
ARM® Instruction Set
Quick Reference Card

Key to Tables
{cond} Refer to Table Condition Field {cond}. Omit for unconditional execution. <a_mode2> Refer to Table Addressing Mode 2.
<Operand2> Refer to Table Flexible Operand 2. Shift and rotate are only available as part of Operand2. <a_mode2P> Refer to Table Addressing Mode 2 (Post-indexed only).
<fields> Refer to Table PSR fields. <a_mode3> Refer to Table Addressing Mode 3.
<PSR> Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register) <a_mode4L> Refer to Table Addressing Mode 4 (Block load or Stack pop).
{S} Updates condition flags if S present. <a_mode4S> Refer to Table Addressing Mode 4 (Block store or Stack push).
C*, V* Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later. <a_mode5> Refer to Table Addressing Mode 5.
Q Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR. <reglist> A comma-separated list of registers, enclosed in braces, { and }.
x,y B meaning half-register [15:0], or T meaning [31:16]. {!} Updates base register after data transfer if ! present.
<immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits. +/- + or –. (+ may be omitted.)
<immed_8*4> A 10-bit constant, formed by left-shifting an 8-bit value by two bits. § Refer to Table ARM architecture versions.

Operation § Assembler S updates Q Action
Move Move MOV{cond}{S} Rd, <Operand2> N Z C Rd := Operand2

NOT MVN{cond}{S} Rd, <Operand2> N Z C Rd := 0xFFFFFFFF EOR Operand2
PSR to register 3 MRS{cond} Rd, <PSR> Rd := PSR
register to PSR 3 MSR{cond} <PSR>_<fields>, Rm PSR := Rm (selected bytes only)
immediate to PSR 3 MSR{cond} <PSR>_<fields>, #<immed_8r> PSR := immed_8r (selected bytes only)
40-bit accumulator to register XS MRA{cond} RdLo, RdHi, Ac RdLo := Ac[31:0], RdHi := Ac[39:32]
register to 40-bit accumulator XS MAR{cond} Ac, RdLo, RdHi Ac[31:0] := RdLo, Ac[39:32] := RdHi

Arithmetic Add ADD{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2
with carry ADC{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2 + Carry
saturating 5E QADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + Rn)
double saturating 5E QDADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + SAT(Rn * 2))

Subtract SUB{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn – Operand2
with carry SBC{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn – Operand2 – NOT(Carry)
reverse subtract RSB{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Operand2 – Rn
reverse subtract with carry RSC{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Operand2 – Rn – NOT(Carry)
saturating 5E QSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm – Rn)
double saturating 5E QDSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm – SAT(Rn * 2))

Multiply 2 MUL{cond}{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0]
accumulate 2 MLA{cond}{S} Rd, Rm, Rs, Rn N Z C* Rd := ((Rm * Rs) + Rn)[31:0]
unsigned long M UMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs)
unsigned accumulate long M UMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)
signed long M SMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs)
signed accumulate long M SMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs)
signed 16 * 16 bit 5E SMULxy{cond} Rd, Rm, Rs Rd := Rm[x] * Rs[y]
signed 32 * 16 bit 5E SMULWy{cond} Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16]
signed accumulate 16 * 16 bit 5E SMLAxy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + Rm[x] * Rs[y]
signed accumulate 32 * 16 bit 5E SMLAWy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + (Rm * Rs[y])[47:16]
signed accumulate long 16 * 16 bit 5E SMLALxy{cond} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]

Multiply with internal 40-bit accumulate XS MIA{cond} Ac, Rm, Rs Ac := Ac + Rm * Rs
packed halfword XS MIAPH{cond} Ac, Rm, Rs Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]
halfword XS MIAxy{cond} Ac, Rm, Rs Ac := Ac + Rm[x] * Rs[y]

Count leading zeroes 5 CLZ{cond} Rd, Rm Rd := number of leading zeroes in Rm
Logical Test TST{cond} Rn, <Operand2> N Z C Update CPSR flags on Rn AND Operand2

Test equivalence TEQ{cond} Rn, <Operand2> N Z C Update CPSR flags on Rn EOR Operand2
AND AND{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND Operand2
EOR EOR{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn EOR Operand2
ORR ORR{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR Operand2
Bit Clear BIC{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND NOT Operand2

Compare Compare CMP{cond} Rn, <Operand2> N Z C V Update CPSR flags on Rn – Operand2
negative CMN{cond} Rn, <Operand2> N Z C V Update CPSR flags on Rn + Operand2

No Op No operation NOP None



ARM Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Branch Branch B{cond} label R15 := label label must be within ±32Mb of

current instruction.
with link BL{cond} label R14 := R15 – 4, R15 := label label must be within ±32Mb of

current instruction.
and exchange 4T,5 BX{cond} Rm R15 := Rm, Change to Thumb if Rm[0] is 1
with link and exchange (1) 5T BLX label R14 := R15 – 4, R15 := label, Change to Thumb Cannot be conditional.

label must be within ±32Mb of
current instruction.

with link and exchange (2) 5 BLX{cond} Rm R14 := R15 – 4, R15 := Rm[31:1]
Change to Thumb if Rm[0] is 1

Load Word LDR{cond} Rd, <a_mode2> Rd := [address] Rd must not be R15.
User mode privilege LDR{cond}T Rd, <a_mode2P> Rd must not be R15.
branch (§ 5T: and exchange) LDR{cond} R15, <a_mode2> R15 := [address][31:1]

(§ 5T: Change to Thumb if [address][0] is 1)
Byte LDR{cond}B Rd, <a_mode2> Rd := ZeroExtend[byte from address] Rd must not be R15.

User mode privilege LDR{cond}BT Rd, <a_mode2P> Rd must not be R15.
signed 4 LDR{cond}SB Rd, <a_mode3> Rd := SignExtend[byte from address] Rd must not be R15.

Halfword 4 LDR{cond}H Rd, <a_mode3> Rd := ZeroExtent[halfword from address] Rd must not be R15.
signed 4 LDR{cond}SH Rd, <a_mode3> Rd := SignExtend[halfword from address] Rd must not be R15.

Doubleword 5E* LDR{cond}D Rd, <a_mode3> Rd := [address], R(d+1) := [address + 4] Rd must be even, and not R14.
Load multiple Pop, or Block data load LDM{cond}<a_mode4L> Rn{!}, <reglist-pc> Load list of registers from [Rn]

return (and exchange) LDM{cond}<a_mode4L> Rn{!}, <reglist+pc> Load registers, R15 := [address][31:1]
(§ 5T: Change to Thumb if [address][0] is 1)

and restore CPSR LDM{cond}<a_mode4L> Rn{!}, <reglist+pc>^ Load registers, branch (§ 5T: and exchange),
CPSR := SPSR

Use from exception modes only.

User mode registers LDM{cond}<a_mode4L> Rn, <reglist-pc>^ Load list of User mode registers from [Rn] Use from privileged modes only.
Soft preload Memory system hint 5E* PLD <a_mode2> Memory may prepare to load from address Cannot be conditional.
Store Word STR{cond} Rd, <a_mode2> [address] := Rd

User mode privilege STR{cond}T Rd, <a_mode2P> [address] := Rd
Byte STR{cond}B Rd, <a_mode2> [address][7:0] := Rd[7:0]

User mode privilege STR{cond}BT Rd, <a_mode2P> [address][7:0] := Rd[7:0]
Halfword 4 STR{cond}H Rd, <a_mode3> [address][15:0] := Rd[15:0]
Doubleword 5E* STR{cond}D Rd, <a_mode3> [address] := Rd, [address + 4] := R(d+1) Rd must be even, and not R14.

Store multiple Push, or Block data store STM{cond}<a_mode4S> Rn{!}, <reglist> Store list of registers to [Rn]
User mode registers STM{cond}<a_mode4S> Rn{!}, <reglist>^ Store list of User mode registers to [Rn] Use from privileged modes only.

Swap Word 3 SWP{cond} Rd, Rm, [Rn] temp := [Rn], [Rn] := Rm, Rd := temp
Byte 3 SWP{cond}B Rd, Rm, [Rn] temp := ZeroExtend([Rn][7:0]),

[Rn][7:0] := Rm[7:0], Rd := temp
Coprocessors Data operations 2 CDP{cond} <copr>, <op1>, CRd, CRn, CRm{, <op2>} Coprocessor defined

Alternative operations 5 CDP2 <copr>, <op1>, CRd, CRn, CRm{, <op2>} Cannot be conditional.
Move to ARM reg from coproc 2 MRC{cond} <copr>, <op1>, Rd, CRn, CRm{, <op2>}

Alternative moves 5 MRC2 <copr>, <op1>, Rd, CRn, CRm{, <op2>} Cannot be conditional.
Two ARM register move 5E* MRRC{cond} <copr>, <op1>, Rd, Rn, CRm

Move to coproc from ARM reg 2 MCR{cond} <copr>, <op1>, Rd, CRn, CRm{, <op2>}
Alternative moves 5 MCR2 <copr>, <op1>, Rd, CRn, CRm{, <op2>} Cannot be conditional.
Two ARM register move 5E* MCRR{cond} <copr>, <op1>, Rd, Rn, CRm

Load 2 LDC{cond} <copr>, CRd, <a_mode5>
Alternative loads 5 LDC2 <copr>, CRd, <a_mode5> Cannot be conditional.

Store 2 STC{cond} <copr>, CRd, <a_mode5>
Alternative stores 5 STC2 <copr>, CRd, <a_mode5> Cannot be conditional.

Software
interrupt

SWI{cond} <immed_24> Software interrupt processor exception 24-bit value encoded in instruction.

Breakpoint 5 BKPT <immed_16> Prefetch abort or enter debug state Cannot be conditional.



ARM Addressing Modes
Quick Reference Card

Addressing Mode 2 - Word and Unsigned Byte Data Transfer ARM architecture versions
Pre-indexed Immediate offset [Rn, #+/-<immed_12>]{!} n ARM architecture version n and above.

Zero offset [Rn] Equivalent to [Rn,#0] nT T variants of ARM architecture version n and above.
Register offset [Rn, +/-Rm]{!} M ARM architecture version 3M, and 4 and above, except xM variants.
Scaled register offset [Rn, +/-Rm, LSL #<immed_5>]{!} Allowed shifts 0-31 nE All E variants of ARM architecture version n and above.

[Rn, +/-Rm, LSR #<immed_5>]{!} Allowed shifts 1-32 nE* E variants of ARM architecture version n and above, except xP variants.
[Rn, +/-Rm, ASR #<immed_5>]{!} Allowed shifts 1-32 XS XScale coprocessor instruction
[Rn, +/-Rm, ROR #<immed_5>]{!} Allowed shifts 1-31
[Rn, +/-Rm, RRX]{!} Flexible Operand 2

Post-indexed Immediate offset [Rn], #+/-<immed_12> Immediate value #<immed_8r>
Register offset [Rn], +/-Rm Logical shift left immediate Rm, LSL #<immed_5> Allowed shifts 0-31
Scaled register offset [Rn], +/-Rm, LSL #<immed_5> Allowed shifts 0-31 Logical shift right immediate Rm, LSR #<immed_5> Allowed shifts 1-32

[Rn], +/-Rm, LSR #<immed_5> Allowed shifts 1-32 Arithmetic shift right immediate Rm, ASR #<immed_5> Allowed shifts 1-32
[Rn], +/-Rm, ASR #<immed_5> Allowed shifts 1-32 Rotate right immediate Rm, ROR #<immed_5> Allowed shifts 1-31
[Rn], +/-Rm, ROR #<immed_5> Allowed shifts 1-31 Register Rm
[Rn], +/-Rm, RRX Rotate right extended Rm, RRX

Logical shift left register Rm, LSL Rs
Addressing Mode 2 (Post-indexed only) Logical shift right register Rm, LSR Rs
Post-indexed Immediate offset [Rn], #+/-<immed_12> Arithmetic shift right register Rm, ASR Rs

Zero offset [Rn] Equivalent to [Rn],#0 Rotate right register Rm, ROR Rs
Register offset [Rn], +/-Rm
Scaled register offset [Rn], +/-Rm, LSL #<immed_5> Allowed shifts 0-31 PSR fields (use at least one suffix)

[Rn], +/-Rm, LSR #<immed_5> Allowed shifts 1-32 Suffix Meaning
[Rn], +/-Rm, ASR #<immed_5> Allowed shifts 1-32 c Control field mask byte PSR[7:0]
[Rn], +/-Rm, ROR #<immed_5> Allowed shifts 1-31 f Flags field mask byte PSR[31:24]
[Rn], +/-Rm, RRX s Status field mask byte PSR[23:16]

x Extension field mask byte PSR[15:8]
Addressing Mode 3 - Halfword, Signed Byte, and Doubleword Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8>]{!} Condition Field {cond}

Zero offset [Rn] Equivalent to [Rn,#0] Mnemonic Description Description (VFP)
Register [Rn, +/-Rm]{!} EQ Equal Equal

Post-indexed Immediate offset [Rn], #+/-<immed_8> NE Not equal Not equal, or unordered
Register [Rn], +/-Rm CS / HS Carry Set / Unsigned higher or same Greater than or equal, or unordered

CC / LO Carry Clear / Unsigned lower Less than
Addressing Mode 4 - Multiple Data Transfer MI Negative Less than

Block load Stack pop PL Positive or zero Greater than or equal, or unordered
IA Increment After FD Full Descending VS Overflow Unordered (at least one NaN operand)
IB Increment Before ED Empty Descending VC No overflow Not unordered
DA Decrement After FA Full Ascending HI Unsigned higher Greater than, or unordered
DB Decrement Before EA Empty Ascending LS Unsigned lower or same Less than or equal
Block store Stack push GE Signed greater than or equal Greater than or equal
IA Increment After EA Empty Ascending LT Signed less than Less than, or unordered
IB Increment Before FA Full Ascending GT Signed greater than Greater than
DA Decrement After ED Empty Descending LE Signed less than or equal Less than or equal, or unordered
DB Decrement Before FD Full Descending AL Always (normally omitted) Always (normally omitted)

Addressing Mode 5 - Coprocessor Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8*4>]{!}

Zero offset [Rn] Equivalent to [Rn,#0]
Post-indexed Immediate offset [Rn], #+/-<immed_8*4>
Unindexed No offset [Rn], {8-bit copro. option}


