

An Overview of the Timing Facilities in the
FreeBSD Kernel

Davide Italiano
davide@FreeBSD.org

Institute of Biostructures and Bioimaging
Naples, Italy
April 6, 2013

Timers: why you should care

► Many modern computerized tasks are driven by timers

► Kernel drivers/system calls dealing with time need a
mechanism to call functions at later time

Callout(9)

► KPI that allows a function (with argument) to
be called in the future
► Future time expressed in number of ticks
(relative value)

int callout_reset(struct callout *c, int ticks,
timeout_t *func, void *arg);

void callout_init(struct callout *c, int mpsafe);

void callout_stop(struct callout *c);

Callout consumers (kernel)

► Kernel API relying more or less directly on
callout(9)

int cv_timedwait(struct cv *cvp, lock, int timo);

int msleep(void *chan, struct mtx *mtx,
 int priority, const char *wmesg, int timo);

void sleepq_set_timeout(void *wchan, int timo);
int sleepq_timedwait(void *wchan);

Callout consumers (userland)

► Userland API relying more or less directly on
callout(9)

int select(int nfds, fd_set *readfds,
 fd_set *wriztefds, fd_set *exceptfds,
 struct timeval *timeout);

void usleep(unsigned long usec);

int kevent(int kq, const struct kevent *changelist,
 int nchanges, struct kevent *eventlist,
 int nevents, const struct timespec *timeout);

 6

Callout consumers (some of them)

select(2)usleep(2) poll(2)

condvar(9)sleep(9)

sleepq(9)

callout(9)

KERNEL

USERLAND

Granularity of tick
► int ticks is a global kernel variable which
keeps track of time elapsed since boot
► Two kind of hw timers: periodic/one-shot
► (Periodic) timers generated interrupts hz times
per second (tunable, generally equals to 1000
on most systems)
► On every interrupt hardclock() is called and
ticks updated by one unit

Granularity of tick (2)

► Hz = 1000 means 1ms resolution
► Intervals rounded to the next tick!
► The fallout? (e.g. for userspace consumers)

► Process ask to suspend execution for 1 musec

► usleep(1) is called

► Process awakened (at least) after 1 millisecond

Current callout(9) implementation

► Array of n unsorted lists

► O(1) average time for

most of the operations

► Every tick the bucket

pointed by ticks ticks mod n mod n

is scanned for expired

callouts (even if empty)

► SWI scheduled to execute

callback function

0

...

ticks % i - 1

ticks % i

ticks % i + 1

...

n-1

ticks
event

event

Some recent'ish changes

► Global callwheel data structure replaced with
per-CPU callwheel

► Scalability/performance greatly improved

► KPI extended

int callout_reset_on(struct callout *c, int ticks,
timeout_t *func, void *arg, int cpu);

Current design analysis

► Goodies
► No hardware assumptions

► Reading a global variable is cheap

► Drawbacks
► Lack of precision

► CPU woken up every tick

► No way to defer/coalesce callouts

► All the callouts run in SWI context

New design

► Improve the accuracy of events removing the
concept of periods
► Avoid periodic CPU wakeups in order to reduce
energy consumption

► Group events close in time to reduce the
number of interrupts/processor wakeups
► Keep compatibility with existing KPI
► Don't introduce performance penalties

New KPI

► Userland services provide a fair enough level
of precision (microseconds)

►They can't be touched at all due to POSIX

► Kernel API built around the concept of tick:
►32-bit tick can't represent microseconds
granularity without quickly overflowing

►Need to switch to another type

New KPI (2)

► There are three types in FreeBSD to represent time:

► struct timespec (time_t + long, 64-128 bits, decimal)

► struct timeval (time_t + long, 64-128 bits, decimal)

► struct bintime (time_t + uint64_t, 96-128 bits, fixed point)

► Math with bintime is easier, but ...

► 128 bits are overkill

► Hardware clocks have short term stabilities approaching
1e-8, but likely as bad as 1e-6.

► Compilers don’t provide a native int128_t or int96_t type.

A new type: sbintime_t

► Think of it as a 'shrinked bintime'

► 32 bit integer part

► 32 bit fractional part

► Easily fit in int64_t (readily available in the C language)

► Math/comparisons are trivial

► SBT_1S ((sbintime_t)1 << 32)

► SBT_1M (SBT_1S * 60)

► SBT_1MS (SBT_1S / 1000)

► if (time1 <= time2)

New KPI proposed

int callout_reset_sbt(struct callout *c,
sbintime_t time, sbintime_t precision,
timeout_t *func, void *arg, int flags);

int callout_reset_sbt_on(struct callout *c,
sbintime_t time, sbintime_t precision,
timeout_t *func, void *arg, int cpu, int flags);

int callout_reset_sbt(struct callout *c,
sbintime_t time, sbintime_t precision,
timeout_t *func, void *arg, int flags);

int callout_reset(struct callout *c, int ticks,
timeout_t *func, void *arg, int flags);

Changes to the backend

► “Tickless“ callwheel:
► If one-shot timer available, scan buckets in the
future to find next event

► Schedule next interrupt at that time

► If CPU is idle, wake up every ½ second

Changes to the backend (2)

► Hash function revisited to take a subset of bits from integer
part of sbintime_t and the others from fractional part

► Designed in a way key changes approximately every 4ms

► Rationale behind this choice:

► The callwheel bucket should not be too big to not rescan events in
current bucket several times if several events are scheduled close to
each other.

► The callwheel bucket should not be too small to minimize number of
sequentially scanned empty buckets during events processing.

Changes to the backend (3)

► Time passed to callout is not anymore
relative but absolute
► Need to know current time:
► Two ways to obtain it:

► binuptime(): goes directly to the hardware

► getbinuptime(): read a cached variable updated
from time to time

Changes to the backend (4)

► Current time: take the best of the two worlds
► For small timeouts, use expensive but precise
binuptime()
► After a given threshold, use cheap but less
precise getbinuptime()
► Rationale: if the threshold is carefully chosen,
error is bounded by a given percentage

Coalesce/defer events

► Callout structure augmented
► New KPI specifies a precision argument

► Default level of accuracy for kernel services:
extimation based on timeout value passed and other
global parameters (hz)

► Tunable using the sysctl(3) interface

► Aggregation checked when the wheel is processed:

► Precision + time fields of callout used to find a set of
events which allowed times overlap

CPU-affinity/cache effects

► SWI complicates the job of the scheduler

► Possibility to wake up another CPU (it may be
expensive from deep sleep state)

► Useless context switch

► Other CPU caches unlikely contains useful data

► Allow to run from hw interrupt context specifying
C_DIRECT flag

► Eliminates the problem above

► Enforces additional constraints in locking

SWI vs direct dispatch

CPU0 PROCESS IDLE IRQ SWI IDLE

CPU1 IDLE IDLE IDLE PROCESS PROCESS

CPU0 PROCESS IDLE IRQ PROCESS PROCESS

CPU1 IDLE IDLE IDLE IDLE IDLE

Experimental results (amd64)

Experimental results (arm)

Thank you for your attention!

flood me with questions :-)

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26

