25 Years Of Resilient Systems

Dave Cottlehuber dch@skunkwerks.at

Graphics

@maycontainart

5/

Predictable Modes of Failure

Delayed Enterprise Financial System

- Campus-wide
- Novell NetWare
- OpenVMS
- Various Linux Systems
- Windows NT
- Solaris or SunOS I forget

Spoke & Hub Batch Processing

- Operational Simplicity
- Idempotent Records
- Single Central Server
- Collector Agents
- Transfer Agents

Loosely Coupled

- Operational Simplicity
- Autonomous Agents are Resilient
- Open Source is a 10x advantage
- System Lifespan exceeds Employment Lifespan

The Single Server

- Conceptually Simple
- Scales Well
- Until It Fails
- Good Performance
- Moore's Law helps

Takeaways

- Co-located Services Are Fast & Easy
- All Your Eggs in a Single Basket
- Upgrades are Hard
- Failure is even Harder
- Infrastructure is Expensive

Double Up On Everything

- Redundancy
- But Not Robustness
- Quorum Is Hard
- DB Integrity Is Hard

Takeaways

- Traded Simplicity For Redundancy
- Clusters Not Well Understood
- Split Brain Integrity Problems
- Want Load Balancers & Fancy Networks

Theory – In Bounded Time

- Byzantine Consensus (Shostak, 1978)
- Impossibility of Distributed Consensus with One Faulty Process (Fischer, Lynch, Paterson, 1985)
- View-stamped Replication (Oki, Liskov, 1988)
- Paxos Parliament (Lamport, 1989)
- Practical Byzantine Fault Tolerance (Castro, Liskov 1999)
- Wait until 2014 for Raft paper (Ongaro, Osterhout, 2014)
- CAP conjecture (Brewer) and theorem (Gilbert, Lynch, 2002)

Byzantine Generals

- Coordination under adversarial conditions
- Multiple generals must agree on attack/retreat to win the battle or risk annihilation
- Some generals may be traitors
- Communication through messengers only
- 3n + 1 nodes to accommodate n failure

FLP Impossibility Result

- No deterministic algorithm can solve consensus in asynchronous systems in bounded time
- Even a single crash/failure/hostile agent is enough
- No bounds on message delays or processing time

- Consensus is impossible without additional assumptions
- Timeouts, failure detection, randomisation
- Partial synchrony required, or eventual synchrony

CAP the Impossible Triangle

- Consistency: all node see the same data simultaneously
- Availability: system returns responses despite failures
- Partition Tolerance: system continues to accept writes despite network splits

- Only 2/3 properties possible
- Partitions are inevitable
- Thus CP or AP under partition failure
- Bounded time (again!)
- You can't skip P, so either C or A

Takeaways

- Definitely Not Operationally Simple
- Excellent Scalability, horizontal & regional
- Database Layer still not ideal
- Consensus is Genuinely Hard

Theory - Distributed Systems

- Convergent & Commutitative Replicated Datatypes
 - Shapiro, 2011
- More Paxos
 - Lamport & Friends
- Raft Algorithm (Ongaro, Osterhout, 2014)
 - Logo by Andrea Ruygt

Raft In a Nutshell

- Replicated State Machine
- Agreement on Ordered Transitions
- Trusted Leaders & Followers
- Log Replication
- Not Byzantine
- Timeouts & Heartbeats

FOLLOWER

Takeaways

- Solved Cluster Problem
- Operationally Simple
- But Problems Cascade
- Performance & Throughput drastically compromised compared to optimal single-node performance

Raft & Blob Stores

Hacks and Workarounds

Sun Sun

- Smart Clients
 - batching writes
 - knowledge of cluster topology
- Reduce need for quorum
 - Partitioned writes, coalesce quorum updates

A Secret Hack

- Squint hard
- Everything looks like a queue
- What happens when the queue is full?
- Model that behaviour
- Monitor & log it

In Bounded Time!

Log-replicated idempotent state machines across loosely coupled standards-based repeatable composable infrastructure, in bounded time.

Mastodon: @maycontainart@mastodon.art

E-Mail: contact@maycontain.art

CAP

FLP

In Bounded Time!

May contain art

LEADER

FOLLOWER

READS

