entire disk. This differs

from recommendations made by the Solaris documentation.

$

Using an entire disk as part of a bootable pool is strongly

discouraged, as this may render the pool unbootable. Likewise, you

should not use an entire disk as part of a mirror or RAID-Z vdev.

These are because it is impossible to reliably determine the size of

an unpartitioned disk at boot time and because thereÕs no place to

put in boot code.

¥ File - In addition to disks, ZFS pools can be backed by regular files, this is especially

useful for testing and experimentation. Use the full path to the file as the device path

in zpool create . All vdevs must be at least 128 MB in size.

¥ Mirror - When creating a mirror, specify the mirror keyword followed by the list of

member devices for the mirror. A mirror consists of two or more devices, all data

will be written to all member devices. A mirror vdev will only hold as much data as

its smallest member. A mirror vdev can withstand the failure of all but one of its

members without losing any data.

!

A regular single disk vdev can be upgraded to a mirror vdev at any

time with zpool attach .

¥ RAID-Z - ZFS implements RAID-Z, a variation on standard RAID-5 that offers better

distribution of parity and eliminates the "RAID-5 write hole" in which the data and

parity information become inconsistent after an unexpected restart. ZFS supports

three levels of RAID-Z which provide varying levels of redundancy in exchange for

decreasing levels of usable storage. The types are named RAID-Z1 through RAID-Z3

based on the number of parity devices in the array and the number of disks which

can fail while the pool remains operational.

In a RAID-Z1 configuration with four disks, each 1 TB, usable storage is 3 TB and the

pool will still be able to operate in degraded mode with one faulted disk. If an

additional disk goes offline before the faulted disk is replaced and resilvered, all data

in the pool can be lost.

In a RAID-Z3 configuration with eight disks of 1 TB, the volume will provide 5 TB of

usable space and still be able to operate with three faulted disks. Sunª recommends

no more than nine disks in a single vdev. If the configuration has more disks, it is

recommended to divide them into separate vdevs and the pool data will be striped

across them.

A configuration of two RAID-Z2 vdevs consisting of 8 disks each would create

something similar to a RAID-60 array. A RAID-Z groupÕs storage capacity is

approximately the size of the smallest disk multiplied by the number of non-parity

disks. Four 1 TB disks in RAID-Z1 has an effective size of approximately 3 TB, and an

546

array of eight 1 TB disks in RAID-Z3 will yield 5 TB of usable space.

¥ Spare - ZFS has a special pseudo-vdev type for keeping track of available hot spares.

Note that installed hot spares are not deployed automatically; they must manually be

configured to replace the failed device using zfs replace .

¥ Log - ZFS Log Devices, also known as ZFS Intent Log (ZIL) move the intent log from

the regular pool devices to a dedicated device, typically an SSD. Having a dedicated

log device can significantly improve the performance of applications with a high

volume of synchronous writes, especially databases. Log devices can be mirrored,

but RAID-Z is not supported. If multiple log devices are used, writes will be load

balanced across them.

¥ Cache - Adding a cache vdev to a pool will add the storage of the cache to the L2ARC .

Cache devices cannot be mirrored. Since a cache device only stores additional copies

of existing data, there is no risk of data loss.

Transact

ion

Group

(TXG)

Transaction Groups are the way changed blocks are grouped together and eventually

written to the pool. Transaction groups are the atomic unit that ZFS uses to assert

consistency. Each transaction group is assigned a unique 64-bit consecutive identifier.

There can be up to three active transaction groups at a time, one in each of these three

states:

* Open - When a new transaction group is created, it is in the open state, and accepts

new writes. There is always a transaction group in the open state, however the

transaction group may refuse new writes if it has reached a limit. Once the open

transaction group has reached a limit, or the vfs.zfs.txg.timeout has been reached, the

transaction group advances to the next state. * Quiescing - A short state that allows any

pending operations to finish while not blocking the creation of a new open transaction

group. Once all of the transactions in the group have completed, the transaction group

advances to the final state. * Syncing - All of the data in the transaction group is written

to stable storage. This process will in turn modify other data, such as metadata and

space maps, that will also need to be written to stable storage. The process of syncing

involves multiple passes. The first, all of the changed data blocks, is the biggest, followed

by the metadata, which may take multiple passes to complete. Since allocating space for

the data blocks generates new metadata, the syncing state cannot finish until a pass

completes that does not allocate any additional space. The syncing state is also where

synctasks are completed. Synctasks are administrative operations, such as creating or

destroying snapshots and datasets, that modify the uberblock are completed. Once the

sync state is complete, the transaction group in the quiescing state is advanced to the

syncing state. All administrative functions, such as snapshot are written as part of the

transaction group. When a synctask is created, it is added to the currently open

transaction group, and that group is advanced as quickly as possible to the syncing state

to reduce the latency of administrative commands.

Adaptive

Replace

ment

Cache

(ARC)

ZFS uses an Adaptive Replacement Cache (ARC), rather than a more traditional Least

Recently Used (LRU) cache. An LRU cache is a simple list of items in the cache, sorted by

when each object was most recently used. New items are added to the top of the list.

When the cache is full, items from the bottom of the list are evicted to make room for

more active objects. An ARC consists of four lists; the Most Recently Used (MRU) and

Most Frequently Used (MFU) objects, plus a ghost list for each. These ghost lists track

recently evicted objects to prevent them from being added back to the cache. This

increases the cache hit ratio by avoiding objects that have a history of only being used

occasionally. Another advantage of using both an MRU and MFU is that scanning an

entire file system would normally evict all data from an MRU or LRU cache in favor of

this freshly accessed content. With ZFS, there is also an MFU that only tracks the most

frequently used objects, and the cache of the most commonly accessed blocks remains.

547

L2ARC L2ARC is the second level of the ZFS caching system. The primary ARC is stored in RAM.

Since the amount of available RAM is often limited, ZFS can also use cache vdevs . Solid

State Disks (SSDs) are often used as these cache devices due to their higher speed and

lower latency compared to traditional spinning disks. L2ARC is entirely optional, but

having one will significantly increase read speeds for files that are cached on the SSD

instead of having to be read from the regular disks. L2ARC can also speed up

deduplication because a DDT that does not fit in RAM but does fit in the L2ARC will be

much faster than a DDT that must be read from disk. The rate at which data is added to

the cache devices is limited to prevent prematurely wearing out SSDs with too many

writes. Until the cache is full (the first block has been evicted to make room), writing to

the L2ARC is limited to the sum of the write limit and the boost limit, and afterwards

limited to the write limit. A pair of man:sysctl[8] values control these rate limits.

vfs.zfs.l2arc_write_max controls how many bytes are written to the cache per second,

while vfs.zfs.l2arc_write_boost adds to this limit during the "Turbo Warmup Phase"

(Write Boost).

ZIL ZIL accelerates synchronous transactions by using storage devices like SSDs that are

faster than those used in the main storage pool. When an application requests a

synchronous write (a guarantee that the data has been safely stored to disk rather than

merely cached to be written later), the data is written to the faster ZIL storage, then later

flushed out to the regular disks. This greatly reduces latency and improves performance.

Only synchronous workloads like databases will benefit from a ZIL. Regular

asynchronous writes such as copying files will not use the ZIL at all.

Copy-

On-

Write

Unlike a traditional file system, when data is overwritten on ZFS, the new data is written

to a different block rather than overwriting the old data in place. Only when this write is

complete is the metadata then updated to point to the new location. In the event of a

shorn write (a system crash or power loss in the middle of writing a file), the entire

original contents of the file are still available and the incomplete write is discarded. This

also means that ZFS does not require a man:fsck[8] after an unexpected shutdown.

Dataset Dataset is the generic term for a ZFS file system, volume, snapshot or clone. Each dataset

has a unique name in the format poolname/path@snapshot . The root of the pool is

technically a dataset as well. Child datasets are named hierarchically like directories. For

example, mypool/home , the home dataset, is a child of mypool and inherits properties

from it. This can be expanded further by creating mypool/home/user . This grandchild

dataset will inherit properties from the parent and grandparent. Properties on a child

can be set to override the defaults inherited from the parents and grandparents.

Administration of datasets and their children can be delegated .

File

system

A ZFS dataset is most often used as a file system. Like most other file systems, a ZFS file

system is mounted somewhere in the systems directory hierarchy and contains files and

directories of its own with permissions, flags, and other metadata.

Volume In additional to regular file system datasets, ZFS can also create volumes, which are

block devices. Volumes have many of the same features, including copy-on-write,

snapshots, clones, and checksumming. Volumes can be useful for running other file

system formats on top of ZFS, such as UFS virtualization, or exporting iSCSI extents.

548

Snapsho

t

The copy-on-write (COW) design of ZFS allows for nearly instantaneous, consistent

snapshots with arbitrary names. After taking a snapshot of a dataset, or a recursive

snapshot of a parent dataset that will include all child datasets, new data is written to

new blocks, but the old blocks are not reclaimed as free space. The snapshot contains the

original version of the file system, and the live file system contains any changes made

since the snapshot was taken. No additional space is used. As new data is written to the

live file system, new blocks are allocated to store this data. The apparent size of the

snapshot will grow as the blocks are no longer used in the live file system, but only in

the snapshot. These snapshots can be mounted read only to allow for the recovery of

previous versions of files. It is also possible to rollback a live file system to a specific

snapshot, undoing any changes that took place after the snapshot was taken. Each block

in the pool has a reference counter which keeps track of how many snapshots, clones,

datasets, or volumes make use of that block. As files and snapshots are deleted, the

reference count is decremented. When a block is no longer referenced, it is reclaimed as

free space. Snapshots can also be marked with a hold . When a snapshot is held, any

attempt to destroy it will return an EBUSY error. Each snapshot can have multiple holds,

each with a unique name. The release command removes the hold so the snapshot can

deleted. Snapshots can be taken on volumes, but they can only be cloned or rolled back,

not mounted independently.

Clone Snapshots can also be cloned. A clone is a writable version of a snapshot, allowing the

file system to be forked as a new dataset. As with a snapshot, a clone initially consumes

no additional space. As new data is written to a clone and new blocks are allocated, the

apparent size of the clone grows. When blocks are overwritten in the cloned file system

or volume, the reference count on the previous block is decremented. The snapshot

upon which a clone is based cannot be deleted because the clone depends on it. The

snapshot is the parent, and the clone is the child. Clones can be promoted , reversing this

dependency and making the clone the parent and the previous parent the child. This

operation requires no additional space. Since the amount of space used by the parent

and child is reversed, existing quotas and reservations might be affected.

Checksu

m

Every block that is allocated is also checksummed. The checksum algorithm used is a

per-dataset property, see set . The checksum of each block is transparently validated as it

is read, allowing ZFS to detect silent corruption. If the data that is read does not match

the expected checksum, ZFS will attempt to recover the data from any available

redundancy, like mirrors or RAID-Z). Validation of all checksums can be triggered with

scrub . Checksum algorithms include:

* fletcher2 * fletcher4 * sha256 The fletcher algorithms are faster, but sha256 is a strong

cryptographic hash and has a much lower chance of collisions at the cost of some

performance. Checksums can be disabled, but it is not recommended.

549

Compres

sion

Each dataset has a compression property, which defaults to off. This property can be set

to one of a number of compression algorithms. This will cause all new data that is

written to the dataset to be compressed. Beyond a reduction in space used, read and

write throughput often increases because fewer blocks are read or written.

* LZ4 - Added in ZFS pool version 5000 (feature flags), LZ4 is now the recommended

compression algorithm. LZ4 compresses approximately 50% faster than LZJB when

operating on compressible data, and is over three times faster when operating on

uncompressible data. LZ4 also decompresses approximately 80% faster than LZJB. On

modern CPUs, LZ4 can often compress at over 500 MB/s, and decompress at over 1.5 GB/s

(per single CPU core). * LZJB - The default compression algorithm. Created by Jeff

Bonwick (one of the original creators of ZFS). LZJB offers good compression with less

CPU overhead compared to GZIP. In the future, the default compression algorithm will

likely change to LZ4. * GZIP - A popular stream compression algorithm available in ZFS.

One of the main advantages of using GZIP is its configurable level of compression. When

setting the compress property, the administrator can choose the level of compression,

ranging from gzip1 , the lowest level of compression, to gzip9 , the highest level of

compression. This gives the administrator control over how much CPU time to trade for

saved disk space. * ZLE - Zero Length Encoding is a special compression algorithm that

only compresses continuous runs of zeros. This compression algorithm is only useful

when the dataset contains large blocks of zeros.

Copies When set to a value greater than 1, the copies property instructs ZFS to maintain

multiple copies of each block in the File System or Volume . Setting this property on

important datasets provides additional redundancy from which to recover a block that

does not match its checksum. In pools without redundancy, the copies feature is the only

form of redundancy. The copies feature can recover from a single bad sector or other

forms of minor corruption, but it does not protect the pool from the loss of an entire

disk.

Deduplic

ation

Checksums make it possible to detect duplicate blocks of data as they are written. With

deduplication, the reference count of an existing, identical block is increased, saving

storage space. To detect duplicate blocks, a deduplication table (DDT) is kept in memory.

The table contains a list of unique checksums, the location of those blocks, and a

reference count. When new data is written, the checksum is calculated and compared to

the list. If a match is found, the existing block is used. The SHA256 checksum algorithm

is used with deduplication to provide a secure cryptographic hash. Deduplication is

tunable. If dedup is on , then a matching checksum is assumed to mean that the data is

identical. If dedup is set to verify , then the data in the two blocks will be checked byte-

for-byte to ensure it is actually identical. If the data is not identical, the hash collision

will be noted and the two blocks will be stored separately. As DDT must store the hash of

each unique block, it consumes a very large amount of memory. A general rule of thumb

is 5-6 GB of ram per 1 TB of deduplicated data). In situations where it is not practical to

have enough RAM to keep the entire DDT in memory, performance will suffer greatly as

the DDT must be read from disk before each new block is written. Deduplication can use

L2ARC to store the DDT, providing a middle ground between fast system memory and

slower disks. Consider using compression instead, which often provides nearly as much

space savings without the additional memory requirement.

550

Scrub Instead of a consistency check like man:fsck[8], ZFS has scrub . scrub reads all data blocks

stored on the pool and verifies their checksums against the known good checksums

stored in the metadata. A periodic check of all the data stored on the pool ensures the

recovery of any corrupted blocks before they are needed. A scrub is not required after

an unclean shutdown, but is recommended at least once every three months. The

checksum of each block is verified as blocks are read during normal use, but a scrub

makes certain that even infrequently used blocks are checked for silent corruption. Data

security is improved, especially in archival storage situations. The relative priority of

scrub can be adjusted with vfs.zfs.scrub_delay to prevent the scrub from degrading the

performance of other workloads on the pool.

Dataset

Quota

ZFS provides very fast and accurate dataset, user, and group space accounting in

addition to quotas and space reservations. This gives the administrator fine grained

control over how space is allocated and allows space to be reserved for critical file

systems.

ZFS supports different types of quotas: the dataset quota, the reference quota (refquota) ,

the user quota , and the group quota .

Quotas limit the amount of space that a dataset and all of its descendants, including

snapshots of the dataset, child datasets, and the snapshots of those datasets, can

consume.

!

Quotas cannot be set on volumes, as the volsize property acts as an

implicit quota.

Referenc

e Quota

A reference quota limits the amount of space a dataset can consume by enforcing a hard

limit. However, this hard limit includes only space that the dataset references and does

not include space used by descendants, such as file systems or snapshots.

User

Quota

User quotas are useful to limit the amount of space that can be used by the specified

user.

Group

Quota

The group quota limits the amount of space that a specified group can consume.

Dataset

Reservat

ion

The reservation property makes it possible to guarantee a minimum amount of space for

a specific dataset and its descendants. If a 10 GB reservation is set on storage/home/bob ,

and another dataset tries to use all of the free space, at least 10 GB of space is reserved

for this dataset. If a snapshot is taken of storage/home/bob , the space used by that

snapshot is counted against the reservation. The refreservation property works in a

similar way, but it excludes descendants like snapshots.

Reservations of any sort are useful in many situations, such as planning and testing the

suitability of disk space allocation in a new system, or ensuring that enough space is

available on file systems for audio logs or system recovery procedures and files.

551

Referenc

e

Reservat

ion

The refreservation property makes it possible to guarantee a minimum amount of space

for the use of a specific dataset excluding its descendants. This means that if a 10 GB

reservation is set on storage/home/bob , and another dataset tries to use all of the free

space, at least 10 GB of space is reserved for this dataset. In contrast to a regular

reservation , space used by snapshots and descendant datasets is not counted against the

reservation. For example, if a snapshot is taken of storage/home/bob , enough disk space

must exist outside of the refreservation amount for the operation to succeed.

Descendants of the main data set are not counted in the refreservation amount and so

do not encroach on the space set.

Resilver When a disk fails and is replaced, the new disk must be filled with the data that was lost.

The process of using the parity information distributed across the remaining drives to

calculate and write the missing data to the new drive is called resilvering .

Online A pool or vdev in the Online state has all of its member devices connected and fully

operational. Individual devices in the Online state are functioning normally.

Offline Individual devices can be put in an Offline state by the administrator if there is

sufficient redundancy to avoid putting the pool or vdev into a Faulted state. An

administrator may choose to offline a disk in preparation for replacing it, or to make it

easier to identify.

Degrade

d

A pool or vdev in the Degraded state has one or more disks that have been disconnected

or have failed. The pool is still usable, but if additional devices fail, the pool could

become unrecoverable. Reconnecting the missing devices or replacing the failed disks

will return the pool to an Online state after the reconnected or new device has

completed the Resilver process.

Faulted A pool or vdev in the Faulted state is no longer operational. The data on it can no longer

be accessed. A pool or vdev enters the Faulted state when the number of missing or

failed devices exceeds the level of redundancy in the vdev. If missing devices can be

reconnected, the pool will return to a Online state. If there is insufficient redundancy to

compensate for the number of failed disks, then the contents of the pool are lost and

must be restored from backups.

552

Chapter 21. Other File Systems

21.1. Synopsis

File systems are an integral part of any operating system. They allow users to upload and store files,

provide access to data, and make hard drives useful. Different operating systems differ in their

native file system. Traditionally, the native FreeBSD file system has been the Unix File System UFS

which has been modernized as UFS2. Since FreeBSD 7.0, the Z File System (ZFS) is also available as a

native file system. See crossref:zfs[zfs,The Z File System (ZFS)] for more information.

In addition to its native file systems, FreeBSD supports a multitude of other file systems so that data

from other operating systems can be accessed locally, such as data stored on locally attached USB

storage devices, flash drives, and hard disks. This includes support for the Linux¨ Extended File

System (EXT).

There are different levels of FreeBSD support for the various file systems. Some require a kernel

module to be loaded and others may require a toolset to be installed. Some non-native file system

support is full read-write while others are read-only.

After reading this chapter, you will know:

¥ The difference between native and supported file systems.

¥ Which file systems are supported by FreeBSD.

¥ How to enable, configure, access, and make use of non-native file systems.

Before reading this chapter, you should:

¥ Understand UNIX¨ and crossref:basics[basics,FreeBSD basics].

¥ Be familiar with the basics of crossref:kernelconfig[kernelconfig,kernel configuration and

compilation].

¥ Feel comfortable crossref:ports[ports,installing software] in FreeBSD.

¥ Have some familiarity with crossref:disks[disks,disks], storage, and device names in FreeBSD.

21.2. Linux¨ File Systems

FreeBSD provides built-in support for several Linux¨ file systems. This section demonstrates how

to load support for and how to mount the supported Linux¨ file systems.

21.2.1. ext2

Kernel support for ext2 file systems has been available since FreeBSD 2.2. In FreeBSD 8.x and

earlier, the code is licensed under the GPL. Since FreeBSD 9.0, the code has been rewritten and is

now BSD licensed.

The man:ext2fs[5] driver allows the FreeBSD kernel to both read and write to ext2 file systems.

553

!

This driver can also be used to access ext3 and ext4 file systems. The man:ext2fs[5]

filesystem has full read and write support for ext4 as of FreeBSD 12.0-RELEASE.

Additionally, extended attributes and ACLs are also supported, while journalling

and encryption are not. Starting with FreeBSD 12.1-RELEASE, a DTrace provider

will be available as well. Prior versions of FreeBSD can access ext4 in read and

write mode using package:sysutils/fusefs-ext2[].

To access an ext file system, first load the kernel loadable module:

kldload ext2fs

Then, mount the ext volume by specifying its FreeBSD partition name and an existing mount point.

This example mounts /dev/ad1s1 on /mnt :

mount -t ext2fs /dev/ad1s1 /mnt

554

Chapter 22. Virtualization

22.1. Synopsis

Virtualization software allows multiple operating systems to run simultaneously on the same

computer. Such software systems for PCs often involve a host operating system which runs the

virtualization software and supports any number of guest operating systems.

After reading this chapter, you will know:

¥ The difference between a host operating system and a guest operating system.

¥ How to install FreeBSD on an Intel¨-based Apple¨ Mac¨ computer.

¥ How to install FreeBSD on Microsoft¨ Windows¨ with Virtual PC.

¥ How to install FreeBSD as a guest in bhyve.

¥ How to tune a FreeBSD system for best performance under virtualization.

Before reading this chapter, you should:

¥ Understand the crossref:basics[basics,basics of UNIX¨ and FreeBSD].

¥ Know how to crossref:bsdinstall[bsdinstall,install FreeBSD].

¥ Know how to crossref:advanced-networking[advanced-networking,set up a network

connection].

¥ Know how to crossref:ports[ports,install additional third-party software].

22.2. FreeBSD as a Guest on Parallels for Mac OS¨ X

Parallels Desktop for Mac¨ is a commercial software product available for Intel¨ based Apple¨

Mac¨ computers running Mac OS¨ 10.4.6 or higher. FreeBSD is a fully supported guest operating

system. Once Parallels has been installed on Mac OS¨ X, the user must configure a virtual machine

and then install the desired guest operating system.

22.2.1. Installing FreeBSD on Parallels/Mac OS¨ X

The first step in installing FreeBSD on Parallels is to create a new virtual machine for installing

FreeBSD. Select FreeBSD as the Guest OS Type when prompted:

555

Choose a reasonable amount of disk and memory depending on the plans for this virtual FreeBSD

instance. 4GB of disk space and 512MB of RAM work well for most uses of FreeBSD under Parallels:

556

557

Select the type of networking and a network interface:

558

Save and finish the configuration:

559

After the FreeBSD virtual machine has been created, FreeBSD can be installed on it. This is best

done with an official FreeBSD CD/DVD or with an ISO image downloaded from an official FTP site.

Copy the appropriate ISO image to the local Mac¨ filesystem or insert a CD/DVD in the Mac¨'s CD-

ROM drive. Click on the disc icon in the bottom right corner of the FreeBSD Parallels window. This

will bring up a window that can be used to associate the CD-ROM drive in the virtual machine with

the ISO file on disk or with the real CD-ROM drive.

560

Once this association with the CD-ROM source has been made, reboot the FreeBSD virtual machine

by clicking the reboot icon. Parallels will reboot with a special BIOS that first checks if there is a CD-

ROM.

In this case it will find the FreeBSD installation media and begin a normal FreeBSD installation.

561

Perform the installation, but do not attempt to configure Xorg at this time.

When the installation is finished, reboot into the newly installed FreeBSD virtual machine.

562

22.2.2. Configuring FreeBSD on Parallels

After FreeBSD has been successfully installed on Mac OS¨ X with Parallels, there are a number of

configuration steps that can be taken to optimize the system for virtualized operation.

1. Set Boot Loader Variables

The most important step is to reduce the kern.hz tunable to reduce the CPU utilization of

FreeBSD under the Parallels environment. This is accomplished by adding the following line to

/boot/loader.conf :

kern.hz=100

Without this setting, an idle FreeBSD Parallels guest will use roughly 15% of the CPU of a single

processor iMac¨. After this change the usage will be closer to 5%.

2. Create a New Kernel Configuration File

All of the SCSI, FireWire, and USB device drivers can be removed from a custom kernel

configuration file. Parallels provides a virtual network adapter used by the man:ed[4] driver, so

all network devices except for man:ed[4] and man:miibus[4] can be removed from the kernel.

3. Configure Networking

The most basic networking setup uses DHCP to connect the virtual machine to the same local

area network as the host Mac¨. This can be accomplished by adding ifconfig_ed0="DHCP" to

/etc/rc.conf . More advanced networking setups are described in crossref:advanced-

networking[advanced-networking,Advanced Networking].

22.3. FreeBSD as a Guest on Virtual PC for Windows¨

Virtual PC for Windows¨ is a Microsoft¨ software product available for free download. See this

website for the system requirements . Once Virtual PC has been installed on Microsoft¨ Windows¨,

the user can configure a virtual machine and then install the desired guest operating system.

22.3.1. Installing FreeBSD on Virtual PC

The first step in installing FreeBSD on Virtual PC is to create a new virtual machine for installing

FreeBSD. Select Create a virtual machine when prompted:

563

http://www.microsoft.com/windows/downloads/virtualpc/sysreq.mspx

Select Other as the Operating system when prompted:

564

Then, choose a reasonable amount of disk and memory depending on the plans for this virtual

FreeBSD instance. 4GB of disk space and 512MB of RAM work well for most uses of FreeBSD under

Virtual PC:

565

Save and finish the configuration:

Select the FreeBSD virtual machine and click Settings , then set the type of networking and a

network interface:

566

After the FreeBSD virtual machine has been created, FreeBSD can be installed on it. This is best

done with an official FreeBSD CD/DVD or with an ISO image downloaded from an official FTP site.

Copy the appropriate ISO image to the local Windows¨ filesystem or insert a CD/DVD in the CD

drive, then double click on the FreeBSD virtual machine to boot. Then, click CD and choose Capture

ISO ImageÉ on the Virtual PC window. This will bring up a window where the CD-ROM drive in the

virtual machine can be associated with an ISO file on disk or with the real CD-ROM drive.

567

Once this association with the CD-ROM source has been made, reboot the FreeBSD virtual machine

by clicking Action and Reset . Virtual PC will reboot with a special BIOS that first checks for a CD-

ROM.

568

In this case it will find the FreeBSD installation media and begin a normal FreeBSD installation.

Continue with the installation, but do not attempt to configure Xorg at this time.

569

When the installation is finished, remember to eject the CD/DVD or release the ISO image. Finally,

reboot into the newly installed FreeBSD virtual machine.

570

22.3.2. Configuring FreeBSD on Virtual PC

After FreeBSD has been successfully installed on Microsoft¨ Windows¨ with Virtual PC, there are a

number of configuration steps that can be taken to optimize the system for virtualized operation.

1. Set Boot Loader Variables

The most important step is to reduce the kern.hz tunable to reduce the CPU utilization of

FreeBSD under the Virtual PC environment. This is accomplished by adding the following line to

/boot/loader.conf :

kern.hz=100

Without this setting, an idle FreeBSD Virtual PC guest OS will use roughly 40% of the CPU of a

single processor computer. After this change, the usage will be closer to 3%.

2. Create a New Kernel Configuration File

All of the SCSI, FireWire, and USB device drivers can be removed from a custom kernel

configuration file. Virtual PC provides a virtual network adapter used by the man:de[4] driver,

so all network devices except for man:de[4] and man:miibus[4] can be removed from the

kernel.

3. Configure Networking

571

The most basic networking setup uses DHCP to connect the virtual machine to the same local

area network as the Microsoft¨ Windows¨ host. This can be accomplished by adding

ifconfig_de0="DHCP" to /etc/rc.conf . More advanced networking setups are described in

crossref:advanced-networking[advanced-networking,Advanced Networking].

22.4. FreeBSD as a Guest on VMware Fusion for Mac

OS¨

VMware Fusion for Mac¨ is a commercial software product available for Intel¨ based Apple¨

Mac¨ computers running Mac OS¨ 10.4.9 or higher. FreeBSD is a fully supported guest operating

system. Once VMware Fusion has been installed on Mac OS¨ X, the user can configure a virtual

machine and then install the desired guest operating system.

22.4.1. Installing FreeBSD on VMware Fusion

The first step is to start VMware Fusion which will load the Virtual Machine Library. Click New to

create the virtual machine:

This will load the New Virtual Machine Assistant. Click Continue to proceed:

572

Select Other as the Operating System and either FreeBSD or FreeBSD 64-bit , as the Version when

prompted:

573

Choose the name of the virtual machine and the directory where it should be saved:

574

Choose the size of the Virtual Hard Disk for the virtual machine:

575

Choose the method to install the virtual machine, either from an ISO image or from a CD/DVD:

576

Click Finish and the virtual machine will boot:

577

Install FreeBSD as usual:

578

Once the install is complete, the settings of the virtual machine can be modified, such as memory

usage:

!

The System Hardware settings of the virtual machine cannot be modified while the

virtual machine is running.

579

The number of CPUs the virtual machine will have access to:

580

The status of the CD-ROM device. Normally the CD/DVD/ISO is disconnected from the virtual

machine when it is no longer needed.

The last thing to change is how the virtual machine will connect to the network. To allow

connections to the virtual machine from other machines besides the host, choose Connect directly

to the physical network (Bridged) . Otherwise, Share the hostÕs internet connection (NAT) is

preferred so that the virtual machine can have access to the Internet, but the network cannot

access the virtual machine.

581

After modifying the settings, boot the newly installed FreeBSD virtual machine.

22.4.2. Configuring FreeBSD on VMware Fusion

After FreeBSD has been successfully installed on Mac OS¨ X with VMware Fusion, there are a

number of configuration steps that can be taken to optimize the system for virtualized operation.

1. Set Boot Loader Variables

The most important step is to reduce the kern.hz tunable to reduce the CPU utilization of

FreeBSD under the VMware Fusion environment. This is accomplished by adding the following

line to /boot/loader.conf :

kern.hz=100

Without this setting, an idle FreeBSD VMware Fusion guest will use roughly 15% of the CPU of a

single processor iMac¨. After this change, the usage will be closer to 5%.

2. Create a New Kernel Configuration File

All of the FireWire, and USB device drivers can be removed from a custom kernel configuration

file. VMware Fusion provides a virtual network adapter used by the man:em[4] driver, so all

network devices except for man:em[4] can be removed from the kernel.

3. Configure Networking

582

The most basic networking setup uses DHCP to connect the virtual machine to the same local

area network as the host Mac¨. This can be accomplished by adding ifconfig_em0="DHCP" to

/etc/rc.conf . More advanced networking setups are described in crossref:advanced-

networking[advanced-networking,Advanced Networking].

22.5. FreeBSD as a Guest on VirtualBoxª

FreeBSD works well as a guest in VirtualBoxª. The virtualization software is available for most

common operating systems, including FreeBSD itself.

The VirtualBoxª guest additions provide support for:

¥ Clipboard sharing.

¥ Mouse pointer integration.

¥ Host time synchronization.

¥ Window scaling.

¥ Seamless mode.

!

These commands are run in the FreeBSD guest.

First, install the package:emulators/virtualbox-ose-additions[] package or port in the FreeBSD guest.

This will install the port:

cd /usr/ports/emulators/virtualbox-ose-additions && make install clean

Add these lines to /etc/rc.conf :

vboxguest_enable="YES"

vboxservice_enable="YES"

If man:ntpd[8] or man:ntpdate[8] is used, disable host time synchronization:

vboxservice_flags="--disable-timesync"

Xorg will automatically recognize the vboxvideo driver. It can also be manually entered in

/etc/X11/xorg.conf :

Section "Device"

Ê Identifier "Card0"

Ê Driver "vboxvideo"

Ê VendorName "InnoTek Systemberatung GmbH"

Ê BoardName "VirtualBox Graphics Adapter"

EndSection

583

To use the vboxmouse driver, adjust the mouse section in /etc/X11/xorg.conf :

Section "InputDevice"

Ê Identifier "Mouse0"

Ê Driver "vboxmouse"

EndSection

HAL users should create the following /usr/local/etc/hal/fdi/policy/90-vboxguest.fdi or copy it from

/usr/local/shared/hal/fdi/policy/10osvendor/90-vboxguest.fdi :

<?xml version="1.0" encoding="utf-8"?>

<!--

Sun VirtualBox

Hal driver description for the vboxmouse driver

$Id: chapter.xml,v 1.33 2012-03-17 04:53:52 eadler Exp $

Ê Copyright (C) 2008-2009 Sun Microsystems, Inc.

Ê This file is part of VirtualBox Open Source Edition (OSE, as

Ê available from http://www.virtualbox.org. This file is free software;

Ê you can redistribute it and/or modify it under the terms of the GNU

Ê General Public License (GPL) as published by the Free Software

Ê Foundation, in version 2 as it comes in the "COPYING" file of the

Ê VirtualBox OSE distribution. VirtualBox OSE is distributed in the

Ê hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.

Ê Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa

Ê Clara, CA 95054 USA or visit http://www.sun.com if you need

Ê additional information or have any questions.

-->

<deviceinfo version="0.2">

Ê <device>

Ê <match key="info.subsystem" string="pci">

Ê <match key="info.product" string="VirtualBox guest Service">

Ê <append key="info.capabilities" type="strlist">input</append>

Ê <append key="info.capabilities" type="strlist">input.mouse</append>

Ê <merge key="input.x11_driver" type="string">vboxmouse</merge>

Ê <merge key="input.device" type="string">/dev/vboxguest</merge>

Ê </match>

Ê </match>

Ê </device>

</deviceinfo>

Shared folders for file transfers between host and VM are accessible by mounting them using

mount_vboxvfs . A shared folder can be created on the host using the VirtualBox GUI or via

vboxmanage . For example, to create a shared folder called myshare under /mnt/bsdboxshare for the

VM named BSDBox , run:

584

vboxmanage sharedfolder add 'BSDBox' --name myshare --hostpath /mnt/bsdboxshare

Note that the shared folder name must not contain spaces. Mount the shared folder from within the

guest system like this:

mount_vboxvfs -w myshare /mnt

22.6. FreeBSD as a Host with VirtualBoxª

VirtualBoxª is an actively developed, complete virtualization package, that is available for most

operating systems including Windows¨, Mac OS¨, Linux¨ and FreeBSD. It is equally capable of

running Windows¨ or UNIX¨-like guests. It is released as open source software, but with closed-

source components available in a separate extension pack. These components include support for

USB 2.0 devices. More information may be found on the Downloads page of the VirtualBoxª wiki .

Currently, these extensions are not available for FreeBSD.

22.6.1. Installing VirtualBoxª

VirtualBoxª is available as a FreeBSD package or port in package:emulators/virtualbox-ose[]. The

port can be installed using these commands:

cd /usr/ports/emulators/virtualbox-ose

make install clean

One useful option in the portÕs configuration menu is the GuestAdditions suite of programs. These

provide a number of useful features in guest operating systems, like mouse pointer integration

(allowing the mouse to be shared between host and guest without the need to press a special

keyboard shortcut to switch) and faster video rendering, especially in Windows¨ guests. The guest

additions are available in the Devices menu, after the installation of the guest is finished.

A few configuration changes are needed before VirtualBoxª is started for the first time. The port

installs a kernel module in /boot/modules which must be loaded into the running kernel:

kldload vboxdrv

To ensure the module is always loaded after a reboot, add this line to /boot/loader.conf :

vboxdrv_load="YES"

To use the kernel modules that allow bridged or host-only networking, add this line to /etc/rc.conf

and reboot the computer:

585

http://www.virtualbox.org/wiki/Downloads

vboxnet_enable="YES"

The vboxusers group is created during installation of VirtualBoxª. All users that need access to

VirtualBoxª will have to be added as members of this group. pw can be used to add new members:

pw groupmod vboxusers -m yourusername

The default permissions for /dev/vboxnetctl are restrictive and need to be changed for bridged

networking:

chown root:vboxusers /dev/vboxnetctl

chmod 0660 /dev/vboxnetctl

To make this permissions change permanent, add these lines to /etc/devfs.conf :

own vboxnetctl root:vboxusers

perm vboxnetctl 0660

To launch VirtualBoxª, type from a Xorg session:

% VirtualBox

For more information on configuring and using VirtualBoxª, refer to the official website . For

FreeBSD-specific information and troubleshooting instructions, refer to the relevant page in the

FreeBSD wiki .

22.6.2. VirtualBoxª USB Support

VirtualBoxª can be configured to pass USB devices through to the guest operating system. The host

controller of the OSE version is limited to emulating USB 1.1 devices until the extension pack

supporting USB 2.0 and 3.0 devices becomes available on FreeBSD.

For VirtualBoxª to be aware of USB devices attached to the machine, the user needs to be a

member of the operator group.

pw groupmod operator -m yourusername

Then, add the following to /etc/devfs.rules , or create this file if it does not exist yet:

[system=10]

add path 'usb/*' mode 0660 group operator

586

http://www.virtualbox.org
http://wiki.FreeBSD.org/VirtualBox
http://wiki.FreeBSD.org/VirtualBox

To load these new rules, add the following to /etc/rc.conf :

devfs_system_ruleset="system"

Then, restart devfs:

service devfs restart

Restart the login session and VirtualBoxª for these changes to take effect, and create USB filters as

necessary.

22.6.3. VirtualBoxª Host DVD/CD Access

Access to the host DVD/CD drives from guests is achieved through the sharing of the physical drives.

Within VirtualBoxª, this is set up from the Storage window in the Settings of the virtual machine. If

needed, create an empty IDECD/DVD device first. Then choose the Host Drive from the popup menu

for the virtual CD/DVD drive selection. A checkbox labeled Passthrough will appear. This allows the

virtual machine to use the hardware directly. For example, audio CDs or the burner will only

function if this option is selected.

HAL needs to run for VirtualBoxªDVD/CD functions to work, so enable it in /etc/rc.conf and start it

if it is not already running:

hald_enable="YES"

service hald start

In order for users to be able to use VirtualBoxªDVD/CD functions, they need access to /dev/xpt0 ,

/dev/cdN , and /dev/passN . This is usually achieved by making the user a member of operator .

Permissions to these devices have to be corrected by adding these lines to /etc/devfs.conf :

perm cd* 0660

perm xpt0 0660

perm pass* 0660

service devfs restart

22.7. FreeBSD as a Host with bhyve

The bhyveBSD-licensed hypervisor became part of the base system with FreeBSD 10.0-RELEASE.

This hypervisor supports a number of guests, including FreeBSD, OpenBSD, and many Linux¨

distributions. By default, bhyve provides access to serial console and does not emulate a graphical

587

console. Virtualization offload features of newer CPUs are used to avoid the legacy methods of

translating instructions and manually managing memory mappings.

The bhyve design requires a processor that supports Intel¨ Extended Page Tables (EPT) or AMD¨

Rapid Virtualization Indexing (RVI) or Nested Page Tables (NPT). Hosting Linux¨ guests or FreeBSD

guests with more than one vCPU requires VMX unrestricted mode support (UG). Most newer

processors, specifically the Intel¨ Coreª i3/i5/i7 and Intel¨ Xeonª E3/E5/E7, support these features.

UG support was introduced with IntelÕs Westmere micro-architecture. For a complete list of Intel¨

processors that support EPT, refer to https://ark.intel.com/content/www/us/en/ark/search/

featurefilter.html?productType=873&0_ExtendedPageTables=True . RVI is found on the third

generation and later of the AMD Opteronª (Barcelona) processors. The easiest way to tell if a

processor supports bhyve is to run dmesg or look in /var/run/dmesg.boot for the POPCNT processor

feature flag on the Features2 line for AMD¨ processors or EPT and UG on the VT-x line for Intel¨

processors.

22.7.1. Preparing the Host

The first step to creating a virtual machine in bhyve is configuring the host system. First, load the

bhyve kernel module:

kldload vmm

Then, create a tap interface for the network device in the virtual machine to attach to. In order for

the network device to participate in the network, also create a bridge interface containing the tap

interface and the physical interface as members. In this example, the physical interface is igb0 :

ifconfig tap0 create

sysctl net.link.tap.up_on_open=1

net.link.tap.up_on_open: 0 -> 1

ifconfig bridge0 create

ifconfig bridge0 addm igb0 addm tap0

ifconfig bridge0 up

22.7.2. Creating a FreeBSD Guest

Create a file to use as the virtual disk for the guest machine. Specify the size and name of the virtual

disk:

truncate -s 16G guest.img

Download an installation image of FreeBSD to install:

fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/12.2/FreeBSD-12.2-

RELEASE-amd64-bootonly.iso

FreeBSD-12.2-RELEASE-amd64-bootonly.iso 100% of 230 MB 570 kBps 06m17s

588

https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&0_ExtendedPageTables=True
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&0_ExtendedPageTables=True

FreeBSD comes with an example script for running a virtual machine in bhyve. The script will start

the virtual machine and run it in a loop, so it will automatically restart if it crashes. The script takes

a number of options to control the configuration of the machine: -c controls the number of virtual

CPUs, -m limits the amount of memory available to the guest, -t defines which tap device to use, -d

indicates which disk image to use, -i tells bhyve to boot from the CD image instead of the disk, and

-I defines which CD image to use. The last parameter is the name of the virtual machine, used to

track the running machines. This example starts the virtual machine in installation mode:

sh /usr/share/examples/bhyve/vmrun.sh -c 1 -m 1024M -t tap0 -d guest.img -i -I

FreeBSD-12.2-RELEASE-amd64-bootonly.iso guestname

The virtual machine will boot and start the installer. After installing a system in the virtual

machine, when the system asks about dropping in to a shell at the end of the installation, choose

[!Yes!] .

Reboot the virtual machine. While rebooting the virtual machine causes bhyve to exit, the

vmrun.sh script runs bhyve in a loop and will automatically restart it. When this happens, choose

the reboot option from the boot loader menu in order to escape the loop. Now the guest can be

started from the virtual disk:

sh /usr/share/examples/bhyve/vmrun.sh -c 4 -m 1024M -t tap0 -d guest.img guestname

22.7.3. Creating a Linux¨ Guest

In order to boot operating systems other than FreeBSD, the package:sysutils/grub2-bhyve[] port

must be first installed.

Next, create a file to use as the virtual disk for the guest machine:

truncate -s 16G linux.img

Starting a virtual machine with bhyve is a two step process. First a kernel must be loaded, then the

guest can be started. The Linux¨ kernel is loaded with package:sysutils/grub2-bhyve[]. Create a

device.map that grub will use to map the virtual devices to the files on the host system:

(hd0) ./linux.img

(cd0) ./somelinux.iso

Use package:sysutils/grub2-bhyve[] to load the Linux¨ kernel from the ISO image:

grub-bhyve -m device.map -r cd0 -M 1024M linuxguest

This will start grub. If the installation CD contains a grub.cfg , a menu will be displayed. If not, the

vmlinuz and initrd files must be located and loaded manually:

589

grub> ls

(hd0) (cd0) (cd0,msdos1) (host)

grub> ls (cd0)/isolinux

boot.cat boot.msg grub.conf initrd.img isolinux.bin isolinux.cfg memtest

splash.jpg TRANS.TBL vesamenu.c32 vmlinuz

grub> linux (cd0)/isolinux/vmlinuz

grub> initrd (cd0)/isolinux/initrd.img

grub> boot

Now that the Linux¨ kernel is loaded, the guest can be started:

bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s 3:0,virtio-

blk,./linux.img \

Ê -s 4:0,ahci-cd,./somelinux.iso -l com1,stdio -c 4 -m 1024M linuxguest

The system will boot and start the installer. After installing a system in the virtual machine, reboot

the virtual machine. This will cause bhyve to exit. The instance of the virtual machine needs to be

destroyed before it can be started again:

bhyvectl --destroy --vm=linuxguest

Now the guest can be started directly from the virtual disk. Load the kernel:

grub-bhyve -m device.map -r hd0,msdos1 -M 1024M linuxguest

grub> ls

(hd0) (hd0,msdos2) (hd0,msdos1) (cd0) (cd0,msdos1) (host)

(lvm/VolGroup-lv_swap) (lvm/VolGroup-lv_root)

grub> ls (hd0,msdos1)/

lost+found/ grub/ efi/ System.map-2.6.32-431.el6.x86_64 config-2.6.32-431.el6.x

86_64 symvers-2.6.32-431.el6.x86_64.gz vmlinuz-2.6.32-431.el6.x86_64

initramfs-2.6.32-431.el6.x86_64.img

grub> linux (hd0,msdos1)/vmlinuz-2.6.32-431.el6.x86_64 root=/dev/mapper/VolGroup-

lv_root

grub> initrd (hd0,msdos1)/initramfs-2.6.32-431.el6.x86_64.img

grub> boot

Boot the virtual machine:

bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 \

Ê -s 3:0,virtio-blk,./linux.img -l com1,stdio -c 4 -m 1024M linuxguest

Linux¨ will now boot in the virtual machine and eventually present you with the login prompt.

Login and use the virtual machine. When you are finished, reboot the virtual machine to exit

bhyve. Destroy the virtual machine instance:

590

bhyvectl --destroy --vm=linuxguest

22.7.4. Booting bhyve Virtual Machines with UEFI Firmware

In addition to bhyveload and grub-bhyve, the bhyve hypervisor can also boot virtual machines

using the UEFI userspace firmware. This option may support guest operating systems that are not

supported by the other loaders.

In order to make use of the UEFI support in bhyve, first obtain the UEFI firmware images. This can

be done by installing package:sysutils/bhyve-firmware[] port or package.

With the firmware in place, add the flags -l bootrom, /path/to/firmware to your bhyve command

line. The actual bhyve command may look like this:

bhyve -AHP -s 0:0,hostbridge -s 1:0,lpc \

-s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img \

-s 4:0,ahci-cd,./install.iso -c 4 -m 1024M \

-l bootrom,/usr/local/shared/uefi-firmware/BHYVE_UEFI.fd \

guest

package:sysutils/bhyve-firmware[] also contains a CSM-enabled firmware, to boot guests with no

UEFI support in legacy BIOS mode:

bhyve -AHP -s 0:0,hostbridge -s 1:0,lpc \

-s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img \

-s 4:0,ahci-cd,./install.iso -c 4 -m 1024M \

-l bootrom,/usr/local/shared/uefi-firmware/BHYVE_UEFI_CSM.fd \

guest

22.7.5. Graphical UEFI Framebuffer for bhyve Guests

The UEFI firmware support is particularly useful with predominantly graphical guest operating

systems such as Microsoft Windows¨.

Support for the UEFI-GOP framebuffer may also be enabled with the -s 29,fbuf,tcp= 0.0.0.0:5900

flags. The framebuffer resolution may be configured with w= 800 and h= 600 , and bhyve can be

instructed to wait for a VNC connection before booting the guest by adding wait . The framebuffer

may be accessed from the host or over the network via the VNC protocol. Additionally, -s

30,xhci,tablet can be added to achieve precise mouse cursor synchronization with the host.

The resulting bhyve command would look like this:

591

bhyve -AHP -s 0:0,hostbridge -s 31:0,lpc \

-s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img \

-s 4:0,ahci-cd,./install.iso -c 4 -m 1024M \

-s 29,fbuf,tcp=0.0.0.0:5900,w=800,h=600,wait \

-s 30,xhci,tablet \

-l bootrom,/usr/local/shared/uefi-firmware/BHYVE_UEFI.fd \

guest

Note, in BIOS emulation mode, the framebuffer will cease receiving updates once control is passed

from firmware to guest operating system.

22.7.6. Using ZFS with bhyve Guests

If ZFS is available on the host machine, using ZFS volumes instead of disk image files can provide

significant performance benefits for the guest VMs. A ZFS volume can be created by:

zfs create -V16G -o volmode=dev zroot/linuxdisk0

When starting the VM, specify the ZFS volume as the disk drive:

bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s3:0,virtio

-blk,/dev/zvol/zroot/linuxdisk0 \

Ê -l com1,stdio -c 4 -m 1024M linuxguest

22.7.7. Virtual Machine Consoles

It is advantageous to wrap the bhyve console in a session management tool such as

package:sysutils/tmux[] or package:sysutils/screen[] in order to detach and reattach to the console.

It is also possible to have the console of bhyve be a null modem device that can be accessed with cu .

To do this, load the nmdm kernel module and replace -l com1,stdio with -l com1,/dev/nmdm0A . The

/dev/nmdm devices are created automatically as needed, where each is a pair, corresponding to the

two ends of the null modem cable (/dev/nmdm0A and /dev/nmdm0B). See man:nmdm[4] for more

information.

kldload nmdm

bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s 3:0,virtio-

blk,./linux.img \

Ê -l com1,/dev/nmdm0A -c 4 -m 1024M linuxguest

cu -l /dev/nmdm0B

Connected

Ubuntu 13.10 handbook ttyS0

handbook login:

592

22.7.8. Managing Virtual Machines

A device node is created in /dev/vmm for each virtual machine. This allows the administrator to

easily see a list of the running virtual machines:

ls -al /dev/vmm

total 1

dr-xr-xr-x 2 root wheel 512 Mar 17 12:19 ./

dr-xr-xr-x 14 root wheel 512 Mar 17 06:38 ../

crw------- 1 root wheel 0x1a2 Mar 17 12:20 guestname

crw------- 1 root wheel 0x19f Mar 17 12:19 linuxguest

crw------- 1 root wheel 0x1a1 Mar 17 12:19 otherguest

A specified virtual machine can be destroyed using bhyvectl :

bhyvectl --destroy --vm=guestname

22.7.9. Persistent Configuration

In order to configure the system to start bhyve guests at boot time, the following configurations

must be made in the specified files:

1. /etc/sysctl.conf

net.link.tap.up_on_open=1

2. /etc/rc.conf

cloned_interfaces="bridge0 tap0"

ifconfig_bridge0="addm igb0 addm tap0"

kld_list="nmdm vmm"

22.8. FreeBSD as a Xenª-Host

Xen is a GPLv2-licensed type 1 hypervisor for Intel¨ and ARM¨ architectures. FreeBSD has

included i386ª and AMD¨ 64-Bit DomU and Amazon EC2 unprivileged domain (virtual machine)

support since FreeBSD 8.0 and includes Dom0 control domain (host) support in FreeBSD 11.0.

Support for para-virtualized (PV) domains has been removed from FreeBSD 11 in favor of

hardware virtualized (HVM) domains, which provides better performance.

Xenª is a bare-metal hypervisor, which means that it is the first program loaded after the BIOS. A

special privileged guest called the Domain-0 (Dom0 for short) is then started. The Dom0 uses its

special privileges to directly access the underlying physical hardware, making it a high-

performance solution. It is able to access the disk controllers and network adapters directly. The

593

https://en.wikipedia.org/wiki/Hypervisor#Classification
https://wiki.xenproject.org/wiki/DomU
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud

Xenª management tools to manage and control the Xenª hypervisor are also used by the Dom0 to

create, list, and destroy VMs. Dom0 provides virtual disks and networking for unprivileged

domains, often called DomU . Xenª Dom0 can be compared to the service console of other hypervisor

solutions, while the DomU is where individual guest VMs are run.

Xenª can migrate VMs between different Xenª servers. When the two xen hosts share the same

underlying storage, the migration can be done without having to shut the VM down first. Instead,

the migration is performed live while the DomU is running and there is no need to restart it or plan

a downtime. This is useful in maintenance scenarios or upgrade windows to ensure that the

services provided by the DomU are still provided. Many more features of Xenª are listed on the

Xen Wiki Overview page . Note that not all features are supported on FreeBSD yet.

22.8.1. Hardware Requirements for Xenª Dom0

To run the Xenª hypervisor on a host, certain hardware functionality is required. Hardware

virtualized domains require Extended Page Table (EPT) and Input/Output Memory Management

Unit (IOMMU) support in the host processor.

!

In order to run a FreeBSD Xenª Dom0 the box must be booted using legacy boot

(BIOS).

22.8.2. Xenª Dom0 Control Domain Setup

Users of FreeBSD 11 should install the package:emulators/xen-kernel47[] and package:sysutils/xen-

tools47[] packages that are based on Xen version 4.7. Systems running on FreeBSD-12.0 or newer

can use Xen 4.11 provided by package:emulators/xen-kernel411[] and package:sysutils/xen-

tools411[], respectively.

Configuration files must be edited to prepare the host for the Dom0 integration after the Xen

packages are installed. An entry to /etc/sysctl.conf disables the limit on how many pages of memory

are allowed to be wired. Otherwise, DomU VMs with higher memory requirements will not run.

echo 'vm.max_wired=-1' >> /etc/sysctl.conf

Another memory-related setting involves changing /etc/login.conf , setting the memorylocked option to

unlimited . Otherwise, creating DomU domains may fail with Cannot allocate memory errors. After

making the change to /etc/login.conf , run cap_mkdb to update the capability database. See

crossref:security[security-resourcelimits,"Resource Limits"] for details.

sed -i '' -e 's/memorylocked=64K/memorylocked=unlimited/' /etc/login.conf

cap_mkdb /etc/login.conf

Add an entry for the Xenª console to /etc/ttys :

594

https://wiki.xenproject.org/wiki/Category:Overview
http://en.wikipedia.org/wiki/Extended_Page_Table
http://en.wikipedia.org/wiki/List_of_IOMMU-supporting_hardware

echo 'xc0 "/usr/libexec/getty Pc" xterm onifconsole secure' >>

/etc/ttys

Selecting a Xenª kernel in /boot/loader.conf activates the Dom0. Xenª also requires resources like

CPU and memory from the host machine for itself and other DomU domains. How much CPU and

memory depends on the individual requirements and hardware capabilities. In this example, 8 GB

of memory and 4 virtual CPUs are made available for the Dom0. The serial console is also activated

and logging options are defined.

The following command is used for Xen 4.7 packages:

sysrc -f /boot/loader.conf hw.pci.mcfg=0

sysrc -f /boot/loader.conf if_tap_load="YES"

sysrc -f /boot/loader.conf xen_kernel="/boot/xen"

sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0pvh=1

console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"

For Xen versions 4.11 and higher, the following command should be used instead:

sysrc -f /boot/loader.conf if_tap_load="YES"

sysrc -f /boot/loader.conf xen_kernel="/boot/xen"

sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0=pvh

console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"

!

Log files that Xenª creates for the DomU VMs are stored in /var/log/xen . Please be

sure to check the contents of that directory if experiencing issues.

Activate the xencommons service during system startup:

sysrc xencommons_enable=yes

These settings are enough to start a Dom0-enabled system. However, it lacks network functionality

for the DomU machines. To fix that, define a bridged interface with the main NIC of the system

which the DomU VMs can use to connect to the network. Replace em0 with the host network

interface name.

sysrc cloned_interfaces="bridge0"

sysrc ifconfig_bridge0="addm em0 SYNCDHCP"

sysrc ifconfig_em0="up"

Restart the host to load the Xenª kernel and start the Dom0.

reboot

595

After successfully booting the Xenª kernel and logging into the system again, the Xenª

management tool xl is used to show information about the domains.

xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 8192 4 r----- 962.0

The output confirms that the Dom0 (called Domain-0) has the ID 0 and is running. It also has the

memory and virtual CPUs that were defined in /boot/loader.conf earlier. More information can be

found in the Xenª Documentation . DomU guest VMs can now be created.

22.8.3. Xenª DomU Guest VM Configuration

Unprivileged domains consist of a configuration file and virtual or physical hard disks. Virtual disk

storage for the DomU can be files created by man:truncate[1] or ZFS volumes as described in

crossref:zfs[zfs-zfs-volume,ÒCreating and Destroying VolumesÓ]. In this example, a 20 GB volume is

used. A VM is created with the ZFS volume, a FreeBSD ISO image, 1 GB of RAM and two virtual

CPUs. The ISO installation file is retrieved with man:fetch[1] and saved locally in a file called

freebsd.iso .

fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/12.0/FreeBSD-12.0-

RELEASE-amd64-bootonly.iso -o freebsd.iso

A ZFS volume of 20 GB called xendisk0 is created to serve as the disk space for the VM.

zfs create -V20G -o volmode=dev zroot/xendisk0

The new DomU guest VM is defined in a file. Some specific definitions like name, keymap, and VNC

connection details are also defined. The following freebsd.cfg contains a minimum DomU

configuration for this example:

cat freebsd.cfg

builder = "hvm" !

name = "freebsd" "

memory = 1024 #

vcpus = 2 $

vif = ['mac=00:16:3E:74:34:32,bridge=bridge0'] %

disk = [

'/dev/zvol/tank/xendisk0,raw,hda,rw', &

'/root/freebsd.iso,raw,hdc:cdrom,r' '

Ê]

vnc = 1 (

vnclisten = "0.0.0.0"

serial = "pty"

usbdevice = "tablet"

596

https://www.xenproject.org/help/documentation.html

These lines are explained in more detail:

!

This defines what kind of virtualization to use. hvm refers to hardware-assisted virtualization or

hardware virtual machine. Guest operating systems can run unmodified on CPUs with

virtualization extensions, providing nearly the same performance as running on physical

hardware. generic is the default value and creates a PV domain.

"

Name of this virtual machine to distinguish it from others running on the same Dom0. Required.

#

Quantity of RAM in megabytes to make available to the VM. This amount is subtracted from the

hypervisorÕs total available memory, not the memory of the Dom0.

$

Number of virtual CPUs available to the guest VM. For best performance, do not create guests

with more virtual CPUs than the number of physical CPUs on the host.

%

Virtual network adapter. This is the bridge connected to the network interface of the host. The

mac parameter is the MAC address set on the virtual network interface. This parameter is

optional, if no MAC is provided Xenª will generate a random one.

&

Full path to the disk, file, or ZFS volume of the disk storage for this VM. Options and multiple

disk definitions are separated by commas.

'

Defines the Boot medium from which the initial operating system is installed. In this example, it

is the ISO imaged downloaded earlier. Consult the Xenª documentation for other kinds of

devices and options to set.

(

Options controlling VNC connectivity to the serial console of the DomU. In order, these are:

active VNC support, define IP address on which to listen, device node for the serial console, and

the input method for precise positioning of the mouse and other input methods. keymap defines

which keymap to use, and is english by default.

After the file has been created with all the necessary options, the DomU is created by passing it to xl

create as a parameter.

xl create freebsd.cfg

!

Each time the Dom0 is restarted, the configuration file must be passed to xl create

again to re-create the DomU. By default, only the Dom0 is created after a reboot,

not the individual VMs. The VMs can continue where they left off as they stored

the operating system on the virtual disk. The virtual machine configuration can

change over time (for example, when adding more memory). The virtual machine

configuration files must be properly backed up and kept available to be able to re-

create the guest VM when needed.

The output of xl list confirms that the DomU has been created.

xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 8192 4 r----- 1653.4

freebsd 1 1024 1 -b---- 663.9

597

To begin the installation of the base operating system, start the VNC client, directing it to the main

network address of the host or to the IP address defined on the vnclisten line of freebsd.cfg . After

the operating system has been installed, shut down the DomU and disconnect the VNC viewer. Edit

freebsd.cfg , removing the line with the cdrom definition or commenting it out by inserting a #

character at the beginning of the line. To load this new configuration, it is necessary to remove the

old DomU with xl destroy , passing either the name or the id as the parameter. Afterwards, recreate

it using the modified freebsd.cfg .

xl destroy freebsd

xl create freebsd.cfg

The machine can then be accessed again using the VNC viewer. This time, it will boot from the

virtual disk where the operating system has been installed and can be used as a virtual machine.

22.8.4. Troubleshooting

This section contains basic information in order to help troubleshoot issues found when using

FreeBSD as a Xenª host or guest.

22.8.4.1. Host Boot Troubleshooting

Please note that the following troubleshooting tips are intended for Xenª 4.11 or newer. If you are

still using Xenª 4.7 and having issues consider migrating to a newer version of Xenª.

In order to troubleshoot host boot issues you will likely need a serial cable, or a debug USB cable.

Verbose Xenª boot output can be obtained by adding options to the xen_cmdline option found in

loader.conf . A couple of relevant debug options are:

¥ iommu=debug : can be used to print additional diagnostic information about the iommu.

¥ dom0=verbose : can be used to print additional diagnostic information about the dom0 build

process.

¥ sync_console : flag to force synchronous console output. Useful for debugging to avoid losing

messages due to rate limiting. Never use this option in production environments since it can

allow malicious guests to perform DoS attacks against Xenª using the console.

FreeBSD should also be booted in verbose mode in order to identify any issues. To activate verbose

booting, run this command:

sysrc -f /boot/loader.conf boot_verbose="YES"

If none of these options help solving the problem, please send the serial boot log to freebsd-

xen@FreeBSD.org and xen-devel@lists.xenproject.org for further analysis.

22.8.4.2. Guest Creation Troubleshooting

Issues can also arise when creating guests, the following attempts to provide some help for those

trying to diagnose guest creation issues.

598

mailto:freebsd-xen@FreeBSD.org
mailto:freebsd-xen@FreeBSD.org
mailto:xen-devel@lists.xenproject.org

The most common cause of guest creation failures is the xl command spitting some error and

exiting with a return code different than 0. If the error provided is not enough to help identify the

issue, more verbose output can also be obtained from xl by using the v option repeatedly.

xl -vvv create freebsd.cfg

Parsing config from freebsd.cfg

libxl: debug: libxl_create.c:1693:do_domain_create: Domain 0:ao 0x800d750a0: create:

how=0x0 callback=0x0 poller=0x800d6f0f0

libxl: debug: libxl_device.c:397:libxl__device_disk_set_backend: Disk vdev=xvda

spec.backend=unknown

libxl: debug: libxl_device.c:432:libxl__device_disk_set_backend: Disk vdev=xvda, using

backend phy

libxl: debug: libxl_create.c:1018:initiate_domain_create: Domain 1:running bootloader

libxl: debug: libxl_bootloader.c:328:libxl__bootloader_run: Domain 1:not a PV/PVH

domain, skipping bootloader

libxl: debug: libxl_event.c:689:libxl__ev_xswatch_deregister: watch w=0x800d96b98:

deregister unregistered

domainbuilder: detail: xc_dom_allocate: cmdline="", features=""

domainbuilder: detail: xc_dom_kernel_file:

filename="/usr/local/lib/xen/boot/hvmloader"

domainbuilder: detail: xc_dom_malloc_filemap : 326 kB

libxl: debug: libxl_dom.c:988:libxl__load_hvm_firmware_module: Loading BIOS:

/usr/local/shared/seabios/bios.bin

...

If the verbose output does not help diagnose the issue there are also QEMU and Xenª toolstack logs

in /var/log/xen . Note that the name of the domain is appended to the log name, so if the domain is

named freebsd you should find a /var/log/xen/xl-freebsd.log and likely a /var/log/xen/qemu-dm-

freebsd.log . Both log files can contain useful information for debugging. If none of this helps solve

the issue, please send the description of the issue you are facing and as much information as

possible to freebsd-xen@FreeBSD.org and xen-devel@lists.xenproject.org in order to get help.

599

mailto:freebsd-xen@FreeBSD.org
mailto:xen-devel@lists.xenproject.org

Chapter 23. Localization - i18n/L10n Usage

and Setup

23.1. Synopsis

FreeBSD is a distributed project with users and contributors located all over the world. As such,

FreeBSD supports localization into many languages, allowing users to view, input, or process data

in non-English languages. One can choose from most of the major languages, including, but not

limited to: Chinese, German, Japanese, Korean, French, Russian, and Vietnamese.

The term internationalization has been shortened to i18n, which represents the number of letters

between the first and the last letters of internationalization . L10n uses the same naming scheme,

but from localization . The i18n/L10n methods, protocols, and applications allow users to use

languages of their choice.

This chapter discusses the internationalization and localization features of FreeBSD. After reading

this chapter, you will know:

¥ How locale names are constructed.

¥ How to set the locale for a login shell.

¥ How to configure the console for non-English languages.

¥ How to configure Xorg for different languages.

¥ How to find i18n-compliant applications.

¥ Where to find more information for configuring specific languages.

Before reading this chapter, you should:

¥ Know how to crossref:ports[ports,install additional third-party applications].

23.2. Using Localization

Localization settings are based on three components: the language code, country code, and

encoding. Locale names are constructed from these parts as follows:

LanguageCode_CountryCode.Encoding

The LanguageCode and CountryCode are used to determine the country and the specific language

variation. Common Language and Country Codes provides some examples of

LanguageCode_CountryCode :

Table 15. Common Language and Country Codes

LanguageCode_Country Code Description

en_US English, United States

600

LanguageCode_Country Code Description

ru_RU Russian, Russia

zh_TW Traditional Chinese, Taiwan

A complete listing of available locales can be found by typing:

% locale -a | more

To determine the current locale setting:

% locale

Language specific character sets, such as ISO8859-1, ISO8859-15, KOI8-R, and CP437, are described

in man:multibyte[3]. The active list of character sets can be found at the IANA Registry .

Some languages, such as Chinese or Japanese, cannot be represented using ASCII characters and

require an extended language encoding using either wide or multibyte characters. Examples of

wide or multibyte encodings include EUC and Big5. Older applications may mistake these encodings

for control characters while newer applications usually recognize these characters. Depending on

the implementation, users may be required to compile an application with wide or multibyte

character support, or to configure it correctly.

!

FreeBSD uses Xorg-compatible locale encodings.

The rest of this section describes the various methods for configuring the locale on a FreeBSD

system. The next section will discuss the considerations for finding and compiling applications with

i18n support.

23.2.1. Setting Locale for Login Shell

Locale settings are configured either in a userÕs ~/.login_conf or in the startup file of the userÕs shell:

~/.profile , ~/.bashrc , or ~/.cshrc .

Two environment variables should be set:

¥ LANG , which sets the locale

¥ MM_CHARSET , which sets the MIME character set used by applications

In addition to the userÕs shell configuration, these variables should also be set for specific

application configuration and Xorg configuration.

Two methods are available for making the needed variable assignments: the login class method,

which is the recommended method, and the startup file method. The next two sections demonstrate

how to use both methods.

601

http://www.iana.org/assignments/character-sets

23.2.1.1. Login Classes Method

This first method is the recommended method as it assigns the required environment variables for

locale name and MIME character sets for every possible shell. This setup can either be performed

by each user or it can be configured for all users by the superuser.

This minimal example sets both variables for Latin-1 encoding in the .login_conf of an individual

userÕs home directory:

me:\

Ê :charset=ISO-8859-1:\

Ê :lang=de_DE.ISO8859-1:

Here is an example of a userÕs ~/.login_conf that sets the variables for Traditional Chinese in BIG-5

encoding. More variables are needed because some applications do not correctly respect locale

variables for Chinese, Japanese, and Korean:

#Users who do not wish to use monetary units or time formats

#of Taiwan can manually change each variable

me:\

Ê :lang=zh_TW.Big5:\

Ê

:setenv=LC_ALL=zh_TW.Big5,LC_COLLATE=zh_TW.Big5,LC_CTYPE=zh_TW.Big5,LC_MESSAGES=zh_TW.

Big5,LC_MONETARY=zh_TW.Big5,LC_NUMERIC=zh_TW.Big5,LC_TIME=zh_TW.Big5:\

Ê :charset=big5:\

Ê :xmodifiers="@im=gcin": #Set gcin as the XIM Input Server

Alternately, the superuser can configure all users of the system for localization. The following

variables in /etc/login.conf are used to set the locale and MIME character set:

language_name|Account Type Description:\

Ê :charset=MIME_charset:\

Ê :lang=locale_name:\

Ê :tc=default:

So, the previous Latin-1 example would look like this:

german|German Users Accounts:\

Ê :charset=ISO-8859-1:\

Ê :lang=de_DE.ISO8859-1:\

Ê :tc=default:

See man:login.conf[5] for more details about these variables. Note that it already contains pre-

defined russian class.

Whenever /etc/login.conf is edited, remember to execute the following command to update the

602

capability database:

cap_mkdb /etc/login.conf

!

For an end user, the cap_mkdb command will nee to be run on their ~/.login_conf for

need to be run on their ~/.login_conf for any changes to take effect.

23.2.1.1.1. Utilities Which Change Login Classes

In addition to manually editing /etc/login.conf , several utilities are available for setting the locale

for newly created users.

When using vipw to add new users, specify the language to set the locale:

user:password:1111:11:language:0:0:User Name:/home/user:/bin/sh

When using adduser to add new users, the default language can be pre-configured for all new users

or specified for an individual user.

If all new users use the same language, set defaultclass= language in /etc/adduser.conf .

To override this setting when creating a user, either input the required locale at this prompt:

Enter login class: default []:

or specify the locale to set when invoking adduser :

adduser -class language

If pw is used to add new users, specify the locale as follows:

pw useradd user_name -L language

To change the login class of an existing user, chpass can be used. Invoke it as superuser and provide

the username to edit as the argument.

chpass user_name

23.2.1.2. Shell Startup File Method

This second method is not recommended as each shell that is used requires manual configuration,

where each shell has a different configuration file and differing syntax. As an example, to set the

German language for the sh shell, these lines could be added to ~/.profile to set the shell for that

603

user only. These lines could also be added to /etc/profile or /usr/share/skel/dot.profile to set that

shell for all users:

LANG=de_DE.ISO8859-1; export LANG

MM_CHARSET=ISO-8859-1; export MM_CHARSET

However, the name of the configuration file and the syntax used differs for the csh shell. These are

the equivalent settings for ~/.csh.login , /etc/csh.login , or /usr/share/skel/dot.login :

setenv LANG de_DE.ISO8859-1

setenv MM_CHARSET ISO-8859-1

To complicate matters, the syntax needed to configure Xorg in ~/.xinitrc also depends upon the

shell. The first example is for the sh shell and the second is for the csh shell:

LANG=de_DE.ISO8859-1; export LANG

setenv LANG de_DE.ISO8859-1

23.2.2. Console Setup

Several localized fonts are available for the console. To see a listing of available fonts, type ls

/usr/share/syscons/fonts . To configure the console font, specify the font_name , without the .fnt

suffix, in /etc/rc.conf :

font8x16=font_name

font8x14=font_name

font8x8=font_name

The keymap and screenmap can be set by adding the following to /etc/rc.conf :

scrnmap=screenmap_name

keymap=keymap_name

keychange="fkey_number sequence"

To see the list of available screenmaps, type ls /usr/share/syscons/scrnmaps . Do not include the

.scm suffix when specifying screenmap_name . A screenmap with a corresponding mapped font is

usually needed as a workaround for expanding bit 8 to bit 9 on a VGA adapterÕs font character

matrix so that letters are moved out of the pseudographics area if the screen font uses a bit 8

column.

To see the list of available keymaps, type ls /usr/share/syscons/keymaps . When specifying the

keymap_name , do not include the .kbd suffix. To test keymaps without rebooting, use

604

man:kbdmap[1].

The keychange entry is usually needed to program function keys to match the selected terminal type

because function key sequences cannot be defined in the keymap.

Next, set the correct console terminal type in /etc/ttys for all virtual terminal entries. Defined

Terminal Types for Character Sets summarizes the available terminal types.:

Table 16. Defined Terminal Types for Character Sets

Character Set Terminal Type

ISO8859-1 or ISO8859-15

cons25l1

ISO8859-2

cons25l2

ISO8859-7

cons25l7

KOI8-R

cons25r

KOI8-U

cons25u

CP437 (VGA default)

cons25

US-ASCII

cons25w

For languages with wide or multibyte characters, install a console for that language from the

FreeBSD Ports Collection. The available ports are summarized in Available Console from Ports

Collection . Once installed, refer to the portÕs pkg-message or man pages for configuration and usage

instructions.

Table 17. Available Console from Ports Collection

Language Port Location

Traditional Chinese (BIG-5) package:chinese/big5con[]

Chinese/Japanese/Korean package:chinese/cce[]

Chinese/Japanese/Korean package:chinese/zhcon[]

Japanese package:chinese/kon2[]

Japanese package:japanese/kon2-14dot[]

Japanese package:japanese/kon2-16dot[]

If moused is enabled in /etc/rc.conf , additional configuration may be required. By default, the

mouse cursor of the man:syscons[4] driver occupies the 0xd0 - 0xd3 range in the character set. If the

language uses this range, move the cursorÕs range by adding the following line to /etc/rc.conf :

mousechar_start=3

23.2.3. Xorg Setup

crossref:x11[x11,The X Window System] describes how to install and configure Xorg. When

configuring Xorg for localization, additional fonts and input methods are available from the

605

FreeBSD Ports Collection. Application specific i18n settings such as fonts and menus can be tuned in

~/.Xresources and should allow users to view their selected language in graphical application

menus.

The X Input Method (XIM) protocol is an Xorg standard for inputting non-English characters.

Available Input Methods summarizes the input method applications which are available in the

FreeBSD Ports Collection. Additional Fcitx and Uim applications are also available.

Table 18. Available Input Methods

Language Input Method

Chinese package:chinese/gcin[]

Chinese package:chinese/ibus-chewing[]

Chinese package:chinese/ibus-pinyin[]

Chinese package:chinese/oxim[]

Chinese package:chinese/scim-fcitx[]

Chinese package:chinese/scim-pinyin[]

Chinese package:chinese/scim-tables[]

Japanese package:japanese/ibus-anthy[]

Japanese package:japanese/ibus-mozc[]

Japanese package:japanese/ibus-skk[]

Japanese package:japanese/im-ja[]

Japanese package:japanese/kinput2[]

Japanese package:japanese/scim-anthy[]

Japanese package:japanese/scim-canna[]

Japanese package:japanese/scim-honoka[]

Japanese package:japanese/scim-honoka-plugin-romkan[]

Japanese package:japanese/scim-honoka-plugin-wnn[]

Japanese package:japanese/scim-prime[]

Japanese package:japanese/scim-skk[]

Japanese package:japanese/scim-tables[]

Japanese package:japanese/scim-tomoe[]

Japanese package:japanese/scim-uim[]

Japanese package:japanese/skkinput[]

Japanese package:japanese/skkinput3[]

Japanese package:japanese/uim-anthy[]

Korean package:korean/ibus-hangul[]

Korean package:korean/imhangul[]

606

Language Input Method

Korean package:korean/nabi[]

Korean package:korean/scim-hangul[]

Korean package:korean/scim-tables[]

Vietnamese package:vietnamese/xvnkb[]

Vietnamese package:vietnamese/x-unikey[]

23.3. Finding i18n Applications

i18n applications are programmed using i18n kits under libraries. These allow developers to write

a simple file and translate displayed menus and texts to each language.

The FreeBSD Ports Collection contains many applications with built-in support for wide or

multibyte characters for several languages. Such applications include i18n in their names for easy

identification. However, they do not always support the language needed.

Some applications can be compiled with the specific charset. This is usually done in the portÕs

Makefile or by passing a value to configure. Refer to the i18n documentation in the respective

FreeBSD portÕs source for more information on how to determine the needed configure value or the

portÕs Makefile to determine which compile options to use when building the port.

23.4. Locale Configuration for Specific Languages

This section provides configuration examples for localizing a FreeBSD system for the Russian

language. It then provides some additional resources for localizing other languages.

23.4.1. Russian Language (KOI8-R Encoding)

This section shows the specific settings needed to localize a FreeBSD system for the Russian

language. Refer to Using Localization for a more complete description of each type of setting.

To set this locale for the login shell, add the following lines to each userÕs ~/.login_conf :

me:My Account:\

Ê :charset=KOI8-R:\

Ê :lang=ru_RU.KOI8-R:

To configure the console, add the following lines to /etc/rc.conf :

607

https://www.FreeBSD.org/ports/

keymap="ru.utf-8"

scrnmap="utf-82cp866"

font8x16="cp866b-8x16"

font8x14="cp866-8x14"

font8x8="cp866-8x8"

mousechar_start=3

For each ttyv entry in /etc/ttys , use cons25r as the terminal type.

To configure printing, a special output filter is needed to convert from KOI8-R to CP866 since most

printers with Russian characters come with hardware code page CP866. FreeBSD includes a default

filter for this purpose, /usr/libexec/lpr/ru/koi2alt . To use this filter, add this entry to /etc/printcap :

lp|Russian local line printer:\

Ê :sh:of=/usr/libexec/lpr/ru/koi2alt:\

Ê :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:

Refer to man:printcap[5] for a more detailed explanation.

To configure support for Russian filenames in mounted MS-DOS¨ file systems, include -L and the

locale name when adding an entry to /etc/fstab :

/dev/ad0s2 /dos/c msdos rw,-Lru_RU.KOI8-R 0 0

Refer to man:mount_msdosfs[8] for more details.

To configure Russian fonts for Xorg, install the package:x11-fonts/xorg-fonts-cyrillic[] package.

Then, check the "Files" section in /etc/X11/xorg.conf . The following line must be added before any

other FontPath entries:

FontPath "/usr/local/lib/X11/fonts/cyrillic"

Additional Cyrillic fonts are available in the Ports Collection.

To activate a Russian keyboard, add the following to the "Keyboard" section of /etc/xorg.conf :

Option "XkbLayout" "us,ru"

Option "XkbOptions" "grp:toggle"

Make sure that XkbDisable is commented out in that file.

For grp:toggle use Right Alt , for grp:ctrl_shift_toggle use kbd[Ctrl+Shift]. For grp:caps_toggle use

CapsLock . The old CapsLock function is still available in LAT mode only using kbd[Shift+CapsLock].

grp:caps_toggle does not work in Xorg for some unknown reason.

608

If the keyboard has "Windows¨" keys, and some non-alphabetical keys are mapped incorrectly, add

the following line to /etc/xorg.conf :

Option "XkbVariant" ",winkeys"

!

The Russian XKB keyboard may not work with non-localized applications.

Minimally localized applications should call a XtSetLanguageProc (NULL, NULL,

NULL); function early in the program.

See http://koi8.pp.ru/xwin.html for more instructions on localizing Xorg applications. For more

general information about KOI8-R encoding, refer to http://koi8.pp.ru/ .

23.4.2. Additional Language-Specific Resources

This section lists some additional resources for configuring other locales.

Traditional Chinese for Taiwan

The FreeBSD-Taiwan Project has a Chinese HOWTO for FreeBSD at

http://netlab.cse.yzu.edu.tw/~statue/freebsd/zh-tut/ .

Greek Language Localization

A complete article on Greek support in FreeBSD is available here , in Greek only, as part of the

official FreeBSD Greek documentation.

Japanese and Korean Language Localization

For Japanese, refer to http://www.jp.FreeBSD.org/ , and for Korean, refer to

http://www.kr.FreeBSD.org/ .

Non-English FreeBSD Documentation

Some FreeBSD contributors have translated parts of the FreeBSD documentation to other

languages. They are available through links on the FreeBSD web site or in /usr/shared/doc .

609

http://koi8.pp.ru/xwin.html
http://koi8.pp.ru/
http://netlab.cse.yzu.edu.tw/~statue/freebsd/zh-tut/
https://www.FreeBSD.org/doc/gr/articles/greek-language-support/
http://www.jp.FreeBSD.org/
http://www.kr.FreeBSD.org/
https://www.FreeBSD.org/

Chapter 24. Updating and Upgrading

FreeBSD

24.1. Synopsis

FreeBSD is under constant development between releases. Some people prefer to use the officially

released versions, while others prefer to keep in sync with the latest developments. However, even

official releases are often updated with security and other critical fixes. Regardless of the version

used, FreeBSD provides all the necessary tools to keep the system updated, and allows for easy

upgrades between versions. This chapter describes how to track the development system and the

basic tools for keeping a FreeBSD system up-to-date.

After reading this chapter, you will know:

¥ How to keep a FreeBSD system up-to-date with freebsd-update or Subversion.

¥ How to compare the state of an installed system against a known pristine copy.

¥ How to keep the installed documentation up-to-date with Subversion or documentation ports.

¥ The difference between the two development branches: FreeBSD-STABLE and FreeBSD-

CURRENT.

¥ How to rebuild and reinstall the entire base system.

Before reading this chapter, you should:

¥ Properly set up the network connection (crossref:advanced-networking[advanced-

networking,Advanced Networking]).

¥ Know how to install additional third-party software (crossref:ports[ports,Installing

Applications: Packages and Ports]).

!

Throughout this chapter, svnlite is used to obtain and update FreeBSD sources.

Optionally, the package:devel/subversion[] port or package may be used.

24.2. FreeBSD Update

Applying security patches in a timely manner and upgrading to a newer release of an operating

system are important aspects of ongoing system administration. FreeBSD includes a utility called

freebsd-update which can be used to perform both these tasks.

This utility supports binary security and errata updates to FreeBSD, without the need to manually

compile and install the patch or a new kernel. Binary updates are available for all architectures and

releases currently supported by the security team. The list of supported releases and their

estimated end-of-life dates are listed at https://www.FreeBSD.org/security/ .

This utility also supports operating system upgrades to minor point releases as well as upgrades to

another release branch. Before upgrading to a new release, review its release announcement as it

contains important information pertinent to the release. Release announcements are available

610

https://www.FreeBSD.org/security/

from https://www.FreeBSD.org/releases/ .

!

If a crontab utilizing the features of man:freebsd-update[8] exists, it must be

disabled before upgrading the operating system.

This section describes the configuration file used by freebsd-update , demonstrates how to apply a

security patch and how to upgrade to a minor or major operating system release, and discusses

some of the considerations when upgrading the operating system.

24.2.1. The Configuration File

The default configuration file for freebsd-update works as-is. Some users may wish to tweak the

default configuration in /etc/freebsd-update.conf , allowing better control of the process. The

comments in this file explain the available options, but the following may require a bit more

explanation:

Components of the base system which should be kept updated.

Components world kernel

This parameter controls which parts of FreeBSD will be kept up-to-date. The default is to update the

entire base system and the kernel. Individual components can instead be specified, such as src/base

or src/sys . However, the best option is to leave this at the default as changing it to include specific

items requires every needed item to be listed. Over time, this could have disastrous consequences

as source code and binaries may become out of sync.

Paths which start with anything matching an entry in an IgnorePaths

statement will be ignored.

IgnorePaths /boot/kernel/linker.hints

To leave specified directories, such as /bin or /sbin , untouched during the update process, add their

paths to this statement. This option may be used to prevent freebsd-update from overwriting local

modifications.

Paths which start with anything matching an entry in an UpdateIfUnmodified

statement will only be updated if the contents of the file have not been

modified by the user (unless changes are merged; see below).

UpdateIfUnmodified /etc/ /var/ /root/ /.cshrc /.profile

This option will only update unmodified configuration files in the specified directories. Any

changes made by the user will prevent the automatic updating of these files. There is another

option, KeepModifiedMetadata , which will instruct freebsd-update to save the changes during the

merge.

611

https://www.FreeBSD.org/releases/

When upgrading to a new FreeBSD release, files which match MergeChanges

will have any local changes merged into the version from the new release.

MergeChanges /etc/ /var/named/etc/ /boot/device.hints

List of directories with configuration files that freebsd-update should attempt to merge. The file

merge process is a series of man:diff[1] patches similar to man:mergemaster[8], but with fewer

options. Merges are either accepted, open an editor, or cause freebsd-update to abort. When in

doubt, backup /etc and just accept the merges. See man:mergemaster[8] for more information

about mergemaster .

Directory in which to store downloaded updates and temporary

files used by FreeBSD Update.

WorkDir /var/db/freebsd-update

This directory is where all patches and temporary files are placed. In cases where the user is doing

a version upgrade, this location should have at least a gigabyte of disk space available.

When upgrading between releases, should the list of Components be

read strictly (StrictComponents yes) or merely as a list of components

which *might* be installed of which FreeBSD Update should figure out

which actually are installed and upgrade those (StrictComponents no)?

StrictComponents no

When this option is set to yes , freebsd-update will assume that the Components list is complete and

will not attempt to make changes outside of the list. Effectively, freebsd-update will attempt to

update every file which belongs to the Components list.

24.2.2. Applying Security Patches

The process of applying FreeBSD security patches has been simplified, allowing an administrator to

keep a system fully patched using freebsd-update . More information about FreeBSD security

advisories can be found in crossref:security[security-advisories,"FreeBSD Security Advisories"].

FreeBSD security patches may be downloaded and installed using the following commands. The

first command will determine if any outstanding patches are available, and if so, will list the files

that will be modifed if the patches are applied. The second command will apply the patches.

freebsd-update fetch

freebsd-update install

If the update applies any kernel patches, the system will need a reboot in order to boot into the

patched kernel. If the patch was applied to any running binaries, the affected applications should

be restarted so that the patched version of the binary is used.

612

!

Usually, the user needs to be prepared to reboot the system. To know if a reboot is

required by a kernel update, execute the commands freebsd-version -k and uname

-r and if it differs a reboot is required.

The system can be configured to automatically check for updates once every day by adding this

entry to /etc/crontab :

@daily root freebsd-update cron

If patches exist, they will automatically be downloaded but will not be applied. The root user will be

sent an email so that the patches may be reviewed and manually installed with freebsd-update

install .

If anything goes wrong, freebsd-update has the ability to roll back the last set of changes with the

following command:

freebsd-update rollback

Uninstalling updates... done.

Again, the system should be restarted if the kernel or any kernel modules were modified and any

affected binaries should be restarted.

Only the GENERIC kernel can be automatically updated by freebsd-update . If a custom kernel is

installed, it will have to be rebuilt and reinstalled after freebsd-update finishes installing the

updates. The default kernel name is GENERIC . The man:uname[1] command may be used to verify

its installation.

!

Always keep a copy of the GENERIC kernel in /boot/GENERIC . It will be helpful in

diagnosing a variety of problems and in performing version upgrades. Refer to

Custom Kernels with FreeBSD 9.X and Later for instructions on how to get a copy

of the GENERIC kernel.

Unless the default configuration in /etc/freebsd-update.conf has been changed, freebsd-update will

install the updated kernel sources along with the rest of the updates. Rebuilding and reinstalling a

new custom kernel can then be performed in the usual way.

The updates distributed by freebsd-update do not always involve the kernel. It is not necessary to

rebuild a custom kernel if the kernel sources have not been modified by freebsd-update install .

However, freebsd-update will always update /usr/src/sys/conf/newvers.sh . The current patch level,

as indicated by the -p number reported by uname -r , is obtained from this file. Rebuilding a custom

kernel, even if nothing else changed, allows uname to accurately report the current patch level of the

system. This is particularly helpful when maintaining multiple systems, as it allows for a quick

assessment of the updates installed in each one.

613

24.2.3. Performing Major and Minor Version Upgrades

Upgrades from one minor version of FreeBSD to another, like from FreeBSD 9.0 to FreeBSD 9.1, are

called minor version upgrades. Major version upgrades occur when FreeBSD is upgraded from one

major version to another, like from FreeBSD 9.X to FreeBSD 10.X. Both types of upgrades can be

performed by providing freebsd-update with a release version target.

!

If the system is running a custom kernel, make sure that a copy of the GENERIC

kernel exists in /boot/GENERIC before starting the upgrade. Refer to Custom

Kernels with FreeBSD 9.X and Later for instructions on how to get a copy of the

GENERIC kernel.

The following command, when run on a FreeBSD 9.0 system, will upgrade it to FreeBSD 9.1:

freebsd-update -r 9.1-RELEASE upgrade

After the command has been received, freebsd-update will evaluate the configuration file and

current system in an attempt to gather the information necessary to perform the upgrade. A screen

listing will display which components have and have not been detected. For example:

Looking up update.FreeBSD.org mirrors... 1 mirrors found.

Fetching metadata signature for 9.0-RELEASE from update1.FreeBSD.org... done.

Fetching metadata index... done.

Inspecting system... done.

The following components of FreeBSD seem to be installed:

kernel/smp src/base src/bin src/contrib src/crypto src/etc src/games

src/gnu src/include src/krb5 src/lib src/libexec src/release src/rescue

src/sbin src/secure src/share src/sys src/tools src/ubin src/usbin

world/base world/info world/lib32 world/manpages

The following components of FreeBSD do not seem to be installed:

kernel/generic world/catpages world/dict world/doc world/games

world/proflibs

Does this look reasonable (y/n)? y

At this point, freebsd-update will attempt to download all files required for the upgrade. In some

cases, the user may be prompted with questions regarding what to install or how to proceed.

When using a custom kernel, the above step will produce a warning similar to the following:

WARNING: This system is running a "MYKERNEL" kernel, which is not a

kernel configuration distributed as part of FreeBSD 9.0-RELEASE.

This kernel will not be updated: you MUST update the kernel manually

before running "/usr/sbin/freebsd-update install"

614

This warning may be safely ignored at this point. The updated GENERIC kernel will be used as an

intermediate step in the upgrade process.

Once all the patches have been downloaded to the local system, they will be applied. This process

may take a while, depending on the speed and workload of the machine. Configuration files will

then be merged. The merging process requires some user intervention as a file may be merged or

an editor may appear on screen for a manual merge. The results of every successful merge will be

shown to the user as the process continues. A failed or ignored merge will cause the process to

abort. Users may wish to make a backup of /etc and manually merge important files, such as

master.passwd or group at a later time.

!

The system is not being altered yet as all patching and merging is happening in

another directory. Once all patches have been applied successfully, all

configuration files have been merged and it seems the process will go smoothly,

the changes can be committed to disk by the user using the following command:

freebsd-update install

The kernel and kernel modules will be patched first. If the system is running with a custom kernel,

use man:nextboot[8] to set the kernel for the next boot to the updated /boot/GENERIC :

nextboot -k GENERIC

"

Before rebooting with the GENERIC kernel, make sure it contains all the drivers

required for the system to boot properly and connect to the network, if the

machine being updated is accessed remotely. In particular, if the running custom

kernel contains built-in functionality usually provided by kernel modules, make

sure to temporarily load these modules into the GENERIC kernel using the

/boot/loader.conf facility. It is recommended to disable non-essential services as

well as any disk and network mounts until the upgrade process is complete.

The machine should now be restarted with the updated kernel:

shutdown -r now

Once the system has come back online, restart freebsd-update using the following command. Since

the state of the process has been saved, freebsd-update will not start from the beginning, but will

instead move on to the next phase and remove all old shared libraries and object files.

freebsd-update install

!

Depending upon whether any library version numbers were bumped, there may

only be two install phases instead of three.

615

The upgrade is now complete. If this was a major version upgrade, reinstall all ports and packages

as described in Upgrading Packages After a Major Version Upgrade .

24.2.3.1. Custom Kernels with FreeBSD 9.X and Later

Before using freebsd-update , ensure that a copy of the GENERIC kernel exists in /boot/GENERIC . If a

custom kernel has only been built once, the kernel in /boot/kernel.old is the GENERIC kernel. Simply

rename this directory to /boot/GENERIC .

If a custom kernel has been built more than once or if it is unknown how many times the custom

kernel has been built, obtain a copy of the GENERIC kernel that matches the current version of the

operating system. If physical access to the system is available, a copy of the GENERIC kernel can be

installed from the installation media:

mount /cdrom

cd /cdrom/usr/freebsd-dist

tar -C/ -xvf kernel.txz boot/kernel/kernel

Alternately, the GENERIC kernel may be rebuilt and installed from source:

cd /usr/src

make kernel __MAKE_CONF=/dev/null SRCCONF=/dev/null

For this kernel to be identified as the GENERIC kernel by freebsd-update , the GENERIC configuration

file must not have been modified in any way. It is also suggested that the kernel is built without any

other special options.

Rebooting into the GENERIC kernel is not required as freebsd-update only needs /boot/GENERIC to

exist.

24.2.3.2. Upgrading Packages After a Major Version Upgrade

Generally, installed applications will continue to work without problems after minor version

upgrades. Major versions use different Application Binary Interfaces (ABIs), which will break most

third-party applications. After a major version upgrade, all installed packages and ports need to be

upgraded. Packages can be upgraded using pkg upgrade . To upgrade installed ports, use a utility

such as package:ports-mgmt/portmaster[].

A forced upgrade of all installed packages will replace the packages with fresh versions from the

repository even if the version number has not increased. This is required because of the ABI

version change when upgrading between major versions of FreeBSD. The forced upgrade can be

accomplished by performing:

pkg-static upgrade -f

A rebuild of all installed applications can be accomplished with this command:

616

portmaster -af

This command will display the configuration screens for each application that has configurable

options and wait for the user to interact with those screens. To prevent this behavior, and use only

the default options, include -G in the above command.

Once the software upgrades are complete, finish the upgrade process with a final call to freebsd-

update in order to tie up all the loose ends in the upgrade process:

freebsd-update install

If the GENERIC kernel was temporarily used, this is the time to build and install a new custom

kernel using the instructions in crossref:kernelconfig[kernelconfig,Configuring the FreeBSD

Kernel].

Reboot the machine into the new FreeBSD version. The upgrade process is now complete.

24.2.4. System State Comparison

The state of the installed FreeBSD version against a known good copy can be tested using freebsd-

update IDS . This command evaluates the current version of system utilities, libraries, and

configuration files and can be used as a built-in Intrusion Detection System (IDS).

"

This command is not a replacement for a real IDS such as package:security/snort[].

As freebsd-update stores data on disk, the possibility of tampering is evident. While

this possibility may be reduced using kern.securelevel and by storing the freebsd-

update data on a read-only file system when not in use, a better solution would be

to compare the system against a secure disk, such as a DVD or securely stored

external USB disk device. An alternative method for providing IDS functionality

using a built-in utility is described in crossref:security[security-ids,"Binary

Verification"]

To begin the comparison, specify the output file to save the results to:

freebsd-update IDS >> outfile.ids

The system will now be inspected and a lengthy listing of files, along with the SHA256 hash values

for both the known value in the release and the current installation, will be sent to the specified

output file.

The entries in the listing are extremely long, but the output format may be easily parsed. For

instance, to obtain a list of all files which differ from those in the release, issue the following

command:

617

cat outfile.ids | awk '{ print $1 }' | more

/etc/master.passwd

/etc/motd

/etc/passwd

/etc/pf.conf

This sample output has been truncated as many more files exist. Some files have natural

modifications. For example, /etc/passwd will be modified if users have been added to the system.

Kernel modules may differ as freebsd-update may have updated them. To exclude specific files or

directories, add them to the IDSIgnorePaths option in /etc/freebsd-update.conf .

24.3. Updating the Documentation Set

Documentation is an integral part of the FreeBSD operating system. While an up-to-date version of

the FreeBSD documentation is always available on the FreeBSD web site

(https://www.freebsd.org/doc/), it can be handy to have an up-to-date, local copy of the FreeBSD

website, handbooks, FAQ, and articles.

This section describes how to use either source or the FreeBSD Ports Collection to keep a local copy

of the FreeBSD documentation up-to-date.

For information on editing and submitting corrections to the documentation, refer to the FreeBSD

Documentation Project Primer for New Contributors (FreeBSD Documentation Project Primer for

New Contributors).

24.3.1. Updating Documentation from Source

Rebuilding the FreeBSD documentation from source requires a collection of tools which are not

part of the FreeBSD base system. The required tools can be installed from the

package:textproc/docproj[] package or port developed by the FreeBSD Documentation Project.

Once installed, use svnlite to fetch a clean copy of the documentation source:

svnlite checkout https://svn.FreeBSD.org/doc/head /usr/doc

The initial download of the documentation sources may take a while. Let it run until it completes.

Future updates of the documentation sources may be fetched by running:

svnlite update /usr/doc

Once an up-to-date snapshot of the documentation sources has been fetched to /usr/doc , everything

is ready for an update of the installed documentation.

A full update of all available languages may be performed by typing:

618

https://www.FreeBSD.org/doc/
https://docs.freebsd.org/en/books/fdp-primer/
https://docs.freebsd.org/en/books/fdp-primer/

cd /usr/doc

make install clean

If an update of only a specific language is desired, make can be invoked in a language-specific

subdirectory of /usr/doc :

cd /usr/doc/en_US.ISO8859-1

make install clean

An alternative way of updating the documentation is to run this command from /usr/doc or the

desired language-specific subdirectory:

make update

The output formats that will be installed may be specified by setting FORMATS :

cd /usr/doc

make FORMATS='html html-split' install clean

Several options are available to ease the process of updating only parts of the documentation, or

the build of specific translations. These options can be set either as system-wide options in

/etc/make.conf , or as command-line options passed to make .

The options include:

DOC_LANG

The list of languages and encodings to build and install, such as en_US.ISO8859-1 for English

documentation.

FORMATS

A single format or a list of output formats to be built. Currently, html , html-split , txt , ps , and pdf

are supported.

DOCDIR

Where to install the documentation. It defaults to /usr/shared/doc .

For more make variables supported as system-wide options in FreeBSD, refer to man:make.conf[5].

24.3.2. Updating Documentation from Ports

The previous section presented a method for updating the FreeBSD documentation from sources.

This section describes an alternative method which uses the Ports Collection and makes it possible

to:

¥ Install pre-built packages of the documentation, without having to locally build anything or

619

install the documentation toolchain.

¥ Build the documentation sources through the ports framework, making the checkout and build

steps a bit easier.

This method of updating the FreeBSD documentation is supported by a set of documentation ports

and packages which are updated by the Documentation Engineering Team < doceng@FreeBSD.org >

on a monthly basis. These are listed in the FreeBSD Ports Collection, under the docs category

(http://www.freshports.org/docs/).

Organization of the documentation ports is as follows:

¥ The package:misc/freebsd-doc-en[] package or port installs all of the English documentation.

¥ The package:misc/freebsd-doc-all[] meta-package or port installs all documentation in all

available languages.

¥ There is a package and port for each translation, such as package:misc/freebsd-doc-hu[] for the

Hungarian documentation.

When binary packages are used, the FreeBSD documentation will be installed in all available

formats for the given language. For example, the following command will install the latest package

of the Hungarian documentation:

pkg install hu-freebsd-doc

!

Packages use a format that differs from the corresponding portÕs name: lang

-freebsd-doc , where lang is the short format of the language code, such as hu for

Hungarian, or zh_cn for Simplified Chinese.

To specify the format of the documentation, build the port instead of installing the package. For

example, to build and install the English documentation:

cd /usr/ports/misc/freebsd-doc-en

make install clean

The port provides a configuration menu where the format to build and install can be specified. By

default, split HTML, similar to the format used on http://www.FreeBSD.org , and PDF are selected.

Alternately, several make options can be specified when building a documentation port, including:

WITH_HTML

Builds the HTML format with a single HTML file per document. The formatted documentation is

saved to a file called article.html , or book.html .

WITH_PDF

The formatted documentation is saved to a file called article.pdf or book.pdf .

620

mailto:doceng@FreeBSD.org
http://www.freshports.org/docs/
http://www.FreeBSD.org

DOCBASE

Specifies where to install the documentation. It defaults to /usr/local/shared/doc/freebsd .

This example uses variables to install the Hungarian documentation as a PDF in the specified

directory:

cd /usr/ports/misc/freebsd-doc-hu

make -DWITH_PDF DOCBASE=share/doc/freebsd/hu install clean

Documentation packages or ports can be updated using the instructions in

crossref:ports[ports,Installing Applications: Packages and Ports]. For example, the following

command updates the installed Hungarian documentation using package:ports-mgmt/portmaster[]

by using packages only:

portmaster -PP hu-freebsd-doc

24.4. Tracking a Development Branch

FreeBSD has two development branches: FreeBSD-CURRENT and FreeBSD-STABLE.

This section provides an explanation of each branch and its intended audience, as well as how to

keep a system up-to-date with each respective branch.

24.4.1. Using FreeBSD-CURRENT

FreeBSD-CURRENT is the "bleeding edge" of FreeBSD development and FreeBSD-CURRENT users are

expected to have a high degree of technical skill. Less technical users who wish to track a

development branch should track FreeBSD-STABLE instead.

FreeBSD-CURRENT is the very latest source code for FreeBSD and includes works in progress,

experimental changes, and transitional mechanisms that might or might not be present in the next

official release. While many FreeBSD developers compile the FreeBSD-CURRENT source code daily,

there are short periods of time when the source may not be buildable. These problems are resolved

as quickly as possible, but whether or not FreeBSD-CURRENT brings disaster or new functionality

can be a matter of when the source code was synced.

FreeBSD-CURRENT is made available for three primary interest groups:

1. Members of the FreeBSD community who are actively working on some part of the source tree.

2. Members of the FreeBSD community who are active testers. They are willing to spend time

solving problems, making topical suggestions on changes and the general direction of FreeBSD,

and submitting patches.

3. Users who wish to keep an eye on things, use the current source for reference purposes, or

make the occasional comment or code contribution.

FreeBSD-CURRENT should not be considered a fast-track to getting new features before the next

621

release as pre-release features are not yet fully tested and most likely contain bugs. It is not a quick

way of getting bug fixes as any given commit is just as likely to introduce new bugs as to fix existing

ones. FreeBSD-CURRENT is not in any way "officially supported".

To track FreeBSD-CURRENT:

1. Join the FreeBSD-CURRENT mailing list and the SVN commit messages for the src tree for head/-

current lists. This is essential in order to see the comments that people are making about the

current state of the system and to receive important bulletins about the current state of

FreeBSD-CURRENT.

The SVN commit messages for the src tree for head/-current list records the commit log entry for

each change as it is made, along with any pertinent information on possible side effects.

To join these lists, go to FreeBSD list server , click on the list to subscribe to, and follow the

instructions. In order to track changes to the whole source tree, not just the changes to FreeBSD-

CURRENT, subscribe to the SVN commit messages for the entire src tree (except for user and

"projects") .

2. Synchronize with the FreeBSD-CURRENT sources. Typically, svnlite is used to check out the

-CURRENT code from the head branch of one of the Subversion mirror sites listed in

crossref:mirrors[svn-mirrors,ÒSubversion Mirror SitesÓ].

3. Due to the size of the repository, some users choose to only synchronize the sections of source

that interest them or which they are contributing patches to. However, users that plan to

compile the operating system from source must download all of FreeBSD-CURRENT, not just

selected portions.

Before compiling FreeBSD-CURRENT , read /usr/src/Makefile very carefully and follow the

instructions in Updating FreeBSD from Source . Read the FreeBSD-CURRENT mailing list and

/usr/src/UPDATING to stay up-to-date on other bootstrapping procedures that sometimes

become necessary on the road to the next release.

4. Be active! FreeBSD-CURRENT users are encouraged to submit their suggestions for

enhancements or bug fixes. Suggestions with accompanying code are always welcome.

24.4.2. Using FreeBSD-STABLE

FreeBSD-STABLE is the development branch from which major releases are made. Changes go into

this branch at a slower pace and with the general assumption that they have first been tested in

FreeBSD-CURRENT. This is still a development branch and, at any given time, the sources for

FreeBSD-STABLE may or may not be suitable for general use. It is simply another engineering

development track, not a resource for end-users. Users who do not have the resources to perform

testing should instead run the most recent release of FreeBSD.

Those interested in tracking or contributing to the FreeBSD development process, especially as it

relates to the next release of FreeBSD, should consider following FreeBSD-STABLE.

While the FreeBSD-STABLE branch should compile and run at all times, this cannot be guaranteed.

Since more people run FreeBSD-STABLE than FreeBSD-CURRENT, it is inevitable that bugs and

corner cases will sometimes be found in FreeBSD-STABLE that were not apparent in FreeBSD-

622

http://lists.FreeBSD.org/mailman/listinfo/freebsd-current
http://lists.FreeBSD.org/mailman/listinfo/svn-src-head
http://lists.FreeBSD.org/mailman/listinfo/svn-src-head
http://lists.FreeBSD.org/mailman/listinfo/svn-src-head
http://lists.freebsd.org/mailman/listinfo
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/freebsd-current

CURRENT. For this reason, one should not blindly track FreeBSD-STABLE. It is particularly

important not to update any production servers to FreeBSD-STABLE without thoroughly testing the

code in a development or testing environment.

To track FreeBSD-STABLE:

1. Join the FreeBSD-STABLE; mailing list in order to stay informed of build dependencies that may

appear in FreeBSD-STABLE or any other issues requiring special attention. Developers will also

make announcements in this mailing list when they are contemplating some controversial fix

or update, giving the users a chance to respond if they have any issues to raise concerning the

proposed change.

Join the relevant svn list for the branch being tracked. For example, users tracking the 9-STABLE

branch should join the SVN commit messages for only the 9-stable src tree . This list records the

commit log entry for each change as it is made, along with any pertinent information on

possible side effects.

To join these lists, go to FreeBSD list server , click on the list to subscribe to, and follow the

instructions. In order to track changes for the whole source tree, subscribe to SVN commit

messages for the entire src tree (except for user and "projects") .

2. To install a new FreeBSD-STABLE system, install the most recent FreeBSD-STABLE release from

the crossref:mirrors[mirrors,FreeBSD mirror sites] or use a monthly snapshot built from

FreeBSD-STABLE. Refer to www.freebsd.org/snapshots for more information about snapshots.

To compile or upgrade to an existing FreeBSD system to FreeBSD-STABLE, use

crossref:mirrors[svn,svn] to check out the source for the desired branch. Branch names, such as

stable/9 , are listed at www.freebsd.org/releng .

3. Before compiling or upgrading to FreeBSD-STABLE , read /usr/src/Makefile carefully and follow

the instructions in Updating FreeBSD from Source . Read the FreeBSD-STABLE; mailing list and

/usr/src/UPDATING to keep up-to-date on other bootstrapping procedures that sometimes

become necessary on the road to the next release.

24.5. Updating FreeBSD from Source

Updating FreeBSD by compiling from source offers several advantages over binary updates. Code

can be built with options to take advantage of specific hardware. Parts of the base system can be

built with non-default settings, or left out entirely where they are not needed or desired. The build

process takes longer to update a system than just installing binary updates, but allows complete

customization to produce a tailored version of FreeBSD.

24.5.1. Quick Start

This is a quick reference for the typical steps used to update FreeBSD by building from source.

Later sections describe the process in more detail.

623

http://lists.FreeBSD.org/mailman/listinfo/freebsd-stable
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-9
http://lists.freebsd.org/mailman/listinfo
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
https://www.FreeBSD.org/snapshots/
https://www.FreeBSD.org/releng/
http://lists.FreeBSD.org/mailman/listinfo/freebsd-stable

¥ Update and Build

svnlite update /usr/src !

check /usr/src/UPDATING "

cd /usr/src

make -j4 buildworld $

make -j4 kernel %

shutdown -r now &

cd /usr/src '

make installworld (

mergemaster -Ui)

shutdown -r now *

!

Get the latest version of the source. See Updating the Source for more information on

obtaining and updating source.

"

Check /usr/src/UPDATING for any manual steps required before or after building from

source.

#

Go to the source directory.

$

Compile the world, everything except the kernel.

%

Compile and install the kernel. This is equivalent to make buildkernel installkernel .

&

Reboot the system to the new kernel.

'

Go to the source directory.

(

Install the world.

)

Update and merge configuration files in /etc/ .

*

Restart the system to use the newly-built world and kernel.

24.5.2. Preparing for a Source Update

Read /usr/src/UPDATING . Any manual steps that must be performed before or after an update are

described in this file.

24.5.3. Updating the Source

FreeBSD source code is located in /usr/src/ . The preferred method of updating this source is through

the Subversion version control system. Verify that the source code is under version control:

svnlite info /usr/src

Path: /usr/src

Working Copy Root Path: /usr/src

...

This indicates that /usr/src/ is under version control and can be updated with man:svnlite[1]:

624

svnlite update /usr/src

The update process can take some time if the directory has not been updated recently. After it

finishes, the source code is up to date and the build process described in the next section can begin.

625

!

Obtaining the Source:

If the output says '/usr/src' is not a working copy , the files there are missing or

were installed with a different method. A new checkout of the source is required.

Table 19. FreeBSD Versions and Repository Paths

unam

e -r

Outpu

t

Reposi

tory

Path

Description

X.Y -RE

LEASE

base/r

eleng/

X.Y

The Release version plus only critical security and bug fix

patches. This branch is recommended for most users.

X.Y -ST

ABLE

base/s

table/

X

The Release version plus all additional development on that

branch. STABLE refers to the Applications Binary Interface (ABI)

not changing, so software compiled for earlier versions still runs.

For example, software compiled to run on FreeBSD 10.1 will still

run on FreeBSD 10-STABLE compiled later.

STABLE branches occasionally have bugs or incompatibilities

which might affect users, although these are typically fixed

quickly.

X -CURR

ENT

base/h

ead/

The latest unreleased development version of FreeBSD. The

CURRENT branch can have major bugs or incompatibilities and

is recommended only for advanced users.

Determine which version of FreeBSD is being used with man:uname[1]:

uname -r

10.3-RELEASE

Based on FreeBSD Versions and Repository Paths , the source used to update 10.3-

RELEASE has a repository path of base/releng/10.3 . That path is used when checking

out the source:

mv /usr/src /usr/src.bak !

svnlite checkout https://svn.freebsd.org/base/releng/10.3 /usr/src "

!

Move the old directory out of the way. If there are no local modifications in this

directory, it can be deleted.

"

The path from FreeBSD Versions and Repository Paths is added to the

repository URL. The third parameter is the destination directory for the source

code on the local system.

626

24.5.4. Building from Source

The world , or all of the operating system except the kernel, is compiled. This is done first to provide

up-to-date tools to build the kernel. Then the kernel itself is built:

cd /usr/src

make buildworld

make buildkernel

The compiled code is written to /usr/obj .

These are the basic steps. Additional options to control the build are described below.

24.5.4.1. Performing a Clean Build

Some versions of the FreeBSD build system leave previously-compiled code in the temporary object

directory, /usr/obj . This can speed up later builds by avoiding recompiling code that has not

changed. To force a clean rebuild of everything, use cleanworld before starting a build:

make cleanworld

24.5.4.2. Setting the Number of Jobs

Increasing the number of build jobs on multi-core processors can improve build speed. Determine

the number of cores with sysctl hw.ncpu . Processors vary, as do the build systems used with

different versions of FreeBSD, so testing is the only sure method to tell how a different number of

jobs affects the build speed. For a starting point, consider values between half and double the

number of cores. The number of jobs is specified with -j .

Example 42. Increasing the Number of Build Jobs

Building the world and kernel with four jobs:

make -j4 buildworld buildkernel

24.5.4.3. Building Only the Kernel

A buildworld must be completed if the source code has changed. After that, a buildkernel to build a

kernel can be run at any time. To build just the kernel:

cd /usr/src

make buildkernel

627

24.5.4.4. Building a Custom Kernel

The standard FreeBSD kernel is based on a kernel config file called GENERIC . The GENERIC kernel

includes the most commonly-needed device drivers and options. Sometimes it is useful or necessary

to build a custom kernel, adding or removing device drivers or options to fit a specific need.

For example, someone developing a small embedded computer with severely limited RAM could

remove unneeded device drivers or options to make the kernel slightly smaller.

Kernel config files are located in /usr/src/sys/arch/conf/ , where arch is the output from uname -m . On

most computers, that is amd64 , giving a config file directory of /usr/src/sys/amd64/conf/ .

!

/usr/src can be deleted or recreated, so it is preferable to keep custom kernel config

files in a separate directory, like /root . Link the kernel config file into the conf

directory. If that directory is deleted or overwritten, the kernel config can be re-

linked into the new one.

A custom config file can be created by copying the GENERIC config file. In this example, the new

custom kernel is for a storage server, so is named STORAGESERVER :

cp /usr/src/sys/amd64/conf/GENERIC /root/STORAGESERVER

cd /usr/src/sys/amd64/conf

ln -s /root/STORAGESERVER .

/root/STORAGESERVER is then edited, adding or removing devices or options as shown in

man:config[5].

The custom kernel is built by setting KERNCONF to the kernel config file on the command line:

make buildkernel KERNCONF=STORAGESERVER

24.5.5. Installing the Compiled Code

After the buildworld and buildkernel steps have been completed, the new kernel and world are

installed:

cd /usr/src

make installkernel

shutdown -r now

cd /usr/src

make installworld

shutdown -r now

If a custom kernel was built, KERNCONF must also be set to use the new custom kernel:

628

cd /usr/src

make installkernel KERNCONF=STORAGESERVER

shutdown -r now

cd /usr/src

make installworld

shutdown -r now

24.5.6. Completing the Update

A few final tasks complete the update. Any modified configuration files are merged with the new

versions, outdated libraries are located and removed, then the system is restarted.

24.5.6.1. Merging Configuration Files with man:mergemaster[8]

man:mergemaster[8] provides an easy way to merge changes that have been made to system

configuration files with new versions of those files.

With -Ui , man:mergemaster[8] automatically updates files that have not been user-modified and

installs new files that are not already present:

mergemaster -Ui

If a file must be manually merged, an interactive display allows the user to choose which portions

of the files are kept. See man:mergemaster[8] for more information.

24.5.6.2. Checking for Outdated Files and Libraries

Some obsolete files or directories can remain after an update. These files can be located:

make check-old

and deleted:

make delete-old

Some obsolete libraries can also remain. These can be detected with:

make check-old-libs

and deleted with

make delete-old-libs

629

Programs which were still using those old libraries will stop working when the library has been

deleted. These programs must be rebuilt or replaced after deleting the old libraries.

!

When all the old files or directories are known to be safe to delete, pressing y and

Enter to delete each file can be avoided by setting BATCH_DELETE_OLD_FILES in the

command. For example:

make BATCH_DELETE_OLD_FILES=yes delete-old-libs

24.5.6.3. Restarting After the Update

The last step after updating is to restart the computer so all the changes take effect:

shutdown -r now

24.6. Tracking for Multiple Machines

When multiple machines need to track the same source tree, it is a waste of disk space, network

bandwidth, and CPU cycles to have each system download the sources and rebuild everything. The

solution is to have one machine do most of the work, while the rest of the machines mount that

work via NFS. This section outlines a method of doing so. For more information about using NFS,

refer to crossref:network-servers[network-nfs,"Network File System (NFS)"].

First, identify a set of machines which will run the same set of binaries, known as a build set . Each

machine can have a custom kernel, but will run the same userland binaries. From that set, choose a

machine to be the build machine that the world and kernel are built on. Ideally, this is a fast

machine that has sufficient spare CPU to run make buildworld and make buildkernel .

Select a machine to be the test machine , which will test software updates before they are put into

production. This must be a machine that can afford to be down for an extended period of time. It

can be the build machine, but need not be.

All the machines in this build set need to mount /usr/obj and /usr/src from the build machine via

NFS. For multiple build sets, /usr/src should be on one build machine, and NFS mounted on the rest.

Ensure that /etc/make.conf and /etc/src.conf on all the machines in the build set agree with the build

machine. That means that the build machine must build all the parts of the base system that any

machine in the build set is going to install. Also, each build machine should have its kernel name set

with KERNCONF in /etc/make.conf , and the build machine should list them all in its KERNCONF , listing its

own kernel first. The build machine must have the kernel configuration files for each machine in its

/usr/src/sys/arch/conf .

On the build machine, build the kernel and world as described in Updating FreeBSD from Source ,

but do not install anything on the build machine. Instead, install the built kernel on the test

machine. On the test machine, mount /usr/src and /usr/obj via NFS. Then, run shutdown now to go to

single-user mode in order to install the new kernel and world and run mergemaster as usual. When

630

done, reboot to return to normal multi-user operations.

After verifying that everything on the test machine is working properly, use the same procedure to

install the new software on each of the other machines in the build set.

The same methodology can be used for the ports tree. The first step is to share /usr/ports via NFS to

all the machines in the build set. To configure /etc/make.conf to share distfiles, set DISTDIR to a

common shared directory that is writable by whichever user root is mapped to by the NFS mount.

Each machine should set WRKDIRPREFIX to a local build directory, if ports are to be built locally.

Alternately, if the build system is to build and distribute packages to the machines in the build set,

set PACKAGES on the build system to a directory similar to DISTDIR .

631

Chapter 25. DTrace

25.1. Synopsis

DTrace, also known as Dynamic Tracing, was developed by Sunª as a tool for locating performance

bottlenecks in production and pre-production systems. In addition to diagnosing performance

problems, DTrace can be used to help investigate and debug unexpected behavior in both the

FreeBSD kernel and in userland programs.

DTrace is a remarkable profiling tool, with an impressive array of features for diagnosing system

issues. It may also be used to run pre-written scripts to take advantage of its capabilities. Users can

author their own utilities using the DTrace D Language, allowing them to customize their profiling

based on specific needs.

The FreeBSD implementation provides full support for kernel DTrace and experimental support for

userland DTrace. Userland DTrace allows users to perform function boundary tracing for userland

programs using the pid provider, and to insert static probes into userland programs for later

tracing. Some ports, such as package:databases/postgresql12-server[] and package:lang/php74[]

have a DTrace option to enable static probes.

The official guide to DTrace is maintained by the Illumos project at DTrace Guide .

After reading this chapter, you will know:

¥ What DTrace is and what features it provides.

¥ Differences between the Solarisª DTrace implementation and the one provided by FreeBSD.

¥ How to enable and use DTrace on FreeBSD.

Before reading this chapter, you should:

¥ Understand UNIX¨ and FreeBSD basics (crossref:basics[basics,FreeBSD Basics]).

¥ Have some familiarity with security and how it pertains to FreeBSD

(crossref:security[security,Security]).

25.2. Implementation Differences

While the DTrace in FreeBSD is similar to that found in Solarisª, differences do exist. The primary

difference is that in FreeBSD, DTrace is implemented as a set of kernel modules and DTrace can not

be used until the modules are loaded. To load all of the necessary modules:

kldload dtraceall

Beginning with FreeBSD 10.0-RELEASE, the modules are automatically loaded when dtrace is run.

FreeBSD uses the DDB_CTF kernel option to enable support for loading CTF data from kernel modules

and the kernel itself. CTF is the Solarisª Compact C Type Format which encapsulates a reduced form

632

http://dtrace.org/guide

of debugging information similar to DWARF and the venerable stabs. CTF data is added to binaries by

the ctfconvert and ctfmerge build tools. The ctfconvert utility parses DWARF ELF debug sections

created by the compiler and ctfmerge merges CTF ELF sections from objects into either executables

or shared libraries.

Some different providers exist for FreeBSD than for Solarisª. Most notable is the dtmalloc provider,

which allows tracing malloc() by type in the FreeBSD kernel. Some of the providers found in

Solarisª, such as cpc and mib , are not present in FreeBSD. These may appear in future versions of

FreeBSD. Moreover, some of the providers available in both operating systems are not compatible,

in the sense that their probes have different argument types. Thus, D scripts written on Solarisª

may or may not work unmodified on FreeBSD, and vice versa.

Due to security differences, only root may use DTrace on FreeBSD. Solarisª has a few low level

security checks which do not yet exist in FreeBSD. As such, the /dev/dtrace/dtrace is strictly limited

to root .

DTrace falls under the Common Development and Distribution License (CDDL) license. To view this

license on FreeBSD, see /usr/src/cddl/contrib/opensolaris/OPENSOLARIS.LICENSE or view it online

at http://opensource.org/licenses/CDDL-1.0 . While a FreeBSD kernel with DTrace support is BSD

licensed, the CDDL is used when the modules are distributed in binary form or the binaries are

loaded.

25.3. Enabling DTrace Support

In FreeBSD 9.2 and 10.0, DTrace support is built into the GENERIC kernel. Users of earlier versions

of FreeBSD or who prefer to statically compile in DTrace support should add the following lines to a

custom kernel configuration file and recompile the kernel using the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]:

options KDTRACE_HOOKS

options DDB_CTF

makeoptions DEBUG=-g

makeoptions WITH_CTF=1

Users of the AMD64 architecture should also add this line:

options KDTRACE_FRAME

This option provides support for FBT . While DTrace will work without this option, there will be

limited support for function boundary tracing.

Once the FreeBSD system has rebooted into the new kernel, or the DTrace kernel modules have

been loaded using kldload dtraceall , the system will need support for the Korn shell as the DTrace

Toolkit has several utilities written in ksh . Make sure that the package:shells/ksh93[] package or

port is installed. It is also possible to run these tools under package:shells/pdksh[] or

package:shells/mksh[].

633

http://opensource.org/licenses/CDDL-1.0

Finally, install the current DTrace Toolkit, a collection of ready-made scripts for collecting system

information. There are scripts to check open files, memory, CPU usage, and a lot more. FreeBSD 10

installs a few of these scripts into /usr/shared/dtrace . On other FreeBSD versions, or to install the

full DTrace Toolkit, use the package:sysutils/DTraceToolkit[] package or port.

!

The scripts found in /usr/shared/dtrace have been specifically ported to FreeBSD.

Not all of the scripts found in the DTrace Toolkit will work as-is on FreeBSD and

some scripts may require some effort in order for them to work on FreeBSD.

The DTrace Toolkit includes many scripts in the special language of DTrace. This language is called

the D language and it is very similar to C++. An in depth discussion of the language is beyond the

scope of this document. It is covered extensively in the Illumos Dynamic Tracing Guide .

25.4. Using DTrace

DTrace scripts consist of a list of one or more probes , or instrumentation points, where each probe

is associated with an action. Whenever the condition for a probe is met, the associated action is

executed. For example, an action may occur when a file is opened, a process is started, or a line of

code is executed. The action might be to log some information or to modify context variables. The

reading and writing of context variables allows probes to share information and to cooperatively

analyze the correlation of different events.

To view all probes, the administrator can execute the following command:

dtrace -l | more

Each probe has an ID , a PROVIDER (dtrace or fbt), a MODULE , and a FUNCTION NAME . Refer to

man:dtrace[1] for more information about this command.

The examples in this section provide an overview of how to use two of the fully supported scripts

from the DTrace Toolkit: the hotkernel and procsystime scripts.

The hotkernel script is designed to identify which function is using the most kernel time. It will

produce output similar to the following:

cd /usr/local/shared/dtrace-toolkit

./hotkernel

Sampling... Hit Ctrl-C to end.

As instructed, use the Ctrl "+" C key combination to stop the process. Upon termination, the script will

display a list of kernel functions and timing information, sorting the output in increasing order of

time:

634

http://www.dtrace.org/guide

kernel`_thread_lock_flags 2 0.0%

0xc1097063 2 0.0%

kernel`sched_userret 2 0.0%

kernel`kern_select 2 0.0%

kernel`generic_copyin 3 0.0%

kernel`_mtx_assert 3 0.0%

kernel`vm_fault 3 0.0%

kernel`sopoll_generic 3 0.0%

kernel`fixup_filename 4 0.0%

kernel`_isitmyx 4 0.0%

kernel`find_instance 4 0.0%

kernel`_mtx_unlock_flags 5 0.0%

kernel`syscall 5 0.0%

kernel`DELAY 5 0.0%

0xc108a253 6 0.0%

kernel`witness_lock 7 0.0%

kernel`read_aux_data_no_wait 7 0.0%

kernel`Xint0x80_syscall 7 0.0%

kernel`witness_checkorder 7 0.0%

kernel`sse2_pagezero 8 0.0%

kernel`strncmp 9 0.0%

kernel`spinlock_exit 10 0.0%

kernel`_mtx_lock_flags 11 0.0%

kernel`witness_unlock 15 0.0%

kernel`sched_idletd 137 0.3%

0xc10981a5 42139 99.3%

This script will also work with kernel modules. To use this feature, run the script with -m :

./hotkernel -m

Sampling... Hit Ctrl-C to end.

^C

MODULE COUNT PCNT

0xc107882e 1 0.0%

0xc10e6aa4 1 0.0%

0xc1076983 1 0.0%

0xc109708a 1 0.0%

0xc1075a5d 1 0.0%

0xc1077325 1 0.0%

0xc108a245 1 0.0%

0xc107730d 1 0.0%

0xc1097063 2 0.0%

0xc108a253 73 0.0%

kernel 874 0.4%

0xc10981a5 213781 99.6%

The procsystime script captures and prints the system call time usage for a given process ID (PID) or

process name. In the following example, a new instance of /bin/csh was spawned. Then,

635

procsystime was executed and remained waiting while a few commands were typed on the other

incarnation of csh . These are the results of this test:

./procsystime -n csh

Tracing... Hit Ctrl-C to end...

^C

Elapsed Times for processes csh,

Ê SYSCALL TIME (ns)

Ê getpid 6131

Ê sigreturn 8121

Ê close 19127

Ê fcntl 19959

Ê dup 26955

Ê setpgid 28070

Ê stat 31899

Ê setitimer 40938

Ê wait4 62717

Ê sigaction 67372

Ê sigprocmask 119091

Ê gettimeofday 183710

Ê write 263242

Ê execve 492547

Ê ioctl 770073

Ê vfork 3258923

Ê sigsuspend 6985124

Ê read 3988049784

As shown, the read() system call used the most time in nanoseconds while the getpid() system call

used the least amount of time.

636

Chapter 26. USB Device Mode / USB OTG

26.1. Synopsis

This chapter covers the use of USB Device Mode and USB On The Go (USB OTG) in FreeBSD. This

includes virtual serial consoles, virtual network interfaces, and virtual USB drives.

When running on hardware that supports USB device mode or USB OTG, like that built into many

embedded boards, the FreeBSD USB stack can run in device mode . Device mode makes it possible

for the computer to present itself as different kinds of USB device classes, including serial ports,

network adapters, and mass storage, or a combination thereof. A USB host like a laptop or desktop

computer is able to access them just like physical USB devices. Device mode is sometimes called the

"USB gadget mode".

There are two basic ways the hardware can provide the device mode functionality: with a separate

"client port", which only supports the device mode, and with a USB OTG port, which can provide

both device and host mode. For USB OTG ports, the USB stack switches between host-side and

device-side automatically, depending on what is connected to the port. Connecting a USB device like

a memory stick to the port causes FreeBSD to switch to host mode. Connecting a USB host like a

computer causes FreeBSD to switch to device mode. Single purpose "client ports" always work in

device mode.

What FreeBSD presents to the USB host depends on the hw.usb.template sysctl. Some templates

provide a single device, such as a serial terminal; others provide multiple ones, which can all be

used at the same time. An example is the template 10, which provides a mass storage device, a

serial console, and a network interface. See man:usb_template[4] for the list of available values.

Note that in some cases, depending on the hardware and the hosts operating system, for the host to

notice the configuration change, it must be either physically disconnected and reconnected, or

forced to rescan the USB bus in a system-specific way. When FreeBSD is running on the host,

man:usbconfig[8] reset can be used. This also must be done after loading usb_template.ko if the

USB host was already connected to the USBOTG socket.

After reading this chapter, you will know:

¥ How to set up USB Device Mode functionality on FreeBSD.

¥ How to configure the virtual serial port on FreeBSD.

¥ How to connect to the virtual serial port from various operating systems.

¥ How to configure FreeBSD to provide a virtual USB network interface.

¥ How to configure FreeBSD to provide a virtual USB storage device.

26.2. USB Virtual Serial Ports

26.2.1. Configuring USB Device Mode Serial Ports

Virtual serial port support is provided by templates number 3, 8, and 10. Note that template 3 works

637

with Microsoft Windows 10 without the need for special drivers and INF files. Other host operating

systems work with all three templates. Both man:usb_template[4] and man:umodem[4] kernel

modules must be loaded.

To enable USB device mode serial ports, add those lines to /etc/ttys :

ttyU0 "/usr/libexec/getty 3wire" vt100 onifconsole secure

ttyU1 "/usr/libexec/getty 3wire" vt100 onifconsole secure

Then add these lines to /etc/devd.conf :

notify 100 {

Ê match "system" "DEVFS";

Ê match "subsystem" "CDEV";

Ê match "type" "CREATE";

Ê match "cdev" "ttyU[0-9]+";

Ê action "/sbin/init q";

};

Reload the configuration if man:devd[8] is already running:

service devd restart

Make sure the necessary modules are loaded and the correct template is set at boot by adding those

lines to /boot/loader.conf , creating it if it does not already exist:

umodem_load="YES"

hw.usb.template=3

To load the module and set the template without rebooting use:

kldload umodem

sysctl hw.usb.template=3

26.2.2. Connecting to USB Device Mode Serial Ports from FreeBSD

To connect to a board configured to provide USB device mode serial ports, connect the USB host,

such as a laptop, to the boards USB OTG or USB client port. Use pstat -t on the host to list the

terminal lines. Near the end of the list you should see a USB serial port, eg "ttyU0". To open the

connection, use:

cu -l /dev/ttyU0

638

After pressing the Enter key a few times you will see a login prompt.

26.2.3. Connecting to USB Device Mode Serial Ports from macOS

To connect to a board configured to provide USB device mode serial ports, connect the USB host,

such as a laptop, to the boards USB OTG or USB client port. To open the connection, use:

cu -l /dev/cu.usbmodemFreeBSD1

26.2.4. Connecting to USB Device Mode Serial Ports from Linux

To connect to a board configured to provide USB device mode serial ports, connect the USB host,

such as a laptop, to the boards USB OTG or USB client port. To open the connection, use:

minicom -D /dev/ttyACM0

26.2.5. Connecting to USB Device Mode Serial Ports from Microsoft Windows

10

To connect to a board configured to provide USB device mode serial ports, connect the USB host,

such as a laptop, to the boards USB OTG or USB client port. To open a connection you will need a

serial terminal program, such as PuTTY. To check the COM port name used by Windows, run Device

Manager, expand "Ports (COM & LPT)". You will see a name similar to "USB Serial Device (COM4)".

Run serial terminal program of your choice, for example PuTTY. In the PuTTY dialog set

"Connection type" to "Serial", type the COMx obtained from Device Manager in the "Serial line"

dialog box and click Open.

26.3. USB Device Mode Network Interfaces

Virtual network interfaces support is provided by templates number 1, 8, and 10. Note that none of

them works with Microsoft Windows. Other host operating systems work with all three templates.

Both man:usb_template[4] and man:if_cdce[4] kernel modules must be loaded.

Make sure the necessary modules are loaded and the correct template is set at boot by adding those

lines to /boot/loader.conf , creating it if it does not already exist:

if_cdce_load="YES"

hw.usb.template=1

To load the module and set the template without rebooting use:

kldload if_cdce

sysctl hw.usb.template=1

639

26.4. USB Virtual Storage Device

!

The man:cfumass[4] driver is a USB device mode driver first available in FreeBSD

12.0.

Mass Storage target is provided by templates 0 and 10. Both man:usb_template[4] and

man:cfumass[4] kernel modules must be loaded. man:cfumass[4] interfaces to the CTL subsystem,

the same one that is used for iSCSI or Fibre Channel targets. On the host side, USB Mass Storage

initiators can only access a single LUN, LUN 0.

26.4.1. Configuring USB Mass Storage Target Using the cfumass Startup

Script

The simplest way to set up a read-only USB storage target is to use the cfumass rc script. To

configure it this way, copy the files to be presented to the USB host machine into the /var/cfumass

directory, and add this line to /etc/rc.conf :

cfumass_enable="YES"

To configure the target without restarting, run this command:

service cfumass start

Differently from serial and network functionality, the template should not be set to 0 or 10 in

/boot/loader.conf . This is because the LUN must be set up before setting the template. The cfumass

startup script sets the correct template number automatically when started.

26.4.2. Configuring USB Mass Storage Using Other Means

The rest of this chapter provides detailed description of setting the target without using the cfumass

rc file. This is necessary if eg one wants to provide a writeable LUN.

USB Mass Storage does not require the man:ctld[8] daemon to be running, although it can be used if

desired. This is different from iSCSI. Thus, there are two ways to configure the target:

man:ctladm[8], or man:ctld[8]. Both require the cfumass.ko kernel module to be loaded. The

module can be loaded manually:

kldload cfumass

If cfumass.ko has not been built into the kernel, /boot/loader.conf can be set to load the module at

boot:

cfumass_load="YES"

640

A LUN can be created without the man:ctld[8] daemon:

ctladm create -b block -o file=/data/target0

This presents the contents of the image file /data/target0 as a LUN to the USB host. The file must

exist before executing the command. To configure the LUN at system startup, add the command to

/etc/rc.local .

man:ctld[8] can also be used to manage LUNs. Create /etc/ctl.conf , add a line to /etc/rc.conf to make

sure man:ctld[8] is automatically started at boot, and then start the daemon.

This is an example of a simple /etc/ctl.conf configuration file. Refer to man:ctl.conf[5] for a more

complete description of the options.

target naa.50015178f369f092 {

Ê lun 0 {

Ê path /data/target0

Ê size 4G

Ê }

}

The example creates a single target with a single LUN. The naa.50015178f369f092 is a device

identifier composed of 32 random hexadecimal digits. The path line defines the full path to a file or

zvol backing the LUN. That file must exist before starting man:ctld[8]. The second line is optional

and specifies the size of the LUN.

To make sure the man:ctld[8] daemon is started at boot, add this line to /etc/rc.conf :

ctld_enable="YES"

To start man:ctld[8] now, run this command:

service ctld start

As the man:ctld[8] daemon is started, it reads /etc/ctl.conf . If this file is edited after the daemon

starts, reload the changes so they take effect immediately:

service ctld reload

641

Part IV: Network Communication

FreeBSD is one of the most widely deployed operating systems for high performance network

servers. The chapters in this part cover:

¥ Serial communication

¥ PPP and PPP over Ethernet

¥ Electronic Mail

¥ Running Network Servers

¥ Firewalls

¥ Other Advanced Networking Topics

These chapters are designed to be read when the information is needed. They do not need to be

read in any particular order, nor is it necessary to read all of them before using FreeBSD in a

network environment.

642

Chapter 27. Serial Communications

27.1. Synopsis

UNIX¨ has always had support for serial communications as the very first UNIX¨ machines relied

on serial lines for user input and output. Things have changed a lot from the days when the average

terminal consisted of a 10-character-per-second serial printer and a keyboard. This chapter covers

some of the ways serial communications can be used on FreeBSD.

After reading this chapter, you will know:

¥ How to connect terminals to a FreeBSD system.

¥ How to use a modem to dial out to remote hosts.

¥ How to allow remote users to login to a FreeBSD system with a modem.

¥ How to boot a FreeBSD system from a serial console.

Before reading this chapter, you should:

¥ Know how to crossref:kernelconfig[kernelconfig, configure and install a custom kernel].

¥ Understand crossref:basics[basics, FreeBSD permissions and processes].

¥ Have access to the technical manual for the serial hardware to be used with FreeBSD.

27.2. Serial Terminology and Hardware

The following terms are often used in serial communications:

bps

Bits per Second (bps) is the rate at which data is transmitted.

DTE

Data Terminal Equipment (DTE) is one of two endpoints in a serial communication. An example

would be a computer.

DCE

Data Communications Equipment (DTE) is the other endpoint in a serial communication.

Typically, it is a modem or serial terminal.

RS-232

The original standard which defined hardware serial communications. It has since been

renamed to TIA-232.

When referring to communication data rates, this section does not use the term baud . Baud refers

to the number of electrical state transitions made in a period of time, while bps is the correct term

to use.

To connect a serial terminal to a FreeBSD system, a serial port on the computer and the proper

643

cable to connect to the serial device are needed. Users who are already familiar with serial

hardware and cabling can safely skip this section.

27.2.1. Serial Cables and Ports

There are several different kinds of serial cables. The two most common types are null-modem

cables and standard RS-232 cables. The documentation for the hardware should describe the type

of cable required.

These two types of cables differ in how the wires are connected to the connector. Each wire

represents a signal, with the defined signals summarized in RS-232C Signal Names . A standard

serial cable passes all of the RS-232C signals straight through. For example, the "Transmitted Data"

pin on one end of the cable goes to the "Transmitted Data" pin on the other end. This is the type of

cable used to connect a modem to the FreeBSD system, and is also appropriate for some terminals.

A null-modem cable switches the "Transmitted Data" pin of the connector on one end with the

"Received Data" pin on the other end. The connector can be either a DB-25 or a DB-9.

A null-modem cable can be constructed using the pin connections summarized in DB-25 to DB-25

Null-Modem Cable , DB-9 to DB-9 Null-Modem Cable , and DB-9 to DB-25 Null-Modem Cable . While

the standard calls for a straight-through pin 1 to pin 1 "Protective Ground" line, it is often omitted.

Some terminals work using only pins 2, 3, and 7, while others require different configurations.

When in doubt, refer to the documentation for the hardware.

Table 20. RS-232C Signal Names

Acronyms Names

RD Received Data

TD Transmitted Data

DTR Data Terminal Ready

DSR Data Set Ready

DCD Data Carrier Detect

SG Signal Ground

RTS Request to Send

CTS Clear to Send

Table 21. DB-25 to DB-25 Null-Modem Cable

Signal Pin # Pin # Signal

SG 7 connects to 7 SG

TD 2 connects to 3 RD

RD 3 connects to 2 TD

RTS 4 connects to 5 CTS

CTS 5 connects to 4 RTS

644

Signal Pin # Pin # Signal

DTR 20 connects to 6 DSR

DTR 20 connects to 8 DCD

DSR 6 connects to 20 DTR

DCD 8 connects to 20 DTR

Table 22. DB-9 to DB-9 Null-Modem Cable

Signal Pin # Pin # Signal

RD 2 connects to 3 TD

TD 3 connects to 2 RD

DTR 4 connects to 6 DSR

DTR 4 connects to 1 DCD

SG 5 connects to 5 SG

DSR 6 connects to 4 DTR

DCD 1 connects to 4 DTR

RTS 7 connects to 8 CTS

CTS 8 connects to 7 RTS

Table 23. DB-9 to DB-25 Null-Modem Cable

Signal Pin # Pin # Signal

RD 2 connects to 2 TD

TD 3 connects to 3 RD

DTR 4 connects to 6 DSR

DTR 4 connects to 8 DCD

SG 5 connects to 7 SG

DSR 6 connects to 20 DTR

DCD 1 connects to 20 DTR

RTS 7 connects to 5 CTS

CTS 8 connects to 4 RTS

!

When one pin at one end connects to a pair of pins at the other end, it is usually

implemented with one short wire between the pair of pins in their connector and

a long wire to the other single pin.

Serial ports are the devices through which data is transferred between the FreeBSD host computer

and the terminal. Several kinds of serial ports exist. Before purchasing or constructing a cable,

make sure it will fit the ports on the terminal and on the FreeBSD system.

645

Most terminals have DB-25 ports. Personal computers may have DB-25 or DB-9 ports. A multiport

serial card may have RJ-12 or RJ-45/ ports. See the documentation that accompanied the hardware

for specifications on the kind of port or visually verify the type of port.

In FreeBSD, each serial port is accessed through an entry in /dev . There are two different kinds of

entries:

¥ Call-in ports are named /dev/ttyuN where N is the port number, starting from zero. If a terminal

is connected to the first serial port (COM1), use /dev/ttyu0 to refer to the terminal. If the

terminal is on the second serial port (COM2), use /dev/ttyu1 , and so forth. Generally, the call-in

port is used for terminals. Call-in ports require that the serial line assert the "Data Carrier

Detect" signal to work correctly.

¥ Call-out ports are named /dev/cuauN on FreeBSD versions 8.X and higher and /dev/cuadN on

FreeBSD versions 7.X and lower. Call-out ports are usually not used for terminals, but are used

for modems. The call-out port can be used if the serial cable or the terminal does not support

the "Data Carrier Detect" signal.

FreeBSD also provides initialization devices (/dev/ttyuN.init and /dev/cuauN.init or /dev/cuadN.init)

and locking devices (/dev/ttyuN.lock and /dev/cuauN.lock or /dev/cuadN.lock). The initialization

devices are used to initialize communications port parameters each time a port is opened, such as

crtscts for modems which use RTS/CTS signaling for flow control. The locking devices are used to

lock flags on ports to prevent users or programs changing certain parameters. Refer to

man:termios[4], man:sio[4], and man:stty[1] for information on terminal settings, locking and

initializing devices, and setting terminal options, respectively.

27.2.2. Serial Port Configuration

By default, FreeBSD supports four serial ports which are commonly known as COM1 , COM2 , COM3 ,

and COM4 . FreeBSD also supports dumb multi-port serial interface cards, such as the BocaBoard

1008 and 2016, as well as more intelligent multi-port cards such as those made by Digiboard.

However, the default kernel only looks for the standard COM ports.

To see if the system recognizes the serial ports, look for system boot messages that start with uart :

grep uart /var/run/dmesg.boot

If the system does not recognize all of the needed serial ports, additional entries can be added to

/boot/device.hints . This file already contains hint.uart.0.* entries for COM1 and hint.uart.1.*

entries for COM2 . When adding a port entry for COM3 use 0x3E8 , and for COM4 use 0x2E8 . Common

IRQ addresses are 5 for COM3 and 9 for COM4 .

To determine the default set of terminal I/O settings used by the port, specify its device name. This

example determines the settings for the call-in port on COM2 :

stty -a -f /dev/ttyu1

System-wide initialization of serial devices is controlled by /etc/rc.d/serial . This file affects the

646

default settings of serial devices. To change the settings for a device, use stty . By default, the

changed settings are in effect until the device is closed and when the device is reopened, it goes

back to the default set. To permanently change the default set, open and adjust the settings of the

initialization device. For example, to turn on CLOCAL mode, 8 bit communication, and XON/XOFF flow

control for ttyu5 , type:

stty -f /dev/ttyu5.init clocal cs8 ixon ixoff

To prevent certain settings from being changed by an application, make adjustments to the locking

device. For example, to lock the speed of ttyu5 to 57600 bps, type:

stty -f /dev/ttyu5.lock 57600

Now, any application that opens ttyu5 and tries to change the speed of the port will be stuck with

57600 bps.

27.3. Terminals

Terminals provide a convenient and low-cost way to access a FreeBSD system when not at the

computerÕs console or on a connected network. This section describes how to use terminals with

FreeBSD.

The original UNIX¨ systems did not have consoles. Instead, users logged in and ran programs

through terminals that were connected to the computerÕs serial ports.

The ability to establish a login session on a serial port still exists in nearly every UNIX¨-like

operating system today, including FreeBSD. By using a terminal attached to an unused serial port, a

user can log in and run any text program that can normally be run on the console or in an xterm

window.

Many terminals can be attached to a FreeBSD system. An older spare computer can be used as a

terminal wired into a more powerful computer running FreeBSD. This can turn what might

otherwise be a single-user computer into a powerful multiple-user system.

FreeBSD supports three types of terminals:

Dumb terminals

Dumb terminals are specialized hardware that connect to computers over serial lines. They are

called "dumb" because they have only enough computational power to display, send, and receive

text. No programs can be run on these devices. Instead, dumb terminals connect to a computer

that runs the needed programs.

There are hundreds of kinds of dumb terminals made by many manufacturers, and just about

any kind will work with FreeBSD. Some high-end terminals can even display graphics, but only

certain software packages can take advantage of these advanced features.

Dumb terminals are popular in work environments where workers do not need access to

647

graphical applications.

Computers Acting as Terminals

Since a dumb terminal has just enough ability to display, send, and receive text, any spare

computer can be a dumb terminal. All that is needed is the proper cable and some terminal

emulation software to run on the computer.

This configuration can be useful. For example, if one user is busy working at the FreeBSD

systemÕs console, another user can do some text-only work at the same time from a less powerful

personal computer hooked up as a terminal to the FreeBSD system.

There are at least two utilities in the base-system of FreeBSD that can be used to work through a

serial connection: man:cu[1] and man:tip[1].

For example, to connect from a client system that runs FreeBSD to the serial connection of

another system:

cu -l /dev/cuauN

Ports are numbered starting from zero. This means that COM1 is /dev/cuau0 .

Additional programs are available through the Ports Collection, such as

package:comms/minicom[].

X Terminals

X terminals are the most sophisticated kind of terminal available. Instead of connecting to a

serial port, they usually connect to a network like Ethernet. Instead of being relegated to text-

only applications, they can display any Xorg application.

This chapter does not cover the setup, configuration, or use of X terminals.

27.3.1. Terminal Configuration

This section describes how to configure a FreeBSD system to enable a login session on a serial

terminal. It assumes that the system recognizes the serial port to which the terminal is connected

and that the terminal is connected with the correct cable.

In FreeBSD, init reads /etc/ttys and starts a getty process on the available terminals. The getty

process is responsible for reading a login name and starting the login program. The ports on the

FreeBSD system which allow logins are listed in /etc/ttys . For example, the first virtual console,

ttyv0 , has an entry in this file, allowing logins on the console. This file also contains entries for the

other virtual consoles, serial ports, and pseudo-ttys. For a hardwired terminal, the serial portÕs /dev

entry is listed without the /dev part. For example, /dev/ttyv0 is listed as ttyv0 .

The default /etc/ttys configures support for the first four serial ports, ttyu0 through ttyu3 :

648

ttyu0 "/usr/libexec/getty std.9600" dialup off secure

ttyu1 "/usr/libexec/getty std.9600" dialup off secure

ttyu2 "/usr/libexec/getty std.9600" dialup off secure

ttyu3 "/usr/libexec/getty std.9600" dialup off secure

When attaching a terminal to one of those ports, modify the default entry to set the required speed

and terminal type, to turn the device on and, if needed, to change the portÕs secure setting. If the

terminal is connected to another port, add an entry for the port.

Configuring Terminal Entries configures two terminals in /etc/ttys . The first entry configures a

Wyse-50 connected to COM2 . The second entry configures an old computer running Procomm

terminal software emulating a VT-100 terminal. The computer is connected to the sixth serial port

on a multi-port serial card.

Example 43. Configuring Terminal Entries

ttyu1 "/usr/libexec/getty std.38400" wy50 on insecure

ttyu5 "/usr/libexec/getty std.19200" vt100 on insecure

The first field specifies the device name of the serial terminal.

The second field tells getty to initialize and open the line, set the line speed, prompt for a user

name, and then execute the login program. The optional getty type configures characteristics

on the terminal line, like bps rate and parity. The available getty types are listed in

/etc/gettytab . In almost all cases, the getty types that start with std will work for hardwired

terminals as these entries ignore parity. There is a std entry for each bps rate from 110 to

115200. Refer to man:gettytab[5] for more information.When setting the getty type, make sure

to match the communications settings used by the terminal. For this example, the Wyse-50

uses no parity and connects at 38400 bps. The computer uses no parity and connects at 19200

bps.

The third field is the type of terminal. For dial-up ports, unknown or dialup is typically used since

users may dial up with practically any type of terminal or software. Since the terminal type

does not change for hardwired terminals, a real terminal type from /etc/termcap can be

specified. For this example, the Wyse-50 uses the real terminal type while the computer

running Procomm is set to emulate a VT-100.

The fourth field specifies if the port should be enabled. To enable logins on this port, this field

must be set to on .

The final field is used to specify whether the port is secure. Marking a port as secure means

that it is trusted enough to allow root to login from that port. Insecure ports do not allow root

logins. On an insecure port, users must login from unprivileged accounts and then use su or a

similar mechanism to gain superuser privileges, as described in crossref:basics[users-

superuser,ÒThe Superuser AccountÓ]. For security reasons, it is recommended to change this

setting to insecure .

649

After making any changes to /etc/ttys , send a SIGHUP (hangup) signal to the init process to force it

to re-read its configuration file:

kill -HUP 1

Since init is always the first process run on a system, it always has a process ID of 1 .

If everything is set up correctly, all cables are in place, and the terminals are powered up, a getty

process should now be running on each terminal and login prompts should be available on each

terminal.

27.3.2. Troubleshooting the Connection

Even with the most meticulous attention to detail, something could still go wrong while setting up a

terminal. Here is a list of common symptoms and some suggested fixes.

If no login prompt appears, make sure the terminal is plugged in and powered up. If it is a personal

computer acting as a terminal, make sure it is running terminal emulation software on the correct

serial port.

Make sure the cable is connected firmly to both the terminal and the FreeBSD computer. Make sure

it is the right kind of cable.

Make sure the terminal and FreeBSD agree on the bps rate and parity settings. For a video display

terminal, make sure the contrast and brightness controls are turned up. If it is a printing terminal,

make sure paper and ink are in good supply.

Use ps to make sure that a getty process is running and serving the terminal. For example, the

following listing shows that a getty is running on the second serial port, ttyu1 , and is using the

std.38400 entry in /etc/gettytab :

ps -axww|grep ttyu

22189 d1 Is+ 0:00.03 /usr/libexec/getty std.38400 ttyu1

If no getty process is running, make sure the port is enabled in /etc/ttys . Remember to run kill -HUP

1 after modifying /etc/ttys .

If the getty process is running but the terminal still does not display a login prompt, or if it displays

a prompt but will not accept typed input, the terminal or cable may not support hardware

handshaking. Try changing the entry in /etc/ttys from std.38400 to 3wire.38400 , then run kill -HUP

1 after modifying /etc/ttys . The 3wire entry is similar to std , but ignores hardware handshaking. The

baud rate may need to be reduced or software flow control enabled when using 3wire to prevent

buffer overflows.

If garbage appears instead of a login prompt, make sure the terminal and FreeBSD agree on the bps

rate and parity settings. Check the getty processes to make sure the correct getty type is in use. If

not, edit /etc/ttys and run kill -HUP 1 .

650

If characters appear doubled and the password appears when typed, switch the terminal, or the

terminal emulation software, from "half duplex" or "local echo" to "full duplex."

27.4. Dial-in Service

Configuring a FreeBSD system for dial-in service is similar to configuring terminals, except that

modems are used instead of terminal devices. FreeBSD supports both external and internal

modems.

External modems are more convenient because they often can be configured via parameters stored

in non-volatile RAM and they usually provide lighted indicators that display the state of important

RS-232 signals, indicating whether the modem is operating properly.

Internal modems usually lack non-volatile RAM, so their configuration may be limited to setting DIP

switches. If the internal modem has any signal indicator lights, they are difficult to view when the

systemÕs cover is in place.

When using an external modem, a proper cable is needed. A standard RS-232C serial cable should

suffice.

FreeBSD needs the RTS and CTS signals for flow control at speeds above 2400 bps, the CD signal to

detect when a call has been answered or the line has been hung up, and the DTR signal to reset the

modem after a session is complete. Some cables are wired without all of the needed signals, so if a

login session does not go away when the line hangs up, there may be a problem with the cable.

Refer to Serial Cables and Ports for more information about these signals.

Like other UNIX¨-like operating systems, FreeBSD uses the hardware signals to find out when a call

has been answered or a line has been hung up and to hangup and reset the modem after a call.

FreeBSD avoids sending commands to the modem or watching for status reports from the modem.

FreeBSD supports the NS8250, NS16450, NS16550, and NS16550A-based RS-232C (CCITT V.24)

communications interfaces. The 8250 and 16450 devices have single-character buffers. The 16550

device provides a 16-character buffer, which allows for better system performance. Bugs in plain

16550 devices prevent the use of the 16-character buffer, so use 16550A devices if possible. As

single-character-buffer devices require more work by the operating system than the 16-character-

buffer devices, 16550A-based serial interface cards are preferred. If the system has many active

serial ports or will have a heavy load, 16550A-based cards are better for low-error-rate

communications.

The rest of this section demonstrates how to configure a modem to receive incoming connections,

how to communicate with the modem, and offers some troubleshooting tips.

27.4.1. Modem Configuration

As with terminals, init spawns a getty process for each configured serial port used for dial-in

connections. When a user dials the modemÕs line and the modems connect, the "Carrier Detect"

signal is reported by the modem. The kernel notices that the carrier has been detected and instructs

getty to open the port and display a login: prompt at the specified initial line speed. In a typical

configuration, if garbage characters are received, usually due to the modemÕs connection speed

651

being different than the configured speed, getty tries adjusting the line speeds until it receives

reasonable characters. After the user enters their login name, getty executes login , which

completes the login process by asking for the userÕs password and then starting the userÕs shell.

There are two schools of thought regarding dial-up modems. One configuration method is to set the

modems and systems so that no matter at what speed a remote user dials in, the dial-in RS-232

interface runs at a locked speed. The benefit of this configuration is that the remote user always

sees a system login prompt immediately. The downside is that the system does not know what a

userÕs true data rate is, so full-screen programs like Emacs will not adjust their screen-painting

methods to make their response better for slower connections.

The second method is to configure the RS-232 interface to vary its speed based on the remote userÕs

connection speed. As getty does not understand any particular modemÕs connection speed

reporting, it gives a login: message at an initial speed and watches the characters that come back in

response. If the user sees junk, they should press Enter until they see a recognizable prompt. If the

data rates do not match, getty sees anything the user types as junk, tries the next speed, and gives

the login: prompt again. This procedure normally only takes a keystroke or two before the user

sees a good prompt. This login sequence does not look as clean as the locked-speed method, but a

user on a low-speed connection should receive better interactive response from full-screen

programs.

When locking a modemÕs data communications rate at a particular speed, no changes to

/etc/gettytab should be needed. However, for a matching-speed configuration, additional entries

may be required in order to define the speeds to use for the modem. This example configures a 14.4

Kbps modem with a top interface speed of 19.2 Kbps using 8-bit, no parity connections. It configures

getty to start the communications rate for a V.32bis connection at 19.2 Kbps, then cycles through

9600 bps, 2400 bps, 1200 bps, 300 bps, and back to 19.2 Kbps. Communications rate cycling is

implemented with the nx= (next table) capability. Each line uses a tc= (table continuation) entry to

pick up the rest of the settings for a particular data rate.

#

Additions for a V.32bis Modem

#

um|V300|High Speed Modem at 300,8-bit:\

Ê :nx=V19200:tc=std.300:

un|V1200|High Speed Modem at 1200,8-bit:\

Ê :nx=V300:tc=std.1200:

uo|V2400|High Speed Modem at 2400,8-bit:\

Ê :nx=V1200:tc=std.2400:

up|V9600|High Speed Modem at 9600,8-bit:\

Ê :nx=V2400:tc=std.9600:

uq|V19200|High Speed Modem at 19200,8-bit:\

Ê :nx=V9600:tc=std.19200:

For a 28.8 Kbps modem, or to take advantage of compression on a 14.4 Kbps modem, use a higher

communications rate, as seen in this example:

652

#

Additions for a V.32bis or V.34 Modem

Starting at 57.6 Kbps

#

vm|VH300|Very High Speed Modem at 300,8-bit:\

Ê :nx=VH57600:tc=std.300:

vn|VH1200|Very High Speed Modem at 1200,8-bit:\

Ê :nx=VH300:tc=std.1200:

vo|VH2400|Very High Speed Modem at 2400,8-bit:\

Ê :nx=VH1200:tc=std.2400:

vp|VH9600|Very High Speed Modem at 9600,8-bit:\

Ê :nx=VH2400:tc=std.9600:

vq|VH57600|Very High Speed Modem at 57600,8-bit:\

Ê :nx=VH9600:tc=std.57600:

For a slow CPU or a heavily loaded system without 16550A-based serial ports, this configuration

may produce sio "silo" errors at 57.6 Kbps.

The configuration of /etc/ttys is similar to Configuring Terminal Entries , but a different argument is

passed to getty and dialup is used for the terminal type. Replace xxx with the process init will run

on the device:

ttyu0 "/usr/libexec/getty xxx" dialup on

The dialup terminal type can be changed. For example, setting vt102 as the default terminal type

allows users to use VT102 emulation on their remote systems.

For a locked-speed configuration, specify the speed with a valid type listed in /etc/gettytab . This

example is for a modem whose port speed is locked at 19.2 Kbps:

ttyu0 "/usr/libexec/getty std.19200" dialup on

In a matching-speed configuration, the entry needs to reference the appropriate beginning "auto-

baud" entry in /etc/gettytab . To continue the example for a matching-speed modem that starts at

19.2 Kbps, use this entry:

ttyu0 "/usr/libexec/getty V19200" dialup on

After editing /etc/ttys , wait until the modem is properly configured and connected before signaling

init :

kill -HUP 1

High-speed modems, like V.32, V.32bis, and V.34 modems, use hardware (RTS/CTS) flow control. Use

653

stty to set the hardware flow control flag for the modem port. This example sets the crtscts flag on

COM2 's dial-in and dial-out initialization devices:

stty -f /dev/ttyu1.init crtscts

stty -f /dev/cuau1.init crtscts

27.4.2. Troubleshooting

This section provides a few tips for troubleshooting a dial-up modem that will not connect to a

FreeBSD system.

Hook up the modem to the FreeBSD system and boot the system. If the modem has status indication

lights, watch to see whether the modemÕs DTR indicator lights when the login: prompt appears on

the systemÕs console. If it lights up, that should mean that FreeBSD has started a getty process on

the appropriate communications port and is waiting for the modem to accept a call.

If the DTR indicator does not light, login to the FreeBSD system through the console and type ps ax

to see if FreeBSD is running a getty process on the correct port:

Ê 114 ?? I 0:00.10 /usr/libexec/getty V19200 ttyu0

If the second column contains a d0 instead of a ?? and the modem has not accepted a call yet, this

means that getty has completed its open on the communications port. This could indicate a

problem with the cabling or a misconfigured modem because getty should not be able to open the

communications port until the carrier detect signal has been asserted by the modem.

If no getty processes are waiting to open the port, double-check that the entry for the port is correct

in /etc/ttys . Also, check /var/log/messages to see if there are any log messages from init or getty .

Next, try dialing into the system. Be sure to use 8 bits, no parity, and 1 stop bit on the remote

system. If a prompt does not appear right away, or the prompt shows garbage, try pressing Enter

about once per second. If there is still no login: prompt, try sending a BREAK . When using a high-

speed modem, try dialing again after locking the dialing modemÕs interface speed.

If there is still no login: prompt, check /etc/gettytab again and double-check that:

¥ The initial capability name specified in the entry in /etc/ttys matches the name of a capability in

/etc/gettytab .

¥ Each nx= entry matches another gettytab capability name.

¥ Each tc= entry matches another gettytab capability name.

If the modem on the FreeBSD system will not answer, make sure that the modem is configured to

answer the phone when DTR is asserted. If the modem seems to be configured correctly, verify that

the DTR line is asserted by checking the modemÕs indicator lights.

If it still does not work, try sending an email to the FreeBSD general questions mailing list

describing the modem and the problem.

654

http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions

27.5. Dial-out Service

The following are tips for getting the host to connect over the modem to another computer. This is

appropriate for establishing a terminal session with a remote host.

This kind of connection can be helpful to get a file on the Internet if there are problems using PPP. If

PPP is not working, use the terminal session to FTP the needed file. Then use zmodem to transfer it

to the machine.

27.5.1. Using a Stock Hayes Modem

A generic Hayes dialer is built into tip . Use at=hayes in /etc/remote .

The Hayes driver is not smart enough to recognize some of the advanced features of newer

modems messages like BUSY , NO DIALTONE , or CONNECT 115200 . Turn those messages off when using tip

with ATX0&W .

The dial timeout for tip is 60 seconds. The modem should use something less, or else tip will think

there is a communication problem. Try ATS7=45&W .

27.5.2. Using AT Commands

Create a "direct" entry in /etc/remote . For example, if the modem is hooked up to the first serial

port, /dev/cuau0 , use the following line:

cuau0:dv=/dev/cuau0:br#19200:pa=none

Use the highest bps rate the modem supports in the br capability. Then, type tip cuau0 to connect to

the modem.

Or, use cu as root with the following command:

cu -lline -sspeed

line is the serial port, such as /dev/cuau0 , and speed is the speed, such as 57600 . When finished

entering the AT commands, type ~. to exit.

27.5.3. The @ Sign Does Not Work

The @ sign in the phone number capability tells tip to look in /etc/phones for a phone number. But,

the @ sign is also a special character in capability files like /etc/remote , so it needs to be escaped with

a backslash:

pn=\@

655

27.5.4. Dialing from the Command Line

Put a "generic" entry in /etc/remote . For example:

tip115200|Dial any phone number at 115200 bps:\

Ê :dv=/dev/cuau0:br#115200:at=hayes:pa=none:du:

tip57600|Dial any phone number at 57600 bps:\

Ê :dv=/dev/cuau0:br#57600:at=hayes:pa=none:du:

This should now work:

tip -115200 5551234

Users who prefer cu over tip , can use a generic cu entry:

cu115200|Use cu to dial any number at 115200bps:\

Ê :dv=/dev/cuau1:br#57600:at=hayes:pa=none:du:

and type:

cu 5551234 -s 115200

27.5.5. Setting the bps Rate

Put in an entry for tip1200 or cu1200 , but go ahead and use whatever bps rate is appropriate with

the br capability. tip thinks a good default is 1200 bps which is why it looks for a tip1200 entry. 1200

bps does not have to be used, though.

27.5.6. Accessing a Number of Hosts Through a Terminal Server

Rather than waiting until connected and typing CONNECT host each time, use tip 's cm capability. For

example, these entries in /etc/remote will let you type tip pain or tip muffin to connect to the hosts

pain or muffin , and tip deep13 to connect to the terminal server.

pain|pain.deep13.com|Forrester's machine:\

Ê :cm=CONNECT pain\n:tc=deep13:

muffin|muffin.deep13.com|Frank's machine:\

Ê :cm=CONNECT muffin\n:tc=deep13:

deep13:Gizmonics Institute terminal server:\

Ê :dv=/dev/cuau2:br#38400:at=hayes:du:pa=none:pn=5551234:

27.5.7. Using More Than One Line with tip

This is often a problem where a university has several modem lines and several thousand students

656

trying to use them.

Make an entry in /etc/remote and use @ for the pn capability:

big-university:\

Ê :pn=\@:tc=dialout

dialout:\

Ê :dv=/dev/cuau3:br#9600:at=courier:du:pa=none:

Then, list the phone numbers in /etc/phones :

big-university 5551111

big-university 5551112

big-university 5551113

big-university 5551114

tip will try each number in the listed order, then give up. To keep retrying, run tip in a while loop.

27.5.8. Using the Force Character

Ctrl "+" P is the default "force" character, used to tell tip that the next character is literal data. The

force character can be set to any other character with the ~s escape, which means "set a variable."

Type ~sforce= single-char followed by a newline. single-char is any single character. If single-char is

left out, then the force character is the null character, which is accessed by typing Ctrl "+" 2 or Ctrl

"+" Space . A pretty good value for single-char is Shift "+" Ctrl "+" 6 , which is only used on some terminal

servers.

To change the force character, specify the following in ~/.tiprc :

force=single-char

27.5.9. Upper Case Characters

This happens when Ctrl "+" A is pressed, which is tip 's "raise character", specially designed for people

with broken caps-lock keys. Use ~s to set raisechar to something reasonable. It can be set to be the

same as the force character, if neither feature is used.

Here is a sample ~/.tiprc for Emacs users who need to type Ctrl "+" 2 and Ctrl "+" A :

force=^^

raisechar=^^

The ^^ is Shift "+" Ctrl "+" 6 .

657

27.5.10. File Transfers with tip

When talking to another UNIX¨-like operating system, files can be sent and received using ~p (put)

and ~t (take). These commands run cat and echo on the remote system to accept and send files. The

syntax is: ~p local-file [remote-file] ~t remote-file [local-file]

There is no error checking, so another protocol, like zmodem, should probably be used.

27.5.11. Using zmodem with tip ?

To receive files, start the sending program on the remote end. Then, type ~C rz to begin receiving

them locally.

To send files, start the receiving program on the remote end. Then, type ~C sz files to send them to

the remote system.

27.6. Setting Up the Serial Console

FreeBSD has the ability to boot a system with a dumb terminal on a serial port as a console. This

configuration is useful for system administrators who wish to install FreeBSD on machines that

have no keyboard or monitor attached, and developers who want to debug the kernel or device

drivers.

As described in crossref:boot[boot,The FreeBSD Booting Process], FreeBSD employs a three stage

bootstrap. The first two stages are in the boot block code which is stored at the beginning of the

FreeBSD slice on the boot disk. The boot block then loads and runs the boot loader as the third stage

code.

In order to set up booting from a serial console, the boot block code, the boot loader code, and the

kernel need to be configured.

27.6.1. Quick Serial Console Configuration

This section provides a fast overview of setting up the serial console. This procedure can be used

when the dumb terminal is connected to COM1 .

Procedure: Configuring a Serial Console on COM1

1. Connect the serial cable to COM1 and the controlling terminal.

2. To configure boot messages to display on the serial console, issue the following command as the

superuser:

echo 'console="comconsole"' >> /boot/loader.conf

3. Edit /etc/ttys and change off to on and dialup to vt100 for the ttyu0 entry. Otherwise, a password

will not be required to connect via the serial console, resulting in a potential security hole.

4. Reboot the system to see if the changes took effect.

658

If a different configuration is required, see the next section for a more in-depth configuration

explanation.

27.6.2. In-Depth Serial Console Configuration

This section provides a more detailed explanation of the steps needed to setup a serial console in

FreeBSD.

Procedure: Configuring a Serial Console

1. Prepare a serial cable.

Use either a null-modem cable or a standard serial cable and a null-modem adapter. See Serial

Cables and Ports for a discussion on serial cables.

2. Unplug the keyboard.

Many systems probe for the keyboard during the Power-On Self-Test (POST) and will generate

an error if the keyboard is not detected. Some machines will refuse to boot until the keyboard is

plugged in.

If the computer complains about the error, but boots anyway, no further configuration is

needed.

If the computer refuses to boot without a keyboard attached, configure the BIOS so that it

ignores this error. Consult the motherboardÕs manual for details on how to do this.

!

Try setting the keyboard to "Not installed" in the BIOS. This setting tells the

BIOS not to probe for a keyboard at power-on so it should not complain if the

keyboard is absent. If that option is not present in the BIOS, look for an "Halt

on Error" option instead. Setting this to "All but Keyboard" or to "No Errors"

will have the same effect.

If the system has a PS/2¨ mouse, unplug it as well. PS/2¨ mice share some hardware with the

keyboard and leaving the mouse plugged in can fool the keyboard probe into thinking the

keyboard is still there.

!

While most systems will boot without a keyboard, quite a few will not boot

without a graphics adapter. Some systems can be configured to boot with no

graphics adapter by changing the "graphics adapter" setting in the BIOS

configuration to "Not installed". Other systems do not support this option and

will refuse to boot if there is no display hardware in the system. With these

machines, leave some kind of graphics card plugged in, even if it is just a junky

mono board. A monitor does not need to be attached.

3. Plug a dumb terminal, an old computer with a modem program, or the serial port on another

UNIX¨ box into the serial port.

4. Add the appropriate hint.sio.* entries to /boot/device.hints for the serial port. Some multi-port

cards also require kernel configuration options. Refer to man:sio[4] for the required options

and device hints for each supported serial port.

659

5. Create boot.config in the root directory of the a partition on the boot drive.

This file instructs the boot block code how to boot the system. In order to activate the serial

console, one or more of the following options are needed. When using multiple options, include

them all on the same line:

-h

Toggles between the internal and serial consoles. Use this to switch console devices. For

instance, to boot from the internal (video) console, use -h to direct the boot loader and the

kernel to use the serial port as its console device. Alternatively, to boot from the serial port,

use -h to tell the boot loader and the kernel to use the video display as the console instead.

-D

Toggles between the single and dual console configurations. In the single configuration, the

console will be either the internal console (video display) or the serial port, depending on the

state of -h . In the dual console configuration, both the video display and the serial port will

become the console at the same time, regardless of the state of -h . However, the dual console

configuration takes effect only while the boot block is running. Once the boot loader gets

control, the console specified by -h becomes the only console.

-P

Makes the boot block probe the keyboard. If no keyboard is found, the -D and -h options are

automatically set.

!

Due to space constraints in the current version of the boot blocks, -P is

capable of detecting extended keyboards only. Keyboards with less than 101

keys and without F11 and F12 keys may not be detected. Keyboards on some

laptops may not be properly found because of this limitation. If this is the

case, do not use -P .

Use either -P to select the console automatically or -h to activate the serial console. Refer to

man:boot[8] and man:boot.config[5] for more details.

The options, except for -P , are passed to the boot loader. The boot loader will determine

whether the internal video or the serial port should become the console by examining the

state of -h . This means that if -D is specified but -h is not specified in /boot.config , the serial

port can be used as the console only during the boot block as the boot loader will use the

internal video display as the console.

6. Boot the machine.

When FreeBSD starts, the boot blocks echo the contents of /boot.config to the console. For

example:

/boot.config: -P

Keyboard: no

The second line appears only if -P is in /boot.config and indicates the presence or absence of the

660

keyboard. These messages go to either the serial or internal console, or both, depending on the

option in /boot.config :

Options Message goes to

none internal console

-h

serial console

-D

serial and internal consoles

-Dh

serial and internal consoles

-P , keyboard present internal console

-P , keyboard absent serial console

After the message, there will be a small pause before the boot blocks continue loading the boot

loader and before any further messages are printed to the console. Under normal

circumstances, there is no need to interrupt the boot blocks, but one can do so in order to make

sure things are set up correctly.

Press any key, other than Enter , at the console to interrupt the boot process. The boot blocks will

then prompt for further action:

>> FreeBSD/i386 BOOT

Default: 0:ad(0,a)/boot/loader

boot:

Verify that the above message appears on either the serial or internal console, or both,

according to the options in /boot.config . If the message appears in the correct console, press

Enter to continue the boot process.

If there is no prompt on the serial terminal, something is wrong with the settings. Enter -h then

Enter or Return to tell the boot block (and then the boot loader and the kernel) to choose the

serial port for the console. Once the system is up, go back and check what went wrong.

During the third stage of the boot process, one can still switch between the internal console and the

serial console by setting appropriate environment variables in the boot loader. See man:loader[8]

for more information.

661

!

This line in /boot/loader.conf or /boot/loader.conf.local configures the boot loader

and the kernel to send their boot messages to the serial console, regardless of the

options in /boot.config :

console="comconsole"

That line should be the first line of /boot/loader.conf so that boot messages are

displayed on the serial console as early as possible.

If that line does not exist, or if it is set to console="vidconsole" , the boot loader and

the kernel will use whichever console is indicated by -h in the boot block. See

man:loader.conf[5] for more information.

At the moment, the boot loader has no option equivalent to -P in the boot block,

and there is no provision to automatically select the internal console and the serial

console based on the presence of the keyboard.

!

While it is not required, it is possible to provide a login prompt over the serial line.

To configure this, edit the entry for the serial port in /etc/ttys using the instructions

in Terminal Configuration . If the speed of the serial port has been changed, change

std.9600 to match the new setting.

27.6.3. Setting a Faster Serial Port Speed

By default, the serial port settings are 9600 baud, 8 bits, no parity, and 1 stop bit. To change the

default console speed, use one of the following options:

¥ Edit /etc/make.conf and set BOOT_COMCONSOLE_SPEED to the new console speed. Then, recompile

and install the boot blocks and the boot loader:

cd /sys/boot

make clean

make

make install

If the serial console is configured in some other way than by booting with -h , or if the serial

console used by the kernel is different from the one used by the boot blocks, add the following

option, with the desired speed, to a custom kernel configuration file and compile a new kernel:

options CONSPEED=19200

¥ Add the -S 19200 boot option to /boot.config , replacing 19200 with the speed to use.

¥ Add the following options to /boot/loader.conf . Replace 115200 with the speed to use.

662

boot_multicons="YES"

boot_serial="YES"

comconsole_speed="115200"

console="comconsole,vidconsole"

27.6.4. Entering the DDB Debugger from the Serial Line

To configure the ability to drop into the kernel debugger from the serial console, add the following

options to a custom kernel configuration file and compile the kernel using the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]. Note that while this is useful

for remote diagnostics, it is also dangerous if a spurious BREAK is generated on the serial port.

Refer to man:ddb[4] and man:ddb[8] for more information about the kernel debugger.

options BREAK_TO_DEBUGGER

options DDB

663

Chapter 28. PPP

28.1. Synopsis

FreeBSD supports the Point-to-Point (PPP) protocol which can be used to establish a network or

Internet connection using a dial-up modem. This chapter describes how to configure modem-based

communication services in FreeBSD.

After reading this chapter, you will know:

¥ How to configure, use, and troubleshoot a PPP connection.

¥ How to set up PPP over Ethernet (PPPoE).

¥ How to set up PPP over ATM (PPPoA).

Before reading this chapter, you should:

¥ Be familiar with basic network terminology.

¥ Understand the basics and purpose of a dial-up connection and PPP.

28.2. Configuring PPP

FreeBSD provides built-in support for managing dial-up PPP connections using man:ppp[8]. The

default FreeBSD kernel provides support for tun which is used to interact with a modem hardware.

Configuration is performed by editing at least one configuration file, and configuration files

containing examples are provided. Finally, ppp is used to start and manage connections.

In order to use a PPP connection, the following items are needed:

¥ A dial-up account with an Internet Service Provider (ISP).

¥ A dial-up modem.

¥ The dial-up number for the ISP.

¥ The login name and password assigned by the ISP.

¥ The IP address of one or more DNS servers. Normally, the ISP provides these addresses. If it did

not, FreeBSD can be configured to use DNS negotiation.

If any of the required information is missing, contact the ISP.

The following information may be supplied by the ISP, but is not necessary:

¥ The IP address of the default gateway. If this information is unknown, the ISP will automatically

provide the correct value during connection setup. When configuring PPP on FreeBSD, this

address is referred to as HISADDR .

¥ The subnet mask. If the ISP has not provided one, 255.255.255.255 will be used in the

man:ppp[8] configuration file. *

664

If the ISP has assigned a static IP address and hostname, it should be input into the

configuration file. Otherwise, this information will be automatically provided during

connection setup.

The rest of this section demonstrates how to configure FreeBSD for common PPP connection

scenarios. The required configuration file is /etc/ppp/ppp.conf and additional files and examples are

available in /usr/shared/examples/ppp/ .

!

Throughout this section, many of the file examples display line numbers. These

line numbers have been added to make it easier to follow the discussion and are

not meant to be placed in the actual file.

When editing a configuration file, proper indentation is important. Lines that end

in a : start in the first column (beginning of the line) while all other lines should be

indented as shown using spaces or tabs.

28.2.1. Basic Configuration

In order to configure a PPP connection, first edit /etc/ppp/ppp.conf with the dial-in information for

the ISP. This file is described as follows:

1 default:

2 set log Phase Chat LCP IPCP CCP tun command

3 ident user-ppp VERSION

4 set device /dev/cuau0

5 set speed 115200

6 set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \

7 \"\" AT OK-AT-OK ATE1Q0 OK \\dATDT\\T TIMEOUT 40 CONNECT"

8 set timeout 180

9 enable dns

10

11 provider:

12 set phone "(123) 456 7890"

13 set authname foo

14 set authkey bar

15 set timeout 300

16 set ifaddr x.x.x.x/0 y.y.y.y/0 255.255.255.255 0.0.0.0

17 add default HISADDR

Line 1

Identifies the default entry. Commands in this entry (lines 2 through 9) are executed

automatically when ppp is run.

Line 2

Enables verbose logging parameters for testing the connection. Once the configuration is

working satisfactorily, this line should be reduced to:

665

set log phase tun

Line 3

Displays the version of man:ppp[8] to the PPP software running on the other side of the

connection.

Line 4

Identifies the device to which the modem is connected, where COM1 is /dev/cuau0 and COM2 is

/dev/cuau1 .

Line 5

Sets the connection speed. If 115200 does not work on an older modem, try 38400 instead.

Lines 6 & 7

The dial string written as an expect-send syntax. Refer to man:chat[8] for more information.

Note that this command continues onto the next line for readability. Any command in ppp.conf

may do this if the last character on the line is \ .

Line 8

Sets the idle timeout for the link in seconds.

Line 9

Instructs the peer to confirm the DNS settings. If the local network is running its own DNS

server, this line should be commented out, by adding a # at the beginning of the line, or

removed.

Line 10

A blank line for readability. Blank lines are ignored by man:ppp[8].

Line 11

Identifies an entry called provider . This could be changed to the name of the ISP so that load ISP

can be used to start the connection.

Line 12

Use the phone number for the ISP. Multiple phone numbers may be specified using the colon (:)

or pipe character (|) as a separator. To rotate through the numbers, use a colon. To always

attempt to dial the first number first and only use the other numbers if the first number fails,

use the pipe character. Always enclose the entire set of phone numbers between quotation

marks (") to prevent dialing failures.

Lines 13 & 14

Use the user name and password for the ISP.

Line 15

Sets the default idle timeout in seconds for the connection. In this example, the connection will

be closed automatically after 300 seconds of inactivity. To prevent a timeout, set this value to

666

zero.

Line 16

Sets the interface addresses. The values used depend upon whether a static IP address has been

obtained from the ISP or if it instead negotiates a dynamic IP address during connection.

If the ISP has allocated a static IP address and default gateway, replace x.x.x.x with the static IP

address and replace y.y.y.y with the IP address of the default gateway. If the ISP has only

provided a static IP address without a gateway address, replace y.y.y.y with 10.0.0.2/0 .

If the IP address changes whenever a connection is made, change this line to the following value.

This tells man:ppp[8] to use the IP Configuration Protocol (IPCP) to negotiate a dynamic IP

address:

set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.255 0.0.0.0

Line 17

Keep this line as-is as it adds a default route to the gateway. The HISADDR will automatically be

replaced with the gateway address specified on line 16. It is important that this line appears

after line 16.

Depending upon whether man:ppp[8] is started manually or automatically, a /etc/ppp/ppp.linkup

may also need to be created which contains the following lines. This file is required when running

ppp in -auto mode. This file is used after the connection has been established. At this point, the IP

address will have been assigned and it is now be possible to add the routing table entries. When

creating this file, make sure that provider matches the value demonstrated in line 11 of ppp.conf .

provider:

Ê add default HISADDR

This file is also needed when the default gateway address is "guessed" in a static IP address

configuration. In this case, remove line 17 from ppp.conf and create /etc/ppp/ppp.linkup with the

above two lines. More examples for this file can be found in /usr/shared/examples/ppp/ .

By default, ppp must be run as root . To change this default, add the account of the user who should

run ppp to the network group in /etc/group .

Then, give the user access to one or more entries in /etc/ppp/ppp.conf with allow . For example, to

give fred and mary permission to only the provider: entry, add this line to the provider: section:

allow users fred mary

To give the specified users access to all entries, put that line in the default section instead.

667

28.2.2. Advanced Configuration

It is possible to configure PPP to supply DNS and NetBIOS nameserver addresses on demand.

To enable these extensions with PPP version 1.x, the following lines might be added to the relevant

section of /etc/ppp/ppp.conf .

enable msext

set ns 203.14.100.1 203.14.100.2

set nbns 203.14.100.5

And for PPP version 2 and above:

accept dns

set dns 203.14.100.1 203.14.100.2

set nbns 203.14.100.5

This will tell the clients the primary and secondary name server addresses, and a NetBIOS

nameserver host.

In version 2 and above, if the set dns line is omitted, PPP will use the values found in

/etc/resolv.conf .

28.2.2.1. PAP and CHAP Authentication

Some ISPs set their system up so that the authentication part of the connection is done using either

of the PAP or CHAP authentication mechanisms. If this is the case, the ISP will not give a login:

prompt at connection, but will start talking PPP immediately.

PAP is less secure than CHAP, but security is not normally an issue here as passwords, although

being sent as plain text with PAP, are being transmitted down a serial line only. There is not much

room for crackers to "eavesdrop".

The following alterations must be made:

13 set authname MyUserName

14 set authkey MyPassword

15 set login

Line 13

This line specifies the PAP/CHAP user name. Insert the correct value for MyUserName .

Line 14

This line specifies the PAP/CHAP password. Insert the correct value for MyPassword . You may

want to add an additional line, such as:

668

16 accept PAP

or

16 accept CHAP

to make it obvious that this is the intention, but PAP and CHAP are both accepted by default.

Line 15

The ISP will not normally require a login to the server when using PAP or CHAP. Therefore,

disable the "set login" string.

28.2.2.2. Using PPP Network Address Translation Capability

PPP has ability to use internal NAT without kernel diverting capabilities. This functionality may be

enabled by the following line in /etc/ppp/ppp.conf :

nat enable yes

Alternatively, NAT may be enabled by command-line option -nat . There is also /etc/rc.conf knob

named ppp_nat , which is enabled by default.

When using this feature, it may be useful to include the following /etc/ppp/ppp.conf options to

enable incoming connections forwarding:

nat port tcp 10.0.0.2:ftp ftp

nat port tcp 10.0.0.2:http http

or do not trust the outside at all

nat deny_incoming yes

28.2.3. Final System Configuration

While ppp is now configured, some edits still need to be made to /etc/rc.conf .

Working from the top down in this file, make sure the hostname= line is set:

hostname="foo.example.com"

If the ISP has supplied a static IP address and name, use this name as the host name.

Look for the network_interfaces variable. To configure the system to dial the ISP on demand, make

669

sure the tun0 device is added to the list, otherwise remove it.

network_interfaces="lo0 tun0"

ifconfig_tun0=

!

The ifconfig_tun0 variable should be empty, and a file called /etc/start_if.tun0

should be created. This file should contain the line:

ppp -auto mysystem

This script is executed at network configuration time, starting the ppp daemon in

automatic mode. If this machine acts as a gateway, consider including -alias . Refer

to the manual page for further details.

Make sure that the router program is set to NO with the following line in /etc/rc.conf :

router_enable="NO"

It is important that the routed daemon is not started, as routed tends to delete the default routing

table entries created by ppp .

It is probably a good idea to ensure that the sendmail_flags line does not include the -q option,

otherwise sendmail will attempt to do a network lookup every now and then, possibly causing your

machine to dial out. You may try:

sendmail_flags="-bd"

The downside is that sendmail is forced to re-examine the mail queue whenever the ppp link. To

automate this, include !bg in ppp.linkup :

1 provider:

2 delete ALL

3 add 0 0 HISADDR

4 !bg sendmail -bd -q30m

An alternative is to set up a "dfilter" to block SMTP traffic. Refer to the sample files for further

details.

28.2.4. Using ppp

All that is left is to reboot the machine. After rebooting, either type:

ppp

670

and then dial provider to start the PPP session, or, to configure ppp to establish sessions

automatically when there is outbound traffic and start_if.tun0 does not exist, type:

ppp -auto provider

It is possible to talk to the ppp program while it is running in the background, but only if a suitable

diagnostic port has been set up. To do this, add the following line to the configuration:

set server /var/run/ppp-tun%d DiagnosticPassword 0177

This will tell PPP to listen to the specified UNIX¨ domain socket, asking clients for the specified

password before allowing access. The %d in the name is replaced with the tun device number that is

in use.

Once a socket has been set up, the man:pppctl[8] program may be used in scripts that wish to

manipulate the running program.

28.2.5. Configuring Dial-in Services

crossref:serialcomms[dialup,ÒDial-in ServiceÓ] provides a good description on enabling dial-up

services using man:getty[8].

An alternative to getty is package:comms/mgetty+sendfax[] port), a smarter version of getty

designed with dial-up lines in mind.

The advantages of using mgetty is that it actively talks to modems, meaning if port is turned off in

/etc/ttys then the modem will not answer the phone.

Later versions of mgetty (from 0.99beta onwards) also support the automatic detection of PPP

streams, allowing clients scriptless access to the server.

Refer to http://mgetty.greenie.net/doc/mgetty_toc.html for more information on mgetty .

By default the package:comms/mgetty+sendfax[] port comes with the AUTO_PPP option enabled

allowing mgetty to detect the LCP phase of PPP connections and automatically spawn off a ppp shell.

However, since the default login/password sequence does not occur it is necessary to authenticate

users using either PAP or CHAP.

This section assumes the user has successfully compiled, and installed the

package:comms/mgetty+sendfax[] port on his system.

Ensure that /usr/local/etc/mgetty+sendfax/login.config has the following:

/AutoPPP/ - - /etc/ppp/ppp-pap-dialup

This tells mgetty to run ppp-pap-dialup for detected PPP connections.

671

http://mgetty.greenie.net/doc/mgetty_toc.html

Create an executable file called /etc/ppp/ppp-pap-dialup containing the following:

#!/bin/sh

exec /usr/sbin/ppp -direct pap$IDENT

For each dial-up line enabled in /etc/ttys , create a corresponding entry in /etc/ppp/ppp.conf . This

will happily co-exist with the definitions we created above.

pap:

Ê enable pap

Ê set ifaddr 203.14.100.1 203.14.100.20-203.14.100.40

Ê enable proxy

Each user logging in with this method will need to have a username/password in

/etc/ppp/ppp.secret , or alternatively add the following option to authenticate users via PAP from

/etc/passwd .

enable passwdauth

To assign some users a static IP number, specify the number as the third argument in

/etc/ppp/ppp.secret . See /usr/shared/examples/ppp/ppp.secret.sample for examples.

28.3. Troubleshooting PPP Connections

This section covers a few issues which may arise when using PPP over a modem connection. Some

ISPs present the ssword prompt while others present password . If the ppp script is not written

accordingly, the login attempt will fail. The most common way to debug ppp connections is by

connecting manually as described in this section.

28.3.1. Check the Device Nodes

When using a custom kernel, make sure to include the following line in the kernel configuration

file:

device uart

The uart device is already included in the GENERIC kernel, so no additional steps are necessary in

this case. Just check the dmesg output for the modem device with:

dmesg | grep uart

This should display some pertinent output about the uart devices. These are the COM ports we

need. If the modem acts like a standard serial port, it should be listed on uart1 , or COM2 . If so, a

672

kernel rebuild is not required. When matching up, if the modem is on uart1 , the modem device

would be /dev/cuau1 .

28.3.2. Connecting Manually

Connecting to the Internet by manually controlling ppp is quick, easy, and a great way to debug a

connection or just get information on how the ISP treats ppp client connections. Lets start PPP from

the command line. Note that in all of our examples we will use example as the hostname of the

machine running PPP. To start ppp :

ppp

ppp ON example> set device /dev/cuau1

This second command sets the modem device to cuau1 .

ppp ON example> set speed 115200

This sets the connection speed to 115,200 kbps.

ppp ON example> enable dns

This tells ppp to configure the resolver and add the nameserver lines to /etc/resolv.conf . If ppp

cannot determine the hostname, it can manually be set later.

ppp ON example> term

This switches to "terminal" mode in order to manually control the modem.

deflink: Entering terminal mode on /dev/cuau1

type '~h' for help

at

OK

atdt123456789

Use at to initialize the modem, then use atdt and the number for the ISP to begin the dial in

process.

CONNECT

673

Confirmation of the connection, if we are going to have any connection problems, unrelated to

hardware, here is where we will attempt to resolve them.

ISP Login:myusername

At this prompt, return the prompt with the username that was provided by the ISP.

ISP Pass:mypassword

At this prompt, reply with the password that was provided by the ISP. Just like logging into FreeBSD,

the password will not echo.

Shell or PPP:ppp

Depending on the ISP, this prompt might not appear. If it does, it is asking whether to use a shell on

the provider or to start ppp . In this example, ppp was selected in order to establish an Internet

connection.

Ppp ON example>

Notice that in this example the first p has been capitalized. This shows that we have successfully

connected to the ISP.

Ppp ON example>

We have successfully authenticated with our ISP and are waiting for the assigned IP address.

PPP ON example>

We have made an agreement on an IP address and successfully completed our connection.

PPP ON example>add default HISADDR

Here we add our default route, we need to do this before we can talk to the outside world as

currently the only established connection is with the peer. If this fails due to existing routes, put a

bang character ! in front of the add . Alternatively, set this before making the actual connection and

it will negotiate a new route accordingly.

If everything went good we should now have an active connection to the Internet, which could be

thrown into the background using CTRL "+" z If PPP returns to ppp then the connection has bee lost.

This is good to know because it shows the connection status. Capital PÕs represent a connection to

the ISP and lowercase pÕs show that the connection has been lost.

674

28.3.3. Debugging

If a connection cannot be established, turn hardware flow CTS/RTS to off using set ctsrts off . This

is mainly the case when connected to some PPP-capable terminal servers, where PPP hangs when it

tries to write data to the communication link, and waits for a Clear To Send (CTS) signal which may

never come. When using this option, include set accmap as it may be required to defeat hardware

dependent on passing certain characters from end to end, most of the time XON/XOFF. Refer to

man:ppp[8] for more information on this option and how it is used.

An older modem may need set parity even . Parity is set at none be default, but is used for error

checking with a large increase in traffic, on older modems.

PPP may not return to the command mode, which is usually a negotiation error where the ISP is

waiting for negotiating to begin. At this point, using ~p will force ppp to start sending the

configuration information.

If a login prompt never appears, PAP or CHAP authentication is most likely required. To use PAP or

CHAP, add the following options to PPP before going into terminal mode:

ppp ON example> set authname myusername

Where myusername should be replaced with the username that was assigned by the ISP.

ppp ON example> set authkey mypassword

Where mypassword should be replaced with the password that was assigned by the ISP.

If a connection is established, but cannot seem to find any domain name, try to man:ping[8] an IP

address. If there is 100 percent (100%) packet loss, it is likely that a default route was not assigned.

Double check that add default HISADDR was set during the connection. If a connection can be made

to a remote IP address, it is possible that a resolver address has not been added to /etc/resolv.conf .

This file should look like:

domain example.com

nameserver x.x.x.x

nameserver y.y.y.y

Where x.x.x.x and y.y.y.y should be replaced with the IP address of the ISPÕs DNS servers.

To configure man:syslog[3] to provide logging for the PPP connection, make sure this line exists in

/etc/syslog.conf :

!ppp

. /var/log/ppp.log

675

28.4. Using PPP over Ethernet (PPPoE)

This section describes how to set up PPP over Ethernet (PPPoE).

Here is an example of a working ppp.conf :

default:

Ê set log Phase tun command # you can add more detailed logging if you wish

Ê set ifaddr 10.0.0.1/0 10.0.0.2/0

name_of_service_provider:

Ê set device PPPoE:xl1 # replace xl1 with your Ethernet device

Ê set authname YOURLOGINNAME

Ê set authkey YOURPASSWORD

Ê set dial

Ê set login

Ê add default HISADDR

As root , run:

ppp -ddial name_of_service_provider

Add the following to /etc/rc.conf :

ppp_enable="YES"

ppp_mode="ddial"

ppp_nat="YES" # if you want to enable nat for your local network, otherwise NO

ppp_profile="name_of_service_provider"

28.4.1. Using a PPPoE Service Tag

Sometimes it will be necessary to use a service tag to establish the connection. Service tags are used

to distinguish between different PPPoE servers attached to a given network.

Any required service tag information should be in the documentation provided by the ISP.

As a last resort, one could try installing the package:net/rr-pppoe[] package or port. Bear in mind

however, this may de-program your modem and render it useless, so think twice before doing it.

Simply install the program shipped with the modem. Then, access the System menu from the

program. The name of the profile should be listed there. It is usually ISP .

The profile name (service tag) will be used in the PPPoE configuration entry in ppp.conf as the

provider part for set device . Refer to man:ppp[8] for full details. It should look like this:

set device PPPoE:xl1:ISP

676

Do not forget to change xl1 to the proper device for the Ethernet card.

Do not forget to change ISP to the profile.

For additional information, refer to Cheaper Broadband with FreeBSD on DSL by Renaud Waldura.

28.4.2. PPPoE with a 3Com¨ HomeConnectª ADSL Modem Dual Link

This modem does not follow the PPPoE specification defined in RFC 2516 .

In order to make FreeBSD capable of communicating with this device, a sysctl must be set. This can

be done automatically at boot time by updating /etc/sysctl.conf :

net.graph.nonstandard_pppoe=1

or can be done immediately with the command:

sysctl net.graph.nonstandard_pppoe=1

Unfortunately, because this is a system-wide setting, it is not possible to talk to a normal PPPoE

client or server and a 3Com¨ HomeConnectª ADSL Modem at the same time.

28.5. Using PPP over ATM (PPPoA)

The following describes how to set up PPP over ATM (PPPoA). PPPoA is a popular choice among

European DSL providers.

28.5.1. Using mpd

The mpd application can be used to connect to a variety of services, in particular PPTP services. It

can be installed using the package:net/mpd5[] package or port. Many ADSL modems require that a

PPTP tunnel is created between the modem and computer.

Once installed, configure mpd to suit the providerÕs settings. The port places a set of sample

configuration files which are well documented in /usr/local/etc/mpd/ . A complete guide to configure

mpd is available in HTML format in /usr/ports/shared/doc/mpd/ . Here is a sample configuration for

connecting to an ADSL service with mpd. The configuration is spread over two files, first the

mpd.conf :

!

This example mpd.conf only works with mpd 4.x.

677

http://renaud.waldura.com/doc/freebsd/pppoe/
http://www.faqs.org/rfcs/rfc2516.html

default:

Ê load adsl

adsl:

Ê new -i ng0 adsl adsl

Ê set bundle authname username !

Ê set bundle password password "

Ê set bundle disable multilink

Ê set link no pap acfcomp protocomp

Ê set link disable chap

Ê set link accept chap

Ê set link keep-alive 30 10

Ê set ipcp no vjcomp

Ê set ipcp ranges 0.0.0.0/0 0.0.0.0/0

Ê set iface route default

Ê set iface disable on-demand

Ê set iface enable proxy-arp

Ê set iface idle 0

Ê open

!

The username used to authenticate with your ISP.

"

The password used to authenticate with your ISP.

Information about the link, or links, to establish is found in mpd.links . An example mpd.links to

accompany the above example is given beneath:

adsl:

Ê set link type pptp

Ê set pptp mode active

Ê set pptp enable originate outcall

Ê set pptp self 10.0.0.1 !

Ê set pptp peer 10.0.0.138 "

!

The IP address of FreeBSD computer running mpd.

"

The IP address of the ADSL modem. The Alcatel SpeedTouchª Home defaults to 10.0.0.138 .

It is possible to initialize the connection easily by issuing the following command as root :

mpd -b adsl

To view the status of the connection:

678

% ifconfig ng0

ng0: flags=88d1<UP,POINTOPOINT,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500

Ê inet 216.136.204.117 --> 204.152.186.171 netmask 0xffffffff

Using mpd is the recommended way to connect to an ADSL service with FreeBSD.

28.5.2. Using pptpclient

It is also possible to use FreeBSD to connect to other PPPoA services using package:net/pptpclient[].

To use package:net/pptpclient[] to connect to a DSL service, install the port or package, then edit

/etc/ppp/ppp.conf . An example section of ppp.conf is given below. For further information on

ppp.conf options consult man:ppp[8].

adsl:

Êset log phase chat lcp ipcp ccp tun command

Êset timeout 0

Êenable dns

Êset authname username !

Êset authkey password "

Êset ifaddr 0 0

Êadd default HISADDR

!

The username for the DSL provider.

"

The password for your account.

"

Since the accountÕs password is added to ppp.conf in plain text form, make sure

nobody can read the contents of this file:

chown root:wheel /etc/ppp/ppp.conf

chmod 600 /etc/ppp/ppp.conf

This will open a tunnel for a PPP session to the DSL router. Ethernet DSL modems have a

preconfigured LAN IP address to connect to. In the case of the Alcatel SpeedTouchª Home, this

address is 10.0.0.138 . The routerÕs documentation should list the address the device uses. To open

the tunnel and start a PPP session:

pptp address adsl

!

If an ampersand ("&") is added to the end of this command, pptp will return the

prompt.

A tun virtual tunnel device will be created for interaction between the pptp and ppp processes.

Once the prompt is returned, or the pptp process has confirmed a connection, examine the tunnel:

679

% ifconfig tun0

tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500

Ê inet 216.136.204.21 --> 204.152.186.171 netmask 0xffffff00

Ê Opened by PID 918

If the connection fails, check the configuration of the router, which is usually accessible using a

web browser. Also, examine the output of pptp and the contents of the log file, /var/log/ppp.log for

clues.

680

Chapter 29. Electronic Mail

29.1. Synopsis

"Electronic Mail", better known as email, is one of the most widely used forms of communication

today. This chapter provides a basic introduction to running a mail server on FreeBSD, as well as an

introduction to sending and receiving email using FreeBSD. For more complete coverage of this

subject, refer to the books listed in crossref:bibliography[bibliography,Bibliography].

After reading this chapter, you will know:

¥ Which software components are involved in sending and receiving electronic mail.

¥ Where basic Sendmail configuration files are located in FreeBSD.

¥ The difference between remote and local mailboxes.

¥ How to block spammers from illegally using a mail server as a relay.

¥ How to install and configure an alternate Mail Transfer Agent, replacing Sendmail.

¥ How to troubleshoot common mail server problems.

¥ How to set up the system to send mail only.

¥ How to use mail with a dialup connection.

¥ How to configure SMTP authentication for added security.

¥ How to install and use a Mail User Agent, such as mutt, to send and receive email.

¥ How to download mail from a remote POP or IMAP server.

¥ How to automatically apply filters and rules to incoming email.

Before reading this chapter, you should:

¥ Properly set up a network connection (crossref:advanced-networking[advanced-

networking,Advanced Networking]).

¥ Properly set up the DNS information for a mail host (crossref:network-servers[network-

servers,Network Servers]).

¥ Know how to install additional third-party software (crossref:ports[ports,Installing

Applications: Packages and Ports]).

29.2. Mail Components

There are five major parts involved in an email exchange: the Mail User Agent (MUA), the Mail

Transfer Agent (MTA), a mail host, a remote or local mailbox, and DNS. This section provides an

overview of these components.

Mail User Agent (MUA)

The Mail User Agent (MUA) is an application which is used to compose, send, and receive emails.

This application can be a command line program, such as the built-in mail utility or a third-party

681

application from the Ports Collection, such as mutt, alpine, or elm. Dozens of graphical programs

are also available in the Ports Collection, including Claws Mail, Evolution, and Thunderbird.

Some organizations provide a web mail program which can be accessed through a web browser.

More information about installing and using a MUA on FreeBSD can be found in Mail User

Agents .

Mail Transfer Agent (MTA)

The Mail Transfer Agent (MTA) is responsible for receiving incoming mail and delivering

outgoing mail. FreeBSD ships with Sendmail as the default MTA, but it also supports numerous

other mail server daemons, including Exim, Postfix, and qmail. Sendmail configuration is

described in Sendmail Configuration Files . If another MTA is installed using the Ports Collection,

refer to its post-installation message for FreeBSD-specific configuration details and the

applicationÕs website for more general configuration instructions.

Mail Host and Mailboxes

The mail host is a server that is responsible for delivering and receiving mail for a host or a

network. The mail host collects all mail sent to the domain and stores it either in the default

mbox or the alternative Maildir format, depending on the configuration. Once mail has been

stored, it may either be read locally using a MUA or remotely accessed and collected using

protocols such as POP or IMAP. If mail is read locally, a POP or IMAP server does not need to be

installed.

To access mailboxes remotely, a POP or IMAP server is required as these protocols allow users to

connect to their mailboxes from remote locations. IMAP offers several advantages over POP.

These include the ability to store a copy of messages on a remote server after they are

downloaded and concurrent updates. IMAP can be useful over low-speed links as it allows users

to fetch the structure of messages without downloading them. It can also perform tasks such as

searching on the server in order to minimize data transfer between clients and servers.

Several POP and IMAP servers are available in the Ports Collection. These include

package:mail/qpopper[], package:mail/imap-uw[], package:mail/courier-imap[], and

package:mail/dovecot2[].

"

It should be noted that both POP and IMAP transmit information, including

username and password credentials, in clear-text. To secure the transmission of

information across these protocols, consider tunneling sessions over man:ssh[1]

(crossref:security[security-ssh-tunneling,"SSH Tunneling"]) or using SSL

(crossref:security[openssl,"OpenSSL"]).

Domain Name System (DNS)

The Domain Name System (DNS) and its daemon named play a large role in the delivery of email.

In order to deliver mail from one site to another, the MTA will look up the remote site in DNS to

determine which host will receive mail for the destination. This process also occurs when mail is

sent from a remote host to the MTA.

In addition to mapping hostnames to IP addresses, DNS is responsible for storing information

specific to mail delivery, known as Mail eXchanger MX records. The MX record specifies which

hosts will receive mail for a particular domain.

682

To view the MX records for a domain, specify the type of record. Refer to man:host[1], for more

details about this command:

% host -t mx FreeBSD.org

FreeBSD.org mail is handled by 10 mx1.FreeBSD.org

Refer to crossref:network-servers[network-dns,"Domain Name System (DNS)"] for more

information about DNS and its configuration.

29.3. Sendmail Configuration Files

Sendmail is the default MTA installed with FreeBSD. It accepts mail from MUAs and delivers it to

the appropriate mail host, as defined by its configuration. Sendmail can also accept network

connections and deliver mail to local mailboxes or to another program.

The configuration files for Sendmail are located in /etc/mail . This section describes these files in

more detail.

/etc/mail/access

This access database file defines which hosts or IP addresses have access to the local mail server

and what kind of access they have. Hosts listed as OK , which is the default option, are allowed to

send mail to this host as long as the mailÕs final destination is the local machine. Hosts listed as

REJECT are rejected for all mail connections. Hosts listed as RELAY are allowed to send mail for any

destination using this mail server. Hosts listed as ERROR will have their mail returned with the

specified mail error. If a host is listed as SKIP , Sendmail will abort the current search for this

entry without accepting or rejecting the mail. Hosts listed as QUARANTINE will have their messages

held and will receive the specified text as the reason for the hold.

Examples of using these options for both IPv4 and IPv6 addresses can be found in the FreeBSD

sample configuration, /etc/mail/access.sample :

$FreeBSD$

#

Mail relay access control list. Default is to reject mail unless the

destination is local, or listed in /etc/mail/local-host-names

#

Examples (commented out for safety)

#From:cyberspammer.com ERROR:"550 We don't accept mail from spammers"

#From:okay.cyberspammer.com OK

#Connect:sendmail.org RELAY

#To:sendmail.org RELAY

#Connect:128.32 RELAY

#Connect:128.32.2 SKIP

#Connect:IPv6:1:2:3:4:5:6:7 RELAY

#Connect:suspicious.example.com QUARANTINE:Mail from suspicious host

#Connect:[127.0.0.3] OK

#Connect:[IPv6:1:2:3:4:5:6:7:8] OK

683

To configure the access database, use the format shown in the sample to make entries in

/etc/mail/access , but do not put a comment symbol (#) in front of the entries. Create an entry for

each host or network whose access should be configured. Mail senders that match the left side of

the table are affected by the action on the right side of the table.

Whenever this file is updated, update its database and restart Sendmail:

makemap hash /etc/mail/access < /etc/mail/access

service sendmail restart

/etc/mail/aliases

This database file contains a list of virtual mailboxes that are expanded to users, files, programs,

or other aliases. Here are a few entries to illustrate the file format:

root: localuser

ftp-bugs: joe,eric,paul

bit.bucket: /dev/null

procmail: "|/usr/local/bin/procmail"

The mailbox name on the left side of the colon is expanded to the target(s) on the right. The first

entry expands the root mailbox to the localuser mailbox, which is then looked up in the

/etc/mail/aliases database. If no match is found, the message is delivered to localuser . The

second entry shows a mail list. Mail to ftp-bugs is expanded to the three local mailboxes joe ,

eric , and paul . A remote mailbox could be specified as user@example.com . The third entry shows

how to write mail to a file, in this case /dev/null . The last entry demonstrates how to send mail to

a program, /usr/local/bin/procmail , through a UNIX¨ pipe. Refer to man:aliases[5] for more

information about the format of this file.

Whenever this file is updated, run newaliases to update and initialize the aliases database.

/etc/mail/sendmail.cf

This is the master configuration file for Sendmail. It controls the overall behavior of Sendmail,

including everything from rewriting email addresses to printing rejection messages to remote

mail servers. Accordingly, this configuration file is quite complex. Fortunately, this file rarely

needs to be changed for standard mail servers.

The master Sendmail configuration file can be built from man:m4[1] macros that define the

features and behavior of Sendmail. Refer to /usr/src/contrib/sendmail/cf/README for some of

the details.

Whenever changes to this file are made, Sendmail needs to be restarted for the changes to take

effect.

/etc/mail/virtusertable

This database file maps mail addresses for virtual domains and users to real mailboxes. These

mailboxes can be local, remote, aliases defined in /etc/mail/aliases , or files. This allows multiple

virtual domains to be hosted on one machine.

684

FreeBSD provides a sample configuration file in /etc/mail/virtusertable.sample to further

demonstrate its format. The following example demonstrates how to create custom entries using

that format:

root@example.com root

postmaster@example.com postmaster@noc.example.net

@example.com joe

This file is processed in a first match order. When an email address matches the address on the

left, it is mapped to the local mailbox listed on the right. The format of the first entry in this

example maps a specific email address to a local mailbox, whereas the format of the second

entry maps a specific email address to a remote mailbox. Finally, any email address from

example.com which has not matched any of the previous entries will match the last mapping and

be sent to the local mailbox joe . When creating custom entries, use this format and add them to

/etc/mail/virtusertable . Whenever this file is edited, update its database and restart Sendmail:

makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable

service sendmail restart

/etc/mail/relay-domains

In a default FreeBSD installation, Sendmail is configured to only send mail from the host it is

running on. For example, if a POP server is available, users will be able to check mail from

remote locations but they will not be able to send outgoing emails from outside locations.

Typically, a few moments after the attempt, an email will be sent from MAILER-DAEMON with a 5.7

Relaying Denied message.

The most straightforward solution is to add the ISPÕs FQDN to /etc/mail/relay-domains . If

multiple addresses are needed, add them one per line:

your.isp.example.com

other.isp.example.net

users-isp.example.org

www.example.org

After creating or editing this file, restart Sendmail with service sendmail restart .

Now any mail sent through the system by any host in this list, provided the user has an account

on the system, will succeed. This allows users to send mail from the system remotely without

opening the system up to relaying SPAM from the Internet.

29.4. Changing the Mail Transfer Agent

FreeBSD comes with Sendmail already installed as the MTA which is in charge of outgoing and

incoming mail. However, the system administrator can change the systemÕs MTA. A wide choice of

alternative MTAs is available from the mail category of the FreeBSD Ports Collection.

685

Once a new MTA is installed, configure and test the new software before replacing Sendmail. Refer

to the documentation of the new MTA for information on how to configure the software.

Once the new MTA is working, use the instructions in this section to disable Sendmail and configure

FreeBSD to use the replacement MTA.

29.4.1. Disable Sendmail

"

If SendmailÕs outgoing mail service is disabled, it is important that it is replaced

with an alternative mail delivery system. Otherwise, system functions such as

man:periodic[8] will be unable to deliver their results by email. Many parts of the

system expect a functional MTA. If applications continue to use SendmailÕs

binaries to try to send email after they are disabled, mail could go into an inactive

Sendmail queue and never be delivered.

In order to completely disable Sendmail, add or edit the following lines in /etc/rc.conf :

sendmail_enable="NO"

sendmail_submit_enable="NO"

sendmail_outbound_enable="NO"

sendmail_msp_queue_enable="NO"

To only disable SendmailÕs incoming mail service, use only this entry in /etc/rc.conf :

sendmail_enable="NO"

More information on SendmailÕs startup options is available in man:rc.sendmail[8].

29.4.2. Replace the Default MTA

When a new MTA is installed using the Ports Collection, its startup script is also installed and

startup instructions are mentioned in its package message. Before starting the new MTA, stop the

running Sendmail processes. This example stops all of these services, then starts the Postfix service:

service sendmail stop

service postfix start

To start the replacement MTA at system boot, add its configuration line to /etc/rc.conf . This entry

enables the Postfix MTA:

postfix_enable="YES"

Some extra configuration is needed as Sendmail is so ubiquitous that some software assumes it is

already installed and configured. Check /etc/periodic.conf and make sure that these values are set

to NO . If this file does not exist, create it with these entries:

686

daily_clean_hoststat_enable="NO"

daily_status_mail_rejects_enable="NO"

daily_status_include_submit_mailq="NO"

daily_submit_queuerun="NO"

Some alternative MTAs provide their own compatible implementations of the Sendmail command-

line interface in order to facilitate using them as drop-in replacements for Sendmail. However,

some MUAs may try to execute standard Sendmail binaries instead of the new MTAÕs binaries.

FreeBSD uses /etc/mail/mailer.conf to map the expected Sendmail binaries to the location of the

new binaries. More information about this mapping can be found in man:mailwrapper[8].

The default /etc/mail/mailer.conf looks like this:

$FreeBSD$

#

Execute the "real" sendmail program, named /usr/libexec/sendmail/sendmail

#

sendmail /usr/libexec/sendmail/sendmail

send-mail /usr/libexec/sendmail/sendmail

mailq /usr/libexec/sendmail/sendmail

newaliases /usr/libexec/sendmail/sendmail

hoststat /usr/libexec/sendmail/sendmail

purgestat /usr/libexec/sendmail/sendmail

When any of the commands listed on the left are run, the system actually executes the associated

command shown on the right. This system makes it easy to change what binaries are executed

when these default binaries are invoked.

Some MTAs, when installed using the Ports Collection, will prompt to update this file for the new

binaries. For example, Postfix will update the file like this:

#

Execute the Postfix sendmail program, named /usr/local/sbin/sendmail

#

sendmail /usr/local/sbin/sendmail

send-mail /usr/local/sbin/sendmail

mailq /usr/local/sbin/sendmail

newaliases /usr/local/sbin/sendmail

If the installation of the MTA does not automatically update /etc/mail/mailer.conf , edit this file in a

text editor so that it points to the new binaries. This example points to the binaries installed by

package:mail/ssmtp[]:

687

sendmail /usr/local/sbin/ssmtp

send-mail /usr/local/sbin/ssmtp

mailq /usr/local/sbin/ssmtp

newaliases /usr/local/sbin/ssmtp

hoststat /usr/bin/true

purgestat /usr/bin/true

Once everything is configured, it is recommended to reboot the system. Rebooting provides the

opportunity to ensure that the system is correctly configured to start the new MTA automatically on

boot.

29.5. Troubleshooting

29.5.1. Why do I have to use the FQDN for hosts on my site?

The host may actually be in a different domain. For example, in order for a host in foo.bar.edu to

reach a host called mumble in the bar.edu domain, refer to it by the Fully-Qualified Domain Name

FQDN, mumble.bar.edu , instead of just mumble .

This is because the version of BIND which ships with FreeBSD no longer provides default

abbreviations for non-FQDNs other than the local domain. An unqualified host such as mumble must

either be found as mumble.foo.bar.edu , or it will be searched for in the root domain.

In older versions of BIND, the search continued across mumble.bar.edu , and mumble.edu . RFC 1535

details why this is considered bad practice or even a security hole.

As a good workaround, place the line:

search foo.bar.edu bar.edu

instead of the previous:

domain foo.bar.edu

into /etc/resolv.conf . However, make sure that the search order does not go beyond the "boundary

between local and public administration", as RFC 1535 calls it.

29.5.2. How can I run a mail server on a dial-up PPP host?

Connect to a FreeBSD mail gateway on the LAN. The PPP connection is non-dedicated.

One way to do this is to get a full-time Internet server to provide secondary MX services for the

domain. In this example, the domain is example.com and the ISP has configured example.net to

provide secondary MX services to the domain:

688

example.com. MX 10 example.com.

Ê MX 20 example.net.

Only one host should be specified as the final recipient. For Sendmail, add Cw example.com in

/etc/mail/sendmail.cf on example.com .

When the sending MTA attempts to deliver mail, it will try to connect to the system, example.com ,

over the PPP link. This will time out if the destination is offline. The MTA will automatically deliver

it to the secondary MX site at the Internet Service Provider (ISP), example.net . The secondary MX

site will periodically try to connect to the primary MX host, example.com .

Use something like this as a login script:

#!/bin/sh

Put me in /usr/local/bin/pppmyisp

(sleep 60 ; /usr/sbin/sendmail -q) &

/usr/sbin/ppp -direct pppmyisp

When creating a separate login script for users, instead use sendmail -qRexample.com in the script

above. This will force all mail in the queue for example.com to be processed immediately.

A further refinement of the situation can be seen from this example from the FreeBSD Internet

service providerÕs mailing list :

689

http://lists.FreeBSD.org/mailman/listinfo/freebsd-isp
http://lists.FreeBSD.org/mailman/listinfo/freebsd-isp

> we provide the secondary MX for a customer. The customer connects to

> our services several times a day automatically to get the mails to

> his primary MX (We do not call his site when a mail for his domains

> arrived). Our sendmail sends the mailqueue every 30 minutes. At the

> moment he has to stay 30 minutes online to be sure that all mail is

> gone to the primary MX.

>

> Is there a command that would initiate sendmail to send all the mails

> now? The user has not root-privileges on our machine of course.

In the privacy flags section of sendmail.cf, there is a

definition Opgoaway,restrictqrun

Remove restrictqrun to allow non-root users to start the queue processing.

You might also like to rearrange the MXs. We are the 1st MX for our

customers like this, and we have defined:

If we are the best MX for a host, try directly instead of generating

local config error.

OwTrue

That way a remote site will deliver straight to you, without trying

the customer connection. You then send to your customer. Only works for

hosts, so you need to get your customer to name their mail

machine customer.com as well as

hostname.customer.com in the DNS. Just put an A record in

the DNS for customer.com.

29.6. Advanced Topics

This section covers more involved topics such as mail configuration and setting up mail for an

entire domain.

29.6.1. Basic Configuration

Out of the box, one can send email to external hosts as long as /etc/resolv.conf is configured or the

network has access to a configured DNS server. To have email delivered to the MTA on the FreeBSD

host, do one of the following:

¥ Run a DNS server for the domain.

¥ Get mail delivered directly to the FQDN for the machine.

In order to have mail delivered directly to a host, it must have a permanent static IP address, not a

dynamic IP address. If the system is behind a firewall, it must be configured to allow SMTP traffic.

To receive mail directly at a host, one of these two must be configured:

¥ Make sure that the lowest-numbered MX record in DNS points to the hostÕs static IP address.

¥ Make sure there is no MX entry in the DNS for the host.

690

Either of the above will allow mail to be received directly at the host.

Try this:

hostname

example.FreeBSD.org

host example.FreeBSD.org

example.FreeBSD.org has address 204.216.27.XX

In this example, mail sent directly to yourlogin@example.FreeBSD.org should work without

problems, assuming Sendmail is running correctly on example.FreeBSD.org .

For this example:

host example.FreeBSD.org

example.FreeBSD.org has address 204.216.27.XX

example.FreeBSD.org mail is handled (pri=10) by nevdull.FreeBSD.org

All mail sent to example.FreeBSD.org will be collected on hub under the same username instead of

being sent directly to your host.

The above information is handled by the DNS server. The DNS record that carries mail routing

information is the MX entry. If no MX record exists, mail will be delivered directly to the host by

way of its IP address.

The MX entry for freefall.FreeBSD.org at one time looked like this:

freefall MX 30 mail.crl.net

freefall MX 40 agora.rdrop.com

freefall MX 10 freefall.FreeBSD.org

freefall MX 20 who.cdrom.com

freefall had many MX entries. The lowest MX number is the host that receives mail directly, if

available. If it is not accessible for some reason, the next lower-numbered host will accept messages

temporarily, and pass it along when a lower-numbered host becomes available.

Alternate MX sites should have separate Internet connections in order to be most useful. Your ISP

can provide this service.

29.6.2. Mail for a Domain

When configuring a MTA for a network, any mail sent to hosts in its domain should be diverted to

the MTA so that users can receive their mail on the master mail server.

To make life easiest, a user account with the same username should exist on both the MTA and the

system with the MUA. Use man:adduser[8] to create the user accounts.

691

mailto:yourlogin@example.FreeBSD.org

The MTA must be the designated mail exchanger for each workstation on the network. This is done

in the DNS configuration with an MX record:

example.FreeBSD.org A 204.216.27.XX ; Workstation

Ê MX 10 nevdull.FreeBSD.org ; Mailhost

This will redirect mail for the workstation to the MTA no matter where the A record points. The

mail is sent to the MX host.

This must be configured on a DNS server. If the network does not run its own DNS server, talk to

the ISP or DNS provider.

The following is an example of virtual email hosting. Consider a customer with the domain

customer1.org , where all the mail for customer1.org should be sent to mail.myhost.com . The DNS

entry should look like this:

customer1.org MX 10 mail.myhost.com

An A record is not needed for customer1.org in order to only handle email for that domain.

However, running ping against customer1.org will not work unless an A record exists for it.

Tell the MTA which domains and/or hostnames it should accept mail for. Either of the following will

work for Sendmail:

¥ Add the hosts to /etc/mail/local-host-names when using the FEATURE(use_cw_file) .

¥ Add a Cwyour.host.com line to /etc/sendmail.cf .

29.7. Setting Up to Send Only

There are many instances where one may only want to send mail through a relay. Some examples

are:

¥ The computer is a desktop machine that needs to use programs such as man:mail[1], using the

ISPÕs mail relay.

¥ The computer is a server that does not handle mail locally, but needs to pass off all mail to a

relay for processing.

While any MTA is capable of filling this particular niche, it can be difficult to properly configure a

full-featured MTA just to handle offloading mail. Programs such as Sendmail and Postfix are

overkill for this use.

Additionally, a typical Internet access service agreement may forbid one from running a "mail

server".

The easiest way to fulfill those needs is to install the package:mail/ssmtp[] port:

692

cd /usr/ports/mail/ssmtp

make install replace clean

Once installed, package:mail/ssmtp[] can be configured with /usr/local/etc/ssmtp/ssmtp.conf :

root=yourrealemail@example.com

mailhub=mail.example.com

rewriteDomain=example.com

hostname=_HOSTNAME_

Use the real email address for root . Enter the ISPÕs outgoing mail relay in place of mail.example.com .

Some ISPs call this the "outgoing mail server" or "SMTP server".

Make sure to disable Sendmail, including the outgoing mail service. See Disable Sendmail for

details.

package:mail/ssmtp[] has some other options available. Refer to the examples in /usr/local/etc/ssmtp

or the manual page of ssmtp for more information.

Setting up ssmtp in this manner allows any software on the computer that needs to send mail to

function properly, while not violating the ISPÕs usage policy or allowing the computer to be hijacked

for spamming.

29.8. Using Mail with a Dialup Connection

When using a static IP address, one should not need to adjust the default configuration. Set the

hostname to the assigned Internet name and Sendmail will do the rest.

When using a dynamically assigned IP address and a dialup PPP connection to the Internet, one

usually has a mailbox on the ISPÕs mail server. In this example, the ISPÕs domain is example.net , the

user name is user , the hostname is bsd.home , and the ISP has allowed relay.example.net as a mail

relay.

In order to retrieve mail from the ISPÕs mailbox, install a retrieval agent from the Ports Collection.

package:mail/fetchmail[] is a good choice as it supports many different protocols. Usually, the ISP

will provide POP. When using user PPP, email can be automatically fetched when an Internet

connection is established with the following entry in /etc/ppp/ppp.linkup :

MYADDR:

!bg su user -c fetchmail

When using Sendmail to deliver mail to non-local accounts, configure Sendmail to process the mail

queue as soon as the Internet connection is established. To do this, add this line after the above

fetchmail entry in /etc/ppp/ppp.linkup :

693

Ê !bg su user -c "sendmail -q"

In this example, there is an account for user on bsd.home . In the home directory of user on bsd.home ,

create a .fetchmailrc which contains this line:

poll example.net protocol pop3 fetchall pass MySecret

This file should not be readable by anyone except user as it contains the password MySecret .

In order to send mail with the correct from: header, configure Sendmail to use user@example.net

rather than user@bsd.home and to send all mail via relay.example.net , allowing quicker mail

transmission.

The following .mc should suffice:

VERSIONID(`bsd.home.mc version 1.0')

OSTYPE(bsd4.4)dnl

FEATURE(nouucp)dnl

MAILER(local)dnl

MAILER(smtp)dnl

Cwlocalhost

Cwbsd.home

MASQUERADE_AS(`example.net')dnl

FEATURE(allmasquerade)dnl

FEATURE(masquerade_envelope)dnl

FEATURE(nocanonify)dnl

FEATURE(nodns)dnl

define(`SMART_HOST', `relay.example.net')

Dmbsd.home

define(`confDOMAIN_NAME',`bsd.home')dnl

define(`confDELIVERY_MODE',`deferred')dnl

Refer to the previous section for details of how to convert this file into the sendmail.cf format. Do

not forget to restart Sendmail after updating sendmail.cf .

29.9. SMTP Authentication

Configuring SMTP authentication on the MTA provides a number of benefits. SMTP authentication

adds a layer of security to Sendmail, and provides mobile users who switch hosts the ability to use

the same MTA without the need to reconfigure their mail clientÕs settings each time.

1. Install package:security/cyrus-sasl2[] from the Ports Collection. This port supports a number of

compile-time options. For the SMTP authentication method demonstrated in this example, make

sure that LOGIN is not disabled.

2. After installing package:security/cyrus-sasl2[], edit /usr/local/lib/sasl2/Sendmail.conf , or create it

if it does not exist, and add the following line:

694

mailto:user@example.net
mailto:user@bsd.home

pwcheck_method: saslauthd

3. Next, install package:security/cyrus-sasl2-saslauthd[] and add the following line to /etc/rc.conf :

saslauthd_enable="YES"

Finally, start the saslauthd daemon:

service saslauthd start

This daemon serves as a broker for Sendmail to authenticate against the FreeBSD

man:passwd[5] database. This saves the trouble of creating a new set of usernames and

passwords for each user that needs to use SMTP authentication, and keeps the login and mail

password the same.

4. Next, edit /etc/make.conf and add the following lines:

SENDMAIL_CFLAGS=-I/usr/local/include/sasl -DSASL

SENDMAIL_LDADD=/usr/local/lib/libsasl2.so

These lines provide Sendmail the proper configuration options for linking to package:cyrus-

sasl2[] at compile time. Make sure that package:cyrus-sasl2[] has been installed before

recompiling Sendmail.

5. Recompile Sendmail by executing the following commands:

cd /usr/src/lib/libsmutil

make cleandir && make obj && make

cd /usr/src/lib/libsm

make cleandir && make obj && make

cd /usr/src/usr.sbin/sendmail

make cleandir && make obj && make && make install

This compile should not have any problems if /usr/src has not changed extensively and the

shared libraries it needs are available.

6. After Sendmail has been compiled and reinstalled, edit /etc/mail/freebsd.mc or the local .mc .

Many administrators choose to use the output from man:hostname[1] as the name of .mc for

uniqueness. Add these lines:

dnl set SASL options

TRUST_AUTH_MECH(`GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl

define(`confAUTH_MECHANISMS', `GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl

695

These options configure the different methods available to Sendmail for authenticating users.

To use a method other than pwcheck, refer to the Sendmail documentation.

7. Finally, run man:make[1] while in /etc/mail . That will run the new .mc and create a .cf named

either freebsd.cf or the name used for the local .mc . Then, run make install restart , which will

copy the file to sendmail.cf , and properly restart Sendmail. For more information about this

process, refer to /etc/mail/Makefile .

To test the configuration, use a MUA to send a test message. For further investigation, set the

LogLevel of Sendmail to 13 and watch /var/log/maillog for any errors.

For more information, refer to SMTP authentication .

29.10. Mail User Agents

A MUA is an application that is used to send and receive email. As email "evolves" and becomes

more complex, MUAs are becoming increasingly powerful and provide users increased

functionality and flexibility. The mail category of the FreeBSD Ports Collection contains numerous

MUAs. These include graphical email clients such as Evolution or Balsa and console based clients

such as mutt or alpine.

29.10.1. mail

man:mail[1] is the default MUA installed with FreeBSD. It is a console based MUA that offers the

basic functionality required to send and receive text-based email. It provides limited attachment

support and can only access local mailboxes.

Although mail does not natively support interaction with POP or IMAP servers, these mailboxes

may be downloaded to a local mbox using an application such as fetchmail.

In order to send and receive email, run mail :

% mail

The contents of the userÕs mailbox in /var/mail are automatically read by mail . Should the mailbox

be empty, the utility exits with a message indicating that no mail could be found. If mail exists, the

application interface starts, and a list of messages will be displayed. Messages are automatically

numbered, as can be seen in the following example:

Mail version 8.1 6/6/93. Type ? for help.

"/var/mail/marcs": 3 messages 3 new

>N 1 root@localhost Mon Mar 8 14:05 14/510 "test"

ÊN 2 root@localhost Mon Mar 8 14:05 14/509 "user account"

ÊN 3 root@localhost Mon Mar 8 14:05 14/509 "sample"

Messages can now be read by typing t followed by the message number. This example reads the

first email:

696

http://www.sendmail.org/~ca/email/auth.html

& t 1

Message 1:

From root@localhost Mon Mar 8 14:05:52 2004

X-Original-To: marcs@localhost

Delivered-To: marcs@localhost

To: marcs@localhost

Subject: test

Date: Mon, 8 Mar 2004 14:05:52 +0200 (SAST)

From: root@localhost (Charlie Root)

This is a test message, please reply if you receive it.

As seen in this example, the message will be displayed with full headers. To display the list of

messages again, press h .

If the email requires a reply, press either R or r mail keys. R instructs mail to reply only to the sender

of the email, while r replies to all other recipients of the message. These commands can be suffixed

with the mail number of the message to reply to. After typing the response, the end of the message

should be marked by a single . on its own line. An example can be seen below:

& R 1

To: root@localhost

Subject: Re: test

Thank you, I did get your email.

.

EOT

In order to send a new email, press m , followed by the recipient email address. Multiple recipients

may be specified by separating each address with the , delimiter. The subject of the message may

then be entered, followed by the message contents. The end of the message should be specified by

putting a single . on its own line.

& mail root@localhost

Subject: I mastered mail

Now I can send and receive email using mail ... :)

.

EOT

While using mail , press ? to display help at any time. Refer to man:mail[1] for more help on how to

use mail .

697

!

man:mail[1] was not designed to handle attachments and thus deals with them

poorly. Newer MUAs handle attachments in a more intelligent way. Users who

prefer to use mail may find the package:converters/mpack[] port to be of

considerable use.

29.10.2. mutt

mutt is a powerful MUA, with many features, including:

¥ The ability to thread messages.

¥ PGP support for digital signing and encryption of email.

¥ MIME support.

¥ Maildir support.

¥ Highly customizable.

Refer to http://www.mutt.org for more information on mutt.

mutt may be installed using the package:mail/mutt[] port. After the port has been installed, mutt

can be started by issuing the following command:

% mutt

mutt will automatically read and display the contents of the user mailbox in /var/mail . If no mails

are found, mutt will wait for commands from the user. The example below shows mutt displaying a

list of messages:

698

http://www.mutt.org

To read an email, select it using the cursor keys and press Enter . An example of mutt displaying

email can be seen below:

Similar to man:mail[1], mutt can be used to reply only to the sender of the message as well as to all

recipients. To reply only to the sender of the email, press r . To send a group reply to the original

sender as well as all the message recipients, press g .

!

By default, mutt uses the man:vi[1] editor for creating and replying to emails. Each

user can customize this by creating or editing the .muttrc in their home directory

and setting the editor variable or by setting the EDITOR environment variable.

Refer to http://www.mutt.org/ for more information about configuring mutt.

To compose a new mail message, press m . After a valid subject has been given, mutt will start

man:vi[1] so the email can be written. Once the contents of the email are complete, save and quit

from vi . mutt will resume, displaying a summary screen of the mail that is to be delivered. In order

to send the mail, press y . An example of the summary screen can be seen below:

699

http://www.mutt.org/

mutt contains extensive help which can be accessed from most of the menus by pressing ? . The top

line also displays the keyboard shortcuts where appropriate.

29.10.3. alpine

alpine is aimed at a beginner user, but also includes some advanced features.

"

alpine has had several remote vulnerabilities discovered in the past, which

allowed remote attackers to execute arbitrary code as users on the local system, by

the action of sending a specially-prepared email. While known problems have

been fixed, alpine code is written in an insecure style and the FreeBSD Security

Officer believes there are likely to be other undiscovered vulnerabilities. Users

install alpine at their own risk.

The current version of alpine may be installed using the package:mail/alpine[] port. Once the port

has installed, alpine can be started by issuing the following command:

% alpine

The first time alpine runs, it displays a greeting page with a brief introduction, as well as a request

from the alpine development team to send an anonymous email message allowing them to judge

how many users are using their client. To send this anonymous message, press Enter . Alternatively,

press E to exit the greeting without sending an anonymous message. An example of the greeting

page is shown below:

700

The main menu is then presented, which can be navigated using the cursor keys. This main menu

provides shortcuts for the composing new mails, browsing mail directories, and administering

address book entries. Below the main menu, relevant keyboard shortcuts to perform functions

specific to the task at hand are shown.

The default directory opened by alpine is inbox . To view the message index, press I , or select the

MESSAGE INDEX option shown below:

701

The message index shows messages in the current directory and can be navigated by using the

cursor keys. Highlighted messages can be read by pressing Enter .

In the screenshot below, a sample message is displayed by alpine. Contextual keyboard shortcuts

are displayed at the bottom of the screen. An example of one of a shortcut is r , which tells the MUA

to reply to the current message being displayed.

Replying to an email in alpine is done using the pico editor, which is installed by default with

alpine. pico makes it easy to navigate the message and is easier for novice users to use than

702

man:vi[1] or man:mail[1]. Once the reply is complete, the message can be sent by pressing Ctrl "+" X .

alpine will ask for confirmation before sending the message.

alpine can be customized using the SETUP option from the main menu. Consult

http://www.washington.edu/alpine/ for more information.

29.11. Using fetchmail

fetchmail is a full-featured IMAP and POP client. It allows users to automatically download mail

from remote IMAP and POP servers and save it into local mailboxes where it can be accessed more

easily. fetchmail can be installed using the package:mail/fetchmail[] port, and offers various

features, including:

¥ Support for the POP3, APOP, KPOP, IMAP, ETRN and ODMR protocols.

¥ Ability to forward mail using SMTP, which allows filtering, forwarding, and aliasing to function

normally.

¥ May be run in daemon mode to check periodically for new messages.

¥ Can retrieve multiple mailboxes and forward them, based on configuration, to different local

users.

This section explains some of the basic features of fetchmail. This utility requires a .fetchmailrc

configuration in the userÕs home directory in order to run correctly. This file includes server

information as well as login credentials. Due to the sensitive nature of the contents of this file, it is

advisable to make it readable only by the user, with the following command:

% chmod 600 .fetchmailrc

703

http://www.washington.edu/alpine/

The following .fetchmailrc serves as an example for downloading a single user mailbox using POP.

It tells fetchmail to connect to example.com using a username of joesoap and a password of XXX . This

example assumes that the user joesoap exists on the local system.

poll example.com protocol pop3 username "joesoap" password "XXX"

The next example connects to multiple POP and IMAP servers and redirects to different local

usernames where applicable:

poll example.com proto pop3:

user "joesoap", with password "XXX", is "jsoap" here;

user "andrea", with password "XXXX";

poll example2.net proto imap:

user "john", with password "XXXXX", is "myth" here;

fetchmail can be run in daemon mode by running it with -d , followed by the interval (in seconds)

that fetchmail should poll servers listed in .fetchmailrc . The following example configures fetchmail

to poll every 600 seconds:

% fetchmail -d 600

More information on fetchmail can be found at http://www.fetchmail.info/ .

29.12. Using procmail

procmail is a powerful application used to filter incoming mail. It allows users to define "rules"

which can be matched to incoming mails to perform specific functions or to reroute mail to

alternative mailboxes or email addresses. procmail can be installed using the

package:mail/procmail[] port. Once installed, it can be directly integrated into most MTAs. Consult

the MTA documentation for more information. Alternatively, procmail can be integrated by adding

the following line to a .forward in the home directory of the user:

"|exec /usr/local/bin/procmail || exit 75"

The following section displays some basic procmail rules, as well as brief descriptions of what they

do. Rules must be inserted into a .procmailrc , which must reside in the userÕs home directory.

The majority of these rules can be found in man:procmailex[5].

To forward all mail from user@example.com to an external address of goodmail@example2.com :

:0

* ^From.*user@example.com

! goodmail@example2.com

704

http://www.fetchmail.info/
mailto:user@example.com
mailto:goodmail@example2.com

To forward all mails shorter than 1000 bytes to an external address of goodmail@example2.com :

:0

* < 1000

! goodmail@example2.com

To send all mail sent to alternate@example.com to a mailbox called alternate :

:0

* ^TOalternate@example.com

alternate

To send all mail with a subject of "Spam" to /dev/null :

:0

^Subject:.*Spam

/dev/null

A useful recipe that parses incoming FreeBSD.org mailing lists and places each list in its own

mailbox:

:0

* ^Sender:.owner-freebsd-\/[^@]+@FreeBSD.ORG

{

Ê LISTNAME=${MATCH}

Ê :0

Ê * LISTNAME??^\/[^@]+

Ê FreeBSD-${MATCH}

}

705

mailto:goodmail@example2.com
mailto:alternate@example.com

Chapter 30. Network Servers

30.1. Synopsis

This chapter covers some of the more frequently used network services on UNIX¨ systems. This

includes installing, configuring, testing, and maintaining many different types of network services.

Example configuration files are included throughout this chapter for reference.

By the end of this chapter, readers will know:

¥ How to manage the inetd daemon.

¥ How to set up the Network File System (NFS).

¥ How to set up the Network Information Server (NIS) for centralizing and sharing user accounts.

¥ How to set FreeBSD up to act as an LDAP server or client

¥ How to set up automatic network settings using DHCP.

¥ How to set up a Domain Name Server (DNS).

¥ How to set up the Apache HTTP Server.

¥ How to set up a File Transfer Protocol (FTP) server.

¥ How to set up a file and print server for Windows¨ clients using Samba.

¥ How to synchronize the time and date, and set up a time server using the Network Time

Protocol (NTP).

¥ How to set up iSCSI.

This chapter assumes a basic knowledge of:

¥ /etc/rc scripts.

¥ Network terminology.

¥ Installation of additional third-party software (crossref:ports[ports,Installing Applications:

Packages and Ports]).

30.2. The inetd Super-Server

The man:inetd[8] daemon is sometimes referred to as a Super-Server because it manages

connections for many services. Instead of starting multiple applications, only the inetd service

needs to be started. When a connection is received for a service that is managed by inetd, it

determines which program the connection is destined for, spawns a process for that program, and

delegates the program a socket. Using inetd for services that are not heavily used can reduce system

load, when compared to running each daemon individually in stand-alone mode.

Primarily, inetd is used to spawn other daemons, but several trivial protocols are handled

internally, such as chargen, auth, time, echo, discard, and daytime.

This section covers the basics of configuring inetd.

706

30.2.1. Configuration File

Configuration of inetd is done by editing /etc/inetd.conf . Each line of this configuration file

represents an application which can be started by inetd. By default, every line starts with a

comment (), meaning that inetd is not listening for any applications. To configure inetd to

listen for an applicationÕs connections, remove the at the beginning of the line for that

application.

After saving your edits, configure inetd to start at system boot by editing /etc/rc.conf :

inetd_enable="YES"

To start inetd now, so that it listens for the service you configured, type:

service inetd start

Once inetd is started, it needs to be notified whenever a modification is made to /etc/inetd.conf :

Example 44. Reloading the inetd Configuration File

service inetd reload

Typically, the default entry for an application does not need to be edited beyond removing the # . In

some situations, it may be appropriate to edit the default entry.

As an example, this is the default entry for man:ftpd[8] over IPv4:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l

The seven columns in an entry are as follows:

service-name

socket-type

protocol

{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]

user[:group][/login-class]

server-program

server-program-arguments

where:

service-name

The service name of the daemon to start. It must correspond to a service listed in /etc/services .

This determines which port inetd listens on for incoming connections to that service. When

707

using a custom service, it must first be added to /etc/services .

socket-type

Either stream , dgram , raw , or seqpacket . Use stream for TCP connections and dgram for UDP services.

protocol

Use one of the following protocol names:

Protocol Name Explanation

tcp or tcp4 TCP IPv4

udp or udp4 UDP IPv4

tcp6 TCP IPv6

udp6 UDP IPv6

tcp46 Both TCP IPv4 and IPv6

udp46 Both UDP IPv4 and IPv6

{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]

In this field, wait or nowait must be specified. max-child , max-connections-per-ip-per-minute and

max-child-per-ip are optional.

wait|nowait indicates whether or not the service is able to handle its own socket. dgram socket

types must use wait while stream daemons, which are usually multi-threaded, should use nowait .

wait usually hands off multiple sockets to a single daemon, while nowait spawns a child daemon

for each new socket.

The maximum number of child daemons inetd may spawn is set by max-child . For example, to

limit ten instances of the daemon, place a /10 after nowait . Specifying /0 allows an unlimited

number of children.

max-connections-per-ip-per-minute limits the number of connections from any particular IP

address per minute. Once the limit is reached, further connections from this IP address will be

dropped until the end of the minute. For example, a value of /10 would limit any particular IP

address to ten connection attempts per minute. max-child-per-ip limits the number of child

processes that can be started on behalf on any single IP address at any moment. These options

can limit excessive resource consumption and help to prevent Denial of Service attacks.

An example can be seen in the default settings for man:fingerd[8]:

finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -k -s

user

The username the daemon will run as. Daemons typically run as root , daemon , or nobody .

server-program

The full path to the daemon. If the daemon is a service provided by inetd internally, use internal .

708

server-program-arguments

Used to specify any command arguments to be passed to the daemon on invocation. If the

daemon is an internal service, use internal .

30.2.2. Command-Line Options

Like most server daemons, inetd has a number of options that can be used to modify its behavior.

By default, inetd is started with -wW -C 60 . These options enable TCP wrappers for all services,

including internal services, and prevent any IP address from requesting any service more than 60

times per minute.

To change the default options which are passed to inetd, add an entry for inetd_flags in /etc/rc.conf .

If inetd is already running, restart it with service inetd restart .

The available rate limiting options are:

-c maximum

Specify the default maximum number of simultaneous invocations of each service, where the

default is unlimited. May be overridden on a per-service basis by using max-child in

/etc/inetd.conf .

-C rate

Specify the default maximum number of times a service can be invoked from a single IP address

per minute. May be overridden on a per-service basis by using max-connections-per-ip-per-

minute in /etc/inetd.conf .

-R rate

Specify the maximum number of times a service can be invoked in one minute, where the

default is 256 . A rate of 0 allows an unlimited number.

-s maximum

Specify the maximum number of times a service can be invoked from a single IP address at any

one time, where the default is unlimited. May be overridden on a per-service basis by using max-

child-per-ip in /etc/inetd.conf .

Additional options are available. Refer to man:inetd[8] for the full list of options.

30.2.3. Security Considerations

Many of the daemons which can be managed by inetd are not security-conscious. Some daemons,

such as fingerd, can provide information that may be useful to an attacker. Only enable the services

which are needed and monitor the system for excessive connection attempts. max-connections-per-

ip-per-minute , max-child and max-child-per-ip can be used to limit such attacks.

By default, TCP wrappers is enabled. Consult man:hosts_access[5] for more information on placing

TCP restrictions on various inetd invoked daemons.

709

30.3. Network File System (NFS)

FreeBSD supports the Network File System (NFS), which allows a server to share directories and

files with clients over a network. With NFS, users and programs can access files on remote systems

as if they were stored locally.

NFS has many practical uses. Some of the more common uses include:

¥ Data that would otherwise be duplicated on each client can be kept in a single location and

accessed by clients on the network.

¥ Several clients may need access to the /usr/ports/distfiles directory. Sharing that directory allows

for quick access to the source files without having to download them to each client.

¥ On large networks, it is often more convenient to configure a central NFS server on which all

user home directories are stored. Users can log into a client anywhere on the network and have

access to their home directories.

¥ Administration of NFS exports is simplified. For example, there is only one file system where

security or backup policies must be set.

¥ Removable media storage devices can be used by other machines on the network. This reduces

the number of devices throughout the network and provides a centralized location to manage

their security. It is often more convenient to install software on multiple machines from a

centralized installation media.

NFS consists of a server and one or more clients. The client remotely accesses the data that is stored

on the server machine. In order for this to function properly, a few processes have to be configured

and running.

These daemons must be running on the server:

Daemon Description

nfsd The NFS daemon which services requests from

NFS clients.

mountd The NFS mount daemon which carries out

requests received from nfsd.

rpcbind This daemon allows NFS clients to discover

which port the NFS server is using.

Running man:nfsiod[8] on the client can improve performance, but is not required.

30.3.1. Configuring the Server

The file systems which the NFS server will share are specified in /etc/exports . Each line in this file

specifies a file system to be exported, which clients have access to that file system, and any access

options. When adding entries to this file, each exported file system, its properties, and allowed

hosts must occur on a single line. If no clients are listed in the entry, then any client on the network

can mount that file system.

710

The following /etc/exports entries demonstrate how to export file systems. The examples can be

modified to match the file systems and client names on the readerÕs network. There are many

options that can be used in this file, but only a few will be mentioned here. See man:exports[5] for

the full list of options.

This example shows how to export /cdrom to three hosts named alpha , bravo , and charlie :

/cdrom -ro alpha bravo charlie

The -ro flag makes the file system read-only, preventing clients from making any changes to the

exported file system. This example assumes that the host names are either in DNS or in /etc/hosts .

Refer to man:hosts[5] if the network does not have a DNS server.

The next example exports /home to three clients by IP address. This can be useful for networks

without DNS or /etc/hosts entries. The -alldirs flag allows subdirectories to be mount points. In

other words, it will not automatically mount the subdirectories, but will permit the client to mount

the directories that are required as needed.

/usr/home -alldirs 10.0.0.2 10.0.0.3 10.0.0.4

This next example exports /a so that two clients from different domains may access that file system.

The -maproot=root allows root on the remote system to write data on the exported file system as

root . If -maproot=root is not specified, the clientÕs root user will be mapped to the serverÕs nobody

account and will be subject to the access limitations defined for nobody .

/a -maproot=root host.example.com box.example.org

A client can only be specified once per file system. For example, if /usr is a single file system, these

entries would be invalid as both entries specify the same host:

Invalid when /usr is one file system

/usr/src client

/usr/ports client

The correct format for this situation is to use one entry:

/usr/src /usr/ports client

The following is an example of a valid export list, where /usr and /exports are local file systems:

711

Export src and ports to client01 and client02, but only

client01 has root privileges on it

/usr/src /usr/ports -maproot=root client01

/usr/src /usr/ports client02

The client machines have root and can mount anywhere

on /exports. Anyone in the world can mount /exports/obj read-only

/exports -alldirs -maproot=root client01 client02

/exports/obj -ro

To enable the processes required by the NFS server at boot time, add these options to /etc/rc.conf :

rpcbind_enable="YES"

nfs_server_enable="YES"

mountd_enable="YES"

The server can be started now by running this command:

service nfsd start

Whenever the NFS server is started, mountd also starts automatically. However, mountd only reads

/etc/exports when it is started. To make subsequent /etc/exports edits take effect immediately, force

mountd to reread it:

service mountd reload

30.3.2. Configuring the Client

To enable NFS clients, set this option in each clientÕs /etc/rc.conf :

nfs_client_enable="YES"

Then, run this command on each NFS client:

service nfsclient start

The client now has everything it needs to mount a remote file system. In these examples, the

serverÕs name is server and the clientÕs name is client . To mount /home on server to the /mnt

mount point on client :

mount server:/home /mnt

The files and directories in /home will now be available on client , in the /mnt directory.

712

To mount a remote file system each time the client boots, add it to /etc/fstab :

server:/home /mnt nfs rw 0 0

Refer to man:fstab[5] for a description of all available options.

30.3.3. Locking

Some applications require file locking to operate correctly. To enable locking, add these lines to

/etc/rc.conf on both the client and server:

rpc_lockd_enable="YES"

rpc_statd_enable="YES"

Then start the applications:

service lockd start

service statd start

If locking is not required on the server, the NFS client can be configured to lock locally by including

-L when running mount. Refer to man:mount_nfs[8] for further details.

30.3.4. Automating Mounts with man:autofs[5]

!

The man:autofs[5] automount facility is supported starting with FreeBSD 10.1-

RELEASE. To use the automounter functionality in older versions of FreeBSD, use

man:amd[8] instead. This chapter only describes the man:autofs[5] automounter.

The man:autofs[5] facility is a common name for several components that, together, allow for

automatic mounting of remote and local filesystems whenever a file or directory within that file

system is accessed. It consists of the kernel component, man:autofs[5], and several userspace

applications: man:automount[8], man:automountd[8] and man:autounmountd[8]. It serves as an

alternative for man:amd[8] from previous FreeBSD releases. Amd is still provided for backward

compatibility purposes, as the two use different map format; the one used by autofs is the same as

with other SVR4 automounters, such as the ones in Solaris, MacOS X, and Linux.

The man:autofs[5] virtual filesystem is mounted on specified mountpoints by man:automount[8],

usually invoked during boot.

Whenever a process attempts to access file within the man:autofs[5] mountpoint, the kernel will

notify man:automountd[8] daemon and pause the triggering process. The man:automountd[8]

daemon will handle kernel requests by finding the proper map and mounting the filesystem

according to it, then signal the kernel to release blocked process. The man:autounmountd[8]

daemon automatically unmounts automounted filesystems after some time, unless they are still

being used.

713

The primary autofs configuration file is /etc/auto_master . It assigns individual maps to top-level

mounts. For an explanation of auto_master and the map syntax, refer to man:auto_master[5].

There is a special automounter map mounted on /net . When a file is accessed within this directory,

man:autofs[5] looks up the corresponding remote mount and automatically mounts it. For instance,

an attempt to access a file within /net/foobar/usr would tell man:automountd[8] to mount the /usr

export from the host foobar .

Example 45. Mounting an Export with man:autofs[5]

In this example, showmount -e shows the exported file systems that can be mounted from the

NFS server, foobar :

% showmount -e foobar

Exports list on foobar:

/usr 10.10.10.0

/a 10.10.10.0

% cd /net/foobar/usr

The output from showmount shows /usr as an export. When changing directories to /host/foobar/usr ,

man:automountd[8] intercepts the request and attempts to resolve the hostname foobar . If

successful, man:automountd[8] automatically mounts the source export.

To enable man:autofs[5] at boot time, add this line to /etc/rc.conf :

autofs_enable="YES"

Then man:autofs[5] can be started by running:

service automount start

service automountd start

service autounmountd start

The man:autofs[5] map format is the same as in other operating systems. Information about this

format from other sources can be useful, like the Mac OS X document .

Consult the man:automount[8], man:automountd[8], man:autounmountd[8], and

man:auto_master[5] manual pages for more information.

30.4. Network Information System (NIS)

Network Information System (NIS) is designed to centralize administration of UNIX¨-like systems

such as Solarisª, HP-UX, AIX¨, Linux, NetBSD, OpenBSD, and FreeBSD. NIS was originally known

as Yellow Pages but the name was changed due to trademark issues. This is the reason why NIS

commands begin with yp .

714

http://web.archive.org/web/20160813071113/http://images.apple.com/business/docs/Autofs.pdf

NIS is a Remote Procedure Call (RPC)-based client/server system that allows a group of machines

within an NIS domain to share a common set of configuration files. This permits a system

administrator to set up NIS client systems with only minimal configuration data and to add,

remove, or modify configuration data from a single location.

FreeBSD uses version 2 of the NIS protocol.

30.4.1. NIS Terms and Processes

Table 28.1 summarizes the terms and important processes used by NIS:

Table 24. NIS Terminology

Term Description

NIS domain name NIS servers and clients share an NIS domain

name. Typically, this name does not have

anything to do with DNS.

man:rpcbind[8] This service enables RPC and must be running in

order to run an NIS server or act as an NIS

client.

man:ypbind[8] This service binds an NIS client to its NIS server.

It will take the NIS domain name and use RPC to

connect to the server. It is the core of

client/server communication in an NIS

environment. If this service is not running on a

client machine, it will not be able to access the

NIS server.

man:ypserv[8] This is the process for the NIS server. If this

service stops running, the server will no longer

be able to respond to NIS requests so hopefully,

there is a slave server to take over. Some non-

FreeBSD clients will not try to reconnect using a

slave server and the ypbind process may need to

be restarted on these clients.

man:rpc.yppasswdd[8] This process only runs on NIS master servers.

This daemon allows NIS clients to change their

NIS passwords. If this daemon is not running,

users will have to login to the NIS master server

and change their passwords there.

30.4.2. Machine Types

There are three types of hosts in an NIS environment:

¥ NIS master server

This server acts as a central repository for host configuration information and maintains the

715

authoritative copy of the files used by all of the NIS clients. The passwd , group , and other

various files used by NIS clients are stored on the master server. While it is possible for one

machine to be an NIS master server for more than one NIS domain, this type of configuration

will not be covered in this chapter as it assumes a relatively small-scale NIS environment.

¥ NIS slave servers

NIS slave servers maintain copies of the NIS masterÕs data files in order to provide redundancy.

Slave servers also help to balance the load of the master server as NIS clients always attach to

the NIS server which responds first.

¥ NIS clients

NIS clients authenticate against the NIS server during log on.

Information in many files can be shared using NIS. The master.passwd , group , and hosts files are

commonly shared via NIS. Whenever a process on a client needs information that would normally

be found in these files locally, it makes a query to the NIS server that it is bound to instead.

30.4.3. Planning Considerations

This section describes a sample NIS environment which consists of 15 FreeBSD machines with no

centralized point of administration. Each machine has its own /etc/passwd and /etc/master.passwd .

These files are kept in sync with each other only through manual intervention. Currently, when a

user is added to the lab, the process must be repeated on all 15 machines.

The configuration of the lab will be as follows:

Machine name IP address Machine role

ellington 10.0.0.2

NIS master

coltrane 10.0.0.3

NIS slave

basie 10.0.0.4

Faculty workstation

bird 10.0.0.5

Client machine

cli[1-11] 10.0.0.[6-17]

Other client machines

If this is the first time an NIS scheme is being developed, it should be thoroughly planned ahead of

time. Regardless of network size, several decisions need to be made as part of the planning process.

30.4.3.1. Choosing a NIS Domain Name

When a client broadcasts its requests for info, it includes the name of the NIS domain that it is part

of. This is how multiple servers on one network can tell which server should answer which request.

Think of the NIS domain name as the name for a group of hosts.

Some organizations choose to use their Internet domain name for their NIS domain name. This is

not recommended as it can cause confusion when trying to debug network problems. The NIS

domain name should be unique within the network and it is helpful if it describes the group of

machines it represents. For example, the Art department at Acme Inc. might be in the "acme-art"NIS

716

domain. This example will use the domain name test-domain .

However, some non-FreeBSD operating systems require the NIS domain name to be the same as the

Internet domain name. If one or more machines on the network have this restriction, the Internet

domain name must be used as the NIS domain name.

30.4.3.2. Physical Server Requirements

There are several things to keep in mind when choosing a machine to use as a NIS server. Since NIS

clients depend upon the availability of the server, choose a machine that is not rebooted frequently.

The NIS server should ideally be a stand alone machine whose sole purpose is to be an NIS server.

If the network is not heavily used, it is acceptable to put the NIS server on a machine running other

services. However, if the NIS server becomes unavailable, it will adversely affect all NIS clients.

30.4.4. Configuring the NIS Master Server

The canonical copies of all NIS files are stored on the master server. The databases used to store the

information are called NIS maps. In FreeBSD, these maps are stored in /var/yp/[domainname]

where [domainname] is the name of the NIS domain. Since multiple domains are supported, it is

possible to have several directories, one for each domain. Each domain will have its own

independent set of maps.

NIS master and slave servers handle all NIS requests through man:ypserv[8]. This daemon is

responsible for receiving incoming requests from NIS clients, translating the requested domain and

map name to a path to the corresponding database file, and transmitting data from the database

back to the client.

Setting up a master NIS server can be relatively straight forward, depending on environmental

needs. Since FreeBSD provides built-in NIS support, it only needs to be enabled by adding the

following lines to /etc/rc.conf :

nisdomainname="test-domain" !

nis_server_enable="YES" "

nis_yppasswdd_enable="YES" #

!

This line sets the NIS domain name to test-domain .

"

This automates the start up of the NIS server processes when the system boots.

#

This enables the man:rpc.yppasswdd[8] daemon so that users can change their NIS password

from a client machine.

Care must be taken in a multi-server domain where the server machines are also NIS clients. It is

generally a good idea to force the servers to bind to themselves rather than allowing them to

broadcast bind requests and possibly become bound to each other. Strange failure modes can result

if one server goes down and others are dependent upon it. Eventually, all the clients will time out

and attempt to bind to other servers, but the delay involved can be considerable and the failure

mode is still present since the servers might bind to each other all over again.

A server that is also a client can be forced to bind to a particular server by adding these additional

717

lines to /etc/rc.conf :

nis_client_enable="YES" !

nis_client_flags="-S test-domain,server" "

!

This enables running client stuff as well.

"

This line sets the NIS domain name to test-domain and bind to itself.

After saving the edits, type /etc/netstart to restart the network and apply the values defined in

/etc/rc.conf . Before initializing the NIS maps, start man:ypserv[8]:

service ypserv start

30.4.4.1. Initializing the NIS Maps

NIS maps are generated from the configuration files in /etc on the NIS master, with one exception:

/etc/master.passwd . This is to prevent the propagation of passwords to all the servers in the NIS

domain. Therefore, before the NIS maps are initialized, configure the primary password files:

cp /etc/master.passwd /var/yp/master.passwd

cd /var/yp

vi master.passwd

It is advisable to remove all entries for system accounts as well as any user accounts that do not

need to be propagated to the NIS clients, such as the root and any other administrative accounts.

!

Ensure that the /var/yp/master.passwd is neither group or world readable by

setting its permissions to 600 .

After completing this task, initialize the NIS maps. FreeBSD includes the man:ypinit[8] script to do

this. When generating maps for the master server, include -m and specify the NIS domain name:

718

ellington# ypinit -m test-domain

Server Type: MASTER Domain: test-domain

Creating an YP server will require that you answer a few questions.

Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n] n

Ok, please remember to go back and redo manually whatever fails.

If not, something might not work.

At this point, we have to construct a list of this domains YP servers.

rod.darktech.org is already known as master server.

Please continue to add any slave servers, one per line. When you are

done with the list, type a <control D>.

master server : ellington

next host to add: coltrane

next host to add: ^D

The current list of NIS servers looks like this:

ellington

coltrane

Is this correct? [y/n: y] y

[..output from map generation..]

NIS Map update completed.

ellington has been setup as an YP master server without any errors.

This will create /var/yp/Makefile from /var/yp/Makefile.dist . By default, this file assumes that the

environment has a single NIS server with only FreeBSD clients. Since test-domain has a slave server,

edit this line in /var/yp/Makefile so that it begins with a comment (#):

NOPUSH = "True"

30.4.4.2. Adding New Users

Every time a new user is created, the user account must be added to the master NIS server and the

NIS maps rebuilt. Until this occurs, the new user will not be able to login anywhere except on the

NIS master. For example, to add the new user jsmith to the test-domain domain, run these

commands on the master server:

pw useradd jsmith

cd /var/yp

make test-domain

The user could also be added using adduser jsmith instead of pw useradd smith .

30.4.5. Setting up a NIS Slave Server

To set up an NIS slave server, log on to the slave server and edit /etc/rc.conf as for the master

server. Do not generate any NIS maps, as these already exist on the master server. When running

719

ypinit on the slave server, use -s (for slave) instead of -m (for master). This option requires the

name of the NIS master in addition to the domain name, as seen in this example:

coltrane# ypinit -s ellington test-domain

Server Type: SLAVE Domain: test-domain Master: ellington

Creating an YP server will require that you answer a few questions.

Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n] n

Ok, please remember to go back and redo manually whatever fails.

If not, something might not work.

There will be no further questions. The remainder of the procedure

should take a few minutes, to copy the databases from ellington.

Transferring netgroup...

ypxfr: Exiting: Map successfully transferred

Transferring netgroup.byuser...

ypxfr: Exiting: Map successfully transferred

Transferring netgroup.byhost...

ypxfr: Exiting: Map successfully transferred

Transferring master.passwd.byuid...

ypxfr: Exiting: Map successfully transferred

Transferring passwd.byuid...

ypxfr: Exiting: Map successfully transferred

Transferring passwd.byname...

ypxfr: Exiting: Map successfully transferred

Transferring group.bygid...

ypxfr: Exiting: Map successfully transferred

Transferring group.byname...

ypxfr: Exiting: Map successfully transferred

Transferring services.byname...

ypxfr: Exiting: Map successfully transferred

Transferring rpc.bynumber...

ypxfr: Exiting: Map successfully transferred

Transferring rpc.byname...

ypxfr: Exiting: Map successfully transferred

Transferring protocols.byname...

ypxfr: Exiting: Map successfully transferred

Transferring master.passwd.byname...

ypxfr: Exiting: Map successfully transferred

Transferring networks.byname...

ypxfr: Exiting: Map successfully transferred

Transferring networks.byaddr...

ypxfr: Exiting: Map successfully transferred

Transferring netid.byname...

ypxfr: Exiting: Map successfully transferred

Transferring hosts.byaddr...

ypxfr: Exiting: Map successfully transferred

720

Transferring protocols.bynumber...

ypxfr: Exiting: Map successfully transferred

Transferring ypservers...

ypxfr: Exiting: Map successfully transferred

Transferring hosts.byname...

ypxfr: Exiting: Map successfully transferred

coltrane has been setup as an YP slave server without any errors.

Remember to update map ypservers on ellington.

This will generate a directory on the slave server called /var/yp/test-domain which contains copies

of the NIS master serverÕs maps. Adding these /etc/crontab entries on each slave server will force

the slaves to sync their maps with the maps on the master server:

20 * * * * root /usr/libexec/ypxfr passwd.byname

21 * * * * root /usr/libexec/ypxfr passwd.byuid

These entries are not mandatory because the master server automatically attempts to push any

map changes to its slaves. However, since clients may depend upon the slave server to provide

correct password information, it is recommended to force frequent password map updates. This is

especially important on busy networks where map updates might not always complete.

To finish the configuration, run /etc/netstart on the slave server in order to start the NIS services.

30.4.6. Setting Up an NIS Client

An NIS client binds to an NIS server using man:ypbind[8]. This daemon broadcasts RPC requests on

the local network. These requests specify the domain name configured on the client. If an NIS

server in the same domain receives one of the broadcasts, it will respond to ypbind, which will

record the serverÕs address. If there are several servers available, the client will use the address of

the first server to respond and will direct all of its NIS requests to that server. The client will

automatically ping the server on a regular basis to make sure it is still available. If it fails to receive

a reply within a reasonable amount of time, ypbind will mark the domain as unbound and begin

broadcasting again in the hopes of locating another server.

To configure a FreeBSD machine to be an NIS client:

721

1. Edit /etc/rc.conf and add the following lines in order to set the NIS domain name and start

man:ypbind[8] during network startup:

nisdomainname="test-domain"

nis_client_enable="YES"

2. To import all possible password entries from the NIS server, use vipw to remove all user

accounts except one from /etc/master.passwd . When removing the accounts, keep in mind

that at least one local account should remain and this account should be a member of

wheel . If there is a problem with NIS, this local account can be used to log in remotely,

become the superuser, and fix the problem. Before saving the edits, add the following line

to the end of the file:

+:::::::::

This line configures the client to provide anyone with a valid account in the NIS serverÕs

password maps an account on the client. There are many ways to configure the NIS client

by modifying this line. One method is described in Using Netgroups . For more detailed

reading, refer to the book Managing NFS and NIS , published by OÕReilly Media.

3. To import all possible group entries from the NIS server, add this line to /etc/group :

+:*::

To start the NIS client immediately, execute the following commands as the superuser:

/etc/netstart

service ypbind start

After completing these steps, running ypcat passwd on the client should show the serverÕs passwd

map.

30.4.7. NIS Security

Since RPC is a broadcast-based service, any system running ypbind within the same domain can

retrieve the contents of the NIS maps. To prevent unauthorized transactions, man:ypserv[8]

supports a feature called "securenets" which can be used to restrict access to a given set of hosts. By

default, this information is stored in /var/yp/securenets , unless man:ypserv[8] is started with -p and

an alternate path. This file contains entries that consist of a network specification and a network

mask separated by white space. Lines starting with are considered to be comments. A sample

[.filename]#securenets might look like this:

722

allow connections from local host -- mandatory

127.0.0.1 255.255.255.255

allow connections from any host

on the 192.168.128.0 network

192.168.128.0 255.255.255.0

allow connections from any host

between 10.0.0.0 to 10.0.15.255

this includes the machines in the testlab

10.0.0.0 255.255.240.0

If man:ypserv[8] receives a request from an address that matches one of these rules, it will process

the request normally. If the address fails to match a rule, the request will be ignored and a warning

message will be logged. If the securenets does not exist, ypserv will allow connections from any

host.

crossref:security[tcpwrappers,"TCP Wrapper"] is an alternate mechanism for providing access

control instead of securenets . While either access control mechanism adds some security, they are

both vulnerable to "IP spoofing" attacks. All NIS-related traffic should be blocked at the firewall.

Servers using securenets may fail to serve legitimate NIS clients with archaic TCP/IP

implementations. Some of these implementations set all host bits to zero when doing broadcasts or

fail to observe the subnet mask when calculating the broadcast address. While some of these

problems can be fixed by changing the client configuration, other problems may force the

retirement of these client systems or the abandonment of securenets .

The use of TCP Wrapper increases the latency of the NIS server. The additional delay may be long

enough to cause timeouts in client programs, especially in busy networks with slow NIS servers. If

one or more clients suffer from latency, convert those clients into NIS slave servers and force them

to bind to themselves.

30.4.7.1. Barring Some Users

In this example, the basie system is a faculty workstation within the NIS domain. The passwd map

on the master NIS server contains accounts for both faculty and students. This section demonstrates

how to allow faculty logins on this system while refusing student logins.

To prevent specified users from logging on to a system, even if they are present in the NIS database,

use vipw to add - username with the correct number of colons towards the end of /etc/master.passwd

on the client, where username is the username of a user to bar from logging in. The line with the

blocked user must be before the + line that allows NIS users. In this example, bill is barred from

logging on to basie :

723

basie# cat /etc/master.passwd

root:[password]:0:0::0:0:The super-user:/root:/bin/csh

toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh

daemon:*:1:1::0:0:Owner of many system processes:/root:/usr/sbin/nologin

operator:*:2:5::0:0:System &:/:/usr/sbin/nologin

bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/usr/sbin/nologin

tty:*:4:65533::0:0:Tty Sandbox:/:/usr/sbin/nologin

kmem:*:5:65533::0:0:KMem Sandbox:/:/usr/sbin/nologin

games:*:7:13::0:0:Games pseudo-user:/usr/games:/usr/sbin/nologin

news:*:8:8::0:0:News Subsystem:/:/usr/sbin/nologin

man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/usr/sbin/nologin

bind:*:53:53::0:0:Bind Sandbox:/:/usr/sbin/nologin

uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico

xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/usr/sbin/nologin

pop:*:68:6::0:0:Post Office Owner:/nonexistent:/usr/sbin/nologin

nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/usr/sbin/nologin

-bill:::::::::

+:::::::::

basie#

30.4.8. Using Netgroups

Barring specified users from logging on to individual systems becomes unscaleable on larger

networks and quickly loses the main benefit of NIS: centralized administration.

Netgroups were developed to handle large, complex networks with hundreds of users and

machines. Their use is comparable to UNIX¨ groups, where the main difference is the lack of a

numeric ID and the ability to define a netgroup by including both user accounts and other

netgroups.

To expand on the example used in this chapter, the NIS domain will be extended to add the users

and systems shown in Tables 28.2 and 28.3:

Table 25. Additional Users

User Name(s) Description

alpha , beta IT department employees

charlie , delta IT department apprentices

echo , foxtrott , golf , É employees

able , baker , É interns

Table 26. Additional Systems

Machine Name(s) Description

war , death , famine , pollution Only IT employees are allowed to log onto these

servers.

724

Machine Name(s) Description

pride , greed , envy , wrath , lust , sloth All members of the IT department are allowed to

login onto these servers.

one , two , three , four , É Ordinary workstations used by employees.

trashcan

A very old machine without any critical data.

Even interns are allowed to use this system.

When using netgroups to configure this scenario, each user is assigned to one or more netgroups

and logins are then allowed or forbidden for all members of the netgroup. When adding a new

machine, login restrictions must be defined for all netgroups. When a new user is added, the

account must be added to one or more netgroups. If the NIS setup is planned carefully, only one

central configuration file needs modification to grant or deny access to machines.

The first step is the initialization of the NIS`netgroup` map. In FreeBSD, this map is not created by

default. On the NIS master server, use an editor to create a map named /var/yp/netgroup .

This example creates four netgroups to represent IT employees, IT apprentices, employees, and

interns:

IT_EMP (,alpha,test-domain) (,beta,test-domain)

IT_APP (,charlie,test-domain) (,delta,test-domain)

USERS (,echo,test-domain) (,foxtrott,test-domain) \

Ê (,golf,test-domain)

INTERNS (,able,test-domain) (,baker,test-domain)

Each entry configures a netgroup. The first column in an entry is the name of the netgroup. Each

set of brackets represents either a group of one or more users or the name of another netgroup.

When specifying a user, the three comma-delimited fields inside each group represent:

1. The name of the host(s) where the other fields representing the user are valid. If a hostname is

not specified, the entry is valid on all hosts.

2. The name of the account that belongs to this netgroup.

3. The NIS domain for the account. Accounts may be imported from other NIS domains into a

netgroup.

If a group contains multiple users, separate each user with whitespace. Additionally, each field may

contain wildcards. See man:netgroup[5] for details.

Netgroup names longer than 8 characters should not be used. The names are case sensitive and

using capital letters for netgroup names is an easy way to distinguish between user, machine and

netgroup names.

Some non-FreeBSD NIS clients cannot handle netgroups containing more than 15 entries. This limit

may be circumvented by creating several sub-netgroups with 15 users or fewer and a real netgroup

consisting of the sub-netgroups, as seen in this example:

725

BIGGRP1 (,joe1,domain) (,joe2,domain) (,joe3,domain) [...]

BIGGRP2 (,joe16,domain) (,joe17,domain) [...]

BIGGRP3 (,joe31,domain) (,joe32,domain)

BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3

Repeat this process if more than 225 (15 times 15) users exist within a single netgroup.

To activate and distribute the new NIS map:

ellington# cd /var/yp

ellington# make

This will generate the three NIS maps netgroup , netgroup.byhost and netgroup.byuser . Use the map

key option of man:ypcat[1] to check if the new NIS maps are available:

ellington% ypcat -k netgroup

ellington% ypcat -k netgroup.byhost

ellington% ypcat -k netgroup.byuser

The output of the first command should resemble the contents of /var/yp/netgroup . The second

command only produces output if host-specific netgroups were created. The third command is used

to get the list of netgroups for a user.

To configure a client, use man:vipw[8] to specify the name of the netgroup. For example, on the

server named war , replace this line:

+:::::::::

with

+@IT_EMP:::::::::

This specifies that only the users defined in the netgroup IT_EMP will be imported into this systemÕs

password database and only those users are allowed to login to this system.

This configuration also applies to the ~ function of the shell and all routines which convert between

user names and numerical user IDs. In other words, cd ~ user will not work, ls -l will show the

numerical ID instead of the username, and find . -user joe -print will fail with the message No

such user . To fix this, import all user entries without allowing them to login into the servers. This

can be achieved by adding an extra line:

+:::::::::/usr/sbin/nologin

726

This line configures the client to import all entries but to replace the shell in those entries with

/usr/sbin/nologin .

Make sure that extra line is placed after `+@IT_EMP:::::::::`. Otherwise, all user accounts imported

from NIS will have /usr/sbin/nologin as their login shell and no one will be able to login to the

system.

To configure the less important servers, replace the old +::::::::: on the servers with these lines:

+@IT_EMP:::::::::

+@IT_APP:::::::::

+:::::::::/usr/sbin/nologin

The corresponding lines for the workstations would be:

+@IT_EMP:::::::::

+@USERS:::::::::

+:::::::::/usr/sbin/nologin

NIS supports the creation of netgroups from other netgroups which can be useful if the policy

regarding user access changes. One possibility is the creation of role-based netgroups. For example,

one might create a netgroup called BIGSRV to define the login restrictions for the important servers,

another netgroup called SMALLSRV for the less important servers, and a third netgroup called USERBOX

for the workstations. Each of these netgroups contains the netgroups that are allowed to login onto

these machines. The new entries for the NIS`netgroup` map would look like this:

BIGSRV IT_EMP IT_APP

SMALLSRV IT_EMP IT_APP ITINTERN

USERBOX IT_EMP ITINTERN USERS

This method of defining login restrictions works reasonably well when it is possible to define

groups of machines with identical restrictions. Unfortunately, this is the exception and not the rule.

Most of the time, the ability to define login restrictions on a per-machine basis is required.

Machine-specific netgroup definitions are another possibility to deal with the policy changes. In

this scenario, the /etc/master.passwd of each system contains two lines starting with "+". The first

line adds a netgroup with the accounts allowed to login onto this machine and the second line adds

all other accounts with /usr/sbin/nologin as shell. It is recommended to use the "ALL-CAPS" version

of the hostname as the name of the netgroup:

+@BOXNAME:::::::::

+:::::::::/usr/sbin/nologin

Once this task is completed on all the machines, there is no longer a need to modify the local

versions of /etc/master.passwd ever again. All further changes can be handled by modifying the NIS

727

map. Here is an example of a possible netgroup map for this scenario:

Define groups of users first

IT_EMP (,alpha,test-domain) (,beta,test-domain)

IT_APP (,charlie,test-domain) (,delta,test-domain)

DEPT1 (,echo,test-domain) (,foxtrott,test-domain)

DEPT2 (,golf,test-domain) (,hotel,test-domain)

DEPT3 (,india,test-domain) (,juliet,test-domain)

ITINTERN (,kilo,test-domain) (,lima,test-domain)

D_INTERNS (,able,test-domain) (,baker,test-domain)

#

Now, define some groups based on roles

USERS DEPT1 DEPT2 DEPT3

BIGSRV IT_EMP IT_APP

SMALLSRV IT_EMP IT_APP ITINTERN

USERBOX IT_EMP ITINTERN USERS

#

And a groups for a special tasks

Allow echo and golf to access our anti-virus-machine

SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain)

#

machine-based netgroups

Our main servers

WAR BIGSRV

FAMINE BIGSRV

User india needs access to this server

POLLUTION BIGSRV (,india,test-domain)

#

This one is really important and needs more access restrictions

DEATH IT_EMP

#

The anti-virus-machine mentioned above

ONE SECURITY

#

Restrict a machine to a single user

TWO (,hotel,test-domain)

[...more groups to follow]

It may not always be advisable to use machine-based netgroups. When deploying a couple of dozen

or hundreds of systems, role-based netgroups instead of machine-based netgroups may be used to

keep the size of the NIS map within reasonable limits.

30.4.9. Password Formats

NIS requires that all hosts within an NIS domain use the same format for encrypting passwords. If

users have trouble authenticating on an NIS client, it may be due to a differing password format. In

a heterogeneous network, the format must be supported by all operating systems, where DES is the

lowest common standard.

728

To check which format a server or client is using, look at this section of /etc/login.conf :

default:\

Ê :passwd_format=des:\

Ê :copyright=/etc/COPYRIGHT:\

Ê [Further entries elided]

In this example, the system is using the DES format. Other possible values are blf for Blowfish and

md5 for MD5 encrypted passwords.

If the format on a host needs to be edited to match the one being used in the NIS domain, the login

capability database must be rebuilt after saving the change:

cap_mkdb /etc/login.conf

!

The format of passwords for existing user accounts will not be updated until each

user changes their password after the login capability database is rebuilt.

30.5. Lightweight Directory Access Protocol (LDAP)

The Lightweight Directory Access Protocol (LDAP) is an application layer protocol used to access,

modify, and authenticate objects using a distributed directory information service. Think of it as a

phone or record book which stores several levels of hierarchical, homogeneous information. It is

used in Active Directory and OpenLDAP networks and allows users to access to several levels of

internal information utilizing a single account. For example, email authentication, pulling

employee contact information, and internal website authentication might all make use of a single

user account in the LDAP serverÕs record base.

This section provides a quick start guide for configuring an LDAP server on a FreeBSD system. It

assumes that the administrator already has a design plan which includes the type of information to

store, what that information will be used for, which users should have access to that information,

and how to secure this information from unauthorized access.

30.5.1. LDAP Terminology and Structure

LDAP uses several terms which should be understood before starting the configuration. All

directory entries consist of a group of attributes . Each of these attribute sets contains a unique

identifier known as a Distinguished Name (DN) which is normally built from several other

attributes such as the common or Relative Distinguished Name (RDN). Similar to how directories

have absolute and relative paths, consider a DN as an absolute path and the RDN as the relative

path.

An example LDAP entry looks like the following. This example searches for the entry for the

specified user account (uid), organizational unit (ou), and organization (o):

729

% ldapsearch -xb "uid=trhodes,ou=users,o=example.com"

extended LDIF

#

LDAPv3

base <uid=trhodes,ou=users,o=example.com> with scope subtree

filter: (objectclass=*)

requesting: ALL

#

trhodes, users, example.com

dn: uid=trhodes,ou=users,o=example.com

mail: trhodes@example.com

cn: Tom Rhodes

uid: trhodes

telephoneNumber: (123) 456-7890

search result

search: 2

result: 0 Success

numResponses: 2

numEntries: 1

This example entry shows the values for the dn , mail , cn , uid , and telephoneNumber attributes. The cn

attribute is the RDN.

More information about LDAP and its terminology can be found at

http://www.openldap.org/doc/admin24/intro.html .

30.5.2. Configuring an LDAP Server

FreeBSD does not provide a built-in LDAP server. Begin the configuration by installing

package:net/openldap-server[] package or port:

pkg install openldap-server

There is a large set of default options enabled in the package . Review them by running pkg info

openldap-server . If they are not sufficient (for example if SQL support is needed), please consider

recompiling the port using the appropriate crossref:ports[ports-using,framework].

The installation creates the directory /var/db/openldap-data to hold the data. The directory to store

the certificates must be created:

mkdir /usr/local/etc/openldap/private

The next phase is to configure the Certificate Authority. The following commands must be executed

from /usr/local/etc/openldap/private . This is important as the file permissions need to be restrictive

730

http://www.openldap.org/doc/admin24/intro.html
https://docs.freebsd.org/en/articles/linux-users/#software

and users should not have access to these files. More detailed information about certificates and

their parameters can be found in crossref:security[openssl,"OpenSSL"]. To create the Certificate

Authority, start with this command and follow the prompts:

openssl req -days 365 -nodes -new -x509 -keyout ca.key -out ../ca.crt

The entries for the prompts may be generic except for the Common Name . This entry must be different

than the system hostname. If this will be a self signed certificate, prefix the hostname with CA for

Certificate Authority.

The next task is to create a certificate signing request and a private key. Input this command and

follow the prompts:

openssl req -days 365 -nodes -new -keyout server.key -out server.csr

During the certificate generation process, be sure to correctly set the Common Name attribute. The

Certificate Signing Request must be signed with the Certificate Authority in order to be used as a

valid certificate:

openssl x509 -req -days 365 -in server.csr -out ../server.crt -CA ../ca.crt -CAkey

ca.key -CAcreateserial

The final part of the certificate generation process is to generate and sign the client certificates:

openssl req -days 365 -nodes -new -keyout client.key -out client.csr

openssl x509 -req -days 3650 -in client.csr -out ../client.crt -CA ../ca.crt -CAkey

ca.key

Remember to use the same Common Name attribute when prompted. When finished, ensure that a

total of eight (8) new files have been generated through the proceeding commands.

The daemon running the OpenLDAP server is slapd . Its configuration is performed through

slapd.ldif : the old slapd.conf has been deprecated by OpenLDAP.

Configuration examples for slapd.ldif are available and can also be found in

/usr/local/etc/openldap/slapd.ldif.sample . Options are documented in slapd-config(5). Each section

of slapd.ldif , like all the other LDAP attribute sets, is uniquely identified through a DN. Be sure that

no blank lines are left between the dn: statement and the desired end of the section. In the

following example, TLS will be used to implement a secure channel. The first section represents the

global configuration:

731

http://www.openldap.org/doc/admin24/slapdconf2.html

#

See slapd-config(5) for details on configuration options.

This file should NOT be world readable.

#

dn: cn=config

objectClass: olcGlobal

cn: config

#

#

Define global ACLs to disable default read access.

#

olcArgsFile: /var/run/openldap/slapd.args

olcPidFile: /var/run/openldap/slapd.pid

olcTLSCertificateFile: /usr/local/etc/openldap/server.crt

olcTLSCertificateKeyFile: /usr/local/etc/openldap/private/server.key

olcTLSCACertificateFile: /usr/local/etc/openldap/ca.crt

#olcTLSCipherSuite: HIGH

olcTLSProtocolMin: 3.1

olcTLSVerifyClient: never

The Certificate Authority, server certificate and server private key files must be specified here. It is

recommended to let the clients choose the security cipher and omit option olcTLSCipherSuite

(incompatible with TLS clients other than openssl). Option olcTLSProtocolMin lets the server require

a minimum security level: it is recommended. While verification is mandatory for the server, it is

not for the client: olcTLSVerifyClient: never .

The second section is about the backend modules and can be configured as follows:

#

Load dynamic backend modules:

#

dn: cn=module,cn=config

objectClass: olcModuleList

cn: module

olcModulepath: /usr/local/libexec/openldap

olcModuleload: back_mdb.la

#olcModuleload: back_bdb.la

#olcModuleload: back_hdb.la

#olcModuleload: back_ldap.la

#olcModuleload: back_passwd.la

#olcModuleload: back_shell.la

The third section is devoted to load the needed ldif schemas to be used by the databases: they are

essential.

732

dn: cn=schema,cn=config

objectClass: olcSchemaConfig

cn: schema

include: file:///usr/local/etc/openldap/schema/core.ldif

include: file:///usr/local/etc/openldap/schema/cosine.ldif

include: file:///usr/local/etc/openldap/schema/inetorgperson.ldif

include: file:///usr/local/etc/openldap/schema/nis.ldif

Next, the frontend configuration section:

Frontend settings

#

dn: olcDatabase={-1}frontend,cn=config

objectClass: olcDatabaseConfig

objectClass: olcFrontendConfig

olcDatabase: {-1}frontend

olcAccess: to * by * read

#

Sample global access control policy:

Root DSE: allow anyone to read it

Subschema (sub)entry DSE: allow anyone to read it

Other DSEs:

Allow self write access

Allow authenticated users read access

Allow anonymous users to authenticate

#

#olcAccess: to dn.base="" by * read

#olcAccess: to dn.base="cn=Subschema" by * read

#olcAccess: to *

by self write

by users read

by anonymous auth

#

if no access controls are present, the default policy

allows anyone and everyone to read anything but restricts

updates to rootdn. (e.g., "access to * by * read")

#

rootdn can always read and write EVERYTHING!

#

olcPasswordHash: {SSHA}

{SSHA} is already the default for olcPasswordHash

Another section is devoted to the configuration backend , the only way to later access the OpenLDAP

server configuration is as a global super-user.

733

dn: olcDatabase={0}config,cn=config

objectClass: olcDatabaseConfig

olcDatabase: {0}config

olcAccess: to * by * none

olcRootPW: {SSHA}iae+lrQZILpiUdf16Z9KmDmSwT77Dj4U

The default administrator username is cn=config . Type slappasswd in a shell, choose a password

and use its hash in olcRootPW . If this option is not specified now, before slapd.ldif is imported, no

one will be later able to modify the global configuration section.

The last section is about the database backend:

###

LMDB database definitions

###

#

dn: olcDatabase=mdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

olcDbMaxSize: 1073741824

olcSuffix: dc=domain,dc=example

olcRootDN: cn=mdbadmin,dc=domain,dc=example

Cleartext passwords, especially for the rootdn, should

be avoided. See slappasswd(8) and slapd-config(5) for details.

Use of strong authentication encouraged.

olcRootPW: {SSHA}X2wHvIWDk6G76CQyCMS1vDCvtICWgn0+

The database directory MUST exist prior to running slapd AND

should only be accessible by the slapd and slap tools.

Mode 700 recommended.

olcDbDirectory: /var/db/openldap-data

Indices to maintain

olcDbIndex: objectClass eq

This database hosts the actual contents of the LDAP directory. Types other than mdb are available. Its

super-user, not to be confused with the global one, is configured here: a (possibly custom)

username in olcRootDN and the password hash in olcRootPW ; slappasswd can be used as before.

This repository contains four examples of slapd.ldif . To convert an existing slapd.conf into

slapd.ldif , refer to this page (please note that this may introduce some unuseful options).

When the configuration is completed, slapd.ldif must be placed in an empty directory. It is

recommended to create it as:

mkdir /usr/local/etc/openldap/slapd.d/

Import the configuration database:

734

http://www.openldap.org/devel/gitweb.cgi?p=openldap.git;a=tree;f=tests/data/regressions/its8444;h=8a5e808e63b0de3d2bdaf2cf34fecca8577ca7fd;hb=HEAD
http://www.openldap.org/doc/admin24/slapdconf2.html

/usr/local/sbin/slapadd -n0 -F /usr/local/etc/openldap/slapd.d/ -l

/usr/local/etc/openldap/slapd.ldif

Start the slapd daemon:

/usr/local/libexec/slapd -F /usr/local/etc/openldap/slapd.d/

Option -d can be used for debugging, as specified in slapd(8). To verify that the server is running

and working:

ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts

extended LDIF

#

LDAPv3

base <> with scope baseObject

filter: (objectclass=*)

requesting: namingContexts

#

#

dn:

namingContexts: dc=domain,dc=example

search result

search: 2

result: 0 Success

numResponses: 2

numEntries: 1

The server must still be trusted. If that has never been done before, follow these instructions. Install

the OpenSSL package or port:

pkg install openssl

From the directory where ca.crt is stored (in this example, /usr/local/etc/openldap), run:

c_rehash .

Both the CA and the server certificate are now correctly recognized in their respective roles. To

verify this, run this command from the server.crt directory:

openssl verify -verbose -CApath . server.crt

735

If slapd was running, restart it. As stated in /usr/local/etc/rc.d/slapd , to properly run slapd at boot

the following lines must be added to /etc/rc.conf :

slapd_enable="YES"

slapd_flags='-h "ldapi://%2fvar%2frun%2fopenldap%2fldapi/

ldap://0.0.0.0/"'

slapd_sockets="/var/run/openldap/ldapi"

slapd_cn_config="YES"

slapd does not provide debugging at boot. Check /var/log/debug.log , dmesg -a and /var/log/messages

for this purpose.

The following example adds the group team and the user john to the `domain.example`LDAP

database, which is still empty. First, create the file domain.ldif :

736

cat domain.ldif

dn: dc=domain,dc=example

objectClass: dcObject

objectClass: organization

o: domain.example

dc: domain

dn: ou=groups,dc=domain,dc=example

objectClass: top

objectClass: organizationalunit

ou: groups

dn: ou=users,dc=domain,dc=example

objectClass: top

objectClass: organizationalunit

ou: users

dn: cn=team,ou=groups,dc=domain,dc=example

objectClass: top

objectClass: posixGroup

cn: team

gidNumber: 10001

dn: uid=john,ou=users,dc=domain,dc=example

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: John McUser

uid: john

uidNumber: 10001

gidNumber: 10001

homeDirectory: /home/john/

loginShell: /usr/bin/bash

userPassword: secret

See the OpenLDAP documentation for more details. Use slappasswd to replace the plain text

password secret with a hash in userPassword . The path specified as loginShell must exist in all the

systems where john is allowed to login. Finally, use the mdb administrator to modify the database:

ldapadd -W -D "cn=mdbadmin,dc=domain,dc=example" -f domain.ldif

Modifications to the global configuration section can only be performed by the global super-user.

For example, assume that the option olcTLSCipherSuite: HIGH:MEDIUM:SSLv3 was initially specified

and must now be deleted. First, create a file that contains the following:

737

cat global_mod

dn: cn=config

changetype: modify

delete: olcTLSCipherSuite

Then, apply the modifications:

ldapmodify -f global_mod -x -D "cn=config" -W

When asked, provide the password chosen in the configuration backend section. The username is

not required: here, cn=config represents the DN of the database section to be modified.

Alternatively, use ldapmodify to delete a single line of the database, ldapdelete to delete a whole

entry.

If something goes wrong, or if the global super-user cannot access the configuration backend, it is

possible to delete and re-write the whole configuration:

rm -rf /usr/local/etc/openldap/slapd.d/

slapd.ldif can then be edited and imported again. Please, follow this procedure only when no other

solution is available.

This is the configuration of the server only. The same machine can also host an LDAP client, with its

own separate configuration.

30.6. Dynamic Host Configuration Protocol (DHCP)

The Dynamic Host Configuration Protocol (DHCP) allows a system to connect to a network in order

to be assigned the necessary addressing information for communication on that network. FreeBSD

includes the OpenBSD version of dhclient which is used by the client to obtain the addressing

information. FreeBSD does not install a DHCP server, but several servers are available in the

FreeBSD Ports Collection. The DHCP protocol is fully described in RFC 2131 . Informational

resources are also available at isc.org/downloads/dhcp/ .

This section describes how to use the built-in DHCP client. It then describes how to install and

configure a DHCP server.

!

In FreeBSD, the man:bpf[4] device is needed by both the DHCP server and DHCP

client. This device is included in the GENERIC kernel that is installed with FreeBSD.

Users who prefer to create a custom kernel need to keep this device if DHCP is

used.

It should be noted that bpf also allows privileged users to run network packet

sniffers on that system.

738

http://www.freesoft.org/CIE/RFC/2131/
http://www.isc.org/downloads/dhcp/

30.6.1. Configuring a DHCP Client

DHCP client support is included in the FreeBSD installer, making it easy to configure a newly

installed system to automatically receive its networking addressing information from an existing

DHCP server. Refer to crossref:bsdinstall[bsdinstall-post,"Accounts, Time Zone, Services and

Hardening"] for examples of network configuration.

When dhclient is executed on the client machine, it begins broadcasting requests for configuration

information. By default, these requests use UDP port 68. The server replies on UDP port 67, giving

the client an IP address and other relevant network information such as a subnet mask, default

gateway, and DNS server addresses. This information is in the form of a DHCP"lease" and is valid

for a configurable time. This allows stale IP addresses for clients no longer connected to the

network to automatically be reused. DHCP clients can obtain a great deal of information from the

server. An exhaustive list may be found in man:dhcp-options[5].

By default, when a FreeBSD system boots, its DHCP client runs in the background, or

asynchronously . Other startup scripts continue to run while the DHCP process completes, which

speeds up system startup.

Background DHCP works well when the DHCP server responds quickly to the clientÕs requests.

However, DHCP may take a long time to complete on some systems. If network services attempt to

run before DHCP has assigned the network addressing information, they will fail. Using DHCP in

synchronous mode prevents this problem as it pauses startup until the DHCP configuration has

completed.

This line in /etc/rc.conf is used to configure background or asynchronous mode:

ifconfig_fxp0="DHCP"

This line may already exist if the system was configured to use DHCP during installation. Replace

the fxp0 shown in these examples with the name of the interface to be dynamically configured, as

described in crossref:config[config-network-setup,ÒSetting Up Network Interface CardsÓ].

To instead configure the system to use synchronous mode, and to pause during startup while DHCP

completes, use ÒSYNCDHCPÓ:

ifconfig_fxp0="SYNCDHCP"

Additional client options are available. Search for dhclient in man:rc.conf[5] for details.

The DHCP client uses the following files:

¥ /etc/dhclient.conf

The configuration file used by dhclient . Typically, this file contains only comments as the

defaults are suitable for most clients. This configuration file is described in

man:dhclient.conf[5].

739

¥ /sbin/dhclient

More information about the command itself can be found in man:dhclient[8].

¥ /sbin/dhclient-script

The FreeBSD-specific DHCP client configuration script. It is described in man:dhclient-script[8],

but should not need any user modification to function properly.

¥ /var/db/dhclient.leases.interface

The DHCP client keeps a database of valid leases in this file, which is written as a log and is

described in man:dhclient.leases[5].

30.6.2. Installing and Configuring a DHCP Server

This section demonstrates how to configure a FreeBSD system to act as a DHCP server using the

Internet Systems Consortium (ISC) implementation of the DHCP server. This implementation and its

documentation can be installed using the package:net/isc-dhcp43-server[] package or port.

The installation of package:net/isc-dhcp43-server[] installs a sample configuration file. Copy

/usr/local/etc/dhcpd.conf.example to /usr/local/etc/dhcpd.conf and make any edits to this new file.

The configuration file is comprised of declarations for subnets and hosts which define the

information that is provided to DHCP clients. For example, these lines configure the following:

option domain-name "example.org"; !

option domain-name-servers ns1.example.org; "

option subnet-mask 255.255.255.0; #

default-lease-time 600; $

max-lease-time 72400; %

ddns-update-style none; &

subnet 10.254.239.0 netmask 255.255.255.224 {

Ê range 10.254.239.10 10.254.239.20; '

Ê option routers rtr-239-0-1.example.org, rtr-239-0-2.example.org; (

}

host fantasia {

Ê hardware ethernet 08:00:07:26:c0:a5;)

Ê fixed-address fantasia.fugue.com; *

}

!

This option specifies the default search domain that will be provided to clients. Refer to

man:resolv.conf[5] for more information.

"

This option specifies a comma separated list of DNS servers that the client should use. They can

be listed by their Fully Qualified Domain Names (FQDN), as seen in the example, or by their IP

addresses.

740

#

The subnet mask that will be provided to clients.

$

The default lease expiry time in seconds. A client can be configured to override this value.

%

The maximum allowed length of time, in seconds, for a lease. Should a client request a longer

lease, a lease will still be issued, but it will only be valid for max-lease-time .

&

The default of none disables dynamic DNS updates. Changing this to interim configures the DHCP

server to update a DNS server whenever it hands out a lease so that the DNS server knows

which IP addresses are associated with which computers in the network. Do not change the

default setting unless the DNS server has been configured to support dynamic DNS.

'

This line creates a pool of available IP addresses which are reserved for allocation to DHCP

clients. The range of addresses must be valid for the network or subnet specified in the previous

line.

(

Declares the default gateway that is valid for the network or subnet specified before the opening

{ bracket.

)

Specifies the hardware MAC address of a client so that the DHCP server can recognize the client

when it makes a request.

*

Specifies that this host should always be given the same IP address. Using the hostname is

correct, since the DHCP server will resolve the hostname before returning the lease information.

This configuration file supports many more options. Refer to dhcpd.conf(5), installed with the

server, for details and examples.

Once the configuration of dhcpd.conf is complete, enable the DHCP server in /etc/rc.conf :

dhcpd_enable="YES"

dhcpd_ifaces="dc0"

Replace the dc0 with the interface (or interfaces, separated by whitespace) that the DHCP server

should listen on for DHCP client requests.

Start the server by issuing the following command:

service isc-dhcpd start

Any future changes to the configuration of the server will require the dhcpd service to be stopped

and then started using man:service[8].

The DHCP server uses the following files. Note that the manual pages are installed with the server

software.

¥ /usr/local/sbin/dhcpd

More information about the dhcpd server can be found in dhcpd(8).

¥ /usr/local/etc/dhcpd.conf

741

The server configuration file needs to contain all the information that should be provided to

clients, along with information regarding the operation of the server. This configuration file is

described in dhcpd.conf(5).

¥ /var/db/dhcpd.leases

The DHCP server keeps a database of leases it has issued in this file, which is written as a log.

Refer to dhcpd.leases(5), which gives a slightly longer description.

¥ /usr/local/sbin/dhcrelay

This daemon is used in advanced environments where one DHCP server forwards a request

from a client to another DHCP server on a separate network. If this functionality is required,

install the package:net/isc-dhcp43-relay[] package or port. The installation includes dhcrelay(8)

which provides more detail.

30.7. Domain Name System (DNS)

Domain Name System (DNS) is the protocol through which domain names are mapped to IP

addresses, and vice versa. DNS is coordinated across the Internet through a somewhat complex

system of authoritative root, Top Level Domain (TLD), and other smaller-scale name servers, which

host and cache individual domain information. It is not necessary to run a name server to perform

DNS lookups on a system.

The following table describes some of the terms associated with DNS:

Table 27. DNS Terminology

Term Definition

Forward DNS Mapping of hostnames to IP addresses.

Origin Refers to the domain covered in a particular

zone file.

Resolver A system process through which a machine

queries a name server for zone information.

Reverse DNS Mapping of IP addresses to hostnames.

Root zone The beginning of the Internet zone hierarchy. All

zones fall under the root zone, similar to how all

files in a file system fall under the root directory.

Zone An individual domain, subdomain, or portion of

the DNS administered by the same authority.

Examples of zones:

¥ . is how the root zone is usually referred to in documentation.

¥ org. is a Top Level Domain (TLD) under the root zone.

¥ example.org. is a zone under the `org.`TLD.

742

¥ 1.168.192.in-addr.arpa is a zone referencing all IP addresses which fall under the

`192.168.1.*`IP address space.

As one can see, the more specific part of a hostname appears to its left. For example, example.org. is

more specific than org. , as org. is more specific than the root zone. The layout of each part of a

hostname is much like a file system: the /dev directory falls within the root, and so on.

30.7.1. Reasons to Run a Name Server

Name servers generally come in two forms: authoritative name servers, and caching (also known

as resolving) name servers.

An authoritative name server is needed when:

¥ One wants to serve DNS information to the world, replying authoritatively to queries.

¥ A domain, such as example.org , is registered and IP addresses need to be assigned to hostnames

under it.

¥ An IP address block requires reverse DNS entries (IP to hostname).

¥ A backup or second name server, called a slave, will reply to queries.

A caching name server is needed when:

¥ A local DNS server may cache and respond more quickly than querying an outside name server.

When one queries for www.FreeBSD.org , the resolver usually queries the uplink ISPÕs name server,

and retrieves the reply. With a local, caching DNS server, the query only has to be made once to the

outside world by the caching DNS server. Additional queries will not have to go outside the local

network, since the information is cached locally.

30.7.2. DNS Server Configuration

Unbound is provided in the FreeBSD base system. By default, it will provide DNS resolution to the

local machine only. While the base system package can be configured to provide resolution services

beyond the local machine, it is recommended that such requirements be addressed by installing

Unbound from the FreeBSD Ports Collection.

To enable Unbound, add the following to /etc/rc.conf :

local_unbound_enable="YES"

Any existing nameservers in /etc/resolv.conf will be configured as forwarders in the new Unbound

configuration.

!

If any of the listed nameservers do not support DNSSEC, local DNS resolution will

fail. Be sure to test each nameserver and remove any that fail the test. The

following command will show the trust tree or a failure for a nameserver running

on 192.168.1.1 :

743

% drill -S FreeBSD.org @192.168.1.1

Once each nameserver is confirmed to support DNSSEC, start Unbound:

service local_unbound onestart

This will take care of updating /etc/resolv.conf so that queries for DNSSEC secured domains will

now work. For example, run the following to validate the FreeBSD.org DNSSEC trust tree:

% drill -S FreeBSD.org

;; Number of trusted keys: 1

;; Chasing: freebsd.org. A

DNSSEC Trust tree:

freebsd.org. (A)

|---freebsd.org. (DNSKEY keytag: 36786 alg: 8 flags: 256)

Ê |---freebsd.org. (DNSKEY keytag: 32659 alg: 8 flags: 257)

Ê |---freebsd.org. (DS keytag: 32659 digest type: 2)

Ê |---org. (DNSKEY keytag: 49587 alg: 7 flags: 256)

Ê |---org. (DNSKEY keytag: 9795 alg: 7 flags: 257)

Ê |---org. (DNSKEY keytag: 21366 alg: 7 flags: 257)

Ê |---org. (DS keytag: 21366 digest type: 1)

Ê | |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)

Ê | |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)

Ê |---org. (DS keytag: 21366 digest type: 2)

Ê |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)

Ê |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)

;; Chase successful

30.8. Apache HTTP Server

The open source Apache HTTP Server is the most widely used web server. FreeBSD does not install

this web server by default, but it can be installed from the package:www/apache24[] package or

port.

This section summarizes how to configure and start version 2. x of the Apache HTTP Server on

FreeBSD. For more detailed information about Apache 2.X and its configuration directives, refer to

httpd.apache.org .

30.8.1. Configuring and Starting Apache

In FreeBSD, the main Apache HTTP Server configuration file is installed as

/usr/local/etc/apache2x/httpd.conf , where x represents the version number. This ASCII text file

begins comment lines with a # . The most frequently modified directives are:

744

http://httpd.apache.org/

ServerRoot "/usr/local"

Specifies the default directory hierarchy for the Apache installation. Binaries are stored in the

bin and sbin subdirectories of the server root and configuration files are stored in the

etc/apache2x subdirectory.

ServerAdmin you@example.com

Change this to the email address to receive problems with the server. This address also appears

on some server-generated pages, such as error documents.

ServerName www.example.com:80

Allows an administrator to set a hostname which is sent back to clients for the server. For

example, www can be used instead of the actual hostname. If the system does not have a

registered DNS name, enter its IP address instead. If the server will listen on an alternate report,

change 80 to the alternate port number.

DocumentRoot "/usr/local/www/apache2_x_/data"

The directory where documents will be served from. By default, all requests are taken from this

directory, but symbolic links and aliases may be used to point to other locations.

It is always a good idea to make a backup copy of the default Apache configuration file before

making changes. When the configuration of Apache is complete, save the file and verify the

configuration using apachectl . Running apachectl configtest should return Syntax OK .

To launch Apache at system startup, add the following line to /etc/rc.conf :

apache24_enable="YES"

If Apache should be started with non-default options, the following line may be added to

/etc/rc.conf to specify the needed flags:

apache24_flags=""

If apachectl does not report configuration errors, start httpd now:

service apache24 start

The httpd service can be tested by entering http:// localhost in a web browser, replacing localhost

with the fully-qualified domain name of the machine running httpd . The default web page that is

displayed is /usr/local/www/apache24/data/index.html .

The Apache configuration can be tested for errors after making subsequent configuration changes

while httpd is running using the following command:

service apache24 configtest

745

mailto:you@example.com

!

It is important to note that configtest is not an man:rc[8] standard, and should not

be expected to work for all startup scripts.

30.8.2. Virtual Hosting

Virtual hosting allows multiple websites to run on one Apache server. The virtual hosts can be IP-

based or name-based . IP-based virtual hosting uses a different IP address for each website. Name-

based virtual hosting uses the clients HTTP/1.1 headers to figure out the hostname, which allows

the websites to share the same IP address.

To setup Apache to use name-based virtual hosting, add a VirtualHost block for each website. For

example, for the webserver named www.domain.tld with a virtual domain of

www.someotherdomain.tld , add the following entries to httpd.conf :

<VirtualHost *>

Ê ServerName www.domain.tld

Ê DocumentRoot /www/domain.tld

</VirtualHost>

<VirtualHost *>

Ê ServerName www.someotherdomain.tld

Ê DocumentRoot /www/someotherdomain.tld

</VirtualHost>

For each virtual host, replace the values for ServerName and DocumentRoot with the values to be used.

For more information about setting up virtual hosts, consult the official Apache documentation at:

http://httpd.apache.org/docs/vhosts/ .

30.8.3. Apache Modules

Apache uses modules to augment the functionality provided by the basic server. Refer to

http://httpd.apache.org/docs/current/mod/ for a complete listing of and the configuration details for

the available modules.

In FreeBSD, some modules can be compiled with the package:www/apache24[] port. Type make

config within /usr/ports/www/apache24 to see which modules are available and which are enabled

by default. If the module is not compiled with the port, the FreeBSD Ports Collection provides an

easy way to install many modules. This section describes three of the most commonly used

modules.

30.8.3.1. SSL support

At one in point in time, support for SSL inside of Apache required a secondary module called

mod_ssl . This is no longer the case and the default install of Apache comes with SSL built into the

web server. An example of how to enable support for SSL websites is available in the installed file,

httpd-ssl.conf inside of the /usr/local/etc/apache24/extra directory. Inside this directory is also a

sample file called named ssl.conf-sample . It is recommended that both files be evaluated to

746

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/current/mod/

properly set up secure websites in the Apache web server.

After the configuration of SSL is complete, the following line must be uncommented in the main

http.conf to activate the changes on the next restart or reload of Apache:

#Include etc/apache24/extra/httpd-ssl.conf

"

SSL version two and version three have known vulnerability issues. It is highly

recommended TLS version 1.2 and 1.3 be enabled in place of the older SSL options.

This can be accomplished by setting the following options in the ssl.conf :

SSLProtocol all -SSLv3 -SSLv2 +TLSv1.2 +TLSv1.3

SSLProxyProtocol all -SSLv2 -SSLv3 -TLSv1 -TLSv1.1

To complete the configuration of SSL in the web server, uncomment the following line to ensure

that the configuration will be pulled into Apache during restart or reload:

Secure (SSL/TLS) connections

Include etc/apache24/extra/httpd-ssl.conf

The following lines must also be uncommented in the httpd.conf to fully support SSL in Apache:

LoadModule authn_socache_module libexec/apache24/mod_authn_socache.so

LoadModule socache_shmcb_module libexec/apache24/mod_socache_shmcb.so

LoadModule ssl_module libexec/apache24/mod_ssl.so

The next step is to work with a certificate authority to have the appropriate certificates installed on

the system. This will set up a chain of trust for the site and prevent any warnings of self-signed

certificates.

30.8.3.2. mod_perl

The mod_perl module makes it possible to write Apache modules in Perl. In addition, the persistent

interpreter embedded in the server avoids the overhead of starting an external interpreter and the

penalty of Perl start-up time.

The mod_perl can be installed using the package:www/mod_perl2[] package or port.

Documentation for using this module can be found at http://perl.apache.org/docs/2.0/index.html .

30.8.3.3. mod_php

PHP: Hypertext Preprocessor (PHP) is a general-purpose scripting language that is especially suited

for web development. Capable of being embedded into HTML, its syntax draws upon C, Javaª, and

Perl with the intention of allowing web developers to write dynamically generated webpages

quickly.

747

http://perl.apache.org/docs/2.0/index.html

Support for PHP for Apache and any other feature written in the language, can be added by

installing the appropriate port.

For all supported versions, search the package database using pkg :

pkg search php

A list will be displayed including the versions and additional features they provide. The

components are completely modular, meaning features are enabled by installing the appropriate

port. To install PHP version 7.4 for Apache, issue the following command:

pkg install mod_php74

If any dependency packages need to be installed, they will be installed as well.

By default, PHP will not be enabled. The following lines will need to be added to the Apache

configuration file located in /usr/local/etc/apache24 to make it active:

<FilesMatch "\.php$">

Ê SetHandler application/x-httpd-php

</FilesMatch>

<FilesMatch "\.phps$">

Ê SetHandler application/x-httpd-php-source

</FilesMatch>

In addition, the DirectoryIndex in the configuration file will also need to be updated and Apache

will either need to be restarted or reloaded for the changes to take effect.

Support for many of the PHP features may also be installed by using pkg . For example, to install

support for XML or SSL, install their respective ports:

pkg install php74-xml php74-openssl

As before, the Apache configuration will need to be reloaded for the changes to take effect, even in

cases where it was just a module install.

To perform a graceful restart to reload the configuration, issue the following command:

apachectl graceful

Once the install is complete, there are two methods of obtaining the installed PHP support modules

and the environmental information of the build. The first is to install the full PHP binary and

running the command to gain the information:

748

pkg install php74

php -i |less

It is necessary to pass the output to a pager, such as the more or less to easier digest the amount of

output.

Finally, to make any changes to the global configuration of PHP there is a well documented file

installed into /usr/local/etc/php.ini . At the time of install, this file will not exist because there are

two versions to choose from, one is php.ini-development and the other is php.ini-production . These

are starting points to assist administrators in their deployment.

30.8.3.4. HTTP2 Support

Apache support for the HTTP2 protocol is included by default when installing the port with pkg . The

new version of HTTP includes many improvements over the previous version, including utilizing a

single connection to a website, reducing overall roundtrips of TCP connections. Also, packet header

data is compressed and HTTP2 requires encryption by default.

When Apache is configured to only use HTTP2, web browsers will require secure, encrypted HTTPS

connections. When Apache is configured to use both versions, HTTP1.1 will be considered a fall

back option if any issues arise during the connection.

While this change does require administrators to make changes, they are positive and equate to a

more secure Internet for everyone. The changes are only required for sites not currently

implementing SSL and TLS.

!

This configuration depends on the previous sections, including TLS support. It is

recommended those instructions be followed before continuing with this

configuration.

Start the process by enabling the http2 module by uncommenting the line in

/usr/local/etc/apache24/httpd.conf and replace the mpm_prefork module with mpm_event as the

former does not support HTTP2.

LoadModule http2_module libexec/apache24/mod_http2.so

LoadModule mpm_event_module libexec/apache24/mod_mpm_event.so

!

There is a separate mod_http2 port that is available. It exists to deliver security

and bug fixes quicker than the module installed with the bundled apache24 port. It

is not required for HTTP2 support but is available. When installed, the mod_h2.so

should be used in place of mod_http2.so in the Apache configuration.

There are two methods to implement HTTP2 in Apache; one way is globally for all sites and each

VirtualHost running on the system. To enable HTTP2 globally, add the following line under the

749

ServerName directive:

Protocols h2 http/1.1

!

To enable HTTP2 over plaintext, use h2h2chttp/1.1 in the httpd.conf .

Having the h2c here will allow plaintext HTTP2 data to pass on the system but is not recommended.

In addition, using the http/1.1 here will allow fallback to the HTTP1.1 version of the protocol should

it be needed by the system.

To enable HTTP2 for individual VirtualHosts, add the same line within the VirtualHost directive in

either httpd.conf or httpd-ssl.conf .

Reload the configuration using the apachectl reload command and test the configuration either by

using either of the following methods after visiting one of the hosted pages:

grep "HTTP/2.0" /var/log/httpd-access.log

This should return something similar to the following:

192.168.1.205 - - [18/Oct/2020:18:34:36 -0400] "GET / HTTP/2.0" 304 -

192.0.2.205 - - [18/Oct/2020:19:19:57 -0400] "GET / HTTP/2.0" 304 -

192.0.0.205 - - [18/Oct/2020:19:20:52 -0400] "GET / HTTP/2.0" 304 -

192.0.2.205 - - [18/Oct/2020:19:23:10 -0400] "GET / HTTP/2.0" 304 -

The other method is using the web browserÕs built in site debugger or tcpdump ; however, using

either method is beyond the scope of this document.

Support for HTTP2 reverse proxy connections by using the mod_proxy_http2.so module. When

configuring the ProxyPass or RewriteRules [P] statements, they should use h2:// for the connection.

30.8.4. Dynamic Websites

In addition to mod_perl and mod_php, other languages are available for creating dynamic web

content. These include Django and Ruby on Rails.

30.8.4.1. Django

Django is a BSD-licensed framework designed to allow developers to write high performance,

elegant web applications quickly. It provides an object-relational mapper so that data types are

developed as Python objects. A rich dynamic database-access API is provided for those objects

without the developer ever having to write SQL. It also provides an extensible template system so

that the logic of the application is separated from the HTML presentation.

Django depends on mod_python , and an SQL database engine. In FreeBSD, the package:www/py-

django[] port automatically installs mod_python and supports the PostgreSQL, MySQL, or SQLite

750

databases, with the default being SQLite. To change the database engine, type make config within

/usr/ports/www/py-django , then install the port.

Once Django is installed, the application will need a project directory along with the Apache

configuration in order to use the embedded Python interpreter. This interpreter is used to call the

application for specific URLs on the site.

To configure Apache to pass requests for certain URLs to the web application, add the following to

httpd.conf , specifying the full path to the project directory:

<Location "/">

Ê SetHandler python-program

Ê PythonPath "['/dir/to/the/django/packages/'] + sys.path"

Ê PythonHandler django.core.handlers.modpython

Ê SetEnv DJANGO_SETTINGS_MODULE mysite.settings

Ê PythonAutoReload On

Ê PythonDebug On

</Location>

Refer to https://docs.djangoproject.com for more information on how to use Django.

30.8.4.2. Ruby on Rails

Ruby on Rails is another open source web framework that provides a full development stack. It is

optimized to make web developers more productive and capable of writing powerful applications

quickly. On FreeBSD, it can be installed using the package:www/rubygem-rails[] package or port.

Refer to http://guides.rubyonrails.org for more information on how to use Ruby on Rails.

30.9. File Transfer Protocol (FTP)

The File Transfer Protocol (FTP) provides users with a simple way to transfer files to and from an

FTP server. FreeBSD includes FTP server software, ftpd, in the base system.

FreeBSD provides several configuration files for controlling access to the FTP server. This section

summarizes these files. Refer to man:ftpd[8] for more details about the built-in FTP server.

30.9.1. Configuration

The most important configuration step is deciding which accounts will be allowed access to the FTP

server. A FreeBSD system has a number of system accounts which should not be allowed FTP

access. The list of users disallowed any FTP access can be found in /etc/ftpusers . By default, it

includes system accounts. Additional users that should not be allowed access to FTP can be added.

In some cases it may be desirable to restrict the access of some users without preventing them

completely from using FTP. This can be accomplished be creating /etc/ftpchroot as described in

man:ftpchroot[5]. This file lists users and groups subject to FTP access restrictions.

To enable anonymous FTP access to the server, create a user named ftp on the FreeBSD system.

751

https://docs.djangoproject.com
http://guides.rubyonrails.org

Users will then be able to log on to the FTP server with a username of ftp or anonymous . When

prompted for the password, any input will be accepted, but by convention, an email address should

be used as the password. The FTP server will call man:chroot[2] when an anonymous user logs in,

to restrict access to only the home directory of the ftp user.

There are two text files that can be created to specify welcome messages to be displayed to FTP

clients. The contents of /etc/ftpwelcome will be displayed to users before they reach the login

prompt. After a successful login, the contents of /etc/ftpmotd will be displayed. Note that the path to

this file is relative to the login environment, so the contents of ~ftp/etc/ftpmotd would be displayed

for anonymous users.

Once the FTP server has been configured, set the appropriate variable in /etc/rc.conf to start the

service during boot:

ftpd_enable="YES"

To start the service now:

service ftpd start

Test the connection to the FTP server by typing:

% ftp localhost

The ftpd daemon uses man:syslog[3] to log messages. By default, the system log daemon will write

messages related to FTP in /var/log/xferlog . The location of the FTP log can be modified by changing

the following line in /etc/syslog.conf :

ftp.info /var/log/xferlog

!

Be aware of the potential problems involved with running an anonymous FTP

server. In particular, think twice about allowing anonymous users to upload files.

It may turn out that the FTP site becomes a forum for the trade of unlicensed

commercial software or worse. If anonymous FTP uploads are required, then

verify the permissions so that these files cannot be read by other anonymous users

until they have been reviewed by an administrator.

30.10. File and Print Services for Microsoft¨

Windows¨ Clients (Samba)

Samba is a popular open source software package that provides file and print services using the

SMB/CIFS protocol. This protocol is built into Microsoft¨ Windows¨ systems. It can be added to

non-Microsoft¨ Windows¨ systems by installing the Samba client libraries. The protocol allows

752

clients to access shared data and printers. These shares can be mapped as a local disk drive and

shared printers can be used as if they were local printers.

On FreeBSD, the Samba client libraries can be installed using the package:net/samba413[] port or

package. The client provides the ability for a FreeBSD system to access SMB/CIFS shares in a

Microsoft¨ Windows¨ network.

A FreeBSD system can also be configured to act as a Samba server by installing the same

package:net/samba413[] port or package. This allows the administrator to create SMB/CIFS shares

on the FreeBSD system which can be accessed by clients running Microsoft¨ Windows¨ or the

Samba client libraries.

30.10.1. Server Configuration

Samba is configured in /usr/local/etc/smb4.conf . This file must be created before Samba can be

used.

A simple smb4.conf to share directories and printers with Windows¨ clients in a workgroup is

shown here. For more complex setups involving LDAP or Active Directory, it is easier to use

man:samba-tool[8] to create the initial smb4.conf .

[global]

workgroup = WORKGROUP

server string = Samba Server Version %v

netbios name = ExampleMachine

wins support = Yes

security = user

passdb backend = tdbsam

Example: share /usr/src accessible only to 'developer' user

[src]

path = /usr/src

valid users = developer

writable = yes

browsable = yes

read only = no

guest ok = no

public = no

create mask = 0666

directory mask = 0755

30.10.1.1. Global Settings

Settings that describe the network are added in /usr/local/etc/smb4.conf :

workgroup

The name of the workgroup to be served.

753

netbios name

The NetBIOS name by which a Samba server is known. By default, it is the same as the first

component of the hostÕs DNS name.

server string

The string that will be displayed in the output of net view and some other networking tools that

seek to display descriptive text about the server.

wins support

Whether Samba will act as a WINS server. Do not enable support for WINS on more than one

server on the network.

30.10.1.2. Security Settings

The most important settings in /usr/local/etc/smb4.conf are the security model and the backend

password format. These directives control the options:

security

The most common settings are security = share and security = user . If the clients use

usernames that are the same as their usernames on the FreeBSD machine, user level security

should be used. This is the default security policy and it requires clients to first log on before

they can access shared resources.

In share level security, clients do not need to log onto the server with a valid username and

password before attempting to connect to a shared resource. This was the default security model

for older versions of Samba.

passdb backend

Samba has several different backend authentication models. Clients may be authenticated with

LDAP, NIS+, an SQL database, or a modified password file. The recommended authentication

method, tdbsam , is ideal for simple networks and is covered here. For larger or more complex

networks, ldapsam is recommended. smbpasswd was the former default and is now obsolete.

30.10.1.3. Samba Users

FreeBSD user accounts must be mapped to the SambaSAMAccount database for Windows¨ clients to

access the share. Map existing FreeBSD user accounts using man:pdbedit[8]:

pdbedit -a username

This section has only mentioned the most commonly used settings. Refer to the Official Samba Wiki

for additional information about the available configuration options.

30.10.2. Starting Samba

To enable Samba at boot time, add the following line to /etc/rc.conf :

754

https://wiki.samba.org

samba_server_enable="YES"

To start Samba now:

service samba_server start

Performing sanity check on Samba configuration: OK

Starting nmbd.

Starting smbd.

Samba consists of three separate daemons. Both the nmbd and smbd daemons are started by

samba_enable . If winbind name resolution is also required, set:

winbindd_enable="YES"

Samba can be stopped at any time by typing:

service samba_server stop

Samba is a complex software suite with functionality that allows broad integration with Microsoft¨

Windows¨ networks. For more information about functionality beyond the basic configuration

described here, refer to https://www.samba.org .

30.11. Clock Synchronization with NTP

Over time, a computerÕs clock is prone to drift. This is problematic as many network services

require the computers on a network to share the same accurate time. Accurate time is also needed

to ensure that file timestamps stay consistent. The Network Time Protocol (NTP) is one way to

provide clock accuracy in a network.

FreeBSD includes man:ntpd[8] which can be configured to query other NTP servers to synchronize

the clock on that machine or to provide time services to other computers in the network.

This section describes how to configure ntpd on FreeBSD. Further documentation can be found in

/usr/share/doc/ntp/ in HTML format.

30.11.1. NTP Configuration

On FreeBSD, the built-in ntpd can be used to synchronize a systemÕs clock. Ntpd is configured using

man:rc.conf[5] variables and /etc/ntp.conf , as detailed in the following sections.

Ntpd communicates with its network peers using UDP packets. Any firewalls between your

machine and its NTP peers must be configured to allow UDP packets in and out on port 123.

755

https://www.samba.org

30.11.1.1. The /etc/ntp.conf file

Ntpd reads /etc/ntp.conf to determine which NTP servers to query. Choosing several NTP servers is

recommended in case one of the servers becomes unreachable or its clock proves unreliable. As

ntpd receives responses, it favors reliable servers over the less reliable ones. The servers which are

queried can be local to the network, provided by an ISP, or selected from an online list of publicly

accessible NTP servers . When choosing a public NTP server, select one that is geographically close

and review its usage policy. The pool configuration keyword selects one or more servers from a

pool of servers. An online list of publicly accessible NTP pools is available, organized by geographic

area. In addition, FreeBSD provides a project-sponsored pool, 0.freebsd.pool.ntp.org .

Example 46. Sample /etc/ntp.conf

This is a simple example of an ntp.conf file. It can safely be used as-is; it contains the

recommended restrict options for operation on a publicly-accessible network connection.

Disallow ntpq control/query access. Allow peers to be added only

based on pool and server statements in this file.

restrict default limited kod nomodify notrap noquery nopeer

restrict source limited kod nomodify notrap noquery

Allow unrestricted access from localhost for queries and control.

restrict 127.0.0.1

restrict ::1

Add a specific server.

server ntplocal.example.com iburst

Add FreeBSD pool servers until 3-6 good servers are available.

tos minclock 3 maxclock 6

pool 0.freebsd.pool.ntp.org iburst

Use a local leap-seconds file.

leapfile "/var/db/ntpd.leap-seconds.list"

The format of this file is described in man:ntp.conf[5]. The descriptions below provide a quick

overview of just the keywords used in the sample file above.

By default, an NTP server is accessible to any network host. The restrict keyword controls which

systems can access the server. Multiple restrict entries are supported, each one refining the

restrictions given in previous statements. The values shown in the example grant the local system

full query and control access, while allowing remote systems only the ability to query the time. For

more details, refer to the Access Control Support subsection of man:ntp.conf[5].

The server keyword specifies a single server to query. The file can contain multiple server

keywords, with one server listed on each line. The pool keyword specifies a pool of servers. Ntpd

will add one or more servers from this pool as needed to reach the number of peers specified using

the tos minclock value. The iburst keyword directs ntpd to perform a burst of eight quick packet

756

http://support.ntp.org/bin/view/Servers/WebHome
http://support.ntp.org/bin/view/Servers/WebHome
http://support.ntp.org/bin/view/Servers/NTPPoolServers

exchanges with a server when contact is first established, to help quickly synchronize system time.

The leapfile keyword specifies the location of a file containing information about leap seconds. The

file is updated automatically by man:periodic[8]. The file location specified by this keyword must

match the location set in the ntp_db_leapfile variable in /etc/rc.conf .

30.11.1.2. NTP entries in /etc/rc.conf

Set ntpd_enable=YES to start ntpd at boot time. Once ntpd_enable=YES has been added to /etc/rc.conf ,

ntpd can be started immediately without rebooting the system by typing:

service ntpd start

Only ntpd_enable must be set to use ntpd. The rc.conf variables listed below may also be set as

needed.

Set ntpd_sync_on_start=YES to allow ntpd to step the clock any amount, one time at startup.

Normally ntpd will log an error message and exit if the clock is off by more than 1000 seconds. This

option is especially useful on systems without a battery-backed realtime clock.

Set ntpd_oomprotect=YES to protect the ntpd daemon from being killed by the system attempting to

recover from an Out Of Memory (OOM) condition.

Set ntpd_config= to the location of an alternate ntp.conf file.

Set ntpd_flags= to contain any other ntpd flags as needed, but avoid using these flags which are

managed internally by /etc/rc.d/ntpd :

¥ -p (pid file location)

¥ -c (set ntpd_config= instead)

30.11.1.3. Ntpd and the unpriveleged ntpd user

Ntpd on FreeBSD can start and run as an unpriveleged user. Doing so requires the

man:mac_ntpd[4] policy module. The /etc/rc.d/ntpd startup script first examines the NTP

configuration. If possible, it loads the mac_ntpd module, then starts ntpd as unpriveleged user ntpd

(user id 123). To avoid problems with file and directory access, the startup script will not

automatically start ntpd as ntpd when the configuration contains any file-related options.

The presence of any of the following in ntpd_flags requires manual configuration as described

below to run as the ntpd user:

¥ -f or --driftfile

¥ -i or --jaildir

¥ -k or --keyfile

¥ -l or --logfile

¥ -s or --statsdir

757

The presence of any of the following keywords in ntp.conf requires manual configuration as

described below to run as the ntpd user:

¥ crypto

¥ driftfile

¥ key

¥ logdir

¥ statsdir

To manually configure ntpd to run as user ntpd you must:

¥ Ensure that the ntpd user has access to all the files and directories specified in the configuration.

¥ Arrange for the mac_ntpd module to be loaded or compiled into the kernel. See man:mac_ntpd[4]

for details.

¥ Set ntpd_user="ntpd" in /etc/rc.conf

30.11.2. Using NTP with a PPP Connection

ntpd does not need a permanent connection to the Internet to function properly. However, if a PPP

connection is configured to dial out on demand, NTP traffic should be prevented from triggering a

dial out or keeping the connection alive. This can be configured with filter directives in

/etc/ppp/ppp.conf . For example:

set filter dial 0 deny udp src eq 123

Prevent NTP traffic from initiating dial out

set filter dial 1 permit 0 0

set filter alive 0 deny udp src eq 123

Prevent incoming NTP traffic from keeping the connection open

set filter alive 1 deny udp dst eq 123

Prevent outgoing NTP traffic from keeping the connection open

set filter alive 2 permit 0/0 0/0

For more details, refer to the PACKET FILTERING section in man:ppp[8] and the examples in

/usr/share/examples/ppp/ .

!

Some Internet access providers block low-numbered ports, preventing NTP from

functioning since replies never reach the machine.

30.12. iSCSI Initiator and Target Configuration

iSCSI is a way to share storage over a network. Unlike NFS, which works at the file system level,

iSCSI works at the block device level.

In iSCSI terminology, the system that shares the storage is known as the target . The storage can be a

physical disk, or an area representing multiple disks or a portion of a physical disk. For example, if

758

the disk(s) are formatted with ZFS, a zvol can be created to use as the iSCSI storage.

The clients which access the iSCSI storage are called initiators . To initiators, the storage available

through iSCSI appears as a raw, unformatted disk known as a LUN. Device nodes for the disk

appear in /dev/ and the device must be separately formatted and mounted.

FreeBSD provides a native, kernel-based iSCSI target and initiator. This section describes how to

configure a FreeBSD system as a target or an initiator.

30.12.1. Configuring an iSCSI Target

To configure an iSCSI target, create the /etc/ctl.conf configuration file, add a line to /etc/rc.conf to

make sure the man:ctld[8] daemon is automatically started at boot, and then start the daemon.

The following is an example of a simple /etc/ctl.conf configuration file. Refer to man:ctl.conf[5] for a

more complete description of this fileÕs available options.

portal-group pg0 {

Ê discovery-auth-group no-authentication

Ê listen 0.0.0.0

Ê listen [::]

}

target iqn.2012-06.com.example:target0 {

Ê auth-group no-authentication

Ê portal-group pg0

Ê lun 0 {

Ê path /data/target0-0

Ê size 4G

Ê }

}

The first entry defines the pg0 portal group. Portal groups define which network addresses the

man:ctld[8] daemon will listen on. The discovery-auth-group no-authentication entry indicates that

any initiator is allowed to perform iSCSI target discovery without authentication. Lines three and

four configure man:ctld[8] to listen on all IPv4 (listen 0.0.0.0) and IPv6 (listen [::]) addresses on

the default port of 3260.

It is not necessary to define a portal group as there is a built-in portal group called default . In this

case, the difference between default and pg0 is that with default , target discovery is always denied,

while with pg0 , it is always allowed.

The second entry defines a single target. Target has two possible meanings: a machine serving iSCSI

or a named group of LUNs. This example uses the latter meaning, where iqn.2012-

06.com.example:target0 is the target name. This target name is suitable for testing purposes. For

actual use, change com.example to the real domain name, reversed. The 2012-06 represents the year

and month of acquiring control of that domain name, and target0 can be any value. Any number of

targets can be defined in this configuration file.

759

The auth-group no-authentication line allows all initiators to connect to the specified target and

portal-group pg0 makes the target reachable through the pg0 portal group.

The next section defines the LUN. To the initiator, each LUN will be visible as a separate disk device.

Multiple LUNs can be defined for each target. Each LUN is identified by a number, where LUN 0 is

mandatory. The path /data/target0-0 line defines the full path to a file or zvol backing the LUN.

That path must exist before starting man:ctld[8]. The second line is optional and specifies the size of

the LUN.

Next, to make sure the man:ctld[8] daemon is started at boot, add this line to /etc/rc.conf :

ctld_enable="YES"

To start man:ctld[8] now, run this command:

service ctld start

As the man:ctld[8] daemon is started, it reads /etc/ctl.conf . If this file is edited after the daemon

starts, use this command so that the changes take effect immediately:

service ctld reload

30.12.1.1. Authentication

The previous example is inherently insecure as it uses no authentication, granting anyone full

access to all targets. To require a username and password to access targets, modify the

configuration as follows:

760

auth-group ag0 {

Ê chap username1 secretsecret

Ê chap username2 anothersecret

}

portal-group pg0 {

Ê discovery-auth-group no-authentication

Ê listen 0.0.0.0

Ê listen [::]

}

target iqn.2012-06.com.example:target0 {

Ê auth-group ag0

Ê portal-group pg0

Ê lun 0 {

Ê path /data/target0-0

Ê size 4G

Ê }

}

The auth-group section defines username and password pairs. An initiator trying to connect to

iqn.2012-06.com.example:target0 must first specify a defined username and secret. However, target

discovery is still permitted without authentication. To require target discovery authentication, set

discovery-auth-group to a defined auth-group name instead of no-authentication .

It is common to define a single exported target for every initiator. As a shorthand for the syntax

above, the username and password can be specified directly in the target entry:

target iqn.2012-06.com.example:target0 {

Ê portal-group pg0

Ê chap username1 secretsecret

Ê lun 0 {

Ê path /data/target0-0

Ê size 4G

Ê }

}

30.12.2. Configuring an iSCSI Initiator

!

The iSCSI initiator described in this section is supported starting with FreeBSD

10.0-RELEASE. To use the iSCSI initiator available in older versions, refer to

man:iscontrol[8].

The iSCSI initiator requires that the man:iscsid[8] daemon is running. This daemon does not use a

configuration file. To start it automatically at boot, add this line to /etc/rc.conf :

761

iscsid_enable="YES"

To start man:iscsid[8] now, run this command:

service iscsid start

Connecting to a target can be done with or without an /etc/iscsi.conf configuration file. This section

demonstrates both types of connections.

30.12.2.1. Connecting to a Target Without a Configuration File

To connect an initiator to a single target, specify the IP address of the portal and the name of the

target:

iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0

To verify if the connection succeeded, run iscsictl without any arguments. The output should look

similar to this:

Target name Target portal State

iqn.2012-06.com.example:target0 10.10.10.10 Connected: da0

In this example, the iSCSI session was successfully established, with /dev/da0 representing the

attached LUN. If the iqn.2012-06.com.example:target0 target exports more than one LUN, multiple

device nodes will be shown in that section of the output:

Connected: da0 da1 da2.

Any errors will be reported in the output, as well as the system logs. For example, this message

usually means that the man:iscsid[8] daemon is not running:

Target name Target portal State

iqn.2012-06.com.example:target0 10.10.10.10 Waiting for iscsid(8)

The following message suggests a networking problem, such as a wrong IP address or port:

Target name Target portal State

iqn.2012-06.com.example:target0 10.10.10.11 Connection refused

This message means that the specified target name is wrong:

762

Target name Target portal State

iqn.2012-06.com.example:target0 10.10.10.10 Not found

This message means that the target requires authentication:

Target name Target portal State

iqn.2012-06.com.example:target0 10.10.10.10 Authentication failed

To specify a CHAP username and secret, use this syntax:

iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 -u user -s

secretsecret

30.12.2.2. Connecting to a Target with a Configuration File

To connect using a configuration file, create /etc/iscsi.conf with contents like this:

t0 {

Ê TargetAddress = 10.10.10.10

Ê TargetName = iqn.2012-06.com.example:target0

Ê AuthMethod = CHAP

Ê chapIName = user

Ê chapSecret = secretsecret

}

The t0 specifies a nickname for the configuration file section. It will be used by the initiator to

specify which configuration to use. The other lines specify the parameters to use during connection.

The TargetAddress and TargetName are mandatory, whereas the other options are optional. In this

example, the CHAP username and secret are shown.

To connect to the defined target, specify the nickname:

iscsictl -An t0

Alternately, to connect to all targets defined in the configuration file, use:

iscsictl -Aa

To make the initiator automatically connect to all targets in /etc/iscsi.conf , add the following to

/etc/rc.conf :

763

iscsictl_enable="YES"

iscsictl_flags="-Aa"

764

Chapter 31. Firewalls

31.1. Synopsis

Firewalls make it possible to filter the incoming and outgoing traffic that flows through a system. A

firewall can use one or more sets of "rules" to inspect network packets as they come in or go out of

network connections and either allows the traffic through or blocks it. The rules of a firewall can

inspect one or more characteristics of the packets such as the protocol type, source or destination

host address, and source or destination port.

Firewalls can enhance the security of a host or a network. They can be used to do one or more of

the following:

¥ Protect and insulate the applications, services, and machines of an internal network from

unwanted traffic from the public Internet.

¥ Limit or disable access from hosts of the internal network to services of the public Internet.

¥ Support network address translation (NAT), which allows an internal network to use private IP

addresses and share a single connection to the public Internet using either a single IP address or

a shared pool of automatically assigned public addresses.

FreeBSD has three firewalls built into the base system: PF, IPFW, and IPFILTER, also known as IPF.

FreeBSD also provides two traffic shapers for controlling bandwidth usage: man:altq[4] and

man:dummynet[4]. ALTQ has traditionally been closely tied with PF and dummynet with IPFW.

Each firewall uses rules to control the access of packets to and from a FreeBSD system, although

they go about it in different ways and each has a different rule syntax.

FreeBSD provides multiple firewalls in order to meet the different requirements and preferences

for a wide variety of users. Each user should evaluate which firewall best meets their needs.

After reading this chapter, you will know:

¥ How to define packet filtering rules.

¥ The differences between the firewalls built into FreeBSD.

¥ How to use and configure the PF firewall.

¥ How to use and configure the IPFW firewall.

¥ How to use and configure the IPFILTER firewall.

Before reading this chapter, you should:

¥ Understand basic FreeBSD and Internet concepts.

!

Since all firewalls are based on inspecting the values of selected packet control

fields, the creator of the firewall ruleset must have an understanding of how

TCP/IP works, what the different values in the packet control fields are, and how

these values are used in a normal session conversation. For a good introduction,

refer to DarylÕs TCP/IP Primer .

765

http://www.ipprimer.com

31.2. Firewall Concepts

A ruleset contains a group of rules which pass or block packets based on the values contained in the

packet. The bi-directional exchange of packets between hosts comprises a session conversation. The

firewall ruleset processes both the packets arriving from the public Internet, as well as the packets

produced by the system as a response to them. Each TCP/IP service is predefined by its protocol and

listening port. Packets destined for a specific service originate from the source address using an

unprivileged port and target the specific service port on the destination address. All the above

parameters can be used as selection criteria to create rules which will pass or block services.

To lookup unknown port numbers, refer to /etc/services . Alternatively, visit

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers and do a port number lookup to

find the purpose of a particular port number.

Check out this link for port numbers used by Trojans .

FTP has two modes: active mode and passive mode. The difference is in how the data channel is

acquired. Passive mode is more secure as the data channel is acquired by the ordinal ftp session

requester. For a good explanation of FTP and the different modes, see

http://www.slacksite.com/other/ftp.html .

A firewall ruleset can be either "exclusive" or "inclusive". An exclusive firewall allows all traffic

through except for the traffic matching the ruleset. An inclusive firewall does the reverse as it only

allows traffic matching the rules through and blocks everything else.

An inclusive firewall offers better control of the outgoing traffic, making it a better choice for

systems that offer services to the public Internet. It also controls the type of traffic originating from

the public Internet that can gain access to a private network. All traffic that does not match the

rules is blocked and logged. Inclusive firewalls are generally safer than exclusive firewalls because

they significantly reduce the risk of allowing unwanted traffic.

!

Unless noted otherwise, all configuration and example rulesets in this chapter

create inclusive firewall rulesets.

Security can be tightened further using a "stateful firewall". This type of firewall keeps track of

open connections and only allows traffic which either matches an existing connection or opens a

new, allowed connection.

Stateful filtering treats traffic as a bi-directional exchange of packets comprising a session. When

state is specified on a matching rule the firewall dynamically generates internal rules for each

anticipated packet being exchanged during the session. It has sufficient matching capabilities to

determine if a packet is valid for a session. Any packets that do not properly fit the session template

are automatically rejected.

When the session completes, it is removed from the dynamic state table.

Stateful filtering allows one to focus on blocking/passing new sessions. If the new session is passed,

all its subsequent packets are allowed automatically and any impostor packets are automatically

rejected. If a new session is blocked, none of its subsequent packets are allowed. Stateful filtering

766

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://web.archive.org/web/20150803024617/http://www.sans.org/security-resources/idfaq/oddports.php
http://www.slacksite.com/other/ftp.html

provides advanced matching abilities capable of defending against the flood of different attack

methods employed by attackers.

NAT stands for Network Address Translation . NAT function enables the private LAN behind the

firewall to share a single ISP-assigned IP address, even if that address is dynamically assigned. NAT

allows each computer in the LAN to have Internet access, without having to pay the ISP for multiple

Internet accounts or IP addresses.

NAT will automatically translate the private LAN IP address for each system on the LAN to the

single public IP address as packets exit the firewall bound for the public Internet. It also performs

the reverse translation for returning packets.

According to RFC 1918, the following IP address ranges are reserved for private networks which

will never be routed directly to the public Internet, and therefore are available for use with NAT:

¥ 10.0.0.0/8 .

¥ 172.16.0.0/12 .

¥ 192.168.0.0/16 .

"

When working with the firewall rules, be very careful . Some configurations can

lock the administrator out of the server. To be on the safe side, consider

performing the initial firewall configuration from the local console rather than

doing it remotely over ssh.

31.3. PF

Since FreeBSD 5.3, a ported version of OpenBSDÕs PF firewall has been included as an integrated

part of the base system. PF is a complete, full-featured firewall that has optional support for ALTQ

(Alternate Queuing), which provides Quality of Service (QoS).

The OpenBSD Project maintains the definitive reference for PF in the PF FAQ . Peter Hansteen

maintains a thorough PF tutorial at http://home.nuug.no/~peter/pf/ .

"

When reading the PF FAQ , keep in mind that FreeBSDÕs version of PF has diverged

substantially from the upstream OpenBSD version over the years. Not all features

work the same way on FreeBSD as they do in OpenBSD and vice versa.

The FreeBSD packet filter mailing list is a good place to ask questions about configuring and

running the PF firewall. Check the mailing list archives before asking a question as it may have

already been answered.

This section of the Handbook focuses on PF as it pertains to FreeBSD. It demonstrates how to enable

PF and ALTQ. It also provides several examples for creating rulesets on a FreeBSD system.

31.3.1. Enabling PF

To use PF, its kernel module must be first loaded. This section describes the entries that can be

added to /etc/rc.conf to enable PF.

767

http://www.openbsd.org/faq/pf/
http://home.nuug.no/~peter/pf/
http://www.openbsd.org/faq/pf/
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pf

Start by adding pf_enable=yes to /etc/rc.conf :

sysrc pf_enable=yes

Additional options, described in man:pfctl[8], can be passed to PF when it is started. Add or change

this entry in /etc/rc.conf and specify any required flags between the two quotes (""):

pf_flags="" # additional flags for pfctl startup

PF will not start if it cannot find its ruleset configuration file. By default, FreeBSD does not ship with

a ruleset and there is no /etc/pf.conf . Example rulesets can be found in /usr/shared/examples/pf/ . If a

custom ruleset has been saved somewhere else, add a line to /etc/rc.conf which specifies the full

path to the file:

pf_rules="/path/to/pf.conf"

Logging support for PF is provided by man:pflog[4]. To enable logging support, add

pflog_enable=yes to /etc/rc.conf :

sysrc pflog_enable=yes

The following lines can also be added to change the default location of the log file or to specify any

additional flags to pass to man:pflog[4] when it is started:

pflog_logfile="/var/log/pflog" # where pflogd should store the logfile

pflog_flags="" # additional flags for pflogd startup

Finally, if there is a LAN behind the firewall and packets need to be forwarded for the computers on

the LAN, or NAT is required, enable the following option:

gateway_enable="YES" # Enable as LAN gateway

After saving the needed edits, PF can be started with logging support by typing:

service pf start

service pflog start

By default, PF reads its configuration rules from /etc/pf.conf and modifies, drops, or passes packets

according to the rules or definitions specified in this file. The FreeBSD installation includes several

sample files located in /usr/shared/examples/pf/ . Refer to the PF FAQ for complete coverage of PF

rulesets.

768

http://www.openbsd.org/faq/pf/

To control PF, use pfctl . Useful pfctl Options summarizes some useful options to this command.

Refer to man:pfctl[8] for a description of all available options:

Table 28. Useful pfctl Options

Command Purpose

pfctl -e

Enable PF.

pfctl -d

Disable PF.

pfctl -F all -f /etc/pf.conf

Flush all NAT, filter, state, and table rules and

reload /etc/pf.conf .

pfctl -s [rules | nat | states]

Report on the filter rules, NAT rules, or state

table.

pfctl -vnf /etc/pf.conf

Check /etc/pf.conf for errors, but do not load

ruleset.

!

package:security/sudo[] is useful for running commands like pfctl that require

elevated privileges. It can be installed from the Ports Collection.

To keep an eye on the traffic that passes through the PF firewall, consider installing the

package:sysutils/pftop[] package or port. Once installed, pftop can be run to view a running

snapshot of traffic in a format which is similar to man:top[1].

31.3.2. PF Rulesets

This section demonstrates how to create a customized ruleset. It starts with the simplest of rulesets

and builds upon its concepts using several examples to demonstrate real-world usage of PFÕs many

features.

The simplest possible ruleset is for a single machine that does not run any services and which

needs access to one network, which may be the Internet. To create this minimal ruleset, edit

/etc/pf.conf so it looks like this:

block in all

pass out all keep state

The first rule denies all incoming traffic by default. The second rule allows connections created by

this system to pass out, while retaining state information on those connections. This state

information allows return traffic for those connections to pass back and should only be used on

machines that can be trusted. The ruleset can be loaded with:

pfctl -e ; pfctl -f /etc/pf.conf

In addition to keeping state, PF provides lists and macros which can be defined for use when

creating rules. Macros can include lists and need to be defined before use. As an example, insert

these lines at the very top of the ruleset:

769

tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"

udp_services = "{ domain }"

PF understands port names as well as port numbers, as long as the names are listed in /etc/services .

This example creates two macros. The first is a list of seven TCP port names and the second is one

UDP port name. Once defined, macros can be used in rules. In this example, all traffic is blocked

except for the connections initiated by this system for the seven specified TCP services and the one

specified UDP service:

tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"

udp_services = "{ domain }"

block all

pass out proto tcp to any port $tcp_services keep state

pass proto udp to any port $udp_services keep state

Even though UDP is considered to be a stateless protocol, PF is able to track some state information.

For example, when a UDP request is passed which asks a name server about a domain name, PF

will watch for the response to pass it back.

Whenever an edit is made to a ruleset, the new rules must be loaded so they can be used:

pfctl -f /etc/pf.conf

If there are no syntax errors, pfctl will not output any messages during the rule load. Rules can

also be tested before attempting to load them:

pfctl -nf /etc/pf.conf

Including -n causes the rules to be interpreted only, but not loaded. This provides an opportunity to

correct any errors. At all times, the last valid ruleset loaded will be enforced until either PF is

disabled or a new ruleset is loaded.

!

Adding -v to a pfctl ruleset verify or load will display the fully parsed rules exactly

the way they will be loaded. This is extremely useful when debugging rules.

31.3.2.1. A Simple Gateway with NAT

This section demonstrates how to configure a FreeBSD system running PF to act as a gateway for at

least one other machine. The gateway needs at least two network interfaces, each connected to a

separate network. In this example, xl0 is connected to the Internet and xl1 is connected to the

internal network.

First, enable the gateway to let the machine forward the network traffic it receives on one interface

to another interface. This sysctl setting will forward IPv4 packets:

770

sysctl net.inet.ip.forwarding=1

To forward IPv6 traffic, use:

sysctl net.inet6.ip6.forwarding=1

To enable these settings at system boot, use man:sysrc[8] to add them to /etc/rc.conf :

sysrc gateway_enable=yes

sysrc ipv6_gateway_enable=yes

Verify with ifconfig that both of the interfaces are up and running.

Next, create the PF rules to allow the gateway to pass traffic. While the following rule allows

stateful traffic from hosts of the internal network to pass to the gateway, the to keyword does not

guarantee passage all the way from source to destination:

pass in on xl1 from xl1:network to xl0:network port $ports keep state

That rule only lets the traffic pass in to the gateway on the internal interface. To let the packets go

further, a matching rule is needed:

pass out on xl0 from xl1:network to xl0:network port $ports keep state

While these two rules will work, rules this specific are rarely needed. For a busy network admin, a

readable ruleset is a safer ruleset. The remainder of this section demonstrates how to keep the rules

as simple as possible for readability. For example, those two rules could be replaced with one rule:

pass from xl1:network to any port $ports keep state

The interface:network notation can be replaced with a macro to make the ruleset even more

readable. For example, a $localnet macro could be defined as the network directly attached to the

internal interface ($xl1:network). Alternatively, the definition of $localnet could be changed to an IP

address/netmask notation to denote a network, such as 192.168.100.1/24 for a subnet of private

addresses.

If required, $localnet could even be defined as a list of networks. Whatever the specific needs, a

sensible $localnet definition could be used in a typical pass rule as follows:

pass from $localnet to any port $ports keep state

The following sample ruleset allows all traffic initiated by machines on the internal network. It first

771

defines two macros to represent the external and internal 3COM interfaces of the gateway.

!

For dialup users, the external interface will use tun0 . For an ADSL connection,

specifically those using PPP over Ethernet (PPPoE), the correct external interface is

tun0 , not the physical Ethernet interface.

ext_if = "xl0" # macro for external interface - use tun0 for PPPoE

int_if = "xl1" # macro for internal interface

localnet = $int_if:network

ext_if IP address could be dynamic, hence ($ext_if)

nat on $ext_if from $localnet to any -> ($ext_if)

block all

pass from { lo0, $localnet } to any keep state

This ruleset introduces the nat rule which is used to handle the network address translation from

the non-routable addresses inside the internal network to the IP address assigned to the external

interface. The parentheses surrounding the last part of the nat rule ($ext_if) is included when the

IP address of the external interface is dynamically assigned. It ensures that network traffic runs

without serious interruptions even if the external IP address changes.

Note that this ruleset probably allows more traffic to pass out of the network than is needed. One

reasonable setup could create this macro:

client_out = "{ ftp-data, ftp, ssh, domain, pop3, auth, nntp, http, \

Ê https, cvspserver, 2628, 5999, 8000, 8080 }"

to use in the main pass rule:

pass inet proto tcp from $localnet to any port $client_out \

Ê flags S/SA keep state

A few other pass rules may be needed. This one enables SSH on the external interface:

pass in inet proto tcp to $ext_if port ssh

This macro definition and rule allows DNS and NTP for internal clients:

udp_services = "{ domain, ntp }"

pass quick inet proto { tcp, udp } to any port $udp_services keep state

Note the quick keyword in this rule. Since the ruleset consists of several rules, it is important to

understand the relationships between the rules in a ruleset. Rules are evaluated from top to

bottom, in the sequence they are written. For each packet or connection evaluated by PF, the last

matching rule in the ruleset is the one which is applied. However, when a packet matches a rule

772

which contains the quick keyword, the rule processing stops and the packet is treated according to

that rule. This is very useful when an exception to the general rules is needed.

31.3.2.2. Creating an FTP Proxy

Configuring working FTP rules can be problematic due to the nature of the FTP protocol. FTP pre-

dates firewalls by several decades and is insecure in its design. The most common points against

using FTP include:

¥ Passwords are transferred in the clear.

¥ The protocol demands the use of at least two TCP connections (control and data) on separate

ports.

¥ When a session is established, data is communicated using randomly selected ports.

All of these points present security challenges, even before considering any potential security

weaknesses in client or server software. More secure alternatives for file transfer exist, such as

man:sftp[1] or man:scp[1], which both feature authentication and data transfer over encrypted

connections..

For those situations when FTP is required, PF provides redirection of FTP traffic to a small proxy

program called man:ftp-proxy[8], which is included in the base system of FreeBSD. The role of the

proxy is to dynamically insert and delete rules in the ruleset, using a set of anchors, to correctly

handle FTP traffic.

To enable the FTP proxy, add this line to /etc/rc.conf :

ftpproxy_enable="YES"

Then start the proxy by running service ftp-proxy start .

For a basic configuration, three elements need to be added to /etc/pf.conf . First, the anchors which

the proxy will use to insert the rules it generates for the FTP sessions:

nat-anchor "ftp-proxy/*"

rdr-anchor "ftp-proxy/*"

Second, a pass rule is needed to allow FTP traffic in to the proxy.

Third, redirection and NAT rules need to be defined before the filtering rules. Insert this rdr rule

immediately after the nat rule:

rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 port 8021

Finally, allow the redirected traffic to pass:

773

pass out proto tcp from $proxy to any port ftp

where $proxy expands to the address the proxy daemon is bound to.

Save /etc/pf.conf , load the new rules, and verify from a client that FTP connections are working:

pfctl -f /etc/pf.conf

This example covers a basic setup where the clients in the local network need to contact FTP

servers elsewhere. This basic configuration should work well with most combinations of FTP clients

and servers. As shown in man:ftp-proxy[8], the proxyÕs behavior can be changed in various ways by

adding options to the ftpproxy_flags= line. Some clients or servers may have specific quirks that

must be compensated for in the configuration, or there may be a need to integrate the proxy in

specific ways such as assigning FTP traffic to a specific queue.

For ways to run an FTP server protected by PF and man:ftp-proxy[8], configure a separate ftp-proxy

in reverse mode, using -R , on a separate port with its own redirecting pass rule.

31.3.2.3. Managing ICMP

Many of the tools used for debugging or troubleshooting a TCP/IP network rely on the Internet

Control Message Protocol (ICMP), which was designed specifically with debugging in mind.

The ICMP protocol sends and receives control messages between hosts and gateways, mainly to

provide feedback to a sender about any unusual or difficult conditions enroute to the target host.

Routers use ICMP to negotiate packet sizes and other transmission parameters in a process often

referred to as path MTU discovery .

From a firewall perspective, some ICMP control messages are vulnerable to known attack vectors.

Also, letting all diagnostic traffic pass unconditionally makes debugging easier, but it also makes it

easier for others to extract information about the network. For these reasons, the following rule

may not be optimal:

pass inet proto icmp from any to any

One solution is to let all ICMP traffic from the local network through while stopping all probes from

outside the network:

pass inet proto icmp from $localnet to any keep state

pass inet proto icmp from any to $ext_if keep state

Additional options are available which demonstrate some of PFÕs flexibility. For example, rather

than allowing all ICMP messages, one can specify the messages used by man:ping[8] and

man:traceroute[8]. Start by defining a macro for that type of message:

774

icmp_types = "echoreq"

and a rule which uses the macro:

pass inet proto icmp all icmp-type $icmp_types keep state

If other types of ICMP packets are needed, expand icmp_types to a list of those packet types. Type

more /usr/src/sbin/pfctl/pfctl_parser.c to see the list of ICMP message types supported by PF.

Refer to http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml for an

explanation of each message type.

Since Unix traceroute uses UDP by default, another rule is needed to allow Unix traceroute :

allow out the default range for traceroute(8):

pass out on $ext_if inet proto udp from any to any port 33433 >< 33626 keep state

Since TRACERT.EXE on Microsoft Windows systems uses ICMP echo request messages, only the first

rule is needed to allow network traces from those systems. Unix traceroute can be instructed to use

other protocols as well, and will use ICMP echo request messages if -I is used. Check the

man:traceroute[8] man page for details.

31.3.2.3.1. Path MTU Discovery

Internet protocols are designed to be device independent, and one consequence of device

independence is that the optimal packet size for a given connection cannot always be predicted

reliably. The main constraint on packet size is the Maximum Transmission Unit (MTU) which sets

the upper limit on the packet size for an interface. Type ifconfig to view the MTUs for a systemÕs

network interfaces.

TCP/IP uses a process known as path MTU discovery to determine the right packet size for a

connection. This process sends packets of varying sizes with the "Do not fragment" flag set,

expecting an ICMP return packet of "type 3, code 4" when the upper limit has been reached. Type 3

means "destination unreachable", and code 4 is short for "fragmentation needed, but the do-not-

fragment flag is set". To allow path MTU discovery in order to support connections to other MTUs,

add the destination unreachable type to the icmp_types macro:

icmp_types = "{ echoreq, unreach }"

Since the pass rule already uses that macro, it does not need to be modified to support the new

ICMP type:

pass inet proto icmp all icmp-type $icmp_types keep state

PF allows filtering on all variations of ICMP types and codes. The list of possible types and codes are

775

http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

documented in man:icmp[4] and man:icmp6[4].

31.3.2.4. Using Tables

Some types of data are relevant to filtering and redirection at a given time, but their definition is

too long to be included in the ruleset file. PF supports the use of tables, which are defined lists that

can be manipulated without needing to reload the entire ruleset, and which can provide fast

lookups. Table names are always enclosed within < > , like this:

table <clients> { 192.168.2.0/24, !192.168.2.5 }

In this example, the 192.168.2.0/24 network is part of the table, except for the address 192.168.2.5 ,

which is excluded using the ! operator. It is also possible to load tables from files where each item

is on a separate line, as seen in this example /etc/clients :

192.168.2.0/24

!192.168.2.5

To refer to the file, define the table like this:

table <clients> persist file "/etc/clients"

Once the table is defined, it can be referenced by a rule:

pass inet proto tcp from <clients> to any port $client_out flags S/SA keep state

A tableÕs contents can be manipulated live, using pfctl . This example adds another network to the

table:

pfctl -t clients -T add 192.168.1.0/16

Note that any changes made this way will take affect now, making them ideal for testing, but will

not survive a power failure or reboot. To make the changes permanent, modify the definition of the

table in the ruleset or edit the file that the table refers to. One can maintain the on-disk copy of the

table using a man:cron[8] job which dumps the tableÕs contents to disk at regular intervals, using a

command such as pfctl -t clients -T show >/etc/clients . Alternatively, /etc/clients can be

updated with the in-memory table contents:

pfctl -t clients -T replace -f /etc/clients

31.3.2.5. Using Overload Tables to Protect SSH

Those who run SSH on an external interface have probably seen something like this in the

776

authentication logs:

Sep 26 03:12:34 skapet sshd[25771]: Failed password for root from 200.72.41.31 port

40992 ssh2

Sep 26 03:12:34 skapet sshd[5279]: Failed password for root from 200.72.41.31 port

40992 ssh2

Sep 26 03:12:35 skapet sshd[5279]: Received disconnect from 200.72.41.31: 11: Bye Bye

Sep 26 03:12:44 skapet sshd[29635]: Invalid user admin from 200.72.41.31

Sep 26 03:12:44 skapet sshd[24703]: input_userauth_request: invalid user admin

Sep 26 03:12:44 skapet sshd[24703]: Failed password for invalid user admin from

200.72.41.31 port 41484 ssh2

This is indicative of a brute force attack where somebody or some program is trying to discover the

user name and password which will let them into the system.

If external SSH access is needed for legitimate users, changing the default port used by SSH can

offer some protection. However, PF provides a more elegant solution. Pass rules can contain limits

on what connecting hosts can do and violators can be banished to a table of addresses which are

denied some or all access. It is even possible to drop all existing connections from machines which

overreach the limits.

To configure this, create this table in the tables section of the ruleset:

table <bruteforce> persist

Then, somewhere early in the ruleset, add rules to block brute access while allowing legitimate

access:

block quick from <bruteforce>

pass inet proto tcp from any to $localnet port $tcp_services \

Ê flags S/SA keep state \

Ê (max-src-conn 100, max-src-conn-rate 15/5, \

Ê overload <bruteforce> flush global)

The part in parentheses defines the limits and the numbers should be changed to meet local

requirements. It can be read as follows:

max-src-conn is the number of simultaneous connections allowed from one host.

max-src-conn-rate is the rate of new connections allowed from any single host (15) per number of

seconds (5).

overload <bruteforce> means that any host which exceeds these limits gets its address added to the

bruteforce table. The ruleset blocks all traffic from addresses in the bruteforce table.

Finally, flush global says that when a host reaches the limit, that all (global) of that hostÕs

connections will be terminated (flush).

777

!

These rules will not block slow bruteforcers, as described in

http://home.nuug.no/~peter/hailmary2013/ .

This example ruleset is intended mainly as an illustration. For example, if a generous number of

connections in general are wanted, but the desire is to be more restrictive when it comes to ssh,

supplement the rule above with something like the one below, early on in the rule set:

pass quick proto { tcp, udp } from any to any port ssh \

Ê flags S/SA keep state \

Ê (max-src-conn 15, max-src-conn-rate 5/3, \

Ê overload <bruteforce> flush global)

!

It May Not be Necessary to Block All Overloaders:

It is worth noting that the overload mechanism is a general technique which does

not apply exclusively to SSH, and it is not always optimal to entirely block all

traffic from offenders.

For example, an overload rule could be used to protect a mail service or a web

service, and the overload table could be used in a rule to assign offenders to a

queue with a minimal bandwidth allocation or to redirect to a specific web page.

Over time, tables will be filled by overload rules and their size will grow incrementally, taking up

more memory. Sometimes an IP address that is blocked is a dynamically assigned one, which has

since been assigned to a host who has a legitimate reason to communicate with hosts in the local

network.

For situations like these, pfctl provides the ability to expire table entries. For example, this

command will remove <bruteforce> table entries which have not been referenced for 86400

seconds:

pfctl -t bruteforce -T expire 86400

Similar functionality is provided by package:security/expiretable[], which removes table entries

which have not been accessed for a specified period of time.

Once installed, expiretable can be run to remove <bruteforce> table entries older than a specified

age. This example removes all entries older than 24 hours:

/usr/local/sbin/expiretable -v -d -t 24h bruteforce

31.3.2.6. Protecting Against SPAM

Not to be confused with the spamd daemon which comes bundled with spamassassin,

package:mail/spamd[] can be configured with PF to provide an outer defense against SPAM. This

spamd hooks into the PF configuration using a set of redirections.

778

http://home.nuug.no/~peter/hailmary2013/

Spammers tend to send a large number of messages, and SPAM is mainly sent from a few spammer

friendly networks and a large number of hijacked machines, both of which are reported to

blacklists fairly quickly.

When an SMTP connection from an address in a blacklist is received, spamd presents its banner

and immediately switches to a mode where it answers SMTP traffic one byte at a time. This

technique, which is intended to waste as much time as possible on the spammerÕs end, is called

tarpitting . The specific implementation which uses one byte SMTP replies is often referred to as

stuttering .

This example demonstrates the basic procedure for setting up spamd with automatically updated

blacklists. Refer to the man pages which are installed with package:mail/spamd[] for more

information.

779

Procedure: Configuring spamd

1. Install the package:mail/spamd[] package or port. To use spamdÕs greylisting features,

man:fdescfs[5] must be mounted at /dev/fd . Add the following line to /etc/fstab :

Êfdescfs /dev/fd fdescfs rw 0 0

Then, mount the filesystem:

mount fdescfs

2. Next, edit the PF ruleset to include:

table <spamd> persist

table <spamd-white> persist

rdr pass on $ext_if inet proto tcp from <spamd> to \

Ê { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025

rdr pass on $ext_if inet proto tcp from !<spamd-white> to \

Ê { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025

The two tables <spamd> and <spamd-white> are essential. SMTP traffic from an address

listed in <spamd> but not in <spamd-white> is redirected to the spamd daemon listening at

port 8025.

3. The next step is to configure spamd in /usr/local/etc/spamd.conf and to add some rc.conf

parameters.

The installation of package:mail/spamd[] includes a sample configuration file

(/usr/local/etc/spamd.conf.sample) and a man page for spamd.conf . Refer to these for

additional configuration options beyond those shown in this example.

One of the first lines in the configuration file that does not begin with a # comment sign

contains the block which defines the all list, which specifies the lists to use:

all:\

Ê :traplist:whitelist:

This entry adds the desired blacklists, separated by colons (:). To use a whitelist to

subtract addresses from a blacklist, add the name of the whitelist immediately after the

name of that blacklist. For example: :blacklist:whitelist: .

This is followed by the specified blacklistÕs definition:

780

traplist:\

Ê :black:\

Ê :msg="SPAM. Your address %A has sent spam within the last 24 hours":\

Ê :method=http:\

Ê :file=www.openbsd.org/spamd/traplist.gz

where the first line is the name of the blacklist and the second line specifies the list type.

The msg field contains the message to display to blacklisted senders during the SMTP

dialogue. The method field specifies how spamd-setup fetches the list data; supported

methods are http , ftp , from a file in a mounted file system, and via exec of an external

program. Finally, the file field specifies the name of the file spamd expects to receive.

The definition of the specified whitelist is similar, but omits the msg field since a message

is not needed:

whitelist:\

Ê :white:\

Ê :method=file:\

Ê :file=/var/mail/whitelist.txt

!

Choose Data Sources with Care:

Using all the blacklists in the sample spamd.conf will blacklist large

blocks of the Internet. Administrators need to edit the file to create an

optimal configuration which uses applicable data sources and, when

necessary, uses custom lists.

Next, add this entry to /etc/rc.conf . Additional flags are described in the man page

specified by the comment:

spamd_flags="-v" # use "" and see spamd-setup(8) for flags

When finished, reload the ruleset, start spamd by typing service obspamd start , and

complete the configuration using spamd-setup . Finally, create a man:cron[8] job which

calls spamd-setup to update the tables at reasonable intervals.

On a typical gateway in front of a mail server, hosts will soon start getting trapped within a few

seconds to several minutes.

PF also supports greylisting , which temporarily rejects messages from unknown hosts with 45n

codes. Messages from greylisted hosts which try again within a reasonable time are let through.

Traffic from senders which are set up to behave within the limits set by RFC 1123 and RFC 2821 are

immediately let through.

More information about greylisting as a technique can be found at the greylisting.org web site. The

781

http://www.greylisting.org/

most amazing thing about greylisting, apart from its simplicity, is that it still works. Spammers and

malware writers have been very slow to adapt to bypass this technique.

The basic procedure for configuring greylisting is as follows:

Procedure: Configuring Greylisting

1. Make sure that man:fdescfs[5] is mounted as described in Step 1 of the previous Procedure.

2. To run spamd in greylisting mode, add this line to /etc/rc.conf :

spamd_grey="YES" # use spamd greylisting if YES

Refer to the spamd man page for descriptions of additional related parameters.

3. To complete the greylisting setup:

service obspamd restart

service obspamlogd start

Behind the scenes, the spamdb database tool and the spamlogd whitelist updater perform essential

functions for the greylisting feature. spamdb is the administratorÕs main interface to managing the

black, grey, and white lists via the contents of the /var/db/spamdb database.

31.3.2.7. Network Hygiene

This section describes how block-policy , scrub , and antispoof can be used to make the ruleset

behave sanely.

The block-policy is an option which can be set in the options part of the ruleset, which precedes the

redirection and filtering rules. This option determines which feedback, if any, PF sends to hosts that

are blocked by a rule. The option has two possible values: drop drops blocked packets with no

feedback, and return returns a status code such as Connection refused .

If not set, the default policy is drop . To change the block-policy , specify the desired value:

set block-policy return

In PF, scrub is a keyword which enables network packet normalization. This process reassembles

fragmented packets and drops TCP packets that have invalid flag combinations. Enabling scrub

provides a measure of protection against certain kinds of attacks based on incorrect handling of

packet fragments. A number of options are available, but the simplest form is suitable for most

configurations:

scrub in all

Some services, such as NFS, require specific fragment handling options. Refer to

782

https://home.nuug.no/~peter/pf/en/scrub.html for more information.

This example reassembles fragments, clears the "do not fragment" bit, and sets the maximum

segment size to 1440 bytes:

scrub in all fragment reassemble no-df max-mss 1440

The antispoof mechanism protects against activity from spoofed or forged IP addresses, mainly by

blocking packets appearing on interfaces and in directions which are logically not possible.

These rules weed out spoofed traffic coming in from the rest of the world as well as any spoofed

packets which originate in the local network:

antispoof for $ext_if

antispoof for $int_if

31.3.2.8. Handling Non-Routable Addresses

Even with a properly configured gateway to handle network address translation, one may have to

compensate for other peopleÕs misconfigurations. A common misconfiguration is to let traffic with

non-routable addresses out to the Internet. Since traffic from non-routeable addresses can play a

part in several DoS attack techniques, consider explicitly blocking traffic from non-routeable

addresses from entering the network through the external interface.

In this example, a macro containing non-routable addresses is defined, then used in blocking rules.

Traffic to and from these addresses is quietly dropped on the gatewayÕs external interface.

martians = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \

Ê 10.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, \

Ê 0.0.0.0/8, 240.0.0.0/4 }"

block drop in quick on $ext_if from $martians to any

block drop out quick on $ext_if from any to $martians

31.3.3. Enabling ALTQ

On FreeBSD, ALTQ can be used with PF to provide Quality of Service (QOS). Once ALTQ is enabled,

queues can be defined in the ruleset which determine the processing priority of outbound packets.

Before enabling ALTQ, refer to man:altq[4] to determine if the drivers for the network cards

installed on the system support it.

ALTQ is not available as a loadable kernel module. If the systemÕs interfaces support ALTQ, create a

custom kernel using the instructions in crossref:kernelconfig[kernelconfig,Configuring the FreeBSD

Kernel]. The following kernel options are available. The first is needed to enable ALTQ. At least one

of the other options is necessary to specify the queueing scheduler algorithm:

783

https://home.nuug.no/~peter/pf/en/scrub.html

options ALTQ

options ALTQ_CBQ # Class Based Queuing (CBQ)

options ALTQ_RED # Random Early Detection (RED)

options ALTQ_RIO # RED In/Out

options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC)

options ALTQ_PRIQ # Priority Queuing (PRIQ)

The following scheduler algorithms are available:

CBQ

Class Based Queuing (CBQ) is used to divide a connectionÕs bandwidth into different classes or

queues to prioritize traffic based on filter rules.

RED

Random Early Detection (RED) is used to avoid network congestion by measuring the length of

the queue and comparing it to the minimum and maximum thresholds for the queue. When the

queue is over the maximum, all new packets are randomly dropped.

RIO

In Random Early Detection In and Out (RIO) mode, RED maintains multiple average queue

lengths and multiple threshold values, one for each QOS level.

HFSC

Hierarchical Fair Service Curve Packet Scheduler (HFSC) is described in http://www-

2.cs.cmu.edu/~hzhang/HFSC/main.html .

PRIQ

Priority Queuing (PRIQ) always passes traffic that is in a higher queue first.

More information about the scheduling algorithms and example rulesets are available at the

OpenBSDÕs web archive .

31.4. IPFW

IPFW is a stateful firewall written for FreeBSD which supports both IPv4 and IPv6. It is comprised

of several components: the kernel firewall filter rule processor and its integrated packet accounting

facility, the logging facility, NAT, the man:dummynet[4] traffic shaper, a forward facility, a bridge

facility, and an ipstealth facility.

FreeBSD provides a sample ruleset in /etc/rc.firewall which defines several firewall types for

common scenarios to assist novice users in generating an appropriate ruleset. IPFW provides a

powerful syntax which advanced users can use to craft customized rulesets that meet the security

requirements of a given environment.

This section describes how to enable IPFW, provides an overview of its rule syntax, and

demonstrates several rulesets for common configuration scenarios.

784

http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html
http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html
https://web.archive.org/web/20151109213426/http://www.openbsd.org/faq/pf/queueing.html

31.4.1. Enabling IPFW

IPFW is included in the basic FreeBSD install as a kernel loadable module, meaning that a custom

kernel is not needed in order to enable IPFW.

For those users who wish to statically compile IPFW support into a custom kernel, see IPFW Kernel

Options .

To configure the system to enable IPFW at boot time, add firewall_enable="YES" to /etc/rc.conf :

sysrc firewall_enable="YES"

To use one of the default firewall types provided by FreeBSD, add another line which specifies the

type:

sysrc firewall_type="open"

The available types are:

¥ open : passes all traffic.

¥ client : protects only this machine.

¥ simple : protects the whole network.

¥ closed : entirely disables IP traffic except for the loopback interface.

¥ workstation : protects only this machine using stateful rules.

¥ UNKNOWN : disables the loading of firewall rules.

¥ filename : full path of the file containing the firewall ruleset.

If firewall_type is set to either client or simple , modify the default rules found in /etc/rc.firewall to

fit the configuration of the system.

Note that the filename type is used to load a custom ruleset.

An alternate way to load a custom ruleset is to set the firewall_script variable to the absolute path

of an executable script that includes IPFW commands. The examples used in this section assume

that the firewall_script is set to /etc/ipfw.rules :

sysrc firewall_script="/etc/ipfw.rules"

To enable logging through man:syslogd[8], include this line:

sysrc firewall_logging="YES"

785

"

Only firewall rules with the log option will be logged. The default rules do not

include this option and it must be manually added. Therefore it is advisable that

the default ruleset is edited for logging. In addition, log rotation may be desired if

the logs are stored in a separate file.

There is no /etc/rc.conf variable to set logging limits. To limit the number of times a rule is logged

per connection attempt, specify the number using this line in /etc/sysctl.conf :

echo "net.inet.ip.fw.verbose_limit=5" >> /etc/sysctl.conf

To enable logging through a dedicated interface named ipfw0 , add this line to /etc/rc.conf instead:

sysrc firewall_logif="YES"

Then use tcpdump to see what is being logged:

tcpdump -t -n -i ipfw0

!

There is no overhead due to logging unless tcpdump is attached.

After saving the needed edits, start the firewall. To enable logging limits now, also set the sysctl

value specified above:

service ipfw start

sysctl net.inet.ip.fw.verbose_limit=5

31.4.2. IPFW Rule Syntax

When a packet enters the IPFW firewall, it is compared against the first rule in the ruleset and

progresses one rule at a time, moving from top to bottom in sequence. When the packet matches

the selection parameters of a rule, the ruleÕs action is executed and the search of the ruleset

terminates for that packet. This is referred to as "first match wins". If the packet does not match any

of the rules, it gets caught by the mandatory IPFW default rule number 65535, which denies all

packets and silently discards them. However, if the packet matches a rule that contains the count ,

skipto , or tee keywords, the search continues. Refer to man:ipfw[8] for details on how these

keywords affect rule processing.

When creating an IPFW rule, keywords must be written in the following order. Some keywords are

mandatory while other keywords are optional. The words shown in uppercase represent a variable

and the words shown in lowercase must precede the variable that follows it. The # symbol is used to

mark the start of a comment and may appear at the end of a rule or on its own line. Blank lines are

ignored.

CMD RULE_NUMBER set SET_NUMBER ACTION log LOG_AMOUNT PROTO from SRC SRC_PORT to DST DST_PORT

786

OPTIONS

This section provides an overview of these keywords and their options. It is not an exhaustive list of

every possible option. Refer to man:ipfw[8] for a complete description of the rule syntax that can be

used when creating IPFW rules.

CMD

Every rule must start with ipfw add .

RULE_NUMBER

Each rule is associated with a number from 1 to 65534 . The number is used to indicate the order

of rule processing. Multiple rules can have the same number, in which case they are applied

according to the order in which they have been added.

SET_NUMBER

Each rule is associated with a set number from 0 to 31 . Sets can be individually disabled or

enabled, making it possible to quickly add or delete a set of rules. If a SET_NUMBER is not

specified, the rule will be added to set 0 .

ACTION

A rule can be associated with one of the following actions. The specified action will be executed

when the packet matches the selection criterion of the rule.

allow | accept | pass | permit : these keywords are equivalent and allow packets that match

the rule.

check-state : checks the packet against the dynamic state table. If a match is found, execute the

action associated with the rule which generated this dynamic rule, otherwise move to the next

rule. A check-state rule does not have selection criterion. If no check-state rule is present in the

ruleset, the dynamic rules table is checked at the first keep-state or limit rule.

count : updates counters for all packets that match the rule. The search continues with the next

rule.

deny | drop : either word silently discards packets that match this rule.

Additional actions are available. Refer to man:ipfw[8] for details.

LOG_AMOUNT

When a packet matches a rule with the log keyword, a message will be logged to man:syslogd[8]

with a facility name of SECURITY . Logging only occurs if the number of packets logged for that

particular rule does not exceed a specified LOG_AMOUNT. If no LOG_AMOUNT is specified, the

limit is taken from the value of net.inet.ip.fw.verbose_limit . A value of zero removes the

logging limit. Once the limit is reached, logging can be re-enabled by clearing the logging counter

or the packet counter for that rule, using ipfw resetlog .

!

Logging is done after all other packet matching conditions have been met, and

before performing the final action on the packet. The administrator decides

which rules to enable logging on.

787

PROTO

This optional value can be used to specify any protocol name or number found in /etc/protocols .

SRC

The from keyword must be followed by the source address or a keyword that represents the

source address. An address can be represented by any , me (any address configured on an

interface on this system), me6 , (any IPv6 address configured on an interface on this system), or

table followed by the number of a lookup table which contains a list of addresses. When

specifying an IP address, it can be optionally followed by its CIDR mask or subnet mask. For

example, 1.2.3.4/25 or 1.2.3.4:255.255.255.128 .

SRC_PORT

An optional source port can be specified using the port number or name from /etc/services .

DST

The to keyword must be followed by the destination address or a keyword that represents the

destination address. The same keywords and addresses described in the SRC section can be used

to describe the destination.

DST_PORT

An optional destination port can be specified using the port number or name from /etc/services .

OPTIONS

Several keywords can follow the source and destination. As the name suggests, OPTIONS are

optional. Commonly used options include in or out , which specify the direction of packet flow,

icmptypes followed by the type of ICMP message, and keep-state .

When a keep-state rule is matched, the firewall will create a dynamic rule which matches

bidirectional traffic between the source and destination addresses and ports using the same

protocol.

The dynamic rules facility is vulnerable to resource depletion from a SYN-flood attack which

would open a huge number of dynamic rules. To counter this type of attack with IPFW, use

limit . This option limits the number of simultaneous sessions by checking the open dynamic

rules, counting the number of times this rule and IP address combination occurred. If this count

is greater than the value specified by limit , the packet is discarded.

Dozens of OPTIONS are available. Refer to man:ipfw[8] for a description of each available

option.

31.4.3. Example Ruleset

This section demonstrates how to create an example stateful firewall ruleset script named

/etc/ipfw.rules . In this example, all connection rules use in or out to clarify the direction. They also

use via interface-name to specify the interface the packet is traveling over.

788

!

When first creating or testing a firewall ruleset, consider temporarily setting this

tunable:

net.inet.ip.fw.default_to_accept="1"

This sets the default policy of man:ipfw[8] to be more permissive than the default

deny ip from any to any , making it slightly more difficult to get locked out of the

system right after a reboot.

The firewall script begins by indicating that it is a Bourne shell script and flushes any existing rules.

It then creates the cmd variable so that ipfw add does not have to be typed at the beginning of every

rule. It also defines the pif variable which represents the name of the interface that is attached to

the Internet.

#!/bin/sh

Flush out the list before we begin.

ipfw -q -f flush

Set rules command prefix

cmd="ipfw -q add"

pif="dc0" # interface name of NIC attached to Internet

The first two rules allow all traffic on the trusted internal interface and on the loopback interface:

Change xl0 to LAN NIC interface name

$cmd 00005 allow all from any to any via xl0

No restrictions on Loopback Interface

$cmd 00010 allow all from any to any via lo0

The next rule allows the packet through if it matches an existing entry in the dynamic rules table:

$cmd 00101 check-state

The next set of rules defines which stateful connections internal systems can create to hosts on the

Internet:

789

Allow access to public DNS

Replace x.x.x.x with the IP address of a public DNS server

and repeat for each DNS server in /etc/resolv.conf

$cmd 00110 allow tcp from any to x.x.x.x 53 out via $pif setup keep-state

$cmd 00111 allow udp from any to x.x.x.x 53 out via $pif keep-state

Allow access to ISP's DHCP server for cable/DSL configurations.

Use the first rule and check log for IP address.

Then, uncomment the second rule, input the IP address, and delete the first rule

$cmd 00120 allow log udp from any to any 67 out via $pif keep-state

#$cmd 00120 allow udp from any to x.x.x.x 67 out via $pif keep-state

Allow outbound HTTP and HTTPS connections

$cmd 00200 allow tcp from any to any 80 out via $pif setup keep-state

$cmd 00220 allow tcp from any to any 443 out via $pif setup keep-state

Allow outbound email connections

$cmd 00230 allow tcp from any to any 25 out via $pif setup keep-state

$cmd 00231 allow tcp from any to any 110 out via $pif setup keep-state

Allow outbound ping

$cmd 00250 allow icmp from any to any out via $pif keep-state

Allow outbound NTP

$cmd 00260 allow udp from any to any 123 out via $pif keep-state

Allow outbound SSH

$cmd 00280 allow tcp from any to any 22 out via $pif setup keep-state

deny and log all other outbound connections

$cmd 00299 deny log all from any to any out via $pif

The next set of rules controls connections from Internet hosts to the internal network. It starts by

denying packets typically associated with attacks and then explicitly allows specific types of

connections. All the authorized services that originate from the Internet use limit to prevent

flooding.

790

Deny all inbound traffic from non-routable reserved address spaces

$cmd 00300 deny all from 192.168.0.0/16 to any in via $pif #RFC 1918 private IP

$cmd 00301 deny all from 172.16.0.0/12 to any in via $pif #RFC 1918 private IP

$cmd 00302 deny all from 10.0.0.0/8 to any in via $pif #RFC 1918 private IP

$cmd 00303 deny all from 127.0.0.0/8 to any in via $pif #loopback

$cmd 00304 deny all from 0.0.0.0/8 to any in via $pif #loopback

$cmd 00305 deny all from 169.254.0.0/16 to any in via $pif #DHCP auto-config

$cmd 00306 deny all from 192.0.2.0/24 to any in via $pif #reserved for docs

$cmd 00307 deny all from 204.152.64.0/23 to any in via $pif #Sun cluster

interconnect

$cmd 00308 deny all from 224.0.0.0/3 to any in via $pif #Class D & E multicast

Deny public pings

$cmd 00310 deny icmp from any to any in via $pif

Deny ident

$cmd 00315 deny tcp from any to any 113 in via $pif

Deny all Netbios services.

$cmd 00320 deny tcp from any to any 137 in via $pif

$cmd 00321 deny tcp from any to any 138 in via $pif

$cmd 00322 deny tcp from any to any 139 in via $pif

$cmd 00323 deny tcp from any to any 81 in via $pif

Deny fragments

$cmd 00330 deny all from any to any frag in via $pif

Deny ACK packets that did not match the dynamic rule table

$cmd 00332 deny tcp from any to any established in via $pif

Allow traffic from ISP's DHCP server.

Replace x.x.x.x with the same IP address used in rule 00120.

#$cmd 00360 allow udp from any to x.x.x.x 67 in via $pif keep-state

Allow HTTP connections to internal web server

$cmd 00400 allow tcp from any to me 80 in via $pif setup limit src-addr 2

Allow inbound SSH connections

$cmd 00410 allow tcp from any to me 22 in via $pif setup limit src-addr 2

Reject and log all other incoming connections

$cmd 00499 deny log all from any to any in via $pif

The last rule logs all packets that do not match any of the rules in the ruleset:

Everything else is denied and logged

$cmd 00999 deny log all from any to any

791

31.4.4. In-kernel NAT

FreeBSDÕs IPFW firewall has two implementations of NAT: the userland implementation

man:natd[8], and the more recent in-kernel NAT implementation. Both work in conjunction with

IPFW to provide network address translation. This can be used to provide an Internet Connection

Sharing solution so that several internal computers can connect to the Internet using a single public

IP address.

To do this, the FreeBSD machine connected to the Internet must act as a gateway. This system must

have two NICs, where one is connected to the Internet and the other is connected to the internal

LAN. Each machine connected to the LAN should be assigned an IP address in the private network

space, as defined by RFC 1918 .

Some additional configuration is needed in order to enable the in-kernel NAT facility of IPFW. To

enable in-kernel NAT support at boot time, the following must be set in /etc/rc.conf :

gateway_enable="YES"

firewall_enable="YES"

firewall_nat_enable="YES"

!

When firewall_nat_enable is set but firewall_enable is not, it will have no effect

and do nothing. This is because the in-kernel NAT implementation is only

compatible with IPFW.

When the ruleset contains stateful rules, the positioning of the NAT rule is critical and the skipto

action is used. The skipto action requires a rule number so that it knows which rule to jump to. The

example below builds upon the firewall ruleset shown in the previous section. It adds some

additional entries and modifies some existing rules in order to configure the firewall for in-kernel

NAT. It starts by adding some additional variables which represent the rule number to skip to, the

keep-state option, and a list of TCP ports which will be used to reduce the number of rules.

#!/bin/sh

ipfw -q -f flush

cmd="ipfw -q add"

skip="skipto 1000"

pif=dc0

ks="keep-state"

good_tcpo="22,25,37,53,80,443,110"

With in-kernel NAT it is necessary to disable TCP segmentation offloading (TSO) due to the

architecture of man:libalias[3], a library implemented as a kernel module to provide the in-kernel

NAT facility of IPFW. TSO can be disabled on a per network interface basis using man:ifconfig[8] or

on a system wide basis using man:sysctl[8]. To disable TSO system wide, the following must be set it

/etc/sysctl.conf :

net.inet.tcp.tso="0"

792

https://www.ietf.org/rfc/rfc1918.txt

A NAT instance will also be configured. It is possible to have multiple NAT instances each with their

own configuration. For this example only one NAT instance is needed, NAT instance number 1. The

configuration can take a few options such as: if which indicates the public interface, same_ports

which takes care that alliased ports and local port numbers are mapped the same, unreg_only will

result in only unregistered (private) address spaces to be processed by the NAT instance, and reset

which will help to keep a functioning NAT instance even when the public IP address of the IPFW

machine changes. For all possible options that can be passed to a single NAT instance configuration

consult man:ipfw[8]. When configuring a stateful NATing firewall, it is necessary to allow

translated packets to be reinjected in the firewall for further processing. This can be achieved by

disabling one_pass behavior at the start of the firewall script.

ipfw disable one_pass

ipfw -q nat 1 config if $pif same_ports unreg_only reset

The inbound NAT rule is inserted after the two rules which allow all traffic on the trusted and

loopback interfaces and after the reassemble rule but before the check-state rule. It is important

that the rule number selected for this NAT rule, in this example 100 , is higher than the first three

rules and lower than the check-state rule. Furthermore, because of the behavior of in-kernel NAT it

is advised to place a reassemble rule just before the first NAT rule and after the rules that allow

traffic on trusted interface. Normally, IP fragmentation should not happen, but when dealing with

IPSEC/ESP/GRE tunneling traffic it might and the reassembling of fragments is necessary before

handing the complete packet over to the in-kernel NAT facility.

!

The reassemble rule was not needed with userland man:natd[8] because the

internal workings of the IPFW divert action already takes care of reassembling

packets before delivery to the socket as also stated in man:ipfw[8].

The NAT instance and rule number used in this example does not match with the

default NAT instance and rule number created by rc.firewall . rc.firewall is a script

that sets up the default firewall rules present in FreeBSD.

$cmd 005 allow all from any to any via xl0 # exclude LAN traffic

$cmd 010 allow all from any to any via lo0 # exclude loopback traffic

$cmd 099 reass all from any to any in # reassemble inbound packets

$cmd 100 nat 1 ip from any to any in via $pif # NAT any inbound packets

Allow the packet through if it has an existing entry in the dynamic rules table

$cmd 101 check-state

The outbound rules are modified to replace the allow action with the $skip variable, indicating that

rule processing will continue at rule 1000 . The seven tcp rules have been replaced by rule 125 as the

$good_tcpo variable contains the seven allowed outbound ports.

!

Remember that IPFWÕs performance is largely determined by the number of rules

present in the ruleset.

793

Authorized outbound packets

$cmd 120 $skip udp from any to x.x.x.x 53 out via $pif $ks

$cmd 121 $skip udp from any to x.x.x.x 67 out via $pif $ks

$cmd 125 $skip tcp from any to any $good_tcpo out via $pif setup $ks

$cmd 130 $skip icmp from any to any out via $pif $ks

The inbound rules remain the same, except for the very last rule which removes the via $pif in

order to catch both inbound and outbound rules. The NAT rule must follow this last outbound rule,

must have a higher number than that last rule, and the rule number must be referenced by the

skipto action. In this ruleset, rule number 1000 handles passing all packets to our configured

instance for NAT processing. The next rule allows any packet which has undergone NAT processing

to pass.

$cmd 999 deny log all from any to any

$cmd 1000 nat 1 ip from any to any out via $pif # skipto location for outbound

stateful rules

$cmd 1001 allow ip from any to any

In this example, rules 100 , 101 , 125 , 1000 , and 1001 control the address translation of the outbound

and inbound packets so that the entries in the dynamic state table always register the private

LANIP address.

Consider an internal web browser which initializes a new outbound HTTP session over port 80.

When the first outbound packet enters the firewall, it does not match rule 100 because it is headed

out rather than in. It passes rule 101 because this is the first packet and it has not been posted to the

dynamic state table yet. The packet finally matches rule 125 as it is outbound on an allowed port

and has a source IP address from the internal LAN. On matching this rule, two actions take place.

First, the keep-state action adds an entry to the dynamic state table and the specified action, skipto

rule 1000 , is executed. Next, the packet undergoes NAT and is sent out to the Internet. This packet

makes its way to the destination web server, where a response packet is generated and sent back.

This new packet enters the top of the ruleset. It matches rule 100 and has its destination IP address

mapped back to the original internal address. It then is processed by the check-state rule, is found

in the table as an existing session, and is released to the LAN.

On the inbound side, the ruleset has to deny bad packets and allow only authorized services. A

packet which matches an inbound rule is posted to the dynamic state table and the packet is

released to the LAN. The packet generated as a response is recognized by the check-state rule as

belonging to an existing session. It is then sent to rule 1000 to undergo NAT before being released to

the outbound interface.

794

!

Transitioning from userland man:natd[8] to in-kernel NAT might seem seamless at

first but there is small catch. When using the GENERIC kernel, IPFW will load the

libalias.ko kernel module, when firewall_nat_enable is enabled in rc.conf . The

libalias.ko kernel module only provides basic NAT functionality, whereas the

userland implementation man:natd[8] has all NAT functionality available in its

userland library without any extra configuration. All functionality refers to the

following kernel modules that can additionally be loaded when needed besides the

standard libalias.ko kernel module: alias_cuseeme.ko , alias_ftp.ko , alias_bbt.ko ,

skinny.ko , irc.ko , alias_pptp.ko and alias_smedia.ko using the kld_list directive in

rc.conf . If a custom kernel is used, the full functionality of the userland library can

be compiled in, in the kernel, using the options LIBALIAS .

31.4.4.1. Port Redirection

The drawback with NAT in general is that the LAN clients are not accessible from the Internet.

Clients on the LAN can make outgoing connections to the world but cannot receive incoming ones.

This presents a problem if trying to run Internet services on one of the LAN client machines. A

simple way around this is to redirect selected Internet ports on the NAT providing machine to a

LAN client.

For example, an IRC server runs on client A and a web server runs on client B . For this to work

properly, connections received on ports 6667 (IRC) and 80 (HTTP) must be redirected to the

respective machines.

With in-kernel NAT all configuration is done in the NAT instance configuration. For a full list of

options that an in-kernel NAT instance can use, consult man:ipfw[8]. The IPFW syntax follows the

syntax of natd. The syntax for redirect_port is as follows:

redirect_port proto targetIP:targetPORT[-targetPORT]

Ê [aliasIP:]aliasPORT[-aliasPORT]

Ê [remoteIP[:remotePORT[-remotePORT]]]

To configure the above example setup, the arguments should be:

redirect_port tcp 192.168.0.2:6667 6667

redirect_port tcp 192.168.0.3:80 80

After adding these arguments to the configuration of NAT instance 1 in the above ruleset, the TCP

ports will be port forwarded to the LAN client machines running the IRC and HTTP services.

ipfw -q nat 1 config if $pif same_ports unreg_only reset \

Ê redirect_port tcp 192.168.0.2:6667 6667 \

Ê redirect_port tcp 192.168.0.3:80 80

Port ranges over individual ports can be indicated with redirect_port . For example, tcp

192.168.0.2:2000-3000 2000-3000 would redirect all connections received on ports 2000 to 3000 to

795

ports 2000 to 3000 on client A .

31.4.4.2. Address Redirection

Address redirection is useful if more than one IP address is available. Each LAN client can be

assigned its own external IP address by man:ipfw[8], which will then rewrite outgoing packets from

the LAN clients with the proper external IP address and redirects all traffic incoming on that

particular IP address back to the specific LAN client. This is also known as static NAT. For example,

if IP addresses 128.1.1.1 , 128.1.1.2 , and 128.1.1.3 are available, 128.1.1.1 can be used as the

man:ipfw[8] machineÕs external IP address, while 128.1.1.2 and 128.1.1.3 are forwarded back to

LAN clients A and B .

The redirect_address syntax is as below, where localIP is the internal IP address of the LAN client,

and publicIP the external IP address corresponding to the LAN client.

redirect_address localIP publicIP

In the example, the arguments would read:

redirect_address 192.168.0.2 128.1.1.2

redirect_address 192.168.0.3 128.1.1.3

Like redirect_port , these arguments are placed in a NAT instance configuration. With address

redirection, there is no need for port redirection, as all data received on a particular IP address is

redirected.

The external IP addresses on the man:ipfw[8] machine must be active and aliased to the external

interface. Refer to man:rc.conf[5] for details.

31.4.4.3. Userspace NAT

Let us start with a statement: the userspace NAT implementation: man:natd[8], has more overhead

than in-kernel NAT. For man:natd[8] to translate packets, the packets have to be copied from the

kernel to userspace and back which brings in extra overhead that is not present with in-kernel NAT.

To enable the userpace NAT daemon man:natd[8] at boot time, the following is a minimum

configuration in /etc/rc.conf . Where natd_interface is set to the name of the NIC attached to the

Internet. The man:rc[8] script of man:natd[8] will automatically check if a dynamic IP address is

used and configure itself to handle that.

gateway_enable="YES"

natd_enable="YES"

natd_interface="rl0"

In general, the above ruleset as explained for in-kernel NAT can also be used together with

man:natd[8]. The exceptions are the configuration of the in-kernel NAT instance (ipfw -q nat 1

config É) which is not needed together with reassemble rule 99 because its functionality is

796

included in the divert action. Rule number 100 and 1000 will have to change sligthly as shown

below.

$cmd 100 divert natd ip from any to any in via $pif

$cmd 1000 divert natd ip from any to any out via $pif

To configure port or address redirection, a similar syntax as with in-kernel NAT is used. Although,

now, instead of specifying the configuration in our ruleset script like with in-kernel NAT,

configuration of man:natd[8] is best done in a configuration file. To do this, an extra flag must be

passed via /etc/rc.conf which specifies the path of the configuration file.

natd_flags="-f /etc/natd.conf"

!

The specified file must contain a list of configuration options, one per line. For

more information about the configuration file and possible variables, consult

man:natd[8]. Below are two example entries, one per line:

redirect_port tcp 192.168.0.2:6667 6667

redirect_address 192.168.0.3 128.1.1.3

31.4.5. The IPFW Command

ipfw can be used to make manual, single rule additions or deletions to the active firewall while it is

running. The problem with using this method is that all the changes are lost when the system

reboots. It is recommended to instead write all the rules in a file and to use that file to load the rules

at boot time and to replace the currently running firewall rules whenever that file changes.

ipfw is a useful way to display the running firewall rules to the console screen. The IPFW

accounting facility dynamically creates a counter for each rule that counts each packet that

matches the rule. During the process of testing a rule, listing the rule with its counter is one way to

determine if the rule is functioning as expected.

To list all the running rules in sequence:

ipfw list

To list all the running rules with a time stamp of when the last time the rule was matched:

ipfw -t list

The next example lists accounting information and the packet count for matched rules along with

the rules themselves. The first column is the rule number, followed by the number of matched

packets and bytes, followed by the rule itself.

797

ipfw -a list

To list dynamic rules in addition to static rules:

ipfw -d list

To also show the expired dynamic rules:

ipfw -d -e list

To zero the counters:

ipfw zero

To zero the counters for just the rule with number NUM :

ipfw zero NUM

31.4.5.1. Logging Firewall Messages

Even with the logging facility enabled, IPFW will not generate any rule logging on its own. The

firewall administrator decides which rules in the ruleset will be logged, and adds the log keyword

to those rules. Normally only deny rules are logged. It is customary to duplicate the "ipfw default

deny everything" rule with the log keyword included as the last rule in the ruleset. This way, it is

possible to see all the packets that did not match any of the rules in the ruleset.

Logging is a two edged sword. If one is not careful, an over abundance of log data or a DoS attack

can fill the disk with log files. Log messages are not only written to syslogd, but also are displayed

on the root console screen and soon become annoying.

The IPFIREWALL_VERBOSE_LIMIT=5 kernel option limits the number of consecutive messages sent to

man:syslogd[8], concerning the packet matching of a given rule. When this option is enabled in the

kernel, the number of consecutive messages concerning a particular rule is capped at the number

specified. There is nothing to be gained from 200 identical log messages. With this option set to five,

five consecutive messages concerning a particular rule would be logged to syslogd and the

remainder identical consecutive messages would be counted and posted to syslogd with a phrase

like the following:

last message repeated 45 times

All logged packets messages are written by default to /var/log/security , which is defined in

/etc/syslog.conf .

798

31.4.5.2. Building a Rule Script

Most experienced IPFW users create a file containing the rules and code them in a manner

compatible with running them as a script. The major benefit of doing this is the firewall rules can

be refreshed in mass without the need of rebooting the system to activate them. This method is

convenient in testing new rules as the procedure can be executed as many times as needed. Being a

script, symbolic substitution can be used for frequently used values to be substituted into multiple

rules.

This example script is compatible with the syntax used by the man:sh[1], man:csh[1], and

man:tcsh[1] shells. Symbolic substitution fields are prefixed with a dollar sign ($). Symbolic fields

do not have the $ prefix. The value to populate the symbolic field must be enclosed in double

quotes ("").

Start the rules file like this:

############### start of example ipfw rules script #############

#

ipfw -q -f flush # Delete all rules

Set defaults

oif="tun0" # out interface

odns="192.0.2.11" # ISP's DNS server IP address

cmd="ipfw -q add " # build rule prefix

ks="keep-state" # just too lazy to key this each time

$cmd 00500 check-state

$cmd 00502 deny all from any to any frag

$cmd 00501 deny tcp from any to any established

$cmd 00600 allow tcp from any to any 80 out via $oif setup $ks

$cmd 00610 allow tcp from any to $odns 53 out via $oif setup $ks

$cmd 00611 allow udp from any to $odns 53 out via $oif $ks

################### End of example ipfw rules script ############

The rules are not important as the focus of this example is how the symbolic substitution fields are

populated.

If the above example was in /etc/ipfw.rules , the rules could be reloaded by the following command:

sh /etc/ipfw.rules

/etc/ipfw.rules can be located anywhere and the file can have any name.

The same thing could be accomplished by running these commands by hand:

799

ipfw -q -f flush

ipfw -q add check-state

ipfw -q add deny all from any to any frag

ipfw -q add deny tcp from any to any established

ipfw -q add allow tcp from any to any 80 out via tun0 setup keep-state

ipfw -q add allow tcp from any to 192.0.2.11 53 out via tun0 setup keep-state

ipfw -q add 00611 allow udp from any to 192.0.2.11 53 out via tun0 keep-state

31.4.6. IPFW Kernel Options

In order to statically compile IPFW support into a custom kernel, refer to the instructions in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]. The following options are

available for the custom kernel configuration file:

options IPFIREWALL # enables IPFW

options IPFIREWALL_VERBOSE # enables logging for rules with log keyword to

syslogd(8)

options IPFIREWALL_VERBOSE_LIMIT=5 # limits number of logged packets per-entry

options IPFIREWALL_DEFAULT_TO_ACCEPT # sets default policy to pass what is not

explicitly denied

options IPFIREWALL_NAT # enables basic in-kernel NAT support

options LIBALIAS # enables full in-kernel NAT support

options IPFIREWALL_NAT64 # enables in-kernel NAT64 support

options IPFIREWALL_NPTV6 # enables in-kernel IPv6 NPT support

options IPFIREWALL_PMOD # enables protocols modification module support

options IPDIVERT # enables NAT through natd(8)

!

IPFW can be loaded as a kernel module: options above are built by default as

modules or can be set at runtime using tunables.

31.5. IPFILTER (IPF)

IPFILTER, also known as IPF, is a cross-platform, open source firewall which has been ported to

several operating systems, including FreeBSD, NetBSD, OpenBSD, and Solarisª.

IPFILTER is a kernel-side firewall and NAT mechanism that can be controlled and monitored by

userland programs. Firewall rules can be set or deleted using ipf, NAT rules can be set or deleted

using ipnat, run-time statistics for the kernel parts of IPFILTER can be printed using ipfstat, and

ipmon can be used to log IPFILTER actions to the system log files.

IPF was originally written using a rule processing logic of "the last matching rule wins" and only

used stateless rules. Since then, IPF has been enhanced to include the quick and keep state options.

The IPF FAQ is at http://www.phildev.net/ipf/index.html . A searchable archive of the IPFilter mailing

list is available at http://marc.info/?l=ipfilter .

This section of the Handbook focuses on IPF as it pertains to FreeBSD. It provides examples of rules

800

http://www.phildev.net/ipf/index.html
http://marc.info/?l=ipfilter

that contain the quick and keep state options.

31.5.1. Enabling IPF

IPF is included in the basic FreeBSD install as a kernel loadable module, meaning that a custom

kernel is not needed in order to enable IPF.

For users who prefer to statically compile IPF support into a custom kernel, refer to the instructions

in crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]. The following kernel

options are available:

options IPFILTER

options IPFILTER_LOG

options IPFILTER_LOOKUP

options IPFILTER_DEFAULT_BLOCK

where options IPFILTER enables support for IPFILTER, options IPFILTER_LOG enables IPF logging

using the ipl packet logging pseudo-device for every rule that has the log keyword, IPFILTER_LOOKUP

enables IP pools in order to speed up IP lookups, and options IPFILTER_DEFAULT_BLOCK changes the

default behavior so that any packet not matching a firewall pass rule gets blocked.

To configure the system to enable IPF at boot time, add the following entries to /etc/rc.conf . These

entries will also enable logging and default pass all . To change the default policy to block all

without compiling a custom kernel, remember to add a block all rule at the end of the ruleset.

ipfilter_enable="YES" # Start ipf firewall

ipfilter_rules="/etc/ipf.rules" # loads rules definition text file

ipv6_ipfilter_rules="/etc/ipf6.rules" # loads rules definition text file for IPv6

ipmon_enable="YES" # Start IP monitor log

ipmon_flags="-Ds" # D = start as daemon

Ê # s = log to syslog

Ê # v = log tcp window, ack, seq

Ê # n = map IP & port to names

If NAT functionality is needed, also add these lines:

gateway_enable="YES" # Enable as LAN gateway

ipnat_enable="YES" # Start ipnat function

ipnat_rules="/etc/ipnat.rules" # rules definition file for ipnat

Then, to start IPF now:

service ipfilter start

To load the firewall rules, specify the name of the ruleset file using ipf . The following command can

be used to replace the currently running firewall rules:

801

ipf -Fa -f /etc/ipf.rules

where -Fa flushes all the internal rules tables and -f specifies the file containing the rules to load.

This provides the ability to make changes to a custom ruleset and update the running firewall with

a fresh copy of the rules without having to reboot the system. This method is convenient for testing

new rules as the procedure can be executed as many times as needed.

Refer to man:ipf[8] for details on the other flags available with this command.

31.5.2. IPF Rule Syntax

This section describes the IPF rule syntax used to create stateful rules. When creating rules, keep in

mind that unless the quick keyword appears in a rule, every rule is read in order, with the last

matching rule being the one that is applied. This means that even if the first rule to match a packet

is a pass , if there is a later matching rule that is a block , the packet will be dropped. Sample rulesets

can be found in /usr/shared/examples/ipfilter .

When creating rules, a # character is used to mark the start of a comment and may appear at the

end of a rule, to explain that ruleÕs function, or on its own line. Any blank lines are ignored.

The keywords which are used in rules must be written in a specific order, from left to right. Some

keywords are mandatory while others are optional. Some keywords have sub-options which may

be keywords themselves and also include more sub-options. The keyword order is as follows, where

the words shown in uppercase represent a variable and the words shown in lowercase must

precede the variable that follows it:

ACTION DIRECTION OPTIONS proto PROTO_TYPE from SRC_ADDR SRC_PORT to DST_ADDR DST_PORT

TCP_FLAG|ICMP_TYPE keep state STATE

This section describes each of these keywords and their options. It is not an exhaustive list of every

possible option. Refer to man:ipf[5] for a complete description of the rule syntax that can be used

when creating IPF rules and examples for using each keyword.

ACTION

The action keyword indicates what to do with the packet if it matches that rule. Every rule must

have an action. The following actions are recognized:

block : drops the packet.

pass : allows the packet.

log : generates a log record.

count : counts the number of packets and bytes which can provide an indication of how often a

rule is used.

auth : queues the packet for further processing by another program.

call : provides access to functions built into IPF that allow more complex actions.

802

decapsulate : removes any headers in order to process the contents of the packet.

DIRECTION

Next, each rule must explicitly state the direction of traffic using one of these keywords:

in : the rule is applied against an inbound packet.

out : the rule is applied against an outbound packet.

all : the rule applies to either direction.

If the system has multiple interfaces, the interface can be specified along with the direction. An

example would be in on fxp0 .

OPTIONS

Options are optional. However, if multiple options are specified, they must be used in the order

shown here.

log : when performing the specified ACTION, the contents of the packetÕs headers will be written

to the man:ipl[4] packet log pseudo-device.

quick : if a packet matches this rule, the ACTION specified by the rule occurs and no further

processing of any following rules will occur for this packet.

on : must be followed by the interface name as displayed by man:ifconfig[8]. The rule will only

match if the packet is going through the specified interface in the specified direction.

When using the log keyword, the following qualifiers may be used in this order:

body : indicates that the first 128 bytes of the packet contents will be logged after the headers.

first : if the log keyword is being used in conjunction with a keep state option, this option is

recommended so that only the triggering packet is logged and not every packet which matches

the stateful connection.

Additional options are available to specify error return messages. Refer to man:ipf[5] for more

details.

PROTO_TYPE

The protocol type is optional. However, it is mandatory if the rule needs to specify a SRC_PORT

or a DST_PORT as it defines the type of protocol. When specifying the type of protocol, use the

proto keyword followed by either a protocol number or name from /etc/protocols . Example

protocol names include tcp , udp , or icmp . If PROTO_TYPE is specified but no SRC_PORT or

DST_PORT is specified, all port numbers for that protocol will match that rule.

SRC_ADDR

The from keyword is mandatory and is followed by a keyword which represents the source of the

packet. The source can be a hostname, an IP address followed by the CIDR mask, an address

pool, or the keyword all . Refer to man:ipf[5] for examples.

There is no way to match ranges of IP addresses which do not express themselves easily using

803

the dotted numeric form / mask-length notation. The package:net-mgmt/ipcalc[] package or port

may be used to ease the calculation of the CIDR mask. Additional information is available at the

utilityÕs web page: http://jodies.de/ipcalc .

SRC_PORT

The port number of the source is optional. However, if it is used, it requires PROTO_TYPE to be

first defined in the rule. The port number must also be preceded by the proto keyword.

A number of different comparison operators are supported: = (equal to), != (not equal to), < (less

than), > (greater than), + (less than or equal to), and >= (greater than or equal to).

To specify port ranges, place the two port numbers between <> (less than and greater than), ><

(greater than and less than), or : (greater than or equal to and less than or equal to).

DST_ADDR

The to keyword is mandatory and is followed by a keyword which represents the destination of

the packet. Similar to SRC_ADDR, it can be a hostname, an IP address followed by the CIDR mask,

an address pool, or the keyword all .

DST_PORT

Similar to SRC_PORT, the port number of the destination is optional. However, if it is used, it

requires PROTO_TYPE to be first defined in the rule. The port number must also be preceded by

the proto keyword.

TCP_FLAG|ICMP_TYPE

If tcp is specified as the PROTO_TYPE, flags can be specified as letters, where each letter

represents one of the possible TCP flags used to determine the state of a connection. Possible

values are: S (SYN), A (ACK), P (PSH), F (FIN), U (URG), R (RST), C (CWN), and E (ECN).

If icmp is specified as the PROTO_TYPE, the ICMP type to match can be specified. Refer to

man:ipf[5] for the allowable types.

STATE

If a pass rule contains keep state , IPF will add an entry to its dynamic state table and allow

subsequent packets that match the connection. IPF can track state for TCP, UDP, and ICMP

sessions. Any packet that IPF can be certain is part of an active session, even if it is a different

protocol, will be allowed.

In IPF, packets destined to go out through the interface connected to the public Internet are first

checked against the dynamic state table. If the packet matches the next expected packet

comprising an active session conversation, it exits the firewall and the state of the session

conversation flow is updated in the dynamic state table. Packets that do not belong to an already

active session are checked against the outbound ruleset. Packets coming in from the interface

connected to the public Internet are first checked against the dynamic state table. If the packet

matches the next expected packet comprising an active session, it exits the firewall and the state

of the session conversation flow is updated in the dynamic state table. Packets that do not belong

to an already active session are checked against the inbound ruleset.

Several keywords can be added after keep state . If used, these keywords set various options that

804

http://jodies.de/ipcalc

control stateful filtering, such as setting connection limits or connection age. Refer to man:ipf[5]

for the list of available options and their descriptions.

31.5.3. Example Ruleset

This section demonstrates how to create an example ruleset which only allows services matching

pass rules and blocks all others.

FreeBSD uses the loopback interface (lo0) and the IP address 127.0.0.1 for internal communication.

The firewall ruleset must contain rules to allow free movement of these internally used packets:

no restrictions on loopback interface

pass in quick on lo0 all

pass out quick on lo0 all

The public interface connected to the Internet is used to authorize and control access of all

outbound and inbound connections. If one or more interfaces are cabled to private networks, those

internal interfaces may require rules to allow packets originating from the LAN to flow between the

internal networks or to the interface attached to the Internet. The ruleset should be organized into

three major sections: any trusted internal interfaces, outbound connections through the public

interface, and inbound connections through the public interface.

These two rules allow all traffic to pass through a trusted LAN interface named xl0 :

no restrictions on inside LAN interface for private network

pass out quick on xl0 all

pass in quick on xl0 all

The rules for the public interfaceÕs outbound and inbound sections should have the most frequently

matched rules placed before less commonly matched rules, with the last rule in the section blocking

and logging all packets for that interface and direction.

This set of rules defines the outbound section of the public interface named dc0 . These rules keep

state and identify the specific services that internal systems are authorized for public Internet

access. All the rules use quick and specify the appropriate port numbers and, where applicable,

destination addresses.

805

interface facing Internet (outbound)

Matches session start requests originating from or behind the

firewall, destined for the Internet.

Allow outbound access to public DNS servers.

Replace x.x.x. with address listed in /etc/resolv.conf.

Repeat for each DNS server.

pass out quick on dc0 proto tcp from any to x.x.x. port = 53 flags S keep state

pass out quick on dc0 proto udp from any to xxx port = 53 keep state

Allow access to ISP's specified DHCP server for cable or DSL networks.

Use the first rule, then check log for the IP address of DHCP server.

Then, uncomment the second rule, replace z.z.z.z with the IP address,

and comment out the first rule

pass out log quick on dc0 proto udp from any to any port = 67 keep state

#pass out quick on dc0 proto udp from any to z.z.z.z port = 67 keep state

Allow HTTP and HTTPS

pass out quick on dc0 proto tcp from any to any port = 80 flags S keep state

pass out quick on dc0 proto tcp from any to any port = 443 flags S keep state

Allow email

pass out quick on dc0 proto tcp from any to any port = 110 flags S keep state

pass out quick on dc0 proto tcp from any to any port = 25 flags S keep state

Allow NTP

pass out quick on dc0 proto tcp from any to any port = 37 flags S keep state

Allow FTP

pass out quick on dc0 proto tcp from any to any port = 21 flags S keep state

Allow SSH

pass out quick on dc0 proto tcp from any to any port = 22 flags S keep state

Allow ping

pass out quick on dc0 proto icmp from any to any icmp-type 8 keep state

Block and log everything else

block out log first quick on dc0 all

This example of the rules in the inbound section of the public interface blocks all undesirable

packets first. This reduces the number of packets that are logged by the last rule.

806

interface facing Internet (inbound)

Block all inbound traffic from non-routable or reserved address spaces

block in quick on dc0 from 192.168.0.0/16 to any #RFC 1918 private IP

block in quick on dc0 from 172.16.0.0/12 to any #RFC 1918 private IP

block in quick on dc0 from 10.0.0.0/8 to any #RFC 1918 private IP

block in quick on dc0 from 127.0.0.0/8 to any #loopback

block in quick on dc0 from 0.0.0.0/8 to any #loopback

block in quick on dc0 from 169.254.0.0/16 to any #DHCP auto-config

block in quick on dc0 from 192.0.2.0/24 to any #reserved for docs

block in quick on dc0 from 204.152.64.0/23 to any #Sun cluster interconnect

block in quick on dc0 from 224.0.0.0/3 to any #Class D & E multicast

Block fragments and too short tcp packets

block in quick on dc0 all with frags

block in quick on dc0 proto tcp all with short

block source routed packets

block in quick on dc0 all with opt lsrr

block in quick on dc0 all with opt ssrr

Block OS fingerprint attempts and log first occurrence

block in log first quick on dc0 proto tcp from any to any flags FUP

Block anything with special options

block in quick on dc0 all with ipopts

Block public pings and ident

block in quick on dc0 proto icmp all icmp-type 8

block in quick on dc0 proto tcp from any to any port = 113

Block incoming Netbios services

block in log first quick on dc0 proto tcp/udp from any to any port = 137

block in log first quick on dc0 proto tcp/udp from any to any port = 138

block in log first quick on dc0 proto tcp/udp from any to any port = 139

block in log first quick on dc0 proto tcp/udp from any to any port = 81

Any time there are logged messages on a rule with the log first option, run ipfstat -hio to

evaluate how many times the rule has been matched. A large number of matches may indicate that

the system is under attack.

The rest of the rules in the inbound section define which connections are allowed to be initiated

from the Internet. The last rule denies all connections which were not explicitly allowed by

previous rules in this section.

807

Allow traffic in from ISP's DHCP server. Replace z.z.z.z with

the same IP address used in the outbound section.

pass in quick on dc0 proto udp from z.z.z.z to any port = 68 keep state

Allow public connections to specified internal web server

pass in quick on dc0 proto tcp from any to x.x.x.x port = 80 flags S keep state

Block and log only first occurrence of all remaining traffic.

block in log first quick on dc0 all

31.5.4. Configuring NAT

To enable NAT, add these statements to /etc/rc.conf and specify the name of the file containing the

NAT rules:

gateway_enable="YES"

ipnat_enable="YES"

ipnat_rules="/etc/ipnat.rules"

NAT rules are flexible and can accomplish many different things to fit the needs of both commercial

and home users. The rule syntax presented here has been simplified to demonstrate common

usage. For a complete rule syntax description, refer to man:ipnat[5].

The basic syntax for a NAT rule is as follows, where map starts the rule and IF should be replaced

with the name of the external interface:

map IF LAN_IP_RANGE -> PUBLIC_ADDRESS

The LAN_IP_RANGE is the range of IP addresses used by internal clients. Usually, it is a private

address range such as 192.168.1.0/24 . The PUBLIC_ADDRESS can either be the static external IP

address or the keyword 0/32 which represents the IP address assigned to IF .

In IPF, when a packet arrives at the firewall from the LAN with a public destination, it first passes

through the outbound rules of the firewall ruleset. Then, the packet is passed to the NAT ruleset

which is read from the top down, where the first matching rule wins. IPF tests each NAT rule

against the packetÕs interface name and source IP address. When a packetÕs interface name matches

a NAT rule, the packetÕs source IP address in the private LAN is checked to see if it falls within the IP

address range specified in LAN_IP_RANGE . On a match, the packet has its source IP address

rewritten with the public IP address specified by PUBLIC_ADDRESS . IPF posts an entry in its

internal NAT table so that when the packet returns from the Internet, it can be mapped back to its

original private IP address before being passed to the firewall rules for further processing.

For networks that have large numbers of internal systems or multiple subnets, the process of

funneling every private IP address into a single public IP address becomes a resource problem. Two

methods are available to relieve this issue.

808

The first method is to assign a range of ports to use as source ports. By adding the portmap keyword,

NAT can be directed to only use source ports in the specified range:

map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:60000

Alternately, use the auto keyword which tells NAT to determine the ports that are available for use:

map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp auto

The second method is to use a pool of public addresses. This is useful when there are too many LAN

addresses to fit into a single public address and a block of public IP addresses is available. These

public addresses can be used as a pool from which NAT selects an IP address as a packetÕs address is

mapped on its way out.

The range of public IP addresses can be specified using a netmask or CIDR notation. These two rules

are equivalent:

map dc0 192.168.1.0/24 -> 204.134.75.0/255.255.255.0

map dc0 192.168.1.0/24 -> 204.134.75.0/24

A common practice is to have a publically accessible web server or mail server segregated to an

internal network segment. The traffic from these servers still has to undergo NAT, but port

redirection is needed to direct inbound traffic to the correct server. For example, to map a web

server using the internal address 10.0.10.25 to its public IP address of 20.20.20.5 , use this rule:

rdr dc0 20.20.20.5/32 port 80 -> 10.0.10.25 port 80

If it is the only web server, this rule would also work as it redirects all external HTTP requests to

10.0.10.25 :

rdr dc0 0.0.0.0/0 port 80 -> 10.0.10.25 port 80

IPF has a built in FTP proxy which can be used with NAT. It monitors all outbound traffic for active

or passive FTP connection requests and dynamically creates temporary filter rules containing the

port number used by the FTP data channel. This eliminates the need to open large ranges of high

order ports for FTP connections.

In this example, the first rule calls the proxy for outbound FTP traffic from the internal LAN. The

second rule passes the FTP traffic from the firewall to the Internet, and the third rule handles all

non-FTP traffic from the internal LAN:

809

map dc0 10.0.10.0/29 -> 0/32 proxy port 21 ftp/tcp

map dc0 0.0.0.0/0 -> 0/32 proxy port 21 ftp/tcp

map dc0 10.0.10.0/29 -> 0/32

The FTP map rules go before the NAT rule so that when a packet matches an FTP rule, the FTP proxy

creates temporary filter rules to let the FTP session packets pass and undergo NAT. All LAN packets

that are not FTP will not match the FTP rules but will undergo NAT if they match the third rule.

Without the FTP proxy, the following firewall rules would instead be needed. Note that without the

proxy, all ports above 1024 need to be allowed:

Allow out LAN PC client FTP to public Internet

Active and passive modes

pass out quick on rl0 proto tcp from any to any port = 21 flags S keep state

Allow out passive mode data channel high order port numbers

pass out quick on rl0 proto tcp from any to any port > 1024 flags S keep state

Active mode let data channel in from FTP server

pass in quick on rl0 proto tcp from any to any port = 20 flags S keep state

Whenever the file containing the NAT rules is edited, run ipnat with -CF to delete the current NAT

rules and flush the contents of the dynamic translation table. Include -f and specify the name of the

NAT ruleset to load:

ipnat -CF -f /etc/ipnat.rules

To display the NAT statistics:

ipnat -s

To list the NAT tableÕs current mappings:

ipnat -l

To turn verbose mode on and display information relating to rule processing and active rules and

table entries:

ipnat -v

31.5.5. Viewing IPF Statistics

IPF includes man:ipfstat[8] which can be used to retrieve and display statistics which are gathered

810

as packets match rules as they go through the firewall. Statistics are accumulated since the firewall

was last started or since the last time they were reset to zero using ipf -Z .

The default ipfstat output looks like this:

input packets: blocked 99286 passed 1255609 nomatch 14686 counted 0

Êoutput packets: blocked 4200 passed 1284345 nomatch 14687 counted 0

Êinput packets logged: blocked 99286 passed 0

Êoutput packets logged: blocked 0 passed 0

Êpackets logged: input 0 output 0

Êlog failures: input 3898 output 0

Êfragment state(in): kept 0 lost 0

Êfragment state(out): kept 0 lost 0

Êpacket state(in): kept 169364 lost 0

Êpacket state(out): kept 431395 lost 0

ÊICMP replies: 0 TCP RSTs sent: 0

ÊResult cache hits(in): 1215208 (out): 1098963

ÊIN Pullups succeeded: 2 failed: 0

ÊOUT Pullups succeeded: 0 failed: 0

ÊFastroute successes: 0 failures: 0

ÊTCP cksum fails(in): 0 (out): 0

ÊPacket log flags set: (0)

Several options are available. When supplied with either -i for inbound or -o for outbound, the

command will retrieve and display the appropriate list of filter rules currently installed and in use

by the kernel. To also see the rule numbers, include -n . For example, ipfstat -on displays the

outbound rules table with rule numbers:

@1 pass out on xl0 from any to any

@2 block out on dc0 from any to any

@3 pass out quick on dc0 proto tcp/udp from any to any keep state

Include -h to prefix each rule with a count of how many times the rule was matched. For example,

ipfstat -oh displays the outbound internal rules table, prefixing each rule with its usage count:

2451423 pass out on xl0 from any to any

354727 block out on dc0 from any to any

430918 pass out quick on dc0 proto tcp/udp from any to any keep state

To display the state table in a format similar to man:top[1], use ipfstat -t . When the firewall is

under attack, this option provides the ability to identify and see the attacking packets. The optional

sub-flags give the ability to select the destination or source IP, port, or protocol to be monitored in

real time. Refer to man:ipfstat[8] for details.

31.5.6. IPF Logging

IPF provides ipmon , which can be used to write the firewallÕs logging information in a human

811

readable format. It requires that options IPFILTER_LOG be first added to a custom kernel using the

instructions in crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel].

This command is typically run in daemon mode in order to provide a continuous system log file so

that logging of past events may be reviewed. Since FreeBSD has a built in man:syslogd[8] facility to

automatically rotate system logs, the default rc.conf ipmon_flags statement uses -Ds :

ipmon_flags="-Ds" # D = start as daemon

Ê # s = log to syslog

Ê # v = log tcp window, ack, seq

Ê # n = map IP & port to names

Logging provides the ability to review, after the fact, information such as which packets were

dropped, what addresses they came from, and where they were going. This information is useful in

tracking down attackers.

Once the logging facility is enabled in rc.conf and started with service ipmon start , IPF will only log

the rules which contain the log keyword. The firewall administrator decides which rules in the

ruleset should be logged and normally only deny rules are logged. It is customary to include the log

keyword in the last rule in the ruleset. This makes it possible to see all the packets that did not

match any of the rules in the ruleset.

By default, ipmon -Ds mode uses local0 as the logging facility. The following logging levels can be

used to further segregate the logged data:

LOG_INFO - packets logged using the "log" keyword as the action rather than pass or

block.

LOG_NOTICE - packets logged which are also passed

LOG_WARNING - packets logged which are also blocked

LOG_ERR - packets which have been logged and which can be considered short due to an

incomplete header

In order to setup IPF to log all data to /var/log/ipfilter.log , first create the empty file:

touch /var/log/ipfilter.log

Then, to write all logged messages to the specified file, add the following statement to

/etc/syslog.conf :

local0.* /var/log/ipfilter.log

To activate the changes and instruct man:syslogd[8] to read the modified /etc/syslog.conf , run

service syslogd reload .

Do not forget to edit /etc/newsyslog.conf to rotate the new log file.

812

Messages generated by ipmon consist of data fields separated by white space. Fields common to all

messages are:

1. The date of packet receipt.

2. The time of packet receipt. This is in the form HH:MM:SS.F, for hours, minutes, seconds, and

fractions of a second.

3. The name of the interface that processed the packet.

4. The group and rule number of the rule in the format @0:17 .

5. The action: p for passed, b for blocked, S for a short packet, n did not match any rules, and L for a

log rule.

6. The addresses written as three fields: the source address and port separated by a comma, the #

symbol, and the destination address and port. For example: 209.53.17.22,80 ,

198.73.220.17,1722 .

7. PR followed by the protocol name or number: for example, PR tcp .

8. len followed by the header length and total length of the packet: for example, len 20 40 .

If the packet is a TCP packet, there will be an additional field starting with a hyphen followed by

letters corresponding to any flags that were set. Refer to man:ipf[5] for a list of letters and their

flags.

If the packet is an ICMP packet, there will be two fields at the end: the first always being "icmp" and

the next being the ICMP message and sub-message type, separated by a slash. For example: icmp 3/3

for a port unreachable message.

31.6. Blacklistd

Blacklistd is a daemon listening to sockets to receive notifications from other daemons about

connection attempts that failed or were successful. It is most widely used in blocking too many

connection attempts on open ports. A prime example is SSH running on the internet getting a lot of

requests from bots or scripts trying to guess passwords and gain access. Using blacklistd, the

daemon can notify the firewall to create a filter rule to block excessive connection attempts from a

single source after a number of tries. Blacklistd was first developed on NetBSD and appeared there

in version 7. FreeBSD 11 imported blacklistd from NetBSD.

This chapter describes how to set up blacklistd, configure it, and provides examples on how to use

it. Readers should be familiar with basic firewall concepts like rules. For details, refer to the

firewall chapter. PF is used in the examples, but other firewalls available on FreeBSD should be

able to work with blacklistd, too.

31.6.1. Enabling Blacklistd

The main configuration for blacklistd is stored in man:blacklistd.conf[5]. Various command line

options are also available to change blacklistdÕs run-time behavior. Persistent configuration across

reboots should be stored in /etc/blacklistd.conf . To enable the daemon during system boot, add a

blacklistd_enable line to /etc/rc.conf like this:

813

sysrc blacklistd_enable=yes

To start the service manually, run this command:

service blacklistd start

31.6.2. Creating a Blacklistd Ruleset

Rules for blacklistd are configured in man:blacklistd.conf[5] with one entry per line. Each rule

contains a tuple separated by spaces or tabs. Rules either belong to a local or a remote , which

applies to the machine where blacklistd is running or an outside source, respectively.

31.6.2.1. Local Rules

An example blacklistd.conf entry for a local rule looks like this:

[local]

ssh stream * * * 3 24h

All rules that follow the [local] section are treated as local rules (which is the default), applying to

the local machine. When a [remote] section is encountered, all rules that follow it are handled as

remote machine rules.

Seven fields define a rule separated by either tabs or spaces. The first four fields identify the traffic

that should be blacklisted. The three fields that follow define backlistdÕs behavior. Wildcards are

denoted as asterisks (*), matching anything in this field. The first field defines the location. In local

rules, these are the network ports. The syntax for the location field is as follows:

[address|interface][/mask][:port]

Adressses can be specified as IPv4 in numeric format or IPv6 in square brackets. An interface name

like em0 can also be used.

The socket type is defined by the second field. TCP sockets are of type stream , whereas UDP is

denoted as dgram . The example above uses TCP, since SSH is using that protocol.

A protocol can be used in the third field of a blacklistd rule. The following protocols can be used:

tcp , udp , tcp6 , udp6 , or numeric. A wildcard, like in the example, is typically used to match all

protocols unless there is a reason to distinguish traffic by a certain protocol.

In the fourth field, the effective user or owner of the daemon process that is reporting the event is

defined. The username or UID can be used here, as well as a wildcard (see example rule above).

The packet filter rule name is declared by the fifth field, which starts the behavior part of the rule.

By default, blacklistd puts all blocks under a pf anchor called blacklistd in pf.conf like this:

814

anchor "blacklistd/*" in on $ext_if

block in

pass out

For separate blacklists, an anchor name can be used in this field. In other cases, the wildcard will

suffice. When a name starts with a hyphen (-) it means that an anchor with the default rule name

prepended should be used. A modified example from the above using the hyphen would look like

this:

ssh stream * * -ssh 3 24h

With such a rule, any new blacklist rules are added to an anchor called blacklistd-ssh .

To block whole subnets for a single rule violation, a / in the rule name can be used. This causes the

remaining portion of the name to be interpreted as the mask to be applied to the address specified

in the rule. For example, this rule would block every address adjoining /24 .

22 stream tcp * */24 3 24h

!

It is important to specify the proper protocol here. IPv4 and IPv6 treat /24

differently, that is the reason why * cannot be used in the third field for this rule.

This rule defines that if any one host in that network is misbehaving, everything else on that

network will be blocked, too.

The sixth field, called nfail , sets the number of login failures required to blacklist the remote IP in

question. When a wildcard is used at this position, it means that blocks will never happen. In the

example rule above, a limit of three is defined meaning that after three attempts to log into SSH on

one connection, the IP is blocked.

The last field in a blacklistd rule definition specifies how long a host is blacklisted. The default unit

is seconds, but suffixes like m , h , and d can also be specified for minutes, hours, and days,

respectively.

The example rule in its entirety means that after three times authenticating to SSH will result in a

new PF block rule for that host. Rule matches are performed by first checking local rules one after

another, from most specific to least specific. When a match occurs, the remote rules are applied and

the name, nfail , and disable fields are changed by the remote rule that matched.

31.6.2.2. Remote Rules

Remote rules are used to specify how blacklistd changes its behavior depending on the remote host

currently being evaluated. Each field in a remote rule is the same as in a local rule. The only

difference is in the way blacklistd is using them. To explain it, this example rule is used:

815

[remote]

203.0.113.128/25 * * * =/25 = 48h

The address field can be an IP address (either v4 or v6), a port or both. This allows setting special

rules for a specific remote address range like in this example. The fields for type, protocol and

owner are identically interpreted as in the local rule.

The name fields is different though: the equal sign (=) in a remote rule tells blacklistd to use the

value from the matching local rule. It means that the firewall rule entry is taken and the /25 prefix

(a netmask of 255.255.255.128) is added. When a connection from that address range is blacklisted,

the entire subnet is affected. A PF anchor name can also be used here, in which case blacklistd will

add rules for this address block to the anchor of that name. The default table is used when a

wildcard is specified.

A custom number of failures in the nfail column can be defined for an address. This is useful for

exceptions to a specific rule, to maybe allow someone a less strict application of rules or a bit more

leniency in login tries. Blocking is disabled when an asterisk is used in this sixth field.

Remote rules allow a stricter enforcement of limits on attempts to log in compared to attempts

coming from a local network like an office.

31.6.3. Blacklistd Client Configuration

There are a few software packages in FreeBSD that can utilize blacklistdÕs functionality. The two

most prominent ones are man:ftpd[8] and man:sshd[8] to block excessive connection attempts. To

activate blacklistd in the SSH daemon, add the following line to /etc/ssh/sshd_config :

UseBlacklist yes

Restart sshd afterwards to make these changes take effect.

Blacklisting for man:ftpd[8] is enabled using -B , either in /etc/inetd.conf or as a flag in /etc/rc.conf

like this:

ftpd_flags="-B"

That is all that is needed to make these programs talk to blacklistd.

31.6.4. Blacklistd Management

Blacklistd provides the user with a management utility called man:blacklistctl[8]. It displays

blocked addresses and networks that are blacklisted by the rules defined in man:blacklistd.conf[5].

To see the list of currently blocked hosts, use dump combined with -b like this.

816

blacklistctl dump -b

Ê address/ma:port id nfail last access

213.0.123.128/25:22 OK 6/3 2019/06/08 14:30:19

This example shows that there were 6 out of three permitted attempts on port 22 coming from the

address range 213.0.123.128/25 . There are more attempts listed than are allowed because SSH

allows a client to try multiple logins on a single TCP connection. A connection that is currently

going on is not stopped by blacklistd. The last connection attempt is listed in the last access column

of the output.

To see the remaining time that this host will be on the blacklist, add -r to the previous command.

blacklistctl dump -br

Ê address/ma:port id nfail remaining time

213.0.123.128/25:22 OK 6/3 36s

In this example, there are 36s seconds left until this host will not be blocked any more.

31.6.5. Removing Hosts from the Block List

Sometimes it is necessary to remove a host from the block list before the remaining time expires.

Unfortunately, there is no functionality in blacklistd to do that. However, it is possible to remove

the address from the PF table using pfctl. For each blocked port, there is a child anchor inside the

blacklistd anchor defined in /etc/pf.conf . For example, if there is a child anchor for blocking port 22

it is called blacklistd/22 . There is a table inside that child anchor that contains the blocked

addresses. This table is called port followed by the port number. In this example, it would be called

port22 . With that information at hand, it is now possible to use man:pfctl[8] to display all addresses

listed like this:

pfctl -a blacklistd/22 -t port22 -T show

...

213.0.123.128/25

...

After identifying the address to be unblocked from the list, the following command removes it from

the list:

pfctl -a blacklistd/22 -t port22 -T delete 213.0.123.128/25

The address is now removed from PF, but will still show up in the blacklistctl list, since it does not

know about any changes made in PF. The entry in blacklistdÕs database will eventually expire and

be removed from its output eventually. The entry will be added again if the host is matching one of

the block rules in blacklistd again.

817

Chapter 32. Advanced Networking

32.1. Synopsis

This chapter covers a number of advanced networking topics.

After reading this chapter, you will know:

¥ The basics of gateways and routes.

¥ How to set up USB tethering.

¥ How to set up IEEE¨ 802.11 and Bluetooth¨ devices.

¥ How to make FreeBSD act as a bridge.

¥ How to set up network PXE booting.

¥ How to set up IPv6 on a FreeBSD machine.

¥ How to enable and utilize the features of the Common Address Redundancy Protocol (CARP) in

FreeBSD.

¥ How to configure multiple VLANs on FreeBSD.

¥ Configure bluetooth headset.

Before reading this chapter, you should:

¥ Understand the basics of the /etc/rc scripts.

¥ Be familiar with basic network terminology.

¥ Know how to configure and install a new FreeBSD kernel

(crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]).

¥ Know how to install additional third-party software (crossref:ports[ports,Installing

Applications: Packages and Ports]).

32.2. Gateways and Routes

Routing is the mechanism that allows a system to find the network path to another system. A route

is a defined pair of addresses which represent the "destination" and a "gateway". The route

indicates that when trying to get to the specified destination, send the packets through the specified

gateway. There are three types of destinations: individual hosts, subnets, and "default". The "default

route" is used if no other routes apply. There are also three types of gateways: individual hosts,

interfaces, also called links, and Ethernet hardware (MAC) addresses. Known routes are stored in a

routing table.

This section provides an overview of routing basics. It then demonstrates how to configure a

FreeBSD system as a router and offers some troubleshooting tips.

818

32.2.1. Routing Basics

To view the routing table of a FreeBSD system, use man:netstat[1]:

% netstat -r

Routing tables

Internet:

Destination Gateway Flags Refs Use Netif Expire

default outside-gw UGS 37 418 em0

localhost localhost UH 0 181 lo0

test0 0:e0:b5:36:cf:4f UHLW 5 63288 re0 77

10.20.30.255 link#1 UHLW 1 2421

example.com link#1 UC 0 0

host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0

host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 =>

host2.example.com link#1 UC 0 0

224 link#1 UC 0 0

The entries in this example are as follows:

default

The first route in this table specifies the default route. When the local system needs to make a

connection to a remote host, it checks the routing table to determine if a known path exists. If

the remote host matches an entry in the table, the system checks to see if it can connect using

the interface specified in that entry.

If the destination does not match an entry, or if all known paths fail, the system uses the entry

for the default route. For hosts on a local area network, the Gateway field in the default route is

set to the system which has a direct connection to the Internet. When reading this entry, verify

that the Flags column indicates that the gateway is usable (UG).

The default route for a machine which itself is functioning as the gateway to the outside world

will be the gateway machine at the Internet Service Provider (ISP).

localhost

The second route is the localhost route. The interface specified in the Netif column for localhost

is lo0 , also known as the loopback device. This indicates that all traffic for this destination should

be internal, rather than sending it out over the network.

MAC address

The addresses beginning with 0:e0: are MAC addresses. FreeBSD will automatically identify any

hosts, test0 in the example, on the local Ethernet and add a route for that host over the Ethernet

interface, re0 . This type of route has a timeout, seen in the Expire column, which is used if the

host does not respond in a specific amount of time. When this happens, the route to this host will

be automatically deleted. These hosts are identified using the Routing Information Protocol

(RIP), which calculates routes to local hosts based upon a shortest path determination.

819

subnet

FreeBSD will automatically add subnet routes for the local subnet. In this example, 10.20.30.255

is the broadcast address for the subnet 10.20.30 and example.com is the domain name associated

with that subnet. The designation link#1 refers to the first Ethernet card in the machine.

Local network hosts and local subnets have their routes automatically configured by a daemon

called man:routed[8]. If it is not running, only routes which are statically defined by the

administrator will exist.

host

The host1 line refers to the host by its Ethernet address. Since it is the sending host, FreeBSD

knows to use the loopback interface (lo0) rather than the Ethernet interface.

The two host2 lines represent aliases which were created using man:ifconfig[8]. The - symbol

after the lo0 interface says that an alias has been set in addition to the loopback address. Such

routes only show up on the host that supports the alias and all other hosts on the local network

will have a link#1 line for such routes.

224

The final line (destination subnet 224) deals with multicasting.

Various attributes of each route can be seen in the Flags column. Commonly Seen Routing Table

Flags summarizes some of these flags and their meanings:

Table 29. Commonly Seen Routing Table Flags

Command Purpose

U The route is active (up).

H The route destination is a single host.

G Send anything for this destination on to this

gateway, which will figure out from there where

to send it.

S This route was statically configured.

C Clones a new route based upon this route for

machines to connect to. This type of route is

normally used for local networks.

W The route was auto-configured based upon a

local area network (clone) route.

L Route involves references to Ethernet (link)

hardware.

On a FreeBSD system, the default route can defined in /etc/rc.conf by specifying the IP address of

the default gateway:

defaultrouter="10.20.30.1"

820

It is also possible to manually add the route using route :

route add default 10.20.30.1

Note that manually added routes will not survive a reboot. For more information on manual

manipulation of network routing tables, refer to man:route[8].

32.2.2. Configuring a Router with Static Routes

A FreeBSD system can be configured as the default gateway, or router, for a network if it is a dual-

homed system. A dual-homed system is a host which resides on at least two different networks.

Typically, each network is connected to a separate network interface, though IP aliasing can be

used to bind multiple addresses, each on a different subnet, to one physical interface.

In order for the system to forward packets between interfaces, FreeBSD must be configured as a

router. Internet standards and good engineering practice prevent the FreeBSD Project from

enabling this feature by default, but it can be configured to start at boot by adding this line to

/etc/rc.conf :

gateway_enable="YES" # Set to YES if this host will be a gateway

To enable routing now, set the man:sysctl[8] variable net.inet.ip.forwarding to 1 . To stop routing,

reset this variable to 0 .

The routing table of a router needs additional routes so it knows how to reach other networks.

Routes can be either added manually using static routes or routes can be automatically learned

using a routing protocol. Static routes are appropriate for small networks and this section describes

how to add a static routing entry for a small network.

!

For large networks, static routes quickly become unscalable. FreeBSD comes with

the standard BSD routing daemon man:routed[8], which provides the routing

protocols RIP, versions 1 and 2, and IRDP. Support for the BGP and OSPF routing

protocols can be installed using the package:net/zebra[] package or port.

Consider the following network:

821

In this scenario, RouterA is a FreeBSD machine that is acting as a router to the rest of the Internet. It

has a default route set to 10.0.0.1 which allows it to connect with the outside world. RouterB is

already configured to use 192.168.1.1 as its default gateway.

Before adding any static routes, the routing table on RouterA looks like this:

% netstat -nr

Routing tables

Internet:

Destination Gateway Flags Refs Use Netif Expire

default 10.0.0.1 UGS 0 49378 xl0

127.0.0.1 127.0.0.1 UH 0 6 lo0

10.0.0.0/24 link#1 UC 0 0 xl0

192.168.1.0/24 link#2 UC 0 0 xl1

With the current routing table, RouterA does not have a route to the 192.168.2.0/24 network. The

following command adds the Internal Net 2 network to RouterA 's routing table using 192.168.1.2 as

the next hop:

route add -net 192.168.2.0/24 192.168.1.2

Now, RouterA can reach any host on the 192.168.2.0/24 network. However, the routing information

will not persist if the FreeBSD system reboots. If a static route needs to be persistent, add it to

/etc/rc.conf :

822

Add Internal Net 2 as a persistent static route

static_routes="internalnet2"

route_internalnet2="-net 192.168.2.0/24 192.168.1.2"

The static_routes configuration variable is a list of strings separated by a space, where each string

references a route name. The variable route_internalnet2 contains the static route for that route

name.

Using more than one string in static_routes creates multiple static routes. The following shows an

example of adding static routes for the 192.168.0.0/24 and 192.168.1.0/24 networks:

static_routes="net1 net2"

route_net1="-net 192.168.0.0/24 192.168.0.1"

route_net2="-net 192.168.1.0/24 192.168.1.1"

32.2.3. Troubleshooting

When an address space is assigned to a network, the service provider configures their routing

tables so that all traffic for the network will be sent to the link for the site. But how do external sites

know to send their packets to the networkÕs ISP?

There is a system that keeps track of all assigned address spaces and defines their point of

connection to the Internet backbone, or the main trunk lines that carry Internet traffic across the

country and around the world. Each backbone machine has a copy of a master set of tables, which

direct traffic for a particular network to a specific backbone carrier, and from there down the chain

of service providers until it reaches a particular network.

It is the task of the service provider to advertise to the backbone sites that they are the point of

connection, and thus the path inward, for a site. This is known as route propagation.

Sometimes, there is a problem with route propagation and some sites are unable to connect.

Perhaps the most useful command for trying to figure out where routing is breaking down is

traceroute . It is useful when ping fails.

When using traceroute , include the address of the remote host to connect to. The output will show

the gateway hosts along the path of the attempt, eventually either reaching the target host, or

terminating because of a lack of connection. For more information, refer to man:traceroute[8].

32.2.4. Multicast Considerations

FreeBSD natively supports both multicast applications and multicast routing. Multicast applications

do not require any special configuration in order to run on FreeBSD. Support for multicast routing

requires that the following option be compiled into a custom kernel:

options MROUTING

823

The multicast routing daemon, mrouted can be installed using the package:net/mrouted[] package

or port. This daemon implements the DVMRP multicast routing protocol and is configured by

editing /usr/local/etc/mrouted.conf in order to set up the tunnels and DVMRP. The installation of

mrouted also installs map-mbone and mrinfo, as well as their associated man pages. Refer to these

for configuration examples.

!

DVMRP has largely been replaced by the PIM protocol in many multicast

installations. Refer to man:pim[4] for more information.

32.3. Wireless Networking

32.3.1. Wireless Networking Basics

Most wireless networks are based on the IEEE¨ 802.11 standards. A basic wireless network consists

of multiple stations communicating with radios that broadcast in either the 2.4GHz or 5GHz band,

though this varies according to the locale and is also changing to enable communication in the

2.3GHz and 4.9GHz ranges.

802.11 networks are organized in two ways. In infrastructure mode , one station acts as a master

with all the other stations associating to it, the network is known as a BSS, and the master station is

termed an access point (AP). In a BSS, all communication passes through the AP; even when one

station wants to communicate with another wireless station, messages must go through the AP. In

the second form of network, there is no master and stations communicate directly. This form of

network is termed an IBSS and is commonly known as an ad-hoc network .

802.11 networks were first deployed in the 2.4GHz band using protocols defined by the IEEE¨

802.11 and 802.11b standard. These specifications include the operating frequencies and the MAC

layer characteristics, including framing and transmission rates, as communication can occur at

various rates. Later, the 802.11a standard defined operation in the 5GHz band, including different

signaling mechanisms and higher transmission rates. Still later, the 802.11g standard defined the

use of 802.11a signaling and transmission mechanisms in the 2.4GHz band in such a way as to be

backwards compatible with 802.11b networks.

Separate from the underlying transmission techniques, 802.11 networks have a variety of security

mechanisms. The original 802.11 specifications defined a simple security protocol called WEP. This

protocol uses a fixed pre-shared key and the RC4 cryptographic cipher to encode data transmitted

on a network. Stations must all agree on the fixed key in order to communicate. This scheme was

shown to be easily broken and is now rarely used except to discourage transient users from joining

networks. Current security practice is given by the IEEE¨ 802.11i specification that defines new

cryptographic ciphers and an additional protocol to authenticate stations to an access point and

exchange keys for data communication. Cryptographic keys are periodically refreshed and there

are mechanisms for detecting and countering intrusion attempts. Another security protocol

specification commonly used in wireless networks is termed WPA, which was a precursor to

802.11i. WPA specifies a subset of the requirements found in 802.11i and is designed for

implementation on legacy hardware. Specifically, WPA requires only the TKIP cipher that is derived

from the original WEP cipher. 802.11i permits use of TKIP but also requires support for a stronger

cipher, AES-CCM, for encrypting data. The AES cipher was not required in WPA because it was

deemed too computationally costly to be implemented on legacy hardware.

824

The other standard to be aware of is 802.11e. It defines protocols for deploying multimedia

applications, such as streaming video and voice over IP (VoIP), in an 802.11 network. Like 802.11i,

802.11e also has a precursor specification termed WME (later renamed WMM) that has been

defined by an industry group as a subset of 802.11e that can be deployed now to enable multimedia

applications while waiting for the final ratification of 802.11e. The most important thing to know

about 802.11e and WME/WMM is that it enables prioritized traffic over a wireless network through

Quality of Service (QoS) protocols and enhanced media access protocols. Proper implementation of

these protocols enables high speed bursting of data and prioritized traffic flow.

FreeBSD supports networks that operate using 802.11a, 802.11b, and 802.11g. The WPA and 802.11i

security protocols are likewise supported (in conjunction with any of 11a, 11b, and 11g) and QoS

and traffic prioritization required by the WME/WMM protocols are supported for a limited set of

wireless devices.

32.3.2. Quick Start

Connecting a computer to an existing wireless network is a very common situation. This procedure

shows the steps required.

1. Obtain the SSID (Service Set Identifier) and PSK (Pre-Shared Key) for the wireless network from

the network administrator.

2. Identify the wireless adapter. The FreeBSD GENERIC kernel includes drivers for many common

wireless adapters. If the wireless adapter is one of those models, it will be shown in the output

from man:ifconfig[8]:

% ifconfig | grep -B3 -i wireless

On FreeBSD 11 or higher, use this command instead:

% sysctl net.wlan.devices

If a wireless adapter is not listed, an additional kernel module might be required, or it might be

a model not supported by FreeBSD.

This example shows the Atheros ath0 wireless adapter.

3. Add an entry for this network to /etc/wpa_supplicant.conf . If the file does not exist, create it.

Replace myssid and mypsk with the SSID and PSK provided by the network administrator.

network={

Ê ssid="myssid"

Ê psk="mypsk"

}

4. Add entries to /etc/rc.conf to configure the network on startup:

825

wlans_ath0="wlan0"

ifconfig_wlan0="WPA SYNCDHCP"

5. Restart the computer, or restart the network service to connect to the network:

service netif restart

32.3.3. Basic Setup

32.3.3.1. Kernel Configuration

To use wireless networking, a wireless networking card is needed and the kernel needs to be

configured with the appropriate wireless networking support. The kernel is separated into multiple

modules so that only the required support needs to be configured.

The most commonly used wireless devices are those that use parts made by Atheros. These devices

are supported by man:ath[4] and require the following line to be added to /boot/loader.conf :

if_ath_load="YES"

The Atheros driver is split up into three separate pieces: the driver (man:ath[4]), the hardware

support layer that handles chip-specific functions (man:ath_hal[4]), and an algorithm for selecting

the rate for transmitting frames. When this support is loaded as kernel modules, any dependencies

are automatically handled. To load support for a different type of wireless device, specify the

module for that device. This example is for devices based on the Intersil Prism parts (man:wi[4])

driver:

if_wi_load="YES"

!

The examples in this section use an man:ath[4] device and the device name in the

examples must be changed according to the configuration. A list of available

wireless drivers and supported adapters can be found in the FreeBSD Hardware

Notes, available on the Release Information page of the FreeBSD website. If a

native FreeBSD driver for the wireless device does not exist, it may be possible to

use the Windows¨ driver with the help of the crossref:config[config-network-

ndis,NDIS] driver wrapper.

In addition, the modules that implement cryptographic support for the security protocols to use

must be loaded. These are intended to be dynamically loaded on demand by the man:wlan[4]

module, but for now they must be manually configured. The following modules are available:

man:wlan_wep[4], man:wlan_ccmp[4], and man:wlan_tkip[4]. The man:wlan_ccmp[4] and

man:wlan_tkip[4] drivers are only needed when using the WPA or 802.11i security protocols. If the

network does not use encryption, man:wlan_wep[4] support is not needed. To load these modules

at boot time, add the following lines to /boot/loader.conf :

826

https://www.FreeBSD.org/releases/

wlan_wep_load="YES"

wlan_ccmp_load="YES"

wlan_tkip_load="YES"

Once this information has been added to /boot/loader.conf , reboot the FreeBSD box. Alternately,

load the modules by hand using man:kldload[8].

!

For users who do not want to use modules, it is possible to compile these drivers

into the kernel by adding the following lines to a custom kernel configuration file:

device wlan # 802.11 support

device wlan_wep # 802.11 WEP support

device wlan_ccmp # 802.11 CCMP support

device wlan_tkip # 802.11 TKIP support

device wlan_amrr # AMRR transmit rate control algorithm

device ath # Atheros pci/cardbus NIC's

device ath_hal # pci/cardbus chip support

options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors

device ath_rate_sample # SampleRate tx rate control for ath

With this information in the kernel configuration file, recompile the kernel and

reboot the FreeBSD machine.

Information about the wireless device should appear in the boot messages, like this:

ath0: <Atheros 5212> mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1

ath0: [ITHREAD]

ath0: AR2413 mac 7.9 RF2413 phy 4.5

32.3.3.2. Setting the Correct Region

Since the regulatory situation is different in various parts of the world, it is necessary to correctly

set the domains that apply to your location to have the correct information about what channels

can be used.

The available region definitions can be found in /etc/regdomain.xml . To set the data at runtime, use

ifconfig :

ifconfig wlan0 regdomain ETSI country AT

To persist the settings, add it to /etc/rc.conf :

sysrc create_args_wlan0="country AT regdomain ETSI"

827

32.3.4. Infrastructure Mode

Infrastructure (BSS) mode is the mode that is typically used. In this mode, a number of wireless

access points are connected to a wired network. Each wireless network has its own name, called the

SSID. Wireless clients connect to the wireless access points.

32.3.4.1. FreeBSD Clients

32.3.4.1.1. How to Find Access Points

To scan for available networks, use man:ifconfig[8]. This request may take a few moments to

complete as it requires the system to switch to each available wireless frequency and probe for

available access points. Only the superuser can initiate a scan:

ifconfig wlan0 create wlandev ath0

ifconfig wlan0 up scan

SSID/MESH ID BSSID CHAN RATE S:N INT CAPS

dlinkap 00:13:46:49:41:76 11 54M -90:96 100 EPS WPA WME

freebsdap 00:11:95:c3:0d:ac 1 54M -83:96 100 EPS WPA

!

The interface must be up before it can scan. Subsequent scan requests do not

require the interface to be marked as up again.

The output of a scan request lists each BSS/IBSS network found. Besides listing the name of the

network, the SSID , the output also shows the BSSID , which is the MAC address of the access point.

The CAPS field identifies the type of each network and the capabilities of the stations operating

there:

Table 30. Station Capability Codes

Capability Code Meaning

E

Extended Service Set (ESS). Indicates that the

station is part of an infrastructure network

rather than an IBSS/ad-hoc network.

I

IBSS/ad-hoc network. Indicates that the station is

part of an ad-hoc network rather than an ESS

network.

P

Privacy. Encryption is required for all data

frames exchanged within the BSS using

cryptographic means such as WEP, TKIP or AES-

CCMP.

S

Short Preamble. Indicates that the network is

using short preambles, defined in 802.11b High

Rate/DSSS PHY, and utilizes a 56 bit sync field

rather than the 128 bit field used in long

preamble mode.

828

Capability Code Meaning

s

Short slot time. Indicates that the 802.11g

network is using a short slot time because there

are no legacy (802.11b) stations present.

One can also display the current list of known networks with:

ifconfig wlan0 list scan

This information may be updated automatically by the adapter or manually with a scan request.

Old data is automatically removed from the cache, so over time this list may shrink unless more

scans are done.

32.3.4.1.2. Basic Settings

This section provides a simple example of how to make the wireless network adapter work in

FreeBSD without encryption. Once familiar with these concepts, it is strongly recommend to use

WPA to set up the wireless network.

There are three basic steps to configure a wireless network: select an access point, authenticate the

station, and configure an IP address. The following sections discuss each step.

32.3.4.1.2.1. Selecting an Access Point

Most of the time, it is sufficient to let the system choose an access point using the builtin heuristics.

This is the default behavior when an interface is marked as up or it is listed in /etc/rc.conf :

wlans_ath0="wlan0"

ifconfig_wlan0="DHCP"

If there are multiple access points, a specific one can be selected by its SSID:

wlans_ath0="wlan0"

ifconfig_wlan0="ssid your_ssid_here DHCP"

In an environment where there are multiple access points with the same SSID, which is often done

to simplify roaming, it may be necessary to associate to one specific device. In this case, the BSSID

of the access point can be specified, with or without the SSID:

wlans_ath0="wlan0"

ifconfig_wlan0="ssid your_ssid_here bssid xx:xx:xx:xx:xx:xx DHCP"

There are other ways to constrain the choice of an access point, such as limiting the set of

frequencies the system will scan on. This may be useful for a multi-band wireless card as scanning

all the possible channels can be time-consuming. To limit operation to a specific band, use the mode

829

parameter:

wlans_ath0="wlan0"

ifconfig_wlan0="mode 11g ssid your_ssid_here DHCP"

This example will force the card to operate in 802.11g, which is defined only for 2.4GHz frequencies

so any 5GHz channels will not be considered. This can also be achieved with the channel parameter,

which locks operation to one specific frequency, and the chanlist parameter, to specify a list of

channels for scanning. More information about these parameters can be found in man:ifconfig[8].

32.3.4.1.2.2. Authentication

Once an access point is selected, the station needs to authenticate before it can pass data.

Authentication can happen in several ways. The most common scheme, open authentication, allows

any station to join the network and communicate. This is the authentication to use for test purposes

the first time a wireless network is setup. Other schemes require cryptographic handshakes to be

completed before data traffic can flow, either using pre-shared keys or secrets, or more complex

schemes that involve backend services such as RADIUS. Open authentication is the default setting.

The next most common setup is WPA-PSK, also known as WPA Personal, which is described in WPA-

PSK .

!

If using an Apple¨ AirPort¨ Extreme base station for an access point, shared-key

authentication together with a WEP key needs to be configured. This can be

configured in /etc/rc.conf or by using man:wpa_supplicant[8]. For a single

AirPort¨ base station, access can be configured with:

wlans_ath0="wlan0"

ifconfig_wlan0="authmode shared wepmode on weptxkey 1 wepkey 01234567

DHCP"

In general, shared key authentication should be avoided because it uses the WEP

key material in a highly-constrained manner, making it even easier to crack the

key. If WEP must be used for compatibility with legacy devices, it is better to use

WEP with open authentication. More information regarding WEP can be found in

WEP .

32.3.4.1.2.3. Getting an IP Address with DHCP

Once an access point is selected and the authentication parameters are set, an IP address must be

obtained in order to communicate. Most of the time, the IP address is obtained via DHCP. To achieve

that, edit /etc/rc.conf and add DHCP to the configuration for the device:

wlans_ath0="wlan0"

ifconfig_wlan0="DHCP"

The wireless interface is now ready to bring up:

830

service netif start

Once the interface is running, use man:ifconfig[8] to see the status of the interface ath0 :

ifconfig wlan0

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255

Ê media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g

Ê status: associated

Ê ssid dlinkap channel 11 (2462 Mhz 11g) bssid 00:13:46:49:41:76

Ê country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7

Ê scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7

Ê roam:rate 5 protmode CTS wme burst

The status: associated line means that it is connected to the wireless network. The bssid

00:13:46:49:41:76 is the MAC address of the access point and authmode OPEN indicates that the

communication is not encrypted.

32.3.4.1.2.4. Static IP Address

If an IP address cannot be obtained from a DHCP server, set a fixed IP address. Replace the DHCP

keyword shown above with the address information. Be sure to retain any other parameters for

selecting the access point:

wlans_ath0="wlan0"

ifconfig_wlan0="inet 192.168.1.100 netmask 255.255.255.0 ssid your_ssid_here"

32.3.4.1.3. WPA

Wi-Fi Protected Access (WPA) is a security protocol used together with 802.11 networks to address

the lack of proper authentication and the weakness of WEP. WPA leverages the 802.1X

authentication protocol and uses one of several ciphers instead of WEP for data integrity. The only

cipher required by WPA is the Temporary Key Integrity Protocol (TKIP). TKIP is a cipher that

extends the basic RC4 cipher used by WEP by adding integrity checking, tamper detection, and

measures for responding to detected intrusions. TKIP is designed to work on legacy hardware with

only software modification. It represents a compromise that improves security but is still not

entirely immune to attack. WPA also specifies the AES-CCMP cipher as an alternative to TKIP, and

that is preferred when possible. For this specification, the term WPA2 or RSN is commonly used.

WPA defines authentication and encryption protocols. Authentication is most commonly done

using one of two techniques: by 802.1X and a backend authentication service such as RADIUS, or by

a minimal handshake between the station and the access point using a pre-shared secret. The

former is commonly termed WPA Enterprise and the latter is known as WPA Personal. Since most

people will not set up a RADIUS backend server for their wireless network, WPA-PSK is by far the

most commonly encountered configuration for WPA.

831

The control of the wireless connection and the key negotiation or authentication with a server is

done using man:wpa_supplicant[8]. This program requires a configuration file,

/etc/wpa_supplicant.conf , to run. More information regarding this file can be found in

man:wpa_supplicant.conf[5].

32.3.4.1.3.1. WPA-PSK

WPA-PSK, also known as WPA Personal, is based on a pre-shared key (PSK) which is generated from

a given password and used as the master key in the wireless network. This means every wireless

user will share the same key. WPA-PSK is intended for small networks where the use of an

authentication server is not possible or desired.

"

Always use strong passwords that are sufficiently long and made from a rich

alphabet so that they will not be easily guessed or attacked.

The first step is the configuration of /etc/wpa_supplicant.conf with the SSID and the pre-shared key

of the network:

network={

Ê ssid="freebsdap"

Ê psk="freebsdmall"

}

Then, in /etc/rc.conf , indicate that the wireless device configuration will be done with WPA and the

IP address will be obtained with DHCP:

wlans_ath0="wlan0"

ifconfig_wlan0="WPA DHCP"

Then, bring up the interface:

832

service netif start

Starting wpa_supplicant.

DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5

DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6

DHCPOFFER from 192.168.0.1

DHCPREQUEST on wlan0 to 255.255.255.255 port 67

DHCPACK from 192.168.0.1

bound to 192.168.0.254 -- renewal in 300 seconds.

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

Ê AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan

Ê bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Ê wme burst roaming MANUAL

Or, try to configure the interface manually using the information in /etc/wpa_supplicant.conf :

wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf

Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz)

Associated with 00:11:95:c3:0d:ac

WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP]

CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth) [id=0 id_str=]

The next operation is to launch man:dhclient[8] to get the IP address from the DHCP server:

dhclient wlan0

DHCPREQUEST on wlan0 to 255.255.255.255 port 67

DHCPACK from 192.168.0.1

bound to 192.168.0.254 -- renewal in 300 seconds.

ifconfig wlan0

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

Ê AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan

Ê bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Ê wme burst roaming MANUAL

!

If /etc/rc.conf has an ifconfig_wlan0="DHCP" entry, man:dhclient[8] will be launched

automatically after man:wpa_supplicant[8] associates with the access point.

833

If DHCP is not possible or desired, set a static IP address after man:wpa_supplicant[8] has

authenticated the station:

ifconfig wlan0 inet 192.168.0.100 netmask 255.255.255.0

ifconfig wlan0

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

Ê AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan

Ê bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Ê wme burst roaming MANUAL

When DHCP is not used, the default gateway and the nameserver also have to be manually set:

route add default your_default_router

echo "nameserver your_DNS_server" >> /etc/resolv.conf

32.3.4.1.3.2. WPA with EAP-TLS

The second way to use WPA is with an 802.1X backend authentication server. In this case, WPA is

called WPA Enterprise to differentiate it from the less secure WPA Personal. Authentication in WPA

Enterprise is based on the Extensible Authentication Protocol (EAP).

EAP does not come with an encryption method. Instead, EAP is embedded inside an encrypted

tunnel. There are many EAP authentication methods, but EAP-TLS, EAP-TTLS, and EAP-PEAP are the

most common.

EAP with Transport Layer Security (EAP-TLS) is a well-supported wireless authentication protocol

since it was the first EAP method to be certified by the Wi-Fi Alliance . EAP-TLS requires three

certificates to run: the certificate of the Certificate Authority (CA) installed on all machines, the

server certificate for the authentication server, and one client certificate for each wireless client. In

this EAP method, both the authentication server and wireless client authenticate each other by

presenting their respective certificates, and then verify that these certificates were signed by the

organizationÕs CA.

As previously, the configuration is done via /etc/wpa_supplicant.conf :

834

http://www.wi-fi.org/

network={

Ê ssid="freebsdap" !

Ê proto=RSN "

Ê key_mgmt=WPA-EAP #

Ê eap=TLS $

Ê identity="loader" %

Ê ca_cert="/etc/certs/cacert.pem" &

Ê client_cert="/etc/certs/clientcert.pem" '

Ê private_key="/etc/certs/clientkey.pem" (

Ê private_key_passwd="freebsdmallclient")

}

!

This field indicates the network name (SSID).

"

This example uses the RSN IEEE¨ 802.11i protocol, also known as WPA2.

#

The key_mgmt line refers to the key management protocol to use. In this example, it is WPA using

EAP authentication.

$

This field indicates the EAP method for the connection.

%

The identity field contains the identity string for EAP.

&

The ca_cert field indicates the pathname of the CA certificate file. This file is needed to verify the

server certificate.

'

The client_cert line gives the pathname to the client certificate file. This certificate is unique to

each wireless client of the network.

(

The private_key field is the pathname to the client certificate private key file.

)

The private_key_passwd field contains the passphrase for the private key.

Then, add the following lines to /etc/rc.conf :

wlans_ath0="wlan0"

ifconfig_wlan0="WPA DHCP"

The next step is to bring up the interface:

835

service netif start

Starting wpa_supplicant.

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15

DHCPACK from 192.168.0.20

bound to 192.168.0.254 -- renewal in 300 seconds.

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

Ê AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan

Ê bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Ê wme burst roaming MANUAL

It is also possible to bring up the interface manually using man:wpa_supplicant[8] and

man:ifconfig[8].

32.3.4.1.3.3. WPA with EAP-TTLS

With EAP-TLS, both the authentication server and the client need a certificate. With EAP-TTLS, a

client certificate is optional. This method is similar to a web server which creates a secure SSL

tunnel even if visitors do not have client-side certificates. EAP-TTLS uses an encrypted TLS tunnel

for safe transport of the authentication data.

The required configuration can be added to /etc/wpa_supplicant.conf :

network={

Ê ssid="freebsdap"

Ê proto=RSN

Ê key_mgmt=WPA-EAP

Ê eap=TTLS !

Ê identity="test" "

Ê password="test" #

Ê ca_cert="/etc/certs/cacert.pem" $

Ê phase2="auth=MD5" %

}

!

This field specifies the EAP method for the connection.

"

The identity field contains the identity string for EAP authentication inside the encrypted TLS

tunnel.

#

The password field contains the passphrase for the EAP authentication.

$

The ca_cert field indicates the pathname of the CA certificate file. This file is needed to verify the

server certificate.

%

This field specifies the authentication method used in the encrypted TLS tunnel. In this example,

836

EAP with MD5-Challenge is used. The "inner authentication" phase is often called "phase2".

Next, add the following lines to /etc/rc.conf :

wlans_ath0="wlan0"

ifconfig_wlan0="WPA DHCP"

The next step is to bring up the interface:

service netif start

Starting wpa_supplicant.

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21

DHCPACK from 192.168.0.20

bound to 192.168.0.254 -- renewal in 300 seconds.

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

Ê AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan

Ê bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Ê wme burst roaming MANUAL

32.3.4.1.3.4. WPA with EAP-PEAP

!

PEAPv0/EAP-MSCHAPv2 is the most common PEAP method. In this chapter, the

term PEAP is used to refer to that method.

Protected EAP (PEAP) is designed as an alternative to EAP-TTLS and is the most used EAP standard

after EAP-TLS. In a network with mixed operating systems, PEAP should be the most supported

standard after EAP-TLS.

PEAP is similar to EAP-TTLS as it uses a server-side certificate to authenticate clients by creating an

encrypted TLS tunnel between the client and the authentication server, which protects the ensuing

exchange of authentication information. PEAP authentication differs from EAP-TTLS as it

broadcasts the username in the clear and only the password is sent in the encrypted TLS tunnel.

EAP-TTLS will use the TLS tunnel for both the username and password.

Add the following lines to /etc/wpa_supplicant.conf to configure the EAP-PEAP related settings:

837

network={

Ê ssid="freebsdap"

Ê proto=RSN

Ê key_mgmt=WPA-EAP

Ê eap=PEAP !

Ê identity="test" "

Ê password="test" #

Ê ca_cert="/etc/certs/cacert.pem" $

Ê phase1="peaplabel=0" %

Ê phase2="auth=MSCHAPV2" &

}

!

This field specifies the EAP method for the connection.

"

The identity field contains the identity string for EAP authentication inside the encrypted TLS

tunnel.

#

The password field contains the passphrase for the EAP authentication.

$

The ca_cert field indicates the pathname of the CA certificate file. This file is needed to verify the

server certificate.

%

This field contains the parameters for the first phase of authentication, the TLS tunnel.

According to the authentication server used, specify a specific label for authentication. Most of

the time, the label will be "client EAP encryption" which is set by using peaplabel=0 . More

information can be found in man:wpa_supplicant.conf[5].

&

This field specifies the authentication protocol used in the encrypted TLS tunnel. In the case of

PEAP, it is auth=MSCHAPV2 .

Add the following to /etc/rc.conf :

wlans_ath0="wlan0"

ifconfig_wlan0="WPA DHCP"

Then, bring up the interface:

838

service netif start

Starting wpa_supplicant.

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21

DHCPACK from 192.168.0.20

bound to 192.168.0.254 -- renewal in 300 seconds.

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

Ê AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan

Ê bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Ê wme burst roaming MANUAL

32.3.4.1.4. WEP

Wired Equivalent Privacy (WEP) is part of the original 802.11 standard. There is no authentication

mechanism, only a weak form of access control which is easily cracked.

WEP can be set up using man:ifconfig[8]:

ifconfig wlan0 create wlandev ath0

ifconfig wlan0 inet 192.168.1.100 netmask 255.255.255.0 \

Ê ssid my_net wepmode on weptxkey 3 wepkey 3:0x3456789012

¥ The weptxkey specifies which WEP key will be used in the transmission. This example uses the

third key. This must match the setting on the access point. When unsure which key is used by

the access point, try 1 (the first key) for this value.

¥ The wepkey selects one of the WEP keys. It should be in the format index:key . Key 1 is used by

default; the index only needs to be set when using a key other than the first key.

!

Replace the 0x3456789012 with the key configured for use on the access point.

Refer to man:ifconfig[8] for further information.

The man:wpa_supplicant[8] facility can be used to configure a wireless interface with WEP. The

example above can be set up by adding the following lines to /etc/wpa_supplicant.conf :

839

network={

Ê ssid="my_net"

Ê key_mgmt=NONE

Ê wep_key3=3456789012

Ê wep_tx_keyidx=3

}

Then:

wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf

Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz)

Associated with 00:13:46:49:41:76

32.3.5. Ad-hoc Mode

IBSS mode, also called ad-hoc mode, is designed for point to point connections. For example, to

establish an ad-hoc network between the machines A and B , choose two IP addresses and a SSID.

On A :

ifconfig wlan0 create wlandev ath0 wlanmode adhoc

ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap

ifconfig wlan0

Ê wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 00:11:95:c3:0d:ac

Ê inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>

Ê status: running

Ê ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac

Ê country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60

Ê protmode CTS wme burst

The adhoc parameter indicates that the interface is running in IBSS mode.

B should now be able to detect A :

ifconfig wlan0 create wlandev ath0 wlanmode adhoc

ifconfig wlan0 up scan

Ê SSID/MESH ID BSSID CHAN RATE S:N INT CAPS

Ê freebsdap 02:11:95:c3:0d:ac 2 54M -64:-96 100 IS WME

The I in the output confirms that A is in ad-hoc mode. Now, configure B with a different IP address:

840

ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap

ifconfig wlan0

Ê wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>

Ê status: running

Ê ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac

Ê country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60

Ê protmode CTS wme burst

Both A and B are now ready to exchange information.

32.3.6. FreeBSD Host Access Points

FreeBSD can act as an Access Point (AP) which eliminates the need to buy a hardware AP or run an

ad-hoc network. This can be particularly useful when a FreeBSD machine is acting as a gateway to

another network such as the Internet.

32.3.6.1. Basic Settings

Before configuring a FreeBSD machine as an AP, the kernel must be configured with the

appropriate networking support for the wireless card as well as the security protocols being used.

For more details, see Basic Setup .

!

The NDIS driver wrapper for Windows¨ drivers does not currently support AP

operation. Only native FreeBSD wireless drivers support AP mode.

Once wireless networking support is loaded, check if the wireless device supports the host-based

access point mode, also known as hostap mode:

ifconfig wlan0 create wlandev ath0

ifconfig wlan0 list caps

drivercaps=6f85edc1<STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,

MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG>

cryptocaps=1f<WEP,TKIP,AES,AES_CCM,TKIPMIC>

This output displays the cardÕs capabilities. The HOSTAP word confirms that this wireless card can act

as an AP. Various supported ciphers are also listed: WEP, TKIP, and AES. This information indicates

which security protocols can be used on the AP.

The wireless device can only be put into hostap mode during the creation of the network pseudo-

device, so a previously created device must be destroyed first:

ifconfig wlan0 destroy

841

then regenerated with the correct option before setting the other parameters:

ifconfig wlan0 create wlandev ath0 wlanmode hostap

ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g

channel 1

Use man:ifconfig[8] again to see the status of the wlan0 interface:

ifconfig wlan0

Ê wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 00:11:95:c3:0d:ac

Ê inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>

Ê status: running

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60

Ê protmode CTS wme burst dtimperiod 1 -dfs

The hostap parameter indicates the interface is running in the host-based access point mode.

The interface configuration can be done automatically at boot time by adding the following lines to

/etc/rc.conf :

wlans_ath0="wlan0"

create_args_wlan0="wlanmode hostap"

ifconfig_wlan0="inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel

1"

32.3.6.2. Host-based Access Point Without Authentication or Encryption

Although it is not recommended to run an AP without any authentication or encryption, this is a

simple way to check if the AP is working. This configuration is also important for debugging client

issues.

Once the AP is configured, initiate a scan from another wireless machine to find the AP:

ifconfig wlan0 create wlandev ath0

ifconfig wlan0 up scan

SSID/MESH ID BSSID CHAN RATE S:N INT CAPS

freebsdap 00:11:95:c3:0d:ac 1 54M -66:-96 100 ES WME

The client machine found the AP and can be associated with it:

842

ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap

ifconfig wlan0

Ê wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 00:11:95:d5:43:62

Ê inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g

Ê status: associated

Ê ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7

Ê scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7

Ê roam:rate 5 protmode CTS wme burst

32.3.6.3. WPA2 Host-based Access Point

This section focuses on setting up a FreeBSD access point using the WPA2 security protocol. More

details regarding WPA and the configuration of WPA-based wireless clients can be found in WPA .

The man:hostapd[8] daemon is used to deal with client authentication and key management on the

WPA2-enabled AP.

The following configuration operations are performed on the FreeBSD machine acting as the AP.

Once the AP is correctly working, man:hostapd[8] can be automatically started at boot with this line

in /etc/rc.conf :

hostapd_enable="YES"

Before trying to configure man:hostapd[8], first configure the basic settings introduced in Basic

Settings .

32.3.6.3.1. WPA2-PSK

WPA2-PSK is intended for small networks where the use of a backend authentication server is not

possible or desired.

The configuration is done in /etc/hostapd.conf :

interface=wlan0 !

debug=1 "

ctrl_interface=/var/run/hostapd #

ctrl_interface_group=wheel $

ssid=freebsdap %

wpa=2 &

wpa_passphrase=freebsdmall '

wpa_key_mgmt=WPA-PSK (

wpa_pairwise=CCMP)

!

Wireless interface used for the access point.

843

"

Level of verbosity used during the execution of man:hostapd[8]. A value of 1 represents the

minimal level.

#

Pathname of the directory used by man:hostapd[8] to store domain socket files for

communication with external programs such as man:hostapd_cli[8]. The default value is used in

this example.

$

The group allowed to access the control interface files.

%

The wireless network name, or SSID, that will appear in wireless scans.

&

Enable WPA and specify which WPA authentication protocol will be required. A value of 2

configures the AP for WPA2 and is recommended. Set to 1 only if the obsolete WPA is required.

'

ASCII passphrase for WPA authentication.

(

The key management protocol to use. This example sets WPA-PSK.

)

Encryption algorithms accepted by the access point. In this example, only the CCMP (AES) cipher

is accepted. CCMP is an alternative to TKIP and is strongly preferred when possible. TKIP should

be allowed only when there are stations incapable of using CCMP.

The next step is to start man:hostapd[8]:

service hostapd forcestart

ifconfig wlan0

wlan0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 04:f0:21:16:8e:10

Ê inet6 fe80::6f0:21ff:fe16:8e10%wlan0 prefixlen 64 scopeid 0x9

Ê nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

Ê media: IEEE 802.11 Wireless Ethernet autoselect mode 11na <hostap>

Ê status: running

Ê ssid No5ignal channel 36 (5180 MHz 11a ht/40+) bssid 04:f0:21:16:8e:10

Ê country US ecm authmode WPA2/802.11i privacy MIXED deftxkey 2

Ê AES-CCM 2:128-bit AES-CCM 3:128-bit txpower 17 mcastrate 6 mgmtrate 6

Ê scanvalid 60 ampdulimit 64k ampdudensity 8 shortgi wme burst

Ê dtimperiod 1 -dfs

Ê groups: wlan

Once the AP is running, the clients can associate with it. See WPA for more details. It is possible to

see the stations associated with the AP using ifconfig wlan0 list sta .

32.3.6.4. WEP Host-based Access Point

It is not recommended to use WEP for setting up an AP since there is no authentication mechanism

and the encryption is easily cracked. Some legacy wireless cards only support WEP and these cards

will only support an AP without authentication or encryption.

The wireless device can now be put into hostap mode and configured with the correct SSID and IP

address:

844

ifconfig wlan0 create wlandev ath0 wlanmode hostap

ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 \

Ê ssid freebsdap wepmode on weptxkey 3 wepkey 3:0x3456789012 mode 11g

¥ The weptxkey indicates which WEP key will be used in the transmission. This example uses the

third key as key numbering starts with 1 . This parameter must be specified in order to encrypt

the data.

¥ The wepkey sets the selected WEP key. It should be in the format index:key . If the index is not

given, key 1 is set. The index needs to be set when using keys other than the first key.

Use man:ifconfig[8] to see the status of the wlan0 interface:

ifconfig wlan0

Ê wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 00:11:95:c3:0d:ac

Ê inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255

Ê media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>

Ê status: running

Ê ssid freebsdap channel 4 (2427 Mhz 11g) bssid 00:11:95:c3:0d:ac

Ê country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit

Ê txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs

From another wireless machine, it is now possible to initiate a scan to find the AP:

ifconfig wlan0 create wlandev ath0

ifconfig wlan0 up scan

SSID BSSID CHAN RATE S:N INT CAPS

freebsdap 00:11:95:c3:0d:ac 1 54M 22:1 100 EPS

In this example, the client machine found the AP and can associate with it using the correct

parameters. See WEP for more details.

32.3.7. Using Both Wired and Wireless Connections

A wired connection provides better performance and reliability, while a wireless connection

provides flexibility and mobility. Laptop users typically want to roam seamlessly between the two

types of connections.

On FreeBSD, it is possible to combine two or even more network interfaces together in a "failover"

fashion. This type of configuration uses the most preferred and available connection from a group

of network interfaces, and the operating system switches automatically when the link state

changes.

Link aggregation and failover is covered in Link Aggregation and Failover and an example for

using both wired and wireless connections is provided at Failover Mode Between Ethernet and

Wireless Interfaces .

845

32.3.8. Troubleshooting

This section describes a number of steps to help troubleshoot common wireless networking

problems.

¥ If the access point is not listed when scanning, check that the configuration has not limited the

wireless device to a limited set of channels.

¥ If the device cannot associate with an access point, verify that the configuration matches the

settings on the access point. This includes the authentication scheme and any security protocols.

Simplify the configuration as much as possible. If using a security protocol such as WPA or WEP,

configure the access point for open authentication and no security to see if traffic will pass.

Debugging support is provided by man:wpa_supplicant[8]. Try running this utility manually

with -dd and look at the system logs.

¥ Once the system can associate with the access point, diagnose the network configuration using

tools like man:ping[8].

¥ There are many lower-level debugging tools. Debugging messages can be enabled in the 802.11

protocol support layer using man:wlandebug[8]. For example, to enable console messages

related to scanning for access points and the 802.11 protocol handshakes required to arrange

communication:

wlandebug -i wlan0 +scan+auth+debug+assoc

Ê net.wlan.0.debug: 0 => 0xc80000<assoc,auth,scan>

Many useful statistics are maintained by the 802.11 layer and wlanstats , found in

/usr/src/tools/tools/net80211 , will dump this information. These statistics should display all

errors identified by the 802.11 layer. However, some errors are identified in the device drivers

that lie below the 802.11 layer so they may not show up. To diagnose device-specific problems,

refer to the drivers' documentation.

If the above information does not help to clarify the problem, submit a problem report and include

output from the above tools.

32.4. USB Tethering

Many cellphones provide the option to share their data connection over USB (often called

"tethering"). This feature uses one of RNDIS, CDC, or a custom Apple¨ iPhone¨/iPad¨ protocol.

¥ Androidª devices generally use the man:urndis[4] driver.

¥ Apple¨ devices use the man:ipheth[4] driver.

¥ Older devices will often use the man:cdce[4] driver.

Before attaching a device, load the appropriate driver into the kernel:

846

kldload if_urndis

kldload if_cdce

kldload if_ipheth

Once the device is attached ue 0 will be available for use like a normal network device. Be sure that

the "USB tethering" option is enabled on the device.

To make this change permanent and load the driver as a module at boot time, place the appropriate

line of the following in /boot/loader.conf :

if_urndis_load="YES"

if_cdce_load="YES"

if_ipheth_load="YES"

32.5. Bluetooth

Bluetooth is a wireless technology for creating personal networks operating in the 2.4 GHz

unlicensed band, with a range of 10 meters. Networks are usually formed ad-hoc from portable

devices such as cellular phones, handhelds, and laptops. Unlike Wi-Fi wireless technology,

Bluetooth offers higher level service profiles, such as FTP-like file servers, file pushing, voice

transport, serial line emulation, and more.

This section describes the use of a USB Bluetooth dongle on a FreeBSD system. It then describes the

various Bluetooth protocols and utilities.

32.5.1. Loading Bluetooth Support

The Bluetooth stack in FreeBSD is implemented using the man:netgraph[4] framework. A broad

variety of Bluetooth USB dongles is supported by man:ng_ubt[4]. Broadcom BCM2033 based

Bluetooth devices are supported by the man:ubtbcmfw[4] and man:ng_ubt[4] drivers. The 3Com

Bluetooth PC Card 3CRWB60-A is supported by the man:ng_bt3c[4] driver. Serial and UART based

Bluetooth devices are supported by man:sio[4], man:ng_h4[4], and man:hcseriald[8].

Before attaching a device, determine which of the above drivers it uses, then load the driver. For

example, if the device uses the man:ng_ubt[4] driver:

kldload ng_ubt

If the Bluetooth device will be attached to the system during system startup, the system can be

configured to load the module at boot time by adding the driver to /boot/loader.conf :

ng_ubt_load="YES"

Once the driver is loaded, plug in the USB dongle. If the driver load was successful, output similar to

847

the following should appear on the console and in /var/log/messages :

ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2

ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2

ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3,

Ê wMaxPacketSize=49, nframes=6, buffer size=294

To start and stop the Bluetooth stack, use its startup script. It is a good idea to stop the stack before

unplugging the device. Starting the bluetooth stack might require man:hcsecd[8] to be started.

When starting the stack, the output should be similar to the following:

service bluetooth start ubt0

BD_ADDR: 00:02:72:00:d4:1a

Features: 0xff 0xff 0xf 00 00 00 00 00

<3-Slot> <5-Slot> <Encryption> <Slot offset>

<Timing accuracy> <Switch> <Hold mode> <Sniff mode>

<Park mode> <RSSI> <Channel quality> <SCO link>

<HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD>

<Paging scheme> <Power control> <Transparent SCO data>

Max. ACL packet size: 192 bytes

Number of ACL packets: 8

Max. SCO packet size: 64 bytes

Number of SCO packets: 8

32.5.2. Finding Other Bluetooth Devices

The Host Controller Interface (HCI) provides a uniform method for accessing Bluetooth baseband

capabilities. In FreeBSD, a netgraph HCI node is created for each Bluetooth device. For more details,

refer to man:ng_hci[4].

One of the most common tasks is discovery of Bluetooth devices within RF proximity. This

operation is called inquiry . Inquiry and other HCI related operations are done using

man:hccontrol[8]. The example below shows how to find out which Bluetooth devices are in range.

The list of devices should be displayed in a few seconds. Note that a remote device will only answer

the inquiry if it is set to discoverable mode.

% hccontrol -n ubt0hci inquiry

Inquiry result, num_responses=1

Inquiry result #0

Ê BD_ADDR: 00:80:37:29:19:a4

Ê Page Scan Rep. Mode: 0x1

Ê Page Scan Period Mode: 00

Ê Page Scan Mode: 00

Ê Class: 52:02:04

Ê Clock offset: 0x78ef

Inquiry complete. Status: No error [00]

848

The BD_ADDR is the unique address of a Bluetooth device, similar to the MAC address of a network

card. This address is needed for further communication with a device and it is possible to assign a

human readable name to a BD_ADDR . Information regarding the known Bluetooth hosts is contained

in /etc/bluetooth/hosts . The following example shows how to obtain the human readable name that

was assigned to the remote device:

% hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4

BD_ADDR: 00:80:37:29:19:a4

Name: Pav's T39

If an inquiry is performed on a remote Bluetooth device, it will find the computer as

"your.host.name (ubt0)". The name assigned to the local device can be changed at any time.

Remote devices can be assigned aliases in /etc/bluetooth/hosts . More information about

/etc/bluetooth/hosts file might be found in man:bluetooth.hosts[5].

The Bluetooth system provides a point-to-point connection between two Bluetooth units, or a point-

to-multipoint connection which is shared among several Bluetooth devices. The following example

shows how to create a connection to a remote device:

% hccontrol -n ubt0hci create_connection BT_ADDR

create_connection accepts BT_ADDR as well as host aliases in /etc/bluetooth/hosts .

The following example shows how to obtain the list of active baseband connections for the local

device:

% hccontrol -n ubt0hci read_connection_list

Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State

00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN

A connection handle is useful when termination of the baseband connection is required, though it is

normally not required to do this by hand. The stack will automatically terminate inactive baseband

connections.

hccontrol -n ubt0hci disconnect 41

Connection handle: 41

Reason: Connection terminated by local host [0x16]

Type hccontrol help for a complete listing of available HCI commands. Most of the HCI commands

do not require superuser privileges.

32.5.3. Device Pairing

By default, Bluetooth communication is not authenticated, and any device can talk to any other

849

device. A Bluetooth device, such as a cellular phone, may choose to require authentication to

provide a particular service. Bluetooth authentication is normally done with a PIN code , an ASCII

string up to 16 characters in length. The user is required to enter the same PIN code on both

devices. Once the user has entered the PIN code, both devices will generate a link key . After that, the

link key can be stored either in the devices or in a persistent storage. Next time, both devices will

use the previously generated link key. This procedure is called pairing . Note that if the link key is

lost by either device, the pairing must be repeated.

The man:hcsecd[8] daemon is responsible for handling Bluetooth authentication requests. The

default configuration file is /etc/bluetooth/hcsecd.conf . An example section for a cellular phone with

the PIN code set to 1234 is shown below:

device {

Ê bdaddr 00:80:37:29:19:a4;

Ê name "Pav's T39";

Ê key nokey;

Ê pin "1234";

Ê }

The only limitation on PIN codes is length. Some devices, such as Bluetooth headsets, may have a

fixed PIN code built in. The -d switch forces man:hcsecd[8] to stay in the foreground, so it is easy to

see what is happening. Set the remote device to receive pairing and initiate the Bluetooth

connection to the remote device. The remote device should indicate that pairing was accepted and

request the PIN code. Enter the same PIN code listed in hcsecd.conf . Now the computer and the

remote device are paired. Alternatively, pairing can be initiated on the remote device.

The following line can be added to /etc/rc.conf to configure man:hcsecd[8] to start automatically on

system start:

hcsecd_enable="YES"

The following is a sample of the man:hcsecd[8] daemon output:

hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr

0:80:37:29:19:a4

hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39',

link key doesn't exist

hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr

0:80:37:29:19:a4

hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr

0:80:37:29:19:a4

hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39',

PIN code exists

hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4

850

32.5.4. Network Access with PPP Profiles

A Dial-Up Networking (DUN) profile can be used to configure a cellular phone as a wireless modem

for connecting to a dial-up Internet access server. It can also be used to configure a computer to

receive data calls from a cellular phone.

Network access with a PPP profile can be used to provide LAN access for a single Bluetooth device

or multiple Bluetooth devices. It can also provide PC to PC connection using PPP networking over

serial cable emulation.

In FreeBSD, these profiles are implemented with man:ppp[8] and the man:rfcomm_pppd[8]

wrapper which converts a Bluetooth connection into something PPP can use. Before a profile can

be used, a new PPP label must be created in /etc/ppp/ppp.conf . Consult man:rfcomm_pppd[8] for

examples.

In this example, man:rfcomm_pppd[8] is used to open a connection to a remote device with a

BD_ADDR of 00:80:37:29:19:a4 on a DUNRFCOMM channel:

rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup

The actual channel number will be obtained from the remote device using the SDP protocol. It is

possible to specify the RFCOMM channel by hand, and in this case man:rfcomm_pppd[8] will not

perform the SDP query. Use man:sdpcontrol[8] to find out the RFCOMM channel on the remote

device.

In order to provide network access with the PPPLAN service, man:sdpd[8] must be running and a

new entry for LAN clients must be created in /etc/ppp/ppp.conf . Consult man:rfcomm_pppd[8] for

examples. Finally, start the RFCOMMPPP server on a valid RFCOMM channel number. The

RFCOMMPPP server will automatically register the Bluetooth LAN service with the local SDP

daemon. The example below shows how to start the RFCOMMPPP server.

rfcomm_pppd -s -C 7 -l rfcomm-server

32.5.5. Bluetooth Protocols

This section provides an overview of the various Bluetooth protocols, their function, and associated

utilities.

32.5.5.1. Logical Link Control and Adaptation Protocol (L2CAP)

The Logical Link Control and Adaptation Protocol (L2CAP) provides connection-oriented and

connectionless data services to upper layer protocols. L2CAP permits higher level protocols and

applications to transmit and receive L2CAP data packets up to 64 kilobytes in length.

L2CAP is based around the concept of channels . A channel is a logical connection on top of a

baseband connection, where each channel is bound to a single protocol in a many-to-one fashion.

Multiple channels can be bound to the same protocol, but a channel cannot be bound to multiple

851

protocols. Each L2CAP packet received on a channel is directed to the appropriate higher level

protocol. Multiple channels can share the same baseband connection.

In FreeBSD, a netgraph L2CAP node is created for each Bluetooth device. This node is normally

connected to the downstream Bluetooth HCI node and upstream Bluetooth socket nodes. The

default name for the L2CAP node is "devicel2cap". For more details refer to man:ng_l2cap[4].

A useful command is man:l2ping[8], which can be used to ping other devices. Some Bluetooth

implementations might not return all of the data sent to them, so 0 bytes in the following example

is normal.

l2ping -a 00:80:37:29:19:a4

0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0

0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0

0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0

0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0

The man:l2control[8] utility is used to perform various operations on L2CAP nodes. This example

shows how to obtain the list of logical connections (channels) and the list of baseband connections

for the local device:

% l2control -a 00:02:72:00:d4:1a read_channel_list

L2CAP channels:

Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State

00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN

% l2control -a 00:02:72:00:d4:1a read_connection_list

L2CAP connections:

Remote BD_ADDR Handle Flags Pending State

00:07:e0:00:0b:ca 41 O 0 OPEN

Another diagnostic tool is man:btsockstat[1]. It is similar to man:netstat[1], but for Bluetooth

network-related data structures. The example below shows the same logical connection as

man:l2control[8] above.

% btsockstat

Active L2CAP sockets

PCB Recv-Q Send-Q Local address/PSM Foreign address CID State

c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN

Active RFCOMM sessions

L2PCB PCB Flag MTU Out-Q DLCs State

c2afe900 c2b53380 1 127 0 Yes OPEN

Active RFCOMM sockets

PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State

c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN

852

32.5.5.2. Radio Frequency Communication (RFCOMM)

The RFCOMM protocol provides emulation of serial ports over the L2CAP protocol. RFCOMM is a

simple transport protocol, with additional provisions for emulating the 9 circuits of RS-232 (EIATIA-

232-E) serial ports. It supports up to 60 simultaneous connections (RFCOMM channels) between two

Bluetooth devices.

For the purposes of RFCOMM, a complete communication path involves two applications running

on the communication endpoints with a communication segment between them. RFCOMM is

intended to cover applications that make use of the serial ports of the devices in which they reside.

The communication segment is a direct connect Bluetooth link from one device to another.

RFCOMM is only concerned with the connection between the devices in the direct connect case, or

between the device and a modem in the network case. RFCOMM can support other configurations,

such as modules that communicate via Bluetooth wireless technology on one side and provide a

wired interface on the other side.

In FreeBSD, RFCOMM is implemented at the Bluetooth sockets layer.

32.5.5.3. Service Discovery Protocol (SDP)

The Service Discovery Protocol (SDP) provides the means for client applications to discover the

existence of services provided by server applications as well as the attributes of those services. The

attributes of a service include the type or class of service offered and the mechanism or protocol

information needed to utilize the service.

SDP involves communication between a SDP server and a SDP client. The server maintains a list of

service records that describe the characteristics of services associated with the server. Each service

record contains information about a single service. A client may retrieve information from a

service record maintained by the SDP server by issuing a SDP request. If the client, or an

application associated with the client, decides to use a service, it must open a separate connection

to the service provider in order to utilize the service. SDP provides a mechanism for discovering

services and their attributes, but it does not provide a mechanism for utilizing those services.

Normally, a SDP client searches for services based on some desired characteristics of the services.

However, there are times when it is desirable to discover which types of services are described by

an SDP serverÕs service records without any prior information about the services. This process of

looking for any offered services is called browsing .

The Bluetooth SDP server, man:sdpd[8], and command line client, man:sdpcontrol[8], are included

in the standard FreeBSD installation. The following example shows how to perform a SDP browse

query.

853

% sdpcontrol -a 00:01:03:fc:6e:ec browse

Record Handle: 00000000

Service Class ID List:

Ê Service Discovery Server (0x1000)

Protocol Descriptor List:

Ê L2CAP (0x0100)

Ê Protocol specific parameter #1: u/int/uuid16 1

Ê Protocol specific parameter #2: u/int/uuid16 1

Record Handle: 0x00000001

Service Class ID List:

Ê Browse Group Descriptor (0x1001)

Record Handle: 0x00000002

Service Class ID List:

Ê LAN Access Using PPP (0x1102)

Protocol Descriptor List:

Ê L2CAP (0x0100)

Ê RFCOMM (0x0003)

Ê Protocol specific parameter #1: u/int8/bool 1

Bluetooth Profile Descriptor List:

Ê LAN Access Using PPP (0x1102) ver. 1.0

Note that each service has a list of attributes, such as the RFCOMM channel. Depending on the

service, the user might need to make note of some of the attributes. Some Bluetooth

implementations do not support service browsing and may return an empty list. In this case, it is

possible to search for the specific service. The example below shows how to search for the OBEX

Object Push (OPUSH) service:

% sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH

Offering services on FreeBSD to Bluetooth clients is done with the man:sdpd[8] server. The

following line can be added to /etc/rc.conf :

sdpd_enable="YES"

Then the man:sdpd[8] daemon can be started with:

service sdpd start

The local server application that wants to provide a Bluetooth service to remote clients will register

the service with the local SDP daemon. An example of such an application is man:rfcomm_pppd[8].

Once started, it will register the Bluetooth LAN service with the local SDP daemon.

The list of services registered with the local SDP server can be obtained by issuing a SDP browse

query via the local control channel:

854

sdpcontrol -l browse

32.5.5.4. OBEX Object Push (OPUSH)

Object Exchange (OBEX) is a widely used protocol for simple file transfers between mobile devices.

Its main use is in infrared communication, where it is used for generic file transfers between

notebooks or PDAs, and for sending business cards or calendar entries between cellular phones and

other devices with Personal Information Manager (PIM) applications.

The OBEX server and client are implemented by obexapp, which can be installed using the

package:comms/obexapp[] package or port.

The OBEX client is used to push and/or pull objects from the OBEX server. An example object is a

business card or an appointment. The OBEX client can obtain the RFCOMM channel number from

the remote device via SDP. This can be done by specifying the service name instead of the RFCOMM

channel number. Supported service names are: IrMC , FTRN , and OPUSH . It is also possible to specify the

RFCOMM channel as a number. Below is an example of an OBEX session where the device

information object is pulled from the cellular phone, and a new object, the business card, is pushed

into the phoneÕs directory.

% obexapp -a 00:80:37:29:19:a4 -C IrMC

obex> get telecom/devinfo.txt devinfo-t39.txt

Success, response: OK, Success (0x20)

obex> put new.vcf

Success, response: OK, Success (0x20)

obex> di

Success, response: OK, Success (0x20)

In order to provide the OPUSH service, man:sdpd[8] must be running and a root folder, where all

incoming objects will be stored, must be created. The default path to the root folder is

/var/spool/obex . Finally, start the OBEX server on a valid RFCOMM channel number. The OBEX

server will automatically register the OPUSH service with the local SDP daemon. The example

below shows how to start the OBEX server.

obexapp -s -C 10

32.5.5.5. Serial Port Profile (SPP)

The Serial Port Profile (SPP) allows Bluetooth devices to perform serial cable emulation. This profile

allows legacy applications to use Bluetooth as a cable replacement, through a virtual serial port

abstraction.

In FreeBSD, man:rfcomm_sppd[1] implements SPP and a pseudo tty is used as a virtual serial port

abstraction. The example below shows how to connect to a remote deviceÕs serial port service. A

RFCOMM channel does not have to be specified as man:rfcomm_sppd[1] can obtain it from the

remote device via SDP. To override this, specify a RFCOMM channel on the command line.

855

rfcomm_sppd -a 00:07:E0:00:0B:CA -t

rfcomm_sppd[94692]: Starting on /dev/pts/6...

/dev/pts/6

Once connected, the pseudo tty can be used as serial port:

cu -l /dev/pts/6

The pseudo tty is printed on stdout and can be read by wrapper scripts:

PTS=`rfcomm_sppd -a 00:07:E0:00:0B:CA -t`

cu -l $PTS

32.5.6. Troubleshooting

By default, when FreeBSD is accepting a new connection, it tries to perform a role switch and

become master. Some older Bluetooth devices which do not support role switching will not be able

to connect. Since role switching is performed when a new connection is being established, it is not

possible to ask the remote device if it supports role switching. However, there is a HCI option to

disable role switching on the local side:

hccontrol -n ubt0hci write_node_role_switch 0

To display Bluetooth packets, use the third-party package hcidump, which can be installed using the

package:comms/hcidump[] package or port. This utility is similar to man:tcpdump[1] and can be

used to display the contents of Bluetooth packets on the terminal and to dump the Bluetooth

packets to a file.

32.6. Bridging

It is sometimes useful to divide a network, such as an Ethernet segment, into network segments

without having to create IP subnets and use a router to connect the segments together. A device

that connects two networks together in this fashion is called a "bridge".

A bridge works by learning the MAC addresses of the devices on each of its network interfaces. It

forwards traffic between networks only when the source and destination MAC addresses are on

different networks. In many respects, a bridge is like an Ethernet switch with very few ports. A

FreeBSD system with multiple network interfaces can be configured to act as a bridge.

Bridging can be useful in the following situations:

Connecting Networks

The basic operation of a bridge is to join two or more network segments. There are many

reasons to use a host-based bridge instead of networking equipment, such as cabling constraints

856

or firewalling. A bridge can also connect a wireless interface running in hostap mode to a wired

network and act as an access point.

Filtering/Traffic Shaping Firewall

A bridge can be used when firewall functionality is needed without routing or Network Address

Translation (NAT).

An example is a small company that is connected via DSL or ISDN to an ISP. There are thirteen

public IP addresses from the ISP and ten computers on the network. In this situation, using a

router-based firewall is difficult because of subnetting issues. A bridge-based firewall can be

configured without any IP addressing issues.

Network Tap

A bridge can join two network segments in order to inspect all Ethernet frames that pass

between them using man:bpf[4] and man:tcpdump[1] on the bridge interface or by sending a

copy of all frames out an additional interface known as a span port.

Layer 2 VPN

Two Ethernet networks can be joined across an IP link by bridging the networks to an EtherIP

tunnel or a man:tap[4] based solution such as OpenVPN.

Layer 2 Redundancy

A network can be connected together with multiple links and use the Spanning Tree Protocol

(STP) to block redundant paths.

This section describes how to configure a FreeBSD system as a bridge using man:if_bridge[4]. A

netgraph bridging driver is also available, and is described in man:ng_bridge[4].

!

Packet filtering can be used with any firewall package that hooks into the

man:pfil[9] framework. The bridge can be used as a traffic shaper with man:altq[4]

or man:dummynet[4].

32.6.1. Enabling the Bridge

In FreeBSD, man:if_bridge[4] is a kernel module which is automatically loaded by man:ifconfig[8]

when creating a bridge interface. It is also possible to compile bridge support into a custom kernel

by adding device if_bridge to the custom kernel configuration file.

The bridge is created using interface cloning. To create the bridge interface:

ifconfig bridge create

bridge0

ifconfig bridge0

bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 96:3d:4b:f1:79:7a

Ê id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15

Ê maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200

Ê root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0

857

When a bridge interface is created, it is automatically assigned a randomly generated Ethernet

address. The maxaddr and timeout parameters control how many MAC addresses the bridge will keep

in its forwarding table and how many seconds before each entry is removed after it is last seen. The

other parameters control how STP operates.

Next, specify which network interfaces to add as members of the bridge. For the bridge to forward

packets, all member interfaces and the bridge need to be up:

ifconfig bridge0 addm fxp0 addm fxp1 up

ifconfig fxp0 up

ifconfig fxp1 up

The bridge can now forward Ethernet frames between fxp0 and fxp1 . Add the following lines to

/etc/rc.conf so the bridge is created at startup:

cloned_interfaces="bridge0"

ifconfig_bridge0="addm fxp0 addm fxp1 up"

ifconfig_fxp0="up"

ifconfig_fxp1="up"

If the bridge host needs an IP address, set it on the bridge interface, not on the member interfaces.

The address can be set statically or via DHCP. This example sets a static IP address:

ifconfig bridge0 inet 192.168.0.1/24

It is also possible to assign an IPv6 address to a bridge interface. To make the changes permanent,

add the addressing information to /etc/rc.conf .

!

When packet filtering is enabled, bridged packets will pass through the filter

inbound on the originating interface on the bridge interface, and outbound on the

appropriate interfaces. Either stage can be disabled. When direction of the packet

flow is important, it is best to firewall on the member interfaces rather than the

bridge itself.

The bridge has several configurable settings for passing non-IP and IP packets, and

layer2 firewalling with man:ipfw[8]. See man:if_bridge[4] for more information.

32.6.2. Enabling Spanning Tree

For an Ethernet network to function properly, only one active path can exist between two devices.

The STP protocol detects loops and puts redundant links into a blocked state. Should one of the

active links fail, STP calculates a different tree and enables one of the blocked paths to restore

connectivity to all points in the network.

The Rapid Spanning Tree Protocol (RSTP or 802.1w) provides backwards compatibility with legacy

STP. RSTP provides faster convergence and exchanges information with neighboring switches to

858

quickly transition to forwarding mode without creating loops. FreeBSD supports RSTP and STP as

operating modes, with RSTP being the default mode.

STP can be enabled on member interfaces using man:ifconfig[8]. For a bridge with fxp0 and fxp1 as

the current interfaces, enable STP with:

ifconfig bridge0 stp fxp0 stp fxp1

bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether d6:cf:d5:a0:94:6d

Ê id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15

Ê maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200

Ê root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0

Ê member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>

Ê port 3 priority 128 path cost 200000 proto rstp

Ê role designated state forwarding

Ê member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>

Ê port 4 priority 128 path cost 200000 proto rstp

Ê role designated state forwarding

This bridge has a spanning tree ID of 00:01:02:4b:d4:50 and a priority of 32768 . As the root id is the

same, it indicates that this is the root bridge for the tree.

Another bridge on the network also has STP enabled:

bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether 96:3d:4b:f1:79:7a

Ê id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15

Ê maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200

Ê root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4

Ê member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>

Ê port 4 priority 128 path cost 200000 proto rstp

Ê role root state forwarding

Ê member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>

Ê port 5 priority 128 path cost 200000 proto rstp

Ê role designated state forwarding

The line root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4 shows that the root bridge

is 00:01:02:4b:d4:50 and has a path cost of 400000 from this bridge. The path to the root bridge is via

port 4 which is fxp0 .

32.6.3. Bridge Interface Parameters

Several ifconfig parameters are unique to bridge interfaces. This section summarizes some

common uses for these parameters. The complete list of available parameters is described in

man:ifconfig[8].

private

A private interface does not forward any traffic to any other port that is also designated as a

859

private interface. The traffic is blocked unconditionally so no Ethernet frames will be forwarded,

including ARP packets. If traffic needs to be selectively blocked, a firewall should be used

instead.

span

A span port transmits a copy of every Ethernet frame received by the bridge. The number of

span ports configured on a bridge is unlimited, but if an interface is designated as a span port, it

cannot also be used as a regular bridge port. This is most useful for snooping a bridged network

passively on another host connected to one of the span ports of the bridge. For example, to send

a copy of all frames out the interface named fxp4 :

ifconfig bridge0 span fxp4

sticky

If a bridge member interface is marked as sticky, dynamically learned address entries are

treated as static entries in the forwarding cache. Sticky entries are never aged out of the cache

or replaced, even if the address is seen on a different interface. This gives the benefit of static

address entries without the need to pre-populate the forwarding table. Clients learned on a

particular segment of the bridge cannot roam to another segment.

An example of using sticky addresses is to combine the bridge with VLANs in order to isolate

customer networks without wasting IP address space. Consider that CustomerA is on vlan100 ,

CustomerB is on vlan101 , and the bridge has the address 192.168.0.1 :

ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101

ifconfig bridge0 inet 192.168.0.1/24

In this example, both clients see 192.168.0.1 as their default gateway. Since the bridge cache is

sticky, one host cannot spoof the MAC address of the other customer in order to intercept their

traffic.

Any communication between the VLANs can be blocked using a firewall or, as seen in this

example, private interfaces:

ifconfig bridge0 private vlan100 private vlan101

The customers are completely isolated from each other and the full /24 address range can be

allocated without subnetting.

The number of unique source MAC addresses behind an interface can be limited. Once the limit

is reached, packets with unknown source addresses are dropped until an existing host cache

entry expires or is removed.

The following example sets the maximum number of Ethernet devices for CustomerA on vlan100

to 10:

860

ifconfig bridge0 ifmaxaddr vlan100 10

Bridge interfaces also support monitor mode, where the packets are discarded after man:bpf[4]

processing and are not processed or forwarded further. This can be used to multiplex the input of

two or more interfaces into a single man:bpf[4] stream. This is useful for reconstructing the traffic

for network taps that transmit the RX/TX signals out through two separate interfaces. For example,

to read the input from four network interfaces as one stream:

ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up

tcpdump -i bridge0

32.6.4. SNMP Monitoring

The bridge interface and STP parameters can be monitored via man:bsnmpd[1] which is included

in the FreeBSD base system. The exported bridge MIBs conform to IETF standards so any SNMP

client or monitoring package can be used to retrieve the data.

To enable monitoring on the bridge, uncomment this line in /etc/snmpd.config by removing the

beginning # symbol:

begemotSnmpdModulePath."bridge" = "/usr/lib/snmp_bridge.so"

Other configuration settings, such as community names and access lists, may need to be modified in

this file. See man:bsnmpd[1] and man:snmp_bridge[3] for more information. Once these edits are

saved, add this line to /etc/rc.conf :

bsnmpd_enable="YES"

Then, start man:bsnmpd[1]:

service bsnmpd start

The following examples use the Net-SNMP software (package:net-mgmt/net-snmp[]) to query a

bridge from a client system. The package:net-mgmt/bsnmptools[] port can also be used. From the

SNMP client which is running Net-SNMP, add the following lines to $HOME/.snmp/snmp.conf in

order to import the bridge MIB definitions:

mibdirs +/usr/shared/snmp/mibs

mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB

To monitor a single bridge using the IETF BRIDGE-MIB (RFC4188):

861

% snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge

BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44

BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports

BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-

seconds

BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2

BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50

...

BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5)

BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1)

BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000

BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50

BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0

BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50

BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80

BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1

RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2)

The dot1dStpTopChanges.0 value is two, indicating that the STP bridge topology has changed twice. A

topology change means that one or more links in the network have changed or failed and a new

tree has been calculated. The dot1dStpTimeSinceTopologyChange.0 value will show when this

happened.

To monitor multiple bridge interfaces, the private BEGEMOT-BRIDGE-MIB can be used:

% snmpwalk -v 2c -c public bridge1.example.com

enterprises.fokus.begemot.begemotBridge

BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0

BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2

BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13

BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc

BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1

BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1

...

BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks:

(116927) 0:19:29.27 centi-seconds

BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks:

(82773) 0:13:47.73 centi-seconds

BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1

BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1

BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40

95 30 5E 31

BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50

8B B8 C6 A9

To change the bridge interface being monitored via the mib-2.dot1dBridge subtree:

862

% snmpset -v 2c -c private bridge1.example.com

BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2

32.7. Link Aggregation and Failover

FreeBSD provides the man:lagg[4] interface which can be used to aggregate multiple network

interfaces into one virtual interface in order to provide failover and link aggregation. Failover

allows traffic to continue to flow as long as at least one aggregated network interface has an

established link. Link aggregation works best on switches which support LACP, as this protocol

distributes traffic bi-directionally while responding to the failure of individual links.

The aggregation protocols supported by the lagg interface determine which ports are used for

outgoing traffic and whether or not a specific port accepts incoming traffic. The following protocols

are supported by man:lagg[4]:

failover

This mode sends and receives traffic only through the master port. If the master port becomes

unavailable, the next active port is used. The first interface added to the virtual interface is the

master port and all subsequently added interfaces are used as failover devices. If failover to a

non-master port occurs, the original port becomes master once it becomes available again.

fec / loadbalance

Cisco¨ Fast EtherChannel¨ (FEC) is found on older Cisco¨ switches. It provides a static setup

and does not negotiate aggregation with the peer or exchange frames to monitor the link. If the

switch supports LACP, that should be used instead.

lacp

The IEEE¨ 802.3ad Link Aggregation Control Protocol (LACP) negotiates a set of aggregable links

with the peer into one or more Link Aggregated Groups (LAGs). Each LAG is composed of ports

of the same speed, set to full-duplex operation, and traffic is balanced across the ports in the LAG

with the greatest total speed. Typically, there is only one LAG which contains all the ports. In the

event of changes in physical connectivity, LACP will quickly converge to a new configuration.

LACP balances outgoing traffic across the active ports based on hashed protocol header

information and accepts incoming traffic from any active port. The hash includes the Ethernet

source and destination address and, if available, the VLAN tag, and the IPv4 or IPv6 source and

destination address.

roundrobin

This mode distributes outgoing traffic using a round-robin scheduler through all active ports

and accepts incoming traffic from any active port. Since this mode violates Ethernet frame

ordering, it should be used with caution.

32.7.1. Configuration Examples

This section demonstrates how to configure a Cisco¨ switch and a FreeBSD system for LACP load

balancing. It then shows how to configure two Ethernet interfaces in failover mode as well as how

863

to configure failover mode between an Ethernet and a wireless interface.

864

Example 47. LACP Aggregation with a Cisco¨ Switch

This example connects two man:fxp[4] Ethernet interfaces on a FreeBSD machine to the first

two Ethernet ports on a Cisco¨ switch as a single load balanced and fault tolerant link. More

interfaces can be added to increase throughput and fault tolerance. Replace the names of the

Cisco¨ ports, Ethernet devices, channel group number, and IP address shown in the example

to match the local configuration.

Frame ordering is mandatory on Ethernet links and any traffic between two stations always

flows over the same physical link, limiting the maximum speed to that of one interface. The

transmit algorithm attempts to use as much information as it can to distinguish different

traffic flows and balance the flows across the available interfaces.

On the Cisco¨ switch, add the FastEthernet0/1 and FastEthernet0/2 interfaces to channel group

1 :

interface FastEthernet0/1

Êchannel-group 1 mode active

Êchannel-protocol lacp

!

interface FastEthernet0/2

Êchannel-group 1 mode active

Êchannel-protocol lacp

On the FreeBSD system, create the man:lagg[4] interface using the physical interfaces fxp0 and

fxp1 and bring the interfaces up with an IP address of 10.0.0.3/24 :

ifconfig fxp0 up

ifconfig fxp1 up

ifconfig lagg0 create

ifconfig lagg0 up laggproto lacp laggport fxp0 laggport fxp1 10.0.0.3/24

Next, verify the status of the virtual interface:

ifconfig lagg0

lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê options=8<VLAN_MTU>

Ê ether 00:05:5d:71:8d:b8

Ê inet 10.0.0.3 netmask 0xffffff00 broadcast 10.0.0.255

Ê media: Ethernet autoselect

Ê status: active

Ê laggproto lacp

Ê laggport: fxp1 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING>

Ê laggport: fxp0 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING>

Ports marked as ACTIVE are part of the LAG that has been negotiated with the remote switch.

Traffic will be transmitted and received through these active ports. Add -v to the above

865

command to view the LAG identifiers.

To see the port status on the Cisco¨ switch:

switch# show lacp neighbor

Flags: S - Device is requesting Slow LACPDUs

Ê F - Device is requesting Fast LACPDUs

Ê A - Device is in Active mode P - Device is in Passive mode

Channel group 1 neighbors

Partner's information:

Ê LACP port Oper Port Port

Port Flags Priority Dev ID Age Key Number State

Fa0/1 SA 32768 0005.5d71.8db8 29s 0x146 0x3 0x3D

Fa0/2 SA 32768 0005.5d71.8db8 29s 0x146 0x4 0x3D

For more detail, type show lacp neighbor detail .

To retain this configuration across reboots, add the following entries to /etc/rc.conf on the

FreeBSD system:

ifconfig_fxp0="up"

ifconfig_fxp1="up"

cloned_interfaces="lagg0"

ifconfig_lagg0="laggproto lacp laggport fxp0 laggport fxp1 10.0.0.3/24"

866

Example 48. Failover Mode

Failover mode can be used to switch over to a secondary interface if the link is lost on the

master interface. To configure failover, make sure that the underlying physical interfaces are

up, then create the man:lagg[4] interface. In this example, fxp0 is the master interface, fxp1 is

the secondary interface, and the virtual interface is assigned an IP address of 10.0.0.15/24 :

ifconfig fxp0 up

ifconfig fxp1 up

ifconfig lagg0 create

ifconfig lagg0 up laggproto failover laggport fxp0 laggport fxp1 10.0.0.15/24

The virtual interface should look something like this:

ifconfig lagg0

lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê options=8<VLAN_MTU>

Ê ether 00:05:5d:71:8d:b8

Ê inet 10.0.0.15 netmask 0xffffff00 broadcast 10.0.0.255

Ê media: Ethernet autoselect

Ê status: active

Ê laggproto failover

Ê laggport: fxp1 flags=0<>

Ê laggport: fxp0 flags=5<MASTER,ACTIVE>

Traffic will be transmitted and received on fxp0 . If the link is lost on fxp0 , fxp1 will become the

active link. If the link is restored on the master interface, it will once again become the active

link.

To retain this configuration across reboots, add the following entries to /etc/rc.conf :

ifconfig_fxp0="up"

ifconfig_fxp1="up"

cloned_interfaces="lagg0"

ifconfig_lagg0="laggproto failover laggport fxp0 laggport fxp1 10.0.0.15/24"

867

Example 49. Failover Mode Between Ethernet and Wireless Interfaces

For laptop users, it is usually desirable to configure the wireless device as a secondary which is

only used when the Ethernet connection is not available. With man:lagg[4], it is possible to

configure a failover which prefers the Ethernet connection for both performance and security

reasons, while maintaining the ability to transfer data over the wireless connection.

This is achieved by overriding the Ethernet interfaceÕs MAC address with that of the wireless

interface.

In theory, either the Ethernet or wireless MAC address can be changed to match the

other. However, some popular wireless interfaces lack support for overriding the MAC

address. We therefore recommend overriding the Ethernet MAC address for this

purpose.

If the driver for the wireless interface is not loaded in the GENERIC or custom kernel, and

the computer is running FreeBSD 12.1, load the corresponding .ko in /boot/loader.conf by

adding driver_load="YES" to that file and rebooting. Another, better way is to load the

driver in /etc/rc.conf by adding it to kld_list (see man:rc.conf[5] for details) in that file

and rebooting. This is needed because otherwise the driver is not loaded yet at the time

the man:lagg[4] interface is set up.

In this example, the Ethernet interface, re0 , is the master and the wireless interface, wlan0 , is

the failover. The wlan0 interface was created from the ath0 physical wireless interface, and the

Ethernet interface will be configured with the MAC address of the wireless interface. First,

determine the MAC address of the wireless interface:

ifconfig wlan0

wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê ether b8:ee:65:5b:32:59

Ê groups: wlan

Ê ssid Bbox-A3BD2403 channel 6 (2437 MHz 11g ht/20) bssid 00:37:b7:56:4b:60

Ê regdomain ETSI country FR indoor ecm authmode WPA2/802.11i privacy ON

Ê deftxkey UNDEF AES-CCM 2:128-bit txpower 30 bmiss 7 scanvalid 60

Ê protmode CTS ampdulimit 64k ampdudensity 8 shortgi -stbctx stbcrx

Ê -ldpc wme burst roaming MANUAL

Ê media: IEEE 802.11 Wireless Ethernet MCS mode 11ng

Ê status: associated

Ê nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

Replace wlan0 to match the systemÕs wireless interface name. The ether line will contain the

MAC address of the specified interface. Now, change the MAC address of the Ethernet

interface:

868

ifconfig re0 ether b8:ee:65:5b:32:59

Bring the wireless interface up (replacing FR with your own 2-letter country code), but do not

set an IP address:

ifconfig wlan0 create wlandev ath0 country FR ssid my_router up

Make sure the re0 interface is up, then create the man:lagg[4] interface with re0 as master with

failover to wlan0 :

ifconfig re0 up

ifconfig lagg0 create

ifconfig lagg0 up laggproto failover laggport re0 laggport wlan0

The virtual interface should look something like this:

ifconfig lagg0

lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

Ê options=8<VLAN_MTU>

Ê ether b8:ee:65:5b:32:59

Ê laggproto failover lagghash l2,l3,l4

Ê laggport: re0 flags=5<MASTER,ACTIVE>

Ê laggport: wlan0 flags=0<>

Ê groups: lagg

Ê media: Ethernet autoselect

Ê status: active

Then, start the DHCP client to obtain an IP address:

dhclient lagg0

To retain this configuration across reboots, add the following entries to /etc/rc.conf :

ifconfig_re0="ether b8:ee:65:5b:32:59"

wlans_ath0="wlan0"

ifconfig_wlan0="WPA"

create_args_wlan0="country FR"

cloned_interfaces="lagg0"

ifconfig_lagg0="up laggproto failover laggport re0 laggport wlan0 DHCP"

869

32.8. Diskless Operation with PXE

The Intel¨ Preboot eXecution Environment (PXE) allows an operating system to boot over the

network. For example, a FreeBSD system can boot over the network and operate without a local

disk, using file systems mounted from an NFS server. PXE support is usually available in the BIOS.

To use PXE when the machine starts, select the Boot from network option in the BIOS setup or type a

function key during system initialization.

In order to provide the files needed for an operating system to boot over the network, a PXE setup

also requires properly configured DHCP, TFTP, and NFS servers, where:

¥ Initial parameters, such as an IP address, executable boot filename and location, server name,

and root path are obtained from the DHCP server.

¥ The operating system loader file is booted using TFTP.

¥ The file systems are loaded using NFS.

When a computer PXE boots, it receives information over DHCP about where to obtain the initial

boot loader file. After the host computer receives this information, it downloads the boot loader via

TFTP and then executes the boot loader. In FreeBSD, the boot loader file is /boot/pxeboot . After

/boot/pxeboot executes, the FreeBSD kernel is loaded and the rest of the FreeBSD bootup sequence

proceeds, as described in crossref:boot[boot,The FreeBSD Booting Process].

This section describes how to configure these services on a FreeBSD system so that other systems

can PXE boot into FreeBSD. Refer to man:diskless[8] for more information.

$

As described, the system providing these services is insecure. It should live in a

protected area of a network and be untrusted by other hosts.

32.8.1. Setting Up the PXE Environment

The steps shown in this section configure the built-in NFS and TFTP servers. The next section

demonstrates how to install and configure the DHCP server. In this example, the directory which

will contain the files used by PXE users is /b/tftpboot/FreeBSD/install . It is important that this

directory exists and that the same directory name is set in both /etc/inetd.conf and

/usr/local/etc/dhcpd.conf .

!

The command examples below assume use of the man:sh[1] shell. man:csh[1] and

man:tcsh[1] users will need to start a man:sh[1] shell or adapt the commands to

man:csh[1] syntax.

1. Create the root directory which will contain a FreeBSD installation to be NFS mounted:

export NFSROOTDIR=/b/tftpboot/FreeBSD/install

mkdir -p ${NFSROOTDIR}

2. Enable the NFS server by adding this line to /etc/rc.conf :

870

nfs_server_enable="YES"

3. Export the diskless root directory via NFS by adding the following to /etc/exports :

/b -ro -alldirs -maproot=root

4. Start the NFS server:

service nfsd start

5. Enable man:inetd[8] by adding the following line to /etc/rc.conf :

inetd_enable="YES"

6. Uncomment the following line in /etc/inetd.conf by making sure it does not start with a #

symbol:

tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot

!

Some PXE versions require the TCP version of TFTP. In this case, uncomment

the second tftp line which contains stream tcp .

7. Start man:inetd[8]:

service inetd start

8. Install the base system into ${NFSROOTDIR} , either by decompressing the official archives or by

rebuilding the FreeBSD kernel and userland (refer to crossref:cutting-

edge[makeworld,ÒUpdating FreeBSD from SourceÓ] for more detailed instructions, but do not

forget to add DESTDIR= ${NFSROOTDIR} when running the make installkernel and make

installworld commands.

9. Test that the TFTP server works and can download the boot loader which will be obtained via

PXE:

tftp localhost

tftp> get FreeBSD/install/boot/pxeboot

Received 264951 bytes in 0.1 seconds

10. Edit ${NFSROOTDIR}/etc/fstab and create an entry to mount the root file system over NFS:

871

Device Mountpoint FSType Options

Dump Pass

myhost.example.com:/b/tftpboot/FreeBSD/install / nfs ro 0

0

Replace myhost.example.com with the hostname or IP address of the NFS server. In this

example, the root file system is mounted read-only in order to prevent NFS clients from

potentially deleting the contents of the root file system.

11. Set the root password in the PXE environment for client machines which are PXE booting :

chroot ${NFSROOTDIR}

passwd

12. If needed, enable man:ssh[1] root logins for client machines which are PXE booting by editing

${NFSROOTDIR}/etc/ssh/sshd_config and enabling PermitRootLogin . This option is documented in

man:sshd_config[5].

13. Perform any other needed customizations of the PXE environment in ${NFSROOTDIR} . These

customizations could include things like installing packages or editing the password file with

man:vipw[8].

When booting from an NFS root volume, /etc/rc detects the NFS boot and runs /etc/rc.initdiskless . In

this case, /etc and /var need to be memory backed file systems so that these directories are writable

but the NFS root directory is read-only:

chroot ${NFSROOTDIR}

mkdir -p conf/base

tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc

tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var

When the system boots, memory file systems for /etc and /var will be created and mounted and the

contents of the cpio.gz files will be copied into them. By default, these file systems have a maximum

capacity of 5 megabytes. If your archives do not fit, which is usually the case for /var when binary

packages have been installed, request a larger size by putting the number of 512 byte sectors

needed (e.g., 5 megabytes is 10240 sectors) in ${NFSROOTDIR}/conf/base/etc/md_size and

${NFSROOTDIR}/conf/base/var/md_size files for /etc and /var file systems respectively.

32.8.2. Configuring the DHCP Server

The DHCP server does not need to be the same machine as the TFTP and NFS server, but it needs to

be accessible in the network.

DHCP is not part of the FreeBSD base system but can be installed using the package:net/isc-dhcp43-

server[] port or package.

Once installed, edit the configuration file, /usr/local/etc/dhcpd.conf . Configure the next-server ,

872

filename , and root-path settings as seen in this example:

subnet 192.168.0.0 netmask 255.255.255.0 {

Ê range 192.168.0.2 192.168.0.3 ;

Ê option subnet-mask 255.255.255.0 ;

Ê option routers 192.168.0.1 ;

Ê option broadcast-address 192.168.0.255 ;

Ê option domain-name-servers 192.168.35.35, 192.168.35.36 ;

Ê option domain-name "example.com";

Ê # IP address of TFTP server

Ê next-server 192.168.0.1 ;

Ê # path of boot loader obtained via tftp

Ê filename "FreeBSD/install/boot/pxeboot" ;

Ê # pxeboot boot loader will try to NFS mount this directory for root FS

Ê option root-path "192.168.0.1:/b/tftpboot/FreeBSD/install/" ;

}

The next-server directive is used to specify the IP address of the TFTP server.

The filename directive defines the path to /boot/pxeboot . A relative filename is used, meaning that

/b/tftpboot is not included in the path.

The root-path option defines the path to the NFS root file system.

Once the edits are saved, enable DHCP at boot time by adding the following line to /etc/rc.conf :

dhcpd_enable="YES"

Then start the DHCP service:

service isc-dhcpd start

32.8.3. Debugging PXE Problems

Once all of the services are configured and started, PXE clients should be able to automatically load

FreeBSD over the network. If a particular client is unable to connect, when that client machine

boots up, enter the BIOS configuration menu and confirm that it is set to boot from the network.

This section describes some troubleshooting tips for isolating the source of the configuration

problem should no clients be able to PXE boot.

873

1. Use the package:net/wireshark[] package or port to debug the network traffic involved

during the PXE booting process, which is illustrated in the diagram below.

Figure 61. PXE Booting Process with NFS Root Mount

1. Client broadcasts a DHCPDISCOVER message.

2. The DHCP server responds with the IP address, next-server, filename, and root-path

values.

3. The client sends a TFTP request to next-server, asking to retrieve filename.

4. The TFTP server responds and sends filename to client.

5. The client executes filename, which is pxeboot(8), which then loads the kernel. When

the kernel executes, the root file system specified by root-path is mounted over NFS.

2. On the TFTP server, read /var/log/xferlog to ensure that pxeboot is being retrieved from

the correct location. To test this example configuration:

tftp 192.168.0.1

tftp> get FreeBSD/install/boot/pxeboot

Received 264951 bytes in 0.1 seconds

The BUGS sections in man:tftpd[8] and man:tftp[1] document some limitations with TFTP.

3. Make sure that the root file system can be mounted via NFS. To test this example

configuration:

mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt

32.9. IPv6

IPv6 is the new version of the well known IP protocol, also known as IPv4. IPv6 provides several

advantages over IPv4 as well as many new features:

874

¥ Its 128-bit address space allows for 340,282,366,920,938,463,463,374,607,431,768,211,456

addresses. This addresses the IPv4 address shortage and eventual IPv4 address exhaustion.

¥ Routers only store network aggregation addresses in their routing tables, thus reducing the

average space of a routing table to 8192 entries. This addresses the scalability issues associated

with IPv4, which required every allocated block of IPv4 addresses to be exchanged between

Internet routers, causing their routing tables to become too large to allow efficient routing.

¥ Address autoconfiguration (RFC2462).

¥ Mandatory multicast addresses.

¥ Built-in IPsec (IP security).

¥ Simplified header structure.

¥ Support for mobile IP.

¥ IPv6-to-IPv4 transition mechanisms.

FreeBSD includes the http://www.kame.net/ IPv6 reference implementation and comes with

everything needed to use IPv6. This section focuses on getting IPv6 configured and running.

32.9.1. Background on IPv6 Addresses

There are three different types of IPv6 addresses:

Unicast

A packet sent to a unicast address arrives at the interface belonging to the address.

Anycast

These addresses are syntactically indistinguishable from unicast addresses but they address a

group of interfaces. The packet destined for an anycast address will arrive at the nearest router

interface. Anycast addresses are only used by routers.

Multicast

These addresses identify a group of interfaces. A packet destined for a multicast address will

arrive at all interfaces belonging to the multicast group. The IPv4 broadcast address, usually

xxx.xxx.xxx.255 , is expressed by multicast addresses in IPv6.

When reading an IPv6 address, the canonical form is represented as x:x:x:x:x:x:x:x , where each x

represents a 16 bit hex value. An example is FEBC:A574:382B:23C1:AA49:4592:4EFE:9982 .

Often, an address will have long substrings of all zeros. A :: (double colon) can be used to replace

one substring per address. Also, up to three leading 0 s per hex value can be omitted. For example,

fe80::1 corresponds to the canonical form fe80:0000:0000:0000:0000:0000:0000:0001 .

A third form is to write the last 32 bits using the well known IPv4 notation. For example,

2002::10.0.0.1 corresponds to the hexadecimal canonical representation

2002:0000:0000:0000:0000:0000:0a00:0001 , which in turn is equivalent to 2002::a00:1 .

To view a FreeBSD systemÕs IPv6 address, use man:ifconfig[8]:

875

http://www.ietf.org/rfc/rfc2462.txt
http://www.kame.net/

ifconfig

rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

Ê inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255

Ê inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1

Ê ether 00:00:21:03:08:e1

Ê media: Ethernet autoselect (100baseTX)

Ê status: active

In this example, the rl0 interface is using fe80::200:21ff:fe03:8e1%rl0 , an auto-configured link-local

address which was automatically generated from the MAC address.

Some IPv6 addresses are reserved. A summary of these reserved addresses is seen in Reserved IPv6

Addresses :

Table 31. Reserved IPv6 Addresses

IPv6 address Prefixlength (Bits) Description Notes

::

128 bits unspecified Equivalent to 0.0.0.0 in

IPv4.

::1

128 bits loopback address Equivalent to 127.0.0.1

in IPv4.

::00:xx:xx:xx:xx

96 bits embedded IPv4 The lower 32 bits are

the compatible IPv4

address.

::ff:xx:xx:xx:xx

96 bits IPv4 mapped IPv6

address

The lower 32 bits are

the IPv4 address for

hosts which do not

support IPv6.

fe80::/10

10 bits link-local Equivalent to

169.254.0.0/16 in IPv4.

fc00::/7

7 bits unique-local Unique local addresses

are intended for local

communication and

are only routable

within a set of

cooperating sites.

ff00::

8 bits multicast

2000::-3fff::

3 bits global unicast All global unicast

addresses are assigned

from this pool. The first

3 bits are 001 .

For further information on the structure of IPv6 addresses, refer to RFC3513 .

876

http://www.ietf.org/rfc/rfc3513.txt

32.9.2. Configuring IPv6

To configure a FreeBSD system as an IPv6 client, add these two lines to rc.conf :

ifconfig_rl0_ipv6="inet6 accept_rtadv"

rtsold_enable="YES"

The first line enables the specified interface to receive router advertisement messages. The second

line enables the router solicitation daemon, man:rtsol[8].

If the interface needs a statically assigned IPv6 address, add an entry to specify the static address

and associated prefix length:

ifconfig_rl0_ipv6="inet6 2001:db8:4672:6565:2026:5043:2d42:5344 prefixlen 64"

To assign a default router, specify its address:

ipv6_defaultrouter="2001:db8:4672:6565::1"

32.9.3. Connecting to a Provider

In order to connect to other IPv6 networks, one must have a provider or a tunnel that supports

IPv6:

¥ Contact an Internet Service Provider to see if they offer IPv6.

¥ Hurricane Electric offers tunnels with end-points all around the globe.

!

Install the package:net/freenet6[] package or port for a dial-up connection.

This section demonstrates how to take the directions from a tunnel provider and convert them into

/etc/rc.conf settings that will persist through reboots.

The first /etc/rc.conf entry creates the generic tunneling interface gif0 :

cloned_interfaces="gif0"

Next, configure that interface with the IPv4 addresses of the local and remote endpoints. Replace

MY_IPv4_ADDR and REMOTE_IPv4_ADDR with the actual IPv4 addresses:

create_args_gif0="tunnel MY_IPv4_ADDR REMOTE_IPv4_ADDR"

To apply the IPv6 address that has been assigned for use as the IPv6 tunnel endpoint, add this line,

replacing MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR with the assigned address:

877

http://www.tunnelbroker.net

ifconfig_gif0_ipv6="inet6 MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR"

Then, set the default route for the other side of the IPv6 tunnel. Replace

MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR with the default gateway address assigned by the provider:

ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR"

If the FreeBSD system will route IPv6 packets between the rest of the network and the world,

enable the gateway using this line:

ipv6_gateway_enable="YES"

32.9.4. Router Advertisement and Host Auto Configuration

This section demonstrates how to setup man:rtadvd[8] to advertise the IPv6 default route.

To enable man:rtadvd[8], add the following to /etc/rc.conf :

rtadvd_enable="YES"

It is important to specify the interface on which to do IPv6 router advertisement. For example, to

tell man:rtadvd[8] to use rl0 :

rtadvd_interfaces="rl0"

Next, create the configuration file, /etc/rtadvd.conf as seen in this example:

rl0:\

Ê :addrs#1:addr="2001:db8:1f11:246::":prefixlen#64:tc=ether:

Replace rl0 with the interface to be used and 2001:db8:1f11:246:: with the prefix of the allocation.

For a dedicated /64 subnet, nothing else needs to be changed. Otherwise, change the prefixlen# to

the correct value.

32.9.5. IPv6 and IPv6 Address Mapping

When IPv6 is enabled on a server, there may be a need to enable IPv4 mapped IPv6 address

communication. This compatibility option allows for IPv4 addresses to be represented as IPv6

addresses. Permitting IPv6 applications to communicate with IPv4 and vice versa may be a security

issue.

This option may not be required in most cases and is available only for compatibility. This option

878

will allow IPv6-only applications to work with IPv4 in a dual stack environment. This is most useful

for third party applications which may not support an IPv6-only environment. To enable this

feature, add the following to /etc/rc.conf :

ipv6_ipv4mapping="YES"

Reviewing the information in RFC 3493, section 3.6 and 3.7 as well as RFC 4038 section 4.2 may be

useful to some administrators.

32.10. Common Address Redundancy Protocol (CARP)

The Common Address Redundancy Protocol (CARP) allows multiple hosts to share the same IP

address and Virtual Host ID (VHID) in order to provide high availability for one or more services.

This means that one or more hosts can fail, and the other hosts will transparently take over so that

users do not see a service failure.

In addition to the shared IP address, each host has its own IP address for management and

configuration. All of the machines that share an IP address have the same VHID. The VHID for each

virtual IP address must be unique across the broadcast domain of the network interface.

High availability using CARP is built into FreeBSD, though the steps to configure it vary slightly

depending upon the FreeBSD version. This section provides the same example configuration for

versions before and equal to or after FreeBSD 10.

This example configures failover support with three hosts, all with unique IP addresses, but

providing the same web content. It has two different masters named hosta.example.org and

hostb.example.org , with a shared backup named hostc.example.org .

These machines are load balanced with a Round Robin DNS configuration. The master and backup

machines are configured identically except for their hostnames and management IP addresses.

These servers must have the same configuration and run the same services. When the failover

occurs, requests to the service on the shared IP address can only be answered correctly if the

backup server has access to the same content. The backup machine has two additional CARP

interfaces, one for each of the master content serverÕs IP addresses. When a failure occurs, the

backup server will pick up the failed master machineÕs IP address.

32.10.1. Using CARP on FreeBSD 10 and Later

Enable boot-time support for CARP by adding an entry for the carp.ko kernel module in

/boot/loader.conf :

carp_load="YES"

To load the module now without rebooting:

kldload carp

879

For users who prefer to use a custom kernel, include the following line in the custom kernel

configuration file and compile the kernel as described in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]:

device carp

The hostname, management IP address and subnet mask, shared IP address, and VHID are all set by

adding entries to /etc/rc.conf . This example is for hosta.example.org :

hostname="hosta.example.org"

ifconfig_em0="inet 192.168.1.3 netmask 255.255.255.0"

ifconfig_em0_alias0="inet vhid 1 pass testpass alias 192.168.1.50/32"

The next set of entries are for hostb.example.org . Since it represents a second master, it uses a

different shared IP address and VHID. However, the passwords specified with pass must be

identical as CARP will only listen to and accept advertisements from machines with the correct

password.

hostname="hostb.example.org"

ifconfig_em0="inet 192.168.1.4 netmask 255.255.255.0"

ifconfig_em0_alias0="inet vhid 2 pass testpass alias 192.168.1.51/32"

The third machine, hostc.example.org , is configured to handle failover from either master. This

machine is configured with two CARPVHIDs, one to handle the virtual IP address for each of the

master hosts. The CARP advertising skew, advskew , is set to ensure that the backup host advertises

later than the master, since advskew controls the order of precedence when there are multiple

backup servers.

hostname="hostc.example.org"

ifconfig_em0="inet 192.168.1.5 netmask 255.255.255.0"

ifconfig_em0_alias0="inet vhid 1 advskew 100 pass testpass alias 192.168.1.50/32"

ifconfig_em0_alias1="inet vhid 2 advskew 100 pass testpass alias 192.168.1.51/32"

Having two CARPVHIDs configured means that hostc.example.org will notice if either of the master

servers becomes unavailable. If a master fails to advertise before the backup server, the backup

server will pick up the shared IP address until the master becomes available again.

880

!

If the original master server becomes available again, hostc.example.org will not

release the virtual IP address back to it automatically. For this to happen,

preemption has to be enabled. The feature is disabled by default, it is controlled

via the man:sysctl[8] variable net.inet.carp.preempt . The administrator can force

the backup server to return the IP address to the master:

ifconfig em0 vhid 1 state backup

Once the configuration is complete, either restart networking or reboot each system. High

availability is now enabled.

CARP functionality can be controlled via several man:sysctl[8] variables documented in the

man:carp[4] manual pages. Other actions can be triggered from CARP events by using man:devd[8].

32.10.2. Using CARP on FreeBSD 9 and Earlier

The configuration for these versions of FreeBSD is similar to the one described in the previous

section, except that a CARP device must first be created and referred to in the configuration.

Enable boot-time support for CARP by loading the if_carp.ko kernel module in /boot/loader.conf :

if_carp_load="YES"

To load the module now without rebooting:

kldload carp

For users who prefer to use a custom kernel, include the following line in the custom kernel

configuration file and compile the kernel as described in

crossref:kernelconfig[kernelconfig,Configuring the FreeBSD Kernel]:

device carp

Next, on each host, create a CARP device:

ifconfig carp0 create

Set the hostname, management IP address, the shared IP address, and VHID by adding the required

lines to /etc/rc.conf . Since a virtual CARP device is used instead of an alias, the actual subnet mask

of /24 is used instead of /32 . Here are the entries for hosta.example.org :

881

hostname="hosta.example.org"

ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0"

cloned_interfaces="carp0"

ifconfig_carp0="vhid 1 pass testpass 192.168.1.50/24"

On hostb.example.org :

hostname="hostb.example.org"

ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0"

cloned_interfaces="carp0"

ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24"

The third machine, hostc.example.org , is configured to handle failover from either of the master

hosts:

hostname="hostc.example.org"

ifconfig_fxp0="inet 192.168.1.5 netmask 255.255.255.0"

cloned_interfaces="carp0 carp1"

ifconfig_carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24"

ifconfig_carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24"

!

Preemption is disabled in the GENERIC FreeBSD kernel. If preemption has been

enabled with a custom kernel, hostc.example.org may not release the IP address

back to the original content server. The administrator can force the backup server

to return the IP address to the master with the command:

ifconfig carp0 down && ifconfig carp0 up

This should be done on the carp interface which corresponds to the correct host.

Once the configuration is complete, either restart networking or reboot each system. High

availability is now enabled.

32.11. VLANs

VLANs are a way of virtually dividing up a network into many different subnetworks, also referred

to as segmenting. Each segment will have its own broadcast domain and be isolated from other

VLANs.

On FreeBSD, VLANs must be supported by the network card driver. To see which drivers support

vlans, refer to the man:vlan[4] manual page.

When configuring a VLAN, a couple pieces of information must be known. First, which network

interface? Second, what is the VLAN tag?

882

To configure VLANs at run time, with a NIC of em0 and a VLAN tag of 5 the command would look like

this:

ifconfig em0.5 create vlan 5 vlandev em0 inet 192.168.20.20/24

!

See how the interface name includes the NIC driver name and the VLAN tag,

separated by a period? This is a best practice to make maintaining the VLAN

configuration easy when many VLANs are present on a machine.

To configure VLANs at boot time, /etc/rc.conf must be updated. To duplicate the configuration

above, the following will need to be added:

vlans_em0="5"

ifconfig_em0_5="inet 192.168.20.20/24"

Additional VLANs may be added, by simply adding the tag to the vlans_em0 field and adding an

additional line configuring the network on that VLAN tagÕs interface.

It is useful to assign a symbolic name to an interface so that when the associated hardware is

changed, only a few configuration variables need to be updated. For example, security cameras

need to be run over VLAN 1 on em0 . Later, if the em0 card is replaced with a card that uses the

man:ixgb[4] driver, all references to em0.1 will not have to change to ixgb0.1 .

To configure VLAN 5 , on the NIC em0 , assign the interface name cameras , and assign the interface an

IP address of 192.168.20.20 with a 24 -bit prefix, use this command:

ifconfig em0.5 create vlan 5 vlandev em0 name cameras inet 192.168.20.20/24

For an interface named video , use the following:

ifconfig video.5 create vlan 5 vlandev video name cameras inet 192.168.20.20/24

To apply the changes at boot time, add the following lines to /etc/rc.conf :

vlans_video="cameras"

create_args_cameras="vlan 5"

ifconfig_cameras="inet 192.168.20.20/24"

883

Part V: Appendices

884

Appendix A: Obtaining FreeBSD

A.1. CD and DVD Sets

FreeBSD CD and DVD sets are available from several online retailers:

¥ FreeBSD Mall, Inc.

2420 Sand Creek Rd C-1 #347

Brentwood, CA

94513

USA

Phone: +1 925 240-6652

Fax: +1 925 674-0821

Email: < info@freebsdmall.com >

WWW: https://www.freebsdmall.com

¥ Getlinux

78 Rue de la Croix Rochopt

ƒpinay-sous-SŽnart

91860

France

Email: < contact@getlinux.fr >

WWW: http://www.getlinux.fr/

¥ Dr. Hinner EDV

Kochelseestr. 11

D-81371 MŸnchen

Germany

Phone: (0177) 428 419 0

Email: < infow@hinner.de >

WWW: http://www.hinner.de/linux/freebsd.html

¥ Linux Center

Galernaya Street, 55

Saint-Petersburg

190000

Russia

Phone: +7-812-309-06-86

Email: < info@linuxcenter.ru >

WWW: http://linuxcenter.ru/shop/freebsd

A.2. FTP Sites

The official sources for FreeBSD are available via anonymous FTP from a worldwide set of mirror

sites. The site ftp://ftp.FreeBSD.org/pub/FreeBSD/ is available via HTTP and FTP. It is made up of

many machines operated by the project cluster administrators and behind GeoDNS to direct users

to the closest available mirror.

885

mailto:info@freebsdmall.com
https://www.freebsdmall.com
mailto:contact@getlinux.fr
http://www.getlinux.fr/
mailto:infow@hinner.de
http://www.hinner.de/linux/freebsd.html
mailto:info@linuxcenter.ru
http://linuxcenter.ru/shop/freebsd
ftp://ftp.FreeBSD.org/pub/FreeBSD/

Additionally, FreeBSD is available via anonymous FTP from the following mirror sites. When

obtaining FreeBSD via anonymous FTP, please try to use a nearby site. The mirror sites listed as

"Primary Mirror Sites" typically have the entire FreeBSD archive (all the currently available

versions for each of the architectures) but faster download speeds are probably available from a

site that is in your country or region. The regional sites carry the most recent versions for the most

popular architecture(s) but might not carry the entire FreeBSD archive. All sites provide access via

anonymous FTP but some sites also provide access via other methods. The access methods available

for each site are provided in parentheses after the hostname.

Central Servers , Primary Mirror Sites , Armenia , Australia , Austria , Brazil , Czech Republic , Denmark ,

Estonia , Finland , France , Germany , Greece , Hong Kong , Ireland , Japan , Korea , Latvia , Lithuania ,

Netherlands , New Zealand , Norway , Poland , Russia , Saudi Arabia , Slovenia , South Africa , Spain ,

Sweden , Switzerland , Taiwan , Ukraine , United Kingdom , United States of America .

(as of UTC)

Central Servers

ftp://ftp.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp.FreeBSD.org/pub/FreeBSD/ /

http://ftp.FreeBSD.org/pub/FreeBSD/)

Primary Mirror Sites

In case of problems, please contact the hostmaster < mirror-admin@FreeBSD.org > for this domain.

¥ ftp://ftp1.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp3.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp4.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp4.FreeBSD.org/pub/FreeBSD/ /

http://ftp4.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp5.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp6.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp7.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp10.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp10.FreeBSD.org/pub/FreeBSD/ /

http://ftp10.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp11.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp13.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp14.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp14.FreeBSD.org/pub/FreeBSD/)

Armenia

In case of problems, please contact the hostmaster < hostmaster@am.FreeBSD.org > for this domain.

¥ ftp://ftp1.am.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp1.am.FreeBSD.org/pub/FreeBSD/ / rsync)

Australia

886

ftp://ftp.FreeBSD.org/pub/FreeBSD/
http://ftp.FreeBSD.org/pub/FreeBSD/
http://ftp.FreeBSD.org/pub/FreeBSD/
mailto:mirror-admin@FreeBSD.org
ftp://ftp1.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.FreeBSD.org/pub/FreeBSD/
http://ftp4.FreeBSD.org/pub/FreeBSD/
http://ftp4.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.FreeBSD.org/pub/FreeBSD/
ftp://ftp7.FreeBSD.org/pub/FreeBSD/
ftp://ftp10.FreeBSD.org/pub/FreeBSD/
http://ftp10.FreeBSD.org/pub/FreeBSD/
http://ftp10.FreeBSD.org/pub/FreeBSD/
ftp://ftp11.FreeBSD.org/pub/FreeBSD/
ftp://ftp13.FreeBSD.org/pub/FreeBSD/
ftp://ftp14.FreeBSD.org/pub/FreeBSD/
http://ftp14.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@am.FreeBSD.org
ftp://ftp1.am.FreeBSD.org/pub/FreeBSD/
http://ftp1.am.FreeBSD.org/pub/FreeBSD/

In case of problems, please contact the hostmaster < hostmaster@au.FreeBSD.org > for this domain.

¥ ftp://ftp.au.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.au.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp3.au.FreeBSD.org/pub/FreeBSD/ (ftp)

Austria

In case of problems, please contact the hostmaster < hostmaster@at.FreeBSD.org > for this domain.

¥ ftp://ftp.at.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp.at.FreeBSD.org/pub/FreeBSD/ /

http://ftp.at.FreeBSD.org/pub/FreeBSD/)

Brazil

In case of problems, please contact the hostmaster < hostmaster@br.FreeBSD.org > for this domain.

¥ ftp://ftp2.br.FreeBSD.org/FreeBSD/ (ftp / http://ftp2.br.FreeBSD.org/)

¥ ftp://ftp3.br.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

¥ ftp://ftp4.br.FreeBSD.org/pub/FreeBSD/ (ftp)

Czech Republic

In case of problems, please contact the hostmaster < hostmaster@cz.FreeBSD.org > for this domain.

¥ ftp://ftp.cz.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp.cz.FreeBSD.org/pub/FreeBSD/ /

http://ftp.cz.FreeBSD.org/pub/FreeBSD/ / http://ftp.cz.FreeBSD.org/pub/FreeBSD/ / rsync / rsyncv6)

¥ ftp://ftp2.cz.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.cz.FreeBSD.org/pub/FreeBSD/)

Denmark

In case of problems, please contact the hostmaster < hostmaster@dk.FreeBSD.org > for this domain.

¥ ftp://ftp.dk.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp.dk.FreeBSD.org/pub/FreeBSD/ /

http://ftp.dk.FreeBSD.org/pub/FreeBSD/)

Estonia

In case of problems, please contact the hostmaster < hostmaster@ee.FreeBSD.org > for this domain.

¥ ftp://ftp.ee.FreeBSD.org/pub/FreeBSD/ (ftp)

Finland

In case of problems, please contact the hostmaster < hostmaster@fi.FreeBSD.org > for this domain.

¥ ftp://ftp.fi.FreeBSD.org/pub/FreeBSD/ (ftp)

France

In case of problems, please contact the hostmaster < hostmaster@fr.FreeBSD.org > for this domain.

887

mailto:hostmaster@au.FreeBSD.org
ftp://ftp.au.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.au.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.au.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@at.FreeBSD.org
ftp://ftp.at.FreeBSD.org/pub/FreeBSD/
http://ftp.at.FreeBSD.org/pub/FreeBSD/
http://ftp.at.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@br.FreeBSD.org
ftp://ftp2.br.FreeBSD.org/FreeBSD/
http://ftp2.br.FreeBSD.org/
ftp://ftp3.br.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.br.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@cz.FreeBSD.org
ftp://ftp.cz.FreeBSD.org/pub/FreeBSD/
ftp://ftp.cz.FreeBSD.org/pub/FreeBSD/
http://ftp.cz.FreeBSD.org/pub/FreeBSD/
http://ftp.cz.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.cz.FreeBSD.org/pub/FreeBSD/
http://ftp2.cz.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@dk.FreeBSD.org
ftp://ftp.dk.FreeBSD.org/pub/FreeBSD/
http://ftp.dk.FreeBSD.org/pub/FreeBSD/
http://ftp.dk.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@ee.FreeBSD.org
ftp://ftp.ee.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@fi.FreeBSD.org
ftp://ftp.fi.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@fr.FreeBSD.org

¥ ftp://ftp.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp1.fr.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp1.fr.FreeBSD.org/pub/FreeBSD/ / rsync)

¥ ftp://ftp3.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp6.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp6.fr.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

¥ ftp://ftp7.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp8.fr.FreeBSD.org/pub/FreeBSD/ (ftp)

Germany

In case of problems, please contact the hostmaster < de-bsd-hubs@de.FreeBSD.org > for this domain.

¥ ftp://ftp.de.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp1.de.FreeBSD.org/freebsd/ (ftp / http://www1.de.FreeBSD.org/freebsd/ /

rsync://rsync3.de.FreeBSD.org/freebsd/)

¥ ftp://ftp2.de.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.de.FreeBSD.org/pub/FreeBSD/ / rsync)

¥ ftp://ftp4.de.FreeBSD.org/FreeBSD/ (ftp / http://ftp4.de.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp5.de.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp7.de.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp7.de.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp8.de.FreeBSD.org/pub/FreeBSD/ (ftp)

Greece

In case of problems, please contact the hostmaster < hostmaster@gr.FreeBSD.org > for this domain.

¥ ftp://ftp.gr.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.gr.FreeBSD.org/pub/FreeBSD/ (ftp)

Hong Kong

ftp://ftp.hk.FreeBSD.org/pub/FreeBSD/ (ftp)

Ireland

In case of problems, please contact the hostmaster < hostmaster@ie.FreeBSD.org > for this domain.

¥ ftp://ftp3.ie.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

Japan

In case of problems, please contact the hostmaster < hostmaster@ie.FreeBSD.org > for this domain.

¥ ftp://ftp.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp3.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

888

ftp://ftp.fr.FreeBSD.org/pub/FreeBSD/
ftp://ftp1.fr.FreeBSD.org/pub/FreeBSD/
http://ftp1.fr.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.fr.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.fr.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.fr.FreeBSD.org/pub/FreeBSD/
ftp://ftp7.fr.FreeBSD.org/pub/FreeBSD/
ftp://ftp8.fr.FreeBSD.org/pub/FreeBSD/
mailto:de-bsd-hubs@de.FreeBSD.org
ftp://ftp.de.FreeBSD.org/pub/FreeBSD/
ftp://ftp1.de.FreeBSD.org/freebsd/
http://www1.de.FreeBSD.org/freebsd/
ftp://ftp2.de.FreeBSD.org/pub/FreeBSD/
http://ftp2.de.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.de.FreeBSD.org/FreeBSD/
http://ftp4.de.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.de.FreeBSD.org/pub/FreeBSD/
ftp://ftp7.de.FreeBSD.org/pub/FreeBSD/
http://ftp7.de.FreeBSD.org/pub/FreeBSD/
ftp://ftp8.de.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@gr.FreeBSD.org
ftp://ftp.gr.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.gr.FreeBSD.org/pub/FreeBSD/
ftp://ftp.hk.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@ie.FreeBSD.org
ftp://ftp3.ie.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@ie.FreeBSD.org
ftp://ftp.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.jp.FreeBSD.org/pub/FreeBSD/

¥ ftp://ftp4.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp5.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp6.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp7.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp8.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp9.jp.FreeBSD.org/pub/FreeBSD/ (ftp)

Korea

In case of problems, please contact the hostmaster < hostmaster@kr.FreeBSD.org > for this domain.

¥ ftp://ftp.kr.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

¥ ftp://ftp2.kr.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.kr.FreeBSD.org/pub/FreeBSD/)

Latvia

In case of problems, please contact the hostmaster < hostmaster@lv.FreeBSD.org > for this domain.

¥ ftp://ftp.lv.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.lv.FreeBSD.org/pub/FreeBSD/)

Lithuania

In case of problems, please contact the hostmaster < hostmaster@lt.FreeBSD.org > for this domain.

¥ ftp://ftp.lt.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.lt.FreeBSD.org/pub/FreeBSD/)

Netherlands

In case of problems, please contact the hostmaster < hostmaster@nl.FreeBSD.org > for this domain.

¥ ftp://ftp.nl.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.nl.FreeBSD.org/os/FreeBSD/ / rsync)

¥ ftp://ftp2.nl.FreeBSD.org/pub/FreeBSD/ (ftp)

New Zealand

¥ ftp://ftp.nz.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.nz.FreeBSD.org/pub/FreeBSD/)

Norway

In case of problems, please contact the hostmaster < hostmaster@no.FreeBSD.org > for this domain.

¥ ftp://ftp.no.FreeBSD.org/pub/FreeBSD/ (ftp / rsync)

Poland

In case of problems, please contact the hostmaster < hostmaster@pl.FreeBSD.org > for this domain.

¥ ftp://ftp.pl.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp2.pl.FreeBSD.org

889

ftp://ftp4.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp7.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp8.jp.FreeBSD.org/pub/FreeBSD/
ftp://ftp9.jp.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@kr.FreeBSD.org
ftp://ftp.kr.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.kr.FreeBSD.org/pub/FreeBSD/
http://ftp2.kr.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@lv.FreeBSD.org
ftp://ftp.lv.FreeBSD.org/pub/FreeBSD/
http://ftp.lv.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@lt.FreeBSD.org
ftp://ftp.lt.FreeBSD.org/pub/FreeBSD/
http://ftp.lt.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@nl.FreeBSD.org
ftp://ftp.nl.FreeBSD.org/pub/FreeBSD/
http://ftp.nl.FreeBSD.org/os/FreeBSD/
ftp://ftp2.nl.FreeBSD.org/pub/FreeBSD/
ftp://ftp.nz.FreeBSD.org/pub/FreeBSD/
http://ftp.nz.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@no.FreeBSD.org
ftp://ftp.no.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@pl.FreeBSD.org
ftp://ftp.pl.FreeBSD.org/pub/FreeBSD/

Russia

In case of problems, please contact the hostmaster < hostmaster@ru.FreeBSD.org > for this domain.

¥ ftp://ftp.ru.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.ru.FreeBSD.org/FreeBSD/ / rsync)

¥ ftp://ftp2.ru.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp2.ru.FreeBSD.org/pub/FreeBSD/ / rsync)

¥ ftp://ftp4.ru.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp5.ru.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp5.ru.FreeBSD.org/pub/FreeBSD/ / rsync)

¥ ftp://ftp6.ru.FreeBSD.org/pub/FreeBSD/ (ftp)

Saudi Arabia

In case of problems, please contact the hostmaster < ftpadmin@isu.net.sa > for this domain.

¥ ftp://ftp.isu.net.sa/pub/ftp.freebsd.org (ftp)

Slovenia

In case of problems, please contact the hostmaster < hostmaster@si.FreeBSD.org > for this domain.

¥ ftp://ftp.si.FreeBSD.org/pub/FreeBSD/ (ftp)

South Africa

In case of problems, please contact the hostmaster < hostmaster@za.FreeBSD.org > for this domain.

¥ ftp://ftp.za.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.za.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp4.za.FreeBSD.org/pub/FreeBSD/ (ftp)

Spain

In case of problems, please contact the hostmaster < hostmaster@es.FreeBSD.org > for this domain.

¥ ftp://ftp.es.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.es.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp3.es.FreeBSD.org/pub/FreeBSD/ (ftp)

Sweden

In case of problems, please contact the hostmaster < hostmaster@se.FreeBSD.org > for this domain.

¥ ftp://ftp.se.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.se.FreeBSD.org/pub/FreeBSD/ (ftp / rsync://ftp2.se.FreeBSD.org/)

¥ ftp://ftp3.se.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/ /

http://ftp4.se.FreeBSD.org/pub/FreeBSD/ / http://ftp4.se.FreeBSD.org/pub/FreeBSD/ /

rsync://ftp4.se.FreeBSD.org/pub/FreeBSD/ / rsync://ftp4.se.FreeBSD.org/pub/FreeBSD/)

890

mailto:hostmaster@ru.FreeBSD.org
ftp://ftp.ru.FreeBSD.org/pub/FreeBSD/
http://ftp.ru.FreeBSD.org/FreeBSD/
ftp://ftp2.ru.FreeBSD.org/pub/FreeBSD/
http://ftp2.ru.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.ru.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.ru.FreeBSD.org/pub/FreeBSD/
http://ftp5.ru.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.ru.FreeBSD.org/pub/FreeBSD/
mailto:ftpadmin@isu.net.sa
ftp://ftp.isu.net.sa/pub/ftp.freebsd.org
mailto:hostmaster@si.FreeBSD.org
ftp://ftp.si.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@za.FreeBSD.org
ftp://ftp.za.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.za.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.za.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@es.FreeBSD.org
ftp://ftp.es.FreeBSD.org/pub/FreeBSD/
http://ftp.es.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.es.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@se.FreeBSD.org
ftp://ftp.se.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.se.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.se.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/
http://ftp4.se.FreeBSD.org/pub/FreeBSD/
http://ftp4.se.FreeBSD.org/pub/FreeBSD/

¥ ftp://ftp6.se.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp6.se.FreeBSD.org/pub/FreeBSD/)

Switzerland

In case of problems, please contact the hostmaster < hostmaster@ch.FreeBSD.org > for this domain.

¥ ftp://ftp.ch.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.ch.FreeBSD.org/pub/FreeBSD/)

Taiwan

In case of problems, please contact the hostmaster < hostmaster@tw.FreeBSD.org > for this domain.

¥ ftp://ftp.ch.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp.tw.FreeBSD.org/pub/FreeBSD/ / rsync /

rsyncv6)

¥ ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/ (ftp / ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/ /

http://ftp2.tw.FreeBSD.org/pub/FreeBSD/ / http://ftp2.tw.FreeBSD.org/pub/FreeBSD/ / rsync /

rsyncv6)

¥ ftp://ftp4.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp5.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp6.tw.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp6.tw.FreeBSD.org/ / rsync)

¥ ftp://ftp7.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp8.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp11.tw.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp11.tw.FreeBSD.org/FreeBSD/)

¥ ftp://ftp12.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp13.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp14.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp15.tw.FreeBSD.org/pub/FreeBSD/ (ftp)

Ukraine

¥ ftp://ftp.ua.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp.ua.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp6.ua.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp6.ua.FreeBSD.org/pub/FreeBSD /

rsync://ftp6.ua.FreeBSD.org/FreeBSD/)

¥ ftp://ftp7.ua.FreeBSD.org/pub/FreeBSD/ (ftp)

United Kingdom

In case of problems, please contact the hostmaster < hostmaster@uk.FreeBSD.org > for this domain.

¥ ftp://ftp.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.uk.FreeBSD.org/pub/FreeBSD/ (ftp /

rsync://ftp2.uk.FreeBSD.org/ftp.freebsd.org/pub/FreeBSD/)

¥ ftp://ftp3.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp4.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

891

ftp://ftp6.se.FreeBSD.org/pub/FreeBSD/
http://ftp6.se.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@ch.FreeBSD.org
ftp://ftp.ch.FreeBSD.org/pub/FreeBSD/
http://ftp.ch.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@tw.FreeBSD.org
ftp://ftp.ch.FreeBSD.org/pub/FreeBSD/
ftp://ftp.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/
http://ftp2.tw.FreeBSD.org/pub/FreeBSD/
http://ftp2.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.tw.FreeBSD.org/pub/FreeBSD/
http://ftp6.tw.FreeBSD.org/
ftp://ftp7.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp8.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp11.tw.FreeBSD.org/pub/FreeBSD/
http://ftp11.tw.FreeBSD.org/FreeBSD/
ftp://ftp12.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp13.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp14.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp15.tw.FreeBSD.org/pub/FreeBSD/
ftp://ftp.ua.FreeBSD.org/pub/FreeBSD/
http://ftp.ua.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.ua.FreeBSD.org/pub/FreeBSD/
http://ftp6.ua.FreeBSD.org/pub/FreeBSD
ftp://ftp7.ua.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@uk.FreeBSD.org
ftp://ftp.uk.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.uk.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.uk.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.uk.FreeBSD.org/pub/FreeBSD/

¥ ftp://ftp5.uk.FreeBSD.org/pub/FreeBSD/ (ftp)

United States of America

In case of problems, please contact the hostmaster < hostmaster@us.FreeBSD.org > for this domain.

¥ ftp://ftp1.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp2.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp3.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp4.us.FreeBSD.org/pub/FreeBSD/ (ftp / ftpv6 / http://ftp4.us.FreeBSD.org/pub/FreeBSD/ /

http://ftp4.us.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp5.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp6.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp8.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp10.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp11.us.FreeBSD.org/pub/FreeBSD/ (ftp)

¥ ftp://ftp13.us.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp13.us.FreeBSD.org/pub/FreeBSD/ / rsync)

¥ ftp://ftp14.us.FreeBSD.org/pub/FreeBSD/ (ftp / http://ftp14.us.FreeBSD.org/pub/FreeBSD/)

¥ ftp://ftp15.us.FreeBSD.org/pub/FreeBSD/ (ftp)

A.3. Using Subversion

A.3.1. Introduction

As of July 2012, FreeBSD uses Subversion as the only version control system for storing all of

FreeBSDÕs source code, documentation, and the Ports Collection.

!

Subversion is generally a developer tool. Users may prefer to use freebsd-update

(crossref:cutting-edge[updating-upgrading-freebsdupdate,ÒFreeBSD UpdateÓ]) to

update the FreeBSD base system, and portsnap (crossref:ports[ports-using,ÒUsing

the Ports CollectionÓ]) to update the FreeBSD Ports Collection.

This section demonstrates how to install Subversion on a FreeBSD system and use it to create a

local copy of a FreeBSD repository. Additional information on the use of Subversion is included.

A.3.2. Root SSL Certificates

Installing package:security/ca_root_nss[] allows Subversion to verify the identity of HTTPS

repository servers. The root SSL certificates can be installed from a port:

cd /usr/ports/security/ca_root_nss

make install clean

892

ftp://ftp5.uk.FreeBSD.org/pub/FreeBSD/
mailto:hostmaster@us.FreeBSD.org
ftp://ftp1.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp4.us.FreeBSD.org/pub/FreeBSD/
http://ftp4.us.FreeBSD.org/pub/FreeBSD/
http://ftp4.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp6.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp8.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp10.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp11.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp13.us.FreeBSD.org/pub/FreeBSD/
http://ftp13.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp14.us.FreeBSD.org/pub/FreeBSD/
http://ftp14.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp15.us.FreeBSD.org/pub/FreeBSD/

or as a package:

pkg install ca_root_nss

A.3.3. Svnlite

A lightweight version of Subversion is already installed on FreeBSD as svnlite . The port or package

version of Subversion is only needed if the Python or Perl API is needed, or if a later version of

Subversion is desired.

The only difference from normal Subversion use is that the command name is svnlite .

A.3.4. Installation

If svnlite is unavailable or the full version of Subversion is needed, then it must be installed.

Subversion can be installed from the Ports Collection:

cd /usr/ports/devel/subversion

make install clean

Subversion can also be installed as a package:

pkg install subversion

A.3.5. Running Subversion

To fetch a clean copy of the sources into a local directory, use svn . The files in this directory are

called a local working copy .

"

Move or delete an existing destination directory before using checkout for the first

time.

Checkout over an existing non- svn directory can cause conflicts between the

existing files and those brought in from the repository.

Subversion uses URLs to designate a repository, taking the form of protocol://hostname/path . The

first component of the path is the FreeBSD repository to access. There are three different

repositories, base for the FreeBSD base system source code, ports for the Ports Collection, and doc

for documentation. For example, the URL https://svn.FreeBSD.org/ports/head/ specifies the main

branch of the ports repository, using the https protocol.

A checkout from a given repository is performed with a command like this:

svn checkout https://svn.FreeBSD.org/repository/branch lwcdir

893

https://svn.FreeBSD.org/ports/head/

where:

¥ repository is one of the Project repositories: base , ports , or doc .

¥ branch depends on the repository used. ports and doc are mostly updated in the head branch,

while base maintains the latest version of -CURRENT under head and the respective latest

versions of the -STABLE branches under stable/9 (9. x) and stable/10 (10. x).

¥ lwcdir is the target directory where the contents of the specified branch should be placed. This

is usually /usr/ports for ports , /usr/src for base , and /usr/doc for doc .

This example checks out the Ports Collection from the FreeBSD repository using the HTTPS

protocol, placing the local working copy in /usr/ports . If /usr/ports is already present but was not

created by svn , remember to rename or delete it before the checkout.

svn checkout https://svn.FreeBSD.org/ports/head /usr/ports

Because the initial checkout must download the full branch of the remote repository, it can take a

while. Please be patient.

After the initial checkout, the local working copy can be updated by running:

svn update lwcdir

To update /usr/ports created in the example above, use:

svn update /usr/ports

The update is much quicker than a checkout, only transferring files that have changed.

An alternate way of updating the local working copy after checkout is provided by the Makefile in

the /usr/ports , /usr/src , and /usr/doc directories. Set SVN_UPDATE and use the update target. For

example, to update /usr/src :

cd /usr/src

make update SVN_UPDATE=yes

A.3.6. Subversion Mirror Sites

The FreeBSD Subversion repository is:

svn.FreeBSD.org

This is a publicly accessible mirror network that uses GeoDNS to select an appropriate back end

server. To view the FreeBSD Subversion repositories through a browser, use

894

https://svnweb.FreeBSD.org/ .

HTTPS is the preferred protocol, but the security/ca_root_nss package will need to be installed in

order to automatically validate certificates.

A.3.7. For More Information

For other information about using Subversion, please see the "Subversion Book", titled Version

Control with Subversion , or the Subversion Documentation .

A.4. Using rsync

These sites make FreeBSD available through the rsync protocol. The rsync utility transfers only the

differences between two sets of files. This is useful for mirror sites of the FreeBSD FTP server. The

rsync suite is available for many operating systems, on FreeBSD, see the package:net/rsync[] port or

use the package.

Czech Republic

rsync://ftp.cz.FreeBSD.org/

Available collections:

¥ ftp: A partial mirror of the FreeBSD FTP server.

¥ FreeBSD: A full mirror of the FreeBSD FTP server.

Netherlands

rsync://ftp.nl.FreeBSD.org/

Available collections:

¥ FreeBSD: A full mirror of the FreeBSD FTP server.

Russia

rsync://ftp.mtu.ru/

Available collections:

¥ FreeBSD: A full mirror of the FreeBSD FTP server.

¥ FreeBSD-Archive: The mirror of FreeBSD Archive FTP server.

Sweden

rsync://ftp4.se.freebsd.org/

Available collections:

¥ FreeBSD: A full mirror of the FreeBSD FTP server.

Taiwan

rsync://ftp.tw.FreeBSD.org/

895

https://svnweb.FreeBSD.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://subversion.apache.org/docs/

rsync://ftp2.tw.FreeBSD.org/

rsync://ftp6.tw.FreeBSD.org/

Available collections:

¥ FreeBSD: A full mirror of the FreeBSD FTP server.

United Kingdom

rsync://rsync.mirrorservice.org/

Available collections:

¥ ftp.freebsd.org: A full mirror of the FreeBSD FTP server.

United States of America

rsync://ftp-master.FreeBSD.org/

This server may only be used by FreeBSD primary mirror sites.

Available collections:

¥ FreeBSD: The master archive of the FreeBSD FTP server.

¥ acl: The FreeBSD master ACL list.

rsync://ftp13.FreeBSD.org/

Available collections:

¥ FreeBSD: A full mirror of the FreeBSD FTP server.

896

Appendix B: Bibliography

While manual pages provide a definitive reference for individual pieces of the FreeBSD operating

system, they seldom illustrate how to put the pieces together to make the whole operating system

run smoothly. For this, there is no substitute for a good book or users' manual on UNIX¨ system

administration.

B.1. Books Specific to FreeBSD

International books:

¥ Using FreeBSD (in Traditional Chinese), published by Drmaster , 1997. ISBN 9-578-39435-7.

¥ FreeBSD Unleashed (Simplified Chinese translation), published by China Machine Press . ISBN 7-

111-10201-0.

¥ FreeBSD From Scratch Second Edition (in Simplified Chinese), published by China Machine

Press. ISBN 7-111-10286-X.

¥ FreeBSD Handbook Second Edition (Simplified Chinese translation), published by Posts &

Telecom Press . ISBN 7-115-10541-3.

¥ FreeBSD & Windows (in Simplified Chinese), published by China Railway Publishing House .

ISBN 7-113-03845-X

¥ FreeBSD Internet Services HOWTO (in Simplified Chinese), published by China Railway

Publishing House. ISBN 7-113-03423-3

¥ FreeBSD (in Japanese), published by CUTT. ISBN 4-906391-22-2 C3055 P2400E.

¥ Complete Introduction to FreeBSD (in Japanese), published by Shoeisha Co., Ltd . ISBN 4-88135-

473-6 P3600E.

¥ Personal UNIX Starter Kit FreeBSD (in Japanese), published by ASCII . ISBN 4-7561-1733-3

P3000E.

¥ FreeBSD Handbook (Japanese translation), published by ASCII . ISBN 4-7561-1580-2 P3800E.

¥ FreeBSD mit Methode (in German), published by Computer und Literatur Verlag /Vertrieb

Hanser, 1998. ISBN 3-932311-31-0.

¥ FreeBSD de Luxe (in German), published by Verlag Modere Industrie , 2003. ISBN 3-8266-1343-0.

¥ FreeBSD Install and Utilization Manual (in Japanese), published by Mainichi Communications

Inc. , 1998. ISBN 4-8399-0112-0.

¥ Onno W Purbo, Dodi Maryanto, Syahrial Hubbany, Widjil Widodo Building Internet Server with

FreeBSD (in Indonesia Language), published by Elex Media Komputindo .

¥ Absolute BSD: The Ultimate Guide to FreeBSD (Traditional Chinese translation), published by

GrandTech Press , 2003. ISBN 986-7944-92-5.

¥ The FreeBSD 6.0 Book (in Traditional Chinese), published by Drmaster, 2006. ISBN 9-575-27878-

X.

English language books:

897

http://jdli.tw.FreeBSD.org/publication/book/freebsd2/index.htm
http://www.drmaster.com.tw/
http://www.hzbook.com/
http://www.ptpress.com.cn/
http://www.ptpress.com.cn/
http://www.tdpress.com/
http://www.shoeisha.com/book/Detail.asp?bid=650
http://www.shoeisha.co.jp/
http://www.ascii.co.jp/pb/book1/shinkan/detail/1322785.html
http://www.ascii.co.jp/
http://www.ascii.co.jp/
http://www.cul.de
http://www.mitp.de/vmi/mitp/detail/pWert/1343/
http://www.mitp.de
http://www.pc.mycom.co.jp/FreeBSD/install-manual.html
http://www.pc.mycom.co.jp/
http://www.pc.mycom.co.jp/
http://maxwell.itb.ac.id/
http://maxwell.itb.ac.id/
http://www.elexmedia.co.id/
http://www.grandtech.com.tw/
http://www.twbsd.org/cht/book/

¥ Absolute FreeBSD, 2nd Edition: The Complete Guide to FreeBSD , published by No Starch Press ,

2007. ISBN: 978-1-59327-151-0

¥ The Complete FreeBSD , published by OÕReilly , 2003. ISBN: 0596005164

¥ The FreeBSD Corporate NetworkerÕs Guide , published by Addison-Wesley , 2000. ISBN:

0201704811

¥ FreeBSD: An Open-Source Operating System for Your Personal Computer , published by The Bit

Tree Press, 2001. ISBN: 0971204500

¥ Teach Yourself FreeBSD in 24 Hours, published by Sams , 2002. ISBN: 0672324245

¥ FreeBSD 6 Unleashed, published by Sams , 2006. ISBN: 0672328755

¥ FreeBSD: The Complete Reference, published by McGrawHill , 2003. ISBN: 0072224096

B.2. Users' Guides

¥ Ohio State University has written a UNIX Introductory Course which is available online in

HTML and PostScript format.

An Italian translation of this document is available as part of the FreeBSD Italian

Documentation Project.

¥ Jpman Project, Japan FreeBSD Users Group . FreeBSD UserÕs Reference Manual (Japanese

translation). Mainichi Communications Inc. , 1998. ISBN4-8399-0088-4 P3800E.

¥ Edinburgh University has written an Online Guide for newcomers to the UNIX environment.

B.3. Administrators' Guides

¥ Jpman Project, Japan FreeBSD Users Group . FreeBSD System AdministratorÕs Manual (Japanese

translation). Mainichi Communications Inc. , 1998. ISBN4-8399-0109-0 P3300E.

¥ Dreyfus, Emmanuel. Cahiers de lÕAdmin: BSD 2nd Ed. (in French), Eyrolles, 2004. ISBN 2-212-

11463-X

B.4. Programmers' Guides

¥ Computer Systems Research Group, UC Berkeley. 4.4BSD ProgrammerÕs Reference Manual .

OÕReilly & Associates, Inc., 1994. ISBN 1-56592-078-3

¥ Computer Systems Research Group, UC Berkeley. 4.4BSD ProgrammerÕs Supplementary

Documents . OÕReilly & Associates, Inc., 1994. ISBN 1-56592-079-1

¥ Harbison, Samuel P. and Steele, Guy L. Jr. C: A Reference Manual . 4th Ed. Prentice Hall, 1995.

ISBN 0-13-326224-3

¥ Kernighan, Brian and Dennis M. Ritchie. The C Programming Language . 2nd Ed. PTR Prentice

Hall, 1988. ISBN 0-13-110362-8

¥ Lehey, Greg. Porting UNIX Software . OÕReilly & Associates, Inc., 1995. ISBN 1-56592-126-7

¥ Plauger, P. J. The Standard C Library . Prentice Hall, 1992. ISBN 0-13-131509-9

898

http://www.absoluteFreeBSD.com/
http://www.nostarch.com/
http://www.freebsdmall.com/cgi-bin/fm/bsdcomp
http://www.oreilly.com/
http://www.freebsd-corp-net-guide.com/
http://www.awl.com/aw/
http://andrsn.stanford.edu/FreeBSD/introbook/
http://www.samspublishing.com/
http://www.samspublishing.com/
http://books.mcgraw-hill.com
http://www.cs.duke.edu/csl/docs/unix_course/
https://www.FreeBSD.org/doc/it_IT.ISO8859-15/books/unix-introduction/
http://www.jp.FreeBSD.org/
http://www.pc.mycom.co.jp/
http://www.ed.ac.uk/
http://www.ed.ac.uk/information-services/help-consultancy/is-skills/catalogue/program-op-sys-catalogue/unix1
http://www.jp.FreeBSD.org/
http://www.pc.mycom.co.jp/
http://www.eyrolles.com/Informatique/Livre/9782212114638/

¥ Spinellis, Diomidis. Code Reading: The Open Source Perspective . Addison-Wesley, 2003. ISBN 0-

201-79940-5

¥ Spinellis, Diomidis. Code Quality: The Open Source Perspective . Addison-Wesley, 2006. ISBN 0-

321-16607-8

¥ Stevens, W. Richard and Stephen A. Rago. Advanced Programming in the UNIX Environment . 2nd

Ed. Reading, Mass. : Addison-Wesley, 2005. ISBN 0-201-43307-9

¥ Stevens, W. Richard. UNIX Network Programming . 2nd Ed, PTR Prentice Hall, 1998. ISBN 0-13-

490012-X

B.5. Operating System Internals

¥ Andleigh, Prabhat K. UNIX System Architecture . Prentice-Hall, Inc., 1990. ISBN 0-13-949843-5

¥ Jolitz, William. "Porting UNIX to the 386". Dr. DobbÕs Journal . January 1991-July 1992.

¥ Leffler, Samuel J., Marshall Kirk McKusick, Michael J Karels and John Quarterman The Design

and Implementation of the 4.3BSD UNIX Operating System . Reading, Mass. : Addison-Wesley,

1989. ISBN 0-201-06196-1

¥ Leffler, Samuel J., Marshall Kirk McKusick, The Design and Implementation of the 4.3BSD UNIX

Operating System: Answer Book . Reading, Mass. : Addison-Wesley, 1991. ISBN 0-201-54629-9

¥ McKusick, Marshall Kirk, Keith Bostic, Michael J Karels, and John Quarterman. The Design and

Implementation of the 4.4BSD Operating System . Reading, Mass. : Addison-Wesley, 1996. ISBN 0-

201-54979-4

(Chapter 2 of this book is available online as part of the FreeBSD Documentation Project.)

¥ Marshall Kirk McKusick, George V. Neville-Neil The Design and Implementation of the FreeBSD

Operating System . Boston, Mass. : Addison-Wesley, 2004. ISBN 0-201-70245-2

¥ Marshall Kirk McKusick, George V. Neville-Neil, Robert N. M. Watson The Design and

Implementation of the FreeBSD Operating System, 2nd Ed. . Westford, Mass. : Pearson Education,

Inc., 2014. ISBN 0-321-96897-2

¥ Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols . Reading, Mass. : Addison-

Wesley, 1996. ISBN 0-201-63346-9

¥ Schimmel, Curt. Unix Systems for Modern Architectures . Reading, Mass. : Addison-Wesley, 1994.

ISBN 0-201-63338-8

¥ Stevens, W. Richard. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP and the

UNIX Domain Protocols . Reading, Mass. : Addison-Wesley, 1996. ISBN 0-201-63495-3

¥ Vahalia, Uresh. UNIX Internals!Ñ!The New Frontiers . Prentice Hall, 1996. ISBN 0-13-101908-2

¥ Wright, Gary R. and W. Richard Stevens. TCP/IP Illustrated, Volume 2: The Implementation .

Reading, Mass. : Addison-Wesley, 1995. ISBN 0-201-63354-X

B.6. Security Reference

¥ Cheswick, William R. and Steven M. Bellovin. Firewalls and Internet Security: Repelling the Wily

899

http://www.spinellis.gr/codereading/
http://www.spinellis.gr/codequality/
https://docs.freebsd.org/en/books/design-44bsd/

Hacker . Reading, Mass. : Addison-Wesley, 1995. ISBN 0-201-63357-4

¥ Garfinkel, Simson. PGP Pretty Good Privacy OÕReilly & Associates, Inc., 1995. ISBN 1-56592-098-8

B.7. Hardware Reference

¥ Anderson, Don and Tom Shanley. Pentium Processor System Architecture . 2nd Ed. Reading, Mass.

: Addison-Wesley, 1995. ISBN 0-201-40992-5

¥ Ferraro, Richard F. ProgrammerÕs Guide to the EGA, VGA, and Super VGA Cards . 3rd ed. Reading,

Mass. : Addison-Wesley, 1995. ISBN 0-201-62490-7

¥ Intel Corporation publishes documentation on their CPUs, chipsets and standards on their

developer web site , usually as PDF files.

¥ Shanley, Tom. 80486 System Architecture . 3rd Ed. Reading, Mass. : Addison-Wesley, 1995. ISBN 0-

201-40994-1

¥ Shanley, Tom. ISA System Architecture . 3rd Ed. Reading, Mass. : Addison-Wesley, 1995. ISBN 0-

201-40996-8

¥ Shanley, Tom. PCI System Architecture . 4th Ed. Reading, Mass. : Addison-Wesley, 1999. ISBN 0-

201-30974-2

¥ Van Gilluwe, Frank. The Undocumented PC , 2nd Ed. Reading, Mass: Addison-Wesley Pub. Co.,

1996. ISBN 0-201-47950-8

¥ Messmer, Hans-Peter. The Indispensable PC Hardware Book , 4th Ed. Reading, Mass : Addison-

Wesley Pub. Co., 2002. ISBN 0-201-59616-4

B.8. UNIX¨ History

¥ Lion, John LionÕs Commentary on UNIX, 6th Ed. With Source Code . ITP Media Group, 1996. ISBN

1573980137

¥ Raymond, Eric S. The New HackerÕs Dictionary, 3rd edition . MIT Press, 1996. ISBN 0-262-68092-0.

Also known as the Jargon File

¥ Salus, Peter H. A quarter century of UNIX . Addison-Wesley Publishing Company, Inc., 1994. ISBN

0-201-54777-5

¥ Simon Garfinkel, Daniel Weise, Steven Strassmann. The UNIX-HATERS Handbook . IDG Books

Worldwide, Inc., 1994. ISBN 1-56884-203-1. Out of print, but available online .

¥ Don Libes, Sandy Ressler Life with UNIX - special edition. Prentice-Hall, Inc., 1989. ISBN 0-13-

536657-7

¥ The BSD family tree . https://svnweb.freebsd.org/base/head/shared/misc/bsd-family-tree?view=co

or /usr/shared/misc/bsd-family-tree on a FreeBSD machine.

¥ Networked Computer Science Technical Reports Library .

¥ Old BSD releases from the Computer Systems Research group (CSRG) .

http://www.mckusick.com/csrg/ : The 4CD set covers all BSD versions from 1BSD to 4.4BSD and

4.4BSD-Lite2 (but not 2.11BSD, unfortunately). The last disk also holds the final sources plus the

SCCS files.

900

http://developer.intel.com/
http://www.catb.org/~esr/jargon/html/index.html
http://www.simson.net/ref/ugh.pdf
https://svnweb.freebsd.org/base/head/shared/misc/bsd-family-tree?view=co
file://localhost/usr/shared/misc/bsd-family-tree
http://www.mckusick.com/csrg/

¥ Kernighan, Brian Unix: A History and a Memoir . Kindle Direct Publishing, 2020. ISBN 978-

169597855-3

B.9. Periodicals, Journals, and Magazines

¥ Admin Magazin (in German), published by Medialinx AG. ISSN: 2190-1066

¥ BSD Magazine , published by Software Press Sp. z o.o. SK. ISSN: 1898-9144

¥ BSD Now - Video Podcast , published by Jupiter Broadcasting LLC

¥ BSD Talk Podcast , by Will Backman

¥ FreeBSD Journal , published by S&W Publishing, sponsored by The FreeBSD Foundation. ISBN:

978-0-615-88479-0

901

http://www.admin-magazin.de/
http://www.bsdmag.org/
http://www.bsdnow.tv/
http://bsdtalk.blogspot.com/
http://freebsdjournal.com/

Appendix C: Resources on the Internet

The rapid pace of FreeBSD progress makes print media impractical as a means of following the

latest developments. Electronic resources are the best, if not often the only, way to stay informed of

the latest advances. Since FreeBSD is a volunteer effort, the user community itself also generally

serves as a "technical support department" of sorts, with electronic mail, web forums, and USENET

news being the most effective way of reaching that community.

The most important points of contact with the FreeBSD user community are outlined below. Please

send other resources not mentioned here to the FreeBSD documentation project mailing list so that

they may also be included.

C.1. Websites

¥ The FreeBSD Forums provide a web based discussion forum for FreeBSD questions and

technical discussion.

¥ The BSDConferences YouTube Channel provides a collection of high quality videos from BSD

conferences around the world. This is a great way to watch key developers give presentations

about new work in FreeBSD.

C.2. Mailing Lists

The mailing lists are the most direct way of addressing questions or opening a technical discussion

to a concentrated FreeBSD audience. There are a wide variety of lists on a number of different

FreeBSD topics. Sending questions to the most appropriate mailing list will invariably assure a

faster and more accurate response.

The charters for the various lists are given at the bottom of this document. Please read the charter

before joining or sending mail to any list . Most list subscribers receive many hundreds of FreeBSD

related messages every day, and the charters and rules for use are meant to keep the signal-to-noise

ratio of the lists high. To do less would see the mailing lists ultimately fail as an effective

communications medium for the Project.

!

To test the ability to send email to FreeBSD lists, send a test message to FreeBSD test

mailing list . Please do not send test messages to any other list.

When in doubt about what list to post a question to, see How to get best results from the FreeBSD-

questions mailing list .

Before posting to any list, please learn about how to best use the mailing lists, such as how to help

avoid frequently-repeated discussions, by reading the Mailing List Frequently Asked Questions

(FAQ) document.

Archives are kept for all of the mailing lists and can be searched using the FreeBSD World Wide

Web server . The keyword searchable archive offers an excellent way of finding answers to

frequently asked questions and should be consulted before posting a question. Note that this also

means that messages sent to FreeBSD mailing lists are archived in perpetuity. When protecting

902

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
https://forums.FreeBSD.org/
http://www.youtube.com/bsdconferences
http://lists.FreeBSD.org/mailman/listinfo/freebsd-test
http://lists.FreeBSD.org/mailman/listinfo/freebsd-test
https://docs.freebsd.org/en/articles/freebsd-questions/
https://docs.freebsd.org/en/articles/freebsd-questions/
https://docs.freebsd.org/en/articles/mailing-list-faq/
https://www.FreeBSD.org/search/
https://www.FreeBSD.org/search/

privacy is a concern, consider using a disposable secondary email address and posting only public

information.

C.2.1. List Summary

General lists: The following are general lists which anyone is free (and encouraged) to join:

List Purpose

freebsd-advocacy FreeBSD Evangelism

freebsd-announce Important events and Project milestones (moderated)

freebsd-arch Architecture and design discussions

freebsd-

bugbusters

Discussions pertaining to the maintenance of the FreeBSD problem report

database and related tools

freebsd-bugs Bug reports

freebsd-chat Non-technical items related to the FreeBSD community

freebsd-chromium FreeBSD-specific Chromium issues

freebsd-current Discussion concerning the use of FreeBSD-CURRENT

freebsd-isp Issues for Internet Service Providers using FreeBSD

freebsd-jobs FreeBSD employment and consulting opportunities

freebsd-quarterly-

calls

Calls for quarterly status reports (moderated)

freebsd-questions User questions and technical support

freebsd-security-

notifications

Security notifications (moderated)

freebsd-stable Discussion concerning the use of FreeBSD-STABLE

freebsd-test Where to send test messages instead of to one of the actual lists

freebsd-women FreeBSD advocacy for women

Technical lists: The following lists are for technical discussion. Read the charter for each list

carefully before joining or sending mail to one as there are firm guidelines for their use and

content.

List Purpose

freebsd-acpi ACPI and power management development

freebsd-amd64 Porting FreeBSD to AMD64 systems (moderated)

freebsd-apache Discussion about Apache related ports

freebsd-arm Porting FreeBSD to ARM¨ processors

freebsd-atm Using ATM networking with FreeBSD

freebsd-bluetooth Using Bluetooth¨ technology in FreeBSD

903

http://lists.FreeBSD.org/mailman/listinfo/freebsd-advocacy
http://lists.FreeBSD.org/mailman/listinfo/freebsd-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-arch
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugbusters
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugbusters
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-chat
http://lists.FreeBSD.org/mailman/listinfo/freebsd-chromium
http://lists.FreeBSD.org/mailman/listinfo/freebsd-current
http://lists.FreeBSD.org/mailman/listinfo/freebsd-isp
http://lists.FreeBSD.org/mailman/listinfo/freebsd-jobs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-quarterly-calls
http://lists.FreeBSD.org/mailman/listinfo/freebsd-quarterly-calls
http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security-notifications
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security-notifications
http://lists.FreeBSD.org/mailman/listinfo/freebsd-stable
http://lists.FreeBSD.org/mailman/listinfo/freebsd-test
http://lists.FreeBSD.org/mailman/listinfo/freebsd-women
http://lists.FreeBSD.org/mailman/listinfo/freebsd-acpi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-amd64
http://lists.FreeBSD.org/mailman/listinfo/freebsd-apache
http://lists.FreeBSD.org/mailman/listinfo/freebsd-arm
http://lists.FreeBSD.org/mailman/listinfo/freebsd-atm
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bluetooth

List Purpose

freebsd-cloud FreeBSD on cloud platforms (EC2, GCE, Azure, etc.)

freebsd-cluster Using FreeBSD in a clustered environment

freebsd-database Discussing database use and development under FreeBSD

freebsd-desktop Using and improving FreeBSD on the desktop

dev-ci Build and test reports from the Continuous Integration servers

dev-reviews Notifications of the FreeBSD review system

freebsd-doc Creating FreeBSD related documents

freebsd-drivers Writing device drivers for FreeBSD

freebsd-dtrace Using and working on DTrace in FreeBSD

freebsd-eclipse FreeBSD users of Eclipse IDE, tools, rich client applications and ports.

freebsd-elastic FreeBSD-specific ElasticSearch discussions

freebsd-embedded Using FreeBSD in embedded applications

freebsd-eol Peer support of FreeBSD-related software that is no longer supported by the

FreeBSD Project.

freebsd-emulation Emulation of other systems such as Linux/MS-DOS¨/Windows¨

freebsd-

enlightenment

Porting Enlightenment and Enlightenment applications

freebsd-erlang FreeBSD-specific Erlang discussions

freebsd-firewire FreeBSD FireWire¨ (iLink, IEEE 1394) technical discussion

freebsd-fortran Fortran on FreeBSD

freebsd-fs File systems

freebsd-games Support for Games on FreeBSD

freebsd-gecko Gecko Rendering Engine issues

freebsd-geom GEOM-specific discussions and implementations

freebsd-git Discussion of git use in the FreeBSD project

freebsd-gnome Porting GNOME and GNOME applications

freebsd-hackers General technical discussion

freebsd-haskell FreeBSD-specific Haskell issues and discussions

freebsd-hardware General discussion of hardware for running FreeBSD

freebsd-i18n FreeBSD Internationalization

freebsd-infiniband Infiniband on FreeBSD

freebsd-ipfw Technical discussion concerning the redesign of the IP firewall code

freebsd-isdn ISDN developers

freebsd-jail Discussion about the man:jail[8] facility

904

http://lists.FreeBSD.org/mailman/listinfo/freebsd-cloud
http://lists.FreeBSD.org/mailman/listinfo/freebsd-cluster
http://lists.FreeBSD.org/mailman/listinfo/freebsd-database
http://lists.FreeBSD.org/mailman/listinfo/freebsd-desktop
http://lists.FreeBSD.org/mailman/listinfo/dev-ci
http://lists.FreeBSD.org/mailman/listinfo/dev-reviews
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-drivers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-dtrace
http://lists.FreeBSD.org/mailman/listinfo/freebsd-eclipse
http://lists.FreeBSD.org/mailman/listinfo/freebsd-elastic
http://lists.FreeBSD.org/mailman/listinfo/freebsd-embedded
http://lists.FreeBSD.org/mailman/listinfo/freebsd-eol
http://lists.FreeBSD.org/mailman/listinfo/freebsd-emulation
http://lists.FreeBSD.org/mailman/listinfo/freebsd-enlightenment
http://lists.FreeBSD.org/mailman/listinfo/freebsd-enlightenment
http://lists.FreeBSD.org/mailman/listinfo/freebsd-erlang
http://lists.FreeBSD.org/mailman/listinfo/freebsd-firewire
http://lists.FreeBSD.org/mailman/listinfo/freebsd-fortran
http://lists.FreeBSD.org/mailman/listinfo/freebsd-fs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-games
http://lists.FreeBSD.org/mailman/listinfo/freebsd-gecko
http://lists.FreeBSD.org/mailman/listinfo/freebsd-geom
http://lists.FreeBSD.org/mailman/listinfo/freebsd-git
http://lists.FreeBSD.org/mailman/listinfo/freebsd-gnome
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-haskell
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hardware
http://lists.FreeBSD.org/mailman/listinfo/freebsd-i18n
http://lists.FreeBSD.org/mailman/listinfo/freebsd-infiniband
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ipfw
http://lists.FreeBSD.org/mailman/listinfo/freebsd-isdn
http://lists.FreeBSD.org/mailman/listinfo/freebsd-jail

List Purpose

freebsd-java Javaª developers and people porting JDKªs to FreeBSD

freebsd-kde Porting KDE and KDE applications

freebsd-lfs Porting LFS to FreeBSD

freebsd-mips Porting FreeBSD to MIPS¨

freebsd-mono Mono and C# applications on FreeBSD

freebsd-

multimedia

Multimedia applications

freebsd-new-bus Technical discussions about bus architecture

freebsd-net Networking discussion and TCP/IP source code

freebsd-numerics Discussions of high quality implementation of libm functions

freebsd-ocaml FreeBSD-specific OCaml discussions

freebsd-office Office applications on FreeBSD

freebsd-

performance

Performance tuning questions for high performance/load installations

freebsd-perl Maintenance of a number of Perl-related ports

freebsd-pf Discussion and questions about the packet filter firewall system

freebsd-pkg Binary package management and package tools discussion

freebsd-pkg-

fallout

Fallout logs from package building

freebsd-pkgbase Packaging the FreeBSD base system

freebsd-platforms Concerning ports to non Intel¨ architecture platforms

freebsd-ports Discussion of the Ports Collection

freebsd-ports-

announce

Important news and instructions about the Ports Collection (moderated)

freebsd-ports-bugs Discussion of the ports bugs/PRs

freebsd-ppc Porting FreeBSD to the PowerPC¨

freebsd-proliant Technical discussion of FreeBSD on HP ProLiant server platforms

freebsd-python FreeBSD-specific Python issues

freebsd-rc Discussion related to the rc.d system and its development

freebsd-realtime Development of realtime extensions to FreeBSD

freebsd-risc Porting FreeBSD to RISC-V¨ systems

freebsd-ruby FreeBSD-specific Ruby discussions

freebsd-scsi The SCSI subsystem

freebsd-security Security issues affecting FreeBSD

905

http://lists.FreeBSD.org/mailman/listinfo/freebsd-java
https://mail.kde.org/mailman/listinfo/kde-freebsd
http://lists.FreeBSD.org/mailman/listinfo/freebsd-lfs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-mips
http://lists.FreeBSD.org/mailman/listinfo/freebsd-mono
http://lists.FreeBSD.org/mailman/listinfo/freebsd-multimedia
http://lists.FreeBSD.org/mailman/listinfo/freebsd-multimedia
http://lists.FreeBSD.org/mailman/listinfo/freebsd-new-bus
http://lists.FreeBSD.org/mailman/listinfo/freebsd-net
http://lists.FreeBSD.org/mailman/listinfo/freebsd-numerics
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ocaml
http://lists.FreeBSD.org/mailman/listinfo/freebsd-office
http://lists.FreeBSD.org/mailman/listinfo/freebsd-performance
http://lists.FreeBSD.org/mailman/listinfo/freebsd-performance
http://lists.FreeBSD.org/mailman/listinfo/freebsd-perl
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pf
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkg
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkg-fallout
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkg-fallout
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkgbase
http://lists.FreeBSD.org/mailman/listinfo/freebsd-platforms
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-bugs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ppc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-proliant
http://lists.FreeBSD.org/mailman/listinfo/freebsd-python
http://lists.FreeBSD.org/mailman/listinfo/freebsd-rc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-realtime
{freebsd-risc-url}
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ruby
http://lists.FreeBSD.org/mailman/listinfo/freebsd-scsi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security

List Purpose

freebsd-snapshots FreeBSD Development Snapshot Announcements

freebsd-sparc64 Porting FreeBSD to SPARC¨ based systems

freebsd-standards FreeBSDÕs conformance to the C99 and the POSIX¨ standards

freebsd-sysinstall man:sysinstall[8] development

freebsd-tcltk FreeBSD-specific Tcl/Tk discussions

freebsd-testing Testing on FreeBSD

freebsd-tex Porting TeX and its applications to FreeBSD

freebsd-threads Threading in FreeBSD

freebsd-tilera Porting FreeBSD to the Tilera family of CPUs

freebsd-tokenring Support Token Ring in FreeBSD

freebsd-toolchain Maintenance of FreeBSDÕs integrated toolchain

freebsd-

translators

Translating FreeBSD documents and programs

freebsd-transport Discussions of transport level network protocols in FreeBSD

freebsd-usb Discussing FreeBSD support for USB

freebsd-

virtualization

Discussion of various virtualization techniques supported by FreeBSD

freebsd-vuxml Discussion on VuXML infrastructure

freebsd-x11 Maintenance and support of X11 on FreeBSD

freebsd-xen Discussion of the FreeBSD port to Xenª - implementation and usage

freebsd-xfce XFCE for FreeBSD - porting and maintaining

freebsd-zope Zope for FreeBSD - porting and maintaining

Limited lists: The following lists are for more specialized (and demanding) audiences and are

probably not of interest to the general public. It is also a good idea to establish a presence in the

technical lists before joining one of these limited lists in order to understand the communications

etiquette involved.

List Purpose

freebsd-hubs People running mirror sites (infrastructural support)

freebsd-user-

groups

User group coordination

freebsd-wip-status FreeBSD Work-In-Progress Status

freebsd-wireless Discussions of 802.11 stack, tools, device driver development

Digest lists: All of the above lists are available in a digest format. Once subscribed to a list, the digest

options can be changed in the account options section.

906

http://lists.FreeBSD.org/mailman/listinfo/freebsd-snapshots
http://lists.FreeBSD.org/mailman/listinfo/freebsd-sparc64
http://lists.FreeBSD.org/mailman/listinfo/freebsd-standards
http://lists.FreeBSD.org/mailman/listinfo/freebsd-sysinstall
http://lists.FreeBSD.org/mailman/listinfo/freebsd-tcltk
http://lists.FreeBSD.org/mailman/listinfo/freebsd-testing
http://lists.FreeBSD.org/mailman/listinfo/freebsd-tex
http://lists.FreeBSD.org/mailman/listinfo/freebsd-threads
http://lists.FreeBSD.org/mailman/listinfo/freebsd-tilera
http://lists.FreeBSD.org/mailman/listinfo/freebsd-tokenring
http://lists.FreeBSD.org/mailman/listinfo/freebsd-toolchain
http://lists.FreeBSD.org/mailman/listinfo/freebsd-translators
http://lists.FreeBSD.org/mailman/listinfo/freebsd-translators
http://lists.FreeBSD.org/mailman/listinfo/freebsd-transport
http://lists.FreeBSD.org/mailman/listinfo/freebsd-usb
http://lists.FreeBSD.org/mailman/listinfo/freebsd-virtualization
http://lists.FreeBSD.org/mailman/listinfo/freebsd-virtualization
http://lists.FreeBSD.org/mailman/listinfo/freebsd-vuxml
http://lists.FreeBSD.org/mailman/listinfo/freebsd-x11
http://lists.FreeBSD.org/mailman/listinfo/freebsd-xen
http://lists.FreeBSD.org/mailman/listinfo/freebsd-xfce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-zope
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hubs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-user-groups
http://lists.FreeBSD.org/mailman/listinfo/freebsd-user-groups
http://lists.FreeBSD.org/mailman/listinfo/freebsd-wip-status
http://lists.FreeBSD.org/mailman/listinfo/freebsd-wireless

Commit message lists: The following lists are for people interested in seeing the log messages for

changes to various areas of the source tree.

!

SVN log messages are sent to SVN lists.

List Source area Area Description (source for)

Commit messages for all

branches of the doc repository.

/usr/doc All changes to the doc

repository

Commit messages for all

branches of the ports

repository.

/usr/ports All changes to the ports

repository

Commit messages for the main

branch of the ports repository.

/usr/ports All changes to the "main"

branch of the ports repository

Commit messages for the

quarterly branches of the ports

repository.

/usr/ports All changes to the quarterly

branches of the ports repository

Commit messages for all

branches of the src repository.

/usr/src All changes to the src repository

Commit messages for the main

branch of the src repository.

/usr/src All changes to the "main"

branch of the src repository

(the FreeBSD-CURRENT branch)

Commit messages for the stable

branches of the src repository.

/usr/src All changes to all stable

branches of the src repository

SVN lists: The following lists are for people interested in seeing the SVN log messages for changes to

various areas of the source tree.

!

Only SVN log messages are sent to SVN lists. After the SVN to Git Migration, the

following lists no longer receives new commit messages.

List Source area Area Description (source for)

svn-doc-all /usr/doc All changes to the doc Subversion repository (except for

user , projects and translations)

svn-doc-head /usr/doc All changes to the "head" branch of the doc Subversion

repository

svn-doc-projects /usr/doc/projects All changes to the projects area of the doc Subversion

repository

svn-doc-svnadmin /usr/doc All changes to the administrative scripts, hooks, and other

configuration data of the doc Subversion repository

svn-ports-all /usr/ports All changes to the ports Subversion repository

svn-ports-head /usr/ports All changes to the "head" branch of the ports Subversion

repository

907

http://lists.FreeBSD.org/mailman/listinfo/dev-commits-doc-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-doc-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-main
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-main
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-branches
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-branches
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-ports-branches
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-src-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-src-all
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-src-main
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-src-main
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-src-branches
http://lists.FreeBSD.org/mailman/listinfo/dev-commits-src-branches
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-head
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-projects
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-svnadmin
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-all
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-head

List Source area Area Description (source for)

svn-ports-

svnadmin

/usr/ports All changes to the administrative scripts, hooks, and other

configuration data of the ports Subversion repository

svn-src-all /usr/src All changes to the src Subversion repository (except for

user and projects)

svn-src-head /usr/src All changes to the "head" branch of the src Subversion

repository (the FreeBSD-CURRENT branch)

svn-src-projects /usr/projects All changes to the projects area of the src Subversion

repository

svn-src-release /usr/src All changes to the releases area of the src Subversion

repository

svn-src-releng /usr/src All changes to the releng branches of the src Subversion

repository (the security / release engineering branches)

svn-src-stable /usr/src All changes to the all stable branches of the src Subversion

repository

svn-src-stable-6 /usr/src All changes to the stable/6 branch of the src Subversion

repository

svn-src-stable-7 /usr/src All changes to the stable/7 branch of the src Subversion

repository

svn-src-stable-8 /usr/src All changes to the stable/8 branch of the src Subversion

repository

svn-src-stable-9 /usr/src All changes to the stable/9 branch of the src Subversion

repository

svn-src-stable-10 /usr/src All changes to the stable/10 branch of the src Subversion

repository

svn-src-stable-11 /usr/src All changes to the stable/11 branch of the src Subversion

repository

svn-src-stable-12 /usr/src All changes to the stable/12 branch of the src Subversion

repository

svn-src-stable-

other

/usr/src All changes to the older stable branches of the src

Subversion repository

svn-src-svnadmin /usr/src All changes to the administrative scripts, hooks, and other

configuration data of the src Subversion repository

svn-src-user /usr/src All changes to the experimental user area of the src

Subversion repository

svn-src-vendor /usr/src All changes to the vendor work area of the src Subversion

repository

908

http://lists.FreeBSD.org/mailman/listinfo/svn-ports-svnadmin
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-svnadmin
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-src-head
http://lists.FreeBSD.org/mailman/listinfo/svn-src-projects
http://lists.FreeBSD.org/mailman/listinfo/svn-src-release
http://lists.FreeBSD.org/mailman/listinfo/svn-src-releng
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-6
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-7
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-8
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-9
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-10
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-11
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-12
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-other
http://lists.FreeBSD.org/mailman/listinfo/svn-src-stable-other
http://lists.FreeBSD.org/mailman/listinfo/svn-src-svnadmin
http://lists.FreeBSD.org/mailman/listinfo/svn-src-user
http://lists.FreeBSD.org/mailman/listinfo/svn-src-vendor

C.2.2. How to Subscribe

To subscribe to a list, click the list name at http://lists.freebsd.org/mailman/listinfo . The page that is

displayed should contain all of the necessary subscription instructions for that list.

To actually post to a given list, send mail to listname@FreeBSD.org . It will then be redistributed to

mailing list members world-wide.

To unsubscribe from a list, click on the URL found at the bottom of every email received from the

list. It is also possible to send an email to listname-unsubscribe@FreeBSD.org to unsubscribe.

It is important to keep discussion in the technical mailing lists on a technical track. To only receive

important announcements, instead join the FreeBSD announcements mailing list , which is intended

for infrequent traffic.

C.2.3. List Charters

All FreeBSD mailing lists have certain basic rules which must be adhered to by anyone using them.

Failure to comply with these guidelines will result in two (2) written warnings from the FreeBSD

Postmaster postmaster@FreeBSD.org , after which, on a third offense, the poster will removed from

all FreeBSD mailing lists and filtered from further posting to them. We regret that such rules and

measures are necessary at all, but todayÕs Internet is a pretty harsh environment, it would seem,

and many fail to appreciate just how fragile some of its mechanisms are.

Rules of the road:

¥ The topic of any posting should adhere to the basic charter of the list it is posted to. If the list is

about technical issues, the posting should contain technical discussion. Ongoing irrelevant

chatter or flaming only detracts from the value of the mailing list for everyone on it and will not

be tolerated. For free-form discussion on no particular topic, the FreeBSD chat mailing list is

freely available and should be used instead.

¥ No posting should be made to more than 2 mailing lists, and only to 2 when a clear and obvious

need to post to both lists exists. For most lists, there is already a great deal of subscriber overlap

and except for the most esoteric mixes (say "-stable & -scsi"), there really is no reason to post to

more than one list at a time. If a message is received with multiple mailing lists on the Cc line,

trim the Cc line before replying. The person who replies is still responsible for cross-posting, no

matter who the originator might have been.

¥ Personal attacks and profanity (in the context of an argument) are not allowed, and that

includes users and developers alike. Gross breaches of netiquette, like excerpting or reposting

private mail when permission to do so was not and would not be forthcoming, are frowned

upon but not specifically enforced. However , there are also very few cases where such content

would fit within the charter of a list and it would therefore probably rate a warning (or ban) on

that basis alone.

¥ Advertising of non-FreeBSD related products or services is strictly prohibited and will result in

an immediate ban if it is clear that the offender is advertising by spam.

Individual list charters:

909

http://lists.freebsd.org/mailman/listinfo
mailto:listname@FreeBSD.org
mailto:listname-unsubscribe@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-announce
mailto:postmaster@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-chat

freebsd-acpi

ACPI and power management development

freebsd-announce

Important events / milestones

This is the mailing list for people interested only in occasional announcements of significant

FreeBSD events. This includes announcements about snapshots and other releases. It contains

announcements of new FreeBSD capabilities. It may contain calls for volunteers etc. This is a low

volume, strictly moderated mailing list.

freebsd-arch

Architecture and design discussions

This list is for discussion of the FreeBSD architecture. Messages will mostly be kept strictly

technical in nature. Examples of suitable topics are:

¥ How to re-vamp the build system to have several customized builds running at the same

time.

¥ What needs to be fixed with VFS to make Heidemann layers work.

¥ How do we change the device driver interface to be able to use the same drivers cleanly on

many buses and architectures.

¥ How to write a network driver.

freebsd-bluetooth

Bluetooth¨ in FreeBSD

This is the forum where FreeBSDÕs Bluetooth¨ users congregate. Design issues, implementation

details, patches, bug reports, status reports, feature requests, and all matters related to

Bluetooth¨ are fair game.

freebsd-bugbusters

Coordination of the Problem Report handling effort

The purpose of this list is to serve as a coordination and discussion forum for the Bugmeister, his

Bugbusters, and any other parties who have a genuine interest in the PR database. This list is not

for discussions about specific bugs, patches or PRs.

freebsd-bugs

Bug reports

This is the mailing list for reporting bugs in FreeBSD. Whenever possible, bugs should be

submitted using the web interface to it.

freebsd-chat

Non technical items related to the FreeBSD community

This list contains the overflow from the other lists about non-technical, social information. It

910

http://lists.FreeBSD.org/mailman/listinfo/freebsd-acpi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-arch
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bluetooth
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugbusters
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugs
https://bugs.freebsd.org/bugzilla/enter_bug.cgi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-chat

includes discussion about whether Jordan looks like a toon ferret or not, whether or not to type

in capitals, who is drinking too much coffee, where the best beer is brewed, who is brewing beer

in their basement, and so on. Occasional announcements of important events (such as upcoming

parties, weddings, births, new jobs, etc) can be made to the technical lists, but the follow ups

should be directed to this -chat list.

freebsd-chromium

FreeBSD-specific Chromium issues

This is a list for the discussion of Chromium support for FreeBSD. This is a technical list to

discuss development and installation of Chromium.

freebsd-cloud

Running FreeBSD on various cloud platforms

This list discusses running FreeBSD on Amazon EC2, Google Compute Engine, Microsoft Azure,

and other cloud computing platforms.

FreeBSD core team

This is an internal mailing list for use by the core members. Messages can be sent to it when a

serious FreeBSD-related matter requires arbitration or high-level scrutiny.

freebsd-current

Discussions about the use of FreeBSD-CURRENT

This is the mailing list for users of FreeBSD-CURRENT. It includes warnings about new features

coming out in -CURRENT that will affect the users, and instructions on steps that must be taken

to remain -CURRENT. Anyone running "CURRENT" must subscribe to this list. This is a technical

mailing list for which strictly technical content is expected.

freebsd-desktop

Using and improving FreeBSD on the desktop

This is a forum for discussion of FreeBSD on the desktop. It is primarily a place for desktop

porters and users to discuss issues and improve FreeBSDÕs desktop support.

dev-ci

Continuous Integration reports of build and test results

All Continuous Integration reports of build and test results

dev-reviews

Notifications of work in progress in FreeBSDÕs review tool

Automated notifications of work in progress for review in FreeBSDÕs review tools, including

patches.

freebsd-doc

Documentation Project

911

http://lists.FreeBSD.org/mailman/listinfo/freebsd-chromium
http://lists.FreeBSD.org/mailman/listinfo/freebsd-cloud
http://lists.FreeBSD.org/mailman/listinfo/freebsd-current
http://lists.FreeBSD.org/mailman/listinfo/freebsd-desktop
http://lists.FreeBSD.org/mailman/listinfo/dev-ci
http://lists.FreeBSD.org/mailman/listinfo/dev-reviews
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

This mailing list is for the discussion of issues and projects related to the creation of

documentation for FreeBSD. The members of this mailing list are collectively referred to as "The

FreeBSD Documentation Project". It is an open list; feel free to join and contribute!

freebsd-drivers

Writing device drivers for FreeBSD

This is a forum for technical discussions related to device drivers on FreeBSD. It is primarily a

place for device driver writers to ask questions about how to write device drivers using the APIs

in the FreeBSD kernel.

freebsd-dtrace

Using and working on DTrace in FreeBSD

DTrace is an integrated component of FreeBSD that provides a framework for understanding the

kernel as well as user space programs at run time. The mailing list is an archived discussion for

developers of the code as well as those using it.

freebsd-eclipse

FreeBSD users of Eclipse IDE, tools, rich client applications and ports.

The intention of this list is to provide mutual support for everything to do with choosing,

installing, using, developing and maintaining the Eclipse IDE, tools, rich client applications on

the FreeBSD platform and assisting with the porting of Eclipse IDE and plugins to the FreeBSD

environment.

The intention is also to facilitate exchange of information between the Eclipse community and

the FreeBSD community to the mutual benefit of both.

Although this list is focused primarily on the needs of Eclipse users it will also provide a forum

for those who would like to develop FreeBSD specific applications using the Eclipse framework.

freebsd-embedded

Using FreeBSD in embedded applications

This list discusses topics related to using FreeBSD in embedded systems. This is a technical

mailing list for which strictly technical content is expected. For the purpose of this list,

embedded systems are those computing devices which are not desktops and which usually serve

a single purpose as opposed to being general computing environments. Examples include, but

are not limited to, all kinds of phone handsets, network equipment such as routers, switches and

PBXs, remote measuring equipment, PDAs, Point Of Sale systems, and so on.

freebsd-emulation

Emulation of other systems such as Linux/MS-DOS¨/Windows¨

This is a forum for technical discussions related to running programs written for other operating

systems on FreeBSD.

freebsd-enlightenment

Enlightenment

912

http://lists.FreeBSD.org/mailman/listinfo/freebsd-drivers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-dtrace
http://lists.FreeBSD.org/mailman/listinfo/freebsd-eclipse
http://lists.FreeBSD.org/mailman/listinfo/freebsd-embedded
http://lists.FreeBSD.org/mailman/listinfo/freebsd-emulation
http://lists.FreeBSD.org/mailman/listinfo/freebsd-enlightenment

Discussions concerning the Enlightenment Desktop Environment for FreeBSD systems. This is a

technical mailing list for which strictly technical content is expected.

freebsd-eol

Peer support of FreeBSD-related software that is no longer supported by the FreeBSD Project.

This list is for those interested in providing or making use of peer support of FreeBSD-related

software for which the FreeBSD Project no longer provides official support in the form of

security advisories and patches.

freebsd-firewire

FireWire¨ (iLink, IEEE 1394)

This is a mailing list for discussion of the design and implementation of a FireWire¨ (aka IEEE

1394 aka iLink) subsystem for FreeBSD. Relevant topics specifically include the standards, bus

devices and their protocols, adapter boards/cards/chips sets, and the architecture and

implementation of code for their proper support.

freebsd-fortran

Fortran on FreeBSD

This is the mailing list for discussion of Fortran related ports on FreeBSD: compilers, libraries,

scientific and engineering applications from laptops to HPC clusters.

freebsd-fs

File systems

Discussions concerning FreeBSD filesystems. This is a technical mailing list for which strictly

technical content is expected.

freebsd-games

Games on FreeBSD

This is a technical list for discussions related to bringing games to FreeBSD. It is for individuals

actively working on porting games to FreeBSD, to bring up problems or discuss alternative

solutions. Individuals interested in following the technical discussion are also welcome.

freebsd-gecko

Gecko Rendering Engine

This is a forum about Gecko applications using FreeBSD.

Discussion centers around Gecko Ports applications, their installation, their development and

their support within FreeBSD.

freebsd-geom

GEOM

Discussions specific to GEOM and related implementations. This is a technical mailing list for

which strictly technical content is expected.

913

http://lists.FreeBSD.org/mailman/listinfo/freebsd-eol
http://lists.FreeBSD.org/mailman/listinfo/freebsd-firewire
http://lists.FreeBSD.org/mailman/listinfo/freebsd-fortran
http://lists.FreeBSD.org/mailman/listinfo/freebsd-fs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-games
http://lists.FreeBSD.org/mailman/listinfo/freebsd-gecko
http://lists.FreeBSD.org/mailman/listinfo/freebsd-geom

freebsd-git

Use of git in the FreeBSD project

Discussions of how to use git in FreeBSD infrastructure including the github mirror and other

uses of git for project collaboration. Discussion area for people using git against the FreeBSD

github mirror. People wanting to get started with the mirror or git in general on FreeBSD can

ask here.

freebsd-gnome

GNOME

Discussions concerning The GNOME Desktop Environment for FreeBSD systems. This is a

technical mailing list for which strictly technical content is expected.

freebsd-infiniband

Infiniband on FreeBSD

Technical mailing list discussing Infiniband, OFED, and OpenSM on FreeBSD.

freebsd-ipfw

IP Firewall

This is the forum for technical discussions concerning the redesign of the IP firewall code in

FreeBSD. This is a technical mailing list for which strictly technical content is expected.

freebsd-isdn

ISDN Communications

This is the mailing list for people discussing the development of ISDN support for FreeBSD.

freebsd-java

Javaª Development

This is the mailing list for people discussing the development of significant Javaª applications

for FreeBSD and the porting and maintenance of JDKªs.

freebsd-jobs

Jobs offered and sought

This is a forum for posting employment notices specifically related to FreeBSD and resumes

from those seeking FreeBSD-related employment. This is not a mailing list for general

employment issues since adequate forums for that already exist elsewhere.

Note that this list, like other FreeBSD.org mailing lists, is distributed worldwide. Be clear about

the geographic location and the extent to which telecommuting or assistance with relocation is

available.

Email should use open formats only - preferably plain text, but basic Portable Document Format

(PDF), HTML, and a few others are acceptable to many readers. Closed formats such as

Microsoft¨ Word (.doc) will be rejected by the mailing list server.

914

http://lists.FreeBSD.org/mailman/listinfo/freebsd-git
http://lists.FreeBSD.org/mailman/listinfo/freebsd-gnome
http://lists.FreeBSD.org/mailman/listinfo/freebsd-infiniband
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ipfw
http://lists.FreeBSD.org/mailman/listinfo/freebsd-isdn
http://lists.FreeBSD.org/mailman/listinfo/freebsd-java
http://lists.FreeBSD.org/mailman/listinfo/freebsd-jobs

freebsd-kde

KDE

Discussions concerning KDE on FreeBSD systems. This is a technical mailing list for which

strictly technical content is expected.

freebsd-hackers

Technical discussions

This is a forum for technical discussions related to FreeBSD. This is the primary technical

mailing list. It is for individuals actively working on FreeBSD, to bring up problems or discuss

alternative solutions. Individuals interested in following the technical discussion are also

welcome. This is a technical mailing list for which strictly technical content is expected.

freebsd-hardware

General discussion of FreeBSD hardware

General discussion about the types of hardware that FreeBSD runs on, various problems and

suggestions concerning what to buy or avoid.

freebsd-hubs

Mirror sites

Announcements and discussion for people who run FreeBSD mirror sites.

freebsd-isp

Issues for Internet Service Providers

This mailing list is for discussing topics relevant to Internet Service Providers (ISPs) using

FreeBSD. This is a technical mailing list for which strictly technical content is expected.

freebsd-mono

Mono and C# applications on FreeBSD

This is a list for discussions related to the Mono development framework on FreeBSD. This is a

technical mailing list. It is for individuals actively working on porting Mono or C# applications to

FreeBSD, to bring up problems or discuss alternative solutions. Individuals interested in

following the technical discussion are also welcome.

freebsd-ocaml

FreeBSD-specific OCaml discussions

This is a list for discussions related to the OCaml support on FreeBSD. This is a technical mailing

list. It is for individuals working on OCaml ports, 3rd party libraries and frameworks.

Individuals interested in the technical discussion are also welcome.

freebsd-office

Office applications on FreeBSD

Discussion centers around office applications, their installation, their development and their

915

https://mail.kde.org/mailman/listinfo/kde-freebsd
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hardware
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hubs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-isp
http://lists.FreeBSD.org/mailman/listinfo/freebsd-mono
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ocaml
http://lists.FreeBSD.org/mailman/listinfo/freebsd-office

support within FreeBSD.

freebsd-ops-announce

Project Infrastructure Announcements

This is the mailing list for people interested in changes and issues related to the FreeBSD.org

Project infrastructure.

This moderated list is strictly for announcements: no replies, requests, discussions, or opinions.

freebsd-performance

Discussions about tuning or speeding up FreeBSD

This mailing list exists to provide a place for hackers, administrators, and/or concerned parties

to discuss performance related topics pertaining to FreeBSD. Acceptable topics includes talking

about FreeBSD installations that are either under high load, are experiencing performance

problems, or are pushing the limits of FreeBSD. Concerned parties that are willing to work

toward improving the performance of FreeBSD are highly encouraged to subscribe to this list.

This is a highly technical list ideally suited for experienced FreeBSD users, hackers, or

administrators interested in keeping FreeBSD fast, robust, and scalable. This list is not a

question-and-answer list that replaces reading through documentation, but it is a place to make

contributions or inquire about unanswered performance related topics.

freebsd-pf

Discussion and questions about the packet filter firewall system

Discussion concerning the packet filter (pf) firewall system in terms of FreeBSD. Technical

discussion and user questions are both welcome. This list is also a place to discuss the ALTQ QoS

framework.

freebsd-pkg

Binary package management and package tools discussion

Discussion of all aspects of managing FreeBSD systems by using binary packages to install

software, including binary package toolkits and formats, their development and support within

FreeBSD, package repository management, and third party packages.

Note that discussion of ports which fail to generate packages correctly should generally be

considered as ports problems, and so inappropriate for this list.

freebsd-pkg-fallout

Fallout logs from package building

All packages building failures logs from the package building clusters

freebsd-pkgbase

Packaging the FreeBSD base system.

Discussions surrounding implementation and issues regarding packaging the FreeBSD base

system.

916

http://lists.FreeBSD.org/mailman/listinfo/freebsd-ops-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-performance
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pf
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkg
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkg-fallout
http://lists.FreeBSD.org/mailman/listinfo/freebsd-pkgbase

freebsd-platforms

Porting to Non Intel¨ platforms

Cross-platform FreeBSD issues, general discussion and proposals for non Intel¨ FreeBSD ports.

This is a technical mailing list for which strictly technical content is expected.

freebsd-ports

Discussion of "ports"

Discussions concerning FreeBSDÕs "ports collection" (/usr/ports), ports infrastructure, and

general ports coordination efforts. This is a technical mailing list for which strictly technical

content is expected.

freebsd-ports-announce

Important news and instructions about the FreeBSD "Ports Collection"

Important news for developers, porters, and users of the "Ports Collection" (/usr/ports), including

architecture/infrastructure changes, new capabilities, critical upgrade instructions, and release

engineering information. This is a low-volume mailing list, intended for announcements.

freebsd-ports-bugs

Discussion of "ports" bugs

Discussions concerning problem reports for FreeBSDÕs "ports collection" (/usr/ports), proposed

ports, or modifications to ports. This is a technical mailing list for which strictly technical

content is expected.

freebsd-proliant

Technical discussion of FreeBSD on HP ProLiant server platforms

This mailing list is to be used for the technical discussion of the usage of FreeBSD on HP ProLiant

servers, including the discussion of ProLiant-specific drivers, management software,

configuration tools, and BIOS updates. As such, this is the primary place to discuss the hpasmd,

hpasmcli, and hpacucli modules.

freebsd-python

Python on FreeBSD

This is a list for discussions related to improving Python-support on FreeBSD. This is a technical

mailing list. It is for individuals working on porting Python, its third party modules and Zope

stuff to FreeBSD. Individuals interested in following the technical discussion are also welcome.

freebsd-questions

User questions

This is the mailing list for questions about FreeBSD. Do not send "how to" questions to the

technical lists unless the question is quite technical.

917

http://lists.FreeBSD.org/mailman/listinfo/freebsd-platforms
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-announce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-bugs
http://lists.FreeBSD.org/mailman/listinfo/freebsd-proliant
http://lists.FreeBSD.org/mailman/listinfo/freebsd-python
http://lists.FreeBSD.org/mailman/listinfo/freebsd-questions

freebsd-ruby

FreeBSD-specific Ruby discussions

This is a list for discussions related to the Ruby support on FreeBSD. This is a technical mailing

list. It is for individuals working on Ruby ports, third party libraries and frameworks.

Individuals interested in the technical discussion are also welcome.

freebsd-scsi

SCSI subsystem

This is the mailing list for people working on the SCSI subsystem for FreeBSD. This is a technical

mailing list for which strictly technical content is expected.

freebsd-security

Security issues

FreeBSD computer security issues (DES, Kerberos, known security holes and fixes, etc). This is a

technical mailing list for which strictly technical discussion is expected. Note that this is not a

question-and-answer list, but that contributions (BOTH question AND answer) to the FAQ are

welcome.

freebsd-security-notifications

Security Notifications

Notifications of FreeBSD security problems and fixes. This is not a discussion list. The discussion

list is FreeBSD-security.

freebsd-snapshots

FreeBSD Development Snapshot Announcements

This list provides notifications about the availability of new FreeBSD development snapshots for

the head/ and stable/ branches.

freebsd-stable

Discussions about the use of FreeBSD-STABLE

This is the mailing list for users of FreeBSD-STABLE. "STABLE" is the branch where development

continues after a RELEASE, including bug fixes and new features. The ABI is kept stable for

binary compatibility. It includes warnings about new features coming out in -STABLE that will

affect the users, and instructions on steps that must be taken to remain -STABLE. Anyone

running "STABLE" should subscribe to this list. This is a technical mailing list for which strictly

technical content is expected.

freebsd-standards

C99 POSIX Conformance

This is a forum for technical discussions related to FreeBSD Conformance to the C99 and the

POSIX standards.

918

http://lists.FreeBSD.org/mailman/listinfo/freebsd-ruby
http://lists.FreeBSD.org/mailman/listinfo/freebsd-scsi
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security
http://lists.FreeBSD.org/mailman/listinfo/freebsd-security-notifications
http://lists.FreeBSD.org/mailman/listinfo/freebsd-snapshots
http://lists.FreeBSD.org/mailman/listinfo/freebsd-stable
http://lists.FreeBSD.org/mailman/listinfo/freebsd-standards

freebsd-teaching

Teaching with FreeBSD

Non technical mailing list discussing teaching with FreeBSD.

freebsd-testing

Testing on FreeBSD

Technical mailing list discussing testing on FreeBSD, including ATF/Kyua, test build

infrastructure, port tests to FreeBSD from other operating systems (NetBSD, É), etc.

freebsd-tex

Porting TeX and its applications to FreeBSD

This is a technical mailing list for discussions related to TeX and its applications on FreeBSD. It is

for individuals actively working on porting TeX to FreeBSD, to bring up problems or discuss

alternative solutions. Individuals interested in following the technical discussion are also

welcome.

freebsd-toolchain

Maintenance of FreeBSDÕs integrated toolchain

This is the mailing list for discussions related to the maintenance of the toolchain shipped with

FreeBSD. This could include the state of Clang and GCC, but also pieces of software such as

assemblers, linkers and debuggers.

freebsd-transport

Discussions of transport level network protocols in FreeBSD

The transport mailing list exists for the discussion of issues and designs around the transport

level protocols in the FreeBSD network stack, including TCP, SCTP and UDP. Other networking

topics, including driver specific and network protocol issues should be discussed on the FreeBSD

networking mailing list .

freebsd-translators

Translating FreeBSD documents and programs

A discussion list where translators of FreeBSD documents from English into other languages can

talk about translation methods and tools. New members are asked to introduce themselves and

mention the languages they are interested in translating.

freebsd-usb

Discussing FreeBSD support for USB

This is a mailing list for technical discussions related to FreeBSD support for USB.

freebsd-user-groups

User Group Coordination List

This is the mailing list for the coordinators from each of the local area Users Groups to discuss

919

http://lists.FreeBSD.org/mailman/listinfo/freebsd-teaching
http://lists.FreeBSD.org/mailman/listinfo/freebsd-testing
http://lists.FreeBSD.org/mailman/listinfo/freebsd-tex
http://lists.FreeBSD.org/mailman/listinfo/freebsd-toolchain
http://lists.FreeBSD.org/mailman/listinfo/freebsd-transport
http://lists.FreeBSD.org/mailman/listinfo/freebsd-net
http://lists.FreeBSD.org/mailman/listinfo/freebsd-net
http://lists.FreeBSD.org/mailman/listinfo/freebsd-translators
http://lists.FreeBSD.org/mailman/listinfo/freebsd-usb
http://lists.FreeBSD.org/mailman/listinfo/freebsd-user-groups

matters with each other and a designated individual from the Core Team. This mail list should

be limited to meeting synopsis and coordination of projects that span User Groups.

freebsd-virtualization

Discussion of various virtualization techniques supported by FreeBSD

A list to discuss the various virtualization techniques supported by FreeBSD. On one hand the

focus will be on the implementation of the basic functionality as well as adding new features. On

the other hand users will have a forum to ask for help in case of problems or to discuss their use

cases.

freebsd-wip-status

FreeBSD Work-In-Progress Status

This mailing list can be used by developers to announce the creation and progress of FreeBSD

related work. Messages will be moderated. It is suggested to send the message "To:" a more

topical FreeBSD list and only "BCC:" this list. This way the WIP can also be discussed on the

topical list, as no discussion is allowed on this list.

Look inside the archives for examples of suitable messages.

An editorial digest of the messages to this list might be posted to the FreeBSD website every few

months as part of the Status Reports

[3]

. Past reports are archived.

freebsd-wireless

Discussions of 802.11 stack, tools device driver development

The FreeBSD-wireless list focuses on 802.11 stack (sys/net80211), device driver and tools

development. This includes bugs, new features and maintenance.

freebsd-xen

Discussion of the FreeBSD port to Xenª - implementation and usage

A list that focuses on the FreeBSD Xenª port. The anticipated traffic level is small enough that it

is intended as a forum for both technical discussions of the implementation and design details as

well as administrative deployment issues.

freebsd-xfce

XFCE

This is a forum for discussions related to bring the XFCE environment to FreeBSD. This is a

technical mailing list. It is for individuals actively working on porting XFCE to FreeBSD, to bring

up problems or discuss alternative solutions. Individuals interested in following the technical

discussion are also welcome.

freebsd-zope

Zope

This is a forum for discussions related to bring the Zope environment to FreeBSD. This is a

technical mailing list. It is for individuals actively working on porting Zope to FreeBSD, to bring

920

http://lists.FreeBSD.org/mailman/listinfo/freebsd-virtualization
http://lists.FreeBSD.org/mailman/listinfo/freebsd-wip-status
http://lists.FreeBSD.org/mailman/listinfo/freebsd-wireless
http://lists.FreeBSD.org/mailman/listinfo/freebsd-xen
http://lists.FreeBSD.org/mailman/listinfo/freebsd-xfce
http://lists.FreeBSD.org/mailman/listinfo/freebsd-zope

up problems or discuss alternative solutions. Individuals interested in following the technical

discussion are also welcome.

C.2.4. Filtering on the Mailing Lists

The FreeBSD mailing lists are filtered in multiple ways to avoid the distribution of spam, viruses,

and other unwanted emails. The filtering actions described in this section do not include all those

used to protect the mailing lists.

Only certain types of attachments are allowed on the mailing lists. All attachments with a MIME

content type not found in the list below will be stripped before an email is distributed on the

mailing lists.

¥ application/octet-stream

¥ application/pdf

¥ application/pgp-signature

¥ application/x-pkcs7-signature

¥ message/rfc822

¥ multipart/alternative

¥ multipart/related

¥ multipart/signed

¥ text/html

¥ text/plain

¥ text/x-diff

¥ text/x-patch

!

Some of the mailing lists might allow attachments of other MIME content types,

but the above list should be applicable for most of the mailing lists.

If an email contains both an HTML and a plain text version, the HTML version will be removed. If

an email contains only an HTML version, it will be converted to plain text.

C.3. Usenet Newsgroups

In addition to two FreeBSD specific newsgroups, there are many others in which FreeBSD is

discussed or are otherwise relevant to FreeBSD users.

C.3.1. BSD Specific Newsgroups

¥ comp.unix.bsd.freebsd.announce

¥ comp.unix.bsd.freebsd.misc

¥ de.comp.os.unix.bsd (German)

¥ fr.comp.os.bsd (French)

921

news:comp.unix.bsd.freebsd.announce
news:comp.unix.bsd.freebsd.misc
news:de.comp.os.unix.bsd
news:fr.comp.os.bsd

C.3.2. Other UNIX¨ Newsgroups of Interest

¥ comp.unix

¥ comp.unix.questions

¥ comp.unix.admin

¥ comp.unix.programmer

¥ comp.unix.shell

¥ comp.unix.misc

¥ comp.unix.bsd

C.3.3. X Window System

¥ comp.windows.x

C.4. Official Mirrors

Central Servers , Armenia , Australia , Austria , Czech Republic , Denmark , Finland , France , Germany ,

Hong Kong , Ireland , Japan , Latvia , Lithuania , Netherlands , Norway , Russia , Slovenia , South Africa ,

Spain , Sweden , Switzerland , Taiwan , United Kingdom , United States of America .

(as of UTC)

Central Servers

¥ https://www.FreeBSD.org/

Armenia

¥ http://www.at.FreeBSD.org/ (IPv6)

Australia

¥ http://www.au.FreeBSD.org/

¥ http://www2.au.FreeBSD.org/

Austria

¥ http://www.at.FreeBSD.org/ (IPv6)

Czech Republic

¥ http://www.cz.FreeBSD.org/ (IPv6)

Denmark

¥ http://www.dk.FreeBSD.org/ (IPv6)

Finland

922

news:comp.unix
news:comp.unix.questions
news:comp.unix.admin
news:comp.unix.programmer
news:comp.unix.shell
news:comp.unix.misc
news:comp.unix.bsd
news:comp.windows.x
https://www.FreeBSD.org/
http://www.at.FreeBSD.org/
http://www.au.FreeBSD.org/
http://www2.au.FreeBSD.org/
http://www.at.FreeBSD.org/
http://www.cz.FreeBSD.org/
http://www.dk.FreeBSD.org/

¥ http://www.fi.FreeBSD.org/

France

¥ http://www1.fr.FreeBSD.org/

Germany

¥ http://www.de.FreeBSD.org/

Hong Kong

¥ http://www.hk.FreeBSD.org/

Ireland

¥ http://www.ie.FreeBSD.org/

Japan

¥ http://www.jp.FreeBSD.org/www.FreeBSD.org/ (IPv6)

Latvia

¥ http://www.lv.FreeBSD.org/

Lithuania

¥ http://www.lt.FreeBSD.org/

Netherlands

¥ http://www.nl.FreeBSD.org/

Norway

¥ http://www.no.FreeBSD.org/

Russia

¥ http://www.ru.FreeBSD.org/ (IPv6)

Slovenia

¥ http://www.si.FreeBSD.org/

South Africa

¥ http://www.za.FreeBSD.org/

Spain

¥ http://www.es.FreeBSD.org/

923

http://www.fi.FreeBSD.org/
http://www1.fr.FreeBSD.org/
http://www.de.FreeBSD.org/
http://www.hk.FreeBSD.org/
http://www.ie.FreeBSD.org/
http://www.jp.FreeBSD.org/www.FreeBSD.org/
http://www.lv.FreeBSD.org/
http://www.lt.FreeBSD.org/
http://www.nl.FreeBSD.org/
http://www.no.FreeBSD.org/
http://www.ru.FreeBSD.org/
http://www.si.FreeBSD.org/
http://www.za.FreeBSD.org/
http://www.es.FreeBSD.org/

¥ http://www2.es.FreeBSD.org/

Sweden

¥ http://www.se.FreeBSD.org/

Switzerland

¥ http://www.ch.FreeBSD.org/ (IPv6)

¥ http://www2.ch.FreeBSD.org/ (IPv6)

Taiwan

¥ http://www.tw.FreeBSD.org/

¥ http://www2.tw.FreeBSD.org/

¥ http://www4.tw.FreeBSD.org/

¥ http://www5.tw.FreeBSD.org/ (IPv6)

United Kingdom

¥ http://www1.uk.FreeBSD.org

¥ http://www3.uk.FreeBSD.org/

United States of America

¥ http://www5.us.FreeBSD.org/ (IPv6)

[3] https://www.freebsd.org/news/status/

924

http://www2.es.FreeBSD.org/
http://www.se.FreeBSD.org/
http://www.ch.FreeBSD.org/
http://www2.ch.FreeBSD.org/
http://www.tw.FreeBSD.org/
http://www2.tw.FreeBSD.org/
http://www4.tw.FreeBSD.org/
http://www5.tw.FreeBSD.org/
http://www1.uk.FreeBSD.org
http://www3.uk.FreeBSD.org/
http://www5.us.FreeBSD.org/
https://www.freebsd.org/news/status/

Appendix D: OpenPGP Keys

The OpenPGP keys of the FreeBSD.org officers are shown here. These keys can be used to verify a

signature or send encrypted email to one of the officers. A full list of FreeBSD OpenPGP keys is

available in the PGP Keys article. The complete keyring can be downloaded at

https://www.FreeBSD.org/doc/pgpkeyring.txt .

D.1. Officers

D.1.1. Security Officer Team < security-officer@FreeBSD.org >

pub rsa4096/D39792F49EA7E5C2 2017-08-16 [SC] [expires: 2023-01-02]

Ê Key fingerprint = FC0E 878A E5AF E788 028D 6355 D397 92F4 9EA7 E5C2

uid FreeBSD Security Officer <security-officer@FreeBSD.org>

sub rsa4096/6DD0A349F26ADEFD 2017-08-16 [E] [expires: 2023-01-02]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFmT2+ABEACrTVJ7Z/MuDeyKFqoTFnm5FrGG55k66RLeKivzQzq/tT/6RKO9

K8DaEvSIqD9b0/xgK02KgLSdp0Bucq8HLDFYUk3McFa6Z3YwjobNCWkxc72ipvVl

uAOGN4H6fuoYOpeg4cLK1H9pktUIrzONTCixaZzc/Bu6X+aX4ywGeCfsuu8g5v03

fLCPBLLgf3Bm5wsyZ6ZaGmsmILrWzd+d/rbr35Mcc5BekdgywUI4R191qo1bdrw9

mEJP1V7Ik3jpExOsNnuhMTvm5OQMeCTfUvVEOtBU15QtbT+1LXF5FIOgML0LwS5v

RHZN+5w/xvzSnEULpj24UuMKLDs/u9rj8U/zET8QaE+oG7m/mr4jJWZEmdX8HKdO

WrpnVj6UAppk72qdBIEfLsOW2xB/NOjJpppbCQH3+sw7DRYA2UnKE9Mptj/KKiE4

cs4c8Cupo2WSu93lEZDC5rCrULpT2lFeEXnRYlC/5oIgY5w9sFide9VI4CzHkkWX

Z2NPW/i1w3mFhoXjvnNLGOYMfAMKPxsRC2/Bn3bY0IhKvuIZ4rAeu7FTmKDDqFKQ

YEcrUOW74ZVng17AB29xzjWr4zNJVvp/CybFiUb8JoKkwtVWRqAVZIEgenAjU40d

G5+W4e+ccL0mfTQfEBbXRjnL2BL2tnaoBR42cTfbZGRucPHz7MrlKBEeZQARAQAB

tDdGcmVlQlNEIFNlY3VyaXR5IE9mZmljZXIgPHNlY3VyaXR5LW9mZmljZXJARnJl

ZUJTRC5vcmc+iQJUBBMBCgA+FiEE/A6HiuWv54gCjWNV05eS9J6n5cIFAlmT2+AC

GwMFCQoek4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ05eS9J6n5cKd9A/9

Fz3uGjNy28D0ALT1d/JJGzdQ2R3YwspHk9KHBr1LePkog9wf1WRalwCeNtPmA+g5

cn24psuzOeh1tRElImTZ2eE2ENPZ9XzK/J0ok0nK42MvmIwmMCyz+CaWv9GXW+FK

0oXnFmHi4YaQUVN3p+45TGkD9T+O5biVww7P47n/NnWsTfhLx0bzC7LyjPKXINai

/LgPgtlcOgY65/YhW/qhADCkoU7qMp9is41jMjTu1WB3OBPJkUkNpHfu6r15y8FN

Wqsk7K4W6Obr/WQ6VKGGXgh/a5mTcaEoFGMO16uHijAY4nXeb2HGZlBKxgmPH9Ur

aT4A9Pz/n+rIRMrK+rs+msFPemQHHNBYxy+x99uBpRBNyT2Su6GouZIxu5J16aIM

V0ZyOy/dy7m/uJ4sMhJPqKkd8a+MoQs/2L1M1y1EAzsO/QZqIrKrCluaftNN9k/B

qU0XClSDqB6sRMF7HFzYqb+f+M6cwSL/3Cp1Yx4rZ/onEE/MdWp64+3R87dETTXd

5tWXQw04qOhfPri5cBTI7r3t/qMO1iNXCGSG5RJbGkas6N6t6Mj83L4ItjI8doLf

aSIWZjj1XP3/me2hFJ6h2G5y5A+khO4ZwhC0ATFSq1fYbVGHw5AtfthIgNn8FoWu

+Sb8h7/RqTr7F6LgWagAoAh0GtVj02SVABZjcNZz/AKJAjcEEAEKACEWIQQc9/9v

rfXKn74bjLLtZ+zWXc9q5wUCWZPcTAMFAngACgkQ7Wfs1l3PauflkRAAgYcaBX0Y

ic4btxKoP/eOVpgUciOPPKEhDCiloQDyf4XQnZFDoMfjgcHpbLTBZ6kiAz2UzDGr

fJ4yUqrD+xfixUfCd5YpwzsaSpCGzDzSxOBcP/SpuAFhe40awSOIf5MruQar9Mlf

33JyslDLULXXeewAq2pcGk0/WrrOragI6Cs2vPGy9XP96VvLxyhjrWjlKmnO+//w

925

https://docs.freebsd.org/en/articles/pgpkeys/
https://www.FreeBSD.org/doc/pgpkeyring.txt
mailto:security-officer@FreeBSD.org

UF8oIO5hhKoqbtoxxlcqJgsWVyHch0mnPzvr6GWwoPhFXocnh1oPdbLjX1AwmGm9

ltEYMge4QxONIXlXJR0TvuDuJOaLNvTOC3OI8L97fdBcZS7eNJrG5FAYR5Ft3ISf

KJowIsSLGDt/cYApqpyP2pv7FpCvnwHgXHYar7/q4zhngCFRxQ2DPUx1cIJQ3Bgh

HZolKyK1X7XE5ZVDfZ3s3gcHSVKS89pipgHHZNr4sSmOanA8rXHcyHS4o2zSi1ie

r4iBwnOk6cCd6UNzEIiq0y/XhP/sc7xeL0mn3wDuV7jDBP9sp65sexL1qtIAfnzL

pLQevm0z41ifrUH5nNeL6RdbXpaoXc8M4PJJeQKJDu04KzLcQpZdUdCJsbS6QO9w

srWR8enQXPEhz2CO4L77bM9TgYO29222jTqEPcbXcmxF/klxO1rpssTTHUnHHi1Z

LUGYCbZPjt+laTJ2YPHTjUtN1Jw85vSKCEuJATMEEAEKAB0WIQS7KNQLNg7uk2rt

FW/l97zLo73d+AUCWjSYRwAKCRDl97zLo73d+JKyB/9N5Ytao12nD5QzMLvceGh5

otCLN99TUryYiDVDLoNkBivq3jHQA/hOX2rwEueFq0+LF8/2DnglJuUICNtCxIzL

WXXf/Hr5iWBUQ0JxYNPQzzjdMSXGE0WMwYVpAbCGxHpIsetKLdHUCwneYhaywe3I

KzmRJSDJGV1IJB0sAfoFtgybZXHgIR61jQjtnNmmyYXliYCd0wmIhXQDFN91tzzG

+EZdJ3Fao9JsMC+x55jO6EOLVySZgRF5E8vCeKUWemQciKFC7EhKcljILPYAA21u

NmHCAgRHKWU9JMdFK0w9lQuN2HQaNfkahjarTNM/Q6LwxY0dLG0vVYifE085WFAf

uQINBFmT2+ABEACxi39m5nQZexzY3c9sg/w5mUYCD89ZNSkj427gduQMYYGn7YW6

jSPfVJ/V3+PDK824c0a0XasyDapQFY1CPTZYrReRPoyjb8tJjsSVGXXCTFpJZlFU

br6kS9mgcx58Sypke2PMVk73+W1N1Yco+nahfTECRuM2/T2zHHr0AdKuBPF28U+H

TxyLatKoIgQwHDs4E/f4ZTbAoHvu3PixAl7XHVXCgz0cHaLhRljXizbZDXngOdGm

lqdFlAIpL6/l8E3m1Er0m3IfFo6qSzWRHg/KaBGIL4YKetJ6ACjlkCe5qbatDpmk

gWlg3Ux4RBVjyCK834Xh7eZpEcNf2iwpm28glWh7XMHGUplTHkU3PWQ4vGfNxXB8

HBOd9r02/cHL6MiHwhCAfIzZGVtqR0i9Ira57TMdXTpJWNXUcgsCMsi/Bg2a+hsn

aiYLrZc18uNL5nqOqsqKG3c1TcmeN7nbxVgnrNST4AjteulkhmB9p8tNOXA3u979

OO0T5LPwdqIpobdZ0lfw4URnAGw4Wd4Sm9PtRw0RvuAk2M2e5KXNyxPWAuMVkoRR

a7wG6h/R8pki54Gexyc+JkfB4ZcOrzHNLurw6DhxroyfRs8WEgX0wNIGmJvCXSBG

54jb5w9qudYwzIg4YPfvuX8sfeY8MTNhal3rF0tvVloGj3l709wlaWlBYwARAQAB

iQI8BBgBCgAmFiEE/A6HiuWv54gCjWNV05eS9J6n5cIFAlmT2+ACGwwFCQoek4AA

CgkQ05eS9J6n5cKhWw/+PT0R4r2gPAxI8ESEe380BYOmneNAH24MFOgWXqWCj4zX

Uz992BVnW2aL5nH4O5d822LGeCrYUC7SCpQvlifdHZHjobgtizLTwuu40bc3gSOz

cxWlx2jKfx3Ezn6QQz2mhhK6fZ1AO0ObiQxQq25ldURep95L78E/C8XkCe11YlUR

ng3wQKeHM7awZWRw/QBC92haHuVtU3cx7At+zQL7jTBKSZqd34zzs0uoXIhk2h94

O07MMDZ8z8MeU337vdL+RKYtD2bljLwpf7/kqg1D/q44RJ4ZpZcha9G0GvtLaQg2

+MAPlLg1vOWZ8wOTLaQHm+uzYRpkqxkIV8OuVd4UikCd8t3VNjNG5rG/YRNIAX0A

UEzs6oMF5YOFE8LmykesbUHAbC07Vcb0AsT5u3XKixDiIpPdnYSwGlkvoOVVLdeh

q/aXLK9V8BpViG5+a8xP2fdF1eMqdnrKAsiO4GEiq193PN/FA049VeIs3fd0izAa

x7+ag1MGtoF5Pij5iTVJm6phH5SUd1P3FY3OmclxWj/MbL4ba/G/6FWcy5NXxdw9

L1bRqaM2KEHJ67aF6NZz7UMldwExAWzFbUon1LUpKysAukxVf0EnntydBeVOQ+JO

HdqEpirrVLMpxPttUB2xxbo947nMj7/Bnme2gvb0vxaC9xSGVxrpW9cg5iCwSdc=

=8rds

-----END PGP PUBLIC KEY BLOCK-----

D.1.2. Security Team Secretary < secteam-secretary@FreeBSD.org >

pub 4096R/3CB2EAFCC3D6C666 2013-09-24 [expires: 2018-01-01]

Ê Key fingerprint = FA97 AA04 4DF9 0969 D5EF 4ADA 3CB2 EAFC C3D6 C666

uid FreeBSD Security Team Secretary <secteam-

secretary@FreeBSD.org>

sub 4096R/509B26612335EB65 2013-09-24 [expires: 2018-01-01]

926

mailto:secteam-secretary@FreeBSD.org

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFJBjIIBEADadvvpXSkdnBOGV2xcsFwBBcSwAdryWuLk6v2VxjwsPcY6Lwqz

NAZr2Ox1BaSgX7106Psa6v9si8nxoOtMc5BCM/ps/fmedFU48YtqOTGF+utxvACg

Ou6SKintEMUa1eoPcww1jzDZ3mxx49bQaNAJLjVxeiAZoYHe9loTe1fxsprCONnx

Era1hrI+YA2KjMWDORcwa0sSXRCI3V+b4PUnbMUOQa3fFVUriM4QjjUBU6hW0Ub0

GDPcZq45nd7PoPPtb3/EauaYfk/zdx8Xt0OmuKTi9/vMkvB09AEUyShbyzoebaKH

dKtXlzyAPCZoH9dihFM67rhUg4umckFLc8vc5P2tNblwYrnhgL8ymUaOIjZB/fOi

Z2OZLVCiDeHNjjK3VZ6jLAiPyiYTG1Hrk9E8NaZDeUgIb9X/K06JXVBQIKNSGfX5

LLp/j2wr+Kbg3QtEBkcStlUGBOzfcbhKpE2nySnuIyspfDb/6JbhD/qYqMJerX0T

d5ekkJ1tXtM6aX2iTXgZ8cqv+5gyouEF5akrkLi1ySgZetQfjm+zhy/1x/NjGd0u

35QbUye7sTbfSimwzCXKIIpy06zIO4iNA0P/vgG4v7ydjMvXsW8FRULSecDT19Gq

xOZGfSPVrSRSAhgNxHzwUivxJbr05NNdwhJSbx9m57naXouLfvVPAMeJYwARAQAB

tD9GcmVlQlNEIFNlY3VyaXR5IFRlYW0gU2VjcmV0YXJ5IDxzZWN0ZWFtLXNlY3Jl

dGFyeUBGcmVlQlNELm9yZz6JAj0EEwEKACcFAlJBjIICGwMFCQgH7b8FCwkIBwMF

FQoJCAsFFgIDAQACHgECF4AACgkQPLLq/MPWxmYt8Q/+IfFhPIbqglh4rwFzgR58

8YonMZcq+5Op3qiUBh6tE6yRz6VEqBqTahyCQGIk4xGzrHSIOIj2e6gEk5a4zYtf

0jNJprk3pxu2Og05USJmd8lPSbyBF20FVm5W0dhWMKHagL5dGS8zInlwRYxr6mMi

UuJjj+2Hm3PoUNGAwL1SH2BVOeAeudtzu80vAlbRlujYVmjIDn/dWVjqnWgEBNHT

SD+WpA3yW4mBJyxWil0sAJQbTlt5EM/XPORVZ2tvETxJIrXea/Sda9mFwvJ02pJn

gHi6TGyOYydmbu0ob9Ma9AvUrRlxv8V9eN7eZUtvNa6n+IT8WEJj2+snJlO4SpHL

D3Z+l7zwfYeM8FOdzGZdVFgxeyBU7t3AnPjYfHmoneqgLcCO0nJDKq/98ohz5T9i

FbNR/vtLaEiYFBeX3C9Ee96pP6BU26BXhw+dRSnFeyIhD+4g+/AZ0XJ1CPF19D+5

z0ojanJkh7lZn4JL+V6+mF1eOExiGrydIiiSXDA/p5FhavMMu8Om4S0sn5iaQ2aX

wRUv2SUKhbHDqhIILLeQKlB3X26obx1Vg0nRhy47qNQn/xc9oSWLAQSVOgsShQeC

6DSzrKIBdKB3V8uWOmuM7lWAoCP53bDRW+XIOu9wfpSaXN2VTyqzU7zpTq5BHX1a

+XRw8KNHZGnCSAOCofZWnKyJAhwEEAEKAAYFAlJBjYgACgkQ7Wfs1l3PaudFcQ//

UiM7EXsIHLwHxez32TzA/0uNMPWFHQN4Ezzg4PKB6Cc4amva5qbgbhoeCPuP+XPI

2ELfRviAHbmyZ/zIgqplDC4nmyisMoKlpK0Yo1w4qbix9EVVZr2ztL8F43qN3Xe/

NUSMTBgt/Jio7l5lYyhuVS3JQCfDlYGbq6NPk0xfYoYOMOZASoPhEquCxM5D4D0Z

3J3CBeAjyVzdF37HUw9rVQe2IRlxGn1YAyMb5EpR2Ij612GFad8c/5ikzDh5q6JD

tB9ApdvLkr0czTBucDljChSpFJ7ENPjAgZuH9N5Dmx2rRUj2mdBmi7HKqxAN9Kdm

+pg/6vZ3vM18rBlXmw1poQdc3srAL+6MHmIfHHrq49oksLyHwyeL8T6BO4d4nTZU

xObP7PLAeWrdrd1Sb3EWlZJ9HB/m2UL9w9Om1c6cb6X2DoCzQAStVypAE6SQCMBK

pxkWRj90L41BS62snja+BlZTELuuLTHULRkWqS3fFkUxlDSMUn96QksWlwZLcxCv

hKxJXOX+pHAiUuMIImaPQ0TBDBWWf5d8zOQlNPsyhSGFR5Skwzlg+m9ErQ+jy7Uz

UmNCNztlYgRKeckXuvr73seoKoNXHrn7vWQ6qB1IRURj2bfphsqlmYuITmcBhfFS

Dw0fdYXSDXrmG9wad98g49g4HwCJhPAl0j55f93gHLGIRgQQEQoABgUCUkGO5gAK

CRAV1ogEymzfsol4AKCI7rOnptuoXgwYx2Z9HkUKuugSRwCgkyW9pxa5EovDijEF

j1jG/cdxTOaJAhwEEAEKAAYFAlJBkdUACgkQkshDRW2mpm6aLxAAzpWNHMZVFt7e

wQnCJnf/FMLTjduGTEhVFnVCkEtI+YKarveE6pclqKJfSRFDxruZ6PHGG2CDfMig

J6mdDdmXCkN//TbIlRGowVgsxpIRg4jQVh4S3D0Nz50h+Zb7CHbjp6WAPVoWZz7b

Myp+pN7qx/miJJwEiw22Eet4Hjj1QymKwjWyY146V928BV/wDBS/xiwfg3xIVPZr

RqtiOGN/AGpMGeGQKKplkeITY7AXiAd+mL4H/eNf8b+o0Ce2Z9oSxSsGPF3DzMTL

kIX7sWD3rjy3Xe2BM20stIDrJS2a1fbnIwFvqszS3Z3sF5bLc6W0iyPJdtbQ0pt6

nekRl9nboAdUs0R+n/6QNYBkj4AcSh3jpZKe82NwnD/6WyzHWtC0SDRTVkcQWXPW

EaWLmv8VqfzdBiw6aLcxlmXQSAr0cUA6zo6/bMQZosKwiCfGl3tR4Pbwgvbyjoii

pF+ZXfz7rWWUqZ2C79hy3YTytwIlVMOnp3MyOV+9ubOsFhLuRDxAksIMaRTsO7ii

5J4z1d+jzWMW4g1B50CoQ8W+FyAfVp/8qGwzvGN7wxN8P1iR+DZjtpCt7J+Xb9Pt

L+lRKSO/aOgOfDksyt2fEKY4yEWdzq9A3VkRo1HCdUQY6SJ/qt7IyQHumxvL90F6

vbB3edrR/fVGeJsz4vE10hzy7kI1QT65Ag0EUkGMggEQAMTsvyKEdUsgEehymKz9

927

MRn9wiwfHEX5CLmpJAvnX9MITgcsTX8MKiPyrTBnyY/QzA0rh+yyhzkY/y55yxMP

INdpL5xgJCS1SHyJK85HOdN77uKDCkwHfphlWYGlBPuaXyxkiWYXJTVUggSjuO4b

jeKwDqFl/4Xc0XeZNgWVjqHtKF91wwgdXXgAzUL1/nwN3IglxiIR31y10GQdOQEG

4T3ufx6gv73+qbFc0RzgZUQiJykQ3tZK1+Gw6aDirgjQYOc90o2Je0RJHjdObyZQ

aQc4PTZ2DC7CElFEt2EHJCXLyP/taeLq+IdpKe6sLPckwakqtbqwunWVoPTbgkxo

Q1eCMzgrkRu23B2TJaY9zbZAFP3cpL65vQAVJVQISqJvDL8K5hvAWJ3vi92qfBcz

jqydAcbhjkzJUI9t44v63cIXTI0+QyqTQhqkvEJhHZkbb8MYoimebDVxFVtQ3I1p

EynOYPfn4IMvaItLFbkgZpR/zjHYau5snErR9NC4AOIfNFpxM+fFFJQ7W88JP3cG

JLl9dcRGERq28PDU/CTDH9rlk1kZ0xzpRDkJijKDnFIxT2ajijVOZx7l2jPL1njx

s4xa1jK0/39kh6XnrCgK49WQsJM5IflVR2JAi8BLi2q/e0NQG2pgn0QL695Sqbbp

NbrrJGRcRJD9sUkQTpMsLlQTABEBAAGJAiUEGAEKAA8FAlJBjIICGwwFCQgH7b8A

CgkQPLLq/MPWxmZAew//et/LToMVR3q6/qP/pf9ob/QwQ3MgejkC0DY3Md7JBRl/

6GWfySYnO0Vm5IoJofcv1hbhc/y3OeZTvK4s+BOQsNokYe34mCxZG4dypNaepkQi

x0mLujeU/n4Y0p0LTLjhGLVdKina2dM9HmllgYr4KumT58g6eGjxs2oZD6z5ty0L

viU5tx3lz3o0c3I9soH2RN2zNHVjXNW0EvWJwFLxFeLJbk/Y3UY1/kXCtcyMzLua

S5L5012eUOEvaZr5iYDKjy+wOxY4SUCNYf0GPmSej8CBbwHOF2XCwXytSzm6hNb3

5TRgCGbOSFTIy9MxfV5lpddQcdzijmuFSl8LySkL2yuJxjlI7uKNDN+NlfODIPMg

rdH0hBSyKci6Uz7Nz/Up3qdE+aISq68k+Hk1fiKJG1UcBRJidheds29FCzj3hoyZ

VDmf6OL60hL0YI1/4GjIkJyetlPzjMp8J7K3GweOUkfHcFihYZlbiMe7z+oIWEc7

0fNScrAGF/+JN3L6mjXKB6Pv+ER5ztzpfuhBJ/j7AV5BaNMmDXAVO4aTphWl7Dje

iecENuGTpkK8Ugv5cMJc4QJaWDkj/9sACc0EFgigPo68KjegvKg5R8jUPwb8E7T6

lIjBtlclVhaUrE2uLx/yTz2Apbm+GAmD8M0dQ7IYsOFlZNBW9zjgLLCtWDW+p1A=

=5gJ7

-----END PGP PUBLIC KEY BLOCK-----

D.1.3. Core Team Secretary < core-secretary@FreeBSD.org >

pub rsa4096/D8C8C83B49F26F17 2020-06-26 [SC] [expires: 2022-06-30]

Ê Key fingerprint = 4B64 E9E0 BDE9 B3EC C06B 5C66 D8C8 C83B 49F2 6F17

uid FreeBSD Core Team Secretary <core-

secretary@freebsd.org>

sub rsa4096/377C937536E4821B 2020-06-26 [E] [expires: 2022-06-30]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBF72HwABEAC5hl4kfh8DyRpp0WE5rwbnuS+wQ51EVTGs1vLho8OZ2XruzlQT

AezCnKLsqMgD/UEaBcn9kbKoeqp2sIwuEUX+P79KhRc4C8RJ8TMfDH0OtC091QVp

MYWbIsvZYCO04K+rN1Dbk2En3BOJVgTowqbZzR3hPvzeU2/P+Y3zMtpQGea2DB5d

24Q/tIuPMh89evEXOx0K5eM/4P2awSmA3J+h+r09UYjKejJ5OBUJQsMervWAHgCA

TxJQHoPXw+ZKpJB3dzyHKTMukVZhdCjK6Zt2tih/rO/CHDsitMgYRIl3w2X6pDfV

JOpvOBlzg7nooIw94v6Uxr2y/JWgOGh2qy07u4qE//y6uSl55s+Vq5TrFr79VSwB

GhY9As/0Dk1lyFisKp1/yiet2W7Pu4c99Z5dsrQPSTLFvkvonVRX8wgxRZwk6gWA

LEYklwoR0NXiqlrpBT10Tsnsa4aoUvZW6eyOWZrKsdsVn05sgRmvlfpiqBbwqldJ

0EeF/MztPuhmq4Hgn+DmmYnx/P85pZpThcfJx16VxS8nB7ExYljeC9LF8V8/1d7e

tfgAj8ezzNtr2TXSZ5gblQtYLjKdgBiBZqsxHPYHzfG8Zx3eYs2Myklf9p4lt7nv

atTroDt8pUGXfhGfoqSHSLXODfYAO9/7DOPqTy5Pan4i7aWBPP+gfK0kgQARAQAB

tDhGcmVlQlNEIENvcmUgVGVhbSBTZWNyZXRhcnkgPGNvcmUtc2VjcmV0YXJ5QGZy

ZWVic2Qub3JnPokCVAQTAQoAPhYhBEtk6eC96bPswGtcZtjIyDtJ8m8XBQJe9h8A

928

mailto:core-secretary@FreeBSD.org

AhsDBQkDx60ABQsJCAcDBRUKCQgLBRYDAgEAAh4BAheAAAoJENjIyDtJ8m8XQFwP

/RqHPMSsLlTcq5NfK2MAVGmdtpL5wf84bchVWtcXUUEwXW1wI2cdDwu9SoqudDbP

2lrbMpxWeUWAgCpPCF/vCVo4Nzd0zb1cEGKRKFiZe/4EQ8dfvqr03YyupSQvx6+P

oY+8y3kl7iHJKBkwrASraB2p+N9XDAJDgqz+1M2Xbo7rcJx64wBOCyPAxd9JWsge

d8mXyAqZlrLihsTjLbhuYbJxpKM5YjGubVaQZaNIDxUduqc8Pt9VgHvWJBc9VPPA

3B6E9/PUFZYZeZQSROkYniN9NE7keitxj/rvZkpzcaXfAoDMC7CSoLBzlP+CJZ+i

Kk7IWz4JpxiYkE/IY4VvMMYms9tRP8fVv0+R7r7yKEA9SSlH+e9qC++OoWg4b+wV

OrWtVIWvaJCtj5ZAPCutGZxBdvXEbHd/Gv6uCzG86n4huz23U+Y4iLzoAlVelnQs

Hqu1wSAUBNpplyeZ1TvrGg2pufxLh8iXfh0npDP/6J+u0GUfeX4JoAzvxlatXMYI

fBmqmcZI6ShJN8qQtCUa5OMqbnieo7Fmpf8BsLegjAsQ+8w21ATD2boinStntLzF

/yoL/z9WYxmoOdHYcQ8bildjCvtbAKrZie8sI4SgWQz2UX6KX9sc/WOmWUEtjdqB

WfGratZNoxuQLUvEDftt7r9ts1jKVUl3dMPTCfU4wcj5iQIzBBABCgAdFiEEVbCT

pybDiFVxIrrVNqQMg7DW754FAl72J74ACgkQNqQMg7DW756LaA//Z3CCF5fQ08tx

RLeqHNsS5xCYS97TjZxY6xAMBjebkS+ABkgdbedSH+YNGfdaGSD/SMtvMAmnx55t

18DDdA4pqC5x2USaHjXFdbDdxKuKMAoSAtOpipVASVmW0FkZI5C5FDe3MF8+mfGb

EPhVPwKbo7R5tk4jUPyX8wUaOAyUX9fyQnwDxN+zTHvKwnX/+qwpoKaY2N4ZOI0w

rOF1kkczibbfwvjVYcpPovGALmTccnWo1Xvpkhllg93Y21mH+T2Ub/BK3GhvgJQi

WwiDtMwelUnPLp4W1451OU1OyGzeT/XwuMPH9dsKz5Iw4/g1zqQEtZj2Gc0DP5we

HM50doTn+dVIF+WCFLhPYm0RSf8Zj8ngbX/HV2UYLB5k+uNT9YTnBVEdKVydx7Cp

IplC7XApJEfTUk7wl7YCGn5P5YolC7DSJlwcAjxdbffXLowBhgyOq+EJJgnqerZl

r4db58h2epIHRKgnSl5z4KoAGW1O5dFShBz1UYPj4cZdeE+twpcgEg3/7LMzPzF/

xQAQZ89axxXBaCPl+YVsuMJSerbNdPp1SjCs9e8Vev91tLFmt/sY4IpvbPHZavGl

/4ealh8E1zPgf8lVW9TPrUY6mjN/uDI2y39tk2EoFzOcSQhlEM6gRW8uV4q92cWM

V55hu7Vs2RrKA7fve9y+YBi3DdTwwHSJATMEEAEKAB0WIQSfAoNvUNOtWrdaxYgM

tAPk6VuW7AUCXvY98wAKCRAMtAPk6VuW7CDLB/9PSUSMV/pnC+X4ougpjpqfSJf8

5bozjkKSkNqXZmt2vJVImc/oSK13awq46FC4rAhk59lT3kaH6EKvDHQ5G8Twi07u

VotcOdtfMjXgPV6RLmo6Hps0E1nzmbsum6xeemRDf3D3n1kAdUteXNBxHTIdAbeY

p4Wxu46CC/SqD6HbnUF2o+/6dXXyV1lTnViIj6m5eFD2OQ4Jdq7GPsSjSS2XL4f9

jHZUOUJyyA0aFWjJ+SCzMkXSUnyiOCl4uUHdCgivLIRyZ/giWoQpr8sAgHXCh82h

T3BmbHgmcMgMh+wNxH878IPwUU0CKRd2dL5kOSZVCFuMnFsc9eIie5kMEJwPuQIN

BF72HwABEADT9l4GIYiFaYg2QbQ3wsmmFnP/pAZiHDxXI6wL6xCKj6o2sc1/b5j3

ILEiAoqZ5ZenXX6T7Epjal0ASkfsGo/n3vF18grSudIkXJPQXcb61fXU7xfmGAEU

HWABQG+OD/HTvUPAITVckl4LxVFkz3oqRnq13rxDk1XZYvLVWeBn8vfWF4/glz9k

etfLw71Pk9f86BuNb0vCPnWpOpZaOxKlabdGpMKDD+1RYC/L+ZEwKiLBfgXTzK3g

IWAX3kTrQjKBZzsQ0s5TFWkm+z80GVUq8HKlXUOuF8s7cX+KXGU2kYcC8DQrxPdL

jYm6N8axOn4RR8eP5ZFA0W7qMieFSHAjqCs4srdN1bGC3nS0zGsQCvtTRBbu0nen

O6uwzWQgTzWVfV+dqaEH2crnhn5CUI0A8jdbFBGDiBbWJz/QfRray1CEc8q+hZFM

OLBsVXrDVe6hUXTveGc9xAnXC+0o3nnc7WhWr1caTbbhnzlEbME8u2oLif7rkhc7

FanuQEyKa76J1zou08ZeLK/pUFXTbRCoyUEVL+VIxLESCWi1ptkDpiZey3l6fe0Q

WWRMLFMpbu3WTNl21bEwfRL03+fP1q+yGAV5hyJv/EMldd76v577dAolIsTh+aDP

PMJ7mJ5NwOuiC20HIlCjuVT5A2pBIzFfraZY/v4dzoaOpXZjEz9wIwARAQABiQI8

BBgBCgAmFiEES2Tp4L3ps+zAa1xm2MjIO0nybxcFAl72HwACGwwFCQPHrQAACgkQ

2MjIO0nybxcflQ/9FYvM/lBSzy4VFOjNsUkRtjmPtyw2dJmQOCbWoSHmibRCG26a

Upt5lp1n4LG/qEtDlus5mDETL+/TnYhCG+hhnHADc87goLwBwl37yK1NAYvOy2rm

TddjDT5vZW0yzHjHqIJlNxQ4OjMi/XjyHIzb0PGNayFVi3XkLVxWZI+lWON1btWk

gpFfEgqRqQbJxM2cSEQimkfrrE+b2/M4cGX9rThpTtpfpbyHjTsS6juo4/eIdnBA

UXpKce4Q9LB5zxDaakKoDVxxkc9R0HAAoIH4u+Fu8az+CuH2sJcVJWK7Nxct++N8

Xhj+FUS+Ay8siu+ScQjsOHOHRwr6a+6NT58eylwR5hwotmnzJHLZReqknoAjLEGT

d33jzKM/y6OqPe/oPGj2b13RkA2vRnCPm33+T57sLMonNe6hhlXs9VTgXxSAzfMa

cmVOdP+nxUsoc3MtqjE2z2BcI9WMmmJFeEgE2BOj703CQuot+8jcZFXGUW+i6V1a

k7dZEMDsbALNzxaRNGeJC6HiM1+dXFGLNHEIgBLGwdvFAxTfNauvK0p7skDWEx44

929

giaUjZYpQ21+SHjVKTUnFQiiIDORvs3jdZDaxK/Y/vSoLRUiLBiHZWa6mxQY4uc6

5nAzLZB2BiBRfdL8fEO154nWjAZBLbKhK+ke2DBoPvSWubLPJqZyh+GmZAE=

=3AI7

-----END PGP PUBLIC KEY BLOCK-----

D.1.4. Ports Management Team Secretary < portmgr-secretary@FreeBSD.org >

pub rsa2048/D8294EC3BBC4D7D5 2012-07-24 [SC]

Ê Key fingerprint = FB37 45C8 6F15 E8ED AC81 32FC D829 4EC3 BBC4 D7D5

uid FreeBSD Ports Management Team Secretary <portmgr-

secretary@FreeBSD.org>

sub rsa2048/5CC117965F65CFE7 2012-07-24 [E]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBFAOzqYBCACYd+KGv0/DduIRpSEKWZG2yfDILStzWfdaQMD+8zdWihB0x7dd

JDBUpV0o0Ixzt9mvu5CHybx+9lOHeFRhZshFXc+bIJOPyi+JrSs100o7Lo6jg6+c

Si2vME0ixG4x9YjCi8DisXIGJ1kZiDXhmVWwCvL+vLInpeXrtJnK8yFkmszCOr4Y

Q3GXuvdU0BF2tL/Wo/eCbSf+3U9syopVS2L2wKcP76bbYU0ioO35Y503rJEK6R5G

TchwYvYjSXuhv4ec7N1/j3thrMC9GNpoqjVninTynOk2kn+YZuMpO3c6b/pfoNcq

MxoizGlTu8VT4OO/SF1y52OkKjpAsENbFaNTABEBAAG0R0ZyZWVCU0QgUG9ydHMg

TWFuYWdlbWVudCBUZWFtIFNlY3JldGFyeSA8cG9ydG1nci1zZWNyZXRhcnlARnJl

ZUJTRC5vcmc+iQE4BBMBAgAiBQJQDs6mAhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIe

AQIXgAAKCRDYKU7Du8TX1QW2B/0coHe8utbTfGKpeM4BY9IyC+PFgkE58Hq50o8d

shoB9gfommcUaK9PNwJPxTEJNlwiKPZy+VoKs/+dO8gahovchbRdSyP1ejn3CFy+

H8pol0hDDU4n7Ldc50q54GLuZijdcJZqlgOloZqWOYtXFklKPZjdUvYN8KHAntgf

u361rwM4DZ40HngYY9fdGc4SbXurGA5m+vLAURLzPv+QRQqHfaI1DZF6gzMgY49x

qS1JBF4kPoicpgvs3o6CuX8MD9ewGFSAMM3EdzV6ZdC8pnpXC8+8Q+p6FjNqmtjk

GpW39Zq/p8SJVg1RortCH6qWLe7dW7TaFYov7gF1V/DYwDN5iEYEEBECAAYFAlN2

WksACgkQtzkaJjSHbFtuMwCg0MXdQTcGMMOma7LC3L5b4MEoZ+wAn0WyUHpHwHnn

pn2oYDlfAbwTloWIiQEcBBABAgAGBQJQDuVrAAoJENk3EJekc8mQ3KwIAImNDMXA

F8ajPwCZFpM6KDi3F/jpwyBPISGY1oWuYPEi1zN94k5jS90aZb3W8Y8x4JTh35Ew

b6XODi3uGLSLCmnlqu2a80yPfXf5IuWmIQdFNQxvosj9UHrg+icZGFmm+f0hPJxM

TsZREv3AvivQfnb/N3xIICxW4SjKSYXQcq4hr4ObhUx7GKnjayq+ofU2cRlujr87

uOH0fO3xhOJG4+cX5mI1HGK38k0Csc1zqYa/66Qe5dnIZz+sNXpEPMLAHIt1a45U

B967igJdZSDFN33bPl1QWmf3aUXU3d1VttiSyHkpm4kb9KgsDkUk1IJ5nUe9OXyd

WtoqNW5afDa5N0aIRgQQEQIABgUCUA7lwwAKCRB59uBxdBRinNh2AJ41+zfsaQSR

HWvSkqOXGcP/fgOduwCfUJDT+M1eXe2udmKof/9yzGYMirKJASIEEAECAAwFAlAa

IT8FAwASdQAACgkQlxC4m8pXrXwCHAf+J7l+L7AvRpqlQcezjnjFS/zG1098qkDf

lThHZlpVnrBMJZaXdvL6LzVgiIYVWZC5CSSazW9EWFjp9VjM7FBHdWFZNMV7GAuU

t0jzx6gGXOWwi+/v/hs1P11RyDZN5hICHdPNmyZVupciDxe+sIEP9aEbVxcaiccq

zM/pFzIVIMMP5tCiA42q6Mz3h0hy6hntUKptS8Uon6sje5cDVcVlKAUj1wO2cphC

qkYlwMQfZV5J9f/hcW5ODriD3cBwK8SocA2Cq5JYF8kYDL1+pXnUutGnvAHUYt87

RWvQdKmfXjzBcMFJ2LlPUB1+IFvwQ13V9R8j9B/EdLmSWQYT9qRA2okCHAQTAQoA

BgUCV1XMpwAKCRCtu/hhCjeJt2CyD/9JLe+Ck23CJkeRSF8oC+4SFOUdSAmejSzn

klPwmEClffABYd/kckO1T6um+2FUcXuJZQE1nKKUNvZ8pBWwsm1RDHsyroKi/XB1

0a1Tdx/rvlU88ytbeLfUCLzoCrf6pkMQWoU6/3qS6elV0WwOlDufk+XjD1sja2wu

sshG8y+1WCA5JjP3rZdD9NVdzo5DgkotTRUfuYN1LJIN4zlDgHj7FVP7wW7+R0cZ

930

mailto:portmgr-secretary@FreeBSD.org

FoOiNsLJCA0FN8SiyU98UysjawLiIY9dTJz6XVA0DgB0TZWO3mWiDjITeKrdGcqf

PNiJhmvUKBkn07YpTPNfkoTT/p/q5ChYmu0ubGeyS1ELKjmklJ+DzynfZLzvnXYX

Ngo5ckeuqEqUNxM0J63v8lmfhDRROFveqHWdp0XMxXVmR5bMunSldg5EZsoLyQbN

+ScIPnDTAEPGrCtf0t84RQxNQeET6/WBbZfzeSeAFmpBFCdicsZ6Mjwtwjr4+o15

n1QMTZco1NaTqf8vXwzl9wM4aYtg1OkF4z8HdHuy50CHCet4mT5eJgwZUfFvXdbM

pHXprEI0Y9OOL4aMinC1egF3dXt/0n57i6CE+E2k3UJPNvMrtp0HaDEnKZ8cfkBU

EBzkUYi5wwqntHV2JRisqoRnHdvJT7ImlHMe7WaJsifBK874PnToaKg8P6K1Tph+

FyLxULaYjYkCHAQSAQgABgUCVBg2zwAKCRDqsDxYv9xHj1klEADXYJdHC3zsdx7w

DsJsttWdykcZoOd/VUKUdN0BAU72nLV0tLn4uFjETA6MhHZVxzwIDTeLB8kqyEpc

fZnoVbqJIUJz1sJXMdOty7CwZzlZlAwmUaIfFiazJY1p398JbyYfSrVKNOpw9wCm

Db7WP9dBritwvjaLzu8HQsiztO0S/5ha/EDfTU3qocBUTjbCtGR9LqAmPE4X8+li

F2EfZMEoJd3rJWsYv2y/k6pSgC/MpQewnyr6f+JQ/781UoZB6PpxCxfu4D6xlOyd

ERBUg+FfDAWYR+KX+DGOalRlUyaSz8Nvxl8/b0Im/AQhx9afqyEZxIDpg52zt8jJ

t3wx23YP8EQGUgwF8pIrj3wFSBSG3a/cskiBNUIhChIR9hQrVPUahN/jx7DGAGxk

/Ka9qsRGYTHfSr9jjTUQ+htfeFBRDR0nkZKMo5+Wk/cAcBKVbPlBpwvnzT3fh+wL

cF3ErBbx5jp+BoFee8D6ATeUvQxMcgVbDPUkgMsy3EtKMVO10jhIoXoVV+Sg9GZ8

zMEy1tORKn0zsd2ZgXC2sRJOm5ttCSdYQ4ddbM1A9jg6tiRx4hES16GDywvkL8P2

M9+qyIfjQxjGU33f/r8zp9DyNT1VlrtwhFxtOoMdmrsbYOCTja4Xg14hK1hRac0k

GB7bj6w97p8uMrQT3PlSMtoyrRyo7bkBDQRQDs6mAQgAzNxJYpf5PrqV8pdRXkn3

6Fe45q671YtbZ2WrT7D0CVZ8Z+AZsxnP/tiY1SrM2MepCeA2xBAhKGsWBWo1aRk5

mfZOksKsiXsi2XeBVhdZlCkrOMKBTVian7I1lH59ZnNIMX0Nl0tlj3L1IjeWWNvf

ej43URV81S9EmSwpjaWboatr2A+1oJku5m7nPD9JIOckE1TzBsyhx7zIUN9w6MKr

7gFw8DCzypwUKyYgKYToVm8QlkT/L3B0fuQHWhT6ROGk4o8SC71ia5tc1TzUzGEZ

1AQO8bbnbmJLBDKveWHCoaeAkRzINzoD9wAn9z4pnilze59QtKC1cOqUksTvBSDh

6wARAQABiQEfBBgBAgAJBQJQDs6mAhsMAAoJENgpTsO7xNfVOHoH/i5VyggVdwpq

PX8YBmN5mXQziYZNQoiON8IhOsxpX4W2nXCj5m6MACV6nJDVV6wyUH8/VvDQC9nH

arCe1oaNsHXJz0HamYt5gHJ0G1bYuBcuJp/FEjLa48XFI7nXQjJHn8rlwZMjK/PW

j1lw2WZiekviuzTEDH8c3YStGJSa+gYe8Eyq3XJVAe2VQOhImoWgGDR3tWfgrya/

IdEFb/jmjHSG5XUfbI0vNwqlf832BqSQKPG/Zix4MmBJgvAz4R71PH8WBmbmNFjD

elxVyfz80+iMgEb9aL91MfeBNC2KB1pFmg91mQTsiq7ajwVLVJK8NplHAkdLmkBC

O8MgMjzGhlE=

=iw7d

-----END PGP PUBLIC KEY BLOCK-----

D.1.5. < doceng-secretary@FreeBSD.org >

pub rsa2048/E1C03580AEB45E58 2019-10-31 [SC] [expires: 2022-10-30]

Ê Key fingerprint = F24D 7B32 B864 625E 5541 A0E4 E1C0 3580 AEB4 5E58

uid FreeBSD Doceng Team Secretary <doceng-

secretary@freebsd.org>

sub rsa2048/9EA8D713509472FC 2019-10-31 [E] [expires: 2022-10-30]

931

mailto:doceng-secretary@FreeBSD.org

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBF27FFcBCADeoSsIgyQUY8vREwkTikwFFlNg31MVy5s/Nq1cNK1PRfRMnprS

yfB62KqbYuz16bmQKaA9zHN4FGfiTvR6tl66LVHm1s/5HPiLv8sP14GsruLro9zN

v72dO7a9i68bMw+jarPOnu9dGiDFEI0dACOkdCGEYKEUapQeNpmWRrQ46BeXyFwF

JcNx76bJJUkwk6fWC0W63D762e6lCEX6ndoaPjjLBnFvtx13heNGUc8RukBwe2mA

U5pSGHj47J05bdWiRSwZaXa8PcW+20zTWaP755w7zWe4h60GANY7OsT9nuOqsioJ

QonxTrJuZweKRV8fNQ1EfDws3HZr7/7iXvO3ABEBAAG0PEZyZWVCU0QgRG9jZW5n

IFRlYW0gU2VjcmV0YXJ5IDxkb2Nlbmctc2VjcmV0YXJ5QGZyZWVic2Qub3JnPokB

VAQTAQoAPhYhBPJNezK4ZGJeVUGg5OHANYCutF5YBQJduxRXAhsDBQkFo5qABQsJ

CAcDBRUKCQgLBRYDAgEAAh4BAheAAAoJEOHANYCutF5YB2IIALw+EPYmOz9qlqIn

oTFmk/5MrcdzC5iLEfxubbF6TopDWsWPiOh5mAuvfEmROSGf6ctvdYe9UtQV3VNY

KeeyskeFrIBOFo2KG/dFqKPAWef6IfhbW3HWDWo5uOBg01jHzQ/pB1n6SMKiXfsM

idL9wN+UQKxF3Y7S/bVrZTV0isRUolO9+8kQeSYT/NMojVM0H2fWrTP/TaNEW4fY

JBDAl5hsktzdl8sdbNqdC0GiX3xb4GvgVzGGQELagsxjfuXk6PfOyn6Wx2d+yRcI

FrKojmhihBp5VGFQkntBIXQkaW0xhW+WBGxwXdaAl0drQlZ3W+edgdOl705x73kf

Uw3Fh2a5AQ0EXbsUVwEIANEPAsltM4vFj2pi5xEuHEcZIrIX/ZJhoaBtZkqvkB+H

4pu3/eQHK5hg0Dw12ugffPMz8mi57iGNI9TXd8ZYMJxAdvEZSDHCKZTX9G+FcxWa

/AzKNiG25uSISzz7rMB/lV1gofCdGtpHFRFTiNxFcoacugTdlYDiscgJZMJSg/hC

GXBdEKXR5WRAgAGandcL8llCToOt1lZEOkd5vJM861w6evgDhAZ2HGhRuG8/NDxG

r4UtlnYGUCFof/Q4oPNbDJzmZXF+8OQyTNcEpVD3leEOWG1Uv5XWS2XKVHcHZZ++

ISo/B5Q6Oi3SJFCVV9f+g09YF+PgfP/mVMBgif2fT20AEQEAAYkBPAQYAQoAJhYh

BPJNezK4ZGJeVUGg5OHANYCutF5YBQJduxRXAhsMBQkFo5qAAAoJEOHANYCutF5Y

kecIAMTh2VHQqjXHTszQMsy3NjiTVVITI3z+pzY0u2EYmLytXQ2pZMzLHMcklmub

5po0X4EvL6bZiJcLMI2mSrOs0Gp8P3hyMI40IkqoLMp7VA2LFlPgIJ7K5W4oVwf8

khY6lw7qg2l69APm/MM3xAyiL4p6MU8tpvWg5AncZ6lxyy27rxVflzEtCrKQuG/a

oVaOlMjH3uxvOK6IIxlhvWD0nKs/e2h2HIAZ+ILE6ytS5ZEg2GXuigoQZdEnv71L

xyvE9JANwGZLkDxnS5pgN2ikfkQYlFpJEkrNTQleCOHIIIp8vgJngEaP51xOIbQM

CiG/y3cmKQ/ZfH7BBvlZVtZKQsI=

=MQKT

-----END PGP PUBLIC KEY BLOCK-----

932

	Untitled
	FreeBSD Handbook
	Preface
	Intended Audience
	Changes from the Third Edition
	Changes from the Second Edition (2004)
	Changes from the First Edition (2001)
	Organization of This Book
	Conventions used in this book
	Acknowledgments

	Part I: Getting Started
	Chapter 1. Introduction
	1.1. Synopsis
	1.2. Welcome to FreeBSD!
	1.3. About the FreeBSD Project

	Chapter 2. Installing FreeBSD
	2.1. Synopsis
	2.2. Minimum Hardware Requirements
	2.3. Pre-Installation Tasks
	2.4. Starting the Installation
	2.5. Using bsdinstall
	2.6. Allocating Disk Space
	2.7. Fetching Distribution Files
	2.8. Accounts, Time Zone, Services and Hardening
	2.9. Network Interfaces
	2.10. Troubleshooting
	2.11. Using the Live CD

	Chapter 3. FreeBSD basics
	3.1. Synopsis
	3.2. Virtual Consoles and Terminals
	3.3. Users and Basic Account Management
	3.4. Permissions
	3.5. Directory Structure
	3.6. Disk Organization
	3.7. Mounting and Unmounting File Systems
	3.8. Processes and Daemons
	3.9. Shells
	3.10. Text Editors
	3.11. Devices and Device Nodes
	3.12. Manual Pages

	Chapter 4. Installing Applications: Packages and Ports
	4.1. Synopsis
	4.2. Overview of Software Installation
	4.3. Finding Software
	4.4. Using pkg for Binary Package Management
	4.5. Using the Ports Collection
	4.6. Building Packages with Poudriere
	4.7. Post-Installation Considerations
	4.8. Dealing with Broken Ports

	Chapter 5. The X Window System
	5.1. Synopsis
	5.2. Terminology
	5.3. Installing Xorg
	5.4. Xorg Configuration
	5.5. Using Fonts in Xorg
	5.6. The X Display Manager
	5.7. Desktop Environments
	5.8. Installing Compiz Fusion
	5.9. Troubleshooting

	Part II: Common Tasks
	Chapter 6. Desktop Applications
	6.1. Synopsis
	6.2. Browsers
	6.3. Productivity
	6.4. Document Viewers
	6.5. Finance

	Chapter 7. Multimedia
	7.1. Synopsis
	7.2. Setting Up the Sound Card
	7.3. MP3 Audio
	7.4. Video Playback
	7.5. TV Cards
	7.6. MythTV
	7.7. Image Scanners

	Chapter 8. Configuring the FreeBSD Kernel
	8.1. Synopsis
	8.2. Why Build a Custom Kernel?
	8.3. Finding the System Hardware
	8.4. The Configuration File
	8.5. Building and Installing a Custom Kernel
	8.6. If Something Goes Wrong

	Chapter 9. Printing
	9.1. Quick Start
	9.2. Printer Connections
	9.3. Common Page Description Languages
	9.4. Direct Printing
	9.5. LPD (Line Printer Daemon)
	9.6. Other Printing Systems

	Chapter 10. Linux® Binary Compatibility
	10.1. Synopsis
	10.2. Configuring Linux® Binary Compatibility
	10.3. Advanced Topics

	Chapter 11. WINE
	11.1. Synopsis
	11.2. WINE Overview & Concepts
	11.3. Installing WINE on FreeBSD
	11.4. Running a First WINE Program on FreeBSD
	11.5. Configuring WINE Installation
	11.6. WINE Management GUIs
	11.7. WINE in Multi-User FreeBSD Installations
	11.8. WINE on FreeBSD FAQ

	Part III: System Administration
	Chapter 12. Configuration and Tuning
	12.1. Synopsis
	12.2. Starting Services
	12.3. Configuring man:cron[8]
	12.4. Managing Services in FreeBSD
	12.5. Setting Up Network Interface Cards
	12.6. Virtual Hosts
	12.7. Configuring System Logging
	12.8. Configuration Files
	12.9. Tuning with man:sysctl[8]
	12.10. Tuning Disks
	12.11. Tuning Kernel Limits
	12.12. Adding Swap Space
	12.13. Power and Resource Management

	Chapter 13. The FreeBSD Booting Process
	13.1. Synopsis
	13.2. FreeBSD Boot Process
	13.3. Configuring Boot Time Splash Screens
	13.4. Device Hints
	13.5. Shutdown Sequence

	Chapter 14. Security
	14.1. Synopsis
	14.2. Introduction
	14.3. One-time Passwords
	14.4. TCP Wrapper
	14.5. Kerberos
	14.6. OpenSSL
	14.7. VPN over IPsec
	14.8. OpenSSH
	14.9. Access Control Lists
	14.10. Monitoring Third Party Security Issues
	14.11. FreeBSD Security Advisories
	14.12. Process Accounting
	14.13. Resource Limits
	14.14. Shared Administration with Sudo

	Chapter 15. Jails
	15.1. Synopsis
	15.2. Terms Related to Jails
	15.3. Creating and Controlling Jails
	15.4. Fine Tuning and Administration
	15.5. Updating Multiple Jails
	15.6. Managing Jails with ezjail

	Chapter 16. Mandatory Access Control
	16.1. Synopsis
	16.2. Key Terms
	16.3. Understanding MAC Labels
	16.4. Planning the Security Configuration
	16.5. Available MAC Policies
	16.6. User Lock Down
	16.7. Nagios in a MAC Jail
	16.8. Troubleshooting the MAC Framework

	Chapter 17. Security Event Auditing
	17.1. Synopsis
	17.2. Key Terms
	17.3. Audit Configuration
	17.4. Working with Audit Trails

	Chapter 18. Storage
	18.1. Synopsis
	18.2. Adding Disks
	18.3. Resizing and Growing Disks
	18.4. USB Storage Devices
	18.5. Creating and Using CD Media
	18.6. Creating and Using DVD Media
	18.7. Creating and Using Floppy Disks
	18.8. Using NTFS Disks
	18.9. Backup Basics
	18.10. Memory Disks
	18.11. File System Snapshots
	18.12. Disk Quotas
	18.13. Encrypting Disk Partitions
	18.14. Encrypting Swap
	18.15. Highly Available Storage (HAST)

	Chapter 19. GEOM: Modular Disk Transformation Framework
	19.1. Synopsis
	19.2. RAID0 - Striping
	19.3. RAID1 - Mirroring
	19.4. RAID3 - Byte-level Striping with Dedicated Parity
	19.5. Software RAID Devices
	19.6. GEOM Gate Network
	19.7. Labeling Disk Devices
	19.8. UFS Journaling Through GEOM

	Chapter 20. The Z File System (ZFS)
	20.1. What Makes ZFS Different
	20.2. Quick Start Guide
	20.3. zpool Administration
	20.4. zfs Administration
	20.5. Delegated Administration
	20.6. Advanced Topics
	20.7. Additional Resources
	20.8. ZFS Features and Terminology

	Chapter 21. Other File Systems
	21.1. Synopsis
	21.2. Linux® File Systems

	Chapter 22. Virtualization
	22.1. Synopsis
	22.2. FreeBSD as a Guest on Parallels for Mac OS® X
	22.3. FreeBSD as a Guest on Virtual PC for Windows®
	22.4. FreeBSD as a Guest on VMware Fusion for Mac OS®
	22.5. FreeBSD as a Guest on VirtualBox™
	22.6. FreeBSD as a Host with VirtualBox™
	22.7. FreeBSD as a Host with bhyve
	22.8. FreeBSD as a Xen™-Host

	Chapter 23. Localization - i18n/L10n Usage and Setup
	23.1. Synopsis
	23.2. Using Localization
	23.3. Finding i18n Applications
	23.4. Locale Configuration for Specific Languages

	Chapter 24. Updating and Upgrading FreeBSD
	24.1. Synopsis
	24.2. FreeBSD Update
	24.3. Updating the Documentation Set
	24.4. Tracking a Development Branch
	24.5. Updating FreeBSD from Source
	24.6. Tracking for Multiple Machines

	Chapter 25. DTrace
	25.1. Synopsis
	25.2. Implementation Differences
	25.3. Enabling DTrace Support
	25.4. Using DTrace

	Chapter 26. USB Device Mode / USB OTG
	26.1. Synopsis
	26.2. USB Virtual Serial Ports
	26.3. USB Device Mode Network Interfaces
	26.4. USB Virtual Storage Device

	Part IV: Network Communication
	Chapter 27. Serial Communications
	27.1. Synopsis
	27.2. Serial Terminology and Hardware
	27.3. Terminals
	27.4. Dial-in Service
	27.5. Dial-out Service
	27.6. Setting Up the Serial Console

	Chapter 28. PPP
	28.1. Synopsis
	28.2. Configuring PPP
	28.3. Troubleshooting PPP Connections
	28.4. Using PPP over Ethernet (PPPoE)
	28.5. Using PPP over ATM (PPPoA)

	Chapter 29. Electronic Mail
	29.1. Synopsis
	29.2. Mail Components
	29.3. Sendmail Configuration Files
	29.4. Changing the Mail Transfer Agent
	29.5. Troubleshooting
	29.6. Advanced Topics
	29.7. Setting Up to Send Only
	29.8. Using Mail with a Dialup Connection
	29.9. SMTP Authentication
	29.10. Mail User Agents
	29.11. Using fetchmail
	29.12. Using procmail

	Chapter 30. Network Servers
	30.1. Synopsis
	30.2. The inetd Super-Server
	30.3. Network File System (NFS)
	30.4. Network Information System (NIS)
	30.5. Lightweight Directory Access Protocol (LDAP)
	30.6. Dynamic Host Configuration Protocol (DHCP)
	30.7. Domain Name System (DNS)
	30.8. Apache HTTP Server
	30.9. File Transfer Protocol (FTP)
	30.10. File and Print Services for Microsoft® Windows® Clients (Samba)
	30.11. Clock Synchronization with NTP
	30.12. iSCSI Initiator and Target Configuration

	Chapter 31. Firewalls
	31.1. Synopsis
	31.2. Firewall Concepts
	31.3. PF
	31.4. IPFW
	31.5. IPFILTER (IPF)
	31.6. Blacklistd

	Chapter 32. Advanced Networking
	32.1. Synopsis
	32.2. Gateways and Routes
	32.3. Wireless Networking
	32.4. USB Tethering
	32.5. Bluetooth
	32.6. Bridging
	32.7. Link Aggregation and Failover
	32.8. Diskless Operation with PXE
	32.9. IPv6
	32.10. Common Address Redundancy Protocol (CARP)
	32.11. VLANs

	Part V: Appendices
	Appendix A: Obtaining FreeBSD
	A.1. CD and DVD Sets
	A.2. FTP Sites
	A.3. Using Subversion
	A.4. Using rsync

	Appendix B: Bibliography
	B.1. Books Specific to FreeBSD
	B.2. Users' Guides
	B.3. Administrators' Guides
	B.4. Programmers' Guides
	B.5. Operating System Internals
	B.6. Security Reference
	B.7. Hardware Reference
	B.8. UNIX® History
	B.9. Periodicals, Journals, and Magazines

	Appendix C: Resources on the Internet
	C.1. Websites
	C.2. Mailing Lists
	C.3. Usenet Newsgroups
	C.4. Official Mirrors

	Appendix D: OpenPGP Keys
	D.1. Officers

