S
=

See i

See I Run

Dominic Sweetman
Algorithmics Ltd.

]
v
M [<
Morgan Kaufmann Publishers, Inc.
San Francisco, California

Senior Editor: Denise E. M. Penrose

Director of Production & Manufacturing: Yonie Overton
Production Editor: Sarah Burgundy

Cover Design: ~ Carrie English, canary studios
Cover Image: Michael Gushock c/o Artville

Text Design: Rebecca Evans & Associates
INustration: ST Associates

Compositor: Ed Sznyter, Babel Press

Copyeditor: Jeff Van Bueren

Proofreaders: ~ Christine Sabooni, Ken DellaPenta
Indexer: Steve Rath

Printer: Courier Corporation

MIPS is a registered trademark of MIPS Technologies, Inc.

Designations used by companies to distinguish their products are often claimed as trademarks or reg-
istered trademarks. In all instances where Morgan Kaufmann Publishers, Inc. is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the ap-
propriate companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office

340 Pine Street, Sixth Floor

San Francisco, CA 94104-3205
USA

Telephone 415/392-2665
Facsimile 415/982-2665

Email mkp@mkp.com

WWW http://www.mkp.com
Order toll free 800/745-7323

©1999 Morgan Kaufmann Publishers, Inc.
All rights reserved
Printed in the United States of America

03 02 01 00 5 4 3 2

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior
written permission of the publisher.

Library of Congress Cataloging-in-Publication Data is available for this book.
ISBN 1-55860-410-3

Foreword

John L. Hennessy,
Founder, MIPS Technologies Inc.
Frederick Emmons Terman Dean of Engineering, Stanford University

I am very pleased to see this new book on the MIPS architecture at such an
interesting time in the 15-year history of the architecture. The MIPS ar-

chitecture had its beginnings in 1984 and was first delivered in 1985. By the
late 1980s, the architecture had been adopted by a variety of workstation and
server companies, including Silicon Graphics and Digital Equipment Corpo-
ration. The early 1990s saw the introduction of the R4000, the first 64-bit mi-
croprocessor, while the mid 1990s saw the introduction of the R10000—at the
time of its introduction, the most architecturally sophisticated CPU ever built.

The end of the 1990s heralds a new era for the MIPS architecture: its emer-
gence as a leading architecture in the embedded processor market. To date, over
100 million MIPS processors have been shipped in applications ranging from
video games and palmtops, to laser printers and network routers, to emerging
markets, such as set-top boxes. Embedded MIPS processors now outnumber
MIPS processors in general-purpose computers by more than 1,000 to 1. This
growth of the MIPS architecture in the embedded space and its enormous po-
tential led to the spinout of MIPS Technologies (from Silicon Graphics) as an
independent company in 1998.

Thus, this book focusing on the MIPS architecture in the embedded mar-
ket comes at a very propitious time. Unlike the well-known MIPS architecture
handbook, which is largely a reference manual, this book is highly readable
and contains a wealth of sage advice to help the programmer to avoid pitfalls,
to understand some of the tradeoffs among MIPS implementations, and to
optimize performance on MIPS processors. The coverage is extremely broad,
discussing not only the basics of the MIPS architecture, but issues such as
memory management and systems instructions, cache organizations and con-

v

vi

m Foreword

trol, and the floating point instructions set. (Although some embedded users
will be uninterested in the floating point, such instructions are heavily used in
graphics-intensive applications, such as video games and set-top boxes.)

Several of the chapters are unique in that the author shares his experience
in programming the MIPS architecture. These chapters cover topics that are
critical to the embedded systems programmer, such as C programming con-
ventions (e.g., for register use and procedure linkage), how to write portable
MIPS code, and how to obtain the best performance. The coverage of excep-
tion handling guides the programmer, by the use of example code sequences,
while including a description of the complete exception architecture.

As important as the technical content of this book is its readability. Simply
stated, this is book fun to read. Dominic Sweetman’s insights and presenta-
tion help entice the reader. In my view, this book is the best combination of
completeness and readability of any book on the MIPS architecture, and is far
better than most on other architectures.

In closing, let me mention that Sweetman’s insights into the development
of the MIPS architecture are truly exceptional. As a 15-year contributor to the
MIPS architecture, I am astounded by the perceptiveness of the author in his
explanations of the rationale for both the MIPS architecture and the specific
implementations. I am confident that readers interested in understanding or
programming the MIPS architecture will learn what they need to know from
this book, and that they will enjoy reading it. As a founder of MIPS, a contribu-
tor to both the first MIPS implementation (the R2000) and several subsequent
implementations, I'm delighted that the author became a MIPS convert and
chose to write this book!

Chapter 1

Chapter 2

Contents

Foreword v
Preface Xv
Style and Limits xvii
Conventions xviii
Acknowledgments xviii
RISCs and MIPS 1
1.1 Pipelines 2
L.L1.1 What Makes a Pipeline Inefficient? 3
1.1.2 The Pipeline and Caching 4
1.2 The MIPS Five-Stage Pipeline 5
1.3 RISC and CISC * 7
1.4 Great MIPS Chips of the Past and Present 7
1.4.1 R2000 to R3000 7
1.4.2 R6000: A Diversion 8
1.4.3 The R4000 Revolution 9
1.4.4 R5000 and R10000 9
L5 MIPS Compared with CISC Architectures 12
1.5.1 Constraints on MIPS Instructions 12
1.5.2 Addressing and Memory Accesses 13
1.5.3 Features You Won't Find 14
1.5.4 A Feature You Might Not Expect 16
15.5 Programmer-Visible Pipeline Effects 16
MIPS Architecture 19
2.1 A Flavor of MIPS Assembly Language 20
2.2 Registers 21
2.2.1 Conventional Names and Uses of General-Purpose Registers 22
2.3 Integer Multiply Unit and Registers 25
24 Loading and Storing: Addressing Modes 26
2.5 Data Types in Memory and Registers 27
2.5.1 Integer Data Types 27

vii

viii

am Contents

Chapter 3

Chapter 4

2.5.2 Unaligned Loads and Stores ‘ 28
2.5.3 Floating-Point Data in Memory 29
2.6 Synthesized Instructions in Assembly Language 29
2.7 MIPS I to MIPS IV: 64-Bit (and Other) Extensions 31
2.7.1 To 64 Bits 32
2.7.2 Who Needs 64 Bits? 33
2.7.3 Regarding 64 Bits and No Mode Switch: Data in Registers 34
2.7.4 Other Innovations in MIPS I1I 35
2.8 Basic Address Space 36
2.8.1 Addressing in Simple Systems 38
2.8.2 Kernel vs. User Privilege Level 38
2.8.3 The Full Picture: The 64-Bit View of the Memory Map 39
2.9 Pipeline Hazards 39
Coprocessor 0: MIPS Processor Control 43
3.1 CPU Control Instructions 46
3.2 What Registers Are Relevant When? 47
3.3 Encodings of Standard CPU Control Registers 48
3.3.1 Processor ID (PRId) Register 49
3.3.2 Status Register (SR) 50
3.3.3 Cause Register 55
3.3.4 Exception Return Address (EPC) Register 56
3.3.5 Bad Virtual Address (BadVaddr) Register 56
3.4 Control Registers for the R4000 CPU and Followers 58
3.4.1 Count/Compare Registers: The R4000 Timer 58
3.4.2 Config Register: R4x00 Configuration 59
3.4.3 Load-Linked Address (LLAddr) Register 62
3.4.4 Debugger Watchpoint (WatchLo/WatchHi) Registers 62
Caches for MIPS 63
4.1 Caches and Cache Management 63
4.2 How Caches Work 64
4.3 Write-Through Caches in Early MIPS CPUs 66
4.4 Write-Back Caches in Recent MIPS CPUs 67
4.5 Other Choices in Cache Design 68
4.6 Managing Caches 69
4.7 Secondary and Tertiary Caches 71
4.8 Cache Configurations for MIPS CPUs 71
4.9 Programming R3000-Style Caches 73
4.9.1 Using Cache Isolation and Swapping 74
49.2 Initializing and Sizing 75
493 Invalidation 75
49.4 Testing and Probing 76
4.10 Programming R4000-Style Caches 76
4.10.1 CacheERR, ERR, and ErrorEPC Registers: Cache Error Handling 78

Chapter 5

Chapter 6

Contents W ix

4.10.2 The Cache Instruction 79

4.10.3 Cache Sizing and Figuring Out Configuration 81

4.10.4 Initialization Routines 81

4.10.5 Invalidating or Writing Back a Region of Memory in the Cache 83

4.11 Cache Efficiency 83
4.12 Reorganizing Software to Influence Cache Efficiency 85
4.13 Write Buffers and When You Need to Worry 87
4.13.1 Implementing wbflush 89

4.14 More about MIPS Caches 90
4.14.1 Multiprocessor Cache Features 90

4.14.2 Cache Aliases 90
Exceptions, Interrupts, and Initialization 91
5.1 Precise Exceptions 93
5.2 When Exceptions Happen 94
5.3 Exception Vectors: Where Exception Handling Starts 95
5.4 Exception Handling: Basics 99
5.5 Returning from an Exception 100
5.6 Nesting Exceptions 100
5.7 An Exception Routine 101
5.8 Interrupts 101
5.8.1 Interrupt Resources in MIPS CPUs 102

5.8.2 Implementing Interrupt Priority 104

5.8.3 Atomicity and Atomic Changes to SR 106

5.8.4 Critical Regions with Interrupts Enabled: Semaphores the MIPS Way 107

5.9 Starting Up 109
5.9.1 Probing and Recognizing Your CPU 111

5.9.2 Bootstrap Sequences 112

5.9.3 Starting Up an Application 113

5.10 Emulating Instructions 113
Memory Management and the TLB 115
6.1 Memory Management in Big Computers 117
6.1.1 Basic Process Layout and Protection 117

6.1.2 ~ Mapping Process Addresses to Real Memory 119

6.1.3 Paged Mapping Preferred 120

6.1.4 What We Really Want 121

6.1.5 Origins of the MIPS Design 123

6.2 MIPS TLB Facts and Figures 123
6.3 MMU Registers Described 126
6.3.1 EntryHi, EntryLo, and PageMask 127

6.3.2 Index 131

6.3.3 Random 131

6.3.4 Wired 132

6.3.5 Context and XContext 132

x B Contents

Chapter 7

6.4 MMU Control Instructions 133
6.5 Programming the TLB ‘ 134
6.5.1 How Refill Happens 134
6.5.2 Using ASIDs 135
6.5.3 The Random Register and Wired Entries 136
6.6 Memory Translation: Setup 136
6.7 TLB Exception Sample Code 138
6.7.1 The 32-Bit R3000-Style User TLB Miss Exception Handler 139
6.7.2 TLB Miss Exception Handler for R4x00 CPU 141
6.7.3 XTLB Miss Handler 144
6.8 Keeping Track of Modified Pages (Simulating “Dirty” Bits) 145
6.9 Memory Translation and 64-Bit Pointers 145
6.10 Everyday Use of the MIPS TLB 146
6.11 Memory Management in a Non-unix OS 147
Floating-Point Support 149
7.1 A Basic Description of Floating Point 149
7.2 The IEEE754 Standard and Its Background 150
7.3 How IEEE Floating-Point Numbers Are Stored 152
7.3.1 IEEE Mantissa and Normalization 153
7.3.2 Reserved Exponent Values for Use with Strange Values 153
7.3.3 MIPS FP Data Formats 154
7.4 MIPS Implementation of IEEE754 156
7.4.1 Need for FP Trap Handler and Emulator in All MIPS CPUs 157
7.5 Floating-Point Registers 157
7.5.1 Conventional Names and Uses of Floating-Point Registers 158
7.6 Floating-Point Exceptions/Interrupts 158
7.7 Floating-Point Control: The Control/Status Register 159
7.8 Floating-Point Implementation/Revision Register 162
7.9 Guide to FP Instructions 163
7.9.1 Load/Store 164
7.9.2 Move between Registers 165
7.9.3 Three-Operand Arithmetic Operations 166
7.9.4 Multiply-Add Operations 166
7.9.5 Unary (Sign-Changing) Operations 167
7.9.6 Conversion Operations 167
7.9.7 Conditional Branch and Test Instructions 168
7.10 Instruction Timing Requirements 170
7.11 Instruction Timing for Speed 171
7.12 Initialization and Enabling on Demand 172
7.13 Floating-Point Emulation 172

Contents ® xi

Chapter 8 Complete Guide to the MIPS Instruction Set 175
8.1 A Simple Example 175
8.2 Assembler Mnemonics and What They Mean 177
8.2.1 Uand Non-U Mnemonics 178

8.2.2 Divide Mnemonics 179

8.2.3 Inventory of Instructions 180

8.3 Floating-Point Instructions 201
8.4 Peculiar Instructions and Their Purposes 202
8.4.1 Load Left/Load Right: Unaligned Load and Store 206

8.4.2 Load-Linked/Store-Conditional 210

8.4.3 Conditional Move Instructions 211

8.4.4° Branch-Likely 212

8.45 Integer Multiply-Accumulate and Multiply-Add Instructions 213

8.4.6 Floating-Point Multiply-Add Instructions 214

8.4.7 Multiple FP Condition Bits 215

8.4.8 Prefetch 215

8.49 Sync: A Load/Store Barrier 216

8.5 Instruction Encodings 217
8.5.1 Fields in the Instruction Encoding Table 217

8.5.2 Notes on the Instruction Encoding Table 219

8.5.3 Encodings and Simple Implementation 231

8.6 Instructions by Functional Group 231
8.6.1 Nop 231

8.6.2 Register/Register Moves 232

8.6.3 Load Constant 232

8.6.4 Arithmetical/Logical 232

8.6.5 Integer Multiply, Divide, and Remainder 234

8.6.6 Integer Multiply-Accumulate 236

8.6.7 Loads and Stores 237

8.6.8 Jumps, Subroutine Calls, and Branches 239

8.6.9 Breakpoint and Trap 240

8.6.10 CPO Functions 240

8.6.11 Floating Point 241

8.6.12 ATMizer-II Floating Point 242
Chapter 9 Assembler Language Programming 243
9.1 A Simple Example 243
9.2 Syntax Overview 247
9.2.1 Layout, Delimiters, and Identifiers 247

9.3 General Rules for Instructions 248
9.3.1 Computational Instructions: Three-, Two-, and One-Register 248

9.3.2 Immediates: Computational Instructions with Constants 249

9.3.3 Regarding 64-Bit and 32-Bit Instructions 250

9.4 Addressing Modes 250
9.4.1 Gp-Relative Addressing 251

xii ® Contents

Chapter 11

9.5 Assembler Directives 253

9.5.1 Selecting Sections 253

9.5.2 Practical Program Layout Including Stack and Heap 255

9.5.3 Data Definition and Alignment 256

9.5.4 Symbol-Binding Attributes 258

9.5.5 Function Directives 260

9.5.6 Assembler Control (.set) 262

9.5.7 Compiler/Debugger Support 265

9.5.8 Additional Directives in SGI Assembly Language 265

Chapter 10 C Programming on MIPS 267

10.1 The Stack, Subroutine Linkage, and Parameter Passing 268

10.2 Stack Argument Structure 269

10.3 Using Registers to Pass Arguments 269

10.4 Examples from the C Library 271

10.5 An Exotic Example: Passing Structures 271

10.6 Passing a Variable Number of Arguments 273

10.7 Returning a Value from a Function 274

10.8 Evolving Register-Use Standards: SGI's n32 and n64 274

10.9 Stack Layouts, Stack Frames, and Helping Debuggers 278

10.9.1 Leaf Functions 280

10.9.2 Nonleaf Functions 281

10.9.3 Frame Pointers for More Complex Stack Requirements 284

10.10 Variable Number of Arguments and stdargs 288
10.11 Sharing Functions between Different Threads and Shared Library

Problems 289

10.11.1 Sharing Code in Single-Address-Space Systems 290

10.11.2 Sharing Library Code in the MIPS ABI 290

10.12 An Introduction to Compiler Optimization 293

10.12.1 Common Optimizations 293

10.12.2 Optimizer-Unfriendly Code and How to Avoid It 297

10.12.3 The Limits of Optimization 297

10.13 Hints about Device Access from C 298

10.13.1 Using “volatile” to Inhibit Destructive Optimization 298

10.13.2 Unaligned Data from C 300

Portability Considerations and C Code 301

11.1 Porting to MIPS: A Checklist of Frequently Encountered Problems 302

11.2 An Idealized Porting Process 304

11.2.1 Three Porting Choices 305

11.2.2 Fixing Up Dependencies 306

11.2.3 Isolating Nonportable Code 306

11.2.4 When to Use Assembler 306

11.3 Portable C and Language Standards 307

11.4 C Library Functions and POSIX 309

Chapter 12

Appendix A

Appendix B

Appendix C

Contents W xiii

11.5 Data Representations and Alignment 309
11.6 Endianness: Words, Bytes, and Bit Order 312
11.6.1 Endianness and the Programmer 314

11.6.2 Endianness: The Pictures and the Intellectual Problem 315

11.6.3 Endianness: The Hardware Problem 317

11.6.4 Wiring a Connection between Opposite-Endian Camps 320

11.6.5 Wiring an Endianness-Configurable Connection 320

11.6.6 Software to Cope with Both-Endianness of a MIPS CPU 322

11.6.7 Portability and Endianness-Independent Code 325

11.6.8 Endianness and Foreign Data 325

11.6.9 False Cures and False Prophets for Endianness Problems 326

11.7 What Can Go Wrong with Caches and How to Stop It 327
11.7.1 Cache Management and DMA Data 328

11.7.2 Cache Management and Writing Instructions 329

11.7.3 Cache Management and Uncached/Write-Through Data 323

11.8 Different Implementations of MIPS 330
Software Examples 333
12.1 Starting Up MIPS 333
12.2 MIPS Cache Management 344
12.2.1 Cache Operations: 32-Bit MIPS before Cache Instructions 345

12.2.2 Cache Operations: After MIPS III and Cache Instructions 354

12.3 MIPS Exception Handling 369
12.3.1 Xcption: What It Does for Programmers 369

12.3.2 Xcption: C Interface Code 370

12.3.3 Xcption: Low-Level Module 371

12.4 MIPS Interrupts 386
12.5 Tuning for MIPS 388
Instruction Timing and Optimization 395
A.l Avoiding Hazards: Making Code Correct 395
A2 Avoiding Interlocks to Increase Performance 396
A3 Muitiply Unit Hazards: Early Modification of hi and lo 397
A.4 Avoiding Coprocessor 0 Hazards: How Many nops? 398
A.5 Coprocessor 0 Instruction/Instruction Scheduling 400
A.6 Coprocessor 0 Flags and Instructions 401
Assembler Language Syntax 403
Object Code 409
C.1 Tools 411
C.2 Sections and Segments 411

xiv W Contents

Appendix D

C.3 ECOFF (RISC/OS) 413
C.3.1 File Header 413
C.3.2 Optional a.out Header 414
C.3.3 Example Loader 416
C.3.4 Further Reading 416
C.4 ELF (MIPS ABI) 417
C.4.1 File Header 417
C.4.2 Program Header 418
C.4.3 Example Loader 419
C.4.4 Further Reading 421
C.5 Object Code Tools 421
Evolving MIPS 423
D.1 MIPS16 423
D.1.1 Special Encodings and Instructions in MIPS16 424
D.1.2 MIPS16 Evaluated 425
D.2 MIPS V/IMDMX 426
D.2.1 Can Compilers Use Multimedia Instructions? 427
D.2.2 Applications for MDMX 428
D.2.3 Applications for MIPS V 428
D.24 Likely Success of MDMX/MIPS V 429
MIPS Glossary 431
References 469
Books and Papers 469
On-Line Resources 470
Index 471

o

Preface

his book is about MIPS, the cult hit among the mid-80s crop of RISC CPU

designs. MIPS is the best-selling RISC CPU, found everywhere from Sony
and Nintendo games machines, through Cisco routers, up to Silicon Graphics
supercomputers. With the RISC architectures now under furious assault from
the ubiquitous and brilliantly developed x86, MIPS may be the only one of
those original RISC CPU designs to end the century turning a healthy profit.

RISC is a useful acronym and not just marketing hype; it usefully encap-
sulates the many common features of a group of computer architectures in-
vented in the 80s and designed for efficient pipelined implementation. The
acronym CISC is much more troublesome, because it really refers to all that
is not RISC. I'll use it in a narrower sense, to encapsulate the non-RISCness
of the 68000, x86, and other pre-1982 architectures that were designed with
microcoded implementations in mind.

This book is for programmers, and that’s the test we’ve used to decide what
gets included—if a programmer might see it, or is likely to be interested, it’s
here. That means we don’t get to discuss, for example, the strange system in-
terfaces with which MIPS has tortured two generations of hardware design en-
gineers. And your operating system may hide many of the details we talk about
here; there is many an excellent programmer who thinks that C is quite low
level enough, portability a blessing, and detailed knowledge of the architecture
irrelevant. But sometimes you do need to get down to the nuts and bolts—and
human beings are born curious as to how bits of the world work.

A result of this orientation is that we’ll tend to be rather informal when
describing things that may not be familiar to a software engineer—particularly
the inner workings of the CPU—but we’ll get much more terse and techni-
cal when we're dealing with the stuff programmers have met before, such as
registers, instructions, and how data is stored in memory.

We'll assume some familiarity and comfort with the C language. Much
of the reference material in the book uses C fragments as a way of compress-

Xvi

W Preface

ing operation descriptions, particularly in the chapters on the details of the
instruction set and assembler language.

Some parts of the book are targeted at readers who’ve seen CISC (i.e., 680x0
or x86) assembly language, because the ingenuity and peculiarity of the MIPS
architecture shows up best from that viewpoint. But if you are not familiar
with CISC assembly language, it’s not a disaster.

Mostly, the people who need to know a CPU at the level of detail described
here are either operating system gurus or are working with embedded systems.
The broadest definition of the term embedded system is every use of a computer
that doesn’t look like a computer. The unifying feature of such systems is that
the operating system (if any) does not hide the workings of the CPU from the
programmer. MIPS CPUs are used for a huge range of applications, from writ-
ing games through industrial control. But that doesn’t mean that this book is
just a reference manual: to keep an architecture in your head means coming to
understand it in the round. I also hope the book will interest students of pro-
gramming (at college or enrolled in the school of life) who want to understand
a modern CPU architecture all the way through.

If you plan to read this book straight through from front to back, you will
expect to find a progression from overview to detail, and you won’t be disap-
pointed. But you'll also find some progression through history; the first time
we talk about a concept we’ll usually focus on its first version. Hennessy and
Patterson call this “learning through evolution” and what’s good enough for
them is certainly good enough for me.

So we start in Chapter 1 with some history and background, and set MIPS
in context by discussing the technological concerns and ideas that were upper-
most in the minds of its inventors. Then in Chapter 2 we discuss the character-
istics of the MIPS machine language that follow from their approach.

To keep the instruction set simple, we leave out 'the details of processor
control until Chapter 3, which introduces the ugly but eminently practical sys-
tem that allows MIPS CPUs to deal with their caches, exceptions and startup,
and memory management. Those last three topics, respectively, become the
subjects of Chapters 4 through 6.

The MIPS architecture has been careful to separate out the part of the in-
struction set that deals with floating-point numbers. That separation allows
MIPS CPUs to be built with various levels of floating-point support, from
none at all through partial implementations to somewhere near the state of
the art using four generations of hardware. So we have also separated out the
floating-point functions, and we keep them back until Chapter 7.

Up to this point, the chapters follow a reasonable sequence for getting to
know MIPS. The remaining chapters change gear and are more like reference
manuals or example-based tutorials.

In Chapter 8 we go through the whole machine instruction set; the in-
tention is to be precise but much more terse than the standard MIPS reference
works—we cover in ten pages what takes a hundred in other sources. Chapter 9
describes assembly language programming and is more like a programming

~ s

Preface ® xvil

manual. This is a change of style from the rest of the book, but there has never
been a proper assembly language manual for MIPS. Anyone programming at
the assembler level will find the rest of the book relevant.

Chapter 10 is written for people who are already familiar with program-
ming in C and focuses on aspects of C programming where the MIPS archi-
tecture shows through; examples include memory organization and parameter
passing as implemented by MIPS compilers. Chapter 11 is a checklist with
helpful hints for those of you who have to port software between another CPU
and a MIPS CPU.

Chapter 12 is a collection of annotated pieces of real software, picked for
their relevance to the themes of this book. Understanding real software can be
hard going, but readers embarking on a challenging MIPS software project may
find this chapter useful, both as a style guide and as a checklist.

Appendices A (on instruction timing), B (on assembler language syntax),
and C (on object code) contain highly technical information that I felt shouldn’t
be completely omitted, although not many of you will need to refer to this ma-
terial. Appendix D is the place where you can find late-breaking news about
the MIPS architecture; you can read about MIPS16, MDMX, and the MIPS V
extensions to the instruction set.

You will also find at the end of this book a glossary of terms—a good place
to look for specialized or unfamiliar usage and acronyms—and a list of books,
papers, and on-line references for further reading.

Style and Limits

Every book reflects its author, so we’d better make a virtue of it.

Since some of you will be students, I wondered whether I should distinguish
general use from MIPS use. I decided not to; I am specific except where it costs
the reader nothing to be general. [also try to be concrete rather than abstract. I
don’t worry about whatever meaning terms like TLB have in the wider industry
but do explain them in a MIPS context. Human beings are great generalizers,
and this is unlikely to damage your learning much.

This book has been at least seven years in gestation, though it didn’t always
have this form. The author has been working around the MIPS architecture
since 1986. From 1988 onward I was giving training courses on the MIPS archi-
tecture to some customers, and the presentation slides began to take on some
of the structure of this book. In 1993 I gathered them together to make a soft-
ware manual for IDT to publish as a part of its MIPS documentation package,
but the manual was specific to IDT’s R3051 family components and left out
all sorts of interesting details. Over 1995-96, this book grew to include 64-bit
CPUs and to cover all the ground that seems relevant.

The MIPS story continues; if it did not, we’d only be writing this book for
historians and Morgan Kaufmann wouldn’t be very interested in publishing it.

xviii

m Preface

Since the process of writing and reviewing books is lengthy, we have to define
a suitable cut-off point. MIPS developments that were announced too late are
not included in the main text of this book. But we have updated Appendix D at
the last minute to reflect as many as possible of the more recent developments.

Conventions

A quick note on the typographical conventions used in this book:

u Type in this font (Minion) is running text.
s Type in this font (Futural is a sidebar.

m Type in this font (Courier bold) is used for assembler
code and MIPS register names.

®m Type in this font (Courier) is used for C code and
hexadecimals.

w Type in this font (Minion italic, small) is used for hardware signal names.

m Code in italics indicates variables.

Acknowledgments

The themes in this book have followed me through my computing career. Mike
Cole got me excited about computing, and I've been trying to emulate his skill
in picking out good ideas ever since. Many people at Whitechapel Worksta-
tions taught me something about computer architecture and about how to de-
sign hardware—Bob Newman and Rick Filipkiewicz probably the most. I also
have to thank Whitechapel’s salesperson Dave Gravell for originally turning me
on to MIPS. My fellow engineers at Algorithmics (Chris Dearman, Rick Filip-
kiewicz, Gerald Onions, Nigel Stephens, and Chris Shaw) have to be doubly
thanked, both for all I've learned through innumerable discussions, arguments,
and designs and for putting up with the book’s competition for my time.

I've worn out more than one editor at Morgan Kaufmann: Bruce Spatz
originally encouraged me to start and Jennifer Mann took over; Denise Pen-
rose has guided it through to publication. Many thanks are due to the review-
ers who've read chapters over a long period of time: Phil Bourekas of Inte-
grated Device Technology, Inc.; Thomas Daniel of the LSI Logic Corporation;
Mike Murphy of Silicon Graphics, Inc.; and David Nagle of Carnegie Mellon
University. :

Nigel Stephens of Algorithmics wrote the original versions of parts of Chap-
ter 9 and the appendices about assembler language syntax and object code. He
is not responsible for any errors in this material that I may have inadvertently
introduced.

Chapter

RISCs and MIPS

IPS is the most elegant among the effective RISC architectures; even the

competition thinks so, as evidenced by the strong MIPS influence to be
seen in later architectures like DEC’s Alpha and HP’s Precision. Elegance by it-
self doesn’t get you far in a competitive marketplace, but MIPS microprocessors
have usually managed to be among the fastest of each generation by remaining
among the simplest.

Relative simplicity was a commercial necessity for MIPS, which spun off
from an academic project as a small design group using multiple semiconduc-
tor partners to make and market the chips. As a result the architecture has
the largest range of active manufacturers in the industry—working from ASIC
cores (LSI Logic, Toshiba, Philips, NEC) through low-cost CPUs (IDT, LSI) and
from low-end 64-bit (IDT, NKK, NEC) to the top (NEC, Toshiba, and IDT).

At the low end the CPU is 1.5 sq mm (rapidly disappearing from sight in
the “system on a chip”); at the high end the R10000 is nearly an inch square and
generates 30W of heat—and when first launched was probably the fastest CPU
on the planet. And although MIPS looks like an outsider, sales volumes seem
healthy enough: 44M MIPS CPUs were shipped in 1997, mostly into embedded
applications.

The MIPS CPU is one of the RISC CPUs, born out of a particularly fertile
period of academic research and development. RISC (reduced instruction set
computer) is an attractive acronym that, like many such, probably obscures
reality more than it reveals it. But it does serve as a useful tag for a number
of new CPU architectures launched between 1986 and 1989, which owe their
remarkable performance to ideas developed a few years earlier by a couple of
seminal research projects. Someone commented that “a RISC is any computer
architecture defined after 1984”; although meant as a jibe at the industry’s use
of the acronym, the comment is also true—no computer defined after 1984 can
afford to ignore the RISC pioneers’ work.

-

2 ® Chapter 1—RISCs and MIPS

1.1

One of these pioneering projects was the MIPS project at Stanford. The
nroject name MIPS (named for the key phrase microcomputer without inter-
locked pipeline stages) is also a pun on the familiar unit “millions of instruc-
tions per second.” The Stanford group’s work showed that pipelining, although
a well-known technique, had been drastically underexploited by earlier archi-
tectures and couid be much better used, particularly when combined with 1980
silicon design.

Pipelines

Once upon a time in a small town in the north of England, there was Evie’s fish
and chip shop. Inside, each customer got to the head of the queue and asked
for his or her meal (usually fried cod, chips, mushy peas,! and a cup of tea).
Then each customer waited for the plate to be filled before going to sit down.

Evie’s chips were the best in town, and every market day the lunch queue
stretched out of the shop. So when the clog shop next door shut down, Evie
rented it and doubled the number of tables. But they couldn’t fill them! The
queue outside was as long as ever, and the busy townsfolk had no time to sit
over their cooling tea.

They couldn’t add another serving counter; Evie’s cod and Bert’s chips were
what made the shop. But then they had a brilliant idea. They lengthened the
counter and Evie, Bert, Dionysus, and Mary stood in a row. As customers
came in, Evie gave them a plate with their fish, Bert added the chips, Dionysus
spooned out the mushy peas, and Mary poured the tea and took the money.
The customers kept walking; as one customer got his peas, the next was already
getting chips and the one after that fish. Less hardy folk don’t eat mushy peas—
but that’s no problem, those customers just got nothing but a vacant smile from
Dionysus.

The queue shortened and soon they bought the shop on the other side as
well for extra table space....

That's a pipeline. Divide any repetitive job into a number of sequential
parts and arrange that the work moves past the workers, with each specialist
doing his or her part for each unit of work in turn. Although the total time
any customer spends being served has gone up, there are four customers being
served at once and about three times as many customers being served in that
market day lunch hour. Figure 1.1 shows Evie’s organization, as drawn by her
son Einstein in a rare visit to non-virtual reality.2

Seen as a collection of instructions in memory, a program ready to run
doesn’t look much like a queue of customers. But when you look at it from the
CPU’s point of view, things change. The CPU fetches each instruction from

1. Non-English readers should probably not inquire further into the nature of this delicacy.
2. Itlooks to me as if Einstein has been reading books on computer science.

R e

ST T S R DU T R

. 1.1 Pipelines m 3
5 « -
: Evie; Bert: Dionysus: Mary: :
C?stomer ! plate/fish chips mushyypeas tea/ chsh :
o i :
& i i
g : "
3 : Evie; Bert: Dionysus: Mary:
& Cystomer2 plate/fish chips mushyypeos tea/cash
2 ~ : : Evie; Bert: Dionysus: Mary:
I C?stomer 3 : ; plate/fish chips mushyypeas tea/ cash

Time

FIGURE 1.1 Evie’s fish shop pipeline

1.1.1

memory, decodes it, finds any operands it needs, performs the appropriate ac-
tion, and stores any results—and then it goes and does the same thing all over
again. The program waiting to be run is a queue of instructions waiting to flow
through the CPU one at a time.

The various different jobs required to deal with each instruction already
require different specialized chunks of logic inside the CPU, so building a pipe-
line doesn’t even make the CPU much more complicated; it just makes it work
harder.

The use of pipelining is not new with RISC microprocessors. What makes
the difference is the redesign of everything—starting with the instruction set—
to make the pipeline more efficient.! So how do you make a pipeline efficient?
Actually, that’s probably the wrong question. The right one is, what makes a
pipeline inefficient?

What Makes a Pipeline Inefficient?

It’s not good if one stage takes much longer than the others. The organization
of Evie’s shop depends on Mary’s ability to pour tea with one hand while giving
change with the other—if Mary takes longer than the others, the whole queue
will have to slow down to match her.

In a pipeline, you try to make sure that every stage takes roughly the same
amount of time. A circuit design often gives you the opportunity to trade

1. The first RISC in this sense was probably the CDC6600, designed by Seymour Cray in the 70s,
but the idea didn’t catch on at that time. However, this is straying into the history of computer
architecture, and if you like this subject you'll surely want to read (Hennessy and Patterson
1996).

4 ® Chapter 1—RISCs and MIPS

the complexity of logic off against its speed, so designers can assign work to
different stages until everything is just right.

The hard problem is not difficult actions, it’s awkward customers. Back in
the chip shop Cyril is often short of cash, so Evie won'’t serve him until Mary
has counted his money. When Cyril arrives, he’s stuck at Evie’s position until
Mary has finished with the three previous customers and can check his pile of
old bent coins. Cyril is trouble because when he comes in he needs a resource
(Mary’s counting) that is being used by previous customers. He’s a resource
conflict.

Daphne and Lola always come in together (in that order) and share their
meals. Lola won’t have chips unless Daphne gets some tea (too salty without
something to drink). Lola waits on tenterhooks in front of Bert until Daphne
gets to Mary, and so a gap appears in the pipeline. This is a dependency (and
the gap is called a pipeline bubble).

Not all dependencies are a problem. Frank always wants exactly the same
meal as Fred, but he can follow him down the counter anyway—if Fred gets
chips, Frank gets chips....

If you could get rid of awkward customers, you could make a more efficient
pipeline. This is hardly an option for Evie, who has to make her living in a town
of eccentrics. Intel is faced with much the same problem: The appeal of its
CPUs relies on the customer being able to go on running all that old software.
But with a new CPU you get to define the instruction set, and you can define
many of the awkward customers out of existence. In Section 1.2 we’ll show how
MIPS did that, but first we’ll come back to computer hardware in general with
a discussion of caching.

The Pipeline and Caching

We said earlier that efficient pipeline operation requires every stage to take the
same amount of time. But a 1996 CPU can add two 64-bit numbers about 10
times quicker than it can fetch a piece of data from memory.

So effective pipelining relies on another technique to speed most memory
accesses by a factor of 10—the use of caches. A cache is a small, very fast, local
memory that holds copies of memory data. Each piece of data is kept with a
record of its main memory address (the cache tag) and when the CPU wants
data the cache gets searched and, if the requisite data is available, it’s sent back
quickly. Since we’ve no way to guess what data the CPU might be about to
use, the cache merely keeps copies of data the CPU has had to fetch from main
memory in the recent past; data is discarded from the cache when its space is
needed for more data arriving from memory.

Even a simple cache will provide the data the CPU wants more than 90%
of the time, so the pipeline design need only allow enough time to fetch data
from the cache: A cache miss is a relatively rare event and we can just stop the
CPU when it happens.

1.2 The MIPS Five-Stage Pipeline ® 5

: om ¢ AU om "
! Ins'rucglonl I-cache r flseter D-cache r .l'serer
=)
J
Q.
8 :
§ Instruction 2 IF RD AW MEM wB
: :
3
Instruction 3 IF RD AW MEM WB
Time

FIGURE 1.2 MIPS five-stage pipeline

1.2

The MIPS architecture was planned with separate instruction and data
caches, so it can fetch an instruction and read or write a memory variable
simultaneously.

CISC architectures have caches too, but they’re most often afterthoughts,
fitted in as a feature of the memory system. A RISC architecture makes more
sense if you regard the caches as very much part of the CPU and tied firmly
into the pipeline.

The MIPS Five-Stage Pipeline

The MIPS architecture is made for pipelining, and Figure 1.2 shows the pipe-
line of most MIPS CPUs. So long as the CPU runs from the cache, the exe-
cution of every MIPS instruction is divided into five phases (called pipestages),
with each pipestage taking a fixed amount of time. The fixed amount of time is
usually a processor clock cycle (though some actions take only half a clock, so
the MIPS five-stage pipeline actually occupies only four clock cycles).

All instructions are rigidly defined so they can follow the same sequence
of pipestages, even where the instruction does nothing at some stage. The net
result is that, so long as it keeps hitting the cache, the CPU starts an instruction
every clock cycle.

Let’s look at Figure 1.2 and consider what happens in each pipestage.

IF (instruction fetch) gets the next instruction from the instruction cache
(I-cache).

6 ®m Chapter I—RISCs and MIPS

RD (read registers) fetches the contents of the CPU registers whose num-
bers are in the two possible source register fields of the instruction.

ALU (arithmetic/logic unit) performs an arithmetical or logical operation in
one clock cycle (floating-point math and integer multiply/divide can’t
be done in one clock cycle and are done differently, but that comes
later).

MEM is the stage where the instruction can read/write memory variables in
the data cache (D-cache). On average about three out of four instruc-
tions do nothing in this stage, but allocating the stage for each instruc-
tion ensures that you never get two instructions wanting the data cache
at the same time. (It’s the same as the mushy peas served by Dionysus.)

WB (write back) stores the value obtained from an operation back to the
register file.

You may have seen other pictures of the MIPS pipeline that look slightly
different; it has been common practice to simplify the picture by drawing each
pipestage as if it takes exactly one clock cycle. Some later MIPS CPUs have
longer or slightly different pipelines, but the pipeline with five stages in four
cycles is where the architecture started, and implementations keep returning to
something very close to it.

The tyranny of the rigid pipeline limits the kinds of things instructions can
do. Firstly, it forces all instructions to be the same length (exactly one machine
word of 32 bits), so that they can be fetched in a constant time. This itself
discourages complexity; there are not enough bits in the instruction to encode
really complicated addressing modes, for example.

This limitation has an immediate disadvantage; in a typical program built
for an architecture like x86, the average size of instructions is only just over 3
bytes. MIPS code will use more memory space.

Secondly, the pipeline design rules out the implementation of instructions
that do any operation on memory variables. Data from cache or memory is
obtained only in phase 4, which is much too late to be available to the ALU.
Memory accesses occur only as simple load or store instructions that move the
data to or from registers (you will see this described as a load/store architecture).

The RISC CPUs launched around 1987 worked because these restrictions
don’t cause much trouble. An 87 or later RISC is characterized by an instruc-
tion set designed for efficient pipelining and the use of caches.

However, the MIPS project architects also attended to the best thinking
of the time about what makes a CPU an easy target for efficient optimizing
compilers. Many of those requirements are quite compatible with the pipe-
line requirements, so MIPS CPUs have 32 general-purpose registers and three-
operand arithmetical/logical instructions. Happily, the complicated special-
purpose instructions that particularly upset pipelines are often those that com-
pilers are unwilling to generate.

1.3

1.4

1.4.1

1.4 Great MIPS Chips of the Past and Present ® 7

RISC and CISC

{

We can now have a go at defining what we mean by these overused terms. For
me, “RISC” is an adjective applied to machine architectures/instruction sets.
In the mid-80s, it became attached to a group of relatively new architectures in
which the instruction set had been cunningly and effectively specified to make
pipelined implementations efficient and successful. It’s a useful term because
of the great similarity of approach apparent in SPARC, MIPS, PowerPC, HP
Precision, and DEC Alpha.

By contrast to this rather finely aimed description, “CISC” (complex in-
struction set computer) is used negatively to describe architectures whose def-
inition has not been shaped by a desire to fit pipelined implementations. The
RISC revolution was so successful that no post-1985 architecture has aban-
doned the basic RISC principles; thus CISC architectures are inevitably those
born before 1985. In this book you can reasonably assume that something said
about CISC is being said to apply to both Intel’s x86 family and Motorola’s
680x0.

Both terms are corrupted when they are applied not to instruction sets but
to implementations. It’s certainly true that Intel accelerated the performance
of its far-from-RISC x86 family by applying implementation tricks pioneered
by RISC builders. But to describe these implementations as having a RISC core
is misleading.

Great MIPS Chips of the Past and Present

We'll take a very fast and somewhat superficial tour. You'll get to know some of
these names much better in the chapters that follow.

R2000 to R3000

MIPS Corporation was formed in 1984 to make a commercial version of the
Stanford MIPS CPU. The Stanford project was one of several US academic
projects that were bringing together chip design, compiler optimization, and
computer architecture in novel ways with great success. The commercial CPU
was enhanced with memory management hardware and first appeared late
in 1985 as the R2000. An ambitious external math coprocessor (the R2010
floating-point accelerator, or FPA) first shipped in mid-87. The R3000, shipped
in 1988-89, is a “midlife kicker”: It’s almost identical from the programmer’s
viewpoint, although small hardware enhancements combined to give a sub-
stantial boost to performance.

The R2000/R3000 chips include a cache controller—to get a cache, just add
industry-standard static RAMs. The math coprocessor shares the cache buses

8 m Chapter 1—RISCs and MIPS «

1.4.2

to read instructions (in parallel with the integer CPU) and to transfer operands
and results. The division of function was ingenious, practical, and workable,
allowing the R2000/3000 generation to be built without extravagant ultta-high
pin-count packages. As clock speeds increased, however, the very high speed
signals in the cache interface caused design problems; between 1988 and 1991
R3000 systems took three years to grow from 25 to 40MHz.

R6000: A Diversion

You can speed up the caches two ways: either take them on chip or speed the
interface to external memories. In the long run it was clear that as the amount
of logic that could be put on a chip increased, this problem would be solved by
bringing the caches on chip. In the short term, it looked as though it should
be possible to push up the clock rate by changing the signalling technology be-
tween the CPU and cache chips from CMOS! (CMOS is the densest and cheap-
est process for complex chips) to ECL (as used in high-end minicomputer,
mainframe, and supercomputer implementations throughout the 70s). ECL
(emitter-coupled logic) uses a much smaller voltage change to signal “0” or
“1” and is much less sensitive to noise than normal CMOS signalling, allowing
much faster interfaces.

The prospect (back in 1988) was the possibility of making small computers
that would redefine the performance of “super-minicomputers” in the same
way as CMOS RISC microprocessors had redefined workstation performance.

There were problems: Although RISC CPUs were quite easy to implement
in dense CMOS, they were large pieces of logic to build in the bipolar tech-
nology traditionally used for ECL computers. So most effort went into “BiC-
MOS” parts that could mix an internal CMOS core with bipolar circuits for
interfacing.

The MIPS project was called the R6000. It didn’t exactly fail, but it got
delayed by one problem after another and got overtaken by the R4000—the first
of a new generation of CMOS processors with on-chip caches.

Curiously, although the BiCMOS implementation strategy turned out to be
a dead end, it turned out that the on-chip cache revolution that overwhelmed
it was itself premature, at least in terms of making the fastest possible work-
station. Hewlett Packard stuck with an external primary cache for its rather
MIPS-like Precision architecture. HP eventually pushed its clock rate to around
120MHz—three times the fastest R3000 without using ECL signalling or BiC-
MOS chips. HP did careful development, as engineers are supposed to. This
strategy put HP at the top of the performance stakes for a long, long time; the
winner is not always the most ambitious architecture.

1. It would have been more precise to say TTL-compatible CMOS, but I wanted to leave “TTL” to
the glossary.

1.4.3

1.4.4

1.4 Great MIPS Chips of the Past and Present m 9

The R4000 Revolution

The R4000, introduced in 1991, was a brave and ground-breaking develop-
ment. Pioneering features included a complete 64-bit instruction set, the largest
possible on-chip caches, extraordinarily fast clock rates (100MHz on launch),
on-chip secondary cache controller, a system interface running at a fraction
of the internal CPU clock, and on-chip support for a shared-memory mul-
tiprocessor system. With the benefit of hindsight we can see that the R4000
anticipated most of the engineering developments seen up to 1995 but avoided
the (relatively complex and so far rather unsuccessful) superscalar route.

Not everything about the R4000 was perfect. It was an ambitious chip and
took a while to get completely right. MIPS guessed that cache access times
would lag behind the performance of the rest of the CPU, so it specified a
longer pipeline to allow for two-clock-cycle cache accesses; and the long pipe-
line and relatively small primary caches made the chip much less efficient (in
terms of performance/MHz) than the R3000. Moreover, MIPS Corporation
fell victim to hubris, expecting to use the chip to become strong players in the
systems market for workstations and servers; when this unrealistic ambition
was dashed, some momentum was lost.

By 1992 the workstation company Silicon Graphics, Inc. (SGI) was the lead-
ing user of MIPS processors for computer systems. When MIPS Corporation’s
systems business collapsed in early 1993 SGI was willing to step in to rescue the
company and the architecture. By the end of 1994 late-model R4400 CPUs (a
stretched R4000 with bigger caches and performance tuning) were running at
200-250MHz and keeping SGI in touch with the RISC performance leaders.

R4000 itself never played well in embedded markets, but the compatible
R4600 did. Reverting to the traditional five-stage pipeline and a product of the
old MIPS design team (now trading as QED and designing for IDT), R4600
gave excellent performance at a reasonable price. Winning a place in Cisco
routers and SGI Indy desktops led to another first: The R4600 was the first
RISC CPU that plainly turned in a profit.

R5000 and R10000

The years 1995-96 saw a resurgence in the MIPS architecture; a design group
called QED, spun out of MIPS at the time of the SGI takeover, is now estab-
lished as an independent design group capable of developing state-of-the-art
mid-range CPUs. With MIPS’s own R10000 and the QED-designed R5000,
both launched in early 1996, and low-end R4x00 chips making some very large
volume embedded design gains, it’s clear that the MIPS architecture will be
around for a few more years.

The R10000 was a major departure for MIPS from the traditional simple
pipeline; it was the first CPU to make truly heroic use of out-of-order exe-
cution. Although this was probably the right direction (Pentium II and HP’s
PA-8x00 series followed its lead and are now on top of their respective trees),

10 ® Chapter 1—RISCs and MIPS

the sheer difficulty of debugging R10000 may have set Silicon Graphics up to
conclude that sponsoring its own high-end chips was a mistake.

R5000 is a stretched R4600 with tweaked floating point and a cost-effective
secondary cache controller, built to keep the Indy going.

MIPS CPUs in use today come in four broad categories:

& ASIC cores: MIPS CPUs can be implemented in relatively little space and
with low power consumption, and an architecture with mature software
tools and support is an attractive alternative to architectures tailored for
the low end. MIPS was the first “grown up” CPU to be available as
an ASIC core—witness its presence in the Sony PlayStation games con-
sole. Companies that will provide a MIPS CPU in a corner of a silicon
subsystem include LSI Logic, Toshiba, NEC, and Philips.

m [ntegrated 32-bit CPUs: From a few dollars upward, these chips con-
tain CPU, caches, and a variable amount of system interface simpli-
fication. There’s considerable variation in price, power consumption,
and processing power. Most of them omit the memory management
unit; hardware floating point is rare. IDT has the largest range, but LSI
Logic, Toshiba, and NKK also have products. However, 32-bit CPUs
are rapidly being squeezed out between ASIC cores at the bottom and
high-end CPUs.

8 [ntegrated 64-bit CPUs: Introduced late in 1993, these chips offer amaz-
ing speed, reasonable power consumption, and have become a cult hit ,
in high-end embedded control. The range is now growing upward to :
higher performance and downward to low-cost CPUs that feature
shrunken bus interfaces. Stars in this field are IDT and NEC, with NKK
and Toshiba second-sourcing IDT’s offerings. The second generation
(1995) of these devices has featured cost-reduced CPUs and appears to
be even more successful.

m Ultimate power machines: Silicon Graphics, the workstation company
that is the adoptive parent of the MIPS architecture, develops high-end
versions of the architecture in conjunction with some of the semicon-
ductor vendors—in recent years, particularly with NEC. Some of the
products of this work, such as the math-oriented “pocket supercom-
puter” R8000 chip set, are likely never to see application outside SGI’s 3
computers. But others, like the R5000 and top-end R10000, appeal to a
select band of users with particular needs.

ale o

The major distinguishing features of some milestone products are summa-
rized in Table 1.1. We haven’t discussed the instruction set revision levels from
MIPS I through MIPS IV, but there’ll be more about them in Section 2.7, where
you'll also find out what happened to MIPS II.

'suonedtjdde pappaquia pua-y3iy ut pasn £apim

aunb aq osfe Lew 31 “asn Apu] 10§ paunsapaiq “Sutuuni (00> pue [[ews ‘deayp
Ajqeuoseas aq ued se gD ® 158 se 3q 01 JuEAW S ‘0097 Y3 JO JANALISP ATe+NTE 007-000S¥ @FO/IDS 9661

*apod jutod-Suneop uo widrew 12831q

® YIM ‘00T HY Ue JO Paads 3Y) sawT 921y3—Ise) pue A[pUsLyun 40y ST IMsal 3y,

"sawanxa 03 3fdpurid e Sunyes jo yeyy st sploydn i uonIpe) SN urew Ay,

3[dwis [[e 18 10U 3] 'UONNIIX3 13p10-§0-1no pue Suiuwreuas 1asiSal Aprenonied

‘$3J81 YOI 1SIpOUl 310U Je UIAI s10ssadoxdondiur diy>-a(3urs 03 mau pue ST

03 mau sanbruypay vonejuswadur Auew Sursn 30105 3p 1m0 Jurystuolse uy NZE+ZE Al SATIN 00Z-0000TY SAIN 9661
‘s1ayurad
1358 QOO¥ [T S.dH 2pNoUl $3sTt pappaquua Inq 9[0su0d sawed $9 OpUAUIN] 18

pawIe A[TenIu] “2ALALISPp 000FY P2InJeaj-[Iny Inq Jamod moj £19A 1505 Mo] K137 A8+91 EET-00€VIA SATN/DAN S661
. “A|qe1adsar L1aa Sururroyaad pue ZHNOSZ

1e Buruun sooFHY [PPow ave] 108 Juswdofaadp [yares ‘SuoneIniIoM 519g U A9T+A91 0ST-00VPH SAIN €661

'SI9INOI S 0IS17) PUL UOTBISHIOM
4puy pua-mo] 3[qepioge pue ise} s,[9S 03 Juerodw] IS[[01IU0D e Axepuodas
ON -autjadrd 28e1s-2AY SATIN J1SSe[P 313 03 pauINaI 1 3snesdq Apred—ayer yop :
wres 3y 3e 00 HY 10 000FY Ueyd Jaisey yonw st uSisapa1 pauny APUENLIq S, TD A9T+91 001-009%d QIO/LAI €661
"sa3e1 oo Y31y sasryoe dpy
doey1a3ut paads-jrey pue surpdid SuoT '19s uononnsur 31q-59 19y Suntopdxa
215m S(1dD SATIN M3J Jate] sxead aar] *(spqueduos £p1sidwion Inq) NgD

19-%9 4 "uondo ynould (M 1[0UCD 3YoEd AIBPUOd3S PUE Y sareISau] A8+N8 I SdIN 001-000%d SAIN 1661
's3ed spqnedwos-uid
Jo Apyurey e jo so3ruagoxd pue ayoes dryd-uo yim gD SATN PPPIqUS 151y YL A% 0T-1s0€d LAl 0661
"swa1s4s 152158 a1) SutALp
DSIY uoIska14 Te[ruuls s JH utaea] A[1e2 003 SaYED [BUINX? PIUOPUEQE ST ME9+F9
1e1 Ino pawinmy 3 “ZHN Jad paads Jo suria) Ut 493 SN JULIOYYS Isow Y], 0} dn ‘[euraixg £€-000€ SATN 0661
ATe+AE
Vdd (0102M) [ewIaxg 01 p+)p [euianxy I SdIN 91-0007d SAIIN /861
(a+1) (ZHW) 2304 302
S310N 2Yov) 3as uoIndsuy /1epowyjsaulisaq 4vay

$1dD SIIN Ul SSUOISS[IN [T HTAVL

12 m Chapter 1-—RISCs and MIPS

1.5

1.5.1

MIPS Compared with CISC Architectures

Programmers who have some assemble'r-language-level knowledge of earlier
architectures—particularly those brought up on x86 or 680x0 CISC instruc-
tion sets—may get some surprises from the MIPS instruction set and register
model. We’ll try to summarize them here, so you don’t get sidetracked later into
doomed searches for things that don’t quite exist, like a stack with push/pop
instructions!

We'll consider the following: constraints on MIPS operations imposed to
make the pipeline efficient; the radically simple load/store operations; possible
operations that have been deliberately omitted; unexpected features of the in-
struction set; and the points where the pipelined operation becomes visible to
the programmer.

Constraints on MIPS Instructions

s Al instructions are 32 bits long: That means that no instruction can fit

into only 2 or 3 bytes of memory (so MIPS binaries are typically 20-30%
bigger than for 680x0 or 80x86) and no instruction can be bigger.
This means, for example, that it is impossible to incorporate a 32-bit
constant into a single instruction (there would be no instruction bits
left to encode the operation and the target register). The MIPS architects
decided to make space for a 26-bit constant to encode the target address
of a jump or jump-to-subroutine; however, most constant fields are 16
bits long. It follows that loading an arbitrary 32-bit value requires a two-
instruction sequence, and conditional branches are limited to a range of
64K instructions.

w Instruction actions must fit the pipeline: Actions can only be carried out
in the right pipeline phase and must be complete in one clock. For ex-
ample, the register write-back phase provides for just one value to be
stored in the register file, so instructions can only change one register.

m Three-operand instructions: Arithmetical/logical operations don’t have
to specify memory locations, so there are plenty of instruction bits to
define two independent sources and one destination register. Compil-
ers love three-operand instructions, which give optimizers much more
scope to improve code that handles complex expressions.

m The 32 registers: The choice of the number of registers is largely a soft-
ware issue, and a set of 32 general-purpose registers is by far the most
popular in modern architectures. Using 16 would definitely not be as
many as modern compilers like, but 32 is enough for a C compiler to
keep frequently accessed data in registers in all but the largest and most
intricate functions. Using 64 or more registers requires a bigger instruc-
tion field to encode registers and also increases context-switch overhead.

1.5 MIPS Compared with CISC Architectures m 13

® Register zero: $0 always returns zero, to give a compact encoding of that
useful constant. !

® No condition codes: One feature of the MIPS instruction set that is radi-
cal even among the 1985 RISCs is the lack of any condition flags. Many
architectures have multiple flags for “carry,” “zero,” and so on. CISC ar-
chitectures typically set these flags according to the result written by any
or a large subset of machine instructions, while some RISC architectures
retain flags (though typically they are only set explicitly, by compare
instructions).
The MIPS architects decided to keep all this information in the regis-
ter file: Compare instructions set general-purpose registers and con-
ditional branch instructions test general-purpose registers. That does
benefit a pipelined implementation, in that whatever clever mechanisms
are built in to reduce the effect of dependencies on arithmetical/logical
operations will also reduce dependencies in compare/branch pairs.

We'll see later that efficient conditional branching means that the deci-
sion about whether to branch or not has to be squeezed into only half
a pipeline stage; the architecture helps out by keeping the branch deci-
sion tests very simple. So conditional branches (in MIPS) test a single
register for sign/zero or a pair of registers for equality.

152 Addressing and Memory Accesses

" Memory references are always plain register loads and stores: Arithmetic
on memory variables upsets the pipeline, so it is not done. Every mem-
ory reference has an explicit load or store instruction. The large register
file makes this much less of a problem than it sounds.

" Only one data-addressing mode: All loads and stores select the memory
location with a single base register value modified by a 16-bit signed
displacement.!

® Byte-addressed: Once data is in a register of a MIPS CPU, all operations
always work on the whole register. But the semantics of languages such
as C fit badly on a machine that can’t address memory locations down
to byte granularity, so MIPS gets a complete set of load/store operations
for 8- and 16-bit variables (we will say byte and halfword). Once the data
has arrived in a register it will be treated as data of full register length,
so partial-word load instructions come in two flavors—sign-extend and
zero-extend.

1. This is not quite true for MIPS CPUs from about 1996 on (MIPS 1V), which have a special
two-register addressing mode for floating-point loads and stores.

14 @ Chapter 1—RISCs and MIPS

® Load/stores must be aligned: Memory operations can only load or store
data from addresses aligned to suit the data type being transferred. Bytes
can be transferred at any address, but halfwords must be even-aligned
and word transfers aligned to 4-byte boundaries. Many CISC micro-
processors will load/store a 4-byte item from any byte address, but the
penalty is extra clock cycles.

However, the MIPS instruction set architecture (ISA) does include a
couple of peculiar instructions to simplify the job of loading or storing
at improperly aligned addresses.

s Jump instructions: The limited 32-bit instruction length is a particular
problem for branches in an architecture that wants to support very large
programs. The smallest op-code field in a MIPS instruction is 6 bits,
leaving 26 bits to define the target of a jump. Since all instructions are
4 byte aligned in memory the two least-significant address bits need not
be stored, allowing an address range of 2% = 256MB. Rather than make
this branch PC relative, this is interpreted as an absolute address within
a 256MB segment. This imposes a limit on the size of a single program,
although it hasn’t been much of a problem yet!

Branches out of segment can be achieved by using a jump register in-
struction, which can go to any 32-bit address.

Conditional branches have only a 16-bit displacement field—giving a
2'8_byte range since instructions are 4 byte aligned—which is inter-
preted as a signed PC-relative displacement. Compilers can only code
a simple conditional branch instruction if they know that the target will
be within 128KB of the instruction following the branch.

1.5.3 Features You Won’t Find

® No byte or halfword arithmetic: All arithmetical and logical operations
are performed on 32-bit quantities. Byte and/or halfword arithmetic
requires significant extra resources, many more op-codes, and is rarely
really useful. C programmers are exhorted to use the int data type for
most arithmetic, and for MIPS an int is 32 bits and such arithmetic
will be efficient. C’s rules are to perform arithmetic in int whenever
any source or destination variable is as long as int.
However, where a program explicitly does arithmetic as short or char,
a MIPS compiler must insert extra code to make sure that the results
wrap and overflow as they would on a native 16- or 8-bit machine.

s No special stack support: Conventional MIPS assembler usage does de-
fine one of the registers as a stack pointer, but there’s nothing special to
the hardware about sp. There is a recommended format for the stack
frame layout of subroutines, so that you can mix modules from differ-

1.5 MIPS Compared with CISC Architectures & 15

ent languages and compilers; you should almost certainly stick to these
conventions, but they have no relationship to the hardware.

A stack pop wouldn't fit the pipeline, because it would have two register
values to write (the data from the stack and the incremented pointer
value).

& Minimal subroutine support: There is one special feature: Jump instruc-
tions have a jump and link option, which stores the return address into
a register. $31 is the default, so for convenience and by convention $31
becomes the return address register.

This is less sophisticated than storing the return address on a stack, but
it has some significant advantages. Two examples will give you a feeling
for the argument: Firstly, it preserves a pure separation between branch
and memory-accessing instructions; and secondly, it can aid efficiency
when calling small subroutines that don’t need to save the return address
on the stack at all.

& Minimal interrupt handling: It is hard to see how the hardware could
do less. It stashes away the restart location in a special register, modifies
the machine state just enough to let you find out what happened and to
disallow further interrupts, then it jumps to a single predefined location
in low memory. Everything else is up to the software.

& Minimal exception handling: Interrupts are just one sort of exception

(the MIPS word exception covers all sorts of events where the CPU may
want to interrupt normal sequential processing and invoke a software
handler). An exception may result from an interrupt, an attempt to ac-
cess virtual memory that isn’t physically present, or many other things.
You go through an exception, too, on a deliberately planted trap instruc-
tion like a system call that is used to get into the kernel in a protected OS.
All exceptions result in control passing to the same fixed entry point.'
On any exception, a MIPS CPU does not store anything on a stack, write
memory, or preserve any registers for you.
By convention, two general-purpose registers are reserved so that excep-
tion routines can bootstrap themselves (it is impossible to do anything
on a MIPS CPU without using some registers). For a program running
in any system that takes interrupts or traps, the values of these registers
may change at any time, so you'd better not use them.

1. I exaggerate slightly; one particular kind of exception (2 TLB miss from a user program, if
you really want to know now) has a different dedicated entry point. Details will be given in
Section 5.3.

16 m Chapter 1—RISCs and MIPS

‘Brai-uch Branch
instruction IF RD address MEM WB
Branch -
ol ay | |.F] RD ALlU MEM WB*I
Branch
oonet | r RD AU MEM | wa |

FIGURE 1.3 The pipeline and branch delays

1.5.4

1.5.5

A Feature You Might Not Expect

The MIPS CPU does have an integer multiply/divide unit; this is worth men-
tioning because many RISC machines don’t have multiply hardware. The mul-
tiply unit is relatively independent of the rest of the CPU, with its own spe-
cial output registers. In many MIPS implementations it is tuned for small size
rather than speed, and integer multiplication is relatively slow. Later CPUs,
particularly those aimed at the embedded market, typically used bigger, faster
designs.

Programmer-Visible Pipeline Effects

So far, this has all been what you might expect from a simplified CPU. However,
the pipeline tuning has some stranger effects as well, and to understand them
we’re going to draw some pictures.

® Delayed branches: The pipeline structure of the MIPS CPU (Figure 1.3)
means that when a jump instruction reaches the execute phase and a
new program counter is generated, the instruction after the jump will
already have been started. Rather than discard this potentially useful
work, the architecture dictates that the instruction after a branch must
always be executed before the instruction at the target of the branch. The
instruction position following any branch is called the branch delay slot.
If nothing special was done by the hardware, the decision to branch or
not, together with the branch target address, would emerge at the end
of the ALU pipestage—in time to fetch the branch target instruction
instead of the next instruction but two. But branches are important
enough to justify special treatment, and you can see from Figure 1.3 that

L5 MIPS Compared with CISC Architectures m 17

N
8

Use
data

IF RD ALY MEM ws
Y
IF RD ALY /| MEM wa
IF RD AlU MEM WB

FIGURE 1.4 The pipeline and load delays

a special path is provided through the ALU to make the branch address
available half a clock cycle early. Together with the odd half-clock-cycle
shift of the instruction fetch stage, that means that the branch target can
be fetched in time to become the next but one, so the hardware runs the
branch instruction, then the branch delay slot instruction, and then the
branch target—with no other delays.

It is the responsibility of the compiler system or the assembler pro-
gramming wizard to allow for and even to exploit the branch delay; it
turns out that it is usually possible to arrange that the instruction in the
branch delay slot does useful work. Quite often, the instruction that
would otherwise have been placed before the branch can be moved into
the delay slot.

This can be a bit tricky on a conditional branch, where the branch delay
instruction must be (at least) harmless on both paths. Where nothing
useful can be done, the delay slot is filled with a nop instruction.

Many MIPS assemblers will hide this odd feature from you unless you
explicitly ask them not to.

Late data from load (load delay slot): Another consequence of the pipe-
line is that a load instruction’s data arrives from the cache/memory sys-
tem after the next instruction’s ALU phase starts—so it is not possible to
use the data from a load in the following instruction. (See Figure 1.4 for
how this works.)

The instruction position immediately after the load is called the load
delay slot, and an optimizing compiler will try to do something useful
with it. The assembler will hide this from you but may end up putting
in a nop.

18 ® Chapter 1—RISCs and MIPS N

Usually, and certainly on all CPUs implementing MIPS III or higher,
the load result is interlocked: If you try to use the result too early, the
CPU stops until the data arrives. But on early MIPS CPUs there were
no interlocks, and the attempt to use data in the load delay slot led to -
unpredictable results.

® Bizarre multiply/divide effects: The MIPS integer multiply/divide unit
runs outside the main pipeline and continues to run even when opera-
tions in the main pipeline are abandoned, as happens during exception
processing. There’s a note on the trouble this can cause in Section 2.3.

Chapter

MIPS Architecture

The rather grandiose word architecture is used in computing to describe the
abstract machine you program, rather than the actual implementation of
that machine. That’s a useful distinction—and one worth defending from the
widespread misuse of the term in marketing hype. The abstract description
may be unfamiliar, but the concept isn’t. If you drive a stick-shift car you'll find
the gas pedal on the right and the clutch on the left, regardless of whether the
car is front-wheel drive or rear-wheel drive. The architecture (which pedal is
where) is deliberately kept the same although the implementation is different.

Of course, if you're a rally driver concerned with going very fast along slip-
pery roads, it's suddenly going to matter a whole lot which wheels are driven.
Computers are like that too—once your performance needs are extreme or
unusual, the details of the implementation may become important to you.

In general, a CPU architecture consists of an instruction set and some
knowledge about registers. The terms “instruction set” and “architecture” are
pretty close to synonymous, so you'll often see the acronym ISA (instruction
set architecture).

The MIPS architecture has racked up a number of generations, and some
of those have different implementations:

MIPSI: The instruction set used by the original 32-bit processors; it is still
common.

MIPSII: A minor upgrade defined for a machine called the R6000, which
. didn’t get beyond preproduction. But it’s made a comeback in
1995’s new implementations of 32-bit MIPS.

MIPSIIL: The 64-bit instruction set used by CPUs called R4xxx.

MIPSIV: A minor upgrade from MIPS 111, appearing in two different imple-
mentations (R10000 and R5000).

19

20 m Chapter 2—MIPS Architecture

2.1

The architecture levels define everything the original company documen-
tation chose to define; that has typically been rather more than enough to en-
sure the ability to run the same UNIX application and less than enough to
ensure complete portability of code that uses OS or low-level features. Other
essential software-visible characteristics of a MIPS CPU are specific to the CPU
implementation.

In this book, I will be rather more generous; I'll sometimes ascribe a feature
to MIPS III that does not appear in the architecture manual, so long as that
feature is to be found in all the implementations of the MIPS III architecture
that you're likely to meet.

Moreover, even outside the ISA levels and in their implementation-specific
areas the great majority of MIPS CPUs have generally fallen into two families:
The first was led off by the early MIPS R3000 CPU and including pretty much
all 32-bit CPUs, and the second was founded by the 64-bit pioneer, the R4000.

Quite a few other implementations add some of their own new instructions
and interesting features. It’s not always easy to get software or tools (particu-
larly compilers) that take advantage of implementation-specific features.

There are two levels of detail at which we can describe the MIPS architec-
ture. The first (this chapter) is the kind of view you'd get if you were writing a
user program for a workstation but chose to look at your code at the assembler
level. That means that the whole normal working of the CPU would be visible.

In the next chapters we’ll take on everything, including all the gory details
that a high-level operating system hides—CPU control registers, interrupts,
traps, cache manipulation, and memory management. But at least we can cut
the task into smaller pieces.

CPUs are often much more compatible at the user level than when ev-
erything is exposed. MIPS III (R4xxx) CPUs are 100% compatible with their
predecessors at the user level.

A Flavor of MIPS Assembly Language

Assembly language is the human-writable (and readable) version of the CPU’s
raw binary instructions, and there’s a whole chapter devoted to it later. Readers
who have never seen any assembly language will find some parts of this book
mystifying.

Most MIPS assembler programs interpret a rather stark language, full of
register numbers. But toolchains often make it easy to use a macroprocessor
language, at least to allow the programmer to write names where the strict as-
sembler language requires numbers. Most use the C preprocessor because of its
familiarity. The C preprocessor strips out C-style comments, which therefore
become usable in assembler code.

L o

2.2

2.2 Registers m 21

With the help of the C preprocessor,"MIPS assembler code almost invari-
ably uses names for the registers. The names reflect each register’s conventional
use (which we’ll talk about in Section 2.2).

For readers familiar with assembly language, but not the MIPS version, here
are some examples of what you might see:

/* this is a comment */
so is this

entrypoint: # that’s a label
addu $1, $2, $3 # (registers) $1 = $2 + $3

Like most assembler languages, it is line oriented. The end of a line delimits
instructions, and the assembler’s native comment convention is that it ignores
any text on a line beyond a “#” character. But it is possible to put more than
one instruction on a line, separated by semicolons.

A label is a word followed by a colon “:”—word is interpreted loosely, and
labels can contain all sorts of strange characters. Labels are used to define entry
points in code and to name storage locations in data sections.

A lot of instructions are three-operand, as shown. The destination register
is on the left (watch out, that’s opposite to the Intel x86 convention). In general,
the register result and operands are shown in the same order you’'d use to write
the operation in C or any other algebraic language, so

subu $1, $2l $3
means exactly
$1 = $2 - $3;

That should be enough for now.

Registers

There are 32 general-purpose registers for your program to use: $0 to $31.
Two, and only two, behave differently from the others:

$0 always returns zero, no matter what you store in it.

$31 isalways used by the normal subroutine-calling instruction (ja1) for the
return address. Note that the call-by-register version (Jalr) can use any
register for the return address, though use of anything except $31 would
be eccentric.

22 m Chapter 2—MIPS Architectur:

2.2.1

In all other respects all these registers are identical and can be wsed in any in-
struction (you can even use $0 as the destination of instructions, though the
resulting data will disappear without a trac‘e).

In the MIPS architecture the program counter is not a register, and it is
probably better for you not to think of it that way—in a pipelined CPU there
are multiple candidates for its value, which gets confusing. The return address
of a jal is the next instruction but one in sequence:

s s

jal printf
move $4, $6
xxx # return here after call

That makes sense because the instruction immediately after the call is the
call’s delay slot—remember, the rules say it must be executed before the branch
target. The delay slot instruction of the call is rarely wasted, because it is
typically used to set up a parameter.

There are no condition codes; nothing in the status register or other CPU
internals is of any consequence to the user-level programmer.

There are two register-sized result ports (called hi and 1o) associated with
the integer multiplier. They are not general-purpose registers, nor are they
useful for anything except multiply and divide operations. However, there are
instructions defined that insert an arbitrary value back into these ports—after
some reflection, you may be able to see that this is required when restoring the
state for a program that has been interrupted.

The floating-point math coprocessor (floating-point accelerator, or FPA),
if available, adds 32 floating-point registers; in simple assembler language they
are called $£0 to $£31.

Actually, for MIPS I and MIPS II machines only the 16 even-numbered reg-
isters are usable for math. However, they can be used for either single-precision
(32-bit) or double-precision (64-bit) numbers; when you do double-precision
arithmetic, register $£1 holds the remaining bits of the register identified as
$£0. Only moves between integer and FPA, or FPA load/store instructions,
ever refer to odd-numbered registers (and even then the assembler helps you
forget).

MIPS III CPUs have 32 genuine FP registers, but even then software might
not use the odd-numbered ones, preferring to maintain software compatibility
with the old family.

Conventional Names and Uses of General-Purpose Registers

We’re a couple of pages into an architecture description and here we are talking
about software. But I think you need to know this now.

2.2 Registers m 23

TABLE 2.1 Conventional names of registers with usage mnemonics

Register number Name Used for
0 zexo Always returns 0
1 at (assembler temporary) Reserved for use by assembler
2-3 v0,vl Value returned by subroutine
4-7 a0-a3 (arguments) First few parameters for a subroutine
8-15 t0-t7 (temporaries) Subroutines can use without saving
24,25 t8, t9
16-23 80-a7 Subroutine register variables; a subroutine that writes one of these
must save the old value and restore it before it exits, so the calling
routine sees the values preserved
26,27 k0, k1 Reserved for use by interrupt/trap handler; may change under your
feet
28 gp Global pointer; some run-time systems maintain this to give easy
access to (some) “static” or “extern” variables
29 sp Stack pointer
30 88/fp Ninth register variable; subroutines that need one can use thisasa
frame pointer
31 ra Return address for subroutine

Although the hardware makes few rules about the use of registers, their
practical use is governed by a forest of conventions. The hardware cares noth-
ing for these conventions, but if you want to be able to use other people’s
subroutines, compilers, or operating systems, then you had better fit in.

With the conventional uses of the registers go a set of conventional names.
Given the need to fit in with the conventions, use of the conventional names is
pretty much mandatory. The common names are listed in Table 2.1.

Somewhere about 1996 Silicon Graphics began to introduce compilers that
use new conventions. The new conventions can be used to build programs that
use 32-bit addresses or that use 64-bit addressing, and in those two cases they
are called respectively “n32” and “n64.” We’ll ignore them for now, but we
describe them in detail in Chapter 10.

Conventional Assembler Names and Usages for Registers

® at: This register is reserved for the synthetic instructions generated by
the assembler. Where you must use it explicitly (such as when saving or

24 m Chapter 2—MIPS Architecture

restoring registers in an exception handler) there’s an assembler directive
to stop the assembler from using it behind your back (but then some of
the assembler’s macro instructions won’t be available).

v0, v1: Used when returning non-floating-point values from-a subrou-
tine. If you need to return anything too big to fit in two registers, the
compiler will arrange to do it in memory. See Section 10.1 for details.

a0-a3: Used to pass the first four non-FP parameters to a subroutine.
That’s an occasionally false oversimplification—see Section 10.1 for the
grisly details.

t0-t9: By convention, subroutines may use these values without pre-
serving them. This makes them a good choice for “temporaries” when
evaluating expressions—but the compiler/programmer must remember
that values stored in them may be destroyed by a subroutine call.

80-88: By convention, subroutines must guarantee that the values of
these registers on exit are the same as they were on entry, either by not
using them or by saving them on the stack and restoring them before
exit. This makes them eminently suitable for use as register variables or
for storing any value that must be preserved over a subroutine call.

k0, k1: Reserved for use by an OS’s trap/interrupt handlers, which will
use them and not restore their original value; so they are of little use to
anyone else.

gp: Ifa global pointer is present, it will point to a load-time-determined
location in the midst of your static data. This means that loads and
stores to data lying within 32KB of either side of the gp value can be
performed in a single instruction using gp as the base register.

Without the global pointer, loading data from a static memory area takes
two instructions: one to load the most significant bits of the 32-bit con-
stant address computed by the compiler and loader and one to do the
data load.

To use gp a compiler must know at compile time that a datum will end
up linked within a 64KB range of memory locations. In practice it can’t
know; it can only guess. The usual practice is to put small global data
items (8 bytes and less in size) in the gp area and to get the linker to
complain if it still gets too big.

Not all compilation systems and not all run-time systems support gp.

sp: It takes explicit instructions to raise and lower the stack pointer, so
MIPS code usually adjusts the stack only on subroutine entry and exit;
it is the responsibility of the subroutine being called to do this. sp is
normally adjusted, on entry, to the lowest point that the stack will need
to reach at any point in the subroutine. Now the compiler can access
stack variables by a constant offset from sp. Once again, see Section 10.1
for conventions about stack usage.

2.3

“ 2.3 Integer Multiply Unit and Registers m 25 -

® £p: Also known as 88, a frame pointer will be used by a subroutine to
keep track of the stack if it wants to do things that involve extending
the stack by an amount that is determined at'run time. Some languages
may do this explicitly; assembler programmers are always welcome to
experiment; and C programs that use the alloca () library routine will
find themselves doing so.
If the stack bottom can’t be computed at compile time, you can’t access
stack variables from sp, so £p is initialized by the function prologue to
a constant position relative to the function’s stack frame. Cunning use
of register conventions means that this behavior is local to the function
and doesn’t affect either the calling code or any nested function calls.

® ra: On entry to any subroutine, return address holds the address to
which control should be returned—so a subroutine typically ends with
the instruction jr ra.
Subroutines that themselves call subroutines must first save ra, usually
on the stack.

There is a corresponding set of standard uses for floating-point registers
too, which we’ll summarize in Section 7.5. We've described here the origi-
nal conventions promulgated by MIPS; some evolution has occurred in recent
times, but we’ll keep that back until Section 10.8, which discusses the details of
some newer standards for calling conventions.

Integer Multiply Unit and Registers

The MIPS architects decided that integer multiplication was important enough
to deserve a hardwired instruction. This is not so common in RISCs. One alter-
native would be to implement a multiply step that fits in the standard integer
execution pipeline and to require software routines for every multiplication;
early SPARC CPUs did just that.

Another way of avoiding the complexity of the integer multiplier would be
to perform integer multiplication in the floating-point unit—a good solution
used in Motorola’s short-lived 88000 family—but that would compromise the
optional nature of the MIPS floating-point coprocessor.

The multiply unit in early MIPS CPUs is not spectacularly fast. Its basic
operation is to multiply two register-sized values together to produce a twice-
register-sized result, which is stored inside the multiply unit. The instructions
mfhi, mflo retrieve the result in two halves into specified general registers.

Unlike results for integer operations, the multiply result registers are inter-
locked. An attempt to read out the results before the multiplication is complete
results in the CPU being stopped until the operation completes.

26 @ Chapter 2—MIPS Architecture

24

The integer multiply unit will also perform an integer division between
values in two general-purpose registers; in this case the 1o register stores the
result (quotient) and the hi register stores the remainder.

In MIPS CPUs the integer multiply unit operations are relatively lengthy:
Multiply takes 5-12 clock cycles and division 35-80 clock cycles (it depends
on the implementation, and for some implementations it depends on the size
of the operands). These are significantly slower than the same operations on
double-precision floating-point values and not internally pipelined—signs that
the hardware implementation traded performance for simplicity and economy
in chip space.

The assembler has a synthetic multiply operation that starts the multiply
and then retrieves the result into an ordinary register. The MIPS Corporation’s
assembler will replace a multiply instruction with a series of shifts and adds if
it thinks it will go faster; in my opinion compilers should be allowed to make
such transformations but assemblers should not!

The multiply unit is not itself pipelined but runs one instruction at a time.
Old results will be lost soon after the start of a new multiply instruction, with-
out that change being deferred to the write-back pipeline stage. This leads
to a hard-to-understand problem, which can cause your program to generate
garbage as a result of an interrupt if you don’t follow the rules.

If an m£hi or m€1lo instruction is interrupted by some kind of exception
before it reaches the write-back stage of the pipeline, it will be aborted with the
intention of restarting it. However, a subsequent multiply instruction that has
passed the ALU stage would continue (in parallel with exception processing)
and would overwrite the hi and 1o register values, so that the re-execution of
the mfhi would get wrong (i.e., new) data. For this reason it is recommended
that a multiply should not be started within two instructions of anmfhi/mf1lo.
Some assemblers (definitely SGI and Algorithmics) will put in nop padding if
you write this in sequential code, but they probably won’t notice if there’s an
intervening branch. See Section 2.9 for a list of potential pipeline-visibility
problems.

Integer multiply and divide operations never produce an exception, though
divide by zero produces an undefined result. Compilers will often generate
code to trap on errors, particularly on divide by zero.

Instructions mthi, mtlo are defined to set up the internal registers from
general-purpose registers. They are essential to restore the values of hi and 10
when returning from an exception, but probably not for anything else.

Loading and Storing: Addressing Modes

As mentioned above, there is only one addressing mode. Any load or store
machine instruction can be written

2.5

2.5.1

2.5 Data Types in Memory and Registers m .27

1w $1, offset($2)

You can use any registers for the destination and source. The offset is a
signed, 16-bit number (and so can be anywhere between —32768 and 32767);
the program address used for the load is the sum of rd and the offset. This
address mode is normally enough to pick out a particular member of a C struc-
ture (offset being the distance between the start of the structure and the mem-
ber required). It implements an array indexed by a constant; it is enough to
reference function variables from the stack or frame pointer and to provide a
reasonable-sized global area around the gp value for static and extern variables.

The assembler provides the semblance of a simple direct addressing mode,
to load the values of memory variables whose address can be computed at link
time.

More complex modes such as double-register or scaled index must be im-
plemented with sequences of instructions.

Data Types in Memory and Registers

MIPS CPUs can load or store between 1 and 8 bytes in a single operation.
Naming conventions used in the documentation and to build instruction mne-
monics are as follows:

Cname MIPSname Size (bytes) Assembler mnemonic

longlong dword 8 “d”asin1da

int word 4 “w” as in 1w

long!

short halfword 2 “h” asin 1h

char byte 1 “b”asin 1b
Integer Data Types

Byte and halfword loads come in two flavors. Sign-extending instructions 1b
and 1h load the value into the least-significant bits of the 32-bit register but fill
the high-order bits by copying the sign bit (bit 7 of a byte, bit 15 of a halfword).
This correctly converts a signed integer value to a 32-bit signed integer.

1. Nothing is simple. Recent MIPS compilers offering 64-bit pointers interpret the long data
type as 64 bits (it’s good practice for a C compiler that a 1ong should be big enough to hold a
pointer).

28 @& Chapter 2—MIPS Architecture

2.5.2

The unsigned instructions 1bu and 1hu zero-extend the data; they load the
value into the least-significant bits of a 32-bit register and fill the high-order
bits with zeros.

For example, if the byte-wide memory location whose address is in t1
contains the value 0xFE (—2, or 254 if interpreted as unsigned), then

1b t2, 0(tl)
lbu - t3, 0(tl)

will leave t2 holding the value OxFFFF FFFE (—2 as signed 32-bit value) and
t3 holding the value 0x0000 0OFE (254 as signed or unsigned 32-bit value).

The above description relates to MIPS machines considered as 32-bit CPUs,
but those imiplementing MIPS III and above have 64-bit registers. It turns out
that all partial-word loads (even unsigned ones) sign-extend into the top 32
bits; this behavior looks bizarre but is helpful, as is explained in Section 2.7.3.

Subtle differences in the way shorter integers are extended to longer ones
are a historical cause of C portability problems, and the modern C standards
have very definite rules to remove possible ambiguity. On machines like the
MIPS, which cannot do 8- or 16-bit precision arithmetic directly, expressions
involving short or char variables require the compiler to insert extra instruc-
tions to make sure things overflow when they should: This is nearly always
undesirable and rather inefficient. When porting code that uses small integer
variables to a MIPS CPU, you should consider identifying which variables can
be safely changed to int.

Unaligned Loads and Stores

Normal loads and stores in the MIPS architecture must be aligned; halfwords
may be loaded only from 2-byte boundaries and words only from 4-byte bound-
aries. A load instruction with an unaligned address will produce a trap. Be-
cause CISC architectures such as the MC680x0 and Intel x86 do handle un-
aligned loads and stores, you may come across this as a problem when porting
software; in extremity, you may even decide to install a trap handler that will
emulate the desired load operation and hide this feature from the application—
but that’s going to be horribly slow unless the references are very rare.
All data items declared by C code will be correctly aligned.

 Where you know in advance that you want to code a transfer from an ad-
dress whose alignment is unknown and that may turn out to be unaligned, the
architecture does allow for a two-instruction sequence {much more efficient
than a series of byte loads, shifts, and adds). The operation of the constituent
instructions is obscure and hard to grasp, but they are normally generated by
the macro-instruction ulw (unaligned load word). They’re described fully in
Section 8.4.1.

2.5.3

2.6

“ 2.6 Synthesized Instructions in Assembly Language m 29

A macro-instruction ulh (unaligned load half) is also provided and is syn-
thesized by two loads, a shift, and a bitwise “or” operation.

By default, a C compiler takes'trouble to align all data correctly, but there
are occasions (when importing data from a file or sharing data with a different
CPU) when being able to handle unaligned integer data efficiently is a require-
ment. Some compilers permit you to flag a data type as potentially unaligned
and will generate special code to cope; ANSI has #pragma align nn and
GNU C has the less ugly (but even more non-ANSI) packed structure field
attribute type.

Even if your compiler implements packed data types, there’s no guaran-
tee that the compiler will use the special MIPS instructions to implement un-
aligned accesses.

Floating-Point Data in Memory

Loads into floating-point registers from memory move data without any inter-
pretation—you can load an invalid floating-point number (in fact, an arbitrary
bit pattern) and no FP error will result until you try to do arithmetic with it.

On 32-bit processors, this allows you to load single-precision values by a
load into an even-numbered floating-point register, but you can also load a
double-precision value by a macro-instruction, so that on a 32-bit CPU the
assembler instruction

l.4a $£2, 24(t1)
is expanded on a 32-bit CPU to two loads to consecutive registers:

lwecl $£2, 24(t1)
lwcl $£3, 28(t1)

On a 64-bit CPU, 1.4 is an alias for the machine instruction ldc1, which
does the whole job.

Any C compiler that complies with the MIPS/SGI rules aligns 8-byte-long
double-precision floating-point variables to 8-byte boundaries. The 32-bit
hardware does not require this alignment, but it’s done for forward compat-
ibility: 64-bit CPUs will trap if asked to load a double from a location that is
not 8 byte aligned.

Synthesized Instructions in Assembly Language

MIPS machine code might be rather dreary to write; although there are ex-
cellent architectural reasons why you can’t load a 32-bit constant value into a
register with a single instruction, assembler programmers don’t want to think

30 m Chapter 2—MIPS Architecture ' -

about it every time. So MIPS Corporation’s assembler (and other good MIPS
assemblers) will synthesize instructions for you. You just write a load immedi-
ate instruction and the assembler will figure out when it needs to generate two
machine instructions.

This is obviously useful but having been invented is bound to be abused.
Many MIPS assemblers end up hiding the architecture to an extent that is
not really necessary. In this manual we will try to use synthetic instructions
sparingly, and we will tell you when it happens. Moreover, in the instruction
tables below, we will consistently distinguish between synthetic and machine
instructions.

It is my feeling that these features are there to help human programmers
and that serious compilers should generate instructions that are one-for-one
with machine code. But in an imperfect world many compilers will in fact
generate synthetic instructions.

Helpful things the assembler does include the following:

® A 32-bit load immediate: You can code a load with any value (including a
memory location that will be computed at link time), and the assembler
will break it down into two instructions to load the high and low half of
the value.

® Load from memory location: You can code a load from a memory-resident
variable. The assembler will normally replace this by loading a tempo-
rary register with the high-order half of the variable’s address, followed
by a load whose displacement is the low-order half of the address. Of
course, this does not apply to variables defined inside C functions, which
are implemented either in registers or on the stack.

» Efficient access to memory variables: Some C programs contain many ref-
erences to static or extern variables, and a two-instruction
sequence to load/store any of them is expensive. Some compilation
systems, with run-time support, get around this. Certain variables are
selected at compile/assemble time (by default MIPS Corporation’s as-
sembler selects variables that occupy 8 or less bytes of storage) and are
kept together in a single section of memory that must end up smaller
than 64KB. The run-time system then initializes one register—$28 or
gp by convention—to point to the middle of this section.

Loads and stores to these variables can now be coded as a single gp-
relative load or store.

® More types of branch conditions: The assembler synthesizes a full set of
branches conditional on an arithmetic test between two registers.

w Simple or different forms of instructions: Unary operations such as not
and neg are produced as a nox or sub with the zero-valued register $0.
You can write two-operand forms of three-operand instructions and the
assembler will put the result back into the first-specified register.

2.7

2.7 MIPS I to MIPS 1V: 64-Bit (and Other) Extensions m 3]

® Hiding the branch delay slot: In normal coding the assembler will not
let you access the branch delay slot. The SGI assembler, in particular,
is exceptionally ingenious and may reorganize the instruction sequence
substantially in search of something useful to do in the delay slot. An
assembler directive . set noreorder is available where this must not
happen.

® Hiding the load delay: The assembler will detect an attempt to use the
result of a load in the next instruction and will move code around. In
early MIPS CPUs (with no load data interlock) it will insert a nop if
required.

® Unaligned transfers: The unaligned load/store instructions will fetch half-
word and word quantities correctly, even if the target address turns out
to be unaligned.

® Other pipeline corrections: Some instructions (such as those that use the
integer multiply unit) have additional constraints—e.g., the multiply
unit’s input registers must not be reset until the third instruction after
a previous result is delivered. You probably don’t want to think about
those details, and the assembler will patch them up for you.

® Other optimizations: Some MIPS instructions (particularly floating
point) take quite a few clock cycles to produce results but the hardware
is interlocked, so you do not need to take account of these delays to write
correct programs. But the SGI assembler is particularly heroic in these
circumstances and will move code all over the place to try to make it run
faster. You may or may not welcome this.

In general, if you really want to correlate assembler source language (not
enclosed by a .set noreorder) with instructions stored in memory, you
need help. Use a disassembler utility.

MIPS I to MIPS IV: 64-Bit (and Other) Extensions

The MIPS architecture has grown since its invention—notably, it’s grown from
32 to 64 bits. That growth has been done so neatly that it would be quite possi-
ble to describe contemporary MIPS as a 64-bit architecture with a well-defined
32-bit subset for lower-cost implementations. We haven’t quite done that, for
several reasons. Firstly, that is not how it happened, so such a description is in
danger of mystifying you. Secondly, one of the lessons that MIPS has to offer
the world is the art of extending an architecture nicely. And thirdly, the mate-
rial in this book was in fact written about 32-bit MIPS before it was extended
to encompass 64 bits.

32 m Chapter 2-—MIPS Architecture

2.7.1

So the approach is a hybrid one. We will usually introduce the 32-bit
version first, but once we get down to the details we’ll handle both versions
together. We'll use the acronym ISA for the long-winded term instruction set.

Once the MIPS ISA started to evolve, the ISA of the original 32-bit MIPS
CPUs (the R2000, R3000, and descendants) was retrospectively called MIPS I.!
The next variant to be widely used is a substantial enhancement that leads
to a complete 64-bit ISA for the R4000 CPU and its successors; this is called
MIPS 1.

One of the blessings of MIPS is that at user level (all the code that you can
see when writing applications on a workstation) each MIPS ISA has been a
superset of the previous one. Nothing gets left out, only added.

There was a MIPS II, but it came to nothing because its first implementa-
tion (the R6000) ended up being overtaken by the MIPS Il R4000. However,
MIPS II was very close to being the same as the subset of MIPS III that you
get by leaving out the 64-bit integer operations. The MIPS II ISA is making a
comeback now as the ISA of choice for new implementations of 32-bit MIPS
CPUs.

As we mentioned above, the different ISA levels define whatever they de-
fine; at a minimum they define all the instructions usable by a user-level pro-
gram in a protected operating system—which includes the floating-point oper-
ations.? To go with the instructions, the ISA defines and describes the integer,
floating-point data, and floating-point control register.

But each ISA definition carefully excludes the CPU control (coprocessor 0)
registers and more recently the whole CPU control instruction set. I don’t know
how much this helps, though it does create employment for MIPS consultants
by concealing information; a book called “MIPS IV Instruction Set” is no good
if you want to know how to program the cache on an R5000.

In practice, coprocessor 0 has evolved in step with the formal ISA and like
the formal ISA there are two major variants: one associated with the R3000 (the
MIPS I CPU that is the ancestor of the biggest family of MIPS CPUs) and the
other deriving from the very first MIPS III CPU, the R4000. I'll refer to these
family groups as “R3000-style” and “R4000-style,” respectively. Later MIPS
CPUs such as R5000 and R10000 have remained R4000-style in this sense.

To 64 Bits

With the introduction of the R4000 CPU in 1990, MIPS became the first 64-bit
RISC architecture to reach production. The MIPS III version of the instruction
set has 64-bit integer registers; all the general-purpose registers are 64 bits long,

1. This is similar to a film fan asking whether you've seen “Terminator 1, even though there
never was a film called that. Even Beethoven’s Symphony no. 1 was once called “Beethoven’s
Symphony.” .

2. But it’s always been possible to make a CPU that doesn’t implement floating point.

o
1
A
)
a
g
|
g
d
-
3

2.7.2

2.7 MIPS1to MIPS IV: 64-Bit (and Other) Extensions m 33

and some of the CPU control registers are too. Moreover, all operations pro-
duce 64-bit results, though some of the instructions carried forward from the
32-bit instruction set do not do anything useful on 64-bit data. New instruc-
tions are added where the 32-bit operation can’t be compatibly extended to do
the right thing for 64-bit operands.

With MIPS III the FPA gets individual FP registers that are 64 bits long, so
you don’t need a pair of them to hold a double-precision value any more. This
extension is incompatible, so a mode switch in a CPU control register can be
set to make the registers behave like a MIPS [CPU and allow the use of old
software.

Who Needs 64 Bits?

By 1996 32 bits was no longer a big enough address space for the very largest
applications. Pundits seem to agree that programs have been growing bigger
exponentially, doubling every 18 months or so. So long as this goes on, demand
for address space is expanding at about % of a bit per year. Genuine 32-bit
CPUs (68020, i386) appeared to replace 16/20-bit machines somewhere around
1984—s0 32 bits will seem small around 2002. If this makes MIPS’s 1991 move
seem premature, that’s probably true—big-MIPS proponent Silicon Graphics
did not introduce its first 64-bit-capable OS into general use until 1995,

MIPS’s early move was spurred by research interest in operating systems
using large sparse virtual address spaces, which permit objects to be named by
their virtual address over a long period of time. MIPS was by no means the
most prestigious organization to be deceived about the rate at which operating
systems would evolve; Intel’s world-dominating 32-bit CPU range had to wait
11 years before Windows 95 brought 32-bit operation to the mass market.

A side effect of the 64-bit architecture is that such a computer can han-
dle more bits at once, which can speed up some data-intensive applications in
graphics and imaging. It’s not clear, though, whether this is really preferable to
the multimedia instruction set extensions exemplified by Intel’s MMX, which
not only features wide data paths but some way of operating simultaneously on
I-byte or 16-bit chunks of that wide data. .

By 1996 any architecture with pretensions to longevity needed a 64-bit
implementation. Maybe getting there early was not a bad thing.

The nature of the MIPS architecture—committed to a flat address space
and the use of general-purpose registers as pointers—means that 64-bit ad-
dressing and 64-bit registers go together. Even where the long addresses are
irrelevant, the increased bandwidth of the wide registers and ALU may be use-
ful for routines that shovel a lot of data, which are often found in graphics or
high-speed communication applications.

It’s one of the signs of hope for the MIPS architecture (and certain other
simpler RISC architectures) that the move to 64 bits makes segmentation (fea-
tured in x86 and PowerPC architectures) totally pointless.

34 =® Chapter 2—MIPS Architecture : “

2.7.3

Regarding 64 Bits and No Mode Switch: Data in Registers

The “standard” way to extend a CPU to new areas is to do whas DEC did long
ago when taking the PDP-11 up to the VAX and Intel did when going from
the 8086 to the 1286 and i386: they defined a mode switch in the new proces-
sor that, when turned on, makes the processor behave exactly like its smaller
ancestor.

But mode switches are kludges and in any case are difficult to implement in
a non-microcoded machine. So the R4000 uses a different approach:

m Al MIPS II instructions are preserved.

= So long as you only run MIPS II instructions you get 100% compatibil-
ity, in the sense that the low 32 bits of each MIPS III 64-bit register hold
the same values as would have filled the corresponding MIPS II register.

® As many as possible of the MIPS II instructions are defined so as to be
both compatible and still to be useful 64-bit instructions.

The crucial decision (and an easy one, once you identify the question) is:
What shall be in the high-order 32 bits of a register when we’re being 32 bit
compatible? There are a number of choices, but only a few of them are simple.

We could simply decide that the high bits should be undefined; when you're
being 32 bit compatible the high bits of registers can contain any old garbage.
This is easy to achieve but fails the third test above: We will now need separate
32- and 64-bit versions of test instructions and conditional branches (they test
registers for equality, or for being negative, by looking at the top bit).

A second and more promising option would be to decide that the high-
register bits should remain zero while we’re running 32-bit instructions; but
again, this means we’ll have to double up tests for negatives and for com-
parisons of negative numbers. Also, a 64-bit “nor” instruction between two
top-half-zero values doesn’t naturally produce a top-half-zero value.

The third, and best, solution is to maintain the top half of the register full of
copies of bit 31. If (when running only 32-bit instructions) we ensure that each
register contains the correct low 32 bits and the top half flooded with copies of
bit 31, then all 64-bit comparisons and tests are compatible with their 32-bit
versions. All bitwise logical instructions must work too (anything that works
on bit 31 works the same on bits 32-63).

The successful candidate can be described by saying that you keep 32-bit
values in registers by sign-extending them to 64 bits; this is done without regard
to whether the value is being interpreted as signed or unsigned.

With that decided, MIPS III needs new 64-bit versions of simple arithmetic
(the 32-bit addu instruction, when confronted by 32-bit overflow, has to pro-
duce the overflow value in the low half of the register and bit 31 copies in the
top half—not the same as a 64-bit add!). It also needs a load-64-bits and new
shift instructions, but it’s a modest enough set. Where new instructions are

ke

i P B

274

2.7 MIPS I to MIPS IV: 64-Bit (and Other) Extensions m ~35

needed for 64-bit data they get a “d” fordouble in the instruction mnemonic,
generating names like daddu, dsub, dmult, and 14, .

Slightly less obvious is that the existing 32-bit load instruction 1w is now
more precisely described as load word signed, so a new zero-extending lwu
appears. The number of instructions added is fattened by the need to sup-
port existing variants and (in the case of shift-by-a-constant) the need to use a
different op-code to escape the limits of a fixed 5-bit shift amount field.

All MIPS instructions are listed in horrible detail in Chapter 8.

Other Innovations in MIPS III

The widespread extensions required in going to 64 bits provide an opportunity
to add some useful instructions (unrelated to 64-bit operation).

Multiprocessor Synchronization Operations

There’s a special pair of instructions—a load linked and a store conditional—
whose job is to allow the implementation of software semaphores in a way
that works with shared memory multiprocessor systems. They do the same
job as the atomic read-modify-write (RMW) or locked instructions offered by
more recent CISC architectures—but RMW and locking get very inefficient in
large multiprocessor systems. We’ll account for their operation in Section 5.8.4
below. Meanwhile, here’s what they do.

11 is a regular load-word instruction, but it keeps a record of the address
you used in a special internal register; sc is a store-word instruction, but it only
does the store if

® The CPU has not taken any interrupt or exception since a preceding 11
at the same address, and

= (For multiprocessor systems) no other CPU has signalled a write to (or
intention to write to) a region of memory including the address used by
the 11

And then sc returns a value telling the program whether or not the store
succeeded. ‘

Although designed for multiprocessor systems, 11 and sc allow you to im-
plement a semaphore in a uniprocessor without having to disable allinterrupts.

Loop-Closing Branches (Branch Likely)

Efficient MIPS code requires that the compiler be able to find useful work to do
in most branch delay slots. In many cases, the instruction that would logically
have preceded the branch is a good choice. This can’t be done, of course, when
the branch is a conditional one and the instruction sequence before it is devoted
to computing the condition.

2.8 Basic Address Space m 37

0xC000 0000
0xA000 0000

0x8000 0000

32-bit user space (kuseg)
2GB

0x0000 0000

FIGURE 2.1 MIPS memory map: the 32-bit view

(sometimes they’re close, but not the same). We’ll refer to them as program
addresses' and physical addresses, respectively.

A MIPS CPU runs at one of two privilege levels: user and kernel.2 We’ll
often talk about “user mode” and “kernel mode” for brevity, but it’s a feature
of the MIPS architecture that the change from kernel to user never makes any-
thing work differently, it just sometimes makes it illegal. At the user level, any
program address with the most-significant bit of the address set is illegal and
causes a trap. Also, some instructions cause a trap in user mode.

In the 32-bit view (Figure 2.1), the program address space is divided into
four big areas with traditional (and thoroughly meaningless) names; different
things happen according to the area an address lies in, as follows:

kuseg 0x0000 0000-7FFF FFFF (low 2GB): These are the addresses per-
mitted in user mode. In machines with an MMU, they will always
be translated (see Chapter 6). You should not attempt to use these
addresses unless the MMU is set up.

For machines without an MMU, what happens is implementation de-
fined; your particular CPU’s manual may tell you about something use-
ful you could do with them. But if you want your code to be portable
to and between MMU-less MIPS processors, avoid this area.

ksegd 0x8000 0000-9FFF FFFF (512MB): These addresses are translated
into physical addresses by merely stripping off the top bit and mapping

1. Thad worked with operating systems before I met up with MIPS, so it’s natural for me to call the
program addresses “virtual addresses”—but for many people “virtual address” suggests a lot of
operating system complications that aren’t relevant here.

2. MIPS CPUs after R4000 have a third “supervisor” mode; however, since all MIPS OSs so far
have ignored it, we will mostly do so too.

38 m Chapter 2—MIPS Architécture

2.8.1

2.8.2

them contiguously into the low 512MB of physical memory. Since this
is a trivial translation, these addresses are often called “untranslated,”
but now you know better!

Addresses in this region are almost always accessed through the cache,
so they may not be used until the caches are properly initialized. They
will be used for most programs and data in systems not using the MMU
and will be used for the OS kernel for systems that do use the MMU.

ksegl 0xa000 0000 -- BFFF FFFF (512MB): These addresses are mapped
into physical addresses by stripping off the leading 3 bits, giving a du-
plicate mapping of the low 512MB of physical memory. But this time,
access will not use the cache.

The ksegl region is the only chunk of the memory map that is guar-
anteed to behave properly from system reset; that’s why the after-reset
starting point (0xBFCO 0000) lies within it. The physical address of
the starting point is 0x1FC0 0000—tell your hardware engineer.!

You will therefore use this region to access your initial program ROM,
and most people use it for I/O registers. If your hardware designer pro-
poses to map such things outside the low 512MB of physical memory,
apply persuasion.

kseg2 0xC000 0000 -- FFFF FFFF (1GB): This area is only accessible in
kernel mode but is once again translated through the MMU. Don’t
access it before the MMU is set up. Unless you are writing a serious
operating system, you will probably never have cause to use kseg2.

Addressing in Simple Systems

MIPS program addresses are never simply the same as physical addresses, but
simple embedded software will probably use addresses in kseg0 and ksegl,
where the program address is related in an obvious way to physical addresses.

Physical memory locations from 0x2000 0000 (512MB) upward are not
mapped anywhere in that simple picture; you can reach them by putting trans-
lation entries in the memory management unit (translation lookaside buffer)
or by using some of the extra spaces available in 64-bit CPUs.

Kernel vs. User Privilege Level

With kernel privileges (where the CPU starts up) it can do anything. In user
mode, program addresses above 2GB (top bit set) are illegal and will cause a
trap. Note that if the CPU has an MMU, this means that all user addresses must
be translated by the MMU before reaching physical memory, giving an OS the

1. The engineer wouldn’t be the first to have put the ROM at physical address 0xBFCO 0000 and
found that the system wouldn’t bootstrap.

i,

2.8.3

2.9

2.9 Pipeline Hazards m 39

chance to prevent a user program from running amok. That means, though,
that the user privilege level is redundant for a MIPS CPU running without a
memory-mapped OS.

Also, in user mode some instructions—particularly the CPU control in-
structions an OS needs—become illegal.

Note that when you change the kernel/user privilege mode bit, it does not
change the interpretation of anything—it just means that some things cease to
be allowed in user mode. At kernel level the CPU can access low addresses just
as if it were in user mode, and they will be translated in the same way.

Note also that, though it can sound as if kernel mode is for operating sys-
tems writers and user mode is the simple everyday mode, the reverse is the
truth. Simple systems (including many real-time operating systems) never
leave MIPS kernel mode.

The Full Picture: The 64-Bit View of the Memory Map

MIPS addresses are always formed by adding a 16-bit offset to a value in a
register. In MIPS III+ CPUs, the register always holds a 64-bit value, so there
are 64 bits of program address. Such a huge space permits a rather cavalier
attitude to chopping up the address space, and you can see how it’s done in
Figure 2.2.

The first thing to notice is that the 64-bit memory map is packed inside
of the 32-bit map. That’s an odd trick—like Dr. Who’s “Tardis,” the inside is
much bigger than the outside—and it depends upon the rule we described in
Section 2.7.3: When emulating the 32-bit instruction set, registers always con-
tain the 64-bit sign extension of the 32-bit value. As a result, a 32-bit program
gets access to the lowest and highest 2GB of the 64-bit program space. So the
extended map assigns those lowest and highest regions to the same purpose as
in the 32-bit version, and extension spaces are defined in between.

In practice, the vastly extended user space and supervisor-accessible spaces
are not likely to be of much significance unless you’re implementing a virtual
memory operating system; hence many MIPS III users will continue to de-
fine pointers as 32-bit objects. The large unmapped windows onto physical
memory might be useful to overcome the 512MB limit of kseg0 and kseg], but
you can achieve the same effect by programming the memory manager unit
(translation lookaside buffer).

Pipeline Hazards

Any pipelined CPU hardware is always subject to timing delays for those opera-
tions that inevitably can’t fit into a strict one-clock-cycle regime. The designers
of the architecture, though, get to choose which (if any) of these delays become
visible to the programmer. Hiding timing foibles simplifies the programmer’s

40 m Chapter 2—MIPS Architecture

OxFFFF FFFF E000
OxXFFFF FFFF C000

OxFFFF FFFF A000

OXFFFF FFFF 8000 Unmapped cached (ksegO)

0xC000 OFFF FFFF

0xC000 0000 0000

0x9800 0000 000GO

Inaccessible with
} 32-bit pointers

(only found

0x9000 0000 0000 0000 in 64‘blfCPUS)

0x4000 OOFF FFFF FFFF
0x4000 0000 0000 0000

0x0000 OOFF FFFF FFFF
More user space
to 248
32-bit user space (kuseg)
0x0000 0000 0000 0000 2GB

FIGURE 2.2 A 64-bit view of the memory map

model of what the CPU is doing, but it also loads complexity onto the hard-
ware implementor. Leaving the scheduling problem to programmers and their
software tools simplifies the hardware but can create development and porting
problems.

As we’ve said several times already, the MIPS architecture leaves some pipe-
line artifacts visible and makes the programmer or compiler responsible for
making the system work. The following points summarize where the pipeline
shows up:

8 Branch delay: In all MIPS CPUs the instruction following any branch
instruction (in the branch delay slot) is executed even though the branch
is taken. In the odd-looking branch likely instructions, introduced with
the MIPS II instruction set, the delay slot instruction is executed only if
the branch is taken; see Section 8.4.4 for a rationale.

2.9 Pipeline Hazards m 41

The programmer or compiler should find a useful, or at worst harmless,
instruction for the branch delay slot. But even the assembler will hide
the branch delay from you unless you specify otherwise.

Load delay: In MIPS I CPUs the instruction following a load instruction
(in the load delay slot) must not use the data that was loaded. A useful
or harmless instruction needs to separate load and usage. Again, the
assembler will hide this from you unless you specify otherwise.

MIPS II and subsequent CPUs don’t suffer from this hazard; CPU hard-
ware stalls the second instruction until the data arrives. But optimizing
compilers and programmers should always be aware of how much time
a particular CPU needs to get data ready to use.

Integer multiply/divide trouble: The integer multiplier hardware is sep-
arately pipelined from the regular ALU and does not properly imple-
ment “precise exceptions” (see Section 5.1 for what that means). The fix
is simple and usually implemented by the assembler—you just have to
avoid starting one multiply/divide operation too quickly after retriev-
ing the results of the last one. The explanation of why this fix is both
necessary and sufficient is rather more complicated (see Section 5.1).

Floating-point (coprocessor 1) foibles: Floating-point computations nearly
always take multiple clock cycles to complete, and typical MIPS FPA
hardware has several somewhat independent pipelined units. Under
these circumstances the hardware has just got to hide the pipeline; FP
computations are allowed to proceed in parallel with the execution of
later instructions, and the CPU is stalled if an instruction reads a result
register before the computation finishes. Really heavyweight optimiza-
tion requires the compiler to have tables of instruction repeat rates and
latencies for each target CPU type, but you won’t want to depend on
those for the program to work at all.

If computation presents no pipeline hazards, the same is not true of
the interaction between the floating-point coprocessor and the integer
execution unit. There are two effects.

Firstly, the instruction that moves data from floating-point to integer
registers, which is called mgc1, delivers data a clock cycle late—in fact,
with the same timing as loads from memory. Just as with loads, thisis a
hazard in MIPS I CPUs but interlocked with later hardware; optimizing
compilers will try to do something useful in the delay slot.

Secondly, the branch instructions that test the floating-point condition
code(s) cannot run in the instruction slot immediately following the
floating-point compare operation that generates the condition. A one-
instruction delay is specified and is required by most MIPS implemen-
tations.

CPU control instruction problems: This is where life gets tricky. When
you change fields like those in the CPU status register, you are potentially

42 = Chapzer 2—MIPS Architecture

affecting things that happen at all pipeliné stages. Since the architecture
description; regard the whole CPU control system as implementation
dependent, there are no ISA-version-fixed rules about what is needed.
And an unfortunate consequence is that CPU vendors have not even
had a template for how such hazards should be documented.

Look in Chapter 3 for a summary of the CPU control instructions used
on MIPS CPUs to date, and then refer to Appendix A for a summary of
the timing issues as they affect at least the key R4000 CPU.

Chapter

Coprocessor 0: MIPS
Processor Control

In addition to its normal computational functions, any CPU needs units
to handle interrupts, configuration options, and some way of observing or
controlling on-chip functions like caches and timers. But it’s difficult to do
this in the neat implementation-independent way that the ISA does for the
computational instruction set.

It would be desirable, and be easier for you to follow, if we could introduce
this through some chapters that separate out the different functions, and we’re
going to do that. But we have to describe the common mechanisms used to
implement these features first. You should read the first part of this chapter
before tackling the next three chapters of this book; take particular note of the
use of the word coprocessor as explained on page 44.

So what jobs does CP@ on a MIPS CPU do?

= Configuration: MIPS hardware is often very flexible, and you may be
able to select quite major features of the CPU (such as its endianness;
see Chapter 11) or alter the way the system interface works. One or
more internal registers provide control and visibility of these options.

= Cache control: MIPS CPUs have always integrated cache controllers, and
all but the oldest integrate caches too. Even the very first MIPS CPUs
had cache control fields in status registers, and from the R4000 onward,
there’s a specific CP0 instruction to manipulate cache entries. We'll talk
about caches in Chapter 4.

® Exception/interrupt control: What happens on an interrupt or any excep-
tion, and what you do to handle it, are defined and controlled by CP0
registers and a few special instructions. This is described in Chapter 5.

® Memory management unit control: This is discussed in Chapter 6.

® Miscellaneous: There’s always more: timers, event counters, parity error
detection. Whenever additional functions are built into the CPU and

43

44 m Chapter 3—Coprocessor 0: MIPS Processor Control “

Special MIPS Use of the Word Coprocessor

The word coprocessor is normally used to mean an
optional part of a processor that takes responsibility
for some extension fo the instruction set. The MIPS
standard instruction set omits many features needed
in any real CPU, but opcodes are reserved and
instruction fields defined for up to four coprocessors.

One of these [coprocessor 1) is the floating-point co-
processor, which really is a coprocessor in anyone’s
language.

Another (coprocessor O or CPO) is described by MIPS
as the system control coprocessor, and these instruc:
fions are essential to handle all those functions out-
side the responsibility of the standard ISA; they are
the subject of this chapter.

Coprocessor O has no independent existence and
is certainly not optional—you can't possibly make a

MIPS CPU without a CPU status register, for exam-
ple. But it does provide a standard way of encoding
the instructions that access the status register, so that,
although the definition of the status register changes
between the R3000 and R4000 families, you can
use the same assembler program for both CPUs.

The coprocessor O functions are deliberately corralled
off from the MIPS ISA and are in principle implemen-
lation dependent. In practice, these functions have
evolved in parinership with the regular instruction set;
for example, the CPO features of all MIPS Il CPUs built
to date have been similar enough to allow the same
OS binaries fo run over the whole family (with some
care).

Of the four coprocessors, CP3 has been invaded by
“standard” instructions from MIPS Ill and (particularly)

MIPS IV and is now unusable. CP2 may yet be used
by some systemon-achip applications.

built in too tightly to be conveniently accessed as 1/O devices, this is
where they get attached.

We’ll summarize everything found in “standard” CPUs in the second half
of this chapter. But first, we'll leave aside what we're trying to do and look at
the mechanisms we use to do it. There are relatively few CPO0 instructions—
wherever possible, low-level control over the CPU involves reading and writing
bitfields within special CPO registers.

Table 3.1 introduces the functions of those CPU control registers that have
become de facto standards. The first group of functions in the table has been
implemented in every MIPS CPU to date; the second has been in every MIPS
CPU since the R4000 (which marked an attempt to improve the organization
of the CPO units).

This is not a complete list; we’ll see some more control registers in the sec-
tions on memory management and cache control. In addition, some MIPS
CPUs have gained implementation-specific registers—this is a preferred way to
add features to the MIPS architecture. Refer to your particular CPU’s manuals.

To avoid burying you in detail at this stage, we’ve banished the bit-by-bit
description of the CPO registers to separate sections: Section 3.3 for those regis-
ters common to every MIPS CPU to date and Section 3.4 for those common to
most implementations following the R4000. You can skip over those sections
for now if you're interested in going on to the following chapters.

While we're listing registers, k0 and k1 are worth a mention. These are two
general-purpose registers reserved (by software convention) for use in exception-

Chapter 3—Coprocessor 0: MIPS Processor Control W 45

TABLE 3.1 Common MIPS CPU control registers (not MMU)

Register CPO register Description

mnemonic no.

PRId 15 An identifier identifying this CPU’s generic type, with a revision level.
The type IDs are supposedly policed by MIPS Corporation and should
(at least) change whenever the architecture or coprocessor 0 register set
changes. There’s a list of values issued up to mid-97 in Table 3.2 below.

SR 12 The status register, which, perversely, consists mostly of writable control
fields. Fields determine the CPU privilege level, which interrupt pins are
enabled, and other CPU modes.

Cause 13 What caused that exception or interrupt?

EPC 14 Exception Program Counter: where to restart after exception/interrupt.

BadVaddr 8 The program address that caused the last address-related exception. Set
by address errors of all kinds, even if there is no MMU.

Index 0 All these are MMU manipulation registers, described in Chapter 6.

Random 1 EntryLol and Wwired got introduced with the R4000.

EntryLo0 2

EntryLol 3

Context 4

EntryHi 10

PageMask 5

Wired 6

Registers introduced with the R4000

Count 9 Together, these form a simple but useful high-resolution interval timer,

Compare 11 ticking at half the CPU pipeline clock rate.

Config 16 CPU setup parameters, usually system determined; some writable here,
some read-only.

LLAddr 17 Address from last 11 (load-linked) instruction. For diagnostics only.

WatchLo 18 Data watchpoint facility. Can cause an exception when the CPU

WatchHi 19 attempts to load or store at this address—potentially useful for
debugging.

CacheERR 27 Fields for analyzing (and possibly recovering from) a memory error, for

ECC 26 CPUs using error-correcting code on the data path. See Figure 4.4 and
the explanation around it for details.

ErrorEPC 30

TagLo 28 Registers for cache manipulation, described in Section 4.10.

TagHi 29

46 m Chapter 3—Coprocessor 0: MIPS Processor Control

3.1

processing routines. It’s pretty much essential to reserve at least one register;
the choice of which register is arbitrary but it must be one that is embedded in
all extant MIPS toolkits and binaries.

CPU Control Instructions

There are several special CPU control instructions used in the memory man-
agement implementation, but we’ll leave those until Chapter 6. MIPS III CPUs
have a polymorphic cache instruction that contrives to do everything required
to caches, described below in Chapter 4.

But those aside, MIPS CPU control requires very few instructions. Let’s
start with the ones that give you access to all the registers we just listed off:

mtc0 rs, <nn> # Move to coprocessor 0
dmtc0 rs, <nn> # Move doubleword to control register

These instructions load coprocessor 0 register number nn from CPU gen-
eral register rs, with either 32 or 64 bits of data (even in 64-bit CPUs many of
the CPO registers are only 32 bits long). This is the only way of setting bits in a
CPU control register.

It is not good practice to refer to CPU control registers by their number
in assembler programs; normally you use the mnemonic names shown in Ta-
ble 3.1. Most toolchains define these names in a C-style include file and
arrange for the C preprocessor to be run as a front end to the assembler; see
your toolkit documentation for guidance on how to do this. Although there’sa
fair amount of influence from original MIPS standards, there is some variation
in the names used for these registers. We’ll stick to the mnemonics shown in
Tabie 3.1.

Getting data out of CPO registers is the opposite:

mfcO rd, <nn> # Move from coprocessor 0
dmfc0 rd, <aon> # Move doubleword from coprocessor 0

In either case rd is loaded with the values from CPU control register num-

_ber nn. This is the only way of inspecting bits in a control register. So if you

want to update a single field inside, say, the status register SR you're going to
have to code something like

mfcO t0, SR
and t0, <complement of bits to clear>
or t0, <bits to set>

mtc0 SR, tO

7

SR

3.2

3.2 What Registers Are Relevant When? m 47

The last crucial component of the control instruction set is a way of undo-
ing the effect of an exception. We'll discuss exceptions in detail in Chapter 5,
but the basic problem is shared by any CPU that can implement any kind of
secure OS; the problem is that an exception can occur while running user (low-
privilege) code but that the exception handler runs at high privilege.! So when
returning from the exception back to the user program, the CPU need:s to steer
between two dangers: On the one hand, if the privilege level is lowered before
control returns to the user program, you'll get an instant and fatal second ex-
ception caused by the privilege violation; on the other hand, if you return to
user code before lowering the privilege level, a malicious program might get the
chance to run an instruction with kernel privileges. The return to user mode
and the change of privilege level must be indivisible from the programming
viewpoint (or atomic, in architecture jargon).

On R3000 and similar CPUs this job is done by a jump instruction with
an rfe in its delay slot, but from the R4000 onward eret does the whole job.
We'll go into the details in Chapter 5. '

What Registers Are Relevant When?

These are the registers you will need to consult in the following circumstances:

= After power-up: You'll need to set up SR to get the CPU into the right
state to bootstrap itself.
Most MIPS CPUs other than the earliest have a configuration register
Config where some options may need to be set up before very much
will work. Consult your hardware engineer about making sure that the
CPU and system agree enough about configuration to get to the point
of writing these registers!

® Handling any exception: Any MIPS exception (apart from one particu-
lar MMU event) invokes a single common “general exception handler”
routine at a fixed address.
On entry no program registers have been saved, only the return address
{i ErC)\The MIPS hardware knows nothing about stacks. In any case,
in a secure OS the privileged exception handler can’t assume anything
about the integrity of the user-level code—in particular, it can’t assume
that the stack pointer is valid or that stack space is available.

You need to use at least one of k0 and k1 to point to some memory
space reserved to the exception handler. Now you can save things, using

1. Almost universally, CPUs use a software-triggered exception—a system call—as the only mech-

anism that user code can employ to invoke a service from the OS kernel (which runs at a higher
privilege level).

48 ® Chapter 3—Coprocessor 0: MIPS Processor Control

Encoding of Control Registers is harmless to write them (though the value written is

ignored). Other reserved fields are marked “reserved”
A nofe about reserved fields is in order here. Many — or “x"; you should take care to always write them as
unused control register fields are marked "0." Bits zero, and you should not assume that you will get
in such fields are guaranteed to read zero, and it back zero or any other particular value.

the other X0 or k1 register to stage data from control registers where
necessary.
Consult the cause register to find out what kind of exception it wasand
dispatch accordingly.

u Returning from exception: Control must eventually be returned to the
value stored in EPC on entry. Whatever kind of exception it was, you
will have to adjust SR back when you return, restoring the user-privilege
state, enabling interrupts, and generally unwinding the exception effect.
On the R3000 the special instruction r£e does the job, but note that
it does not transfer control. To make the jump back you will load the
original EPC value back into a general-purpose register and use a Jx
operation.
On the R4000 and all 64-bit CPUs to date, the return-from-exception
instruction eret combines the return to user space and resetting of sr.
Strictly speaking, the CPO instruction set, including rfe and eret, is
implementation dependent. But no MIPS CPU has ever invented a third
way of doing the job, and it’s fairly safe to suppose that none ever will.
However, what you might well see one day is a 32-bit CPU that bases its
CPO design on the R4000.

» Interrupts: SR is used to adjust the interrupt masks, to determine which
(if any) interrupts will be allowed higher priority than the current one.
The hardware offers no interrupt prioritization, but the software can do
whatever it likes.

w [Instructions that always cause exceptions: These are often used (for sys-
tem calls, breakpoints, and to emulate some kinds of instruction). All
MIPS CPUs have implemented instructions called break and syscall;
some implementations have added extra ones.

33 Encodings of Standard CPU Control Registers

This section tells you about the format of the control registers, with a sketch of
the function of each field. In most cases, more information about how things
work is to be found in separate sections below. However, we’ve left the registers

that are specific to the memory management system to Chapter 6. '

3.3.1

3.3 Encodings of Standard CPU Control Registers m 49

31 16 15 87 0
reserved [Imp I Rev |

FIGURE 3.1 PRIA register fields

TABLE 3.2 MIPS CPU implementation numbers in PRIA (Imp)

CPU type Imp value

R2000 1

R3000, IDT R3051, R3052, R3071, R3081. Most early 32-bit
MIPS CPUs

R6000 3
R4000, R4400 4
Some LSI Logic 32-bit CPUs 5
R6000A 6
IDT R3041 7
R10000 9
NEC Vr4200 10
NEC Vr4300 11
R8000 16
R4600 32 -
R4700 33
R3900 and derivatives 34
R5000 35
QED RMS5230, RM5260 40

Processor ID (PRId) Register

Figure 3.1 shows the layout of the PRIA register, a read-only register to be con-
sulted to identify your CPU type. “Imp” will change whenever there’s a change
in either the instruction set or the CPU control register definitions. “Rev” is
strictly manufacturer dependent and wholly unreliable for any purpose other
than helping a CPU vendor to keep track of silicon revisions. Some settings we
know about are listed in Table 3.2.

If you want to print out the values, it is conventional to print them out as
“x.y” where x and y are the decimal values of Imp and Rev, respectively. Try
not to use the contents of this register to establish parameters (like cache size,
speed, and so on) or to establish the presence or absence of particular features;

o

50 m Chapter 3—Coprocessor 0: MIPS Processor Control

R3000 [MIPS) status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 14615 87 6 5 4 3 2 1 0 !
(O TCUTCU0] 0 [RE] 0 [BEV] TS | PE [CM [Pz [SwC]iC] M [O KUo[iEo]KUp] tEp [KUC e |

R4000 (MIPS I1} status register
[(CO T CUTTCOOTRPTFRIRET O JBEV] TS | 5k | O | cH | CE [DE] W [KX[SX[UX] KU [ERL]EXL]E |

FIGURE 3.2 Fields in status register (SR)

your software will be more portable and robust if you design code sequences
to probe for the existence of individual features. In many cases you will find
examples or suggestions throughout this book.

3.3.2 Status Register (SR)

The MIPS CPU has remarkably few mode bits; those that exist are defined
by fields in the CPU status register SR, as shown in Figure 3.2. We’ve shown
fields for the “standard” R3000 and R4000 CPUs; other CPUs occasionally use
other fields, sometimes alter the interpretation of fields, and commonly don’t
implement all of the fields.

We emphasize again that there are no nontranslated or noncached modes’
in MIPS CPUs; all translation and caching decisions are made on the basis of
the program address.

The fields that are shared by the R3000 and R4000 CPUs are provided by
most MIPS CPUs.

Key Fields Common to R3000 and R4000 CPUs

Here are the critical shared fields; it would be very bad form for a new imple-
mentation to recycle any of them for any purpose, and they are probably now
nailed down for the foreseeable future.

CU1 Coprocessor 1 usable: 1 to use FPA if you have it, 0 to disable.
When 0, all FPA instructions cause an exception. While it’s ob-
viously a bad idea to enable FPA instructions if your CPU lacks
FPA hardware, it can be useful to turn off an FPA even when you
have one.! ‘

1. Why turn off a perfectly good FPA? Some operating systems disable FP instructions for every
new task; if the task attempts some floating point it will trap and the FPA will be enabled for
that task. But now we can distinguish tasks that never use floating-point instructions, and when
such a task is suspended and restored we don’t need to save or restore the FP registers; that may
save some time in crucial context-saving code,

BEV

IM

3.3 Encodings of Standard CPU Control Registers ® 51

Bits 31 and 30 control the usability of coprocessors 3 and 2, re-
spectively, and might be used by some MIPS CPUs that want to
define more instructions. CP2 instructions may appear in some
core implementations.

Boot exception vectors: When BEV == 1, the CPU uses the ROM
(ksegl) space exception entry point (described in Section 5.3).
BEV is usually set to 0 in running systems.

Interrupt mask: An 8-bit field defining which interrupt sources,
when active, will be allowed to cause an exception. Six of the
interrupt sources are generated by signals from outside the CPU
core (one may be used by the FPA, which although it lives on the
same chip is logically external); the other two are the software-
writable interrupt bits in the cause register.

The 32-bit CPUs with floating-point hardware use one of the
CPU interrupts to signal floating-point exceptions; MIPS Il and
subsequent CPUs usually have an interval timer as part of the co-
processor 0 features, and timer events are signalled on the high-

est interrupt bit. Otherwise, interrupts are signalled from out-
side the CPU chip.

No interrupt prioritization is provided for you: The hardware
treats all interrupt bits the same. See Section 5.8 for details.

Less Obvious Shared Fields

These fields are obscure, generally unused, but scary to change and therefore
universal to date.

CUo

Coprocessor 0 usable: Set 1 to be able to use some nominally
privileged instructions in user mode. You don’t want to do this.
The CPU control instructions encoded as coprocessor 0 type are
always usable in kernel mode, regardless of the setting of this bit.

Reverse endianness in user mode: The MIPS processors can be
configured, at reset time, with either endianness (see Section 11.6
if you don’t know what that means). Since human beings are
perverse, there are now two universes of MIPS implementation:
DEC and Windows NT are little-endian; SGI and their UNIX
world are big-endian. Embedded applications originally showed
a strong big-endian bias but are now thoroughly mixed.

It could be a useful feature in an operating system to be able
to run software from the opposite universe; the RE bit makes
it possible. When RE is active, user-privilege software runs as
if the CPU had been configured with the opposite endianness.

52 m Chapter 3—Coprocessor 0: MIPS Processor Control

TS

However, achieving cross-universe running would require a large
software effort as well, and to date nobody has done it.

TLB shutdown: See Chapter 6 for details. TS gets set if a pro-
gram address simultaneously matches two TLB entries, which
is certainly a sign of something horribly wrong in the OS soft-
ware. Prolonged operation in this state, in some implementa-
tions, could cause internal contention and damage to some chips,
so the TLB ceases to match anything. TLB shutdown is terminal
and can be cleared only by a hardware reset.

Some MIPS CPUs have foolproof TLB hardware and may not
implement this bit.

On IDT R3051 family CPUs you can inspect this bit following
hardware reset, and it will be set if and only if the CPU lacks
a TLB (the memory management hardware). This test is not
reliable across all implementations.

R3000-Specific Fields in the Status Register: Everyday Use

SwC, IsC

KUc, IEc

KUp, IEp

KUpo, IEo

Swap caches and isolate (data) cache: These are cache mode bits
for cache management and diagnostics; see Section 4.9 for de-
tails. In simple terms, when SR(IsC) is set, all loads and stores
access only the data cache and never memory; in this mode a
partial-word store invalidates the cache entry.

When SR (swC) is set, the roles of the I-cache and the D-cache
are reversed so that you can access and invalidate I-cache entries.

These are the two basic CPU protection bits.

KUc is set 1 when running with kernel privileges, 0 for user
mode. In kernel mode you can get at the whole program address
space and use privileged (coprocessor 0) instructions. In user
mode you are restricted to program addresses between zero and
O0x7FFF FFFF and can’t run privileged instructions; attempts to
break the rules result in an exception.

IEc is set 0 to prevent the CPU taking an interrupt, 1 to enable.

KU previous, IE previous: On an exception, the hardware takes
the values of KUc¢ and IEc and saves them here at the same time
as changing the values of KUc, IEc to {1, 0] (kernel mode, inter-
rupts disabled). The instruction rfe can be used to copy KUp,
IEp back into KUrc, IEc.

KU old, IE old: On an exception the KUp, IEp bits are saved
here. Effectively, the six KU/IE bits are operated as a three-deep,
2-bit-wide stack that is pushed on an exception and popped by
an rfe. The process is described in Chapter 5 and illustrated in
Figure 5.1.

3.3 Encodings of Standa+d CPU Control Registers & 53

This provides a chance to recover cleanly from an exception oc-
curring so early in an exception-handling routine that the first
exception has not yet saved sRr. The circumstances in which this
can be done are limited, and it is probably only really of use in
allowing the user TLB refill code to be made a little shorter; see
Section 6.7 for more information.

Obscure R3000-only Bits

PE Set if a cache parity error has occurred. No exception is gen-
erated by this condition, which is really only useful for diag-
nostics. The MIPS architecture has cache diagnostic facilities
because earlier versions of the CPU used external caches, and
signal timing on the cache buses was at the limits of technol-
ogy. For those implementations the cache parity error bit was an
essential design debug tool.

For CPUs with on-chip caches, this feature is probably obsolete.

CM This shows the result of the last load operation performed with
the D-cache isolated (see bit IsC of this register or Section 4.9.1
to know more about what “isolated” means). CM is set if the
cache really contained data for the addressed memory location
(i.e., if the load would have hit in the cache even if the cache had
not been isolated).

PZ When set, cache parity bits are written as zero and not checked.
This is a fossil from CPUs with external caches, where it allowed
confident designers to dispense with the external memory that
held the cache parity bits, saving a little money. You won’t use
this if the CPU has on-chip caches.

Common SR Fields in R4x00 CPUs

Remember, these fields are in principle entirely CPU dependent; however, there’s
been a lot of commonality in CPUs from MIPS III upward.

FR A mode switch: Set 1 to expose all 32 double-sized floating-point
registers to software; set 0 to make them behave as they do on the
R3000.

SR Soft reset occurred: MIPS CPUs offer several different grades of

reset;-distinguished by hardware signals. The field SR(8SR) is
clear following a hard reset (one where all operating parameters
are reloaded from scratch) but set following a soft reset or NMI.
In particular, the configuration register Con£fig retains its values
across a soft reset but must be reprogrammed after a hard reset.

54 m Chapter 3—Coprocessor 0: MIPS Processor Control

Why Is There a Supervisor Mode?

The R3000 CPU offered only two privilege levels,
which are all that is required by most UNIX imple-
mentations and all that has ever been used in any
MIPS OS. So why did the R4000's designers go to
considerable trouble to add a feature that has never
been used?

In 1989-90 one of the biggest successes for MIPS
was the use of the R3000 CPU in DEC's DECstation
product line, and MIPS wanted the R4000 to be se-
lected as DEC's future workstation CPU. The compe-
fition was an inchouse development that evolved into

DEC's Alpha architecture, but they were coming from
behind: R4000 was usable about 18 months before

(
Alpha's basic instruction set is almost identical to
MIPS's; its biggest difference was the attempt to do
without any partialword loads or stores, and newer
Alpha instruction sets have regained those.

In the end, it appears that the VMS software team was
decisive in choosing Alpha over the R4000 because
of its insistence that certain differences in the instruc-
fion set and CPU control architectures would make a
VMS port to R4000 crucially slower. | am very skep-
tical about this and put the choice down to NIH {not
invented here). DEC was probably right to believe
that control over its microprocessor development was
essential, but it's interesting to speculate how things

Alpha. Whichever CPU was chosen had fo run not might have tumed out differently if DEC hod stayed B
only UNIX but DEC's minicamputer operating system on board with the R4000. k.
VMS; apparently VMS architects claimed that it wasn't a
possible to implement VMS on a system with only two
privilege levels.

| also suspect that sales of VMS on Alpha have been
negligible, but that's another story.

DE Disable cache and system interface data checking: You may need
to set this for some hardware systems that don’t provide parity
on cache refills (though the hardware designer has the option of
flagging data returning to the CPU as having no parity, which is -
probably a better approach). You should also set it for CPUs that ‘
don’t implement cache parity.

UX, SX, KX These support a mix of R3000-compatible and expanded address
spaces: There are separate bits for the three different privilege
levels; when the appropriate one is set, the most common mem-
ory translation exceptions (TLB misses) are redirected to a dif-
ferent entry point where the software will expect to deal with
64-bit addresses.

Also, when SR (UX) is zero the CPU won’t run 64-bit instruc-
tions from the MIPS-III ISA in user mode.

KSU CPU privilege level: 0 for kernel, 1 for supervisor, 2 for user. Re-
gardless of this setting, the CPU is in kernel mode whenever the
EXL or ERL bits are set following an exception. The supervisor
privilege level was introduced with the R4x00 but has never been
used; see the sidebar for an explanation (or speculation) why.

ERL Error level: This gets set when the CPU takes a parity/ECC mis-
: check exception. This uses a separate bit because a correctable
ECC error can happen anywhere—even in the most sensitive
part of an ordinary exception routine—and if the system is aim-

3.33

3.3 Encodings of Standard CPU Control Registers ® 55

31

28 27 1615 8 7 6 21 0

[e0] 0 |

CE | o [[0] ExcCode | 0 |

FIGURE 3.3 Fields in the Cause register

EXL

IE

ing to patch up ECC errors and keep running, it must be able to
fix them regardless of when they occur. That’s challenging, since
the exception routine has no registers it can safely use; and with
no registers to use as pointers, it can’t start saving register values.

To get us out of this hole, SR(ERL) has drastic effects; all ac-
cess to normal user-space-translated addresses disappears, and
program addresses from 0 through 0x7FFF . FFFF become un-
cached windows onto the same physical addresses. The intention
is that the cache error exception handler can use base+offset ad-
dressing off the zexo register to get itself some memory space to
save registers.

Exception level: Set by any exception, this forces kernel mode
and disables interrupts; the intention is to keep EXL on for long
enough for software to decide what the new CPU privilege level
and interrupt mask is to be.

Global interrupt enable: Note that either ERL or EXL inhibit all
interrupts, regardless.

CPU-Dependent Fields in R4x00 CPUs

RP

CH
CE

Reduced power: Lowers the CPU’s operating frequency, usually
by dividing it by 16. In many R4x00 CPUs this doesn’t work; even
where it does, it requires that the CPU system interface be built
to cope with it. Read the CPU manual, and talk to the system
designer.

Cache hit indicator: Used for diagnostics only.

Cache error: This is only useful for diagnostics and recovery rou-
tines, and those should rely on information in the ECC register
instead.

Cause Register

Figure 3.3 shows the fields in the cause register, which you consult to find
out what kind of exception happened and which you will use to decide what
exception routine to call. Cause is a key register in exception handling and
is defined the same way in all the MIPS CPUs I know of, though the list of
exception types has grown.

56 m Chapter 3—Coprocessor 0: MIPS Processor Control

334

3.3.5

BD

CE

IP

ExcCode

Branch delay: EPC is committed to being the address where con-
trol should go back to after an exception. Normally, this also
points at the exception victim instruction.

But when the exception victim is an instruction that is in the
delay slot following a branch, EPc has to point to the branch
instruction; it is harmless to re-execute the branch, but if you
returned from the exception to the branch delay instruction itself
the branch would not be taken and the exception would have
broken the interrupted program.

Cause (BD) is set only if the exception victim instruction was in
a branch delay slot. You need only look at cause (BD) if you
want to analyze the exception victim instruction (if cause (BD)
==] then the instruction is at EPC + 4).

Coprocessor error: If the exception is taken because a copro-
cessor format instruction was not enabled by the corresponding
SR(CUx) field, then cause(CE) has the coprocessor number
from that instruction.

Interrupt pending: Shows you the interrupts that want to hap-
pen. These bits follow the CPU inputs for the six hardware lev-
els. Bits 9 and 8 are readable/writable and contain whatever value
you last wrote to them. However, any of the 8 bits active when
enabled by the appropriate SR (IM) bit and the global interrupt
enable flag SR (1Ec) will cause an interrupt.

Cause (IP) is subtly different from the rest of the cause register
fields: It doesn’t tell you what happened when the exception took
place; instead, it tells you what is happening now.

This is a 5-bit code that tells you what kind of exception hap-
pened, as detailed in Table 3.3. ’

Exception Return Address (EPC) Register

This is just a register that holds the address of the return point for this excep-
tion. The instruction causing (or suffering) the exception is at EPC, unless BD
is set in Cause, in which case EPC points to the previous (branch) instruction.
EPC is 64 bits wide if the CPU is.

Bad Virtual Address (BadVaddr) Register

This register holds the address whose use led to an exception; it is set on any
MMU-related exception, on an attempt by a user program to access addresses
outside kuseg, or if an address is wrongly aligned. After any other exception it
is undefined. Note in particular that it is not set after a bus error. Badvaddr js
64 bits wide if the CPU is.

N 3.3 Encodings of Standard CPU Control Registers ®m 57

TABLE 3.3 ExcCode values: different kinds of exceptions

ExcCode Mnemonic Description '

value

0 Int Interrupt

1 Mod TLB modification: This is an attempt to store to a program address in a
mapped region but where the MMU entry is marked as write only.

2 TLBL TLB load/TLB store: No valid entry in the TLB matches a program

3 TLBS address used for a read or write, respectively. This exception gets a
special entry point for handling most translations (exactly which
exceptions get special treatment changes between R3000- and
R4000-like CPUs). '

4 AdEL Address error (on load/I-fetch or store, respectively): This is either an

AdES attempt to get outside kuseg when in user mode or an attempt to read a
doubleword, word, or halfword at a misaligned address.
IBE Bus error (instruction fetch or data read, respectively): External

7 DBE hardware has signalled an error of some kind; what you have to do
about it is system dependent. A bus error on a store can only come
about indirectly, as a result of a cache read to obtain the cache line to be
written.

8 Syscall Generated unconditionally by a syscall instruction.

9 Bp Breakpoint: This is a break instruction.

10 RI Reserved instruction: This is an instruction code undefined in this CPU.

11 CpU Coprocessor unusable: This is a special kind of undefined instruction
exception, where the instruction is in a coprocessor or load/store
coprocessor format. In particular, this is the exception you get from a
floating-point operation if the FPA usable bit, SR (cu1), is not set;
hence it is where floating-point emulation starts.

12 Ov Arithmetic overflow: Note that unsigned versions of instructions (e.g.,
addu) never cause the exception.

13 TRAP This comes from one of the conditional trap instructions added with
MIPS II.

14 VCE! Virtual coherency error in the I-cache: This is only relevant to R4000
and above CPUs that have a secondary cache and that use the secondary
cache tag bits to check for cache aliases. Explained in Section 4.14.2,

15 FPE Floating-point exception: This occurs only in MIPS II and higher CPUs.

In MIPS I CPUs, floating-point exceptions are signalled as interrupts.

continued

58 ®m Chapter 3—Coprocessor 0: MIPS Processor Control

TABLE 3.3 continued

ExcCode
value

Mnemonic Description

16

C2E

Exception from coprocessor 2: No R4x00 CPU (yet) has had a
coprocessor 2, so this needn’t worry you.

17-22

Reserved for future expansion.

23

Watch

Physical address of load/store matched enabled value in
WatchLo/WatchHi registers.

24-30

Reserved for future expansion.

31

VCED

Virtual coherency error on data: This is the same as for VCEI.

3.4

3.4.1

Control Registers for the R4000 CPU and Followers

The R4000 (the first CPU implementing the 64-bit MIPS III ISA) was a brave
attempt to regularize some features of CPU implementations that were show-
ing signs of getting out of control and an attempt to provide a regular structure
for some irresistible features.

The most obvious change is that the caches now come under the control of
a new instruction (really a set of instructions) called cache; additional features
include an on-CPU timer, some debug facilities, and mechanisms for handling
recoverable bit errors in the extensive cache. Also there’s a Config register that
allows parameterization of some key features (cache size, cache line size, etc.)
by communicating those parameters to the software that needs to know it.

We'll introduce the registers that are just for cache management in Chap-
ter 4 where we’re dealing with caches in general and the MMU/TLB registers in
Chapter 6.

Count/Compare Registers: The R4000 Timer

These registers provide a simple general-purpose interval timer that runs con-
tinuously and that can be programmed to interrupt. In most CPUs, it’s a reset-
time configuration option whether the timer is wired to an interrupt. The
timer is always the interrupt input found at cause (IP7) (usually making the
hardware input Int5* redundant).

Count is a 32-bit counter that counts up continually, at exactly half the
CPU’s pipeline clock rate. When it reaches the maximum 32-bit value it over-
flows quietly back to zero. You can read Count to find the current time. You
can also write Count at any time—but it’s normal practice not to do so.

3.4 Control Registers for the R4000 CPU and Followers ®m 59

31 30 28272423 22 21 20 19 18 17 16 15 14 13 1211 98 6 5 4 3 2 0
[CMTEC] EP | SB [SS [SW]EW I SC [SMIBE JEM] EB [O] IC J[DCT 18 TDBJCU] KO]

FIGURE 3.4 Fields in the R4000’s Con£ig register

Compare is a 32-bit read/write register. When Count increments to a value
equal to Compare, the interrupt is raised. The interrupt remains asserted until
cleared by a subsequent write to Compare.

To produce a periodic interrupt, the interrupt handler should always in-
crement Compare by a fixed amount (not an increment to Count, because the
period would then get slightly increased by interrupt latency). The software
needs to check for the possibility that a late interrupt response might lead it
to set Compare to a value that Count has already passed; typically, it rereads
Count after writing Compare.

342 Config Register: R4x00 Configuration

CPU configuration is firmly CPU dependent, but all members of the R4x00
family have the con£4g register and share many of its fields. Figure 3.4 shows
the set of flags provided by the original R4000 CPU.

The fields in Figure 3.4 are as follows:

cM Set 1 for master/checker mode—applicable to fault-tolerant sys-
tems only. Set at reset time and read only.
- EC This 3-bit field encodes the clock divider: the ratio between the

internal pipeline clock and the clock used to run the system in-
terface. In some CPUs, the system interface clock is the same
as the input clock, and this acts as a multiplier for the internal
clock; in older CPUs, the pipeline always runs at twice the input
clock rate, and this acts as a programmable divider for the system
interface clock.

For the R4000, when the field holds the number #, the ratio is (n+
2). But the introduction of such clock ratios as 1.5 and 2.5 in later
CPUs has forced a change of encoding. Refer to the individual
CPU manual.

This field is (so far) set at reset time and read-only.

EP This 4-bit field encodes the transmit data pattern. The R4000
CPU and many of its successors have a system interface that has
no external handshake signal on the multiple data of a cache line
write-back cycle. The CPU is capable of sending the data at one
bus-width quantity per clock cycle. Because this is sometimes

60 m Chapter 3—Coprocessor 0: MIPS Processor Control 4

SB

too fast for the interface to cope with, the rate and rhythm with
which data is sent can be programmed here.

The following table shows the data pattern as a pattern of “D”,
meaning a clock cycle where a word of data is sent, or “x”, where
the system interface rests for a clock:

EP field Data pattern EP field Data pattern

0 D 8 Dxx x

1 DD x 9 DDx X x xx X

2 DD x x 10 Dx X xx

3 Dx 11 DDX X X X X X X

4 DDx x x 12 DX x X x X

5 DD x x x x 13 DDx X X X X X X X
6 Dxx 14 Dx XX XXX

7 DDx x x x x 15 DDx X X X X X X X X

Short patterns are repeated as necessary, so a write back of an 8-
word (4-doubleword) cache line programmed with config (EP)
== 5would be “DD x x x xDD”. (Or would it be correctly writ-
ten “DDx X x x DD x x x x”, implying a three-cycle quiet period
on the bus?) Our experience is that many CPUs do not imple-
ment dead time at the end of a write but that some do. Ask your
CPU supplier if this is important to you.

Most CPUs support only a subset of these values. Some use dif-
ferent encodings. The EP field is sometimes set at reset time and
read-only and sometimes programmable here.

Off-chip secondary cache block size (or line size). This field is
usually hardware configured and read-only here. R4000 encod-
ings are
SB value Block size
(32-bit words)

0 4
1 8
2 16
3 32

SS

SW

EwW
SC

SM
BE

EM
EB
IC/DC
IB/DB
CU

Ko

3.4 Control Registers for the R4000 CPU and Followers = 61

On the R4000 CPU, the off-chip secondary cache can either be
operated as split (separate cache locations used for instructions
and data, regardless of their addresses) or unified (all treated the

same according to their address). It is set 1 for split, 0 for unified.
¢t 1 for spitt, Utor unthed.

On the R4000 (and maybe some others), it is set 1 if the sec-
ondary cache is 128 bits wide like the original R4000SC, 0 for 64
bits wide.

System interface width: 0 for 64 bit, 1 for 32 bit.

In R4000 and R5000 CPUs and their immediate descendants, this
field is writable and acts as a software-controlled enable for the
secondary cache; it is very useful for diagnostic purposes. It is set
1 if there is an on-chip controlled secondary cache, 0 otherwise.
Some later uniprocessor CPUs with provision for secondary
caches report the secondary cache size in another field, recy-
cling some bitfields that are used for multiprocessor purposes in
R4000. However, typically those size fields are just blindly pass-
ing on information received at power-on configuration time and
have no hardware impact.

Multiprocessor cache coherency protocol configuration.

CPU endianness (see Section 11.6): 1 for big-endian, 0 for little-
endian. On the NEC Vr4300 (at least) this field is software write-
able, but on most MIPS CPUs it’s part of the hardware configu-
ration.

Data checking mode: 1 for ECC checking, 0 for per-byte parity.

Must be 0. There was once going to be a hardware interface op-
tion to do all cache refills/write backs in sequential order, rather
than in sub-block order; this option has never been implemented.

Size of primary I- and D-cache: A binary value n codes for a
cache size of 21" bytes.

Line (block) size of primary I- and D-cache: 0 for 4 x 32-bit
words, 1 for 8 x 32-bit words.

Another multiprocessor cache coherency protocol configuration
bit.

This is a writable field that allows you to configure cache behav-
ior for accesses in kseg0. The codes here are just the same as those
that can be entered into the MMU tables to control caching on a
page-by-page basis and appear to you as the EntryLo (¢) field.
Outside of cache-coherent multiprocessors, the only interesting
standard values are 3 = cached and 2 = uncached.

Post-R4000 CPUs not offering multiprocessor cache facilities
have used other values to configure different cache behaviors

62 m Chapter 3—Coprocessor 0: MIPS Processor Control

3.4.3

3.4.4

31 3 2 1 0
| MatchAddr(31.3)] 0 [R W |

FIGURE 3.5 Layout of the WatchLo register

such as write through and write allocate—see Section 4.3 for
what those mean. ‘

Load-Linked Address (LLAddr) Register

This register holds the physical address of the last-run load-linked operation,
which is kept to monitor accesses that may cause a future store conditional to
fail; see Section 5.8.4. Software access to LLAAdr is for diagnostic use only.

Debugger Watchpoint (WatchLo/WatchHi) Registers

These registers implement a watchpoint: They hold a physical address that
is checked against each load or store operation and that causes a trap if the
load/store address matches. They are intended for use by debug software.

WatchLo is shown in Figure 3.5. Watchpoint addresses are maintained only
to the nearest doubleword (8 bytes), so only address bits down to 3 need be
kept. watchri holds high-order address bits. The other watchLo bits enable
the watchpoint check on reads if watchLo (R) = 1 or writes if watchLo (W) =
L. There’s nothing to stop you from enabling both read and write watchpoint.

Some debuggers make use of the hardware watchpoint and some don’t. De-
buggers that do have a watchpoint facility (sometimes also called data break-
point) normally allow you to set an arbitrary number of them and are likely
to use WatchLo/WatchHi only when you've specified exactly one debugger
watchpoint.

Chapter

4.1

Caches for MIPS

MIPS CPU without a cache isn’t really a RISC. Perhaps that’s not fair; for

pecial purposes you might be able to build a MIPS CPU with a small,
tightly coupled memory that can be accessed in a fixed number of pipeline
stages (preferably one). But MIPS CPUs have pretty much always had cache
hardware built in.

This chapter will describe the way in which MIPS caches work and what the
software has to do to make them useful and reliable. From reset almost every-
thing about the cache state is undefined, so the software must build carefully.
You might also benefit from some hints and tips for use when sizing the caches
(it would be bad software practice to assume you know how big the cache is).
For the diagnostics programmer, we discuss how to test the cache memory and
probe for particular entries.

Some real-time applications writers may want to control exactly what will
get cached at run time. We discuss how to do it, even though I am skeptical
about the wisdom of using such tricks.

There’s also some evolution to contend with. In early 32-bit MIPS proces-
sors, cache management functions relied upon putting the cache into a special
state and then using ordinary reads and writes whose side effects could initialize
or invalidate cache locations. For later CPUs, special instructions are defined
to do the relevant operations.

Caches and Cache Management

The cache’s job is to keep a copy of memory data that has been recently read or
written, so it can be returned to the CPU quickly and in a fixed period of time
to keep the pipeline running.

63

64 m Chapter 4—Caches for MIPS

4.2

MIPS CPUs always have separate caches for instructions and data (I-cache
and D-cache, respectively) so that an instruction can be read and a load o store
done simultaneously.

Older CPU families (such as the x86) have to be compatible with code that
was written for CPUs that didn’t have any caches. Modern x86 chips contain
ingeniously designed hardware to make sure that software doesn’t have to know
about the caches at all (if you're building a machine to run MS/DOS this is
essential to provide backward compatibility).

But because MIPS machines have always had caches, there’s no need for
the cache to be so clever. The caches must be transparent to application soft-

. ware, apart from the increased speed. But in a MIPS CPU, which has always

had cache hardware, there is no attempt to make the caches invisible to system
software or device drivers—cache hardware is installed to make the CPU go
fast, not to help the system programmer. In a unix-like OS the operating sys-
tem hides the cache from applications, of course, but while a more lightweight
OS might well hide the details of cache manipulation from you, you will still
probably have to know when to invoke the appropriate subroutine.

How Caches Work

Conceptually, a cache is an associative memory, a chunk of storage where data is
written marked with an arbitrary data pattern as a key. In a cache, the key is the
full memory address. Produce the same key back to an associative memory and
you'll get the same data back again. A real associative memory will store items
using any set of keys at all, at least until it’s full; however, since a presented key
has to be compared with every stored key simultaneously, a genuine associative
memory of any size is either hopelessly resource hungry, slow, or both.

So how can we make a useful cache that is fast and efficient? Figure 4.1
shows the basic layout of the simplest kind of cache, the direct-mapped cache
used in most MIPS CPUs up to the 1992 generation.

The direct-mapped arrangement uses a simple chunk of high-speed mem-
ory (the cache store) indexed by enough low address bits to span its size. Each
line inside the cache store contains one or more words of data and a cache tag
field that records the memory address where this data belongs.

On a read, the cache line is accessed and the tag field is compared with the
higher addresses of the memory address; if the tag matches, we know we’ve got
the right data and have “hit” in the cache. Where there’s more than one word in
the line, the appropriate word will be selected based on the very lowest address
bits.

If the tag doesn’t match, we've missed and the data will be read from mem-
ory and copied into the cache. The data that was previously held in the cache
is simply discarded and will need to be fetched from memory again if the CPU
references it.

4.2 How CachesWork m 65

Memory address Tagstore Cache data store
Higher bits i Low bits i

Index

@ g
Cache memory

]

e
Hit

FIGURE 4.1 Direct-mapped cache

A direct-mapped cache like this one has the property that, for any given
memory address, there is only one line in the cache store where that data can
be kept.! That might be good or bad; it’s good because such a simple structure
will be fast and will allow us to run the whole CPU faster. But simplicity has its
bad side too: If your program makes repeated reference to two data items that
happen to share the same cache location (presumably because the low bits of
their addresses happen to be close together), then the two data items will keep
pushing each other out of the cache and efficiency will fall drastically.

A real associative memory wouldn't suffer from this kind of thrashing but
would be impossibly complex, expensive, and slow for any reasonable size.

A common compromise is to use a two-way set-associative cache—which
is really just a matter of running two direct-mapped caches in parallel and
looking up memory locations in both of them, as shown in Figure 4.2.

Now we’ve got two chances of getting a hit on any address. Four-way set-
associative caches (where there are effectively four direct-mapped subcaches)
are also fairly common in on-chip caches.

There are penalties, however. A set-associative cache requires many more
bus connections than a direct-mapped cache, so caches too big to integrate

1. In a fully associative memory, data associated with any given memory address (key) can be
stored anywhere; a direct-mapped cache is as far from being content addressable as a cache
store can be.

66 ®m Chapter 4—Caches for MIPS

4.3

Select A

Tagstore Cache data store

@ mh.. 2 ...

Higher bits { Low bits Cache memory A
\ Tagstore Cache data store
...... R ST
@ TIPSR RPN 1A R
Select B
Cache memory B

FIGURE 4.2 Two-way set-associative cache

onto a single chip are much easier to build direct mapped. More subtly, because
the direct-mapped cache has only one possible candidate for the data you need,
it’s possible to keep the CPU running ahead of the tag check (just so long as
the CPU does not do anything irrevocable based on the data). Simplicity and
running ahead can translate to a faster clock rate.

Once the cache has been running for a while it will be full, so storing the
incoming memory data usually means discarding some previously cached data.
If you know that the data in the cache is already safely in memory, you can
just discard the cached copys; if the data in the cache is more up to date than
memory, you need to write it back first.

That brings us to how the cache handles writes.

Write-Through Caches in Early MIPS CPUs

CPUs don't just read data (as the above discussion seems to be assuming)—
they write it too. Since a cache is intended to be a local copy of some data from
main memory, one obvious way of handling the CPU’s writes is the use of what
is called a write-through cache.

In a write-through cache the CPU’s data is always written to main memory;
if a copy of that memory location is resident in the cache, the cached copy is

B

68 m Chapter 4—Caches for MIPS

From the MIPS R4000 on, MIPS CPUs have on-chip caches that are write
back, write allocate, and have line sizes of 16 or 32 bytes.

The design choices in MIPS caches as applied to the R4000 and other large
CPUs used in Silicon Graphics and other computers are influenced by the needs
of multiprocessor systems (not discussed in this book).

4.5 Other Choices in Cache Design

The 80s and 90s have seen much work and exploration of how to build caches.
So there are yet more choices:

® Physically addressed/virtually addressed: While the CPU is running a
grown-up OS, data and instruction addresses in your program (the pro-
gram address or virtual address) are translated before appearing as phys-
ical addresses in the system memory.

A cache that works purely on physical addresses is easier to manage
(we'll explain why below), but raw program (virtual) addresses are avail-
able to start the cache lookup earlier, letting the system run that little bit
faster.

So what’s wrong with program addresses? They’re not unique; many
different programs running in different address spaces on a CPU may
share the same program address for different data. We could reinitialize
the entire cache every time we switch contexts between different address
spaces; that used to be done some years ago and may be a reasonable
solution for very small caches. But for big caches it’s ridiculously inef-
ficient, and we’ll need to include a field identifying the address space in
the cache tag to make sure we don’t mix them up.

There’s another, more subtle problem with program addresses: The same
physical location may be described by different addresses in differen-
t tasks. In turn, that might lead to the same memory location cached
in two different cache entries (because they were referred to by differ-
ent virtual addresses that selected different cache indexes). These cache
aliases must be avoided by the OS’s memory manager; see Section 4.14.2
for details.

From the R4000 on, MIPS primary caches have used the program ad-
dress to provide a fast index to start the cache lookup. But rather than
using the program address plus an address space identifier to tag the
cache line, they use the physical address. The physical address is unique
to the cache line and is efficient because the scheme allows the CPU to
translate program addresses to physical addresses at the same time it is
looking up the cache.

72 m Chapter 4—Caches for MIPS

TABLE 4.1 Cache evolution in MIPS CPUs

CPU Primary Secondary Tertiary

(MHz) Size direct/ on- Size direct/ on- | Size direct/ on-
I-cache D-cache n-way chip? n-way chip? n-way chip?

R3000-33 32K 32K Direct Off

R3052-33 8K 2K Direct On

R4000-100 8K 8K Direct On IM Direct Off

R4600-100 16K 16K Two-way On

R10000-250 32K 32K Two-way On 4M Two-way Off

R5000-200 32K 32K Two-way On IM Direct Off

RM7000-xxx 16K 16K Four-way On | 256K Four-way On | 8M Direct Off

CPUs that add another level of hierarchy reduce the miss penalty for the
next cache inward, so the designers may be able to simplify the inner cache in
search of higher clock rates, most obviously by making the next inner cache
smaller. It seems likely that as many high-end CPUs gain on-chip secondary
caches (from 1998 on), primary cache sizes will fall slightly, with dual 16KB
primary caches a favored “sweet spot.”!

An off-chip cache is generally direct mapped because a set-associative cache
system needs multiple buses and therefore an awful lot of pins to connect it.
This is still an area for experimentation; the MIPS R10000 implements an ex-
ternal two-way set-associative cache with one data bus by delaying the returned
data when the hit is not in the expected set.

Amidst all this evolution, there have been two main generations of the soft-
ware interface to the cache. From a software point of view there is one style
founded by the R3000 and followed by practically all 32-bit MIPS CPUs; there
is another starting with the R4000 and used by all 64-bit CPUs to date.? R3000-
type MIPS CPUs have caches that are write through, direct mapped, and phys-
ically addressed. Cache locations are accessible only as whole words, so an
operation that writes a byte (or anything less than a whole word) has to be
managed specially. Cache management is done using special modes in which
regular loads and stores do magic things to the cache.

1. At least this is true of architectures where the primary cache access is mostly fitted into one
clock cycle—always true of MIPS so far. It's intuitively plausible that there should be a more or
less fixed cache size whose access takes about the same time as the other activities traditionally
fitted into one pipeline stage. However, early versions of the RISC HP-8x00 CPU family accept
a two-clock-cycle primary cache latency in return for a huge external primary cache, and they
seem to work well.

2. One day (perhaps by the time you read this) there will probably be 32-bit MIPS CPUs with
R4000-type caches.

82 m Chapter 4—Caches for MIPS

A buffer that size isn’t big enough to initialize a secondary cache; we’ll
use a devious trick to manage without.

2. Set TagLo to zero, which makes sure that the valid bit is unset and the
tag parity is consistent.
The TagLo register will be used by the cache Store_Tag cache in-
structions to forcibly invalidate a line and clear the tag parity.

3. Disable interrupts if they might otherwise happen.

4. Initialize the I-cache first, then the D-cache. Following is C code for
I-cache initialization. (You have to believe in the functions or macros
like Index_Store_Tag.I () which do low-level functions; they’re either
trivial assembler code subroutines that run the appropriate machine in-
structions or—for the brave GNU C user—macros invoking a C asm
statement.)

for (addr = KSEGO; addr < KSEGO + size; addr += lnsize) {
/* clear tag to invalidate */
Index_Store_Tag_I (addr);
/* fill so data field parity is correct */
Fill_I (addr);
/* invalidate again - prudent but not strictly necessary */
Index_Store_Tag_I (addr);

5. D-cache initialization is slightly more awkward because there is no
cache Index Fill D operation; we have to load through the cache
and rely on normal miss processing. In turn, while the F111 instruction
operates on a cache index, load processing always relates to memory ad-
dresses and hits in the cache based on the tags. You have to be careful
about the tags; with a two-way cache the I-cache-style loop would ini-
tialize half the D-cache twice, since clearing PTagLo will reset the bit
used to decide which set of the cache line is to be used on the next cache
miss. Here’s how it’s done:

/* clear all tags */

for (addr = KSEGO; addr < KSEGO + size; addr += lnsize)
Index_Store_Tag D (addr);

/* load from each line (in cached space) */

for (addr = KSEGO; addr < KSEGO + size; addr += lnsize)
junk = *addr; .

/* clear all tags */

for (addr = KSEGO; addr < KSEGO + size; addr += lnsize)
Index_Store_Tag_D (addr);

ety AP S m

84 m Chapter 4—Caches for MIPS

These are not necessarily the best measures. For example, x86 CPUs are
rather short of registers, so a program compiled for x86 will generate many
more data load and store events than the same program compiled for MIPS.
But the extra loads and stores will be of the stack locations that the x86 compiler
uses as surrogates for registers; this is a very heavily used area of memory and
will be very effectively cached. To some extent the number of cache misses is
likely to be characteristic of tracing through a chunk of a particular program.

However, the above comments are useful in pointing out the following
obvious ways of making a system go faster.

® Reduce the cache miss rate:

— Make the cache bigger. Always effective, but expensive. In 1996, 64KB
of cache occupied something over half the silicon area of a top-end
embedded CPU, so doubling the cache size is economically feasible
only if you wait for Moore’s Law to give you the extra transistors in
the same space.

— Increase the set associativity of the cache. It’s worth going up to four-
way but after that the gains are too small to notice.

— Add another level of cache. That makes the calculation much more
complicated, of course. Apart from the complication of yet another
subsystem, the miss rate in a secondary cache will be depressingly
high; the primary cache has already skimmed the cream of the repet-
itive data access behavior of the CPU. To make it worthwhile, the sec-
ondary cache must be much larger (typically eight times or greater)
than the primary cache, and a secondary cache hit must be much
faster (two times or better) than a memory reference.

~ Reorganize your software to reduce the miss rate. It’s not clear if
this works in practice: it’s easy to reorganize a small or trivial pro-
gram to great effect, but so far nobody has succeeded in building a
general tool that has any useful effect on an arbitrary program. See
Section 4.12.

® Decrease the cache refill penalty:

~ Get the first word back to the CPU faster. DRAM memory systems
have to do a lot of work to start up, then tend to provide data quite
fast. The closer the memory is to the CPU and the shorter the data
path between them, the sooner the data will arrive back.

Note that this is the only entry in this list where better performance
goes with a cheaper system. Paradoxically, it’s had the least atten-
tion, probably because it requires more integration between the CPU
interface and memory system design. CPU designers are loath to
deal with system issues when they decide the interface of their chips,
perhaps because their job is too complicated already!

4.12

4.12 Reorganizing Software to Influence Cache Efficiency m 85

= Increase the memory burst bandwidth. This is traditionally approach-
ed by the expensive technique of bank interleaving, where two or
more memories are used to store alternate words; after the startup de-
lay, you can take words from each memory bank alternately, doubling
the available bandwidth. The first large-scale use of a memory tech-
nology, synchronous DRAM (or SDRAM) emerged in 1996. SDRAM
changes the DRAM interface to deliver much more bandwidth from
a single bank making bank interleaving an obsolete technique.

® Restart the CPU earlier: The simplest method is to arrange that the cache
refill bursts start with the word that the CPU missed on and to restart the
CPU as soon as that data arrives. The rest of the cache refill continues in
parallel with CPU activity. MIPS CPUs since R4x00 have allowed for this
technique by using sub-block order for cache refill burst data, which can
deliver any word of the block first. But only R4600 and its descendants
have taken advantage of this for data misses.
More radically, you can just let execution continue through a load; the
load operation is handed off to a bus interface unit and the CPU runs on
until such time as it actually refers to the register data that was loaded.
This is called a nonblocking load and is implemented on the R10000 and
slated for the RM7000.
Most drastically, you can just keep running any code that isn’t dependent
on unfetched data as is done by the out-of-order execution R10000. This
kind of CPU uses this technique quite generally, not just for loads but
for computational instructions and branches.
Intel’s Pentium Pro (progenitor of the Pentium II), MIPS’s R10000, and
HP’s PA-8000 are out-of-order implementations; these 200+ MHz multi-
ple-issue CPUs are reasonably happy being served by a large (and thus
relatively slow) external cache.

Reorganizing Software to Influence Cache Efficiency

Most of the time, we work on the assumption that program accesses show lo-
cality of access, and we operate within fairly constrained working sets. For most
purposes we also assume that, within the working set, its accesses are pretty
randomly distributed. For a workstation that must perform adequately on
many different applications, this is a fair assumption, but where an embed-
ded system runs a single application the pattern of misses is likely to be very
characteristic of a particular build of a particular piece of software. It’s tempt-
ing to wonder whether we can massage the application code in a systematic
manner to improve caching efficiency. To see how this might work, you can
classify cache misses by their cause:

86 m Chapter 4—Caches for MIPS “

» First-time accesses: Everything has to be read from memory once.

® Replacement: The cache has a finite size, and soon after your program
starts every cache miss and refill will be displacing some other valid
data. As the program runs it will repeatedly lose data and have to load
it again. You can minimize replacement misses by using a bigger cache
or a smaller program (it’s the ratio of program size to cache size that
matters).

u Thrashing: Practical caches are usually no more than four-way set as-

sociative, so for any given program location there are at best four posi-
tions in the cache that can keep it; in a direct-mapped cache there’s just
one and for a two-way set-associative cache there are two. (Thrashing
losses diminish rapidly with set associativity; most research suggests that
a four-way set-associative cache loses little performance this way.)
If your program happens to make heavy use of a number of pieces of
data whose low-order addresses are close enough that they use the same
cache line, then once the number of pieces is higher than the set associa-
tivity of the cache you can get periods of very high cache misses as the
different chunks of data keep pushing each other out of the cache.

With this background, what kind of changes to a program will make it
behave better in a cache?

® Make it smaller: A good idea if you can do it. You can use modest com-
piler optimization (exotic optimization often makes programs larger).

® Make the heavily used portion of the program smaller: Access density in
programs is not at all uniformly distributed. There’s often a significant
amount of code that is almost never used (error handling, obscure sys-
tem management), or used only once (initialization code). If you can
separate off the rarely used code, you might be able to get better cache
hit rates for the remainder.

An approach that has been tried with qualified success is to use a profiler
to establish the most heavily used functions in a program while run-
ning a representative workload, then to arrange the functions in mem-
ory in decreasing order of execution time. That means at least that the
very most frequently used functions won’t fight each other for cache
locations.

® Force some important code/data to be cache resident: Some vendors pro-
vide a mechanism to allow part of the cache to be loaded and then those
contents to be protected from replacement. This has been marketed to
people who are concerned about having deterministic performance in
interrupt handlers or other crucial pieces of software. This is usually
implemented by consuming a set from a two-way set-associative cache
(so that the cache acts as direct mapped for the rest of the system).

4.13

4.13 Write Buffers and When You Need to Worry m 87

I'am very skeptical about the viability of this approach, and I don’t know
of any research that backs up its usefulness. The loss in performance to
the rest of the system is likely to outweigh the performance gain of the
critical code. Cache locking has been used as a rather dubious market-
ing tool to tackle customer anxiety about the heuristic nature of caches.
The anxiety is understandable, but the problem comes with faster, more
complex, larger systems—caches are only one part of this issue.

® Lay out the program to avoid thrashing: Beyond making the active part of
the program smaller (see above) this seems to me to be too unmaintain-
able to be a good idea. And a set-associative cache (even just two-way)
makes it quite pointless.

= Make some rarely used data or code uncacheable: It seems appealing to
just reserve the cache for important code, leaving used-once or used-
rarely code out.

This is almost always a mistake. If the data is really rarely used, it will
never get into the cache in the first place. And because caches usually
read data in lines of 4-16 words, they often produce a huge speedup
even when traversing data or code that is used only once; the burst refill
from memory takes little longer than a single-word access and gives you
the next 3—15 words free.

In short, we warmly recommend the following approach as a starting point
(to be abandoned only after much measurement and deep thought). To start
with, allow everything to be cacheable except I/O registers and lightly used re-
mote memory. See what the cache heuristics do for your application before
you try to second-guess them. Secondly, fix hardware problems in hardware.
There’s no software band-aid that will regain performance lost to excessive
cache refill latency or low memory bandwidth. The attempt to lower cache
miss rates by reorganizing software is bound to be lengthy and complicated,
but be aware at the start that the gains will be small and hard-won. Try to get
the hardware fixed too!

Write Buffers and When You Need to Worry

The write-through cache common to all 32-bit MIPS CPUs demands that all
CPU stores be immediately sent to main memory, which would be a big per-
formance bottleneck if the CPU waited for each write to finish.

In an average C program compiled for MIPS, about 10% of instructions
executed are stores, but these accesses tend to come in bursts, for example when
a function prologue saves a few registers.

88 ®m Chapter 4—Caches for MIPS

DRAM memory frequently has the characteristic that the first write of a
group takes quite a long time (510 clock cycles is typical on these CPUs), and
subsequent ones are relatively fast so long as they follow quickly.

If the CPU simply waits while a write completes, the performance hit will
be huge. So it is common to provide a write buffer, a FIFO store in which each
entry contains both data to be written and the address at which to write it.
MIPS CPUs have used FIFOs with between one and eight entries.

The 32-bit MIPS CPUs with write-through caches depend heavily on write
buffers. In these CPUs, a four-entry queue has proved efficient for well-tuned
local DRAM with CPU clock rates up to 40MHz.

Later MIPS CPUs (with write-back caches) retain the write buffer as a
holding area for cache line write backs and as a time saver on uncached writes,

Most of the time the operation of the write buffer is completely transpar-
ent to software. But sometimes the programmer needs to be aware of what is
happening;

® Timing relations for I/O register accesses: This affects all MIPS CPUs.
When you perform a store to an I/O register, the store reaches mem-
ory after a small, but indeterminate, delay. Other communication with
the I/O system (e.g., interrupts) may happen more quickly—for exam-
ple, you may see an active interrupt from a device “after” you have told
it to generate no interrupts. In a different case, if an I/O device needs
some time to recover after a write you must ensure that the write buffer
FIFO is empty before you start counting out that time period. Here,
you must ensure that the CPU waits while the write buffer empties. It is
good practice to define a subroutine that does this job; it is traditionally
called wbf1lush (). See Section 4.13.1 below for hints on implementing
1t.

The above describes what can happen on any MIPS R4x00 (MIPS I ISA)
or subsequent CPU implemented to date. It’s also enough for the whole IDT
R3051 family, the most popular embedded component CPUs. But on some
earlier 32-bit systems, even stranger things can happen:

® Reads overtaking writes: When a load instruction (uncached or missing
in the cache) executes while the write buffer FIFO is not empty, the CPU
has a choice: Should it finish off the write or use the memory interface
to fetch data for the load? It's more efficient to do the read first—the
CPU is certainly stopped until the read data arrives, but there’s a good
chance that the write can be deferred and still performed in parallel with
later CPU activity.!

1. You may observe that there is some danger that the overtaking read may be trying to fetch
locations for which there is still a write pending, which would be disastrous; however, CPUs

4.13.1

4.13 Write Buffers and When You Need to Worry m 89

The original R3000 hardware left this decision in the hands of the sys-
tem hardware implementation. The most popular integrated MIPS I
CPUs from IDT don’t permit reads to overtake writes—they have un-
conditional write priority. Most MIPS III CPUs have not permitted read
overtaking, but robust software doesn’t have to assume this any more.
See the description of the sync instruction in Section 8.4.9.

Ifyou believe that your MIPS I CPU might not have unconditional write
priority, then when you are dealing with I/O registers the necessary ad-
dress check may not save you; a load may misbehave because an earlier
store to a different address is still pending. In this case you need to call
wbflush().

® Byte gathering: Some write buffers watch for partial-word writes within
the same memory word and will combine those partial writes into a
single operation. This is not done by any current R3051-family CPU,
but it can wreak havoc with I/O register writes.

It is not a bad idea to map your 1/O registers such that each register is
in a separate word location (i.e., 8-bit registers should be at least 4 bytes
apart). You can’t always do it.

Implementing wbflush

Unless your CPU is one of the peculiar type above, you can ensure that the
write buffer is empty by performing an uncached load from anywhere (which
will stall the CPU until the writes have finished and the load has finished too).
This is inefficient; you can minimize the overhead by loading from the fastest
memory available to you.

For those who never want to think about it again, a write to memory fol-
lowed by an uncached read from the same address (with a sync in between the
two if you're running on a MIPS III or later CPU) will flush out the write FIFO
on any MIPS CPU built to date (and it’s difficult to see how a CPU without this
behavior could be a correct implementation).

Some systems use a hardware signal that indicates whether the FIFO is
empty, wired to an input that the CPU can sense directly. But this isn’t done
on any MIPS CPU to date.

CAUTION!

Systems often have write buffers outside the CPU. Any bus or memory infer-
face that boasts of having write posting as a feature is behaving similarly.
Write buffers outside the CPU can give you just the same sort of trouble as
those inside it. Take care with your programming.

allowing read overtaking will compare read and write addresses and give the write priority if the
addresses overlap.

o

90 m Chapter 4—Caches for MIPS

4.14

4.14.1

4.14.2

More about MIPS Caches

Although you may never need to know about these subjects, we mention them
for the sake of completeness.

Multiprocessor Cache Features

Our discussion in this book will stick to single-CPU systems. Interested parties
should read the classic paper (Sweazey and Smith 1986).

Cache Aliases

This problem only afflicts caches where the address used to generate the cache
index is different from the address stored in the cache tag. In the primary caches
of R4000-style CPUs, the index is taken from the program (virtual) address and
the tag from the physical address. This is good for performance, because cache
lookup can parallel address translation, but it can lead to aliases.

Most of these CPUs can translate addresses in 4KB pages and have caches
of 8KB or larger. It's therefore possible that a single physical page is mapped
to two different program addresses, which are sequential pages—let’s say those
starting at 0 and 4KB. If the program accesses data at 0, it will be loaded into
the cache at index 0. If it accesses the same data at the alternate address of 4KB,
it will be fetched again from memory into the cache at the different index of
4KB. Now there are two copies of the same cache line, and modifications made
at one address will not find their way to the other one. This is a cache alias.

MIPS secondary caches are always physically indexed and tagged, so they
don’t suffer from aliases.!

However, it’s easier to avoid this problem than to fix it. Aliases can’t arise
between any pair of translations where the two alternative program addresses
will produce the same cache index. With 4KB pages, the low 12 bits of the
cache index are guaranteed to be equal; it’s only necessary to ensure that any
two alternative program addresses for any physical page are equal modulo the
largest likely primary cache set size. If you only issue multiple program ad-
dresses that are a multiple of 64KB apart, it’s hard to imagine that you'll ever
have any trouble.?

1. CPUs with on-chip secondary cache controllers can use some bits in the secondary cache to
keep track of cache fetches into the primary cache; R4000 and R4400 CPUs use this to detect
cache aliases and take a special exception to allow system software to resolve the problem. But
this doesn’t seem to be a tradition being carried on in later MIPS CPUs.

2. Although CPUs get relentlessly bigger and faster with every year that passes, it’s likely that pri-
mary cache set sizes will peak not far beyond the current 16KB record. Primary caches run at
the full CPU clock rate, and smaller is faster; future, more highly integrated CPUs will probably
go for on-chip secondary caches instead.

e g

g

Chapter

Exceptions, Interrupts,
and Initialization

In the MIPS architecture interrupts, traps, system calls, and everything else
that disrupts the normal flow of execution are called exceptions and are han-
dled by a single mechanism. What sort of events are they?

® External events: These are interrupts, or bus errors on a read. Interrupts
are used to direct the attention of the CPU to some external event, which
can be faster or more efficient than insisting that the CPU regularly poll
for that event.

Interrupts are the only exception conditions that arise from something
independent of the CPU’s normal instruction stream. Since you can’t
avoid interrupts just by being careful, there have to be software mecha-
nisms to inhibit the effect of interrupts when necessary.

® Memory translation exceptions: These are caused by an address that
should be translated, but for which no valid translation currently ex-
ists, or a write to a write-protected page. The OS checks these excep-
tions, some of which are symptomatic of an application program step-
ping outside its permitted address space and will be fixed by terminat-
ing the application to protect the rest of the system. The more common
benign memory translation exceptions can be used to initiate operat-
ing system functions as complex as a complete demand-paged virtual
memory system or as simple as extending the space available for a stack.

u Other unusual program conditions for the kernel to fix: Notable among
these are conditions resulting from floating-point instructions, where
the hardware is unable to cope with some difficult and rare combina-
tion of operation and operands and is seeking the services of a software
emulator.

91

92 m Chapter 5—Exceptions, Interrupts, and Initialization

This category is fuzzy, since different kernels have different ideas about
what they’re willing to fix. An unaligned load may be an error on one
system and something to be handled in software on another,

® Program or hardware-detected errors: This includes nonexistent instruc-
tions, instructions that are illegal at user privilege level, coprocessor in-
structions executed with the appropriate sR flag disabled, integer over-
flow, address alignment errors, and accesses outside kuseg in user mode.

® Data integrity problems: Many MIPS CPUs continually check data on
the bus or data coming from the cache for a per-byte parity or for word-
wide error-correcting code. Cache or parity errors generate a (special)
exception in R4000 and subsequent CPUs.

& System calls and traps: These are instructions whose whole purpose is to
generate recognizable exceptions; they are used to build software facil-
ities in a secure way (system calls, conditional traps planted by careful
code, and breakpoints).

Some things do not cause exceptions, though youd expect them to. For ex-
ample, you will have to use other mechanisms to detect bus errors on write cy-
cles, because the CPU places data and address in its write buffer and the exter-
nal write cycle happens sometime later, so an exception would be hard to relate
to the instruction that caused it. Some systems may use external mechanisms,
perhaps signalled with an interrupt.

Even stranger, parity errors detected in the cache of most 32-bit CPUs don’t
cause an exception; the fault shows up in the status register bit SR(PE), but
you have to look for it. R3000 cache parity was added late and for diagnostic
purposes only.

In this chapter, we’ll look at how MIPS CPUs decide to take exceptions and
what the software has to do to handle them cleanly. We’ll explain why MIPS ex-
ceptions are called “precise,” discuss exception entry points, and discuss some
software conventions.

Hardware interrupts from outside the CPU are the most common excep-
tions for embedded applications, the most time critical, and the ones most
likely to cause subtle bugs. Special problems can arise with nested exceptions,
those exceptions occurring while you are still handling an earlier exception.

The way that a MIPS CPU starts up after system reset is implemented as a
kind of exception and borrows functions from exceptions—so that’s described
in this chapter too. At the end of the chapter, we'll look at a couple of related
subjects: how to emulate an instruction (as needed by an instruction set exten-
sion mechanism) and how to build semaphores to provide robust task-to-task
communication in the face of interrupts. Chapter 12 contains the annotated
source code of an interrupt/exception handler taken from a real MIPS system.

5.1

4 5.1 Precise Exceptions ® 93

Precise Exceptions

t
You will see the phrase precise exceptions used in the MIPS documentation. It
is a useful feature, but to understand why, you need to meet its alternative.

In a CPU tuned for the best performance by pipelining (or by more compli-
cated tricks for overlapping instruction execution), the architecture’s sequen-
tial model of execution is an illusion maintained by clever hardware. Unless
the hardware is designed cleverly, exceptions can cause this illusion to unravel.

When an exception suspends its thread of execution, a pipelined CPU has
several instructions in different phases of completion. Since we want to be
able to return from the exception and carry on without disruption to the in-
terrupted flow of execution, each instruction in the pipeline must be either
completed, made as though we never saw it, or its half-completed st«te stored.
Moreover, we need to be able to remember which instruction falls n each of
those categories.

A CPU architecture features precise exceptions when it presc: _=s a solu-
tion to this problem that makes life as easy as possible for the software. In
a precise-exception CPU, on any exception we get pointed at one instruction
(the exception victim). All instructions preceding the exception victim in exe-
cution sequence are complete; any work done on the victim and on any subse-
quent instructions has no side effects that the software need worry about.! The
software that handles exceptions can ignore all the timing effects of the CPU’s
implementation.

{The MIPS architecture comes close to prescribing that all exceptions are
pretise. Here are the ingredien-::

u Unambiguous proof of guilt: After any exception the CPU control register
EPC points to the correct place to restart execution after the exception
is dealt with. In most cases, it points to the exception victim, but if the
victim was in a branch delay slot EPc points to the preceding branch
instruction: Returning tc the branch instruction will re-execute the vic-
tim instruction, but returning to the victim would cause the branch to
be ignored. When the victim is in a branch delay slot, the cause register
bit cause (BD) is set, because some exception handlers need to inspect
the victim instruction——in this case found at location EPC + 4.

It may seem obvious that it should be easy to find the victim, but on
some heavily pipelined CPUs it may not be possible.

1. This is not quite the same as saying that the exception victim and subsequent instructions

haven’t done anything. But it does require that, when re-executed after the exception, those
instructions will behave exactly as they would have done if the exception hadn’t happened.
Computer architects say that any side effect must be idempotent—doing it twice is the same
as doing it once.

94 m Chapter 5-Exceptions, Interrupts, and Initialization

5.2

® Exceptions appear in instruction sequence: This would be obvious for a

nonpipelined CRU, but exceptions can arise at several different stages
of execution, creating a potential hazard. For example, if a load in-
struction suffers an address exception this won’t happen until the MEM
pipestage; if the next instruction hits an address problem on an in-
struction fetch (at the IF pipestage) the exception event affecting the
second-in-sequence instruction will actually happen first.
To avoid this problem, an exception that is detected early is not activated
until it is known that all previous instructions will complete successfully;
the event is just noted and passed along the pipeline until a fixed pipeline
stage. If an earlier instruction’s later-detected event reaches the finish
line while our exception note is making its way down the pipeline, the
exception note just gets discarded. In the case above the instruction-
fetch address problem is suppressed—it will likely happen again when
we finish handling the victim instruction’s problem and re-execute the
victim and subsequent instructions.

® Subsequent instructions nullified: Because of the pipelining, instructions
lying in sequence after the victim at EPC have been started. But you are
guaranteed that no effects produced by these instructions will be visible
in the registers or CPU state, and no effect at all will occur that will
prevent execution, properly restarted at EPC, from continuing just as if
the exception had not happened.

MIPS implementations fall short of precise exception heaven in a few re-
spects. For example, the integer multiply unit doesn’t respond to exceptions—
see the sidebar. This problem can be avoided by some instruction-ordering
rules, which are normally enforced by the assembler program.

The MIPS implementation of precise exceptions is quite costly, because it
limits the scope for pipelining. That’s particularly painful in the FPA, because
floating-point operations often take many pipeline stages to run. A MIPS FP
instruction cannot be allowed to progress past the ALU pipeline stage until it is
known that it won’t produce an exception.

When Exceptions Happen

Since exceptions are precise, the programmer’s view of when an exception hap-
pens is unambiguous: The last irstruction executed before the exception was
the one before the exception victim. And, if the exception wasn’t an interrupt,
the victim is the instruction that caused it.

On an interrupt in a typical MIPS CPU, the last instruction to be completed
before interrupt processing starts will be the one that has just finished its MEM
stage when the interrupt is detected. The exception victim will be the one that
has just finished its ALU stage. However, take care: MIPS architects don’t make

5.3 Exception Vectors: Where Exception Handling Starts ® 95

Nonprecise Exception Handling in the
Integer Multiplier

The integer multiplier has its own separate pipeline.
Operations are started by instructions like mult or
div, which take two register operands and feed them
into the mulfiplier machine. The program then issues
an mflo inshuction [ond sometimes also mehd, for
a 64bit result or to obtain the remainder] to get the
results back into a generalpurpose register. The CPU
stalls on m£1o if the computation is not finished; so a
programmer concerned with maximizing performance
will put as much useful work as possible between the
two. In most MIPS implementations a multiply takes
10 or more clock cycles, with divide even slower.

The multiply machine is separately pipelined from
the regular integer unit. Once launched, a multi
ply/divide operation is unstoppable even by an ex-
ception. That's not normally o problem, but sup-
pose we have a code sequence like the following

where we're retrieving one multiply unit result and then
immediately firing off another operation:

mflo 8

mult $9, $10

If we take an exception whose restart address is the
mflo instruction, then the first execution of m€lo will
be nullified under the precise-exception rules and the
register $8 will be left as though the m€1o had never
happened. Unfortunately, the mult will have been
started too and since the multiply unit knows nothing
of the exception will confinve to run. Before the ex-
cepfion returns, the computation will most likely have
finished and the mg1o will now deliver the result of
the mult that should have followed it.

We can avoid this problem, on all MIPS CPUs,
by interposing at least two harmless instructions be-
tween the mflo/mfhi on the one hand and the
mult (or any other instruction that starts a multiply
unit computation) on the other.

promises about exact interrupt latencies and signals may be resynchronized
through one or more clock stages before reaching the CPU core.

5.3 Exception Vectors: Where Exception Handling Starts

Most CISC processors have hardware (or concealed microcode) that analyzes
an exception, dispatching the CPU to different entry points according to what
kind of exception happened. A MIPS CPU does very little of this. If that seems
a serious omission, consider the following.

Firstly, vectored interrupts are not as useful in practice as we might hope.
In most operating systems, interrupt handlers share code (for saving registers
and such like) and it is common for CISC microcode to spend time dispatching
to different interrupt entry points, where OS software loads a code number and
jumps back to a common handler.

Secondly, it’s difficult to envision much exception analysis being done by
pure hardware rather than microcode; on a RISC CPU ordinary code is fast
enough to be used in preference.

Here and elsewhere, you should bear in mind just how fast CPUs of the
RISC generation are compared with their peripherals. A useful interrupt rou-
tine is going to have to read/write some external registers, and on a mid-90s
CPU that external bus cycle is likely to take 20-50 internal clock cycles. It’s easy

96 = Chapter 5—Exceptions, Interrupts, and Initialization

to write interrupt dispatch code on a MIPS CPU that will be faster than a single
peripheral access—so this is unlikely to be a performance bottleneck.!

However, even in MIPS not all exceptions were ever equal, and differences
have grown as the architecture has developed. So we can make some distinc-
tions:

» TLB refill of user-privilege address: There is one particularly frequent ex-
ception in a protected OS, related to the address translation system (see
Chapter 6). The TLB hardware only holds a modest number of address
translations, and in a heavily used system running a virtual memory
OS it’s common for the application program to run on to an address

“whose translation is not recorded in the TLB—an event called a TLB
miss (because the TLB is used as a software-managed cache).

The use of software to handle this condition was controversial when
RISC CPUs were introduced, and MIPS CPUs provide significant sup-
port for a preferred scheme for TLB refill. The hardware helps out
enough that the exception handler for the preferred refill scheme usually
runs in about 13 clock cycles.

As part of this, common classes of TLB refill are given an entry point
different from all other exceptions so that the finely tuned refill code
doesn’t have to waste time figuring out what kind of exception has hap-
pened.

= TLB refill for 64-bit address spaces: Memory translation for tasks wanting
to take advantage of the larger program address space available on 64-
bit CPUs uses a slightly different register layout and a different TLB refill
routine; MIPS calls this XTLB refill (“X” for extended, I guess). Again, a
desire to keep this very efficient makes a separate entry point useful.

» Uncached alternative entry points: For good performance on exceptions
the interrupt entry point must be in cached memory, but this is highly
undesirable during system bootstrap; from reset or power-up, the caches
are unusable until initialized. If you want a robust and self-diagnosing
startup sequence, you have to use uncached read-only memory entry
points for exceptions detected in early bootstrap. In MIPS CPUs there
is no uncached “mode”—there are uncached program memory regions
instead—so there’s a mode bit SR(BEV) that reallocates the exception
entry points into the uncached, startup-safe kseg! region.

8 Parity/ECC error: R4000 and later CPUs detect a data error (usually in
data arriving from main memory, but often not noticed until it’s used
from cache) and take a trap. It would be silly to vector through a cached

1. We labor this point because the lack of vectored interrupt hardware has been cited by some of
the MIPS competitors as a problem for embedded systems.

5.3 Exception Vectors: Where Exception Handling Starts ®m 97

TABLE5.1 Hardwired reset and exception entry points for MIPS CPU

Exception type Entry point
SR(BEV)==0 SR(BEV)==
Program Physical Program Physical
Reset, NMI OxBFCO 0000 Ox1FCO 0000

TLB refill, 32-bit task

XTLB refill, 64-bit task
Cache error (R4x00 and later) 0xA000 0100 0x100 OxBFCO 0300 0x1FCO 0300
Interrupt (some QED CPUs only) 0x8000 0200 0x200 OxBFCO 0400 0x1FCO 0400

- All other exceptions

0x8000 0000 0x0 0xBFCO 0200 Ox1FCO 0200
0x8000 0080 0x80 OxBFCO 0280 O0x1FCO 0280

0x8000 0180 0x180 0xBFCO 0380 Ox1FC0 0380

location to handle a cache error, so regardless of the state of SR (BEV)
the cache error exception entry point is in uncached space.

Reset: For many purposes it makes sense to see reset as another excep-
tion, particularly when the R4x00 and later CPUs use the same entry
point for cold reset (where the CPU gets completely reconfigured; indis-
tinguishable from power-up) and warm reset (where the software gets
completely reinitialized). In fact, nonmaskable interrupt (NMI) turns
out to be a slightly weaker version of warm reset, differing only in that it
waits for an instruction to finish before taking effect.

All exception entry points lie in untranslated regions of the MIPS memory
map, in ksegl for uncached entry points and kseg0 for cached ones. In these
areas the nominal 32-bit addresses given in Table 5.1 extend to a 64-bit mem-
ory map by sign extension: The program address 0x8000 0000 in the 32-bit
view is the same as OXFFFF FFFF 8000 0000 in the 64-bit view. Table 5.1
describes the entry points with just 32-bit addresses.

Presumably the 128-byte (0x80) gap between the exception vectors occurs
because the MIPS architects felt that 32 instructions would be enough to code
the basic exception routine, saving a branch instruction without wasting too
much memory!

Here’s what a MIPS CPU does when it decides to take an exception:

1.
2.

It sets up EPC to point to the restart location.

The CPU changes into kernel (high-privilege) mode and disables inter-
rupts. The way this is done is different in 32-bit (pre-R4x00) and 64-bit
MIPS CPUs—see the following for details.

- Cause is set up so that software can see the reason for the exception. On

address exceptions Badvaddr is also set. Memory management system

98 ®m Chapter 5—Exceptions, Interrupts, and Initialization

KUo | IEo |KUp | IEp |KUc | IEc i

Exception

-0
O

KUo [IEo |KUp [IEp |KUc | IEc

KUo | IEo |KUp | IEp | KUc | IEc

End-of-exception

rfe instruction 4 1

'
g
b

i
.
fe:

53
i
o
5

KUo | IEo |KUp | IEp |KUc | IEc

FIGURE 5.1 Privilege state mini-stack for pre-R4x00 MIPS CPUs

exceptions set up some of the MMU registers too; more details are given
in Chapter 6.

4. The CPU then starts fetching instructions from the exception entry point,
and everything else is up to software.

We said that the mechanism used to change into the high-privilege/
interrupts-disabled state changed between early and later MIPS CPUs. This
is one of the few examples where the CPU actually got simpler.

Pre-R4x00 32-bit CPUs have a kernel/user privilege bit and an interrupt
enable/disable bit. Inside the SR register there is a three-entry stack whose
operation is illustrated by Figure 5.1; on an exception the existing 2-bit state is
pushed and replaced by kernel mode with interrupts off. The end-of-exception
instruction rfe (restore from exception) pops the stack and restores the CPU
to its pre-exception condition.

System software can use this (under very limited circumstances) to handle
a nested exception within a primitive exception routine that makes no soft-
ware provision for saving and restoring SR; this allows simplification of the
frequently called TLB miss exception (see Section 6.7).

5.4

5.4 Exception Handling: Basics m 99

On the R4000 and subsequent CPUs, the normal privilege field is 2 bits
long, due to the introduction of the intermediate supervisor privilege level, An
exception doesn’t change this field; it just sets the SR(EXL) (exception level)
bit, which has the side effects of forcing kernel mode and disabling interrupts.
Very short exception routines can run entirely at this exception level (in excep-
tion mode, as we’ll sometimes say) and need never touch the rest of 8R. For
more conventional exception handlers, which save state and pass control over
to more complex software, exception level provides a cover under which system
software can save the old 8R value in safety.

It turns out that the R4x00 model can also be used to allow an exception
within the primitive TLB miss handler, but we’ll talk more about how that’s
done when we get to it.

Exception Handling: Basics

Any MIPS exception handler has to go through the same stages:

® Bootstrapping: On entry to the exception handler very little of the state
of the interrupted program has been saved, so the first job is to make
yourself enough room to do whatever it is you want without overwriting
something vital to the software that has just been interrupted.
Almost inevitably, this is done by using the k0 and k1 registers (which
are conventionally reserved for kernel mode use) to reference a piece of
memory that can be used for other register saves.

» Dispatching different exceptions: Consult the Cause register field cause
(ExccCode). This 5-bit code distinguishes all exceptions on MIPS CPUs
(so far).

= Constructing the exception processing environment: Complex exception-
handling routines will probably be written in a high-level language, and
you will want to be able to use standard library routines. You will have to
provide a piece of stack memory that isn’t being used by any other piece
of software and save the values of any CPU registers that both might be
important to the interrupted program and that called subroutines are
allowed to change.

w Processing the exception: You can do whatever you like now.

8 Preparing to return: The high-level function is usually called as a subrou-
tine and therefore returns into the low-level dispatch code. Here, saved
registers are restored, and the CPU is returned to its safe (kernel mode,
exceptions off) state by changing SR back to its post-exception value.

100 J ® Chapter 5—Exceptions, Interrupts, and Initialization

5.5

5.6

™ Returning from an exception: The end-of-exception processing is an-
other area where the CPU has changed, and its description follows in
Section 5.5.

Returning from an Exception

The return of control to the exception victim and the change (if required) back
from kernel to a lower privilege level must be done at the same time (“atomi-
cally,” in the jargon of computer science). It would be a security hole if you ran
even one instruction of application code at kernel privilege level; on the other
hand, the attempt to run a kernel instruction with user privileges would lead
to a fatal exception.

On 32-bit CPUs modeled on the R3000 we use the instruction rfe (restore
from exception), which is not the same as “return from exception.” This in-
struction patches up the status register to make it ready to go back to the state
you were in before a trap happened; but it doesn’t do the return itself. The only
secure way of returning to user mode from an exception is to return with a §r
instruction that has the x€e in its delay slot—a rather nice exploitation of an
architectural foible.

With MIPS III and subsequent CPUs there’s an instruction eret that does
the whole job; it both clears the SR (ExL) bit and returns control to the address
stored in EPC.

Nesting Exceptions

In many cases you will want to permit (or will not be able to avoid) further
exceptions occurring within your exception processing routine; these are called
nested exceptions. :

Naively done, this would cause chaos; vital state from the interrupted pro-
gram is held in EpC and SR, and another exception would immediately over-
write them. Before you permit nested exceptions you must save these values.
Moreover, once exceptions are re-enabled you can no longer rely on the values
of k0 and k1.

An exception handler that is going to survive a nested exception must use
some memory locations to save register values. The data structure used is often
called an exception jrame; multiple exception frames from nested exceptions
are usually arranged on a stack.

Stack resources are consumed by each exception, so arbitrarily deep nesting
of exceptions cannot be tolerated. Most systems award each kind of exception
a priority level and arrange that while an exception is being processed only
higher-priority exceptions are permitted. Such systems need have only as many
exception frames as there are priority levels.

5.7

5.8

5.8 Interrupts m 10l

You can avoid all exceptions; interrupts can be individually masked by soft-
ware to conform to your priority rules, masked all at once with the SR (IE) bit,
or implicitly masked (for later CPUs) by the exception level bit. Other kinds
of exceptions can be avoided by appropriate software discipline. For exam-
ple, privilege violations can’t happen in kernel mode (used by most exception
processing software); and programs can avoid the possibility of addressing er-
rors and TLB misses. It's essential to do so when processing higher-priority
exceptions.

Typical priorities from lowest to highest are as follows: nonexception code,
TLB miss on kuseg address, TLB miss on kseg2 address, interrupt (lowest), ...,
interrupt (highest), illegal instructions and traps, and bus errors.

An Exception Routine

The following MIPS I code fragment is as simple as an exception routine can
be. It does nothing except increment a counter on each exception:

.8et noreorder
.s8et noat

xcptgen:
la kO, xcptcount # get address of counter
1w k1l,0(k0) # load counter
nop # (load delay)
addu ki,1 # increment counter
sw k1l,0(k0) # store counter
mfco k0,CO0_EPC # get EPC
nop # (load delay, mfc0 slow)
3j kO # return to program
rfe # branch delay slot
.8et at

.set reorder

Note that this routine cannot survive a nested exception (the original return
address in EPC would be lost, for example). It doesn’t re-enable interrupts (and
thus is safe that way) but the counter xcptcount must be at an address that
can’t possibly cause any kind of address exception.

Interrupts

The MIPS exception mechanism is general purpose, but democratically speak-
ing there are two exception types that happen far more often than all the rest
put together. One is the TLB miss when an application running under a

102 ®m Chapter 5—Exceptions, Interrupts, and Initialization

5.8.1

memory-mapped OS like unix steps outside the (limited) boundaries of the
on-chip translation table; we mentioned that before and will come back to it
in Chapter 6. The other popular exceptions are interrupts, occurring when a
device outside the CPU wants attention. Since we’re dealing with an outside
world that won't wait for us, interrupt service time is often critical.
Embedded-system MIPS users are going to be most concerned about inter-
rupts, which is why they get a special section. We’ll talk about the following:

8 nterrupt resources in MIPS CPUs: This describes what you've got to
work with.

w Implementing interrupt priority: All interrupts are equal to MIPS CPUs,
but in your system you probably want to attend to some of them before
the others.

m Critical regions, disabling interrupts, and semaphores: It’s often necessary
to prevent an interrupt from occurring during critical operations, but
there are particular difficulties about doing so on MIPS CPUs. We look
at solutions.

Interrupt Resources in MIPS CPUs

_Almost all MIPS CPUs have a set of eight independent interrupt bits in their
cause register. On most general-purpose CPUs you'll find five or six of these
driven by CPU input pins, and two of them are purely software accessible. If
you have a pre-R4000 CPU with floating-point hardware one interrupt pin will
be required for floating-point exception signalling; on R4000 and subsequent
CPUs there’s a counter/timer on-chip that uses up one pin.-

An active level on any pin is sensed in each cycle and will cause an exception
if enabled.

The CPU’s willingness to respond to an interrupt is affected by bits in sRr.
There are three relevant fields:

m The global interrupt enable bit—sR (1Ec) for R3000 CPUs and SR (IE)
for later ones. This bit must be set 1 or no interrupt will be serviced.
On R3000 CPUs, the sR(IEc) bit is automatically cleared when any
exception is taken.

m In R4000 and subsequent CPUs, the SR(EXL) (exception level) and
SR(ERL) (error level) bits will inhibit interrupts if set (as one of them
will be after any exception).

® The status register also has individual interrupt mask bits SR (IM), one
for each interrupt bit in cause. Each sr(IM) bit should be set to 1
to enable the corresponding interrupt so that programs can determine
exactly which interrupts can happen and which cannot. Changes to the
individual bits are made under cover, with interrupts disabled globally.

5.8 Interrupts m 103

What Are the Software Interrupt Bits For?

Why on earth should the CPU provide two bits in the
Cause register that, when set, immediately cause an
interrupt unless masked?

The clue is in the expression “unless masked.” Typi-
cally this is used as a mechanism for high-priority in-
terrupt routines to flag actions that will be performed
by lower-priority interrupt routines once the system has

dealt with all high-priority business. As the high-priority
processing completes, the software will open up the
interrupt mask, and the pending software interrupt will
oceur.

There is no absolute reason why the same effect
should not be simulated by system software {using
flags in memory, for example) but the soft interrupt bits
are convenient because they fit in with an interrupt
handling mechanism that has to be provided.

To discover what interrupt inputs are currently active, you look inside the
Cause register. Note that these are exactly that—current levels—and do not
necessarily correspond to the signal pattern that caused the interrupt excep-
tion in the first place. The active input levels in cause (IP) and the masks
in SR (IM) are helpfully aligned to the same bit positions, in case you want to
“and” them together. The software interrupts are at the lowest positions, and
the hardware interrupts are arranged in increasing order.

In architectural terms, all interrupts are equal. But to help you avoid trou-
ble with some CPU implementations there are one or two special uses of inter-
rupt signals we ought to mention here.

In R4000 and descendant CPUs, interrupt number 7 is used for the internal
timer. This interrupt corresponds to the hardware pin Int5*, and some of these
CPUs don'’t provide an input at all. But where the pin exists, you can only use
the pin by eschewing the timer—and the timer is too useful to do that.

When R3000 and other MIPS I CPUs have floating-point hardware, FP ex-
ceptions are communicated through an interrupt pin. The MIPS convention
was to use Int3* for this purpose, but DECstations used Int5*. Although 32-bit
CPUs with integrated floating point are fairly rare, those that do exist have usu-
ally offered some software-controlled selection of which interrupt gets tied to

the FPA.

Interrupt processing proper begins after you have received an exception and
discovered from cause (ExccCode) that it was a hardware interrupt. Consult-
ing cause (IP) we can find what interrupt is active and thus what device is
signalling us. Here is the usual sequence:

= Consult the cause register IP field and logically “and” it with the cur-
rent interrupt masks in SR(IM) to obtain a bitmap of active, enabled
interrupt requests. There may be more than one, any of which would
have caused the interrupt.

m Select one active, enabled interrupt for attention. The selection is nor-
mally done using fixed priorities, but it is all decided by the software.

® You need to save the old interrupt mask bits in SR (IM), but you proba-
bly already saved the whole SR register in the main exception routine.

104 ®m Chapter S—Excepti:)ns, Interrupts, and Initialization

= Change SR(IM) to ensure that the current interrupt and all interrupts
your software regards as being of equal or lesser priority are inhibited.

® If you haven't already done it in the main exception routine, save the
state (user registers, etc.) required for nested exception processing.

= Now change your CPU state to that appropriate to the higher-level part
of the interrupt handler, where typically some nested interrupts and
exceptions are permitted.
In all cases, set the global interrupt enable bit, SR (IEc) (for R3000-
style CPUs) or 8R(IE) (for R4000-style CPUs), to allow higher-priority
interrupts to be processed. On an R4000 you'll also change the CPU
privilege level field SR (R8U) to kernel mode and clear SR (EXL) to leave
exception mode and expose the changes made in the status register.

& Call your interrupt routine.

® On return you'll need to disable interrupts again so you can restore the
pre-interrupt values of registers and resume execution of the interrupted
task. On an R3000 or similar CPU you will do this by clearing SR (1Ec);
on an R4000 or later CPU you will set SR (EXL) . That sounds different,
but in both cases you'll probably do this implicitly by restoring the just-
after-exception value of the whole SR register before getting into your
end-of-exception sequence.

When making changes to SR, you need to be careful about changes whose
effect is delayed due to the operation of the pipeline. At worst, different s-
R fields can take effect at slightly different times, so an alteration of SR that
simultaneously changes two fields may produce an unexpected window of op-
portunity for an interrupt, as the interrupt-enabling change to one field works
its way through faster than the interrupt-disabling effect of another. There’s
some information on how to read your CPU manual to avoid this sort of event
in Appendix A, Section A.4.

582 Implementing Interrupt Priority

The MIPS CPU has a simple-minded approach to interrupt priority; all inter-
rupts are equal.
If your system implements an interrupt priority scheme, then:

= Atall times the software maintains a well-defined interrupt priority level
(IPL) at which the CPU is running. Every interrupt source is allocated
to one of these levels.

® If the CPU is at the lowest IPL, any interrupt is permitted. This is the
state in which normal applications run.

= If the CPU is at the highest IPL, then all interrupts are barred.

58 Interrupts m 105

Not only are interrupt handlers run with the IPL set to the level appropriate
to their particular interrupt cause, but there’s provision for programmers to
raise and lower the IPL. Those parts of the application side of a device driver
that communicate with the hardware or the interrupt handler will often need
to prevent device interrupts in their critical regions, so the programmer will
temporarily raise the IPL to match that of the device’s interrupt input.

In such a system, high-IPL interrupts can continue to be enabled without
affecting the lower-IPL code, so we've got the chance to offer better interrupt
response time to some interrupts, usually in exchange for a promise that their
interrupt handlers will run to completion in a short time.

Most unix systems have between four and six IPLs.

While there are other ways of doing it, the simplest schemes have the fol-
lowing characteristics:"

® Fixed priorities: At any IPL interrupts assigned to that and lower IPLs are
barred but interrupts of higher IPLs are enabled. Different interrupts at
the same IPL are typically scheduled first come, first served.

u [PL relates to code being run: Any given piece of code always executes at
the same IPL.

= Simple nested scheduling (above IPL 0): Except at the lowest level, any
interrupted code will be returned to as soon as there are no more ac-
tive interrupts at a higher level. At the lowest level there’s quite likely a
scheduler that shares the CPU out among various tasks, and it’s com-
mon to take the opportunity to reschedule after a period of interrupt
activity.

On a MIPS CPU a transition between interrupt levels must (at least) be
accompanied by a change in the status register SR, since that register contains
all the interrupt control bits. On some systems interrupt level transitions will
require doing something to external interrupt control hardware, and most OSs
have some global variables to change, but we don’t care about that here; for
now we'll characterize an IPL by a particular setting of the SR interrupt fields.

In the MIPS architecture R (like all coprocessor registers) is not directly
accessible for bit setting and clearing. Any change in the IPL, therefore, re-
quires a piece of code that reads, modifies, and writes back the SR in separate
operations:

mfcO t0, SR

nop # all MIPS CPUs need at least one, maybe more
or t0, things_to_set
and t0, “(things to_clear)

1. Since unix kernels are built like this, the scheme can’t be too restrictive.

106 ® Chapter 5—Exceptions, Interrupts, and Initialization

5.8.3

2:
mtco t0, SR
nop # waiting for change to take effect
nop

In general, this piece of code may itself be interrupted, and a problem
arises: Suppose we take an interrupt somewhere between label 1 and 2 and
that interrupt routine itself causes any change in 8R? Then when we write our
own altered value of SR at label 2, we'll lose the change made by the interrupt
routine.

It turns out that we can only get away with the code fragment above—
which is pretty much universal in MIPS implementations of OSs—in systems
where we can rely on the IPL being constant in any particular piece of code. If
that’s true, then it follows that even if we get interrupted in the middle of our
read-modify-write sequence, it will do no harm; when the interrupt returns it
will do so with the same IPL, and therefore the same SR value, as before.

Where this assumption breaks down, we need the following discussion.

Atomicity and Atomic Changes to SR

In systems with more than one thread of control—including a single applica-
tion with interrupt handlers—you will quite often find yourself doing some-
thing at which you don’t want to be caught halfway. In more formal language,
you may want a set of changes to be made atomically, so that some cooperating
task or interrupt routine in the system will see either none of them made or all
of them, but never in between.! The code implementing the atomic change is
sometimes called a critical region.

In an embedded system interrupt routines represent a change in the control
thread; and the rescheduling that runs one task instead of another (without the
running task’s knowledge) can only be the eventual consequence of an inter-
rupt. So any critical region can be simply protected by disabling all interrupts
around it; this is crude but effective.

But as we saw above, there’s a problem: The interrupt-disabling sequence
(requiring a read-modify-write sequence on SR) is itself not guaranteed to be
atomic. I know of two ways of fixing this impasse and one way to avoid it.

The first fix is to insist that no interrupt may change the value of SR held by
any interruptible code; this requires that interrupt routines always restore SR
before returning, just as they’re expected to restore the state of all the user-level
registers. If so, the non-atomic RMW sequence above doesn’t matter; even if an
interrupt gets in, the old value of SR you're using will still be correct. This first
approach is generally used in unix-like OS kernels for MIPS and goes well with

L. An old saying goes: “Never show fools and children things half done.”

5.8.4

5.8 Interrupts m 107

the interrupt priority system in which every piece of code is associated with a
fixed IPL.

But sometimes this restriction is too much. For example, when you’ve sent
the last waiting byte on a byte-at-a-time output port, you'd like to disable the
ready-to-send interrupt (to avoid eternal interrupts) until you have some more
data to send. And again, some systems like to rotate priorities between different
interrupts to ensure a fair distribution of interrupt service attention.

The second solution is to use a system call to disable interrupts (probably
you'd define the system call as taking separate bit-set and bit-clear parame-
ters and get it to update the status register accordingly). Since a syscall in-
struction works by causing an exception, it disables interrupts atomically; on
an R3000-type CPU that’s because it cleared SR (1Ec), and on an R4000-type
CPU it will have set SR (EXL) . Under this protection your bit-set and bit-clear
can proceed cheerfully. It won’t work with SR(EXL) itself, but it makes no
sense to fiddle with SR (EXL) in ordinary code on an R4000 and I hope you
wouldn’t want to. When the system call exception handler returns, the global
interrupt enable status is restored (once again atomically).

A system call sounds pretty heavyweight, but it actually doesn’t need to take
long to run; however, you will have to untangle this system call from the rest of
the system’s exception-dispatching code.

The third solution is available only with the MIPS III instruction set. This
is to use the load-linked and store-conditional instructions to build critical
regions without disabling interrupts at all, as described in Section 5.8.4.

Critical Regions with Interrupts Enabled: Semaphores the MIPS
Way

A semaphore is a coding convention for multitasking programs. The semaphore
is a shared memory location used by concurrently running processes to arrange
that some resource is only accessed by one of them at once.

Each atomic chunk of code has the following structure:!

wait (sem) ;
/* do your atomic thing */
signal (sem) ;

Think of the semaphore as having two values: 1 meaning “in use” and 0
meaning “available” The signal() is simple; it just sets the semaphore to 0.
wait () checks for the variable to have the value 0 and won’t continue until it

1. Two gurus formulated these ideas. Hoare calls the functionswait () and signal (}—and that’s
what we’ve used. Dijkstra calls equivalent functions (but with a slightly more general concept
of semaphore) p() and v (}, respectively. You can understand why he called them “p” and “v”
quite easily if you speak Dutch.

108 ® Chapter 5—Exceptions, Interrupts, and [nitialization

does. It then sets the variable to 1 and returns. That should be easy, but you can
see that it’s essential that the process of checking the value of sem and setting
it again is itself atomic. High-level atomicity (at the task level) is dependent
on being able to build low-level atomicity, where a test-and-set operation can
operate correctly in the face of interrupts (or, on a multiprocessor, in the face
of access by other CPUs).

Most mature CPU families have some special instruction set features for
this: 680x0 CPUs have an atomic test-and-set instruction; x86 CPUs have an
“exchange register with memory” operation that can be made atomic with a
prefix “lock” instruction.

For large multiprocessor systems this kind of test-and-set process becomes
expensive; essentially, all shared memory access must be stopped while the
semaphore user obtains the value, completes the test-and-set operation, and
the set operation percolates through to every cached copy in the system. This
doesn’t scale well to large multiprocessors.

It's much more efficient to allow the test-and-set operation to run with-
out any guarantee of atomicity and then to make the set take effect only if we
got away with it. There also needs to be some way to find out whether it was
OK; now unsuccessful test-and-set sequences can be hidden inside the wait ()
function and retried as necessary.!

This is what MIPS has, using the 11 (load-linked) and sc (store-
conditional) instructions in sequence. sc will only write the addressed loca-
tion if there has been no competing access since the last 11 and will leave a 1/0
value in a register to indicate success or failure.?

Here’swait () for the binary semaphore sem:

wait:
la t0, sem
TryAgain:
11 tl, 0(t0)
bne tl, zero, WaitForSem
1i t1l, 1
sc tl, 0(t0)
beq tl, zero, TryAgain
/* got the semaphore... */
- jr ra

1. Of course, you'd better make sure that there are no circumstances where it ends up retrying
forever!

2. Note that we say “if” and not “if and only if” Sometimes sc will fail even though the location
has not been touched; most uniprocessors will fail the sc when there’s been any exception ser-
viced since the 11. It’s only important that the se should usually succeed when there’s been no
competing access and that it always fails when there has been one such.

59

5.9 StartingUp ®m 109

Even in a uniprocessor system this can be useful, because it does not involve
shutting out interrupts. It avoids the interrupt-disabling problem described
above and can be an important part of a coordinated effort to reduce worst-case
interrupt latency, which is often important in embedded systems.

Starting Up

In terms of its effect on the CPU, reset is almost the same as an exception,
though one from which we’re not going to return. In the original MIPS archi-
tecture this is mostly a matter of economy of implementation effort and doc-
umentation, but the R4000 offers several different levels of reset from a cold
reset through to a nonmaskable interrupt—so reset and exception conditions
do shade imperceptibly into each other.

Since we're recycling mechanisms from regular exceptions, following reset
EPC points to the instruction that was being executed when reset was detected,
and most register values are preserved. However, reset disrupts normal opera-
tion and a register being loaded or a cache location being stored to or refilled
at the moment reset occurred may be trashed.

It is quite possible to use the preservation of state through reset to imple-
ment some useful postmortem debugging, but your hardware engineer needs
to help; the CPU cannot tell you whether reset occurred to a running system
or from power-up. But postmortem debugging is an exercise for the talented
reader; we will focus on starting up the system from scratch.

The CPU responds to reset by starting to fetch instructions from 0xBFCO
0000. This is physical address 0x1FC0O 0000 in the uncached ksegl region.

Following reset, enough of the CPU’s control register state is defined so
that the CPU can execute uncached instructions. “Enough state” is interpreted
minimally; note the following points:

® Only three things are guaranteed in SR: the CPU is in kernel mode; in-
terrupts are disabled; and exceptions will vector through the uncached
entry points—that is, SR (BEV) = 1.!
Some implementations may guarantee more: For example, IDT doc-
umentation states that the SR(TS) bit is initialized on R3051-family
CPUs; it will be set 0 if the CPU has MMU hardware, 1 otherwise.
You should not rely on this promise for MIPS CPUs outside the R3051
family.

® Ina CPU with R3000-type caches the D-cache may be isolated if SR (TsC)
happens to have come upset, so until you've set that bit explicitly you

1. In R4000-style CPUs, the first two conditions (and more besides) are typically guaranteed by
setting the exception-mode bit SR (EXL), and this is implied by treating reset as an exception.

110 = Chapter 5—Exceptions, Interrupts, and Initialization

can't rely on data loads and stores working, even to uncached space. It’s
probably best to be pessimistic and assume the same about any MIPS
CPU.

® The caches will be in a random, nonsensical state, so a cached load might
return rubbish without reading memory.

® The TLB will be in a random state and must not be accessed until initial-
ized (the hardware has only minimal protection against the possibility
that there are duplicate matches in the TLB, and the result could be a
TLB shutdown which can be amended only by a further reset).

The traditional startup sequence is as follows:

1. Branch to the main ROM code. Why do a branch now?

® The uncached exception entry points start at 0xBFCO 0100, which

wouldn’t leave enough space for startup code to get to a “natural
break”

» The branch represents a very simple test to see if the CPU is function-
ing and is successfully reading instructions. If something terrible goes
wrong with the hardware, the MIPS CPU is most likely to keep fetch-
ing instructions in sequence (and next most likely to get permanent
exceptions).

If you use test equipment that can track the addresses of CPU reads
and writes, it will show the CPU’s uncached instruction fetches from
reset; if the CPU starts up and branches to the right place, you have
strong evidence that the CPU is getting mostly correct data from the
ROM.

By contrast, if your ROM program plows straight in and fiddles with
SR, strange and undiagnosable consequences may result from simple
faults.

2. Set the status register to some known and sensible state. Now you can
load and store reliably in uncached space.

3. You will probably have to run using registers only until you have initial-
ized and (most likely) run a quick check on the integrity of some RAM
memory. This will be slow (we’re still running uncached from ROM)
so you will probably confine your initialization and check to a chunk of
memory big enough for the ROM program’s data.

4. You will probably have to make some contact with the outside world (a
console port or diagnostic register) so you can report any problem with
the initialization process.

5. You can.now assign yourself some stack and set up enough registers to
be able to call a standard C routine.

5.9.1

59 StartingUp m 111

6. Now you can initialize the caches and run in comfort. Some systems
can run code from ROM cached and some can’t; on most MIPS CPUs a
memory supplying the cache must be able to provide four-word bursts,
and your ROM subsystem may or may not oblige.

Probing and Recognizing Your CPU

You can identify your CPU implementation number and a manufacturer-
defined revision level from the PRIA(Imp) and PRIA(Rev) fields. However,
it’s best to rely on this information as little as possible; changes to the CPU
may or may not be reflected in PRId. In principle, a particular value of the
PRIA (Imp) field should characterize your CPU—the ISA version it runs and
its CPO registers.' But whenever you can probe for a feature directly, do so.

Nonetheless, diagnostic software should certainly make PRIA(Rev) visi-
ble. And should you ever need to include a truly unpleasant software work-
around for a hardware bug you may be able to test PRId (Rev) to find out
when you can leave it out.

It's much more robust, though, to probe for individual features. Here are
some examples:

® Have we got FP hardware? The “official” technique is to set SR (cU1)
to enable coprocessor 1 operations and to use a e£e1 instruction from
coprocessor 1 register 0, which is defined to hold the revision ID. A
nonzero value in bits 8-15 indicates the presence of FPA hardware; good
values you might see are listed in Table 7.3. A skeptical programmer?
will probably follow this up by checking that it is possible to store and
retrieve data from the FPA registers. Unless your system supports un-
conditional use of the floating-point unit, don’t forget to reset SR (Cu1)
afterward. »

® Cache size: You can determine the cache size for an R3xxx CPU by prob-
ing it (see Section 4.9 for one way of doing so). Don’t use PRId, because
there are already many implementations using the same PRId value but
with different cache sizes.

R4x00 and subsequent CPUs have the primary cache size encoded in the
Config register; however, if a secondary cache is fitted the size field is
pure convention, and you'd be better building a secondary cache sizing
routine to check anything reported.

1. Product politics gets in the way of the use of ID registers. Big companies require the parts they
use to be requalified if there’s a change of specification. A documented change to a register, even
the PRIA register, is a change of specification; a new mask version of the chip that leaves PrIa
alone probably isn’t. Once a product is in the field, silicon vendors therefore are under pressure
not to change PRxd so long as they are producing a compatible part.

2. T assume, Gentle Reader, that this is you.

112 m Chapter 5—Exceptions, [nterrupts, and Initialization

59.2

® Have we got a TLB? That’s memory translation hardware. In IDT’s
R3051 family you can look at SR(T8) following a hardware reset; it will
be set for no TLB, 0 otherwise. But this is specific to the R3051 family.

Alternatively, you can read and write values to Index or look for evi-
dence of a continuously counting Random register. If it looks promis-
ing, you may want to check that you can store and retrieve data in TLB
entries.

® CPU clock rate: It is often useful to work out your clock rate. You can
do this by running a loop of known length, cached, that will take a fixed
large number of CPU cycles and then comparing with before and af-
ter values of a counter that increments at known speed. Do make sure
that you are really running cached, or you will get strange results—
remember that some hardware can’t run cached out of ROM.

Some maintenance engineer will bless you one day if you make the CPU
type, clock rate, and cache sizes available, perhaps as part of a sign-on message.

Bootstrap Sequences

Startup code suffers from the clash of two opposing but desirable goals. On
the one hand, it’s robust to make minimal assumptions about the integrity of
the hardware and to attempt to check each subsystem before using it (think of
climbing a ladder and trying to check each rung before putting your weight
on it).” On the other hand, it’s desirable to minimize the amount of tricky
assembler code. Bootstrap sequences are almost never performance sensitive,
so an early change to a high-level language is desirable. But high-level language
code tends to require more subsystems to be operational.

After you have dealt with the MIPS-specific hurdles (like setting up SR so
that you can at least perform loads and stores), the major question is how
soon you can make some read/write memory available to the program, which
is essential for calling functions written in C.

You have an option here. Most MIPS CPUs now have some data cache
on chip, and it is reasonable to regard on-chip resources as the lowest rungs
on your ladder." You could rely on the data cache to provide enough storage
for your C functions during bootstrap; memory might be read or written, but
provided you use less than a cache-size chunk of memory space you will not
depend on being able to read memory and get good data back.

The trouble is that some data caches are small, and programs seem to need
more and more data space; so Algorithmics doesn’t do that.

1. Sometimes diagnostic suites include bizarre things like the code in the original PC BIOS, which
tests each 8086 instruction in turn. This seems to me like chaining your bicycle to itself to foil
thieves. ... However, the more positive side of this is that if a subsystem is implemented inside
the CPU chip, you dor’t lose much by trusting it.

5.9.3

5.10

5.10 Emulating Instructions ®m 113

Starting Up an Application

To be able to start a C application (presumably with its instructions coming
safely from ROM) you need three chunks of writable memory.

Firstly, you need stack space. Assign a large enough piece of writable mem-
ory and initialize the sp register to its upper limit (aligned to an 8-byte bound-
ary). Working out how large the stack should be can be difficult, so a large
guess helps.

Then you may need some initialized data. Normally the C data area is ini-
tialized by the program loader to set up any variables that have been allocated
values. Most compilation systems that purport to be usable for embedded
applications permit read-only data (implicit strings and data items declared
const) to be managed in a separate segment of object code and put into ROM
memory.

Initialized writable data can be used only if your compilation system and
run-time system cooperate to arrange to copy writable data initializations from
ROM into RAM before calling main ().!

Lastly, C programs use a different segment of memory for all static and
extern data items that are not explicitly initialized—an area sometimes called
the “bss” for reasons long lost. Such variables should be cleared to zero, which
is readily achieved by zeroing the whole data section before starting the pro-
gram.

If your program is built carefully, that’s enough. However, it can get more
complicated: Take care that your MIPS program is not built to use the global
pointer register gp to speed access to nonstack variables, or you'll need to do
more initialization.

You'll find an example (taken from the Algorithmics toolkit) in Section 12.1.

Emulating Instructions

Sometimes an exception is used to invoke a software handler that will stand in
for the exception victim instruction, as when you are using software to imple-
ment a floating-point operation on a CPU that doesn’t support FP in hardware.
Debuggers and other system tools may sometimes want to do this too.

To emulate an instruction, you need to find it, decode it, and find its oper-
ands (which by now will be copies of the data in the appropriate registers when
the exception triggered, stored in some exception frame). Armed with these
you do the operation in software and patch the results back into the exception
frame copy of the appropriate result register. You then need to fiddle with the

1. We can’t resist 2 small advertisement: The GNU C-based SDE-MIPS cross-compiler (available
from Algorithmics and known to your IDT distributor) has this feature.

114 m Chapter S—Excethions, Interrupts, and Initialization

stored exception return address so as to step over the emulated instruction, and
then return. We'll go through these step by step.

Finding the exception-causing instruction is easy; it’s usually pointed to by
EPC, unless it was in a branch delay slot, in which case cause (BD) is set and
the exception victim is at the address pc + 4.

To decode the instruction, you need some kind of reverse-assembler table.
A big decode-oriented table of MIPS instructions is part of the widely available
GNU debugger gdb, where it’s used to generate disassembly listings. So long
as the GNU license conditions aren’t a problem for you, that will save you time
and effort.

To find the operands you'll need to know the location and layout of the
exception frame, which is dependent on your particular OS (or exception-
handling software, if it’s too humble to call an OS). -

You'll have to figure out for yourself how to do the operation, and once
again you need to be able to get at the exception frame, to put the results back
in the saved copy of the right register.

There’s a trap for the unwary in incrementing the stored EPC value to step
over the instruction you've emulated.! If your emulated instruction was in a
branch delay slot, the next instruction in program sequence is not simply the r
following instruction. In this case you first have to emulate the branch in- g
struction, testing for whether the branch should be taken or not. If the branch '
should be taken you need to compute its target and return straight there from
the exception.

Fortunately, all MIPS branch instructions are side effect free, so this E
shouldn’t be too difficult.

L. In early MIPS CPUs gpc itself is read-only, so don’t try to write it. But in these CPUs the
actual return from exception is always accomplished by loading the return address into a general
register and executing a jr.

Chapter

Memory Management and
the TLB

We’ve tended to introduce most topics in this book from the bottom,
which is perhaps natural in a book about low-level computer architec-
ture. But to describe the memory management hardware we’re instead going
to start off with a description of the unix-style virtual memory system that the
MIPS R2000 sought to implement. Later in the chapter we’ll come around and
look at how the same hardware can be made to work in other contexts,

Early MIPS CPUs sought applications in UNIX workstations and servers,
so the MIPS memory management hardware was conceived as the minimum
hardware that could hope to provide memory management for BSD UNIX—
used here as a well-documented exemplar of the needs of any adequate vir-
tual memory OS. It’s clear that the designers were familiar with the DEC VAX
minicomputer and recycled many ideas from that architecture, while omitting
many complications. In particular, many problems that the VAX solves with

microcode are left to software by the MIPS system.

In this chapter we’ll start where MIPS started, with the requirements of a
basic unix-like OS and its virtual memory system. We’ll show how the MIPS
hardware is a response to that requirement. At the end, we'll say something
about the kinds of use you might make of the memory translation hardware in
embedded systems that don’t make generic use of that hardware.

Memory translation hardware (we’ll call it MMU for memory management
unit) serves several distinct purposes:

® Relocation: The addresses of program entry points and predeclared data
are fixed at program compile/build time. The MMU allows the program
to be run anywhere in physical memory. :

& Allocating memory to programs: The MMU can build contiguous pro-
gram space out of physically scattered pages of memory, allowing us to
allocate memory from a pool of fixed-size pages. If we are continually al-
locating and freeing variable-size chunks of memory, we will suffer frag-

115

116 m Chapter 6—Memory Management and the TLB

mentation problems: We'll end up with lots of small islands of memory
space and unable to respond to requests for a larger chunk, even though
the total free space is quite adequate.

® Hiding and protection: User-privilege programs can only access data
whose program address is in the kuseg memory region (lower program
addresses). Such a program can only get at the memory regions that the
OS allows.

Moreover, each page can be individually specified as writable or write
protected; the OS can even stop a program from accidentally overwrit-
ing its code.

® Extending the address range: Some CPUs can’t directly access their full
potential physical memory range. MIPS I CPUs, despite their genuine
32-bitarchitecture, arrange their address map so that the unmapped ad-
dress space windows kseg0 and ksegl (which don’t depend on the MMU
tables to translate addresses) are windows onto the first 512MB of physi-
cal memory. If you need to access higher locations, you must go through
the MMU.

= Making the memory map suit your program: With the MMU, your pro-
gram can use the addresses that suit it. In a big OS there may be many
copies of the same program running, and it’s much easier for them all to
be using the same program addresses.

» Demand paging: Programs can run as if all the memory resources they

needed were already allocated, but the OS can actually give them out

~ onlyas needed. A program accessing an unallocated memory region will

get an exception that the OS can process; the OS then loads appropriate
data into memory and lets the program continue.

The essence of the UNIX memory manager’s job is to run many different
processes (multitasking), each in its own memory space.! If the job is done
properly, the fate of each process is independent of the others (the OS pro-
tects itself too): A process can crash or misbehave without bringing down the
whole system. This is obviously a useful attribute for a university departmental
computer running student programs; but even the most rigorous commercial
environment needs to support experimental or prototype software alongside
the tried and tested.

The MMU is not just for big, full virtual memory systems; even small em-
bedded programs benefit from relocation and more efficient memory alloca-

1. In this section we're going to commit the unix-style confusion that identifies “process” (thread
of control) with a separate address space. Modern OSs have separate concepts: Threads are
what is scheduled, and address spaces are the protection units. Many threads can share one
address space. The memory translation system is obviously interested in address spaces and not
in threads. But for now we'll stick with the unix oversimplification, so we can use the familiar
word process.

6.1

6.1 Memory Management in Big Computers m 117

tion. Any system where you may want to run different programs at differ-
ent times will find it easier if it can map the program’s idea of addresses onto
whatever physical address space is readily available.

Multitasking and separation between various tasks’ address spaces have
steadily migrated downward into smaller computers and are now common-
Place in personal computers and Internet servers.

Embedded applications frequently use explicit multitasking, but few em-
bedded OSs use separate address spaces. This is probably not so much because
this would not be useful but due to the lack of consistent features on embedded
CPUs and their available operating systems.

The MIPS minimalism that was so necessary to make the workstation CPU
cheap in 1986 may prove relevant to embedded systems in the late 90s. Even
small applications, beset by rapidly expanding code size, need to use all known
tricks to manage software complexity; and the flexible software-based approach
pioneered by MIPS is likely to deliver whatever is needed. A few years ago it was
hard to convince CPU vendors addressing the embedded market that the MMU
was worth including; by 1997, however, Microsoft’s Windows/CE, which can-
not be supported without memory management hardware, was being proposed
as a solution for a wide range of embedded problems.

Memory Management in Big Computers

It’s probably easiest to start with the whole job of the memory management
system in a unix-like system (selected for study because, despite its big-system
capabilities, it’s much simpler than PC operating systems). The typical view is
illustrated as Figure 6.1.

Basic Process Layout and Protection

The biggest split in Figure 6.1 is between the low part, labeled “accessible to user
programs,” and the rest. The user-accessible part of the application map is what
we called kuseg in the generic MIPS memory maps described in Section 2.8. All
higher memory is reserved.to the OS. From the OS’s point of view, the low part
of memory is a safe “sandbox” in which the user program can play all it wants.
If the program goes wild and trashes all its own data, that’s no WOITY to anyone
else.

From the application’s point of view, this area is free for use in building
arbitrarily complicated private data structures and to get on with the job.

Inside the user area, within the program’s sandbox, the OS provides more
stack to the program on demand (implicitly, as the stack grows down). It
will also provide a system call to make more data available starting from the
highest predeclared data addresses and growing up—systems people call this a

118 & Chapter 6—Memory Management and the TLB

High addresses

Shared by
all tasks

Low addresses

¢

| regsters (h/w dependent)

Kernel data

Kernel code

Stack {grows down)

Heap (grows up)

Declared data

Program code

Only accessible
to OS routines

-

Accessible to
user programs

FIGURE 6.1 Memory map for a protected process

heap. The heap feeds library functions such as malloc (), which provide your
program with chunks of extra memory.

Stack and heap are supplied in chunks small enough to be reasonably thrifty
with system memory but big enough to avoid too many system calls or excep-
tions. However, on every system call or exception the OS has a chance to police
the application’s memory consumption. An OS can enforce limits that make

6.1.2

* 6.1 Memory Management in Big Computers ® 119

sure the application doesn’t get so large a share of memory as to threaten other
vital activities. .

In unix-like systems the process keeps its identity inside the OS kernel; most
kernel facilities are provided effectively as special subroutines (system calls)
invoked by the application under special rules to make sure they only do what
the application is entitled to do.

The operating system’s own code and data are of course not accessible to
user space programs. On some systems this is done by putting them in a com-
pletely separate address space; on MIPS the OS shares the same address space,
and when the CPU is running at the user-program privilege level, access to
these addresses is illegal and will trigger an exception.

Note that while each process’s user space maps to its own private real stor-
age, the OS space is mostly shared. Much of the OS code and resources are
seen at the same address by all processes—an OS kernel is a multithreaded but
single-address-space system inside—but each process’s user space addresses ac-
cess its own separate space. Kernel routines running application system calls
are trusted to cooperate safely, but the application need not be trusted at all.
~ The active parts of the user space are spread out, with stack at the top and
code and compiled-in data at the bottom. This allows the stack to grow down-
ward (implicitly, as the program runs and references data deeper) and the data
to grow upward (explicitly, as the program calls library functions that allocate
memory). The OS can allocate more memory for stack or data and can arrange
to map it into the appropriate address.

Note that, in order to allow for programs that use vast quantities of data
space, it’s usual to have the stack grow down from the highest permissible user
addresses. The wide spread of addresses in use (with a huge hole in between) is
one characteristic of this address map with which any translation scheme must
cope.

Real-life systems make things more complicated in search of efficiency and
more functions. Most systems map application code as read-only to the appli-
cation, meaning that it can safely be shared by many processes—it’s common
to have many processes running the same application.

Many systems share not just whole applications but chunks of applications
accessed through library calls (shared libraries). That opens a whole other can
of worms that we will keep sealed up for now.

Mapping Process Addresses to Real Memory

What mechanisms are needed to support this model?
The MIPS architecture more or less dictates that the addresses used by pro-
grams (whether application or kernel routines) are fixed when the program is

120 @ Chapter 6—Memory Management and the TLB !

compiled and linked.! That means that applications can’t possibly all be built
to use explicit different addresses—and in any case we want to be able to run
multiple copies of the same application. So during program execution appli-
cation addresses are mapped to physical addresses according to a scheme fixed
by the OS when the program is loaded.

Although it would be possible for the software to rush around patching all
the address translation information whenever we switched contexts from one
process to another, it would be very inefficient. Instead, we award each active
process a number (in UNIX it’s called the process ID but these days is more
wisely called the address space ID or ASID). Any address from a process is im-
plicitly extended by that process’s ASID to produce a unique address to submit
for translation. The ASID needs to be loaded into a CPU register whenever a
new process is scheduled so that the hardware can use it.

The mapping facility also allows the OS to discriminate between different
parts of the user address space: Some parts of the application space (typically
code) can be mapped read-only and some parts can be left unmapped and
accesses trapped, meaning that a program that runs amok is likely to be stopped
earlier.

The kernel part of the process’s address space is generally shared by all pro-
cesses and most of it maps permanently resident OS code and data. Since this
code can be linked to run at this address, it doesn’t need a flexible mapping
scheme, and most MIPS kernels are happy to put most of their code and data
in areas whose mapping is fixed by the architecture.

Paged Mapping Preferred

Many exotic schemes have been tried for mapping addresses, commonly using
base/bound pairs to police correct accesses. But mapping memory in what-
ever size chunks the programs ask for, while apparently providing the best ser-
vice for applications, rapidly leads to available memory being fragmented into
awkward-sized pieces. All practical systems map memory in pages—fixed-size
chunks of memory. Pages are always a power of 2 bytes big, with 4KB being
overwhelmingly popular.
With 4KB pages, a CPU address can be simply partitioned thus:

nn zZn 0
I Virtual page number (VPN) l Address within page]

The address-within-page bits don’t need to be translated, so the memory man-
agement hardware only has to cope with translating the high-order addresses,
traditionally called virtual page number (VPN), into the high-order bits of a

1. It is possible to generate position-independent code (PIC) for MIPS CPUs but pure PIC is
somewhat awkward on MIPS. (See Section 10.11.2 for an account of the compromises made
to provide enough position independence for shared libraries in the MIPS/ABI standard.)

6.1 Memory Management in Big Computers m 121

physical address (a physical frame number, or PFN—nobody can remember
why it’s not PPN).

What We Really Want

The mapping mechanism must allow a program to assert a particular address
within its own process/address space and translate that efficiently into a real
physical address to access memory.

A good way to do this would be to have a table (the page table) containing
an entry for each page in the whole address space, with that entry containing
the correct physical address. This is clearly a fairly large data structure and is
going to have to be stored in main memory. But there are two big problems.

The first is that we now need two references to memory to do any load
or store, and that’s obviously hopeless for performance. You may foresee the
answer to this: We can use a high-speed cache memory to store translation en-
tries and go to the memory-resident table only when we miss in the cache.
Since each cache entry covers 4KB of memory space, it’s plausible that we
can get a satisfactorily low miss rate out of a reasonably small cache. (At
the time this scheme was invented, memory caches were rare and were some-
times also called “lookaside buffers,” so the memory translation cache became
a translation lookaside buffer or TLB; the acronym survives.)

The second problem is the size of the page table; for a 32-bit application
address space split into 4KB pages, there are a million entries, which will take
at least 4MB of memory. We really need to find some way to make the table
smaller, or there’ll be no memory left to run the programs.

We'll defer any discussion of the solution for this, beyond observing that
real running programs have huge holes in their program address space, and if
we can invent some scheme that avoids using physical memory for the corre-
sponding holes in the table, things are likely to get better.

We've now arrived, in essence, at the memory translation system DEC fig-
ured out for its VAX minicomputer, which has been extremely influential in
most subsequent architectures. It’s summarized in Figure 6.2.

The sequence in which the hardware works is something like this:

® A virtual address is split into two, with the least-significant bits (usually
12 bits) passing through untranslated—so translation is always done in
pages (usually 4KB).

" The more-significant bits, or VPN, are concatenated with the currently
running process’s ASID to form a unique page address.

® We look in the TLB (translation cache) to see if we have a translation
entry for the page. If we do, it gives us the high-order physical address
bits and we’ve got the address to use.

122 m Chapter 6—Memory Management and the TLB

Process no. Program (virtual) address

ASID VPN .f,:‘.“"’" -
o ‘ e within page
— o
Page table
T8 {in memory)

Refill when

necessary

Address .

FIGURE 6.2 Desirable memory translation system

The TLB is a special-purpose store and can match addresses in various
useful ways. It may have a global flag bit that tells it to ignore the value
of ASID for some entries, so that these TLB entries map some range of
virtual addresses for every process.

Similarly, the VPN may be stored with some Mask bits that cause some
parts of the VPN to be excluded from the match, allowing the TLB entry
to map a larger range of virtual addresses.

Both of these special cases are available in some MIPS MMUs.
m There are usually extra bits (flags) stored with the PFN that are used to

control what kind of access is allowed—most obviously, to permit reads
but not writes. We’ll discuss the MIPS architecture’s flags in Section 6.2.

6.1.5

6.2

6.2 MIPS TLB Facts and Figures m 123

= [f there’s no matching entry in the TLB, the system must locate or build
an appropriate entry (using main-memory-resident page table infor-
mation) and load it into the TLB and then run the translation process
again.

In the VAX minicomputer, this process was controlled by microcode and
seemed to the programmer to be completely automatic.

Origins of the MIPS Design

The MIPS designers wanted to figure out a way to offer the same facilities as
the VAX with as little hardware as possible. The microcoded TLB refill was
not acceptable, so they took the brave step of consigning this part of the job to
software.

That means that apart from a register to hold the current ASID, the MMU
hardware is just a TLB, which is simply a high-speed, fixed-size table of transla-
tions. System software can (and usually does) use the TLB as a cache to front a
memory-resident page table, but there’s nothing in the TLB hardware to make
it a cache, except this: When presented with an address it can’t translate, the
TLB triggers a special exception (TLB refill) to invoke the software routine.
However, considerable care is taken with the details of the TLB design and
associated control registers to help the software to be efficient.

MIPS TLB Facts and Figures

The MIPS TLB has always been implemented on chip: The memory translation
step is required even for cached references, so it’s very much on the critical path
of the machine. That meant it had to be small, particularly in the early days, so
it makes up for its small size by being clever.

It’s basically a genuine associative memory. Each entry in an associative
memory consists of a key field and a data field; you present the key and the
hardware gives you the data of any entry where the key matches. Associative
memories are wonderful, but they are expensive in hardware. MIPS TLBs have
had between 32 and 64 entries; a store of this size is manageable as a silicon
design.

R4000-style CPUs so far have used a TLB where each entry is doubled up
to map two consecutive VPNs to independently specified physical pages. The
paired entries double the amount of memory that can be mapped by the TLB
with only a little extra logic, without requiring any large-scale rethinking of
TLB management.

124 m Chapter 6—Memory Management antl the TLB

TLB entry (R3000-style MIPS CPU) Output
VPN AsD| G fl PEN | Fi"Dgs v
TLB entry (R4000-style MIPS CPU) Output
VPN2 | PageMask (ASD| G [pen | 9 F pen g

FIGURE 6.3 TLB entry fields

You will see the TLB referred to as being fully associative; this emphasizes
that all keys are really compared with the input value in parallel.!

The TLB entry is shown schematically in Figure 6.3 (you’ll find detailed
programming information later in Section 6.5). The TLB’s key consists of the
following:

® VPN: The high order bits of the virtual address (the virtual address of the
page less low bits). It becomes VPN2 with the double entry, to emphasize
that if each physical page is 4KB, the virtual address selecting a pair of
entries loses its least-significant bit (which now selects the left or right
output field).

® PageMask: This is only found on later CPUs. It controls how much of
the virtual address is compared with the VPN and how much is passed
through to the physical address; a match on fewer bits maps a larger
region. MIPS CPUs can be set up to map up to 16MB with a single
entry. With all page sizes, the most significant masked bit is used to
select the even or odd entry.

= ASID: Marks the translation as belonging to a particular address space,
so it won’t be matched unless the CPU’s current ASID value matches too.
The @ bit, if set, disables the ASID match, making the translation entry
apply to all address spaces (so this part of the address map is shared X
between all spaces). The ASID is 6 bits long on early CPUs, 8 bits on
later ones.?

1. The R4000’s TLB would be correctly, if pedahtically, described as a 48-way set-associative store,
with two entries per set.

2. The OS-aware reader will appreciate that even 256 is too small an upper lirait for the number S
of simultaneously active processes on a big unix system. However, it's a reasonable limit so long
as “active” in this context is given the special meaning of “may have translation entries in the Co
TLB.” Software has to recycle ASIDs where necessary, which will involve purging the TLB of ‘
translation entries for the process that is being downgraded. It’s a dirty business, but so is quite s
a lot of what OSs have to do; and 256 entries should be enough to make sure it doesn’t have to
be done 50 often as to constitute a performance problem. For programming purposes, the @ bit
is stored with the output side’s flags.

6.2 MIPS TLB Facts and Figures m 125

The TLB's output side gives you the physical frame number and a small but
sufficient bunch of flags:

® Physical frame number (PFN): This is the physical address with the low
12 bits cut off.

® Cache control (N/C): The 32-bit CPUs have just the N (noncacheable)
bit—0 for cacheable, 1 for noncacheable.
The 64-bit CPUs provide a 3-bit field ¢ that can contain a larger range
of values that tell multiprocessor hardware what protocols to use when
data in this page is shared with other processors. Those 64-bit CPUs
that don’t have hardware cache coherency features have maintained this
TLB entry layout; only the two code values that mean cacheable with all
R4000 cache features (3) and uncached (2) are standard over all R4000-
style CPUs. Modern embedded CPUs can select different cache man-
agement strategies with different values: write through vs. write back or
write allocate vs. uncached write on miss. See your CPU manual.

= Write control bit (D): Set 1 to allow stores to this page to happen. The
“D” comes from this being called the “dirty bit”; see Section 6.8 for why.

= Valid bit (V): If this is 0, the entry is unusable. This seems pretty point-
less: Why have a record loaded into the TLB if you don’t want the trans-
lation to work? It’s because the software routine that refills the TLB is
optimized for speed and doesn’t want to check for special cases. When
some further processing is needed before a program can use a page re-
ferred to by the memory-held table, the memory-held entry can be left
marked invalid. After TLB refill, this will cause a different kind of trap,
invoking special processing without having to put a test in every software
refill event.

Translating an address is now simple, and we can amplify the description
above:

® CPU generates a program address: This is accomplished either for an
instruction fetch, a load, or for a store that doesn’t lie in the special
unmapped regions of the MIPS address space.
The low 12 bits are separated off, and the resulting VPN together with
the current value of the ASID field in EntxyHi is used as the key to the
TLB, as modified in effect by the PageMask and G fields in TLB entries.

® TLB matches key: The matching entry is selected. The PEN is glued to
the low-order bits of the program address to form a complete physical
address.

® Valid? The V and D bits are consulted. If it isn’t valid or a store is being
attempted with D unset, the CPU takes a trap. As with all translation
traps, the Badvaddr register will be filled with the offending program

126 ® Chapter 6—Memory Management and the TLB

6.3

address; as with any TLB exception, the TLB Entrysi register will be
preloaded with the VPN of the offending address.

Don’t use the convenience registers Context (and XContext on 64-bit
CPUs) other than in TLB miss processing. At other times they might
track things like Badvaddr or they might not; either would be a legiti-
mate implementation.

= Cached? If the C bit is set the CPU looks in the cache for a copy of the
physical location’s data; if it isn’t there it will be fetched from memory
and a copy left in the cache. Where the C bit is clear the CPU neither
looks in nor refills the cache.

Of course, the number of entries in the TLB permits you to translate only a
relatively small number of program addresses—a few hundred KB worth. This
is far from enough for most systems. The TLB is almost always going to be used
as a software-maintained cache for a much larger set of translations.

When a program address lookup in the TLB fails, a TLB refill trap is taken.!
System software has the following job:

= It figures out whether there is a correct translation; if not, the trap will
be dispatched to the software that handles address errors.

a Ifthere is a correct translation, it constructs a TLB entry that will imple-
ment it.

® Ifthe TLB is already full (and it almost always is full in running systems),
the software selects an entry that can be discarded.

® The software writes the new entry into the TLB.

See Section 6.7 for how this can be tackled, but note here that although
special CPU features help out with one particular class of implementations,
the software can refill the TLB any way it likes.

MMU Registers Described

We'll now put aside our top-down approach and get down to the details of the
MIPS implementation. I hope you've got enough background to set the bits in
context; once we’ve set out the details, we can show how the facilities are used.

Like everything else in a MIPS CPU, MMU control is effected by a rather
small number of extra instructions and a set of registers taken from the copro-

1. Should this be called a “TLB miss” (which is what just happened) or a “TLB refill” (which is what
we're going to do to sort it out)? I'm afraid we probably use both terms in MIPS documentation.

6.3 MMU Registers Described m 127

EntryHi register (TLB key fields) R3000-style CPUs
31 1211 65 0

L VPN [AsD_ | o |

EntryHi register (TLB key fields) R4000-style CPUs
63 62 61 1312 87]
[R_] VPN2 [0 | asp |

EntryLo register (TLB data fields) R3000-style CPUs
31 1211 10 9 8 7 0

L PFN [N[D]VI]G] o |

EntryLo0, 1 register (TLB data fields) R4000-style CPUs
31 30 29 65 3 2 1 O
[o] PFN | c|pJv]aG]

PageMask register 64-bit CPUs only
X)) 25 24 1312 0]
[0 | Mask | o]

FIGURE 6.4 EntryHi, EntryLo,and PageMask register fields

cessor 0 set. Table 6.1 lists the control registers, and we’ll get around to the
instructions in Section 6.4.

6.3.1 EntryHi, EntryLo, and PageMask

Figure 6.4 shows these registers, which are the programmer’s only view of a
TLB entry and are best considered together.
The fields in EntryHi are as follows:

® VPN, VPN2 (virtual page number): These are the high-order bits of a
program address (with bits 0~12 omitted). VPN2 omits bit 13 too, be-
cause it’s used where each TLB entry will map a pair of 4KB virtual
pages. Following a refill exception this field is set up automatically to
match the program address that could not be translated. When you want
to write a different TLB entry, or attempt a TLB probe, you have to set it
up by hand.

128 m Chapter 6—Memory Management and the TLB

TABLE 6.1 CPU control registers for memory management

Register w“Po Description
mnemonic register
number
EntryHi 10 Together these registers hold everything needed for a TLB entry. All reads
EntryLo/ 2 and writes to the TLB must be staged through them. Entry#i holds the

EntryLo0 VPN and ASID; EntryLo holds the PFN and flags.
The field EntryHi (ASID) does double duty, since it remembers the

EntryLol 3 currently active ASID.

PageMask 5 In some CPUs (all 64-bit CPUs to date) each entry maps two consecutive
VPN to different physical pages, specified independently by two registers
called EntryLo0 and EntryLol.

EntryHi grows to 64 bits in 64-bit CPUs but in such a way as to preserve
the illusion of a 32-bit layout for software that doesn’t need long
addresses.

PageMask can be used to create entries that map pages bigger than 4KB;
see Section 6.3.1.

Index 0 This determines which TLB entry will be read/written by appropriate
instructions. j
Random 1 This pseudo-random value (actually a free-running counter) is used by a

t1lbwr to write a new TLB entry into a randomly selected location. Saves
time when processing TLB refill traps, for software that likes the idea of
random replacement (there is probably no viable alternative).

Context 4 These are convenience registers, provided to speed up the processing of

Xcontext 20 TLB refill traps. The high-order bits are read/write; the low-order bits are
taken from the VPN of the address that couldn’t be translated.
The register fields are laid out so that, if you use the favored arrangement
of memory-held copies of memory translation records, then following a
TLB refill trap context will contain a pointer to the page table record
needed to map the offending address. See Section 6.3.5.
Xcontext does the same job for traps from processes using more than
32-bits of effective address space; a straightforward extension of the
Context layout to larger spaces would be unworkable because of the size
of the resulting data structures. Some 64-bit CPU software is happy with
32-bit virtual address spaces, but for when that’s not enough 64-bit CPUs
are equipped with “mode bits” SR(UX), SR(KxX) which can be set to
cause an alternative TLB refill handler to be invoked; in turn that handler
can use Xcontext to support a huge but manageable page table format.

6.3 MMU Registers Described & 129

The 64-bit systems (so far) don’t actually support virtual address spaces
as huge as is implied by the above. VPN2 is actually a 27-bit field in
R4x00 CPUs, corresponding to a 40-bit program address space. Higher
bits of VPN2 must be written as all ones or all zeros, matching the most-
significant bit of the EntryLo register; equivalently, the higher bits are
all 1 when accessing kernel-only address spaces and all 0 otherwise.

If you are only using the 32-bit instruction set this will happen auto-
matically, because when you work this way all register values contain
the 64-bit sign extension of a 32-bit number.

® ASID (address space identifier): This is normally left holding the oper-
ating system’s idea of the current address space. This is not changed by
exceptions, so after a refill exception, this will still have the right value in
it for the currently running process.
Most software systems will deliberately write this field only to set up the
current address space. However, you have to be careful when using t1br
to inspect TLB entries; that operation overwrites the whole of EntryH4,
so you will have to restore the correct current ASID value afterward.

® R: This is an address region. You can consistently regard this field as
just more bits of EntryHi (VPN2); it’s just the highest-order bits of
the 64-bit MIPS virtual address. However, if you remember the 64-bit
extended-memory map (see Figure 2.2 in Section 2.8), you can see that
these high-order bits select memory areas with different access privi-
leges. Also, they’re unlike the high bits of VPN2 because they can in-
deed take on different values—an implementation-defined number of
high-order bits of EntryHi (veN2) must be all ones or all zeros.

Fields in EntryLo are as follows:

= PFN: These are the high-order bits of the physical address to which
values matching Entryni’s VPN will be translated.

® N (noncacheable): Set 0 to make the access cacheable, 1 for uncacheable.

® C: For R4000 and later CPUs there’s a much richer choice of cache algo-
rithm to use for this access, encoded into a 3-bit field. But values other
than uncached (2) and cached without multiprocessor signalling (3) are
used differently by cache-coherent multiprocessors and later embedded
CPUs. .

® D (dirty): This functions as a write-enable bit. Set 1 to allow writes, 0 to
Cause any store using this translation to be trapped. See Section 6.8 for
an explanation of the term “dirty”

® V (valid): If set 0, any use of an address matching this entry will cause
an exception. Used either to mark a page that is not available for access

130 ® Chapter 6—~Memory Management and the TLB

(in a true virtual memory system), or to mark one EntryLo part of a
paired translation as not available. !

® G (global): When the G bit in a TLB entry is set, that TLB entry will

match solely on the VPN field, regardless of whether the TLB entry’s

_ ASID field matches the value in EntxryH1. This allows us to implement

¢ parts of the address space that are shared between all processes without
adding additional page tables.

® Fields called 0: These fields always return zero, but unlike many re-
served fields, they do not need to be written as zero (nothing happen-
s regardless of the data written). This is important; it means that the
memory-resident data that is used to generate EntryLo when refill-
ing the TLB can contain some software-interpreted data in these fields,
which the TLB hardware will ignore without the need to spend precious
CPU cycles masking it out.

The pageMask register has been implemented in all 64-bit CPUs to date.
The current mask field is copied into a TLB entry as it’s made, and 1 bits have
the effect of causing the corresponding bit of the virtual address to be ignored
when matching the TLB entry (and causing that bit to be carried unchanged to
the resulting physical address), effectively matching a larger page size. Masked
bits in the address are copied directly to the physical address, too.

No MIPS CPU permits arbitrary bit patterns in Mask. Most allow page
sizes between 4KB and 16MB in x4 steps:

PageMask bits Page size
24-21 20-17 16-13
0000 0000 0000 4KB
0000 0000 0011 16KB
0000 0000 1111 64KB
0000 0011 1111 256KB
0000 1111 1111 IMB
0011 1111 1111 4MB
1111 1111 1111 16MB

NEC’s Vr4200 CPU supports only 4KB and 16MB pages but uses the standard
encodings for those sizes.

6.3.2

6.3.3

6.3 MMU Registers Described m 131

MIPS | CPUs
31 30 1413 87 0
[P] X | Index] X]

All MIPS 1il and higher CPUs to date
31 30 65
[P] X | Index

Lo

FIGURE 6.5 Fields in the Index register

32-bit CPUs to date
31 1413 87 0
[X | Random] X]

64-bit CPUs to date
31 65 0

[0 | Random |

FIGURE 6.6 Fields in the Random register

Index

The Index register is used to specify a TLB index when you deliberately want
to write a particular entry and is used to return a TLB index after you look up
a translation with t1bp.

Figure 6.5 shows that Index is not quite just a number. The P field is set
when a t1bp instruction fails to find a valid translation; since it is the top bit it
appears to make the 32-bit value negative, which is easy to test for.

Note the different position of the field in early MIPS CPUs and that there
are only 6 significant bits (addressing a maximum of 64 TLB entries).

Random

Random holds an index into the TLB that counts (downward, if that’s impor-
tant to you) with each instruction the CPU executes. It acts as an index into the
TLB for the write-entry instruction t 1bwr, supporting a random replacement
strategy when you need to write a TLB entry.

You never have to read or write the Random register (shown as Figure 6.6)
in normal use, but it may be useful for diagnostics. The hardware is sup-
posed to set the Random field to its maximum value—matching the highest-

-

132 ® Chapter 6—Memory Management and the TLB

6.3.4

6.3.5

Context register for R3x00 CPUs
31 : 2120 21 0
| PTEBase [BadvPN | 0O |

Context register for R4x00 and subsequent CPUs

63 23 22 4 3

L_Jo

PTEBase [BadVPN2 | 0

XContext register for R4x00 and subsequent CPUs only
63 33 32 31 30 43

0
PTEBase [R | Bad VPN2 [0 |

FIGURE 6.7 Fields in the Context/XContext registers

numbered entry in the TLB—on reset, and it decrements every clock period
until it reaches a floor value, when it wraps back to 63 and starts again.

TLB entries from 0 and whose index is less than the floor value are there-
fore immune from random replacement, and an OS can use those slots for
permanent translation entries—they are referred to as “wired” in MIPS OS
documentation.

In early CPUs the floor value is fixed to 8, but there were complaints about
the arbitrary nature of this constant and 64-bit CPUs introduced the wired
register, which allows you to change the floor and thus the range of Random.

Wired

This is just a number, but the effect of writing numbers larger than the highest
index in your TLB is unlikely to be helpful. When you write Wired the Random
register is automatically reset to point to the top of the TLB.

Context and XContext

When the CPU takes an exception because a translation isn’t in the TLB, the
virtual address whose translation wasn’t available is already in Badvaddr, and
the VPN (which is all that matters) is already in EntryH4. This is clearly suffi-
cient; however, in order to speed the processing of this exception, the Context
or XContext register repackages the same information in a format that can be
a ready-made pointer to a memory-based page table.

Figure 6.7 shows these registers, and the fields are described in the notes
following:

— >

6.4

6.4 MMU Control Instructions ™ 133

® PTEBase: This is a location that just stores what you put in it. To im-
plement the “standard” refill handler, this will be the high-order bits of
the (appropriately aligned) starting address of a memory-resident page
table. The starting address must be picked to have zeros in bits 20 and
downward, since Context is an “or” of its fields, not their sum. That
constrains the memory-held page table to start on a 1MB boundary in
kernel virtual address—probably not much of a problem.

® Bad VPN/Bad VPN2: Following an addressing exception this holds the
high-order bits of the address, which are exactly the same as the high-
order bits of Badvaddr. Why is it VPN2? If your CPU’s TLB stores pairs
of entry, then bit 12 of the address is not part of the TLB key field.
The VPN or VPN2 value is shifted left, so as to precalculate a pointer
into a structure whose entries are bigger than bytes. The 2-bit shift for
32-bit CPUs allows a 4-byte entry, which is large enough to hold infor-
mation to fill the EntryLo register which forms the other half of the
TLB entry. The 64-bit CPUs not only have 64-bit EntryLo0 and En-
tryLol registers, but they have two of them because each TLB entry
maps two pages; hence the page table is expected to have entries 16 bytes
in size, and the VPN is shifted left by four.

» Fields marked 0: These will always read zero.

MMU Control Instructions

The instructions

tlbr # read TLB entry at index
tlbwi # write TLB entry at index

move MMU data between the TLB entry selected by the index register and the
EntryHi and EntryLo registers.

You won'’t often read a TLB entry; when you do, remember that youw’ll
have overwritten the EntxyHi (ASID) field, which is supposed to relate to the
address map of the currently running process. So put it back again.

The instruction

tlbwx # write TLB entry selected by Random

copies the contents of EntryHi (including the included ASID field), Entryro,
and PageMask into the TLB entry indexed by the random register—this saves
time if you are adopting a random replacement policy. In practice, t 1bwr will
be used to write a new TLB entry in a TLB refill exception handler; t 1bwi will
be used anywhere else.

134 ® Chapter 6—Memory Management and the TLB

6.5

6.5.1

The instruction
tlbp # TLB lookup

searches the TLB for an entry whose virtual page number and ASID matches
those currently in EntryR4 and stores the index of that entry in the Index reg-
ister. Index (P) is set if nothing matches—this makes the value look negative,
which is easy to test.

If more than one entry matches, anything might happen. This is a horrible
error and is never supposed to happen.

Note that t1bp does not fetch data from the TLB; you have to run a subse-
quent t1bxr (TLB read indexed) instruction to do that.

The TLB is internally pipelined, and these management/diagnostic instruc-
tions cheat. Many implementations require that the instruction following a
t1bp not be a load or store.

Programming the TLB

TLB entries are set up by writing the required fields into Entryai and En-
tryLo and by using a t1bwr or t1bwi instruction to copy that entry into the
TLB proper.

When you are handling a TLB refill exception, you will find that EntxyHi
has been set up for you already.

Be very careful not to create two entries that will match the same program
address/ASID pair. If the TLB contains duplicate entries an attempt to trans-
late such an address, or probe for it, has the potential to damage the CPU
chip. Some CPUs protect themselves in these circumstances by a TLB shut-
down, which shows up as the SR(TS) bit being set. The TLB will now match
nothing until a hardware reset.

System software often won’t need to read TLB entries at all. But if you need
to read them, you can find the TLB entry matching some particular program
address using t1bp to set up the Index register. Don’t forget to save EntxyHi
and restore it afterward because its ASID field is likely to be important.

Use a t1br to read the TLB entry into EntryHi and EntryLo.

You'll see references in the CPU documentation to separate ITLB and DTLB
structures that perform translation for instruction and data addresses, respec-
tively; these are tiny hardware-managed caches whose operation is completely
transparent to software.

How Refill Happens

When a program makes an access in any of the translated address regions
(normally kuseg for application programs under a protected OS and kseg2 for

s R,

6.5.2

6.5 Programmingthe TLB m 135

kernel-privilege mappings), and no translation record is present, the CPU takes
a TLB refill exception. .

The TLB can only map a fraction of the physical memory range of a modern
server or workstation. Large OSs maintain some kind of memory-held page
table that holds a large number of page translations and uses the TLB as a cache
of recently used translations. Most often the page table will be an array of
ready-to-use TLB entries, set out so that you can use the Context register as a
pointer into it.

Since MIPS systems usually put their OS kernel into the untranslated kseg0
memory region, the common situation will be a user-privilege program that
wants to translate a kuseg address. Several hardware features are provided with
the aim of speeding up the exception handler in this common case. Firstly,
these refill exceptions are vectored through a low-memory address used for no
other exception.' Secondly, a series of cunning tricks allow the memory-held
page table to be located in kernel virtual memory (the kseg2 region or its 64-
bit alternative) so that physical memory space is not needed for the parts of the
page table that map “holes” in the process’s address map.

And to top it off, the Context or XContext register can be used to give
immediate access to the right entry from a memory-held page table.

We’ll work through this process in Section 6.7. But before we get too far
into it, we should note that use of all these features is not compulsory. In a
smaller system the TLB can be used to produce a fixed or rarely changing trans-
lation from program (virtual) to physical addresses; in these cases it won’t even
need to be a cache.

Even some big virtual memory OSs implemented for MIPS have not used
the “standard” page table. Early versions of the portable NetBSD kernel or-
ganized a relatively large software-managed second-level cache of translations
that was searched by the regular refill code; access to pages whose transla-
tions aren’t present in the second-level cache are rare and can be handed off
to a relatively heavyweight handler written in C and drawing on a machine-
independent page table.

‘Using ASIDs

By setting up TLB entries with a particular ASID setting and with the EntryLo
G bit set 0, those entries will only ever match a program address when the
CPU’s EntryHi (ASID) register field matches the TLB entry’s value. This al-
lows you to map up to 64 or 256 different address spaces simultaneously, with-

1. On the original MIPS architecture this is the only event deemed worthy of its own entry point. -

The exact criteria for use of the special entry point changed between the R3000 and R4000
generations of the CPU, but the aim is the same.

136 = Chapter 6—Memory Management and the TLB

6.5.3

6.6

out requiring that you clear out the TLB on a context change.! If you do run
out of ASIDs you will have to go through the TLB and discard mappings for
the address space(s) whose ASID you want to revoke.

The Random Register and Wired Entries

The hardware offers you no way of finding out which TLB entries have been
used most recently. When you are using the TLB as a cache and you need
to install a new mapping, the only practicable strategy is to replace an entry at
random. The CPU makes this easy for you by maintaining the Random register,
which counts (down, actually) with every processor cycle.

Random replacement sounds horribly inefficient; you may end up discard-
ing the translation entry that has been in heaviest use recently and that will
almost certainly be needed again very soon. But in fact this doesn’t happen so
often as to be a real problem when you have a reasonable number of possible
victims to choose from, and most MIPS OSs leave themselves at least 40.

However, it is often useful to have some TLB entries that are guaranteed
to stay there until you choose to remove them. These may be useful to map
pages that you know will be required very often, but they are really important
because they allow you to map pages and guarantee that no refill exception will
be generated on them.

The stable TLB entries are described as “wired”: On R3000 CPUs they con-
sist of TLB entries 0 through 7 and on R4x00 and subsequent CPUs they are
between 0 and whatever value you programmed into the wired register. The
TLB itself does nothing special about these entries; the magic is in the Random
register, which never takes values 0 through “wired-17; it cycles directly from
“wired-1” to its maximum value. So conventional random replacement leaves
TLB entries 0 through “wired-1” unaffected, and entries written there will stay
until explicitly removed.

Memory Translation: Setup

The following code fragments initialize the TLB to ensure that there is no match
on any kuseg or kseg2 address. We’ve done the usual R3000- and R4000-style
TLB arrangements separately. Here is a simple TLB initialization for an R3000
or similar CPU:

1. The exact number depends on the width of the ASID field, which has grown from 6 bits to 8 bits
during the evolution of MIPS.

B
i
%
£

[SO

6.6 Memory Translation: Setup m 137

#include <mips/r3kc0.h>

LEAF (mips_init_t1lb)

mfco
mtco
14
14

t0,CO_ENTRYHI # save ASID

zexro, CO_ENTRYLO # tlblo = lvalia
al,NTLBID<<TLBIDx_SHIFT # index

a0,KSEG1_BASE # tlbhi = impossible VPN

.8et noreorder

1: subu
mtco
mtco
addu
bnez
tlbwi
.get

mtcO
b |

al, 1<<TLBIDX_SHIFT
a0,CO_ENTRYHI

al,CO_INDEX
a0, 0x1000 # increment VPN, so all entries differ
al,1b
in branch delay slot
reorder
t0,CO_ENTRYHI # restore ASID
ra

END(mips_init_t1b)

Here is a simple TLB initialization for an R4000 or similar CPU:

#include <mips/rdkco0.h>

LEAF (mips_init_tlb)

dmfc0
11

1i
mtcO
mtco

l: subu
dmtc0
dmtc0
addu
tlbwi
bnez

t0,CO_ENTRYHI
al,NTLBID
a0,KSEG1_BASE
zero, CO_ENTRYLOO
zero, CO_ENTRYLO1

save for ASID field

start one above top of TLB
impossible VPN

zero is invalia

* * % w

al,1l
a0,CO_ENTRYHI

al,CO_INDEX

a0, 0x2000 # increment VPN, so all entries differ

al,1b

-8et noreorder

nop
dmtc0

*

tlbwi uses entryhi late
t0,CO_ENTRYHI # restore ASID

.8et reorder

3

ra

END (mips_init_t1lb)

138 m Chapter 6—Memory Management and the TLB

6.7

Let’s look at the TLB initialization process.

& Both routines start at the top of the TLB (constant NTLBID is found in
the include file, which Algorithmics calls r3kc0.h or r4kc0 . h).

® The zero value of EntryLo0 and EntxyLol means that any translation
is not valid, but that may not on its own be enough to prevent trouble
with duplicated entries.

= Note that the R3000 version of Index has the field shifted up the regis-
ter, so we can’t just add one to it.

s The VPN stored in each entry is that of a page in the kseg] area, which by
definition is a nontranslated address and can therefore never be looked
up. But even so, we make sure that all the VPN are different.

TLB Exception Sample Code

This routine implements the translation mechanism that the MIPS architects
undoubtedly had in mind for user addresses in a unix-like OS. It relies upon
building a page table in memory for each address space. The page table consists
of a linear array of entries, indexed by the VPN, whose format is matched to
the bitfields of the EntryLo register. R3000-type single-entry TLBs need one
word per entry, while R4000-type paired TLBs need four (each entry having
grown to accommodate the bigger address space).

Such a scheme is simple but opens up other problems. Since each 4KB of
user address space takes 4 bytes of table space, the entire 2GB of user space
needs a 2MB table, which is an embarrassingly large chunk of data.! Of course,
most user address spaces are only filled at the bottom (for code and data) and
at the top (for a downward growing stack) with a huge gap in between. The
solution MIPS adopted is inspired by DEC’s VAX architecture and is to locate
the page table itself in virtual memory in the kseg? region. This neatly solves
two problems at once:

m It saves physical memory; since the unused gap in the middle of the
page table will never be referenced, no physical memory need actually
be allocated for those entries. '

m [t provides an easy mechanism for remapping a new user page table
when changing context, without having to find enough virtual addresses
in the OS to map all the page tables at once. Instead, you just change the
ASID value, and the kseg2 pointer to the page table is now automatically
remapped onto the correct page table. It’s nearly magic.

1. On an R4000-type 64-bit CPU each 8KB of address space takes 16 bytes of table space, needing a
4MB table for a 2GB “compatibility mode” task and much more for an application that is taking
advantage of R4000’s potential 0.5TB user space.

R N SR

PR R

LN

6.7.1

6.7 TLB Exception Sample Code W 139

Of course, it also seems to lead to a fatal vicious circle, where a TLB refill (to
load the, kseg2 mapping for the page table) is required to process a TLB refill.
We can solve that problem too:

® The superfast TLB refill routine is not used for all refill exceptions; a
nested TLB miss on the page table address is dispatched to the general
exception entry point.

® A limited mechanism is provided that allows us to handle a nested ex-
ception (the kernel TLB miss) from within the user TLB miss excep-
tion handler. We'll discuss it under the individual examples, because the
R4x00 and subsequent 64-bit CPUs use a trick different from the R2000
and 32-bit CPUs.

The MIPS architecture supports this kind of linear page table in the form of
the context register (or XContext for extended addressing in 64-bit CPUs).

If you make your page table start at a IMB boundary (since it is in virtual
memory any gap created won't use up physical memory space) and set up the
Context PTEBase field with the high-order bits of the page table starting the
address, then following a user refill exception the Context register will con-
tain the address of the entry you need for the refill with no further calculation
needed.

The 32-Bit R3000-Style User TLB Miss Exception Handler

The 32-bit CPUs have one special TLB miss exception entry point that is used
for TLB misses resulting from a user-accessible address. TLB misses caused
by privileged-access addresses (in the top half of the memory map) are sent
through the standard exception entry point. Here’s a typical refill routine for a
TLB miss handler for a 32-bit CPU:

.8et noreorder
.8et noat

TLBmissR3K:
mfcO k1l,CO_CONTEXT # (1)
mfco k0,CO_EPC # (2)
1w k1l,0(k1l) # (3)
nop # (4)
mtc0 k1l,CO_ENTRYLO # (5)
nop # (6)
tlbwr # (7)
jr kO # (8)
rfe # (9)
.g8et at
.8et reorder

140 m Chapter 6—Memory Management and the TLB N

The UTLB miss exception is a very low level piece of code, so the .set
noreorder tells the assembler that we're taking responsibility for making sure
this code sequence runs OK on the CPU’s pipeline, and we don’t want the as-
sembler worrying about it. The .set noat tells the assembler that it is not
allowed to use the at register to synthesize instructions—this is essential, be-
cause we’ve arrived from an arbitrary exception and at has unsaved user state

in it.

%0 and k1 are by convention ours to play with, so we can use them without
worrying about what previous value we’re overwriting.
Following is a line-by-line analysis of this code:

(1)

(2)

(3)

(4)

)

(6)

(7)

(8)

9

The context register is a pointer to the page table. The m£c0 instruc-
tion does not take immediate effect in the MIPS five-stage pipeline, so
we won’t be able to use the pointer value until line (3).

We need to get the return address sometime; do it now in the load delay
slot. This is also required in case the load from the page table entry itself
suffers a TLB miss exception.

At this point the address of the page table entry may itself not have
a valid translation entry in the TLB, in which case we’ll take another
exception here. We'll deal with that case below.

The load takes two clock cycles, so we need to wait before we can use the
value from the page table.

Store the new value in EntrylLo. EntryHi(VPN) was set up auto-
matically by the hardware for the TLB miss exception to refer to the
missing translation. EntryHi still contains the EntryHEi (ASID) value
we stored there, presumably the last time the OS did a process context
switch.

Wait while the new value reaches EntryLo.
Write it to wherever in the TLB the Random register happens to be point-
ing, discarding...who knows what. Never mind, that’s the fun of ran-

dom replacement.

We go back to the user program, but in every branch the delay slot
instruction is executed before we get there. ...

The rfe instruction restores the CPU state held in SR back to how it was
before the exception.

6.7.2

6.7 TLB Exception Sample Code ®m 141

So we've taken nine instructions and are off back to the program that suf-
fered the translation miss. In practice, the biggest overhead is likely to be felt
when the load from the page table misses in the data cache.!

But we promised to tell you what happens if you are unlucky and the page
table entry address does not have a translation entry.

One thing isn’t a problem: Double translation faults like this are not very
common, so we don’t have to worry too much about efficiency. It's OK to
implement the TLB miss on the page table (in the privileged address space)
with a heavyweight general-purpose exception handler.

MIPS exceptions really only do three things:

® Then modify SR to disable interrupts and put the CPU in kernel mode.
® Then store the restart location in EPC.

® Then vector to the exception handler.

In order to survive a second exception and still get back to the original
program correctly, we need to avoid losing the original return address and to
be able to restore SR to its pre-exception value.

There’s no hardware support for saving the return address, but as you can
see above, the exception handler has already saved it in k0; we just need to
make sure that the general-purpose exception handler treats k0 like most other
registers and preserves its value.?

The status register is more complicated, but here the hardware does help.
The 2 bits that do the work are the interrupt enable bit SR (IEc) and the
kernel-mode flag SR (KUc) . The status register is in fact provided with a three-
entry stack for this pair of bits, which is pushed on exceptions and popped by
the end-of-exception rfe instruction, as shown in Figure 6.8.

Because the SR (KUx, IEx) forms a three-deep stack, even after the second
exception the user program values are still safe in SR (KUo, IEo) and ready to
be popped back into place.

TLB Miss Exception Handler for R4x00 CPU

The R4000 and subsequent CPUs use a TLB with pairs of entries and handle the
double-exception condition differently, leading to this different handler code.
Also, the R4000 has two special entry points. The handler at the same lo-
cation as the R3000’s is used to handle translations for processes using only
32 bits of address space; an additional entry point is provided and invoked

ot

- That highlights an unexpected virtue of the MIPS do-it-in-software approach: By using software

and not microcode to refill the TLB, the TLB refill job gets the benefit of working through the
CPU’s cache hierarchy and not always having to go out to memory.

2. This is why the register conventions reserve two general-purpose registers for the use of
exception handlers.

142 @m0 Chapter 6—Memory Management and the TLB

KUo | IEo [KUp | IEp |KUe | IE
I |
E lEp | KUc | |

U c
KUo | IEo [KUp | IEp c | IEc

KUo | IEo [KUp | IEp |[KUc | IEc

End-of-exception
rfe instruction

KUo | IEo [KUp | IEp | KUc | lEc

FIGURE 6.8 Status register fields in exceptions (32-bit MIPS)

for programs marked as using the bigger address spaces available with 64-bit
pointers.

The R4000 status register has three fields, SR (UX), SR(SX), and SR (KX),
that select which exception handler to use, based on the CPU privilege level at
the time of the failed translation.!

The R4000 has a different criteria for deciding when a TLB miss can use the
special entry point and when it should be sent to the general exception handler.
The R4000 always uses the special entry point unless it’s already handling an
exception—that is, unless SR (EXL) is set. This deals with the double-exception
condition as above; but since misses on kernel addresses normally go through
the same TLB handler as user address misses, the R4000’s page table must be
big enough to span kernel virtual addresses too (but with yet more big holes).

Here is the code for a TLB miss handler for an R4000-type CPU with a
32-bit address space:

1. 8R(UX) is something of a 64-bit mode bit for user programs; when it’s zero, 64-bit instructions
are not available to a user program. But the other two bits are only used to select the TLB refill
routine.

e S e s

Bt 3 *«l,'_; Fp

6.7 TLB Exception Sample Code ®m 143

.8et noreorder
.8et noat

TLBmissR4K:
damfc0 kl,CO_CONTEXT # (1)
nop # (2)
1w k0,0(kl) # (3)
1w k1l,8(k1l) # (4)
mtco kO,CO_ENTRYLOO # (5)
mtco k1,CO_ENTRYLOl1 # (6)’
nop # (7)
tlbwr # (8)
eret # (9)
.80t at
.8et reorder

Following is a line-by-line analysis of the code:

(1)

(2,7)

Oddly enough, the 64-bit move here is probably unnecessary: If the
page table is located in kseg2 as usual, the page table base part of
Context is guaranteed to be all ones in its high bits, so the k1 reg-
ister will end up with the same value if you used a 32-bit-wide m€c0
instruction.

Some CPUs (typically those with pipelines longer than five stages, such
as the R4000) will need an extra nop in these positions.

(3—6) The entries are paired here, but Ent ryT.o0 and EntxryLol are still only

7

(8)
9

32-bit registers. However, the Context register is set up for 16-byte
page table entries; EntryLo0 and EntryLol on these CPUs have no
don’t-care bits, and software routines need some page table space to
keep software-only information.

No nop is required because we interleave the second load so there’s
always at least one instruction between the load and mt.c0.

As before, we may get another exception here if the page table entry’s
address does not have a valid translation in the TLB. Again, we'll deal
with that later.

The sequence may need an extra nop on some CPUs; you need one on
the long-pipeline R4000.

This is random replacement of a translation pair as discussed.

MIPS III and subsequent CPUs have the eret instruction to return
from exception and undo the exception-caused changes to sr. (For
MIPS III CPUs all an exception does to SR is to set the SR (EXL) bit.)

‘144 m Chapter 6—Memory Management and the TLB

6.7.3

What happens on one of these later CPUs when you get another TLB miss?
As hefore, the second miss is sent through the general-purpose exception en-
try point, but this time that happens because SR (EXL) is set (we're already
handling an exception).

The outcome is quite different too. With SR(EXL) set a second exception
is allowed to happen, but this doesn’t alter the exception return register EPC.

In effect, the kernel TLB miss exception causes control to transfer into the
general exception handler with the cause register and with all the address reg-
isters set up to show a TLB miss on the page table entry address, but with EPC
pointing back at the offending user-space instruction. The kernel page table
miss will be fixed up (if it can be) and the general exception handler will return
into the user program. Of course, we haven’t done anything about the user
address that originally caused the user-space TLB miss, so it will immediately
miss again. But this time, the required kernel translation will be available and
the user miss handler will complete successfully.

XTLB Miss Handler

With the appropriate status bit set (usually just SR(UX)), a TLB miss is sent to
a different vector, where we should have a routine that will reload translations
for a huge address space. The handler code (of an XTLB miss handler fora CPU
with 64-bit address space) looks identical, except for the use of the xcontext
register in place of Context:

.set noreoxrder

.8et noat
TLBmissR4K:

dmfc0 k1l,C0_XCONTEXT

nop .

1w kO0,0(k1)

1w k1,8(kl)

mtco k0, CO_ENTRYLOO
mtcO kl,CO_ENTRYLO1l

nop
tlbwx

eret

.set = at
.set reorder

Note, though, that the resulting page table structure in kernel virtual mem-
ory is far bigger and we’ll need to make significant changes in the kernel mem-
ory map and translation code to accommodate it.

6.8

6.9

“ 6.9 Memory Translation and 64-Bit Pointers m 145

Keeping Track of Modified Pages (Simulating “Dirty” Bits)

{

An operating system that provides a page for an application program to use of-
ten wants to keep track of whether that page has been modified since the OS last
obtained it (perhaps from disc or network) or saved a copy of it. Nonmodified
(“clean”) pages may be quietly discarded, since they can easily be recovered
from a file system if they’re ever needed again.

In OS parlance the modified pages are called “dirty” and the OS must take
care of them until the application program exits or the dirty page is cleaned by
being saved away to backing store. To help out with this process it is common
for CISC CPUs to maintain a bit in the memory-resident page table indicating
that a write operation to the page has occurred. The MIPS CPU does not sup-
port this feature, even in the TLB entries. The D bit of the page table (found in
the EntryLo register) is a write-enable and is of course used to flag read-only
pages.

So here’s the trick:

= When a writable page is first loaded into memory you mark its page
table entry with D clear (leaving it read-only).

= When any write is attempted to the page a trap will result; system soft-
ware will recognize this as a legitimate write but will use the event to
set a modified bit in the memory resident tables—which, since it’s in
the EntryLo (D) position, permits future writes to be done without an
exception.

® You will also want to set the D bit in the TLB entry so that the write can
proceed, but since TLB entries are randomly and unpredictably replaced
this would be useless as a way of remembering the modified state.

Memory Translation and 64-Bit Pointers

When the MIPS architecture was invented, 32-bit CPUs had been around for
a while and the largest programs’ data sets were already moving up toward
100MB——the address space had only 4 bits or so to spare.! There was therefore
every reason to be reasonably careful with the 32-bit space and not to reduce
it by profligate fragmentation; this is why application programs (running with
user privilege) keep 31 bits’ worth of addressing for themselves.

When the MIPS Il instruction set introduced 64-bit registers in 1991 it was
leading the industry, and as we discussed in Section 2.7 MIPS was probably 4
6 years ahead of real pressure on a 32-bit address boundary. The doubling of

1. Historically, application program demand for memory space seems to have grown at about %
bit per vear, and this rate appears to be currently sustained.

146 m Chapter 6—Memory Management and the TLB

6.10

register size only had to yield a few bits of extra address space to be remarkably
future-proof; it's been more important to be cautious about the potentially
exploding size of OS data structures than to make efficient use of all address
space.

The limitations to the practical address space resulting from the basic 64-bit
memory map are not going to be reached for a while; they permit the mapped
user and other spaces to grow to 61 bits without any reorganization. However,
the xContext (VPN2) field is “only” 27 bits, limiting the mappable user virtual
address to 40 bits. So how do we go about implementing a 40-bit user space?

A page table compatible with the layout of xContext has 2%° entries (one
for each value of R/VPN2, each 16 bytes long). That’s 8GB of space, which is
larger than the whole of kseg0, ksegl, and kseg2 combined. Fortunately, the
R4x00 CPU and its successors have another 2°°-byte, kernel-privilege, mapped
region starting at 0xC000.0000.0000.0000 that can be used. Most of this
page table is likely to be empty, since the 40-bit user program address space
(for which R == 0) has an immense gap between stack and data segments, and
there’ll be even less in the privileged areas. The part of the page table corre-
sponding to the gap will never be accessed and need not be mapped to physical
memory at all. Clearly it’s going to be useful to have some relatively compact
data structure to map the kernel-privilege addresses, but that’s straying into the
design of operating systems and is beyond the scope of this book.

Everyday Use of the MIPS TLB

If you're using a big OS, then it will use the TLB and you'll hardly see it. If not,
you may wonder whether it’s useful. Because the MIPS TLB provides a rather
general address translation service, there are a number of ways you might take
advantage of it.

The TLB mechanism permits you to translate addresses (at page granu-
larity) from any mapped address to any physical address and therefore to re-
locate regions of program space to any location in your machine’s address
map. There’s no need to support a TLB refill exception or a separate memory-
held page table if your mapping requirements are modest enough that you can
accommodate all the translations you need in the TLB.

The TLB also allows you to define some address as temporarily or perma-
nently unavailable, so that accesses to those locations will cause an exception
that can be used to run some operating system service routine. By using user-
privilege programs you can give some software access only to those addresses
you want it to have, and by using address space IDs in the translation entries
you can efficiently manage multiple mutually inaccessible user programs. You
can write-protect some parts of memory.

The applications for this are endless, but here’s a list to indicate the range:

6.11

6.11 Memory Management in a Non-unixOS m 147

8 Accessing inconvenient physical address ranges: Hardware registers for a
MIPS system are most conveniently located in the physical address range
0-512MB, where you can access them with a corresponding pointer
from the ksegl region. But where the hardware can’t stay within this
desirable area, you can map an arbitrary page of higher physical mem-
ory into a convenient mapped area such as kseg2. The TLB flags for this
translation should be set to ensure uncached access, but then the pro-
gram can be written exactly as though the address was in the convenient
place.

W Memory resources for an exception routine: Suppose you'd like to run an
exception handler without using the reserved k0/k1 registers to save
context. If so, you'd have trouble because a MIPS CPU normally has
nowhere to save any registers without overwriting at least one of these.
You can do loads or stores using the zero register as a base address,
but with a positive offset these addresses are located in the first 32KB
of kuseg, and with a negative offset they are located in the last 32KB of
kseg2. Without the TLB, these go nowhere. With the TLB, you could
map one or more pages in this region into read/write memory and then
use zero-based stores to save context and rescue your exception handler.

w Extendable stacks and heaps in a non-VM system: Even when you don’t
have a disk and have no intention of supporting full demand paging, it
can still be useful to grow an application’s stack and heap on demand
while monitoring its growth. In this case you'll need the TLB to map the
stack/heap addresses, and you'll use TLB miss events to decide whether
to allocate more memory or whether the application is out of control.

® Emulating hardware: If you have hardware that is sometimes present
and sometimes not, then accessing registers through a mapped region
can connect directly to the hardware in properly equipped systems and
invoke a software handler on others.

The main idea is that the TLB, with all the ingenuity of a specification
that fits so well into a big OS, is a useful, straightforward general resource for
programmers,

Memory Management in a Non-unix OS

OSs designed for use off the desktop are generally called real-time OSs (RTOSs),
hijacking a term that once meant something about real time. The unix-style
system outlined in the first part of this chapter has all the elements you're likely
to find in a smaller OS, but many RTOSs are much simpler.

ier 6——Memory Management and the TLB “

This field is new enough that there are no real standards. The likely pioneer
in this area is Microsoft’s Windows/CE, and internal descriptions of that OS
may not yet be freely available. So we’ll limit ourselves to a few general points.

Off-desktop systems are likely to be providing a single fairly tightly inte-
grated function; without the need to support a diverse range of programs, in-
cluding third-party and customer-written software, process protection is much
less of an issue. We expect smaller OSs to be more permissive, since the appli-
cations writers have more influence. It’s not clear that this is actually a good
thing, but older RTOSs had no protection at all.

Demand paging makes a lot of sense as a way of loading a program, since
you don’t have to do the work of loading parts of the program that aren’t used.
Systems without a disk probably won’t page out dirty data; however, demand
paging remains useful without it.

When you're trying to understand a new memory management system, the
first thing is to figure out the memory maps, both the virtual map presented
to application software and the physical map of the system. It’s the simple-
minded virtual address map that makes unix memory management relatively
straightforward to describe. But operating systems targeted at embedded appli-
cations do not usually have their roots in hardware with memory management,
and the process memory map often has the fossils of unmapped memory maps
hidden inside it. The use of a pencil, paper, and patience will sort it out.

Chapter

7.1

Floating-Point Support

Yo'u are increasingly unlikely to meet a MIPS floating-point coprocessor—
always known as floating-point accelerator, or FPA—in the flesh. In newer
MIPS CPUs the FPA is either part of the CPU or isn’t there at all.

In 1987 the MIPS FPA set a new benchmark for performance for micropro-
cessor math performance in affordable workstations. Unlike the CPU, which
was mostly a rather straightforward implementation relying on its basic archi-
tecture for its performance, the FPA was a heroic silicon design bristling with
innovation and ingenuity. Of course, now everyone has learned how to do it!

Since then the MIPS FPA has been pulled onward by Silicon Graphics’s need
for math performance that would once have been the preserve of supercom-
puters. I expect to see a lot more embedded applications that need very high
floating-point performance in the next few years, so even the most abstruse
and high-end features may move rapidly down the MIPS family.

A Basic Description of Floating Point

Floating-point math retains a great deal of mystery. You probably have a very
clear idea of what it is for, but you may be hazy about the details. This section
describes the various components of the data and what they mean. In so doing
we are bound to tell most of you things you already know; please skip ahead
but keep an eye on the text!

People who deal with numbers that may be very large or very small are used
to using exponential (scientific) notation; for example, the distance from the
earth to the sun is

93 x 10° miles

The number is defined by 93, the mantissa, and 6, the exponent.
149

150 = Chapter 7—Floating-Point Support

7.2

The same distance can be written
9.3 x 107 miles

Numerical analysts like to use the second form; a decimal exponent with a
mantissa between 1.0 and 9.999...is called normalized.! The normalized form
is useful for computer representation, since we don’t have to keep separate
information about the position of the decimal point.

Computer-held floating-point numbers are an exponential form, but in
base 2 instead of base 10. Both mantissa and exponent are held as binary fields.
Just changing the exponent into a power of two, the distance quoted above is

1.38580799102783203125 x 2% miles
The mantissa can be expressed as a binary “decimal,” which is just like a
real decimal; for example,

1 1
is the same value as binary
1.01100010110001000101 = 1 + 0 x %+1 X %+1 X %+

However, neither the mantissa nor the exponent are stored just like this in
standard formats—and to understand why, we need to review a little history.

The IEEE754 Standard and Its Background

Because floating point deals with the approximate representations of numbers
(in the same way as decimals do), computer implementations used to differ in
the details of their behavior with regard to very small or large numbers. This
meant that numerical routines, identically coded, might behave differently. In
some sense these differences shouldn’t have mattered: You only got different
answers in circumstances where no implementation could really produce a
“correct” answer.

The use of calculators shows the irritating consequences of this: If you take
the square root of a whole number and square it, you will rarely get back the
whole number you put in, but rather something with lots of nines.

Numerical routines are intrinsically hard to write and hard to prove correct.
Many heavily used functions (common trigonometric operations, for example)
are calculated by repeated approximation. Such a routine might reliably con-
verge to the correct result on one CPU and loop forever on another when fed a
difficult value.

1. In this form the mantissa may also be called “the fractional part” or “fraction”—it’s certainly
easier to remember.

7.2 The IEEE754 Standard and Its Background ® 151

The ANSI/IEEE Std 754—1985 IEEE Standard for Binary Floating-Point
Arithmetic (usually referred to simply as the IEEE 754 standard) was intro-
duced to bring order to this situation. The standard defines exactly what result
will be produced by a small class of basic operations, even under extreme sit-
uations, ensuring that programmers can obtain identical results from identical
inputs regardless of what machine they are using. Its approach is to require as
much precision as is possible within each supported data format.

Perhaps IEEE754 has too many options, but it is a huge improvement on
the chaos that motivated it; since it became a real international standard in
1985, it has become the basis for all new implementations.

The operations regulated by IEEE754 include every operation that MIP-
S FPAs can do in hardware, plus some that must be emulated by software.
IEEE754 legislates the following:

® Rounding and precision of results: Even results of the simplest operations
may not be representable as finite fractions; for example, in decimals

1
- =0.33333...
3 0.33333

is infinitely recurring and can’t be written precisely. IEEE754 allows the
user to choose between four options: round up, round down, round
toward zero, or round to nearest. The rounded result is what would have
been achieved by computing with infinite precision and then rounding.
This would leave an ambiguity in round to nearest when the infinite-
precision result is exactly halfway between two representable forms; the
rules provide that in this case you should pick the value whose least-
significant bit is zero.

® When is a result exceptional? IEEE754 has its own meaning for the word

“exception.” A computation can produce a result that is

— Nonsense, such as the square root of —1 (“invalid”)

~ “Infinite,” resulting from an explicit or implicit division by zero

— Too big to represent (“overflow™)

— So small that its representation becomes problematic and precision is
lost (“underflow™)

— Not perfectly represented, like 1/3 (“inexact”)—needless to say, for
most purposes the nearest approximation is acceptable

All of these are bundled together and described as exceptional results.

W Action taken when an operation produces an exception result: For each
class of exceptional result listed above the user can choose between the
following;

— The user can have the computation interrupted and the user program
signalled in some OS- and language-dependent manner. Partly be-
cause the standard doesn’t actually define a language binding for user

152 m Chapter 7—Floating-Point Support

7.3

exceptions, they’re pretty much never used. Some Fortran compiler
systems are wired, to cause a fatal error invalid or infinite results.

— Most often, the user program doesn’t want to know about the IEEE

exception. In this case, the standard specifies what value should then
be produced. Overflows and division by zero generate infinity (with
a positive and negative type); invalid operations generate NaN (not
a number) in two flavors called “quiet” and “signalling.” Very small
numbers get a “denormalized” representation that loses precision and
fades gradually into zero.
The standard also defines the result when operations are carried out
on exceptional values. Infinities and NaNs necessarily produce fur-
ther NaNs and infinities, but while a quiet NaN as operand will not
trigger the exception-reporting mechanism, a signalling NaN causes
a new exception whenever it is used.

Most programs leave the IEEE exception reporting off but do rely on the
system producing the correct exceptional values.

How IEEE Floating-Point Numbers Are Stored

IEEE recommends a number of different binary formats for encoding floating-
point numbers, at several different sizes. But all of them have some common
ingenious features, which are built on the experience of implementors in the
early chaotic years.!

The first thing is that the exponent is not stored as a signed binary number,
but biased so that the exponent field is always positive: The exponent value 1
represents the tiniest (most negative) legitimate exponent value; for the 64-bit
IEEE format the exponent field is 11 bits long and can hold numbers from 0
to 2047. The values 0 and 2047 (all ones, in binary) are kept back for special
purposes we'll come to in a moment, so we can represent a range of exponents
from —1022 to +1023.

For a number

mantissa x 26Xponent

we actually store the binary representation of
exponent + 1023

in the exponent field.

1. IEEE754 is a model of how good standardization should be done; a fair period of chaotic exper-
imentation allowed identifiably good practice to evolve, and it was then standardized by a small
committee of strong-minded users (numerical programmers in this case), who well understood
the technology. However, the ecology of standards committees, while a fascinating study, is a bit
off the point.

el e

RN

e R R T e

oy

SRR S e

e R e

7.3.1

7.3.2

7.3 How IEEE Floating-Point Numbers Are Stored ® 153

The biased exponent (together with careful ordering of the fields) has the
useful effect of ensuring that FP comparisons (equality, greater than, less than,
etc.) have the same result as is obtained from comparing two signed integers
composed of the same bits. FP compare operations can therefore be provided
by cheap, fast, and familiar logic.

IEEE Mantissa and Normalization

The IEEE format uses a single sign bit separate from the mantissa (0 for pos-
itive, 1 for negative). So the stored mantissa only has to represent positive
numbers. All properly represented numbers in IEEE format are normalized, so

1 < mantissa < 2

This means that the most significant bit of the mantissa (the single binary digit
before the point) is always a 1, so we don’t actually need to store it. The IEEE
standard calls this the hidden bit.

So now the number 93,000,000, whose normalized representation has a
binary mantissa of 1.01100010110001000101 and a binary exponent of 26, is
represented in IEEE 64-bit format by setting the fields

01100010110001000101000. ..
1049 = 10000011001

mantissafield

exponentfield

Looking at it the other way, a 64-bit IEEE number with an exponent field
of E and a mantissa field of m represents the number num where

num = 1.m x 281023

(provided that you accept that 1.m represents the binary fraction with 1 before
the point and the mantissa field contents after it).

Reserved Exponent Values for Use with Strange Values

The smallest and biggest exponent field values are used to represent otherwise-
illegal quantities.

E == 0 is used to represent zero (with a zero mantissa) and denormal-
ized forms, for numbers too small to represent in the standard form. The
denormalized number with E zero and mantissa m represents num where

num = 0.m x 271022

As denormalized numbers get smaller, precision is progressively lost. No
R3000-series MIPS FPA is able to cope with either generating denormalized
numbers or computing with them, and operations creating or involving them
will be punted to the software exception handler. The R4000 and its successors
can be configured to replace denormalized results by zero and keep going.

154 @ Chapter 7—Floating-Point Support

31 30 23 22 0
' Single Sign| Exponent Mantissa
93000000 0 |0001 1010/101 1000 1011 0001 0001
0 0 |0000 0000/ 000 0000 0000 0000 0000
+|nFinity 0]1111 1111}000 0000 0000 0000 0000
—|nfinify 1 |1111 1111000 0000 0000 0000 0000
QuietNaN | x 1111 1111]0xx XXXX XXXX XXXX XXXX
SignallingNaN | x [1111 1111} 1xx xxxx XxXX XXXX XXXX
High-order word Low-order word
31 30 2019 0|31 0
Double Sign | Exponent Mantissa
93000000 0 |000 0001 1010} 1011 0001 0110 0010 0010 1000 0000
O o |000 0000 0000| 0000 0000 0000 0000 0000 0000
+lnfinity 0 |111 1111 1111i| 0000 0000 0000 0000 0000 0000
—Infinify 1 {111 1111 1111} 0000 0000 0000 0000 0000 0000
QuietNaN | x 111 1111 1111] 0xXXX XXXX XXXX XXXX XXXX XXXX
SignallingNaN | x [111 1111 1111] lxxx XXXX XXXX XXXX XXXX

FIGURE7.1 Floating-point data formats

E==111...1 (ie., the binary representation of 2047 in the 11-bit field used
for an IEEE double) is used to represent the following:

a With the mantissa zero, it is the illegal values +inf, —inf (distinguished
by the usual sign bit).

® With the mantissa nonzero, it is a NaN. For MIPS, the most significant
bit of the mantissa determines whether the NaN is quiet (MS bit 0) or
signalling (MS bit 1).

7.3.3 MIPS FP Data Formats

The MIPS architecture uses two FP formats recommended by IEEE754:

m Single precision: These are fitted into 32 bits of storage. Compilers for
MIPS use single precision for f1oat variables.

® Double precision: These use 64 bits of storage.- C compilers use double
precision for C double types.

e S

7.3 How IEEE Floating-Point Numbers Are Stored ®m 155

The memory and register layout is shown in Figure 7.1, with some examples
of how the data works out. Note that the f1oat representation can’t hold a
number as big as 93,000,000 exactly.

The way that the two words making up a double are ordered in memory
(most-significant bits first, or least-significant bits first) is a configuration op-
tion on a MIPS CPU. It needs to be done consistently with the choice of how in-
tegers are stored in memory, a matter that is also configurable. This endianness
is discussed to the point of exhaustion in Section 11.6.

The C structure definition following defines the fields of the two FP types
for a MIPS CPU (this works on most MIPS CPUs, but note that, in general,
C structure layout is dependent on a particular compiler and not just on the
target CPU):

#if BYTE_ORDER == BIG_ENDIAN

struct ieee754dp_konst {
unsigned sign:1;
unsigned bexp:11;
unsigned manthi:20; /* cannot get 52 bits into */
unsigned mantlo:32; /* a regular C bitfield *x/
}i

struct ieee754sp_konst {
unsigned sign:1;
unsigned bexp:8;
unsigned mant:23;

}:

#else /* little-endian */

struct ieee754dp_konst {
unsigned mantlo:32;
unsigned manthi:20;
unsigned bexp:11;
unsigned sign:1;

}i

struct ieee754sp_konst {
unsigned mant:23;
unsigned bexp:8;
unsigned sign:1;

}i

#endif

156 ®m Chapter 7—Floating-Point Support <

7.4

MIPS Implementation of IEEE754

IEEE754 is quite demanding and sets two major problems. Firstly, building
in the ability to detect exceptional results makes pipelining harder. You might
want to do this to implement the IEEE exception signalling mechanism, but the
deeper reason is to be able to detect certain cases where the hardware cannot
produce the correct result and needs help.

If the user opts to be told when an IEEE exceptional result is produced, then
to be useful this should happen synchronously;! after the trap, the user will
want to see all previous instructions complete and all FP registers still in the
pre-instruction state and will want to be sure that no subsequent instruction
has had any effect.

In the MIPS architecture hardware traps (as noted in Section 5.1 above)
were traditionally like this. This does limit the opportunities for pipelining
FP operations, because you cannot commit the following instruction until the
hardware can be sure that the FP operation will not produce a trap. To avoid
adding to the execution time, an FP operation must decide to trap or not in the
first clock phase after the operands are fetched. For most kinds of exceptional
result, the FPA can guess reliably and stop the pipeline for any calculation that
might trap;? however, if you configure the FPA to signal IEEE inexact excep-
tional results, all FP pipelining is inhibited and everything slows down. You
probably won’t do that. :

The MIPS IV instruction set version introduces (as an implementation op-
tion) a mode switch that relaxes the synchronous trap requirement. The re-
sulting computational model may not be truly IEEE754 compliant but may go
faster. :

The second big problem regarding IEEE754 is the use of exceptional results,
particularly with denormalized numbers—which are legitimate operands.
Chip designs like the MIPS FPA are highly structured pieces of logic, and the ex-
ceptional results don’t fit in well. Where correct operation is beyond the hard-
ware, it traps with an unimplemented operation code in the cause (Exccode)
field. This immediately make an exception handler compulsory for FP applica-
tions.

L. Elsewhere in this manual and in the MIPS documentation you will see exactly this condition
referred to as a “precise exception.” But since both “precise” and “exception” are used to mean
different things by the IEEE standard, we will instead talk about a “synchronous trap.” (Sorry
for any confusion.)

2. Some CPUs may use heuristics for this that sometimes stop the pipeline for an operation that
in the end does not trap; that's only a performance issue and is not important if they don’t do it
often.

7.4.1

7.5

7.5 Floating-Point Registers ® 157

Need for FP Trap Handler and Emulator in All MIPS CPUs

The MIPS architecture does not prescribe exactly what calculations will be per-
formed without software intervention. A complete software floating-point emu-
lator is mandatory for serious FP code.

In practice, the FPA traps only on a very small proportion of the calcula-
tions that your program is likely to produce. Simple uses of floating point are
quite likely never to produce anything that the hardware can’t handle.

A good rule of thumb, which seems to cover the right cases, follows:

= MIPS FPAs take the unimplemented trap whenever an operation should
produce any IEEE exception or exceptional result other than inexact
and overflow. For overflow, the hardware will generate an infinity or a
largest-possible value (depending on the current rounding mode). The
FPA hardware will not accept or produce denormalized numbers
or NaNs.

= MIPS FPAs from the R4000 onward (i.e., those using instruction set
MIPS IIT and after) offer you a non-IEEE optional mode for underflow,
where a denormalized (tiny) result can be automatically written as zero.

The unimplemented trap is a MIPS architecture implementation trick and
is quite different from the IEEE exceptions, which are standardized conditions.
You can run a program and ignore IEEE exceptions, and offending instruc-
tions will produce well-defined exceptional values; but you can’t ignore the
unimplemented trap without producing results that are nonsense.

Floating-Point Registers

MIPS CPUs have 32 floating-point registers, usually referred to as $£0—-4£31.
However, even 32-bit MIPS CPUs support the 64-bit IEEE double-precision
format, hence 32-bit CPUs only do arithmetic in the 16 even-numbered regis-
ters $£0-$£30. In those early CPUs the 16 odd-numbered registers are used to
take care of the high-order bits of a 64-bit double value stored in the preced-
ing even-numbered register.! The odd-numbered registers can be accessed by
move and load/store instructions; however, the assembler provides synthetic
macro instructions for move and load/store double, so you will probably never
see the odd-numbered registers when writing 32-bit-compatible code.

The 64-bit CPUs (MIPS III and above) give you the option of either em-
ulating the MIPS I register organization or of exposing 32 genuine full 64-bit
registers. Bear in mind that this is not a free personal choice; you need to check

1. It may be worth stressing that the role of the odd-numbered registers is not affected by the CPU’s
endianness.

158 m Chapter 7—Floating-Point Support

7.5.1

7.6

TABLE7.1 FP register usage conventions (16 FP registers)

Register Name Use

numbers

$£0,$£2 £v0—£v1i Value returned by function. £v1 is used only for
“complex” data type; it is not available in C.

$£4,8£6, fto-£t3 Temporaries—subroutines can use without

$£8,5£10 saving.

$£12,$£14 fa0-fal Function arguments.
$£16,5£18 ftda—£t5 Temporaries.

$£20,$£22, £s80-£85 Register variables: A function that will write

$£24,$£26, one of these must save the old value and restore

$£28,$£30 it before it exits. The calling routine can rely on
the value being preserved.

what your compiler will support, and the entire system (including all libraries
and other imported code) needs to be consistent in its register usage.

It’s worth pointing out that MIPS FP registers sometimes get used for stor-
ing and manipulating signed integer data (32 or 64 bits); all integer/FP conver-
sion operations operate entirely within the FPA and don’t touch the general-
purpose registers.

Conventional Names and Uses of Floating-Point Registers

Like the general-purpose registers, the MIPS calling conventions add a whole
bunch of rules about register use that have nothing to do with the hardware;
they tell you which FP registers are used for passing arguments, which register
values are expected to be preserved over function calls, and so on. Table 7.1
shows these for a program compiled to run on MIPS I CPUs or later CPUs
with the compatibility bit set. For that reason, there are no odd-numbered
registers in the table. Standards for using all 32 registers were first defined with
SGI’s n32/n64 compiler options and are described in Section 10.8.

The division of functions is much the same as for the integer registers,
without the special cases.

Floating-Point Exceptions/Interrupts

Floating-point exceptions (for reporting IEEE exceptional results, where they’re
enabled, or for the unimplemented operation trap) are reported by a MIPS ex-
ception, as described in Chapter 5. In MIPS I CPUs, where early implementa-
tions had the FPA as a separate chip, the floating-point exception is signalled

A . o st e e

7.7

7.7 Floating-Point Control: The Control/Status Register ® 159

31 25 24 23 22 18 17 6 1211 76 21 (o]
[FCC7-1] Fs [C T 0 [Unlmp] Cause |Enable | Flag | RM |

FIGURE7.2 FPA control/status register fields

using one of the CPU’s interrupt lines. The choice of which interrupt input
to use was a board layout decision, though most programmers followed MIPS
Corporation’s systems and used Int3*.

In later MIPS I CPUs with on-chip floating-point units (such as IDT’s
R3081), the interrupt bit was either chosen arbitrarily by the hardware manu-
facturer or configured through a programmable register. The second was pre-
ferred, because despite MIPS Corporation’s lead and the fact that the choice of
interrupt was wholly arbitrary, DEC systems seem to mostly use the seventh
interrupt bit (corresponding to hardware input Int5*).

One drawback of using the general interrupt mechanism is that the inter-
rupt signal can be masked. Failure to accept an FPA emulation request inter-
rupt will leave the destination register of the unemulated operation contain-
ing whatever was in it before, which is incorrect and erratic behavior. You
can’t even escape the consequences of this by leaving all IEEE signalling dis-
abled: The hardware will still attempt to trap on some operation/operand
combinations that fall outside its limits.

So long as the appropriate interrupt is not disabled, a floating-point excep-
tion will happen (on a MIPS I CPU) immediately: No P or integer operation
following the FP instruction that caused the exception will have had any effect.
At this point EPC will point to the correct place to restart the instruction. As
described in Chapter 5 above, Epc will either point to the offending instruc-
tion or to a branch instruction immediately preceding it. If it is the branch
instruction, the BD bit will be set in the CPU status register SR.

In MIPS III CPUs, the FPA gets a dedicated exception cause and there’s
much less trouble.

Floating-Point Control: The Control/Status Register

The floating-point control/status register (Figure 7.2) is coprocessor 1, control
register 31 (mnemonic FCR31) and is accessed by mtc1, mfc1 instructions. In
accordance with MIPS coprocessor rules, those transfer data between FCR31
and general-purpose registers. ‘

The following are notes regarding Figure 7.2. The field marked 0 will read,
and should be written, as zero.

160 ® Chapter7—Floating-Point Support

TABLE7.2 Rounding modes encoded in FP control/status register

RMvalue Description

0 RN (round to nearest): Round a result to the nearest
representable value; if the result is exactly halfway between
two representable values, round to zero.

1 RZ (round toward zero): Round a result to the closest
representable value whose absolute value is less than or
equal to the infinitely accurate result.

2 RP (round up, or toward +infinity): Round a result to the
next representable value up.

3 RN (round down, or toward —infinity): Round a result to
the next representable value down.

® FCC7-1, C: These are condition bits, set by FP compare instructions and
tested by conditional branches. The 7 additional bits called FCC7-1 are
a 1995 invention, present only in ISA version MIPS IV and higher.
Note that here, as elsewhere, the floating-point implementation cuts
across the RISC principles we talked about in Chapter 1. There are a
number of reasons for this:

~ The original FPA was a separate chip. The conditional branches that
tested FP conditions had to execute inside the integer unit (it was
responsible for finding the address of the branch target), so they were
remote from the FP registers. A single condition bit corresponds to a
single hardware signal.

~ FP operations are just too computationally demanding to be carried
out in one clock cycle, so a pure and simple pipeline didn’t deliver
the best performance.

MIPS IV branch or set instructions have an additional 3-bit field that
specifies which of 8 possible condition bits they will set or test. That field
was reserved in previous ISA versions, and all good assemblers made
sure it was zero—so this should still be backward compatible.

™ FS (flush to zero): This causes a result that is too small for the stan-
dard representation (a denormalized result) to be quietly replaced with
zero. This is not IEEE compatible, but it makes it much more plausible
that you can run code wiihout depending on an FP trap handler and
emulator.

® RM (rounding mode): This is required by IEEE754. The values are as
shown in Table 7.2.

Most systems define RN as the default behavior. You’ll probably never
use anything else.

£ ool s e

bt SRR

s

7.7 Floating-Point Contr«l: The Control/Status Register ® 161

® UnImp: Following an FPA trap, this bit will be set to mark an unimple-
mented instruction exception.'
This bit will be set and an interrupt raised whenever there really is no
instruction like this that the FPA will perform (but the instruction is a
coprocessor 1 encoding) or the FPA is not confident that it can produce
an IEEE754-correct result and/or exception signalling on this operation,
using these operands.
For whatever reason, when Unlmp is set you should arrange for the
offending instruction to be re-executed by a software emulator.
If you run FP operations without the interrupt enabled, then any FPA
operation that wants to take an exception will leave the destination reg-
ister unaffected and the FP Cause bits undefined.

= Causes/Enables/Flags: Each of these is a 5-bit field, one bit for gach IEEE
gxception type:

Bit4 Invalid operation

Bit 3 Division by zero

Bit2 Overflow

Bit1 Underflow

Bit 0 Inexact

The three different fields work as follows:

— Cause: Bits are set (by hardware or emulation software) according to
the result of the last completed FP instruction.

— Flag: Bits are “sticky” versions of the FCR31 (Cause) bits and are
the logical “or” of the exceptional results that have occurred since the
register was last cleared. The Flag bits can only be zeroed again by
writing FCR31.

— Enable: If one of these bits is set when an operation produces an ex-
ceptional result that would have set the corresponding FCR31
(cause) bit, then the CPU will trap so that software can do whatever
is necessary to report the exceptional result.

The architecture promises you that if an operation doesn’t set the FCR31
(unImp) bit but does set one of the FCR31 (Cause) bits, then both the Cause
bit setting and the result produced (if the corresponding FCR31 (Enable) bit
is off) are in accordance with the IEEE754 standard.

MIPS FPAs rely on software emulation (i.e., use the unimplemented trap)
for several purposes: '

® Any operation that is given a denormalized operand or underflows (pro-
duces a denormalized result) will trap to the emulator. The emulator

1. The MIPS documentation looks slightly different because it treats this as part of the Cause field.

162 ® Chapter 7—Floating-Point Support

7.8

31 1615 : 87
[0 [Imp | Rev

L _Jo

FIGURE 7.3 FPA implementation/revision register

itself must test whether the enable underflow bit is set and either cause
an [EEE-compliant exception or produce the correct result.

= Operations that should produce the invalid trap are correctly identified,
so if the IEEE exception is enabled the emulator need do nothing. But
if the IEEE invalid exception is disabled, the software emulator is in-
voked because the hardware is unable to generate the appropriate result
(usually a quiet NaN).

Exactly the same is done with a signalling NaN operand.

= FP hardware can handle overflow on regular arithmetic (producing
cither the extreme finite value or a signed infinity, depending on the
rounding mode). But the software emulator is needed to implement a
convert-to-integer operation that overflows.

The Cause bits are undefined after an unimplemented operation traps to
the emulator.

It is normal practice to provide a full emulator (capable of delivering IEEE-
compatible arithmetic on a CPU with no FPA fitted) to back up the FPA hard-
ware. If your system provides less than this, it is hard to figure out where it’s
safe to leave functions out.

Floating-Point Implementation/Revision Register

This read-only register’s fields are shown in Figure 7.3

This register is coprocessor 1, control register 0 (mnemonic FCRO) and is
accessed by mtc1 and mfe1 instructions.

The FCRO (xImp) field is probably more useful than the corresponding one
for the main CPU. It will return one of the values listed in Table 7.3 (unless
your CPU is newer than those discussed in this book), but note that zero means
there’s no FPA. The entries called “CPU” in Table 7.3 are for integrated CPUs
and mostly have the same ID value as the CPU has in its PRTA (Imp) field—but
that’s a helpful convention rather than a guarantee.

Reading this register is the recommended way of sensing the presence of
an FPA. You have to enable coprocessor 1 instructions before you try it. A
skeptical programmer will be ready to get an exception, or garbage returned,
and will probe further.

7.9

7.9 Guide to FP Instructions ® 163

TABLE 7.3 MIPS FP accelerator ID codes from FCRO

Hardware type Imp value
No FPA hardware 0o - '
R2360 (R2000 accelerator board) 1
R2010 (R2000 FPA chip) 2
R3010 (R3000 FPA chip) 3
R6010 (R6000 FPA chip) 4
R4000 CPU 5

LSI LR3xxox CPU 6
R10000 CPU 9
Vr4200 CPU 10
R8000 chip set 16
R4600 . 32
Sony R3xxx CPU 33
Toshiba R3xox CPU 34
R5000 CPU 35
QED RM5230/5260 CPU 40

The Rev field is for use at the whim of implementors; it is probably useful
to make this field visible to commissioning or test engineers, and it may have
some meaning defined by your component supplier.

Guide to FP Instructions

This section gives a summary of FP instructions by function. FP instructions
are listed in mnemonic order in Table 8.4.
We've divided the instructions up into the following categories:

= Load/store: Moving data directly between FP registers and memory.

8 Move between registers: Data movement between FP and general-purpose
registers.

® Three-operand arithmetic operations: The regular add, multiply, etc.

® Multiply-add operations: Fancy (and distinctly non-RISC) high-
performance instructions, introduced with the MIPS IV ISA. (If you
think this is complicated, just wait for MIPS V... .)

164 ® Chapter 7—Floating-Point Support

Sign changing: Simple operations, separated out because their dumb
implementation means no IEEE exceptions.

Conversion operations: Conversion between single, double, and integer
values.

Conditional branch and test instructions: Where the FP unit meets the
integer pipeline again.

79.1 Load/Store

These operations load or store 32 or 64 bits of memory in or out of an FP
register.' On loads and stores, note the following points:

The data is unconverted and uninspected, so no exception will occur
even if it does not represent a valid FP value.

These operations can specify the odd-numbered FP registers; on the
32-bit CPUs this is required to load the second half of 64-bit (double-
precision) floating-point values. For the 32-bit CPUs, these data move-
ments are the only instructions that ever access odd-numbered registers.

The load operation has a delay of one clock cycle, and (like loading to
an integer register) this is not interlocked before MIPS III. The compiler
and/or assembler will usually take care of this for you, but it is invalid
for an FP load to be immediately followed by an instruction using the
loaded value.

When writing assembler, the synthetic instructions are preferred; they
can be used for all CPUs, and the assembler will use multiple instruc-
tions for CPUs that don’t implement the machine instruction. You can
feed them any addressing mode that the assembler can understand (as
described in Section 9.4 below).

The address for an FP load/store operation must be aligned to the size
of the object being loaded—on a 4-byte boundary for single-precision
or word values or an 8-byte boundary for double-precision or 64-bit

integer type.

Machine instructions (disp is signed 16 bit):

lwel fd, disp(rs) fd = *(rs + disp);
swcl fs, disp(rs) *(rs + disp) = f4;

From MIPS III ISA onward we get 64-bit loads/stores:

1. The 64-bit loads appear only from the MIPS III ISA and R4000 CPU forward.

7.9.2

7.9 Guide to FP Instructions ®m 165

ldcl £d, disp(rs) fd = (double)*(rs + disp);
sdcl fd, disp(rs) *(rs + disp) = (dQouble)fd;

From MIPS IV ISA onward we get indexed addressing, with two registers:

lwxcl £d4, ri(rs) fd = *(rs + ri);
swxcl fs, ri(rs) *(rs + ri) = fd;
ldxcl fd, ri(rs) fd = (double)*(rs + ri);
sdxcl £d, ri(rs) *(rs + ri) = (double)fd;

But in fact you don’t have to remember any of these when you’re writing
assembler. Instead, “addr” can be any address mode the assembler understands:

1.4 £fd, addr fd = (double) *addr;
l.s £d, addr fd = (float)*addr;
8.4 fs, addr (double) *addr = fs;
8.8 fs, addr (float) *addr = fs;

The assembler will generate the appropriate instructions, including allow-
ing a choice of valid address modes. Double-precision loads on a 32-bit CPU
will assemble to two load instructions.

Move between Registers

No data conversion is done here (bit patterns are copied as is) and no exception
results from any value. These instructions can specify the odd-numbered FP
registers:

Between integer and FP registers:

mtel rg, f£d4d fd = rs; /* 32b uninterpreted */
mfcl rd, fs rs = fd;
dmtcl rs, fd fd = (long long) rs; /* 64 bits */

dmfcl rs, f£fd rs = (long long) fd;
Between FP registers:
mov.d fd, fs fd = fs;
/* move 64b between register pairs */
mov.s fd,fs fd = £s; /* 32b between registers */

Conditional moves (added in MIPS IV)—the .s versions are omitted to
save space:

movt.d fd, fs, cc if (fpcondition(cc)) fd = fs;

166 m Chapter 7—Floating-Point Support

7.9.3

7.9.4

movf.d f£d4,fs,cc if (!fpcondition(cc)) fd = fs;
movz.d fd, fs,rt if (rt == 0) fd = fs;

/* rt is an integer register */
movn.d f£d4, fs,rt if (rt !'= 0) £4 = fs;

The FP condition code called fpcondition (cc) is a hard-to-avoid for-
ward reference; you’ll see more in Section 7.9.7. If you want to know why
conditional move instructions are useful, see Section 8.4.3.

Three-Operand Arithmetic Operations

Note the following points:

= All arithmetic operations can cause any IEEE exception type and may
result in an unimplemented trap if the hardware is not happy with the
operands.

u Al these instructions come in single-precision (32-bit, C f1oat) and
double-precision (64-bit, C double) versions; the instructions are dis-
tinguished by “. s” or “.d” on the op-code. We'll only show the double-
precision version. Note that you can’t mix formats; both source values
and the result will all be either single or double. To mix singles and
doubles you need to use explicit conversion operations. -

In all ISA versions:
add.d f£4, fsl1,fs2 fd = fsl1 + fs2;
div.d fd,fsl, fs2 fd = fs1 / £s2;
mul.d fd, fsl,fs2 fd = fsl x £s2;
sub.d fd,fsl, fs2 fd = fsl1 - £s2;
Added in MIPS II:
sqrt.d fd,fs fd = squarerootof(fs);
Added in MIPS IV for speed, and not IEEE accurate:
recip.d fd, fs fd = 1/fs;
raqgqrt.d f£d, fs fd = 1/ (squarerootof(fs));

Multiply-Add Operations

These appeared in the MIPS IV version of the ISA, in response to Silicon
Graphics’s interest in achieving supercomputer-like performance in very high-
end graphics systems (related to the 1995 SGI acquisition of Cray Research,
Inc.). IBM’s PowerPC chips seemed to get lots of FP performance out of their
multiply-add, too. Although it’s against RISC principles to have a single in-
struction doing two jobs, a combined multiply-add is widely used in common
repetitive FP operations (typically the manipulation of matrices or vectors).

7.9.5

7.9.6

7.9 Guide to FP Instructions ®m 167

Moreover, it saves a significant amount of time by avoiding the intermedi-
ate rounding and renormalization step that IEEE mandates when a result gets
written back into a register.

Multiply-add comes in various forms, all of which take three register oper-
ands and an independent result register:

madd.d fd, fsl, fs2, fs3 fd = £s2 x fs3 + fsl;
msub.d fd, fsl, fs2, fs3 fd = fs2 x fs3 - fsi;
nmadd.d fd, fsl, fs2, fs3 fd = -(fs2 x fs3 + fsl);
nmsub.d fd, fsl, fs2, fs3 fd = -(fs2 x fs3 - fsl);

IEEE754 does not rule specifically for multiply-add operations, but to con-
form to the standard the result produced should be identical to that coming
out of a two-instruction multiply-then-add sequence. Since every FP opera-
tion may involve some rounding, this means that IEEE754 mandates somewhat
poorer precision for multiply-add than could be achieved. The MIPS R8000
supercomputer chip set falls into this trap, and its multiply-add instructions
do not meet (but exceed) the accuracy prescribed by IEEE. The R10000 and all
subsequent implementations are IEEE compatible.

Unary (Sign-Changing) Operations

Although nominally arithmetic functions, these operations only change the
sign bit and so can’t produce most IEEE exceptions. They can produce an
invalid trap if fed with a signalling NaN value. They are as follows:

abs.d fd, fs fda abs(fs)
neg.d £d, fs fd = -fs

]

Conversion Operations

Note that “convert from single to double” is written “cvt .d.s”—and as usual
the destination register is specified first. Conversion operators work between
data in the FP registers: When converting data from CPU integer registers, the
move from FP to CPU registers must be coded separately from the conversion
operation. Conversion operations can result in any IEEE exception that makes
sense in the context. 7

Originally, all this was done by the one family of instructions

cvt.x.y £fd, fs

where xand y specify the destination and source format, respectively, as one of
the following:

168 ® Chapter 7—Floating-Point Support

7.9.7

s C float, IEEE single, 32-bit floating point
d C double, IEEE double, 64-bit floating point
w C int, “word,” 32-bit integer

1 C long long, “long,” 64-bit integer (available in MIPS III and higher
CPUs only)

The instructions are as follows:

cvt.s.d fd, £8 /* double fs -> float, leave in fd */
cvt.w.s fd, f8 /* float fs -> int, leave in fd */
cvt.d.1l fd, £fs /* long long fs -> double, leave in fd */

There’s more than one reasonable way of converting from floating-point to
integer formats, and the result depends on the current rounding mode (as set
up in the FCR31 register, described in Section 7.7). But FP calculations quite
often want to round to the integer explicitly (for example, the ceiling operator
rounds upward), and it’s a nuisance trying to generate code to modify and
restore FCR31. So at MIPS II, explicit rounding conversions were introduced.

Conversions to integer with explicit rounding;:

round.x.y fd, fs /* round to nearest */
trunc.x.y fd, fs /* round toward zero */
cell.x.y £d4, fs /* round up */
floor.x.y fd, fs /* round down */

These instructions are only valid with x representing an integer format.

Conditional Branch and Test Instructions

The FP branch and test instructions are separate. We’ll discuss the test instruc-
tions below—they have names like c.1e.s, and they compare two FP values
and set the FPA condition bit accordingly.

The branch instructions, therefore, just have to test whether the condition
bit is true (set) or false (zero):

beclt label if (fpcondition({0)) branch-to-label;

beclt cc, label if (fpcondition(cc)) branch-to-label;
bclf 0, label if (!fpcondition(0)) branch-to-label;
belf cc, label if (!fpcondition(cc)) branch-to-label;

Instructions added by MIPS II (see Section 8.4.4):

becltl label ./* branch-likely form of bclt ... */
bclfl label

7.9 Guide to FP Instruétions m 169

Like the CPU’s other instructions called branch, the target 1abel is en-
coded as a 16-bit signed word displacement from the next instruction plus one
(pipelining works in strange ways). If 1abel was more than 128KB away, you'd
be in trouble and you would have to resort to a §r instruction.

MIPS CPUs up to and including MIPS III had only one FP condition bit,
called “C,” in the FP control/status register FCR31. In MIPS IV there are 7 extra
condition bits, called FCC7-1. If you leave the ce specification out of branch
or compare instructions, you implicitly pick the old “C” bit, which has the
honorary title of FCC0. That’s compatible with older instruction set versions.
(See Section 8.4.7 if you're interested in why this extension was introduced.) In
all the instruction sets, cc is optional.

But before you can branch, you have to set the condition bit appropriately.
The comparison operators are as follows:

c.cond.d f£sl,fs2 /* compare fsl and fs2 and set C */
c.cond.d cc, fsl,fs2 /* compare fsl and fs2; set FCC(cc) */

In these instructions, cond can be a mnemonic for any of 16 conditions.
The mnemonic is sometimes meaningful (eq) and sometimes more mysterious
(ult). Why so many? It turns out that when you’re comparing FP values there
are four mutually incompatible outcomes:

fs1l < fs2

fsl == fs2

fs1 > fs2

unordered (fsl, fs2)

The IEEE standard sometimes defines unordered as true when either of the
operands is an IEEE NaN value.

It turns out we can always synthesize greater than by reversing the order of
the operands or by setting up a less than or equal to and inverting the test, so
we've got three outcomes to allow for. MIPS provides instructions to test for
any “or” combination of the three conditions. On top of that, each test comes
in two flavors, one that takes an invalid trap if the operands are unordered and
one that never takes such a trap.

We don’t have to provide tests for conditions like not equal; we test for
equal but then use a be1£ rather than a be1t branch. Table 7.4 may help.

The compare instruction produces its result too late for the branch instruc-
tion to be the immediately following instruction; thus a delay slot is required.
In MIPS IV and later CPUs the delay is enforced with an interlock, but in earlier
CPUs the branch instruction will misfire if run directly after the test.

170 ®m Chapter 7—Floating-Point Support

TABLE 7.4 FP test instructions
“C” bit is set if...

{ .
Mnemonic

Notrap Trap

always false £ sf
unordered(fs1,fs2) un ngle
fs1 == fs2 eq seq
fsl==fs2 || unordered(fsl,fs2) ueq ngl
fs1 < fs2 olt 1t
fs1 < fs2 i unordered(fs1,fs2) ult nge
fs1 <fs2 || fsl==fs2 ole le
fs1 <fs2 || fsl==fs2 || wunordered(fsl,fs2) ule ngt

Note the following examples:

if (f0 <= f£2) goto foo; /* and don’'t branch if unordered */
c.le.d $£f0, $£2
nop # the assembler will do this for you
belt foo
if (f0 > £f2) goto foo; /* and trap if unordered */
c.ole.d $£0, $f£2 -

nop # the assembler will do this for you
beclf foo

Fortunately, you usually leave the compiler to cope with this!

7.10 Instruction Timing Requirements

Normal FP arithmetic instructions are interlocked, and there is no need to in-
terpose nops or to reorganize code for correctness. But to get the best per-
formance the compiler should lay out FP instructions to make the best use of
overlapped execution of integer instructions and of the FP pipeline.

However, the compiler, the assembler, or (in the end) the programmer must
take care about the timing of the following:

7.11 Instruction Timing for Speed ®W 171

® Operations on the FP control and status register: When altering FCR31
take care with the pipeline. Its fields can affect any FP operation, which
may be running in parallel. Make sure that at the point you write PCR31
there are no FP operations live (started, but whose results have not yet
been collected). The register is probably written late, too, so it’s wise to
allow one or two instructions to separate the ctel rd, FCR31 from
an affected computational instruction.

® Moves between FP and general-purpose registers: These complete late,
and the resulting value cannot be used in the following instruction.
On moves to FP registers (and on all kinds of moves in MIPS IiI and
subsequent CPUs), this is interlocked.

®= FP register loads: Like integer loads, these take effect late. The value can’t
be used in the following instruction.

= Test condition and branch: The test of the FP condition bit using the
belt, belf instructions must be carefully coded, because the condi-
tion bit is tested a clock cycle earlier than you might expect. So the
conditional branch cannot immediately follow a test instruction.

7.11 Instruction Timing for Speed

All MIPS FPAs take more than one clock cycle for most arithmetic instructions,
hence the pipelining becomes visible. The pipeline can show up in three ways:

® Hazards: These occur where the software must ensure the separation of
instructions to work correctly.

® Interlocks: These occur where the hardware will protect you by delaying
use of an operand until it is ready. Knowledgeable rearrangement of the
code will improve performance.

® Visible pipelining: This occurs where the hardware is prepared to start
one operation before another has completed (provided there are no data
dependencies). Compilers, and determined assembler programmers,
can write code that works the hardware to the limit by keeping the pipe-
line full.

Hazards and interlocks arise when instructions fail to stick to the general
MIPS rule of taking exactly one clock period between needing operands and
making results ready. Some instructions either need operands earlier (branches,
particularly), or produce results late (you’ve already met this in loads).

172 m Chapter 7—Floating-Point Support

7.12

7.13

Initialization and Enabling on Demand

From reset you will normally have initialized the CPU’s SR register to disable
all optional coprocessors, which includes the FPA (coprocessor 1). The SR bit
CUT has to be set for the FPA to work. For MIPS III and subsequent FPAs, you
can either use the registers in pairs (for MIPS I compatibility) or as 32 separate
64-bit registers.

You should read the FPA implementation register; if it reads zero, no FP is
fitted and you should run the system with CU1 off.

Once CU1 is switched on you should set up the control/status register
FCR31 with your choice of rounding modes and trap enables. Anything except
round to nearest and all traps disabled is uncommon. With MIPS III CPUs
there’s also the choice of setting the FS bit to cause very small results to be re-
turned as zero, saving a trap to the emulator. This is not IEEE compatible, but
the hardware can’t produce the specified denormalized result.

Once the FPA is operating, you need to ensure that the FP registers are saved
and restored during interrupts and context switches. Since this is (relatively)
time consuming, you can optimize this, as some UNIX systems do, by doing
the following:

® Leave the FPA disabled by default when running a new task. Since the
task cannot now access the FPA, you don’t have to save and restore
registers when scheduling or parking it.

® Ona CUl-unusable trap, mark the task as an FP user and enable the FP
before returning to it.

= Disable FP operations while in the kernel or in any software called di-
rectly or indirectly from an interrupt routine. Then you can avoid saving
FP registers on an interrupt; instead, FP registers need to be saved only
when you are context-switching to or from an FP-using task.

Floating-Point Emulation

Some low-cost MIPS CPUs (including all ASIC cores to date) do not have a
hardware FPA. Floating-point functions for these processors are provided by
software and are perhaps 50-300 times slower than the hardware. Software
FP is useful for systems where floating point is employed in some rarely used
routines.

There are two approaches, as follows:

= Soft float: Some compilers can be requested to implement floating-point
operations with software. FP arithmetic operations are likely to be im-

7.13 Floating-Point Emulation m 173

plemented with a hidden library function, but housekeeping tasks such
as moves, loads, and stores can be handled in line.

® Run-time emulation: The compiler can produce the regular FP instruc-
tion set. The CPU will then take a trap on each FP instruction that is
caught by the FP emulator. The emulator decodes the instruction and
performs the requested operation in software. Part of the emulator’s job
will be emulating the FP register set in memory.

As described here, a run-time emulator is also required to back up FP hard-
ware for very small operands or obscure operations; since the architecture is de-
liberately vague about the limits of the hardware’s responsibility, the emulator
is usually complete. However, it will be written to ensure exact IEEE compati-
bility and is only expected to be called occasionally, so it will probably be coded
for correctness rather than speed.

Compiled-in floating point is much more efficient; the emulator has a high
overhead on each instruction from the trap handler, instruction decoder, and
emulated register file.

Some compilers don’t offer soft float operation: The history of the MIPS
architecture is in workstations where FP hardware was mandatory.

Chapter

Complete Guide to the
MIPS Instruction Set

Chapter 8 and Chapter 9 are written for the programmer who wants to un-
derstand or generate assembly code (whether in person or indirectly be-
cause you're writing or fixing a compiler). While Chapter 9 discusses real as-
sembler language programming, this chapter only concerns itself with assem-
bler language instructions; broadly speaking, you can skip Chapter 9 if you only
want to read disassembly listings. We begin with a simple piece of MIPS code
and an overview.

8.1 A Simple Example

This is an implementation of the C library function strcmp (1), which com-
pares two character strings and returns zero on equal, a positive value if the
first string is greater (in string order) than the second, and a negative value
otherwise. Here’s a naive C algorithm:

int strcmp (char *strl, char *str2)
{

char cl1, c2;

do {
cl = *strl++;
C2 = *Str2++;

} while (cl != 0 && c2 != 0 && cl == c2);

return cl - c2; /* cunning: 0, +ve or -ve appropriately */

175

176 m Chapter 8—Complete Guide to the MIPS Instruction Set

In assembler code the two arguments of the C function arrive in the reg-
isters called a0 and al. (See Table 2.1 if you've forgotten about the naming
conventions for registers; the MIPS standard calling convention is described
in detail in Section 10.1). A simple subroutine like this one is free to use the
temporary registers t0 and so on without saving and restoring their values,
so they’re the obvious choices for temporaries. The function returns a value,
which by convention needs to be in the register v0 at the time we return. So
let’s have a go at it

strcmp:

1:
lbu t0, 0(ao0)
addu a0, a0, 1
1bu tl, 0(al)

addu al, al, 1

beq t0, zero, .to01l # end of first string?
beq tl, zero, .t01 # end of second string?
beq t2, ti1, 1b

.t01l:
subu v0, to, tl
3 ra

We will examine it from the top:

s Labels: “strcmp” is a familiar named label, which in assembler can define
a function entry point, an intermediate branch, or even a data storage
location.

“t01” is a legitimate label; the full-stop “” character is legal in labels and
must not be confused with a C name elsewhere in your program.

“1.” is a numeric label, which most assemblers will accept as a local
label. You can have as many labels called “1” as you like in a program;
“1f” refers to the next one in sequence and “1b” the previous one. This
is useful.

m Register names: The unadorned names shown here are common usage,
but they require that the assembly code be passed through some kind
of macroprocessor before getting to the real MIPS assembler: Typically,
the C preprocessor is used and most toolkits have ways to make this
straightforward.

It would hardly be worth writing such a function in assembler as this; the
compiler will probably do a better job. But we’ll see later (Section 9.1) how
much more clever we could have been.

8.2

o

8.2 Assembler Mnemonics and What TheyMean m 177

Assembler Mnemonics and What They Mean

This section consists of a long list of all legal mnemonics in most MIPS as-
semblers up to and including MIPS IV instructions. After some agonizing
and experimentation, I decided that this table should contain a mixture of real
machine operations and the assembler’s synthesized instructions. So for each
instruction we'll list the following:

» Assembler format: How the instruction is written.

® Machine instructions generated: For assembler instructions that are
aliases for machine code or expanded into a sequence of machine in-
structions, we’ll put a “—” to show a macro expansion and list typical
instructions in an expansion.

® Function: A description of what the instruction does, in pseudo-C code,
which is meant to combine precision with brevity. C typecasts, where
used, are necessary.

Not every possible combination of instruction and operands is listed, be-
cause it gets too long. So we won’t list the following;

= Two-operand forms of three-operand instructions: For example, MIPS
assemblers allow you to write

addu $1, $2 # 61 =31 + $2
which would otherwise have to be written as:

addu $1, $1, $2
You can do that pretty much anywhere it makes sense.

& All possible load/store address formats (addr): MIPS machine instructions
always generate addresses for load/store operations using just the con-
tents of a register plus a 16-bit signed displacement,’ written, for ex-
ample, 1w $1, 14($2). MIPS assemblers support quite a few other
addressing mode formats; notably 1w $1, thing, which loads data
from the location whose assembler code label (or external C name) is
“thing” See Section 9.4 for details; note that all of these modes are qui-
etly available to any assembler instruction that specifies a memory ad-
dress. We'll just write 1w ¢, addr for the assembler instruction and
the base+displacement format for the machine code.

1. Someone always has to break things; the MIPS IV ISA adds register+register address formats but

only for load/stores with floating-point registers. This is done in deference to the importance of
multidimensional-array organizations in floating-point codes.

178 ® Chapter —Complete Guide to the MIPS Instruction Set

The 1a (load address) instruction provided by the assembler uses the
same addressing-mode syntax, even though it loads or sto.es nothing—
it just generates the address value in the destination register.

When synthesizing some address formats (particularly on stores) the
assembler needs a scratch register and quietly uses at. Programmers
working at a very low level need to take care.

® Immediate versions of instructions: A constant value embedded within an
instruction is, by ancient convention, called an immediate value. MIPS
CPUs offer some real hardware instructions supporting immediates of
up to 16 bits in size;' however, the assembler allows you to specify a
constant source operand (always as the last operand) for any instruc-
tion. You'll see the immediate forms when we'’re discussing machine
instructions (Table 8.6, for example) and in disassembly listings.
Moreover, in assembly language you're not limited to 16 bits; if you write
an arbitrary constant, the assembler will synthesize away, as described in
Section 9.3.2.

Once again, the assembler may need to use the temporary register at for
some complicated cases.

8.2.1 U and Non-U Mnemonics

Before we get started, there’s a particularly confusing thing about the way in-
struction mnemonics are written. A “u” suffix on the assembler mnemonic is
usually read as “unsigned.” But that’s not always what it means (at least, not
without a big stretch of your powers of imagination). There are a number of

«_ »

subtly different meanings for a “u” suffix, depending on context:

® Overflow trap vs. no trap: In most arithmetic operations U denotes “no
overflow test” Unsuffixed arithmetic operations like add cause a CPU
exception if the result overflows into bit 31 (the sign bit when we'’re
thinking of integers as signed). The suffixed variant addu produces ex-
actly the same result for all combinations of operands but never takes an
exception. If you're dealing with unsigned numbers, the overflow test is
certainly unwelcome; however, if you’re writing C, C++, and assembler
the overflow test is probably unwelcome anyway, and you are unlikely to
ever generate anything but the suffixed versions.

® Set if: The universal test operations s1t (set if less than) and s1tu (set
if less than, unsigned) have to produce genuinely different results when
confronted by operands, one of which has the top bit set and the other
doesn’t.

1. These are recognized by the assembler as real instructions, so you can write them if you like; but
probably only compilers generating assembler intermediate code should ever do so.

8.2.2

8.2 Assembler Mnemonics and What They Mean m 179

® Multiply and divide: Integer multiply operations produce a result with
twice the precision of the operands, and that means that they need to
produce genuinely different results for signed and unsigned inputs:
hence there are two instructions mult and multu. Note that the low
part of the result, left in the 1o register, will be the same for both the
signed and the unsigned version; it’s the way that overflows into hi are
handled that differs.
Integer divide instructions are also sign dependent (think about dividing
OXFFFFFFFE by 2), so there’s a d1v and a divu. The same variation
exists for shift right instructions (shift right by one is really just divide
by two), but this was obviously a U too far; the shift instructions are
called sxa (shift right arithmetic, suitable for signed numbers) and sr1
(shift right logical). The world is indeed a wonderful place.

® Partial-register loads: Loads of less-than-register-size chunks of data
must decide what to do with the excess bits in the register. For the un-
signed instructions such as 1bu, the byte value is loaded into the register
and the remaining bits are cleared to zero (we say that the value has been
zero-extended). If the byte value represented a signed number, its top bit
would tell us if it was negative. In this case we’ll translate to the cor-
responding register-sized representation by filling the remaining bits of
the register with copies of the sign bit, using the instruction 1b. That's
called sign-extending.

Divide Mnemonics

We’ve mentioned earlier that in machine code for integer multiply and divide
there are separate initiation and result-collecting instructions. The assembler
likes to cover this up, generating macro expansions for a three-operand format
and doing a divide-by-zero check at the same time. This would be OK except
that unfortunately the assembler macro name for divide is div, which is also
the name for the basic machine code instruction. That means there’s no way
to write a machine code divide instruction in assembler; this is kludged by
defining that a three-operand assembler divide with zero as the destination
should just produce the machine start-divide operation and nothing else.

For reasons of consistency the assembler multiply instruction mnemonic
mul behaves similarly—even though there’s a distinct mnemonic mult for the
machine code in this case.

Some toolchains have offered a better way out of this mess, by defining
new mnemonics diva (divide direct) to mean just the hardware operation
and divo (divide with overflow check) for the complicated macro. This didn’t
catch on, but you may see it in some codes.

180 m Chapter 8—Complete Guide to the MIPS Instruction Set

8.2.3 Inventory of Instructions

In the assembler descriptions we use the conventions given in Table 8.1. Ta-
ble 8.2 gives a full inventory of the instruction descriptions in mnemonic order.

TABLE 8.1 Conventions used in instruction tables

'

Word Used for

8t CPU registers used as operands.

d CPU register that receives the result.

7 “Immediate” constant.

label The name of an entry point in the instruction stream.

offs The 16-bit PC-relative word offset representing the distance in
instructions to a label.

addr One of a number of different legitimate data address expressions
usable when writing load/store (or load address) instructions in
assembler. (See Section 9.4 for a description of how the assembler
implements the various options.)

at The assembler temporary register, which is really $1.

zero This register, $0, always contains a zero value.

ra The return address register $31.

hilo The double-precision integer multiply result formed by concatenating
hi and 1o. Each of hi and 10 holds the same number of bits as a
machine register, so hilo can hold a 64-bit integer on a 32-bit
machine and a 128-bit result on a 64-bit machine. '

MAXNEG32BIT The most negative number representable in twos complement

MAXNEG64BIT arithmetic, 32- and 64-bit, respectively. It’s a feature of twos
complement numbers that the positive number —MAXNEG32BIT is
not representable in 32 bits.

ed Coprocessor register that is written by instruction.

cs Coprocessor register that is read by instruction.

exception(CAUSE, code)
exception(CAUSE)

Take a CPU trap; CAUSE determines the setting of the

Cause (ExcCode) register field. “code” is a value not interpreted by
the hardware, but rather one encoded in a don’t-care field of the
instruction, where system software can find it by reading the
instruction. Not every such instruction sets a “code” value, so
sometimnes we’ll leave it out.

const31..16

Denotes the number obtained by just using bits 31 through 16 of the
binary number “const.” The MIPS books use a similar convention.

8.2 Assembler Mnemonics and What They Mean m 181

TABLES8.2 Assembler instructions in alphabetical order

Assembler/machine code Description

abs d,8 — d=s<0? -s: s;
sra at,s,31
xor 4, s,at

sub d,d,at
add d,s,7 — d = s + (signed)j; /* trap on overflow, rare */
addi d4,s, 7
add d,s, t d =s + t; /* trap on overflow, rare */
addciu ¢t,r, 9 /* LSI MiniRISC only - "add with circular mask
immediate, " an instruction for computing circular
buffer index values. CMASK is a special
coprocessor 0 register, which holds a number
between 0 and 15. */
t = ((unsigned)r + (unsigned)j) % (2**CMASK) ;
addu d,s,7 — d = s + (signed)j;
addiu d, s, 7 /* more complex unless -32768 < J < 32768 */
addu 4,5, t d =g + t;
and d,s8,7 — d = s & (unsigned) j; /* more complex unless 0 <
andi d,s,7 J < 65535 */
and d,s,t d =35 & t;
b label — goto label;
beq zero,zero,offs
bal label — Function call (limited range but PC-relative addressing). Note that the
bgezal zero,offs return address that is left in ra is that of the next instruction but one: The

next instruction in memory order is in the branch delay slot and gets
executed before the function is invoked.

bcOf label Branch on coprocessor 0 condition. On early 32-bit CPUs, this tested the

bcOfl label state of a CPU input pin; on more modern CPUs there’s no pin and the
instruction is useless.

bcot label The 1 suffix is for branch-likely variants; see Section 8.4.4.

bcOtl label

continued

182 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

«

Assembler/machine code

Description

bclf label
beclf N, label
bclfl label
bclfl N, label
beclt label
beclt N, label
becltl label
bcltl N, label

Branch on floating-point (coprocessor 1) condition set/true (t)or
clear/false (£); described in Section 7.9.7.

From MIPS IV there are multiple FP condition bits, selected byN=0.7.
Suffix 1 as in be1£1 means branch-likely instructions; see Section 8.4.4.

bc2f label
bc2£l label
be2t label
be2tl label

Branch on coprocessor 2 condition. Useful only if a CPU uses the CP2
instruction set or offers an external pin.

beq s,t, label

if (s == t) goto label;

beql s,t,label

Branch-likely variants of conditional branches above.
The delay slot instruction is only executed if the branch is taken; see
Section 8.4.4.

beqz s, label —
beq s, $zero,offs

if (s == 0) goto label;

beqgzl

Branch-likely variant of beqz; see Section 8.4.4.

bge s,t,label —
slt at,s,t
beq at, $zero,offs

if ((signed) s > (signed) t) goto label;

bgel s,t,label —
slt at, s, t
beql at,$zero,offs

“Likely” form of bge, deprecated. Macro forms are of dubious use:
Branch-likely is really for compilers and demon tuners to optimize out
branch delay slots, and you can’t realistically do that with
macro-instructions. See Section 8.4.4,

bgeu s, t,label —
sltu at, s, t
beq at,$zero,offs

if ((unsigned) s > (unsigned) t)
goto label;

bgeul g, t, label

Deprecated branch-likely macro; see Section 8.4.4.

TABLE 8.2 continued

8.2 Assembler Mnemonics and What They Mean ®m 183

Assembler/machine code

Description

bgez =&, label

if (s > 0) goto label;

bgezal s, label

if (s > 0) label();

bgezall g, label

Branch-likely variant; see Section 8.4.4.

bgezl s, label

Branch-likely variant; see Section 8.4.4.

bgt s,t,label —
slt at,¢t,s
bne at, $zero,offs

if ((signed) s >
goto label;

(signed) t)

bgtl s,t,label

Deprecated branch-likely macro; see Section 8.4.4.

bgtu s, t,label —
slt at,t,s
beq at, $zero, offs

if ((unsigned) s > (unsigned) t)
goto label;

bgtul t,s,label

Deprecated branch-likely macro; see Section 8.4.4.

bgtz s, label

if (s > 0) goto label;

bgtzl s, label

Branch-likely version of bgt z; see Section 8.4.4.

ble s,t,label —
sltu at,t,s
beq at,$zero, offs

if ((signed) s < (signed) t)
goto label;

blel g,t,label

Deprecated branch-likely macro; see Section 8.4.4.

bleu s, t,label —
sltu at,t,s
beq at, $zero, offs

if ((unsigned) s < (unsigned) t)
goto label;

bleul s,t,label

Deprecated branch-likely macro; see Section 8.4.4.

blez s, label

if (s £ 0) goto label;

blezl s, label

Branch-likely variant of blez; see Section 8.4.4.

blt s,t,label —
slt at,s,t
bne at, $§zero, offs

if ((signed) s < (signed) t)
goto label;

bltl s,t,label

Deprecated branch-likely macro; see Section 8.4.4.

continued

184 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

Assembler/machine code

Description

bltu s,t,label —
sltu at,s, t
bne at,$zero,offs

if ((unsigned) s < (unsigned) t)
goto label;

bltul s,t,label

Deprecated branch-likely macro; see Section 8.4.4.

bltz s,label

if (s < 0) goto label;

bltzal s,label

if (s < 0) label();

bltzall g, label

Branch-likely variant; see Section 8.4.4.

bltzl s, label

Branch-likely variant; see Section 8.4.4.

bne g, t,label

if (s != t) goto label;

bnel s,t,label

Branch-likely variant; see Section 8.4.4.

bnez s, label

if (s !'= 0) goto label;

bnezl g, t,label

Branch-likely variant; see Section 8.4.4.

break code

Breakpoint instruction. The value code has no hardware effect, but the
breakpoint exception routine can retrieve it by reading the exception-causing
instruction.

cache k,addr

Do something to a cache line, as described in Section 4.10 above. Available
only from MIPS HI on.

cfcl ¢t,cs
cfcl t,cs

cfc2 ¢t,cs

Move data from coprdcessor control register cs to general-purpose register
t. Only useful for a coprocessor that uses the auxiliary control register set:
So far this means only the floating-point coprocessor CP1, which has just
one controt register—the floating-point control and status register.

ctcO t,cd
ctel t,cs

cte2 t,cs

Move data from general-purpose register t to coprocessor control register
cs.

dabs d,s5 —
dsra at,s,31
xor d,s,at
dsub d,d,at

d=s < 0: -s: s; /* 64-bit */

dadd 4,8, t

d=s + t; /* 64-bit, overflow trap, rare */

daddi d,s, 7

d = s + Jj; /* 64-bit, overflow trap, rare */

daddiu d,s,7

d=s + j; /* 64-bit */

TABLE 8.2 continued

8.2 Assembler Mnemonics and What They Mean m 185

Assembler/machine
code

Description

daddu d,s,t

d =15+ t; /* 64-bit */

ddiv $zero,s,t —
ddiv s, t

/* plain 64-bit hardware divide instruction */
lo = (long long) s / (long long) t;

hi = (long long) s % (long long) t;

ddiv d4,s,t — /* 64-bit signed divide with checks */ lo = (long
bnez ¢t,1f long) s / (long long) t; hi = (long long) s % (long
ddiv $zero, s, t long) t; if (t == 0) exception (BREAK, 7); if (t ==
break 0x7 -1 && s = MAXNEG64BIT) /* result overflows */

1: exception (BREAK, 6); d = lo;
1i at,-1

bne ¢t,at,2f
lui at,32768
dsll32 at,at,0
bne s,at,2f
nop
break 0x6

2:
mflo d

ddivd s, t

Another way of writing plain hardware instruction, but use ddiv
$zero,...instead.

ddivdu s, t

Another way of writing plain hardware instruction, but use ddivu
$zero, g, tinstead.

ddivu $zero,s,t —
ddivu s, t

/* plain unsigned 64-bit hardware divide instruction
*/

lo = (unsigned long long) s / (unsigned long long) t;
hi = (unsigned long long) s % (unsigned long long) t;

ddivu 4,s8,t —
divu s, ¢t
bne t,$zero,1f
nop
break 7

1:
mflo d

/* 64-bit unsigned divide with check */

lo = (unsigned long long) s / (unsigned long long) t;
hi = (unsigned long long) s % (unsigned long long) t;
if (t == 0) exception (BREAK, 7) ;

d = lo;

div $zero,s,t —
div g, t

/* plain signed 32-bit hardware divide */
lo = s / t;
hi = s % t;

continued

186 ® Chapter 8—Complete Guide to the MIPS Instruction Set 4

TABLE 8.2 continued

Assembler/machine code

Description

div d,s8,t —
div g,t
bne ¢t,$zero,1f
nop
break 7

1:
1i at,-1
bne ¢,at,2f
nop
lui at,0x8000
bne g,at,2f

/* signed 32-bit division with checks */
lo = s/t;

hi = s % t;
if (£t == 0) exception(BREAK,7);
if (¢ == -1 && s == MAXNEG32BIT)

exception(BREAK, 6); /* result overflows */
d = lo;

nop
break 6
2:
mflo 4
divd g, ¢t Sometimes gives hardware instruction, but use div $zero, g, t instead.
divdu g, t Hardware division, not available in all toolchains; use divu $zero, s, t
instead.
divo d,s,t Same as div/divu, but the name explicitly reminds you about overflow

divou d,s,t

check.

divu d,s8,t —
divu s, t
bne ¢, $zerxo,1f
nop
break 7

1:
mflo 4

/* unsigned divide with check */

lo = (unsigned) s / (unsigned) t:
hi = (unsigned) s % (unsigned) t;
if (t == 0) exception(BREAK,7);
d = lo;

divu $zero, s,t —
divu g, t

/* $zero as destination means no checks */
lo = s/t;
hi = s % t;

dla t, addr —
various ...

Load 64-bit address; see Section 9.4.

TABLE 8.2 continued

8.2 Assembler Mnemonics and What They Mean =

Assembler/machine code

Description

dli ¢, const —

biggest case:
lul ¢, const63..48
ori t, constd?7..32
dsll ¢, 16

ori t, const3l..16
dsll ¢, 16

ori t, constl5..0

Load 64-bit constant. Separate mnemonic from 14 required only for
values between 0x8000 0000 and OXFFFF FFFF, where 32—64 bit
transition rules require 14 to flood the high-order 32 bits with ones.

dmaddilé s, t /* found only on NEC Vr4100 CPU */
(long long)lo = (long long)lo + {(short)s *
(short)t);
dmfcO ¢, cs Move 64 bits from coprocessor register cs to general-purpose register t.
amfcl t, fs dmfcl is for floating-point registers.
dmfe2 ¢, fs
dmtc0 t,cd Move 64 bits from general-purpose register t to coprocessor register cs.
dmtcl t,cs
dmtc2 t,cs

dmul 4,8, —
dmultu s, t
mflo 4

/* no overflow check - and with a 64-bit result
from 64-bit operands, a signed and unsigned
version will do the same thing */

d = (long long) s * (long long) t;

dmulo d,s,t —
dmult s, t
mflo 4
dsra32 4,d,31
mfhi at
beq d,at,1£f
nop
break 0x6

1:
mflo 4

/* signed multiply, trap if result overflows
64-bit signed limit */
hilo = (long long) s * (long long) t;

if ((lo > 0 & hi t=0) || (lo < 0 && hi != -1))
exception (BREAK, 6);
d = lo;

dmulou d,s,t —
dmultu s, t
mfhi at
mflo 4
beqz at,1lf
nop
break 0x6

/* unsignea multiply, trap if result overflows
64-bit limit */
hilo = (long long) s * (long long) t;

if (hi '= 0)
exception (BREAK, 6);
d = lo;

continued

188 m Chapter 8—Complete Guide to the MIPS Instructign Set

TABLE 8.2 continued

Assembler/machine code Description]

dmult s, t /* machine instruction: "hi" correct for signed
64-bit multiplication */
hilo = (long long) s * (long long) t;

dmultu s, t /* machine instruction: "hi" correct for unsigned
64-bit multiplication */
hilo = (unsigned long long) s * (unsigned long
long) t;
dneg d,s — (long long) d = -(long long) s; /* trap on
dsub d,;zero,s overflow */
dnegu 4,8 — (long long) 4 = -(long long) s;
dsubu d, $zero, s
drem d,s,t — /* 64-bit remainder with overflow check */
bnez t,1f if (t == 0) exception(BREAK,7); /* divide by zero?
ddiv $zero, s, t */
break 0x7 /* result overflows 64-bit signed value? */
1: if (s == MAXNEG64BIT && t == -1)
1i at,-1 exception (BREAK, 6);
bne t,at,2f d = (long long) s % (long long) t;

lui at,32768
dsll32 at,at,0
bne s,at,2f

nop
break 0x6
2:
mfhi d
dremu d,s,t — /* 64-bit unsigned remainder */
bnez t,1f if (t == 0) exception(BREAK, 7); /* divide by
ddivu $zero, s, t zero? */
break 0x7 d = (unsigned long long) s % (unsigned long long)
1: t;
mfhi 4
dret Special exception return; only applies to the obsolete R6000 CPU.
drol d4,s8,t — /* 64-bit rotate left */
dnegu at,t d= (s << t) | (s >> (64-t));

dsrlv at,s,at
dsllv d,s, ¢t
or d,d,at

8.2 Assembler Mnemonics and What They Mean ®m 189

TABLE 8.2 continued

Assembler/machine code Description
dror d4,s8,t — /* 64-bit rotate right */
dnegu at, t d = (s >>t) | (s << (64-t));

dsllv at,s,at
dsrlv d,s,t

or d,d,at
dsll d, s, shft d = (long long) s << shft /* 0 < shft < 31 */
dsll d,s,shft — d = (long long) s << shft /* 32 < shft < 63 */

dsll32 d, s,shft-32

dsll d,s,t — d = (long long) s << (t % 64);
dsllv d,s,t
dsllv d,s,t
dsll32 d, s, shft d = (long long) s << (shft+32) /* 0 < shft < 31
*/
dsra d, s,shft /* 0 £ shft < 31 */

/* algebraic shifting, which replicates old bit

63 into top bits, producing a correct division
by power of 2 for negative numbers */

d = (long long signed) s >> shft%32;

dsra d, s, shft — As above, for 32 < shft < 63.
dsra32 d,s,shft-32
dsra32 d, s, shft /* 64-bit shift right arithmetic by 32-63 bits */
d = (long long signed) s >> (shft%32 + 32)

drsa d,s8,t — d
drsav d,s, t

(long long signed) s >> (t%64)

drsav 4,8, t

dsrl d,s,shft /* 0 £ shft < 31 */
d = (long long unsigned) s >> shft%32;

dsrl d, s,shft — As above, for 32 < shft < 63.
dsxrl32 d, s, shft-32

dsrl d4,s8,t — d = (long long unsigned) s >> (t%64)
dsrlv d4,s,t

dsrlv d,s,t

continued

190 W Chapter 8—Complete Guid to the MIPS Instruction Set

TABLE 8.2 continued

Assembler/machine code Description !
dsrl32 d, s, shft /* 64-bit shift right arithmetic by 32-63 bits */
d = (long long unsigned) s >> (shft%$32 + 32)
dsub d,s,t d=s - t; /* 64-bit, trap on overflow, rarely
used */
dsubu d, s, t d==s - t; /* 64-bit */
eret Return from exception (MIPS III on). Clears the SR (EXL) bit and
branches to the location saved in EPC. See Section 12.3.
ffc d,s Find first clear/set. LSI MiniRISC 4010 CPUs only. Sets d to the lowest
ffs d. s numbered bit that is 0/1, respectively in s.
flushd Invalidate entire cache (LSI MiniRISC only).
j label /* limited to a label within 2**28-byte "page" */
goto label;
jr Jump to the instruction pointed to by register r.
jr r
js— Go to the address found in s. This is the only way of transferring control to
ir s an arbitrary address, since all the address-in-instruction formats span less
ir s than 32 bits.
jal d,addr — Call with nonstandard return address. Synthesized with jalr. It’s
la at,addr cheating to use the instruction 1a in the machine code expansion, as 1a is
jalr 4,at itself a macro. That’s to avoid dealing with addressing modes here (see

Section 9.4 instead).

jal label Subroutine call, with return address in ra ($31). Note that the return
address is the next instruction but one: The immediately following
instruction position is the branch delay slot, and the instruction there is
always executed before you reach the subroutine.

jalr d,s Call the subroutine whose address is in s, but put the return address in d.

jal s — Uses ra if dis not specified.
P
jalr $31, s

jalr s —
jalr $31, s

TABLE 8.2 continued

8.2 Assembler Mnemonics and What They Mean ®m 191

Assembler/machine code

Description

la d,addr —
many options

Load address. 1a will work with any of the addressing modes described in
Section 9.4.

1b t,addr /* load byte and sign-extend */
t = *((signed char *) addr);
lbu ¢, addr /* load byte and zero-extend */
t = *((unsigned char *)addr);
14 t,addr /* will trap if address is not 8 byte aligned */
t = *((long long *)addr);
141 t,addr Load double left/right—the two halves of a 64-bit unaligned load (see
1ldr t,addr Section 2.5.2).

ldxcl f£d,t(b)

/* indexed load to floating-point

register--MIPS IV only. Note that the role of the
two registers is not quite symmetrical--b is
expected to hold an address and t an offset, and
it’s an offense for (b + t) to end up in a
different section of the overall MIPS address map
than b (defined by the top 2 bits of the 64-bit
address). */

fd = *((double *) (b+t)); /* b, t both registers
*x/
1h t,addr /* load 16 bit (halfword) and sign-extend */
t = *((short *)addr);
lhu ¢,addr /* load 16 bit (halfword) and zero-extend */
t = *((unsigned short *)addr);
1i 4,5 — Load register with constant value. This expansion is for 0 < j < 65535.

ori d,$zero,Jj

1i d,7 -
addiu d,$zero, i

This one is for —32768 < j < 0.

1li 4,7 -
lui 4, hil6(3)
ori 4, 4, 1o16(3)

This one is for any other value of j that is representable as a 32-bit integer.

continued

192 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

Asseinbler/machine code Description
11 t,addr Load-linked. Load 32 bits/64 bits respectively with link side effects; used
114 t,addr together with sc or scd to implement a lockless semaphore (see

Section 8.4.2).

lui t,u /* load upper immediate (constant u is
sign-extended into 64-bit registers) */
t = u << 16;

lw t,addr /* 32-bit load, sign-extended for 64-bit CPUs */
t = *((* int) (addr));

iwcl fd,addr - Load FP single to FP register file—more often called 1. s. Instructions to
load other coprocessors’ registers are defined but have never been
implemented.

lwl t,addr Load word left/right. See Section 2.5.2 for how these instructions work

lwr t,addr together to perform an unaligned 32-bit load operation.

1wu t,addr /* 32-bit zero-extending load, only found on
64-bit CPUs */
t = (unsigned long long) * ((unsigned int *)addr);

lwxcl £4,t(b) /* load FP single with indexed (register+register)

address */
fd = *((float *) (t+b));

madd 4,8, t /* genuine three-operand integer
multiply-accumulate, as implemented on Toshiba
3900 series cores */
hilo += (long long) s * (long long) t;

d = lo;
maddu 4, s, t /* unsigned version */
mad s, t /* 32-bit integer multiply-accumulate, as

implemented on IDT R4640/50. Encoding and action
are compatible with the R3900 form, so long as d

madu s, t

is actually zero. mad is for signed operands,
madu for unsigned. */
hilo = hilo + ((long long) s * (long long) t);

TABLE 8.2 continued

8.2 Assembler Mnemonics and What They Mean m 193

Assembler/machine code

Description

madd s, t

maddu s, ¢t

LSI MiniRISC name for integer multiply-accumulate. Encoding is
incompatible with other versions, clashing with the MIPS III code for
dmult. Signed and unsigned version.

maddl6é s, t

/* NEC Vr4100 integer multiply-accumulate; handles
only 16-~bit operands */
lo = 1o + ((short)s * (short)t);

max d,8,t

/* LSI MiniRISC only */
d= (s >¢t) ? s: ¢t;

mfcO ¢t,cs
mfcl ¢, fs

mfc2 t,cs

Move 32-bit contents of coprocessor register ¢s into general-purpose
register t. m£c0 is vital for access to the CPU control registers, mfc1 for
putting floating-point unit data back into integer registers. mfc2 is only
useful if coprocessor 2 is implemented, which never happens on standard
CPUs.

mfhi 4
mflo d

Move integer multiply unit results to general-purpose register d. 1o
contains the result of a division, the least-significant 32 bits of the result of
amul, or the least-significant 64 bits of the result of a dmul. hi contains
the remainder of a division or the most-significant bits of a multiplication.
These instructions stall the pipeline if the multiply/divide operation is still
in progress.

min d,8,t

/* LSI MiniRISC only */
d=(s<t) ? s: ¢t;

move d,8 —
or d,s,8$zero

d = s;

movf d,s8,N

if (!fpcondition(N)) d = s;

movn d,8,t

if (t) d = s;

movt d,8,N

if (fpcondition(N)) d = s;

movt.d fd,fs,N
movt.s fd,fs,N

if (fpcondition(N)) fd = fs;

movz d, s, t

if (1t) d = s;

msub s, t
msubu g, t

/* 32-bit integer multiply-subtract for LSI
MiniRISC only; see madd instruction */
hilo = hilo - ((long long) s * (long long) t);

continued

194 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

Assembler/machine code

Description

mtcl t,cd
mtecl ¢, cs

mtc2 t,cs

Move 32 bits from general-purpose register t to coprocessor register cd.
Note that this instruction doesn’t obey the usual convention of writing the
destination register first.

mtcO is for the CPU control registers, mt e1 is for putting integer data into
floating-point registers (although they’re more often loaded directly from
memory), and mt.c2 is implemented only if the CPU uses coprocessor 2
instructions (very rare).

mthi s

mtlo s

Move contents of general-purpose register & into the multiply-unit result
registers hi and 1o, respectively. This may not seem useful, but they are
required to restore the CPU state when returning from an exception.

mul d,s,t

mulu 4,8, ¢t

/* genuine three-operand 32-bit integer multiply,
available on IDT R4650 and some other CPUs; signed

and unsigned versions */ hilo = (long long) s *
(long long) t; o
d = lo;

mul d,8,t — d = (signed)s*(signed)t; /* no checks */

multu s, t
mflo 4

mulo d,s,t —
mult s, t
mflo d
sra d,d,31
mfhi at
beq d,at,1f
nop
break 6

1:
mflo d

/* 32-bit multiply with overflow check */

lo = (signed)s * (signed)t;

if ((s 2 0 && hi !=0) |] (s < 0) && hi != -1)
exception (BREAK, 6);

mulou d,s8,t —
multu s, t

/* 32-bit unsigned multiply with overflow check */
hilo = (unsigned)s * (unsigned)t;

mfhi at if (hi !'= 0)
mflo d exception (BREAK, 6);
beq at, $zero,1f
nop
break 6
mult s, t hilo = (signed)s * (signed)t;

multu g, ¢

hilo = (unsigned)s * (unsigned)t;

8.2 Assembler Mnemonics and What They Mean ® 195

TABLE 8.2 continued

Assembler/machine code Description

neg 4,8 — d = -s; /* trap on overflow, rare */
sub d, $§zero, s

negu d,s — d = -s;
subu d, $zero, s

nop — /* no-op, instruction code == 0 */
8ll $zero, $zero, $zero

nor d,s,t d=n~(s | t);

not d,8 — d = ~g;
nor d,s,$zero

or d,s,t d=s| t;
or d,8,7 - d = s | (unsigned) j;
ori d,s,J
ori ¢,r, 5
pref hint,addr Prefetch instruction, for memory reference optimization (MIPS IV and

later). The cache line that contains the addressed item might be prefetched
into the cache while the CPU keeps running. No side effects (other than the
possible load into the cache) will occur. Implementations are entitled to
treat this as a no-op—the R5000 does, for example. hint says something
to the hardware about how the data will be used; see Section 8.4.8.

The two versions use ordinary base-+offset or register+register indexed
addressing.

prefx hint, t(b)

r2u s LSI ATMizer-II only; converts to strange floating-point format. Result
appears in lo.

radd s, t LSI ATMizer-1I only; strange floating-point add. Result appears in 1o.

continued

196 ®m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

Assembler/machine code Description

rem d4,8,t — /* 32-bit remainder with overflow check */
bnez t,1f lo = s / t;
div $zero,s,t hi =s % t;
break 0x7 if (t == 0) exception(BREAK, 7);

1: if (t == -1 && s == MAXNEG32BIT)
1i at,-1 exception(BREAK, 6); /* result overflows */
bne t,at,2f d = hi;

luil at,32768
bne g,at,2f

nop
break 0x6
2:
mfhi 4
remu d,8,t — /* as above, only divide-by-zero check */
bnez t,1f
divu $§zero,s,t
break 0x7
1:
mfhi d
rfe Restore CPU state when returning from exception—MIPS I only. Pops the
interrupt-enable/kernel-state stack inside the status register SR. Can only
be sensibly used in the delay slot of a 3 instruction that is returning from
the exception handler. See Section 3.1 and Section 3.3.2.
rmul g, ¢t LSI ATMizer-II only; strange floating-point multiply. Result appears in 1o.
rol d,8,t — /*d =s rqtated left by t */
negu at, t
srlv at,s,at
sllv d,s.,t
or 4,d,at
ror d4d,8,t — /* d = s rotated right by t */
negu at,t

sllv at,s,at
srlv d,s,t
or d,d,at

rsub s, t LSI ATMizer-II only; strange floating-point multiply. Result appears in lo.

TABLE 8.2 continued

8.2 Assembler Mnemonics and What They Mean =

197

Assembler/machine code

Description

sb t,addr

*((char *)addr) = t;

sc t,addr

Store word/double conditional; explained in Section 8.4.2.

scd t,addr
sd t,addr *{(long long *)addr) = t;
sdbbp ¢ Extra breakpoint. LSI MiniRISC only.

sdcl ft,addr

Store floating-point double register to memory; more often called s . 4.
8dc0 and 8dc2 (store 64-bit coprocessor register) are defined but have
never been implemented.

s8dl ¢t,addr
sdr t,addr

Store double left/right; see Section 2.5.2 for an explanation.

sdxcl f£fs,t(b)

/* indexed FP store double (both t and b are
registers), usually written s.d */
*((double *) (t+b)) = fs;

selsl d,s,t

Combine and shift.
of which

/* LSI MiniRISC instruction.
Uses ROTATE register (CPO register 23),
only bits 4:0 are used. */

long long dbw;

dbw = ((long long) s << 32 | t);

d = ({(long long) Oxffffffff & (dbw << ROTATE))
>> 32);

selsr d,s, t

/* as above, but shifting right */
long long dbw;

dbw = ((long long) s << 32 | t);
d = (unsigned) Oxffffffff & (dbw >> ROTATE);
seq d,s,t — d=(s==1¢t) 2 1: 0;
xor d,s8,t
sltiu 4,d,1
sge d,s8,t — d = ((signed)s > (signed)t) ? 1 : 0;
slt 4,s,t
xori d,d,1
sgeu d,s,t — d = ((unsigned)s > (unsigned)t) ? 1 : 0;

sltu d, s, t
xori d,d,1

continued

198 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

Assembler/machine code Description
sgt d4,s8,t — d = ((signed)s > (signed)t) ? 1 : 0;
slt d4,¢,s
sgtu d,s8,t — d = ((unsigned)s > (unsigned)t) ? 1 : 0;
sltu d, ¢, s
sh t,addr /* store halfword */
*((short *)addr) = t;
sle d,8,t — d = ((signed)s < (signed)t) ? 1 : O0;
slt d,¢t,s8
xori 4,4,1
sleu d,s,t — d = ((unsigned)s < (unsigned)t) ? 1 : 0;
sltu d,¢,s
xori d4,d,1
sll d, s, shft d = s << shft; /* 0 < shft < 32 */
sll d,t,s — d =t << (s % 32);
sllv d,¢t,s
sllv d,t,s o
slt d,s,t d = ((signed) s < (signed) t) ? 1 : 0; %
slt 4,8, — /* j constant */
slti d,s,7 d = ((signed) s < (signed) j) ? 1 : O;
slti d,s,J
sltiu d,s,] /* j constant */
d = ({(unsigned) s < (unsigned) j) ? 1 : O0;
sltu d,s,t d = ((unsigned) s < (unsigned) t) ? 1 : 0;
sne d,s,t — d=(s==1¢t) 2 1: 0;
sltu d,$zero,d
sra d,s,shft /* 0 < shft < 31 */

/* algebraic shifting, which replicates old bit 31
into top bits, producing a correct division by
power of 2 for negative numbers */

d = (signed) s >> shft;

sra d,s8,t — d = (signed) s >> (t%32)
srav d,s, t

srav d,s,t

TABLE 8.2 continued

8.2 Assemble- Mnemonics and What They Mean ® 199

Assembler/machine code

Description st

srl d,s,shft

d (unsigned) s >> shft; /* 0 < shft < 32 */

sxrl d,8,t —
slrv d,s,t

srlv d,s,t

d

(unsigned) s >> (t % 32);

atandby Enter one of the power-down modes. NEC Vr4100 CPU only.
sub 4,8, t d =s - t; /* trap on overflow, little used */
subu d,s8,J — d =s - j;
addiu d,s,-J
subu d, s, t d=s - ¢t;
suspend Enter one of the power-down modes. NEC Vr4100 CPU only.

sw t,addr

/* store word */ *((int *)addr) = t;

swcl ft,addr

Floating-point store single; more often written 8. 8. The instruction set
defines swc0 and swe2 for coprocessor 0 and 2 registers, but neither have
ever been implemented.

swl t,addr
swr t,addr

Store word left/right; see Section 2.5.2.

swxcl fg,t(b)

/* store floating-point single; indexed
(two-register) addressing; usually written with

8.8 */ *((float *)(t + b)) = fs;
sync Load/store barrier for multiprocessors; see Section 8.4.9.
syscall B /* system call exception */
exception(SYSCALL, B);
teq s,t /* conditional trap instructions, which generate a
trap exception if the appropriate condition is
satisfied; this one is...*/
if (s == t) exception(TRAP):
teqi 5,7 if (s == j) exception(TRAP):;
tge s, t if ((signed) s > (signed) t) exception(TRAP);
tgei s,7 if ((signed) s > (signed) j) exception(TRAP);

continued

200 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.2 continued

Assembler/machine code Description

tgeiu 8,7 if ((unsigned) s > (unsigned) j) exception(TRAP);
tgeu s, t if ((unsigned) s > (unsigned) t) exception (TRAP) ;
tlbp TLB maintenance; see Chapter 6.

If the virtual page number currently in EntryLo matches a TLB entry,
sets Index to that entry. Otherwise sets Index to the illegal value
0x8000.0000 (top bit set).

tlbx TLB maintenance; see Chapter 6.
Copies information from the TLB entry selected by Index into the
registers EntryLo, EntryHil and EntryHi0, and PageMask.

tlbwi TLB maintenance; see Chapter 6.

t1bwr Writes the TLB entry selected by Index (instruction tlbwi) or Random
(instruction t1bwr), respectively, using data from EntryLo, EntryHil
and EntryHi0, and PageMask.

tlt s, t /* more conditional traps */
if ((signed) s < (signed) t) exception (TRAP) ;

tlti s, 7 if ((signed) s < (signed) j) exception(TRAP);
tltiu 8,7 if ((unsigned) s < {(unsigned) j) exception(TRAP);
tltu s, t if ((unsigned) s < (unsigned) t) exception (TRAP) ;
tne s,t if (t t= s) exception(TRAP);

tnei 8,7 if (t != j) exception(TRAP);

u2r s LSI ATMizer-II only; converts unsigned to strange floating point. Result

appears in 1o.

uld d4,addr — Unaligned load double, synthesized from load-left and load-right as
141 d,addr detailed in Section 2.5.2 (shown for big-endian only).
1ldr d,addr+7

ulh d4,addr — Unaligned load halfword and sign-extend. Expansion may be more
ib d,addr complex, depending on addressing mode.
lbu at,addr+l
sll d,d,8

or d4,d,at

TABLE 8.2 continued

8.3 Floating-Point Instructions m 201

Assembler/machine code Description

ulhu d4,addr —
lbu d,addr

lbu at,addr+1

sll 4,4d,8
or d,d,at

Unaligned load halfword and zero-extend.

ulw d,addr —
lwl 4, addr
lwr d,addr+3

Load word unaligned; sign-extend if 64 bits (shown for big-endian only).
See Section 2.5.2.

usd d,addr —
s8dl d,addr
sdr d,addr+7

Unaligned store double.

ush addr —
sb d,addr+1
sxrl 4,4,8
8b d, addr

Unaligned store half.

usw g,addr —
swl s,addr
swr s,addr+3

Store word unaligned; see Section 2.5.2.

waiti

Suspend execution until an interrupt is activated. LSI MiniRISC only.

wb addr

Write back the eight-word cache line containing this address if it’s dirty.
LSI MiniRISC only. On R4000 and similar CPUs this would be done with a
cache instruction.

xor 4,s,t

d = s7t;

xor d,8,5 —
xori d,s,J

xori d,s,7

d =s " 3j;

8.3

Floating-Point Instructions

There’s a relatively small and sensible set of MIPS floating-point instructions
(see Tables 8.3 and 8.4 on pages 202 and 203), but they quickly develop their
own complications. Note the following points:

= Pretty much every FP instruction comes in a single-precision version
and a double-precision version, distinguished by .s or .d in the mne-

202 m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.3 Floating-point register and identifier conventions

Word Used for

£s, £t Floating-point register operands.
£d Floating-point register which receives the result.

£dhi Pair of adjacent FP registers in a 32-bit processor, used
together to store an FP double. Use of the high-order

fate (odd-numbered) register is implicit in normal arithmetic
instructions.

M The floating-point condition bit found in the FP
control/status register and tested by the be1£ and beOt
instructions.

There’s been evolution here; the MIPS I through III ISAs
have 1 condition bit but MIPS IV has 8. An instruction that
omits to specify which condition bit to use will quietly use
the original one.

monic. Table 8.4 only lists single-precision versions, so long as the double-
precision version requires no special extra description.

s The FP instruction set has evolved much more than the integer instruc-
tion set ever did {at user level, the integer instruction set has been re-
markably stable), so it’s more important to keep clear what version is
what.

m FP computational and type conversion instructions can cause excep-

tions. This is true both in the IEEE sense, where they detect conditions
that a programmer may be interested in, and in a low-level architecture
sense: MIPS FP hardware, if faced with a combination of operands and
an operation it can’t do correctly, will take an unimplemented exception
with the aim of getting a software routine to carry out the FP operation
for it.
Data movement instructions (loads, stores, and moves between register-
s) don’t ever cause exceptions. Neither do the neg. s, neg.d, abs. s, or
abs.d instructions (which just flip the sign bit without inspecting the
contents).

8.4 Peculiar Instructions and Their Purposes ®m 203

TABLE 8.4 Floating-point instruction descriptions in mnemonic order

Assembler ISA ' Function
code number
abs.s f£d,fs 1 fd = (fs < 0) ? -fs
add.s f£d,fs, ft I fd = fs + ft;
beclf label I Several branch on FP condition instructions, all found in Table 8.2.
belt label
c.eq.s M, fs, ft I FP compare instructions, which compare fs and ft and store a result
c.f.8 M, fs, ft in FP condition bit M. They are described at length in Section 7.9.7.
c.le.s M, fs, ft
c.lt.s M, fs, ft
c.nge.s M, fs,ft
c.ngl.s M, fs, ft
c.ngt.s M, fs, ft
c.ole.s M, fs, ft
c.olt.s M, fs, ft
c.seq.s8 M, fs,ft
c.af.8 M, fs, ft
c.uveqg.s M, fs, ft
c.ule.s M, fs, £t
c.ult.s M, fs, ft
c.un.s M, fs, ft
ceil.l.d £d,fs It Convert FP to equal or next-higher signed 64-bit integer value.
ceil.l.s fd, fs
ceil.w.d £4, fs II Convert FP to equal or next-higher signed 32-bit integer value.
ceil.w.s8 fd,fs
cvt.d.l fd,fs I Floating-point type conversions, where the types d, 1, 8, and w
(double, long long, float, and int, respectively) are the destination
cvt.d.s £d,fs I and source type in that order.
cvt.d.w £d, fs Where the conversion is losing precision, the rounding mode
currently defined by the field ®FCR31 (RM) in the floating-point
cvt.l.d £4, fs I1I s . o
status register is used to determine how the approximation is done.
cvt.l.s fd,fs For integer conversions where the desired approximation is specific
cvt.s.d fd,fs I to the algorithm, you're better off writing instructions like
cvt.s.1 £d, fs III floor.w.s and so on; however these will just be assembler
.8. ’
macros for MIPS I machines, since the specific conversion
cvt.s.w £d,fs I instructions were only introduced with MIPS II.
cvt.w.d £fd, fs
cvt.w.8 fd,fs
div.s fd4, fs, ft I fd = fs/ft;
dmfcl rs, fd III Move 64-bit value from floating point (coprocessor 1) to integer

register with no conversion.

continued

204 ® Chapter 8—Complete Guide to the MIPS Instruction Set ~

TABLE 8.4 continued

Assembler ISA Function !

code number

dmtcl rs, fd III Move 64-bit value from integer to floating point (coprocessor 1)

register with no conversion or validity check.

floor.l.d4 f£d,fs II1 Convert FP to equal or next-lower 64-bit integer value.

floor.l.s £4,fs

floor.w.d f£d,fs I Convert FP to equal or next-lower 32-bit integer value.

floor.w.s fd,fs

1.4 £d4,addr — 11 /* load FP double, must be 8 byte aligned */
1ldcl f£d, addr fd = *((double *) (o+b));

1.4 fd,addr — I /* load FP double into register pair; note
lwel fdhi,addr that the expansion (which half goes at what
lwecl fdlo, addr+4 address) depends on CPU endianness */

fd = *((double *) addr);

1.8 fd,addr — 1 /* load FP single, must be 4 byte aligned */
lwcl fd, addr fd = *((float *) (o+b));

ldcl f£d, disp(rs) i Deprecated equivalent of 1 .4.

ldxcl f£d, ri(rs) v Explicit machine instruction for double-indexed load; preferred to

use 1 .d with the appropriate address mode.

li.s f£d,const I Load floating-point constant, synthesized by placing the constant in

li.d £d,const a memory location and loading it.

lwecl fd, disp(rs) II1 Deprecated equivalent of 1. s.

lwxcl f£d, ri(rs) v Explicit double-indexed load instruction; usually better to use 1.

with the appropriate address mode.

madd.s fd, fr, fs, ft v fa = fr + fs*ft;

mfcl rs, £d I Move 32-bit value from floating point (coprocessor 1) to integer

register with no conversion.

mov.s fd, fs v fd = fs;

movi.s fd, fs,N v if (1fpcondition(N)) fd = fs;

movn.s fd,fs,t v if (t !'= 0) fd = fs; /* t is a GPR */

movt.s fd,fs,N v if (fpcondition(N)) fd = fs;

movz.s8 f£fd,fs,t v if (t == 0) £4 = fs; /* t is a GPR */

msub.s fd, fr, fs, ft v nfd = fs*ft - fr;

TABLE 8.4 continued

8.4 Peculiar Instructions and Their Purposes W 205

Assembler ISA Function
code number
mtecl rs, £fd I Move 32-bit value from integer to floating point (coprocessor 1)
register with no conversion or validity check.
mul.s fd, fs, ft I fd = fs*ft;
neg.s fd, fs I fd = -fs;
nmadd.s fd,fr,fs,ft IV nfd = ~(fs*ft + fr);
nmgub.s8 fd, fr,fs,ft IV nfd = fr - fs*ft;
recip.s f£d, fs v fd = 1/fs; /* fast but not IEEE accurate */
round.l.d f£d, fs III Convert FP to equal or closest 64-bit integer value.
round.l.s fd, fs
round.w.d f£d, fs II Convert FP to equal or closest 32-bit integer value.
round.w.s fd, fs
rsqrt.s fd,fs v /* fast but not IEEE accurate */ fd =
sqrt(1l/fs);
s.d ft,addr — 111 /* FP store double; address must be 8 byte
sdcl ft,addr aligned */
s.d ft,addr — I *((double *)addr) = ft;
* 3 - 1 *
swcl f£thi,addr /* synthesized for 32-bit CPUs */
swcl ftlo,addr+d
8.8 ft,addr — I /* FP store single; address must be 4 byte
swcl ft,addr aligned */
*({(float *)addr) = ft;
sdcl fd, disp(rs) III Deprecated equivalent to s.d.
sdxcl fd, ri(rs) v Explicit double-indexed store double; usually better to write s . d
with an appropriate addressing mode.
sqrt.s fd,fs III fd = sqrt(fs); /* IEEE compliant */
sub.s fd4, fs, ft I fd = fs - ft;
swcl fd, disp(rs) III Deprecated equivalent to s. s.
swxcl fd, ri(rs) v Explicit double-indexed store of 32-bit FP value; usually better to
write 8. 8 with an appropriate addressing mode.
trunc.l.d4 £d,fs I Convert FP to equal or next-nearest-to-zero 64-bit integer value,
trunc.l.s £d4,fs
trunc.w.d fd, fs II Convert FP to equal or next-nearest-to-zero 32-bit integer value.

trunc.w.s fd, fs

206 m Chapter —Complete Guide to the MIPS Instruction Set

8.4

8.4.1

Peculiar Instructions and Their Purposes

MIPS has never avoided innovation, and the instruction set contains features
whose ingenuity might go unheeded (and unused) because they are hard to
understand and have not been well explained. This section discusses those
features.

Load Left/Load Right: Unaligned Load and Store

Any CPU is going to be more efficient if frequently used data as arranged in
memory is aligned on memory boundaries that fit the hardware. For a machine
with a 32-bit bus, this favors 32-bit data items that are stored on an aligned
32-bit boundary; similarly, a 64-bit bus favors 64-bit data items stored on an
aligned 64-bit boundary.

If a CPU must fetch or store unaligned data, it will need two bus cycles.
RISC pipeline simplicity will not let the CPU perform two bus cycles for one
instruction, so an unaligned transfer will take at least two instructions.

The ultimate RISC attitude is that we’ve got byte-sized operations and that
any unaligned operation you like can be built out of those. If a piece of da-
ta (formatted as a 4- or 8-byte integer value) might be unaligned, the pro-
grammer/compiler can always read it as a sequence of byte values and then use
shift/mask operations to build it up in a register. The sequence for a word-
sized load looks something like this (assuming a big-endian CPU, and without
optimizing for the load delay in the CPU pipeline):

1bu rt,o(b)

sll rt,rt,24

lbu rtmp, o+1(b)
sll rtmp, rtmp, 16
or rt,rt, rtmp
ibu rtmp, o+2(b)
8ll retmp, rtmp, 8
or rt,rt, rtmp
1bu rtmp, o+3 (b)

or rt,rt,rtmp

That’s 10 instructions, four loads, and needs a temporary register and is
likely to be quite a performance hit if you do it a lot. The MIPS solution to this
is a pair of instructions, each of which can obtain as much of the unaligned
word as fits into an aligned word-sized chunk of memory.

The instructions that MIPS invented are used to perform a relatively ef-
ficient unaligned load/store (word or double size) operation and were men-
tioned in Section 2.5.2.

The hardware that accesses the memory (or cache) transfers 4 or 8 bytes of
aligned data. Partial-word stores are implemented either by a hardware signal
that instructs the memory controller to leave certain bytes unchanged or by

ks
o
5
¥

8.4 Peculiar Instructions and Their Purposes m 207

a read-modify-write (RMW) sequence on the entire word/doubleword. MIPS
CPUs mostly have RMW hardware available for writes to the data cache, but
don’t do that for memory—the memory controller must implement partial-
word writes for itself,

We said that there need to be two instructions, because there are two bus
cycles. The instructions are called load word left and load word right (mne-
monics 1wl and 1wr) for 32-bit operations; they are called load double left and
load double right (141 and 1ar) for 64-bit operations. The “left” instruction
deals with the high-order bits of the unaligned integer, and the “right” instruc-
tion fetches the low-order bits, so “left” is used in the same sense as in “shift
left.” Because the instructions are defined in terms of more-significant and less-
significant bits but must deal with a byte-addressed memory, their detailed use
depends on the endianness of the CPU (see Section 11.6). A big-endian CPU
keeps more-significant bits earlier, in lower byte addresses, and a little-endian
CPU keeps more-significant bits later, in higher addresses.

Figure 8.1 is an attempt to show what’s happening for a big-endian CPU
when the unaligned pseudo-operation uld rd, 0(rb) is coded as

141 rd, 0(rb)
ldr rd, 7(rb)

What’s going on in Figure 8.12

® 1d1 rd, 0(rb): The O offset marks the lowest byte of the unaligned
doubleword, and since we’re big-endian that’s the 8 most-significant bit-
s. 1d1 is looking for bits to load into the left (most-significant bits) of
the register, so it takes the addressed byte and then the ones after it in
memory to the end of the word. They’re going up in memory address,
so they’re going down in significance; they want to be butted up against
the high-numbered end of the register as shown.

® ldr rd, 7(rb): The 7 isa bit odd, but it points at the highest byte of
the doubleword—xzb+8 would point at the first byte of the next double-
word, of course. 1dr is concerned with the rightmost, least-significant
bits; it takes the remaining bytes of our original data and butts them
against the low-numbered bits of the register, and the job’s done.

If you're skeptical about whether this works for words in any alignment, go
ahead and try it. Note that in the case where the address is in fact correctly
aligned (so the data could have been loaded with a conventional 14 instruc-
tion), uld loads the same data twice; this is not particularly interesting but
usually harmless.

The situation can get more confusing for people who are used to little-
endian integer ordering because little-endians often write data structures with
the least-significant bits to the left. Once you've done that, the “left” in the
instruction name becomes “right” on the picture (though it’s still movement
toward more-significant bits). On a little-endian CPU the roles of 1d1/1dr

-

208 m Chapter 8—Complete Guide to the MIPS Instruction Set

ri+0 l
0 1 2 3 4____§____6 7
,’/’ ‘\\
0 {| ox11 | 0x22 | 0x33 | 0x44 | 0x55 [
in memory B e e ——t—="
. \ Vo
8} Ox66 | 0x77 | Ox88
N y /

rb+7

Register ra

Y
Register rd 0x11 | 0x22 | 0x33 | Ox44 | 0x55 | 0x66 | Ox77 0::88)

FIGURE 8.1 Unaligned load double on a big-endian CPU

are exchanged, and the code sequence is

ldr rd, 0(zxb)
141 rd, 7(rb)

8.4 Peculiar Instructions and Their Purposes ®m 209

rb+0 ‘ [
7 6___ S5 ___4 3 2 1 0
o(\o;:u 0x55 | 0x66 | 0x77 | 0x88 |}
In memory St — = ,/, = - <
8 0x11 | 0x22 | 0x33,
| Y
v,
b+7 N
o+
X3
°.
0
\
63 [N ______ 0
Register rd h g £ { 0xdd [0x55| 0x66 | 0x77 | oxss |
N
@
&
a
A
%)
>y
~
63 ___F__ R 0
"~ N
Register rd } 0x11 | 0x22 0x33] 0xd4 | 0x55 | 0x66 | 0x77 | 0x88

FIGURE 8.2 Unaligned load double on a little-endian CPU

Figure 8.2 shows you what happens: The most significant bits are reluctant-
ly kept on the left, so it’s the mirror image of the diagram I’d “naturally” have
drawn.

With these figures in front of us, we can try to formulate an exact descrip-
tion of what the instructions do:

210 = Chapter 8—Complete Guide to the MIPS Instruction Set

8.4.2

® Load/store left: Find the addressed byte and enclosing word (or dou-
bleword, for 64-bit operations). Operate on the addressed byte and
any more bytes between it and the least-significant end of that memory
word (higher byte addresses for big-endian and lower byte addresses for
little-endian).
Load: Grab all those bytes and shift them to higher bit numbers until
they’re up against the top of the register. Leave any lower-bit-numbered
byte positions within the register unchanged.

Store: Replace those bytes with as many bytes of the register as there’s
room from, starting at the most-significant byte in the register.

® Load/store right: Find the addressed byte and enclosing word/double-
word. Operate on the addressed byte and any more bytes between it and
the most-significant end of that memory word (lower byte addresses for
big-endian and higher byte addresses for little-endian).
Load: Grab all those bytes and shift them to lower bit numbers until
they’re down against the bottom of the register. Leave any higher-bit-
numbered byte positions within the register unchanged.
Store: Replace those bytes with as many bytes of the register as there’s
room from, starting with the least-significant byte in the register.

The load/store left/right instructions do not require the memory controller
to offer selective operations on arbitrary groups of bytes within a word; the
active byte lanes are always together at one end of a word or doubleword.

Note that these instructions do not perform all possible realignments;
there’s no special support for unaligned load half (which has to be implemented
with byte loads, shifts, masks, and combines).

Load-Linked/Store-Conditional

The instructions 11 (load-linked) and sc (store-conditional) provide an al-
ternative to the atomic test-and-set sequence that is part of most traditional
instruction sets. They provide a test-and-set sequence that operates without
any guarantee of atomicity but that succeeds (and tells you it’s succeeded) only
if it turned out to be atomic. See Section 5.8.4 for what they’re for and how
they’re used.

Here’s how they work. The instruction 11 rt, o(b) performs a 32-bit
load from the usual base+offset address. But as a side effect it remembers that
aload-link has happened (setting an otherwise-invisible linked status bit inside
the CPU). It also keeps the address of the load in the register LLAGdE.

A subsequent sc rt, o(b) first checks whether it can be sure that the
read-modify-write sequence that began with the last-executed 11 will complete
atomically. If it can be sure, then the value of rt is stored into the location and

8.4 Peculiar Instructions and Their Purposes m 211

the “true” value 1 is returned in rt. If it can’t be sure that the operation was
atomic, no store happens and rt is set 0.

CAUTION!

The test for atomicity is unlikely to be exhaustive. The instruction is not defined
to fail only if the memory location really has been changed by another CPU
or task but to fail if it might have been.

8.4.3

There are two reasons why sc could fail. The first is that the CPU took
an exception somewhere between executing the 11 and the sc. Its exception
handler, or a task switch triggered by the exception, might have done something
non-atomic.

The second type of failure happens only in a multiprocessor, when another
CPU has written the memory location or one near it (commonly in the same
line, but some implementations may monitor the whole memory translation
page). For efficiency reasons this detector is only enabled when both partici-
pating CPUs have agreed to map this data as a shared area—strictly, if the other
CPU has completed a coherent store to the sensitive block.

Let’s emphasize again: The failure of the sc is not evidence that some other
task or CPU has in fact written the variable; implementations are encouraged
to trade off a fair number of false warnings against simplicity or performance.

Multiprocessor CPUs must keep track of the address used by the last 11,
and they keep it in the coprocessor 0 register LLAddr where software can read
and write it. But the only reasons to read and write this register are diagnos-
tic; on a CPU without multiprocessor features it is redundant. You're recom-
mended not to rely on its existence.

Note that this is the only part of the MIPS III specification that has been
regarded as optional by one chip vendor: NEC omitted 11/sc instructions
from its core Vr4100 CPU, probably unaware that uniprocessors can benefit
from these instructions too.

Conditional Move Instructions

A conditional move instruction copies data from one register to another, but
only if some condition is satisfied—otherwise it does nothing. They were fea-
tured in other RISC architectures (ARM may have been first) before making a
MIPS debut with the MIPS IV instruction set (first implemented in the R8000,
R10000, and R5000 in 1995-96). Conditional moves allow compilers to gener-
ate code with fewer conditional branches because conditional branches are bad
for pipeline efficiency.

CPUs built with the simple five-stage pipeline described in Chapter 1 don’t
have much trouble with branches; the branch delay slot instruction is usually
executed, and the CPU then moves straight to the branch target. With these

212 m Chapter 8—Complete Guide to the MIPS Instruction Set

8.44

simple CPUs, most branches are free (provided the branch delay slot contains
a useful instruction) and the others cost only one clock cycle.

But more extravagant implementations of the MIPS ISA may lose many
instruction-execution opportunities while waiting for the branch condition to
be resolved and the target instruction to be fetched. The long-pipeline R4400,
for example, always pays a two-clock-cycle penalty on every taken branch. In
the highly superscalar R10000 (which can issue four instructions per clock cy-
cle) you might lose seven instruction issue opportunities waiting for the branch
condition to be resolved. To reduce the effect of this the R10000 has special
branch prediction circuits that guess the branch outcome and run ahead ac-
cordingly, while keeping the ability to back off from those speculative instruc-
tions. This is quite complicated: If the compiler can reduce the frequency with
which it relies on the complicated features, it will run faster.

How do conditional move instructions get rid of branches? Consider a
piece of code generating the minimum of two values:

n = (a<Db) ? a: b;

Assuming that the compiler has managed to get all the variables into reg-
isters, this would normally compile to a sequence like the following (this is
logical assembler language sequence, before making pipeline adjustments for
delay slots):

slt t0, a, b
move n, a

bne $0, t0, 1f
move n, b

On a MIPS IV CPU we can replace this with

slt t0, a, b
move n, a
movz n, b, t0

Although the conditional move instruction movz looks strange, its role in
the pipeline is exactly like any other register/register computational instruction.
A branch has been removed and our highly pipelined CPU will go faster.

Branch-Likely

Another pipeline optimization, this one introduced with MIPS 11, is branch-
likely.

8.4.5

8.4 Peculiar Instructions and Their Purposes ® 213

Compilers are generally reasonably successful in filling branch delay slots,
but they have the hardest time at the end of small loops. Such loop-closing
branches are the most frequently executed, so nops in their delay slots are sig-
nificant; however, the loop body is often full of dependent code that can’t be
reorganized.

The branch-likely instruction nullifies the branch delay slot instruction
when the branch is not taken. An instruction is nullified by preventing its
write-back stage from happening—and in MIPS that’s as if the instruction had
never been executed. By executing the delay slot instruction only when the
branch is taken, the delay slot instruction becomes part of the next go around
the loop.

So any loop

loop:
first
second
blez t0, loop
nop

can be transformed to

loop:
first
loop2:
second
blezl t0, loop2
first

This means we can fill the branch delay slot on loops almost all the time,
greatly reducing the number of nops actually executed.

You'll see it implied in some manufacturers’ documentation that branch-
likely instructions, by eliminating nops, make programs smaller; this is a mis-
understanding. You can see from the example that the nop is typically replaced
by a duplicated instruction, so there’s no gain in program size. The gain is in
speed.

Integer Multiply-Accumulate and Multiply-Add Instructions

Many multimedia algorithms include calculations that are basically a sum of
products. In the inner loops of something like a JPEG image decoder, the cal-
culation is intensive enough to keep the CPU’s arithmetic units fully utilized.

214 m Chapter 8—Complete Guide {0 the MIPS Instruction Set

8.4.6

The calculations break down into a series of multiply-accumulate operations,
each of which looks like this: '

1

a = a + b*c;

Although the RISC principles described in Chapter 1 would appear to im-
ply that it is better to build this calculation out of simple, separate functions,
this is probably a genuine exception to that rule. It’s probably because multiply
is a multiple-clock-cycle operation, leaving a simple RISC with the problem
of scheduling the subsequent (quick) add: If you attempt the add too early, the
machine stalls; if you leave it until too late, you don’t keep the critical arithmetic
units busy. In a floating-point unit, there’s an additional advantage in that
some housekeeping associated with every instruction can be shared between
the multiply and add stages.

Such operations have been added as vendor-specific extensions by a num-
ber of different manufacturers in a number of different implementations. But
there’s a subset of compatible operations to be found on IDT, Toshiba, and
QED CPUs. They operate in the independently clocked integer multiply unit
and so are all multiply-accumulate operations,' accumulating in the multiply
unit output registers 1o and hi. Confusingly, all vendors have called their
instructions mad or madd, though they should have been called “mac.”

Floating-Point Multiply-Add Instructions

All the arguments above apply to floating-point calculations too, though the
critical applications here are 3D graphics transformations. In a floating-point
unit, there’s an additional advantage to a dual operation, in that some house-
keeping associated with every instruction can be shared between the multiply
and add stages.

There’s no gainsaying actual benchmark performance, and the multiply-
add at the heart of most PowerPC floating-point units has certainly produced
some very impressive figures.

The floating-point operations madd, msub, nmadd, and nmsub got included
in the MIPS IV instruction set. These are genuine four-operand multiply-add
instructions, performing operations such as

a = b + c*d;

They’re aimed at large graphic/numeric-intensive applications on SGI
workstations and heavyweight numerical processing in SGI's range of
supercomputers.

1. Toshiba’s R3900 and some other CPUs have a three-operand multiply-add but even there the
addend is constrained to come from 1o/hi. The IDT and QED CPUs offer a two-operand
instruction that is identical to Toshiba’s in the special case where the destination register is 0.

8.4.7

8.4.8

8.4 Peculiar Instructions and Their Purposes ® 215

Multiple FP Condition Bits

Prior to MIPS 1V, all tests on floating-point numbers communicated with the
main instruction set through a single condition bit, which was set explicitly
by compare instructions and tested explicitly by special conditional branch in-
structions. The architecture grew like this because in the early days the floating-
point unit was a separate chip, and the FP condition bit was implemented with
a signal wire that passed into the main CPU.

The trouble with the single bit is that it creates dependencies that reduce the
potential for launching multiple instructions in parallel. There is an unavoid-
able write-to-read dependency between the compare instruction that creates
a condition and the branch instruction that tests it, while there’s an avoid-
able read-to-write interaction where a subsequent compare instruction must
be delayed until the branch has seen and acted on its previous value.

FP array calculations benefit from a compilation technique called software
pipelining, where a loop is unrolled and the computations of successive loop
iterations are deliberately interleaved to make maximum use of multiple FP
units. But if something in the loop body requires a test and branch, the single
condition unit will make this impossible, hence multiple conditions can make
a big difference.

MIPS IV provides 8 bits, not just 1; previously reserved fields in compare
and FP conditional branch instructions have been found that can specify which
condition bit should be used. Older compilers set reserved fields to zero, so old
code will run correctly using just condition code zero.

Prefetch

New in MIPS IV, pref provides a way for a program to signal the cache/memory
system that data is going to be needed soon. Implementations that take ad-

vantage of this can prefetch the data into a cache. It’s not really clear how

many applications can foresee what references are likely to cause cache misses;

prefetch is useful for large-array arithmetic functions, however, where chunks

of data can be prefetched in one loop iteration so as to be ready for the next

go-around.

The first argument to pref is a small-integer coded “hint” about how the
program intends to use the data. Legal values are as shown in Table 8.5.

Some newer CPUs (R10000) implement a nonblocking load in which exe-
cution continues after a load cache miss, just so long as the load target register is
not referenced. However, the pref instruction is better applied to longer-range
prediction of memory accesses.

MIPS IV CPUs are free to ignore pre£ but of course must not take an illegal
op-code trap; CPUs that aren’t interested treat it as a nop.

216 m Chapter —Complete Guide to the MIPS Instruction Set :

TABLE 8.5 Prefetch “hint” codes
Value MIPS name What it means

0 load We don’t expect to write this location.
1 store Probably will be written.
-3 — Reserved.
4 load_streamed Part of a memory area that will be accessed sequentially. It would be
store_streamed reasonable to allow prefetched locations to overwrite each other in
succession.

6 load_retained A location that is expected to be used heavily for quite a while, which
may be worth avoiding replacing in the cache: In particular, it would
not be sensible to replace it with data marked “streamed.”

store_retained

8-31 — Reserved.

849 Sync: A Load/Store Barrier

Suppose we have a program that consists of a number of cooperating sequen-
tial tasks, each running on a different processor and sharing memory. We’re
probably talking about a multiprocessor using sophisticated cache coherency i
algorithms, but the cache management is not relevant right now.

Any task’s robust shared memory algorithm will be dependent on when
shared data is accessed by other tasks: Did they read that data before I changed

e

s

it? Have they changed it yet? _) %‘2’
Since each task is strictly sequential, why is this a problem? It turns out 4

that the problem occurs because CPU tuning features often interfere with the
logical sequence of memory operations; by definition this interference must be
invisible to the program itself, but it will show up when viewed from outside.
There can be good reasons for breaking natural sequence. For optimum mem-
ory performance, reads—where the CPU is stalled waiting for data—should
overtake pending writes. As long as the CPU stores both the address and data
on a write, it may defer the write for a while. If a CPU does that, it had better
check that the overtaking read is not for a location for which a write is pending;
that can be done. :

Another example is when a CPU that implements nonblocking loads ends :
up with two reads active simultaneously: For best performance the memory
system should be allowed to choose which one to complete first.

CPUs that allow neither of these changes of sequence, performing all reads
and writes in program order, are called strongly ordered. Most MIPS CPUs,
when configured as uniprocessors, are strongly ordered. But there are excep-
tions: Even some early R3000 systems would allow reads to overtake pending
writes (after checking that the read was not for any pending-write location).

|
3
Y
o
2]
£

8.5

8.5.1

8.5 Instruction Encodings ®m 217

On a MIPS III or subsequent CPU that is not strongly ordered, a sync
instruction defines a load/store barrier. You are guaranteed that all load/stores
initiated before the sync will be seen before any load/store initiated afterward.

Note that in a multiprocessor we have to insist that the phrase “be seen”
means “be seen by any task in the system that correctly implements the shared
memory caching system.” This is usually done by ensuring that sync produces
a reordering barrier for transactions between the CPU and the cache/memory/
bus subsystem.

There are limitations. There is no guarantee about the relative timing of
load/stores and the execution of the sync itself; it merely separates load/stores
before the instruction from those after. sync does not solve the problem of
ensuring some timing relationship between the CPU’s program execution and
external writes, which we mentioned in Section 4.13.

And inside a multiprocessor sync works only on certain access types (un-
cached and coherent cached accesses). Much “normal” cached memory is non-
coherent; any data space that is known not to be shared is safe, and so is
anything that is read-only to the sharing tasks.

sync does not need to do anything on CPUs that are strongly ordered; in
such cases it is a nop.

Instruction Encodings

Al MIPS instructions (up to and including the MIPS IV ISA) are listed in order
of encoding in Table 8.6. Subsections 8.5.1-8.5.3 provide further notes on the
material in this table.

Most MIPS manuals say there are only three instruction formats used. I
daresay this corresponds to some reality in the original internal design of the
chip, but it never looked like that to the user, to whom it appears that different
instructions use the fields for quite different purposes. Newer instructions use
more complex encodings.

The table tells you the binary encoding, the mnemonic of the instruction
in assembler code, and the MIPS instruction set level when the instruction was
introduced. Occasionally this last column will have the name of a specific CPU
that offers a special instruction or will be left blank when the instruction was
implemented with the original instruction.

Fields in the Instruction Encoding Table

The following notes describe the fields in Table 8.6 (starting on page 219).

Field31-26 The primary op-code “op,” which is 6 bits long. Instructions
that are having trouble fitting in 32 bits (like the “long” j and
jal instructions or arithmetic with a 16-bit constant) have

218 ® Chapter 8—Complete Guide to the MIPS InstructionSet

Field 5-0

Field 25-21

rs, rt, rw

a unique “op” field. Other instructions come in groups that

share an “op” value, distinguished by other fields. |

Subcode field used for the three-register arithmetical/logical
group of instructions (major op-code zero).

Yet another extended op-code field, this time used by copro-
cessor-type instructions.

One or two fields identifying source registers.

o(b) offset, rb “o” is a signed offset that fits in a 16-bit field; “b” is a

rd
shft

broffset

target

constant

cs/cd

fr/£s/ £t
£d
N/M

hint

“« ”

general purpose base register whose contents are added to
to yield an address for a load or store instruction.

The destination register, to be changed by this instruction.
How far to shift, used in shift-by-constant instructions.

A 16-bit signed offset defining the destination of a PC-relative
branch. Offset zero is the delay slot instruction after the branch,
s0 a branch-to-self has an offset of —1.

A 26-bit word address to be jumped to (it corresponds to a
28-bit byte address, which is always word-aligned). The long
jump 3 instruction is rarely used, so this format is pretty much
exclusively for function calls (jal).

The high-order 4 bits of the target address can’t be specified
by this instruction and are taken from the address of the jump
instruction. This means that these instructions can reach any-
where in the 256MB region around the instructions’ location.
To jump further, use a 3 (jump register) instruction.

A 16-bit integer constant for immediate arithmetic or logic op-
erations. It’s interpreted as signed or unsigned according to the
instruction context.

Coprocessor register as source or destination, respectively. Each
coprocessor section of the instruction set may have up to 32
data registers and up to 32 control registers.

Floating-point unit source registers.
Floating-point destination register (written by the instruction).

Selector for FP condition code—“N” when it’s being read, and
“M” when it’s being written by a compare instruction. The
field is absent from assembler language and zero in the ma-
chine instructions before MIPS IV; hence all the floating-point
compare instructions have the “M” field as zero in pre-MIPS IV
guise.

A hint for the prefetch instruction, described in Section 8.4.8.

8.5.2

8.5 Instruction Encodings ® -219

cachop This is used with the cache instruction and encodes an op-

eration to be performed on the cache entry discovered by the
instruction’s address. See Table 4.2 in Section 4.10. '

Notes on the Instruction Encoding Table

8 Double use of instruction encoding: LSI’s MiniRISC core CPU defines in-
structions whose encodings clash with standard instructions in MIPS III
and higher. We’ve listed both interpretations.

w Instruction aliases: Mostly we have suppressed all but one possible mne-
monic for the same instruction, but occasionally we leave them in. In-
structions such as nop and 1. s are so ubiquitous that it seems simpler
to include them than to leave them out.

® Coprocessor instructions: Instructions that were once defined but are
no longer have been expunged. Coprocessor 3 was never used by any
MIPS I CPU and is not usable with MIPS III or higher—and some of
the compulsory coprocessor op-codes, including memory loads, have
been recycled for different uses.

TABLE 8.6 Machine instructions in order of encoding

31 2625 212018171615 1110 8765 o Assembler name ISA level
0 0 0 0 0 0 nop
0 0 rw | rd |shft 0 sll d,w, shft
0 rs | N{O| rd 0 1 movfE d,s,N MIPS IV
0 rs 1] rd 0 1 movt d,s,N MIPS IV
0 rs | rt rd 0 1 selsr d,s, t MiniRISC-4010
0 0 rw | rd |shft 2 srl d,w, shft
0 0 rw | rd |shft 3 sra d,w,shft
0 rs rt rd 0 4 8llv d,¢t,s
0 rs | rt rd 0 5 selsl d,s,t MiniRISC-4010
0 rs rt rd 0 6 srlv d,¢t,s
0 rs rt rd 0 7 srav d4,¢t,s.
0 rs 0 0 0 8 jr s

continued

220 ®m Chapter 8—Complete Guide to the MIPS.Instruction Set

TABLE 8.6 continued

31 2625 212018171615 1110 8765 Assembler name ISAdevel
0 rs 0 31 0 9 jalr s
0 rs 0 rd 0 9 jalr d,s
0 rs X rd 0 10 £ffs d,s MiniRISC-4010
0 rs | rt | rd 0 10 movz d,s,t MIPS IV
0 rs X rd 0 11 ffc d,s MiniRISC-4010
0 rs | rt | rd 0 11 movn 4,8, t MIPS IV
0 code 12 syscall code
0 code X 13 break code
0 code X 14 sdbbp code R3900
0 0 0 0 0 15 sync MIPSII
0 0 0 rd 0 16 mfhi 4
0 rs 0 0 0 17 mthi s
0 0 0 rd 0 18 mflo 4
0 rs 0 0 0 19 mtlo s
0 rs | rt | rd 0 20 dsllv 4,¢t,s MIPS III
0 rs | rt | »d 0 22 dsrlv d4,¢,s MIPS III
0 rs | rt | rd 0 23 dsrav d4,t,s MIPS I
0 rs | rt 0 0 24 mult &, ¢t
0 rs | rt 0 0 25 multu s, t
0 rs | rt 0 0 26 div s,t
0 rs | rt 0 0 27 divu g,t
0 rs | rt 0 0 28 dmult s, t MIPS IIT
0 rs | rt 0 0 28 madd s, t | MiniRISC-4010
0 rs | rt 0 0 29 dmultu s, t MIPS 111

TABLE 8.6 continued

8.5 Instruction Encodings ®. 221

31 2625 212018171615 1110 8765 Assembler name ISA level
0 rs xrt 0 0 29 maddu s, t MiniRISC-4010
0 rs rt 0 0 30 ddiv s,t MIPS I
0 rs rt 0 0 30 msub g, t MiniRISC-4010
0 rs | rt 0 0 31 ddivu s, ¢t MIPS III
0 rs | rt 0 0 31 msubu 8, t MiniRISC-4010
0 rs rt rd 0 32 add 4,s,t
0 rs rt rd 0 33 addu 4,8, t
0 rs | rt | rd 0 34 sub 4,8, t
0 rs | rt | rd 0 35 subu d,s,t
0 rs rt rd 0 36 and d,s,t
0 rs rt rd 0 37 or d, s, t
0 rs rt rd 0 38 xor d, s, t
0 rs rt rd 0 39 nor d,s,t
0 rs | rt 0 0 40 maddlé s, t Vr4100
0 rs | rt 0 0 4] dmaddlé s, t Vr4100
0 rs | rt | rd 0 42 slt d,s,t
0 rs rt rd 0 43 sltu d,s,t
0 rs | rt | rd 0 44 dadd d,s.t MIPS 11T
0 rs rt rd 0 45 daddu 4, s, t MIPS III
0 rs | rt | rd 0 46 dsub d, s, t MIPS IIT
0 rs rt rd 0 47 dsubu 4,8, t MIPS III
0 rs rt X 48 tge s, t MIPS I1
0 rs re X 49 tgeu s,t MIPSII
0 rs | rt X 50 tlt s, t MIPS I
0 rs | rt X 51 titu s, ¢t MIPS 1T
0 rs rt X 52 teq s, t MIPS 11
0 rs rt X 54 tne s, ¢t MIPS I1

continued

222 ® Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.6 continued

3 2625 212018171615 1110 8765 o Assembler name ISA level
0 0 rw | rd |shft| 56 dsll d,w, shft MIPS 11T
0 0 rw | rd |shft| 58 dsrl d,w,shft MIPS III
0 0 rw | rd |shft| 59 dsra d,w, shft MIPS 111
0 0 rw | rd [shft| 60 dsll32 d,w,shft MIPS 111
0 0 rw | rd |shft| 62 dsrl32 d,w,shft MIPS 111
0 0 rw | rd |shft| 63 dsra32 d,w, shft MIPS I
1 rs 0 broffset bltz s,p
1 rs 1 broffset bgez s,p
1 rs 2 broffset bltzl 8,p MIPS II
1 rs 3 broffset bgezl s,p MIPS 11
1 rs 8 constant tgei s, MIPS 11
i rs 9 consgstant tgeiu 8,7 MIPS 11
1 rs 10 constant tltl 5,7 MIPS II
1 rs 11 constant tltiu 8,7 MIPS II
1 rs 12 constant teqgi s, MIPS II
1 rs 14 constant tnei s,7 MIPS II
1 rs 16 broffset bltzal s,p
1 rs 17 broffset bgezal s,p
1 rs | 18 broffset bltzall s,p MIPS II
1 rs 19 broffset bgezall s,p MIPS 1T
2 target j target
3 target) jal target
4 rs rt broffset beq s,t,p
5 rs rt broffset bne s,t,p

TABLE 8.6 continued

8.5 Instruction Encodings

m 223

L

31 2625 212018171615 1110 8765 Assembler name ISA level
6 rs 0 broffset blez s3,p
7 rs 0 broffset bgtz s,p
8 rs | rd (signed) const addi 4, s,const
9 rs | rd (signed) const addiu d, s, const
10 rs | rd (signed) const sltl d,s,const
11 rs | rd | (signed) const sltiu d, s, const
12 rs | rd | (unsigned) const andi d, s, const
13 rs | rd | (unsigned) const ori d,s,const
14 rs | rd | (unsigned) const xori d,s,const
15 0 rd | (unsigned) const lui d,const
16 0 rt | cs 0 0 mfc0 t,cs
16 1 rt | cs 0 0 dmfcO ¢t,cs MIPS III
16 2 rt cs 0 0 cfcl t,cs
16 4 rt | cd 0 0 mtcO ¢t,cd
16 5 rt | cd 0 0 dmtcO t,cd MIPS III
16 6 rt cd 0 0 ctcO t,cd
16 16 0 0 0 1 tlbr
16 16 0 0 0 2 tlbwi
16 16 0 0 0 6 tlbwxr
16 16 0 0 0 8 tlbp
16 16 0 0 0 16 rfe MIPS I only
16 ‘16 0 0 0 24 eret MIPS 111
16 16 0 0 0 31 dret MIPS II only
16 16 0 0 0 32 waiti MiniRISC-4010
16 16 0 0 0 33 standby Vr4100
16 16 0 0 0 34 suspend Vr4100

continued

224 m Chapter 8—Complete Guide to the MIPS Instuuction Set

TABLE 8.6 continued

3t 2625 202018171615 1110 8765 o Assembler name ISA leve!
16 8 0 broffset bcOf p
16 8 1 broffset belOt p
16 8 2 broffset bcO0£fl p MIPS 11
16 8 3 broffset becOtl p MIPSII
17 0 rt fs 0 0 mfcl ¢, fs
17 1 rt £fs 0 0 dmfcl ¢, fs MIPSIII
17 2 rt cs 0 0 cfecl t,cs
17 4 rt cs 0 0 mtecl t,cs
17 5 re | cs 0 0 dmtcl t,cs MIPS III
17 6 rt cs 0 0 ctcl t,cs
17 16 ft fs £d 0 add.s £4,fs, ft
17 17 ft fs fd 0 add.d f£4, fs, ft
17 16 ft fs £d 1 sub.s fd, fs, ft
17 17 ft fs £d 1 sub.d f£4, fs, ft
17 16 ft £s fd 2 mul.s fd,fs, ft
17 17 ft fs fd 2 mul.d £d, fs, ft
17 16 ft | £s | £d 3 div.s f£d, fs, ft
17 17 ft | £s | £d 3 div.d £d, fs, ft
17 | 16| o | £s| £a| 4 sqrt.s fd,fs MIPS II
17 17 0 fs | f£d 4 sqrt.d fd,fs MIPS II
17 16 0 fs | fd 5 abs.s fd, fs
17 17 0 £fs | £4 5 abs.d fd, fs ,
17 16 0 fs | fd 6 mov.s fd,fs g
17 17 0 fs | fd 6 mov.d fd, fs
17 | 16| 0 | £s| £a| 7 neg.s £d,fs 4
17 17 0 fs | f4d 7 neg.d fd, fs ;

TABLE 8.6 continued

8.5

Instruction Encodings ® 225

3t 2625 212018171615 1110 8765 Assembler name ISA Ievei
17 16 0 fg £d 8 round.l.s fd, fs MIPS II1
17 17 0 fa | fd 8 round.l.d £d, fs MIPS III
17 16 0 fs | fd 9 trunc.l.s fd, fs MIPS III
17 17 0 fgs | fd 9 trunc.l.d f£d, fs MIPS III
17 16 0 fg | £4 10 ceil.l.s fd,fs MIPS IIT
17 17 0 fg | fd 10 ceil.l.qd f£4,fs MIPS HI
17 16 0 fs | fd 11 floor.1l.s fd, fs MIPS III
17 17 0 fg | fd 11 flooxr.1l.4 £4, fs MIPS III
17 16 0 £s fd 12 round.w.s8 fd, fs MIPS I
17 17 0 fg | fd 12 round.w.d f£d, fs MIPS II
17 16 0 fs | fd 13 trunc.w.s fd,fs MIPS 11
17 17 0 £fs | fd 13 trunc.w.d fd, fs MIPS II
17 16 0 fs | £d 14 ceil.w.s £d,fs MIPS I
17 17 0 fs | £fd 14 ceil.w.d £d,fs MIPS I
17 16 0 fs | fd 15 floor.w.s f£d, fs MIPS II
17 17 0 fs | £fd 15 floor.w.d fd, fs MIPS II
17 16 | N|(O| £f8 £d 17 movE.s fd,fs,N MIPS IV
17 | 16 |N|1| £s | £4 | 17 | movt.s f£d,fs,N MIPS IV
17 17 | N[{O]| fs £d 17 movf.d fd4,fs,N MIPS IV
17 17 | N{1} f£f8 £d 17 movt.d £4,fs,N MIPS IV
17 16 rt | £f8 | fd 18 movz.s fd,fs,t MIPS IV
17 17 rt | £fs | f£d 18 movz.d f£d,fs,t MIPS IV
17 16 rt | f8 | £d 19 movn.s f£d,fs,t MIPS IV
17 17 rt | £fs | £d 19 movn.d fd, fs,t MIPS IV
17 16 0 £s fd 21 recip.s f£d, fs MIPS IV

continued

-

226 ®m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.6 continued

3 2625 212018171615 1110 87 65 o Assembler name ISA level
17 17 0 £fs £d 21 recip.d f£d4, £s MIPS IV
17 16 0 fs fd 22 raqgqrt.s f£d4d,fs MIPS IV
17 17 0 £s £d 22 reqrt.d £d,fs MIPS IV

17 17 0 £fs fd 32 cvt.s.d4 £4, fs

17 20 0 fs f£d 32 cvt.s.w £d, fs
17 21 0 fs £d 32 cvt.s.l £d4,fs MIPS 111
17 16 0 £s £d 33 cvt.d.s fd,fs
17 20 0 fs £d 33 cvt.d.w £d, £s
17 21 0 fs | £fd 33 cvt.d.l £d, fs MIPS 111

17 16 0 fs fd 36 cvt.w.s fd, fs

17 17 0 fs £d 36 cvt.w.d £4,fs

17 16 0 fs | £d 37 cvt.l.s £d,fs MIPS III

17 17 0 -] £d 37 evt.l.d4 £4, fs MIPS 111

17 16 ft fs | M|x| 48 c.f.8 M, s, ft MIPS IV if M!=0
17 17 ft fs | M|x| 48 c.f.4d M, fs, ft MIPS IV if M!=0
17 16 ft | fs8 | M|X| 49 c.un.s M, £s, ft MIPS IV if M!=0
17 17 ft | £f8 | M|{x| 49 c.un.d M, fs, ft MIPS IV if M!=0
17 16 ft fs | M|X| 50 c.eq.s M, fs, ft MIPS IV if M!=0
17 17 ft fs | M|x] 50 c.eq.d M, fs, ft MIPS IV if M!=0
17 | 16 | £t | £s | M[x| 51 | c.ueq.s M, fs, £t MIPS IV if M!=0
17 17 ft | £8 | M|x| 51 c.ueq.d M, fs, ft MIPS IV if M!=0
17 16 ft fs | M|x| 52 c.olt.s M, fs, ft MIPS 1V if M!=0
17 17 | £t | £8 | M|x| 52 c.olt.d M, fs, ft MIPS IV if M!=0
17 16 ft fs | M|X| 53 c.ult.s M, £s, ft MIPS IV if M!=0
17 17 ft fs | M[X| 53 c.ult.d M, £s, ft MIPS IV if M!=0

M

17 16 ft fs x| 54 c.ole.s M, fs, ft MIPS IV if M!=0

TABLE 8.6 continued

8.5

Instruction Encodings

" 227

31 2625 212018171615 1110 8765 Assembler name ISA level
17 | 17 | £ | £s | M|x| 54 | c.ole.d M, £s, £t MIPS IV if M!=0
17 16 £t fs | M|x| 55 c.ule.s M, £s, ft MIPS IV if M!=0
17 17 ft fs | M|X| 55 c.ule.d M, fs, £t MIPS IV if M!=0
17 16 ft fs | M|X{ 56 c.sf.as M, fs, ft MIPS IV if M!1=0
17 17 ft fg | M|X|{ 56 c.s8f.d M, fs, £t MIPS IV if M!=0
17 16 ft fs | M|x| 58 c.seq.s M, fs, ft MIPS IV if M!=0
17 17 ft fs | M|x| 58 c.seq.d M, £fg, ft MIPS IV if M!=0
17 16 ft fs | M|X| 59 c.ngl.s M, fs, ft MIPS IV if M!=0
17 17 ft fs | M|x| 59 c.ngl.d M, £s, ft MIPS IV if M!=0
17 16 | ft | fs | M|x| 60 c.lt.s M, fs, ft MIPS IV if M!=0
17 17 £t fs | M|x| 60 c.lt.d M, £8, ft MIPS IV if M!=0
17 16 £t fs | M|x| 61 c.nge.s M, fs, ft MIPS IV if M!=0
17 17 ft fs | M|x| 61 c.nge.d M, £s, ft MIPS IV if M!=0
17 16 ft fs | M|X| 62 c.le.s M, fs, ft MIPS IV if M1=0
17 17 ft | £s5 | M|{x| 62 c.le.d M, fs, ft MIPS IV if M!=0
17 16 ft fs | M|x| 63 c.ngt.s M, £s, ft MIPS IV if M!=0
17 17 ft fs | M|x| 63 c.ngt.d M, fs, ft MIPS IV if M!=0
17 8 0 broffset belf p
17 8 1 broffget belt p
17 8 2 broffset bclfl p MIPS I
17 8 3 broffset beltl p MIPS I
17 8 N|O broffset bclf N,p MIPS IV
17 8 Nl broffset bclt N,p MIPS IV
17 8 N|2 broffset bclfl N, p MIPS IV
17 8 N|3 broffset becltl N, p MIPS IV

continued

~y

< 228 @ Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.6 continued

31 2625 212018171615 1110 8765 o Assembler name ISA level
18 0 rt | cs 0 0 mfc2 t,cs
18 2 rt | cs 0 0 cfc2 t,cs
18 4 rt | cs 0 0 mtc2 t,cs
18 6 rt | cs 0 0 ctc2 t,cs
18 8 0 broffset be2f p
18 8 1 broffset bec2t p
18 8 2 broffset bc2fl p MIPS II
18 8 3 broffset bec2tl p MIPS II
19 rb | rt 0 £d 0 lwxcl f£d,t(b) MIPS IV
19 rb | rt 0 £d 1 laxcl £d, t(b) MIPS IV
19 rb | rt | fs 0 8 swxcl f£s, t(b) MIPS IV
19 rb | rt | £fs 0 9 sdxcl fs, t(b) MIPS IV
19 rb | rt |hint| O 15 prefx hint, t(b) MIPS IV

19 fr | ft fs £d 32 madd.s fd, fr,fs, ft MIPS IV

19 | £r | £ | £8 | £4 | 33 madd.d fd, fr, £s, ft MIPS IV

19 fr | ft fs £d4 40 msub.s fd, fr, fs, ft MIPS IV

19 fr | ft £s £4 41 msub.d f£4, fr, fs, ft MIPS IV

19 fr | £t | £8 | £d 48 nmadd.s f£d, fr,fs,ft MIPSIV

19 fr | ft fs £d 49 nmadd.d f£d4, fr, fs, ft MIPS IV

19 fr ft b -] fd 56 nmsub.s8 fd, fr, fs,ft MIPS IV

19 fr | ft | fs fd 57 nmgub.d f£4, fr, fs, ft MIPS IV

20 rs | rt broffsat beql s,t,p MIPS 11
21 rs 0 broffset bnezl s,p MIPS II E
21 rs rt broffset bnel s,t,p MIPS 11

22 rs 0 broffset blezl s,p MIPSII

TABLE 8.6 continued

8.5 Instruction Encodings m 229

B 2625 212018171615 1110 8765 Assembler name ISA level
23 rs 0 broffset bgtzl s,p MIPS II
24 rs rd (signed) const daddi d, s, const MIPS I
25 rs | rd (signed) const daddiu d, s, const MIPS III
26 rb | rt offset 14l ¢,o0(b) MIPS III
27 b | rt offset 1dr ¢, o(b) MIPS 111
28 rs | rt 0 0 0 mad s, t R4650
28 rs | rt | rd 0 0 mad 4,8, ¢t R3900
28 rs | rt 0 0 1 madu s, t R4650
28 rs | rt | rd 0 2 mul d,8,t R4650
28 rs | rt constant addciu ¢, r, 75 MiniRISC-4010
32 rb | rt offset 1b ¢, o(b)

33 rb | rt offset 1h t,o(b)

34 rb | rt offset lwl t; o(b)

35 rb | rt offset lw t,o(b)

36 rb | rt offset 1bu t,o(b)

37 rb | rt offset lhu t,o0(b)

38 rb | rt offset lwr t,o(b)

39 rb | rt offset lwu ¢, o0(b) MIPS HI
40 rb rt offset sb t,o(b)

41 rb | rt offset sh t,o(b)

42 rb | rt offset swl t,o(b)

43 rb | rt offset sw t,o(b)

44 rb | rt offget sdl t,o(b) MIPS III
45 rb | rt offget sdr t,o(b) MIPS III
46 rb | rt offset swr t,o(b)

continued

230 ®m Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.6 continued

3l 2625 202018171615 1110 8765 o Assembler name ISA level
47 0 1 0 0 0 flushi MiniRISC-4010
47 0 2 0 0 0 flushd MiniRISC-4010
47 0 3 0 0 0 flushid MiniRISC-4010
47 rb 4 offset wb o(b) MiniRISC-4010
47 rb |cacho offset cache cachop, o(b) MIPS 111
48 rb | rt offset 11 ¢t,o(b) MIPS I
49 rb | ft offsget l.8 t,o(b)
50 rb | cd offset lwc2 cd, o(b)
51 rb |hint offset pref hint,o(b) MIPS IV
52 rb | rt offget 114 ¢t,o(b) MIPS 11T
53 rb | ft offset 1.4 ft,o(b) MIPS I
54 rb | cd offsget ldc2 cd,o(b) MIPS II
55 rb | rt offset 14 ¢,o(b) MIPS II1
56 rb | rt offget sc t,o(b) MIPS II
57 rb | ft offset s.8 ft,o(b)
57 rb ft offset swcl ft,o(b)
58 rb | cs offset swc2 cs,o0(b)
60 rb | rt offsget scd t,o(b) MIPS II1
61 rb | ft offget s.d ft,o(b) MIPSII
61 rb | ft offget sdcl ft,o(b) MIPS I
62 rb | cs offset sdc2 cs,0(b) MIPS II
63 rb | rt offset sd t,o(b) MIPSIIT

8.5.3

8.6

8.6.1

8.6 Instructions by Functional Group m 231

Encodings and Simple Implementation

If you look at the encodings of the instructions you can sometimes see how the
CPU is designed. Although there are variable encodings, those fields that are
required very early in the pipeline are encoded in a totally regular way:

® Source registers are always in the same place, so that the CPU can fetch
two operands from the integer register file without any conditional de-
coding. In some instructions, both registers will not be needed, but since
the register file is designed to provide two source values on every clock
cycle nothing has been lost.

= The 16-bit constant is always in the same place, permitting the appro-
priate instruction bits to be fed directly into the ALU’s input multiplexer
without conditional shifts.

Instructions by Functional Group

We’ve divided the instruction set into reasonable chunks, in this order:

a Nop

® Register/register moves: widely used, if not exciting; includes condi-
tional moves added in MIPS IV

" Load constant: integer immediate values and addresses
= Arithmetical/logical instructions

s Integer multiply, divide, and remainder

® Integer multiply-accumulate

8 Loads and stores

8 Jumps, subroutine calls, and branches

® Breakpoint and trap

» CPO functions: instructions for CPU control

a Floating point

= ATMizer-II floating point: obscure special instructions

Nop

nop: The MIPS instruction set is rich in nops, since any instruction with
zero as a destination is guaranteed to do nothing. The favored one is s11
zero, zero, zero whose binary encoding is a zero-valued word.

232 =® Chapter 8—Complete Guide to the MIPS Instruction Set

8.6.2

8.6.3

8.6.4

Register/Register Moves

move: Usually implemented with an or with the §zero register. A few CPUs—
where for some reason adding is better supported than logical operations—use
addu.!

Conditional Move

Useful branch-minimizing addition to instruction set in MIPS IV (see Sec-
tion 8.4.3).

mov£, movt: conditional move of integer register, testing floating-point con-
dition code.

movn, movz: Conditional move of integer register subject to state of another
register.

Load Constant

dla, 1a: Macro-instructions to load the address of some labelled location or
variable in the program. You only need d1a when using 64-bit pointers (which
you'll only do in big unix-type systems). These instructions accept the same
addressing modes as do all loads and stores (even though they do quite different
things with them).

dl1i, 1i: Load constant immediate. dli is the 64-bit version, not supported
by all toolchains, and is only needed to load unsigned numbers too big to fit
in 32 bits. This is a macro whose length varies according to the size of the
constant.

lui: Load upper immediate. The 16-bit constant is loaded into bits 16-31
of a register, with bits 32-63 (if applicable) set equal to bit 31 and bits 0-15
cleared. This instruction is one half of the pair of machine instructions that
load an arbitrary 32-bit constant. Assembler programmers will probably never
write this explicitly; it is used implicitly for macros like 14 (load immediate),
1a (load address), and above all for implementing useful addressing modes.

Arithmetical/Logical

The arithmetical/logical instructions are further broken down into the follow-
ing types:

1. For example, some LSI MiniRISC CPUs have the ability to run two instructions at once under
some circumstances and adds a pair with more instructions than logical operations do.

8.6 Instructions by Functional Group m 233

Add

add, addi, dadd, daddi: Obscure and rarely used alternate forms of ad-
du, which trap when the result would overflow. Probably of use to Cobol
compilers.

addciu: Add-with-carry instruction, specific to the LSI MiniRISC core.

addu, addiu, daddu, daddiu: Addition, with separate 32-bit and 64-bit ver-
sions. Here and throughout the instruction set, 64-bit versions of instructions
are marked with a leading “d” (for doubleword); also, you don’t need to spec-
ify the “immediate” mnemonic—you just feed the assembler a constant. If
the constant you need can’t be represented in the 16-bit field provided in the
instruction, then the assembler will produce a sequence of instructions.

dsub, sub: Subtract variants that trap on overflow.

dsubu, subu: Regular 64- and 32-bit subtraction (there isn’t a subtract-imme-
diate, of course, because the constant in add-immediate can be negative).

Miscellaneous Arithmetic

abs, dabs: Absolute value; expands to set and branch (or conditional move if
there is one).

dneg, neg, dnegu, negu: Unary negate; mnemonics without U will trap on
overflow.

max, min: Only available on LSI MiniRISC CPUs.

Bitwise Logical Instructions

and, andi, or, ori, xor, xori, nor: Three-operand bitwise logical opera-
tions. Don’t write the “immediate” types—the assembler will generate them
automatically when fed a constant operand. Note that there’s no nori instruc-
tion.

not: Two-operand instruction implemented with nor.

Shifts and Rotates

drol, drox, rol, ror: Rotate right and left; expand to four-instruction se-
quence. :

dsll,ds1132,dsl1lv: 64-bit (double) shift left, bringing zeroes into low bits.
The three different instructions provide for different ways of specifying the shift
amount: by a constant 0-31 bits, by a constant 32-63 bits, or by using the low
6 bits of the contents of another register. Assembler programmers should just
write the ds11 mnemonic.

234 m Chapter 8—Complete Guide to the MIPS Instruction Set

8.6.5

dsra, dsra32, dsrav: 64-bit (double) shift right arithmetic. This is “arith-
metic” in that it propagates copies of bit 63—the sign bit—into high bits.
That means it implements a correct division by a power of two when applied
to signed 64-bit integer data. Always write the dsra mnemonic; the assem-
bler will choose the instruction format according to how the shift amount is
specified.

dsrl, dsrl32,dsrlv: 64-bit (double) shift right logical. This is “logical” in
that it brings zeros into high bits. Although there are three different instruc-
tions, assembler programmers should always use the dsr1 mnemonic; the as-
sembler will choose the instruction format according to how the shift amount
is specified.

811,s1lv: 32-bit shift left. You only need to write the 811 mnemonic.
sra,srav: Shift right arithmetic (propagating the sign bit). Always write sxa.

srl, srlv: Shift right logical (bringing zeros into high bits). Always write
srl.

Set if...

slt, slti, sltiu, sltu: Hardware instructions, which write a 1 if the con-
dition is satisfied and a 0 otherwise. Write s1t or sltu.

seq, sge, sgeu, sgt, sgtu, sle, sleu, sne: Macro-instructions to set the
destination according to more complex conditions.

Obscure Bit-Related Instructions

ffc, ££a: Find first clear bit, find first set bit (LSI MiniRISC only instruc-
tions).

selsl, selsr: Provided only on LSI MiniRISC CPUs. Using two registers to
hold a 64-bit bitfield, rotate left/rotate right and select a 32-bit result. The ro-
tate amount comes from the special CPO register ROTATE, which is CPO register
23 and holds a number between 0 and 31, for which only bits 0—4 are imple-
mented. This kind of shift is useful for dealing with bits moving between words
in bitmap graphic applications. It also provides a true rotate operation if the
same register is used for both source operands.

Integer Multiply, Diilide, and Remainder

The integer multiply and divide machine instructions are unusual, because the
MIPS multiplier is a separate unit not built in to the normal pipeline and takes
much longer to produce results than regular integer instructions. Machine in-
structions are available to fire off a multiply or divide, which then proceeds in
parallel with the instructions.

R

o

8.6 Instructions by Functional Group m 235

Integer multiply-accumulate and multiply-add instructiops are built with
the same mechanism (see Section 8.6.6).

As a result of being handled by a separate unit, multiply/divide instruction-
s don’t include overflow or divide-by-zero tests (they can’t cause exceptions
because they are running asynchronously) and don't usually deliver their re-
sults into general-purpose registers (it would complicate the pipeline by fight-
ing a later instruction for the ability to write the register file). Instead, multi-
ply/divide results appear in the two separate registers hi and 1o. You can only
access these values with the two special instructions mfhi and m€lo. Even in
the earliest MIPS CPUs, the result registers are interlocked: If you try to read
the result before it is ready, the CPU is stalled until the data arrives.

However, when you write the usual assembler mnemonics for multiply/
divide, the assembler will generate a sequence of instructions that simulate a
three-operand instruction and perform overflow checking. A aiv (signed di-
vide) may expand into as many as 13 instructions. The extra instructions run
in parallel with the hardware divider so that, usually, no time is wasted (the
divide itself takes 35-75 cycles on most MIPS CPUs).

MIPS Corporation’s assembler will convert constant multiplication, and di-
vision/remainder by constant powers of two, into the appropriate shifts, masks,
etc. But the assembler found in most toolchains is likely to leave this to the
compiler.

By a less-than-obvious convention, a multiply or divide written with the
destination register zero (asindiv zero, s, t) will give you the raw machine
instruction.! It is then up to you to fetch the result from hi and/or 1o and to
do any checking you need.

Following is the comprehensive list of multiply/divide instructions.

ddiv, ddivu, div, divu: Three-operand macro-instruction for integer di-
vision, with 64-/32-bit and signed/unsigned options. All trap on divide-by-
zero; signed types trap on overflow. Use destination zero to obtain just the
divide-start instruction.

ddivd, ddivdu, divd, divdu: Mnemonics for raw machine instruction pro-
vided by some toolchains. It is better to use ddiv zero, ... instead.

divo,divou: Explicit name for divide with overflow check, but really just the
same as writing div, diwvu.

dmul, mul, mulu: Three-operand 64-/32-bit multiply macro-instruciion.
There is no overflow check; as a result, there doesn’t need to be an unsigned
version of the macro—the truncated result is the same for signed and unsigned
interpretation.

1. Some toolkits interpret special mnemonics, mult for multiplication and divd for division, for
the machine instructions. However, specifying zero as the destination, though bizarre, is more
portable.

236 m Chapter 8—Complete Guide to the MIPS Instruction Set

8.6.6

Toshiba’s R3900, IDT’s R4640/R4650, and QED CPUs implement three-
operand multiply directly; the instruction is called mul. It is completely equiv-
alent to the macro, in that hi and 1o still get set, but the least-significant 32
bits of the result are also put directly into the general-purpose register d. The
CPUs implementing mul also have a muly; it always returns the same result in
the destination register, but it leaves an appropriate extension in hi.

mulo, mulou, dmulo, dmulou: Multiply macros that trap if the result over-
flows beyond what will fit in one general-purpose register.

dmult, dmultu, mult, multu:- The machine instruction that starts off a mul-
tiply, with signed/unsigned and 32-/64-bit variants. The resuit never overflows,
because there’s 64 and 128 bits’ worth of result respectively. The least significant
part of a result gets stored in 1o and the most significant part in hi.

drem, dremu, rem, remu: Remainder operations, implemented as a divide
followed by m£hi. The remainder is kept in the hi register.

mfhi, mflo, mthi, mtlo: Move from hi, etc. These are instructions for ac-
cessing the integer multiply/divide unit result registers hi and 1o. You won't
write the mf1o/ m€hi instructions in regular code if you stick to the synthetic
mul and div instructions, which retrieve result data for themselves.

MIPS integer multiply, mult or multu, always produces a result with twice
the bit length of the general-purpose registers, eliminating the possibility of
overflow. The high-order and low-order register-sized pieces of the result are
returned in hi and 1o, respectively.

Divide operations put the result in 1o and the integer remainder in hi.
mthi and mt1o are used only when restoring the CPU state after an exception.

Integer Multiply-Accumulate

Some MIPS CPUs have various forms of integer multiply-accumulate instruc-
tions—none of them in a MIPS standard instruction set. All these instructions
take two general-purpose registers and accumulate into 1o and hi. As usual,
“u” denotes an unsigned variant, but otherwise the mnemonic (and instruction
code) is specific to a particular CPU implementation.

dmadd1lsé, maddi6: Specific to NEC Vr4100, these variants gain speed by only
accepting 16-bit operands, making them of very limited use to a C compiler.
dmadd16 accumulates a 64-bit result in the 64-bit 1o register.

mad,madu: Found in Toshiba R3900, IDT R4640/4650, and QED CPUs, these

take two 32-bit operands and accumulate a 64-bit result split between the 1o

and hi registers. The Toshiba R3900 allows a three-operand version, mad
d, s, t, in which the accumulated value is also transferred to the general-
purpose register d.

prr—

8.6.7

8.6 Instructions by Functional Group m 237

madd, maddu, msub, msubu: These do the same thing as the corresponding
mad etc. instructions, but have different encodings. Found only in LSI’s
MiniRISC-4010 and derivative core CPUs.

Loads and Stores

This subsection lists all the assembler’s integer load/store instructions and any-
thing else that addresses memory. Note the following points:

8 There are separate instructions for the different data widths supported:
8 bit (byte), 16 bit (halfword), 32 bit (word), and 64 bit (doubleword).

= For data types smaller than the machine register, there’s a choice of zero-
extending (“u” suffix for unsigned) or sign-extending the operation.

= All the instructions listed here may be written with any addressing mode
the assembler supports (see Section 9.4).

® A store instruction is written with the source register first and the ad-
dress register second to match the syntax for loads; this breaks the gen-
eral rule that in MIPS instructions the destination is first.

® Machine load instructions require that the data be naturally aligned
(halfwords on a 2-byte boundary, words on a 4-byte boundary, double-
words on an 8-byte boundary). But the assembler supports a complete
set of macro-instructions for loading data that may be unaligned, and

these instructions have a “u” prefix (for unaligned).

All data structures that are declared as part of a standard C program will
be aligned correctly. But you may meet unaligned data from addresses
computed at run time, data structures declared using a nonstandard
language extension, data read in from a foreign file, and so on.

= All load instructions deliver their result at least one clock cycle later
in the pipeline than computational instructions. In MIPS I CPUs, use
of loaded data in the immediately following instruction is illegal; how-
ever, for any MIPS CPU efficiency is maximized by filling the load delay
slot with a useful but nondependent instruction. For MIPS I all decent
assemblers should guarantee this by inserting a nop if necessary.

Following is a list of the instructions.

1b, 1bu: Load byte then sign-extend or zero-extend, respectively, to fill the
whole register.

14: Load doubleword (64 bits). This machine instruction is available only
on 64-bit CPUs, but assemblers for 32-bit targets will often implement it as
a macro-instruction that loads 64 bits from memory into two consecutive in-

238 m Chapter 8—Complete Guide to the MIPS Instruction Set

teger registers. This is probably a really bad idea, but someone wanted some
compatibility.

141, 1dr, 1wl, lwr, sdl, sdr, swl, swx: Load/store left/right, in word/
doubleword versions. Used in pairs to implement unaligned load/store op-
erations like ulw, though you can always do it for yourself (see Section 8.4.1).

1h, 1hu: Load halfword (16 bits), then sign-extend or zero-extend to fill the
register.

11,114, sc, scd: Load-linked and store-conditional (32- and 64-bit versions);
strange instructions for semaphores (see Section 8.4.2).

1w, 1wu: Load word (32 bits), then sign-extend or zero-extend to fill the reg-
ister. 1wu is found only in 64-bit CPUs. :

pref, prefx: Prefetch data into the cache (see Section 8.4.8). This is only
available in MIPS IV and higher ISAs and is a nop on many of those CPUs.
While pref takes the usual addressing modes, prefx adds a register+register
mode implemented in a single instruction.

sb: Store byte (8 bits).

sd: Store doubleword (64 bits). This may be a macro (storing two consecutive
integer registers into a 64-bit memory location) for 32-bit CPUs.

sh: Store halfword (16 bits).

sw: Store word (32 bits).

uld, ulh, ulhu, ulw, usd, ush,usw: Unaligned load/store macros. The dou-
bleword and word versions are implemented as macro-instructions using the
special load left/load right instructions; halfword operations are built as byte
memory accesses, shifts, and ors. Note that normal delay slot rules do not ap-
ply between the constituent load left/load right of an unaligned operation; the
pipeline is designed to let them run head to tail.

Floating-Point Load and Store

1.4,1.8,s.4,s.8: Load/store double (64-bit format) and single (32-bit for-
mat). Alignment is required, and no unaligned versions are given here. On
32-bit CPUs, 1.d and s.d are two-instruction macros that load/store two 32-
bit chunks of memory into/from consecutive FP registers (see Section 7.5).
These instructions are also called 1de1, 1wel, sdel, and swel {load/store
word/double to coprocessor 1), but don’t write them like that.

ldxcl, lwxcl, sdxcl, swxcl: Base register + offset register addressing mode
loads and stores, introduced with MIPS IV. In the instruction ldxcl f£d,
ri(rb), the full address must lie in the same program memory region as is
pointed to by the base register rb or bad things might happen.

8.6 Instructions by Functional Group = 239

If your toolkit will accept syntax like 1.4 £d, ri(rb), then use it.

8.6.8 Jumps, Subroutine Calls, and Branches

The MIPS architecture follows Motorola nomenclature for these instructions,
as follows:

® PC-relative instructions are called “branch” and absolute-addressed in-
structions “jump”; the operation mnemionics begin with b or 5.

® A subroutine call is “jump and link” or “branch and link;” and the mne-
monicsend...al.

m All the branch instructions, even branch and link, are conditional, test-
ing one or two registers. Unconditional versions can be and are readily
synthesized, for example beq $0, $0, label.

3: This instruction transfers control unconditionally to an absolute address.
Actually, j doesn’t quite manage a 32-bit address: The top 4 address bits of the
target are not defined by the instruction and the top 4 bits of the current PC
value are used instead. Most of the time this doesn’t matter; 28 bits still gives a
maximum code size of 256 MB.

To reach a long way away, you must use the 3x (jump to register) instruc-
tion; which is also used for computed jumps. You can write the 3 mnemonic
with a register, but it’s quite popular not to do so.

jal, jalr: These implement a direct and indirect subroutine call. As well as
jumping to the specified address, they store the return address (the instruc-
tion’s own address + 8) in register ra, which is the alias for $31.! Why add 8
to the program counter? Remember that jump instructions, like branches, al-
ways execute the immediately following branch delay slot instruction, so the re-
turn address needs to be the instruction after the branch delay slot. Subroutine
return is done with a jump to register, most often jr ra.

Position-independent subroutine calls can use the bal, bgezal, and
bltzal instructions.

b: Unconditional PC-relative (though relatively short-range) branch.
bal: PC-relative function call.

beO£, bec0£fl, bcOt, beOtl, be2f, bc2£1, be2t, be2tl: Branches that test
the coprocessor 0 or coprocessor 2 condition bit, neither of which exist on
most modern CPUs. On older CPUs these test an input pin.

1. In fact the Jalxr machine instruction allows you to specify a register other than §31 to receive
the return address, but this is seldom useful, and the assembler will automatically put in $31 if
you do not specify one. -

240 m Chapter 8—Complete Guide to the MIPS Instruction Set

8.6.9

8.6.10

belf,belfl,belt,beltl: Branch on floating-point condition bit (multiple
in MIPS 1V and later CPUs).

beq, beql, beqz, beqzl, bge, bgel, bgeu, bgeul,bgez, bgezl, bgt, bgtl,
bgtu, bgtul, bgtz, bgtzl, ble, blel, bleu, bleul, blez, blezl, blt,
bltl, bltu, bltul, bltz, bltzl, bne, bnel, bnez, bnezl: A comprehen-
sive set of two- and one-operand compare-and-branch instructions, most of
them macros.

bgezal, bgezall, bltzal,bltzall: Raw machine instructions for condi-
tional function calls, if you ever need to do such a thing.

Breakpoint and Trap

break: Causesan exception of type “break.” It is used in traps from assembler-
synthesized code and by debuggers.

sdbbp: Additional breakpoint instruction (only in LSI MiniRISC CPUs).
syscall: Causesan exception type conventionally used for system calls.

teq, teqi, tge, tgei, tgeiu, tgey, tlt, tlti, tltiu, tltuy, tne, tnei:
Conditional exception, testing various one- and two-operand conditions.
These are for compilers and interpreters that want to implement run-time
checks to array bounds and so on.

CPO Functions

CPO functions can be classified under the following types:

Move To/From

cfc0, ctc0: Move data in and out of CPO control registers, of which there are
none in any MIPS CPUs defined to date. But there may be such registers one
day soon.

mfc0, mtc0, dmfcO, dmtc0: Move data between CPO registers and general-
purpose registers.

cfc2, ctc2, dmfc2, dmtc2, mfc2, mtc2: Instructions for coprocessor 2, if
implemented. It has not often been done.
Special Instructions for CPU Control

eret: Return from exception, as used by all MIPS Il and higher CPUs to date
(see Chapter 5).

dret: Return from exception (R6000 version). This instruction is obsolete
and not described in this book.

i

8.6.11

8.6 Instructions by Functional Group m 241

rfe: Restore status register at end of exception; to be placed in the branch
delay slot of the 3 instruction, which returns coritrol to the exception victim
after an exception in any MIPS I CPU built to date (see Chapter 5).

cache: The polymorphic cache control instruction, introduced with MIPS III
(see Section 4.10).

sync: Memory access synchronizer for CPUs that might perform load/stores
out of order (see Section 8.4.9).

t1bp, tlbr, tlbwi, t1bwr: Instructions to control the TLB, or memory trans-
lation hardware (see Section 6.4).

flushd,wb: Cache control instructions specific to LSI MiniRISC CPUs. Con-
sult your CPU manual for details.

waiti: Enter power-down mode (LSI MiniRISC CPUs).

standby, suspend: Enter power-down mode (NEC Vr4100 CPUs).

Floating Point

Floating-point instructions are listed under the following types:

Move Between FP and Integer
cfel, ctel: Access to FP control registers (ID and control/status).

dmfcl,dmtcl, mfcl,mtcl: Move data between FP and general registers.

Move Between FP Registers
mov.s,mov.d: Regular moves.

movt.d,movt.s,movf.s,movE.d: Move only if some FP condition bit is set
or clear.

movn. s, movz.s, mova.d, movz.d: Move only if some general register is
zero/nonzero.
Load Constant

1i.d,1i.s: Macro to load a floating-point constant, which is usually imple-
mented by planting a constant in an initialized data area and then loading from
it.

FP Sign Fiddling

These instructions can’t ever cause an FP exception, because they don’t exam-
ine the data at all—they just flip the sign bit.

242 m- Chapter 8—Complete Guide to the MIPS Instruction Set

8.6.12

abs.s,abs.d: Absolute value.

neg.s,neg.d: Negate.

FP Arithmetic

add.s,add.d,div.s,div.4,mul.s,mul.d, sub. s, sub.d: Three-operand
arithmetic.

madd.s,madd.qd,msub. s,msub.d, nmadd. s,nmadd.d, nmsub. s, nmsub.a:
Four-operand multiply-add, plus subtract and negate-result options.

sqrt.s, sqrt.d: IEEE754-accurate square root.

EP Arithmetic (Approximate)

These instructions produce results fast but not to the accuracy required by
IEEE754.

recip.s,recip.d: Reciprocal.

rsqrt.s,rsqrt.d: Reciprocal square root.

FP Test

c.eq.s etc...: A vast set of compare-and-set-flag instructions (see Sec-
tion 7.9.7).

FP Conversions

ceil.T.F, floor.T.F,round.T.F, trunc.T.F: Familiar floating point to
integer conversions in a variety of formats. The machine instructions appeared
in MIPS III; in MIPS I they’re implemented as macros that set the rounding
mode and then use cvt . T.F. Note also that floating point to integer intercon-
version is performed exclusively between values in FP registers—data is never
converted by the move instruction.

cvt.T.F: Generic floating-point format conversion, with many different T
(to) and F (from) formats allowed.

ATMizer-1I Floating Point

A 15-bit floating-point format specific to ATM communications applications
gives rise to these instructions, which will only be implemented by a few as-
semblers.

r2u,u2r: Convert between integer and fixed point.

radd, rmul, rsub: Arithmetic functions.

&

Chapter

9.1

Assembler Language
Programming

his chapter tells you how to read and write MIPS assembler code. This is
different from just looking at the list of machine instructions for several
reasons:

= MIPS assemblers provide a large number of extra macro-instructions,
so the assembler instruction set is much more extensive than the list of
machine instructions.

= There are a lot of strange incantations (called “directives” or “pseudo-
ops” in assembler circles) used to start and end functions, define data,
control instruction ordering and optimization, and so on.

= It's common (though not compulsory) to pass assembler code through
the C preprocessor before handing it to the assembler itself. The C pre-
processor includes files of definitions and replaces macro names with
their definitions, allowing the language to be less restricted.

Before you read too much further, it may be a good idea to go back and

refresh your memory of Chapter 2, which describes the low-level machine
instruction set, data types, addressing modes, and conventional register usage.

A Simple Example

We'll use the same example as in Chapter 8: an implementation of the C li-
brary function strcmp (1). But this time we’ll include essential elements of
assembler syntax and also show some hand-optimized and -scheduled code.
The algorithm shown is somewhat cleverer than a naive stremp () function.
Its starting point is a simple algorithm, but with all operations separated out to
make them easier to play with, as follows:

243

244 m Chapter 9—Assembler Language Programming

int
! strcmp (char *a0, char *al)
{
char t0, tl;
while (1) {
t0 = a0[0];
a0 += 1;
tl = al[0]);
al += 1;
if (£0 == 0)
break;
if (t0 != tl1)
break;
}
return (t0 - tl1);

Its speed of running will be reduced by the two conditional branches and
two loads per loop iteration, because there isn’t enough work to fili the branch
and load delay slots. It will also be reduced because as it zooms along a string it’s
taking a loop-closing branch on every byte. By unrolling the loop to perform
two comparisons per iteration and juggling a load down to the tail of the loop,
we can rewrite it so that every load and branch gets something useful to put in
its delay slot:

int
strcmp (char *a0, char *al)
{

char t0, tl, t2;

/* first load moved to loop end,
so load for first iteration here */
t0 = al0[0];

while (1) ({

/* first byte */

tl = al[0]);

if (t0 == 0)
break;

a0 += 2;

if (t0 != tl)
break;

/* second byte */
t2 = a0[{-1]; /* we already incremented a0 */

9.1 A Simple Example

t1 = al[l]; /* didn‘t increment al yet */

if (€2 == 0)
/* label .t21 in assembler */
return t2-tl;

al += 2;

if (1 1= t2) {
/* label .t21 in assembler */
return t2-tl;

t0 = a0[0];

/* label .t0l1 in assembler */
return t0-tl;
}

So now let’s translate this code into assembler:

#include <mips/asm.h>
#include <mips/regdef.h>

LEAF (strcmp)
.set nowarn
.get noreorder
1bu t0, 0(a0)
1: 1lbu ti, O0(al)
beq t0, zero,.t0l # load delay slot
addu a0, a0, 2 # branch delay slot
bne to, tl, .t01
1bu t2, -1(a0) # branch delay slot
lbu ti, 1i(al) # load delay slot
beq t2, zero, .t21
addu al, al, 2 # branch delay slot
beq t2, ti, 1b
1bu t0, 0(ao0) # branch delay slot
.t21: 3 ra .
subu v0, t2, tl # branch delay slot
.t01: J ra
subu v0, t0, tl # branch delay slot
.8et reorder
END(strcmp)

W 245

246 m Chapter 9—Assembler Language Programming

Even without all the scheduling, there’s quite a lot of material here. Let’s
examine it in order:

w #include: This file relies on the C preprocessor cpp as a good way of
giving mnemonic names to constants and of defining simple text-
substitution macros. Here cpp is being used to put two header files in
line before submitting the text to the assembler; mips/asm.h defines
the macros LEAF and END (discussed further below), and
mips/regdef.h defines the conventional register names like 0 and
a0 (Section 2.2.1).

® Macros: We're using two macros defined in mips/asm.h, LEAF and
END. Here is the basic definition for LEAF:

#define LEAF(name) \

.text; \

.globl name; \

.ent name; \
name:

LEAF is used to define a simple subroutine (one that calls no other sub-

routine and hence is a “leaf” on the calling tree (see Section 10.9.1).

Nonleaf functions have to do much more work saving variables, return

addresses, and so on, but you might go through your whole MIPS ca-

reer without needing to write a nonleaf function in assembler. Note the
following:

— .text says that what the assembler produces is to be kept in the
object code section called “text,” which is the section name that C
functions use for their instructions.

— .globl declares “name” as global, to be included in the module’s
symbol table as a name that should be unique throughout the whole
program. This mimics what the C compiler does to function names
(unless they are marked “static”).

_ . ent has no effect on the code produced but tells the assembler to
mark this point as the beginning of a function called “name” and to
use that information in debug records.

— name makes “name” a label for this point in the assembler’s output
and marks the place where a subroutine call to function “name” will
start.

g

END defines two more assembler items, neither strictly necessary:

#define END(name) \
.size name, .-name; \
.end name

— .size means that in the symbol table, “name” will now be listed with
a size that corresponds to the number of bytes of instructions used.

9.2

9.2.1

9.2 Syntax Overview B 247

— .end delimits the function for debug purposes.

. sat directives: These are used to tell the assembler how to do its work.
In this case, noreorder asks it to refrain from attempting to fill branch
and load delay slots and to leave the instruction sequence exactly as
written—something you're likely to want to do in a carefully tuned li-
brary function.

nowarn asks the assembler not to try to figure out what’s going on with
all these interleaved loads and branches and to trust that the program-
mer has got it right. This is not a good idea until you're sure it is right,
but after that it quiets unnecessary diagnostics.

Labels: “1:” is a numeric label, which most assemblers will accept as
a local label. You can have as many labels called “1” as you like in a
program; a reference to “1f” (forward) will get the next one in sequence
and “1b” (back) the previous one. This can be useful.

Instructions: You'll notice some unexpected sequences, since the .set
noreorder has exposed the underlying branch delay slots and requires
us to ensure that load data is never used by the following instruction.

For example, note the use of register t2 in the second half of the unrolled
loop. It’s only necessary to use the second register because the 1bu t2,
-1(a0) is in the delay slot of the preceding branch instruction and can’t
overwrite t0, which will be used at the branch target.

Now that we’ve examined an example, let’s get a bit more systematic.

Syntax Overview

In Appendix B you will find a formal syntax for the original MIPS Corpora-
tion assembler; most assemblers from other vendors follow this pattern, al-
though they may differ in their support of certain directives. If you've used an
assembler from a unix-like system before, then it should all look fairly familiar.

Layout, Delimiters, and Identifiers

For this, you need to be familiar with C. If you are, note that writing in assem-
bler is different from C for the following reasons:

Assembler code is basically line oriented, and an end-of-line delimits an
instruction or directive. You can have more than one instruction/direc-
tive on each line, however, as long as they are separated by semicolons.

All text from a “#” to the end of the line is a comment and is ignored. But
don’t put a “#” in the leftmost column: It activates the C preprocessor

248 W Chapter 9—Assembler Language Programming

9.3

9.3.1

¢pp, and you will probably want to use that. If you know your code is
going to be run through cpp, you can use C-style comments: /* ... */.
These can be multiline if you like.

» Identifiers for labels and variables can be anything that’s legal in C and
can also contain “$” and “. "

= In code you can use a number (decimal between 1 and 99) as a label.
This is treated as temporary, and you can use the same number as many
times as you like. In a branch instruction “1f” (forward) refers to the
next “1:” label in the code and “1b” (back) refers to the previous “1:”
label. This saves you thinking about names for little branchés and loops.
Reserve named labels for subroutine entry points or for exceptionally
big jumps.

m The MIPS/SGI assembler provided the conventional register names (a0,
£5, etc.) as C preprocessor macros, so you must pass your source through
the C preprocessor and include the file mips/regdef.h. Algorithmics
assembler knows the names already, but don’t depend on that.

= You can put in pointer values; in a word context, a label (or any other
relocatable symbol) is replaced with its address. The identifier “.” (dot)
represents the current location counter. You can even do some limited
arithmetic with these things.

s Character constants and strings can be defined as in C.

General Rules for Instructions

The MIPS assembler allows some convenient shortcuts by behaving nicely when
you provide fewer operands than the machine instruction needs, or put in
a constant where the machine instruction really needs a register. You'll see
this very frequently in real assembler code, so this section summarizes the
common cases.

Computational Instructions: Three-, Two-, and One-Register

MIPS computational machine instructions are three-register operations, i.e.,
they are arithmetic or logical functions with two inputs and one output. For
example,

rd = rs + rt
is written as addu rd, rs, rt. .

We mentioned as well that any or all of the register operands may be iden-
tical. To produce a CISC-style, two-operand instruction you just have to use

9.3.2

9.3 General Rules for Instructions & 249

the destination register as a source operand: The assembler will do this for you
automatically if you omit rs: addu rd, rsis the same as addu rd, rd, rs.

Unary operations like neg, not are always synthesized from one or more
of the three-register instructions. The assembler expects a maximum
of two operands for these instructions, so negu rd,rs is the same as
subu rd, zero, rsand not rdwill be assembled as nor rd, zero, rd.

Probably the most common register-to-register operation is move rd, rs.
This ubiquitous instruction is implemented by an ox rd, zero, rs.

Immediates: Computational Instructions with Constants

In assembler or machine language, a constant value encoded within an in-
struction is called an immediate value. Many of the MIPS arithmetical and
logical operations have an alternative form that uses a 16-bit immediate in
place of rt. The immediate value is first sign-extended or zero-extended to 32
bits; the choice of how it’s extended depends on the operation, but in general
arithmetical operations sign-extend and logical operations zero-extend.

Although an immediate operand produces a different machine instruction
from its three-register version (e.g., addi instead of add), there is no need for
the programmer to write this explicitly. The assembler will spot when the final
operand is an immediate and use the correct machine instruction:

addu $2, $4, 64 - addiu $2, %4, 64

If an immediate value is too large to fit into the 16-bit field in the ma-
chine instruction, then the assembler helps out again. It automatically loads
the constant into the assembler temporary register at/$1 and then performs the
operation using that:

add $4, 0x12345 — 1i at, 0x12345
add $4, $4, at

Note the 11 (load immediate) instruction, which you won’t find in the ma-
chine’s instruction set; 14 is a heavily used macro-instruction that loads an
arbitrary 32-bit integer value into a register without the programmer having to
worry about how it gets there.

When the 32-bit value lies between 32K it can use a single addiu with
$0; when bits 16-31 are all zero it can use ori; when bits 0~15 are all zero it
will be 1ui; and when none of these are possible it will be a 1ui/ori pair:

1i $3, -5 - addiu $3, %0, -5

1i $4, 0x8000 — ori $4, '$0, 0x8000
1i $5, 0x120000 - lui $5, 0x12

1i $6, 0x12345 - lui $6, Ox1

ori $6, $6, 0x2345

250 ®m Chapter 9—Assembler Language Programming

9.3.3

9.4

Regarding 64-Bit and 32-Bit Instructions

We described how the MIPS architecture extends to 64 bits (Section 2.7.3) by
ensuring that programs running only 32-bit (MIPS II) instructions behave ex-
actly as they would on old CPUs by maintaining the top half of all registers as
all ones or all zeros (according to the value of bit 31). Many 32-bit instruc-
tions carry over directly to 64-bit systems—all bitwise logical operations, for
example—but arithmetic functions don’t. Adds, subtracts, shifts, multiplies,
and divides all need new versions. The new instructions are named by prefixing
the old mnemonic with d (double): For example, the 32-bit addition instruc-
tion addu is augmented by the new instruction daddu, which does full 64-
bit-precision arithmetic. A leading “d” in an instruction mnemonic generally
means “double.”

Addressing Modes

As noted previously, the hardware supports only the one addressing mode
base_reg+offset, where offset is in the range —32768 to 32767. However, the
assembler will synthesize code to access data at addresses specified in various
other ways:

® Direct: a data label or external variable name supplied by you
w Direct+index: an offset from a labeled location specified with a register
m Constant: just a large number, interpreted as an absolute 32-bit address

® Register indirect: just register+offset with an offset of zero

When these methods are combined with the assembler’s willingness to do
simple constant arithmetic at compile time, and the use of a macro processor,
you are able to do most of what you might want. Here are some examples:

Instruction Expands to
1w $2, ($3) — 1w $2, 0($3)
1w $2, 8+4($3) — lw $2, 12(8%3)
1w $2, addr - lui at, %hi (addr)
1w $2, %lo(addr) (at)
sw $2, addr($3) - lui at, %hi(addr)
addu at, at, $3
sw $2, %lo(addr) (at)

The symbol addr in the above examples can be any of the following:

w A relocatable symbol—the name of a label or variable (whether in this
module or elsewhere)

9.4.1

9.4 Addressing Modes @& 251

m A relocatable symbol + a constant expression (the assembler/linker can
handle thiis at system build time)

® A 32-bit constant expression (e.g. the absolute addres of a device regis-
ter)

The constructs %hi () and %1o() are provided in the MIPS assembler but
not in some others. They represent the high and low 16 bits of the address.
This is not quite the straightforward division into low and high halfwords that
it looks, because the 16-bit offset field of an 1w is interpreted as signed. So if
the addr value is such that bit 15 is a 1, then the %1lo (addr) value will act as
negative and we need to increment %hi (addr) to compensate:

addr %hi(addr) %lo(addr)
0x12345678 0x1234 0x5678
0x10008000 0x1001 0x8000

The 1a (load address) macro-instruction provides a similar service for ad-
dresses as the 14 instruction provides for integer constants:

la $2, 4(83) — addiu $2, §3, 4

la $2, addr - lui at, %hi(addr)
addiu $2, at, %lo(addr)

la $2, addr($3) - 1lui at, %hi(addr)
addiu $2, at, %lo(addr)
addu $2, $2, §3

In principle, 1a could avoid messing around with apparently negative
%lo() values by using an ori instruction. But the linker is already equipped
with the ability to fix up addresses in the signed %lo (addr) format found
for load/store instructions, so 1a uses the add instruction to avoid the linker
having to understand two different fix-up types.

The instruction mnemonic dla is documented by SGI for loading a 64-
bit pointer; it will only be necessary in environments that support both 32-
and 64-bit pointer representations—which is probably a lot more useful than
it sounds. So far, no off-workstation toolkit has needed to implement this.

Gp-Relative Addressing

A consequence of the way the MIPS instruction set is crammed into 32-bit
operations is that accesses to compiled-in locations usually require at least two
instructions, for example:

252 m Chapter 9—Assembler Language Programming

1w $2, addr - lui at, %hi(addr)
1w $2, %lo(addr) (at) t

In programs that make a lot of use of global or static data, this can make
the compiled code significantly fatter and slower.

-Early MIPS compilers introduced a fix for this, which has been carried into
most MIPS toolchains. It's usually called gp-relative addressing. This tech-
nique requires the cooperation of the compiler, assembler, linker, and run-
time startup code to pool all of the “small” variables and constants into a single
memory region; then it sets register $28 (known as the global pointer or gp reg-
ister) to point to the middle of this region. (The linker creates a special symbol
-gp whose address is the middle of this region. The address of _gp must then
be loaded into the gp register by the startup code, before any load or store in-
structions are used.) So long as all the variables together take up no more than
64KB of space, all the data items are now within 32KB of the midpoint, so a
load turns into

SR

1w $2, addr -~ 1w $2, addr - _gp(at)

g

The problem is that the compiler and assembler must decide what vari-
ables can be accessed via gp at the time the individual modules are compiled.
The usual test is to include all objects of less than a certain size (8 bytes is
the usual default). This limit can usually be controlled by the “~G n” com-
piler/assembler option; specifying “~G 0” will switch this optimization off al-
together.

While it is a useful trick, there are some pitfalls to watch out for. You
must take special care when writing assembler code to declare global data items
consistently and correctly:

R Y

= Writable, initialized small data items must be put explicitly into the
.sdata section.

= Global common data must be consistently declared with the correct size:

. comm smallobj, 4
.comm bigobj, 100

» Small external variables should also be explicitly declared

.extern smallext, 4

= Most assemblers will not act on a declaration unless it precedes the use
of the variable.

In C you must declare global variables correctly in all modules that use
them. For external arrays, either omit the size, like this, .

extern int extarrayl[];

9.5

9.5.1

9.5 Assembler Directives ® 253

or give the correct size:
int cmnarray[NARRAY];

Sometimes the way programs are run means this method can’t be used.
Some real-time operating systems, and many PROM monitors, are built with
a separately linked chunk of code implementing the kernel, and applications
invoke kernel functions with regular subroutine calls. There’s no cost-effective
method by which you could switch back and forth between the two different
values of gp that will be used by the application and OS, respectively. In this
case either the applications or the OS (but not necessarily both) must be built
with -6 0.

When the -G 0 option has been used for compilation of any set of mod-
ules, it is usually essential that all libraries linked in with them should be com-
piled that way. If the linker is confronted with modules that disagree whether a
named variable should be put in the small or regular data sections, it’s likely to
give you peculiar and unhelpful error messages.

Assembler Directives

We've summarized the directives under functional headings. You can also find
a list (without explanations) in Appendix B.

Selecting Sections

The names of and support for conventional code and data sections may dif-
fer from one toolchain to another. Hopefully most will at least support the
original MIPS conventions, which are illustrated (for ROMmable programs)
in Figure 9.1.

Within an assembler program the sections are selected as described in the
groupings that follow:

.text, .rdata, and .data

Simply put the appropriate section name before the data or instructions, as
shown in this example:

.rdata
msg: .asciiz "Hello world!\n"

.data
table:
.word 1

254 WM Chapter 9—Assembler Language Programming

ROM

.rdata
Read-only data

etext

.text

Program code
RAM

Stack
Grows down from top of memory

_ftext

Heap
Grows up toward stack

.bss end
Uninitialized writable data

.sbss
Uninitialized writable small data _fbas

.1its edata
64-bit floating-point constants

.1litd
32-bit floating-point constants

.sdata
Writable small data

.data
Writable data _fdata

Exception vectors

FIGURE 9.1 ROMable program’s object code segments and typical memory layout

.word 2
.word 3

.text
func:sub sp, 64

lit4 and .1it8 Sections: Floating-Point Implicit Constants

You can’t write these section names as directives. They are read-only data
sections created implicitly by the assembler to hold floating-pojnt constants
that are given as arguments to the 1i.s or 1i.d macro instructions. Some
assemblers and linkers will save space by combining identical constants.

e ———— —————— e .

9.5.2

9.5 Assembler Directives ® 255

.bss, .comm, and .Icomm Data

This sdction name is also not used as a directive. It is used to collect all unini-
tialized data declared in C modules. It’s a feature of C that multiple same-
named definitions in different modules are acceptable so long as not more than
one of them is initialized. The .bss section is used for data that is not initial-
ized anywhere. Fortran programmers would recognize this as what is called
common data, motivating the name of the directives.

You always have to specify a size for the data (in bytes): When the program
is linked, the item will get enough space for the largest size. If any module
declares it in an initialized data section, all the sizes are used and that definition
is used:

.comm dbgflag, 4 A # global common variable, 4 bytes
.lcomm sum, 4 # local common variable, 8 bytes
.lcomm array, 100 # local common variable, 100 bytes

“Uninitialized” is actually 2 misnomer: Although these sections occupy
no space in the object file, the C language assumes that the run-time startup
code or operating system will clear the .bss area to zero before entering your
program; many C programs rely on this behavior.

.sdata, Small Data, and .sbss

These sections are used as alternatives to the .data and .bss sections above
by toolchains that want to separate out smaller data objects. MIPS toolchains
do this because the resulting small-object section is compact enough to allow
an efficient access mechanism that relies on maintaining a data pointer in a
reserved register gp, as described in Section 9.4.1.

Note that the . sbss is not a legal directive; data is allocated to the . sbss
section when declared with .comm or .1lcomm, and it is smaller than the -G
parameter size fed to the assembler program.

.section

Start an arbitrarily named section and supply control flags (which are object
code specific and probably toolkit specific). See your toolkit manuals, and
always use the specific section name directives above for the common sections.

Practical Program Layout Including Stack and Heap

The program layout illustrated in Figure 9.1 might be suitable for a ROM pro-
gram running on a bare CPU. The read-only sections are likely to be located in
an area of memory remote from the lower read/write sectiops.

The stack and heap are not real sections that are recognized by the assem-
bler or linker. Typically they are initialized and maintained by the run-time

256 W C}iapter 9—Assembler Language Programming

9.5.3

system. The stack is defined by setting the sp register to the top of available
memory (aligned to an 8-byte boundary). The heap is defined by a global
pointer variable used by functions like malloc functions; it’s often initialized to
the end symbol, which the linker has calculated as the highest location used by
declared variables.

Spécial Symbols

Figure 9.1 also shows a number of special symbols that are automatically de-
fined by the linker to allow programs to discover the start and end of their
various sections. They are descended from conventions that grew up in unix-
style OSs, and some are peculiar to the MIPS environment. Your toolkit might
or might not define all of them; those marked with a 1/ in the following list are
pretty certain to be there: ‘

Symbol Standard? Value

_ftext Start of text (code) segment
etext Vv End of text (code) segment
_fdata Start of initialized data segment
edata Vv End of initialized data segment
_fbss Start of uninitialized data segment
end Vv End of uninitialized data segment

Data Definition and Alignment

Having selected the correct section, you will then specify the data objects them-
selves using the directives described in this section.

.byte, .half, .word, and .dword

These directives output integers that are 1, 2, 4, or 8 bytes long, respectively.! A
list of values may be given, separated by commas. Each value may be repeated
a number of times by following it with a colon and a repeat count, for example:

.byte 3 # 1 byte: 3
.half 1, 2, 3 # 3 halfwords: 1 2 3
.word 5 : 3, 6, 7 # 5 words: 5§55 67

Note that the position of this data (relative to the start of the section) is
automatically aligned to the appropriate boundary before the data is output. If

1. Some toolchains, even those supporting 64-bit processors, may fail to provide the .aword
directive.

9.5 Assembler Directives B 257

you really want to output unaligned data, then explicit action must be taken
using the .align directive described below.

float and .double

These output single- or double-precision floating-point values, respectively:

.float 1.4142175 # 1 single-precision value
.double le+10, 3.1415 # 2 double-precision values

Multiple values and repeat counts may be used in the same way as the integer
directives.

.ascii and .asciiz

These directives output ASCII strings, without and with a terminating null
character, respectively. The following example outputs two identical strings:

.ascii "Hello\O"
.asciiz "Hello"

.align

This directive allows you to specify an alignment greater than that normally
required for the next data directive. The alignment is specified as a power of
two:

.align 4 # align to 16-byte boundary (274)
var:
.word 0

If a label (var in this case) comes immediately before the .align, then
the label will still be aligned correctly. For example, the following is exactly
equivalent to the above case:

var:
.align 4 # align to 16-byte boundary (274)
.word 0

For packed data structures this directive allows you to override the auto-
matic alignment feature of .half, .woxd, etc. by specifying a zero alignment.
This will stay in effect until the next section change, for example:

.half 3 # correctly aligned halfword
.align 0 # switch off auto-alignment
.word 100 # word aligned on halfword boundary

258 m Chapter 9—Assembler Language Programming

9.5.4

comm and .Icomm

These directives declare a common, or uninitialized, data object by specifying
the object’s name and size.

An object declared with .comm is available to all modules that declare it:
It is allocated space by the linker, which uses the largest declared size. But if
any module declares it in one of the initialized .data, .sdata, or .rdata
sections, then all the sizes are ignored and the initialized definition is used
instead.

.comm is useful in that it avoids the asymmetry of having to declare some-
thing in one place and then refer to it everywhere else, when it’s got no special
attachment to any one file. But it’s really there because Fortran defines com-
mon variables with these semantics, and we want to be able to compile Fortran
programs via assembly language.

An object declared with . 1comm is local and is allocated space in the unini-
tialized .bss (or .sbssa) section by the assembler, but it is otherwise invisible
from outside the module:

. comm dbgflag, 4 # global common variable, 4 bytes
.lcomm array, 100 # local uninitialized object, 100 bytes

.space

The . space directive increments the current section’s location counter by a
number of bytes, for example:

struc: .word 3
.8pace 120 # 120-byte gap
.word -1

For normal data and text sections the space will be zero-filled; however, if
your assembler allows you to declare sections whose content is not defined in
the object file (like .bss), the space just affects the offset of subsequent labels
and variables.

Symbol-Binding Attributes

Symbols (labels in one of the code or data segments) can be made visible and
used by the linker that joins separate modules into a single program. The linker
binds a symbol to an address and substitutes the address for assemabler language
references to the symbol.

Symbols can have three levels of visibility:

i
4
1
3

e, ¥

9.5 Assembler Directives B 259

® Local: These are invisible outside the module they are declared in and
unused by the linker. You don’t have to worry about whether the same
local symbol is used in another module.

& Global: These are made public for use by the linker. Using the . extern
directive, you can refer to a global symbol in another module without
defining any local space for it.

® Weak global: This obscure feature is provided by some toolchains using
the directive .weakext. It allows you to define a symbol that will link
to a global symbol of the same name if one is found but that will quietly
default to being a local object otherwise. You shouldn’t use this feature
where . comm would do the job.

.globl

Unlike C, where module-level data and functions are automatically global un-
less declared with the static keyword, ordinary assembler labels have local
binding unless explicitly modified by the .globl directive. You don’t need
.globl for objects declared with the . comm directive; these automatically have
global binding. Use the directive as follows:

.data
.globl status # global variable
status: .word 0

.text

.globl set_status # global function
set_status:

subu sp, 24

.extern

All references to labels that are not defined within the current module are auto-
matically assumed to be references to globally bound symbols in another mod-
ule (external symbols). In some cases the assembler can generate better code
if it knows how big the referenced object is (see Section 9.4.1). An external
object’s size is specified using the . extern directive, as follows:

.extern index, 4
. .extern array, 100

1w
lw
sw

$3,

index # load a 4-byte (l-word) external

L4

$2, array($3) # load part of a 100-byte external
$2, value # store in an unknown-size external

260 m / Chapter 9—Assembler Language Programming

.weakext

Some assemblers and toolchains support the concept of weak global binding.
This allows you to specify a provisional binding for a symbol, which may be
overridden if a normal (strong) global definition is encountered, for example:

.data
-weakext errno
exrrno: .word 0

.text
1w $2, errno # may use local or external definition

- This module, and others that access errno, will use this local definition of
errno unless some other module also defines it with a . globl.
It is also possible to declare a local variable with one name but to make it
weakly global with a different name:

.data
myerrnc: .word 0
-weakext errno, myerrno

.text
1w $2,myerrno # always use local definition
1w $2, errno # may use local definition or other

9.55 Function Directives

You can generate correct assembler code for a MIPS function by using a global

MIPS assemblers generally expect you to use special directives to mark the start
and end of each function and to describe the stack frame that jt uses.

.entand .end
These directives mark the start and end of a function. A trivial leaf function
might look like this:
.text
.ent localfunc
localfunc: v
addu v0,al,a2 # return (axrgl + arg2)
| ra

.and localfunc

9.5 Assembler Directives ®m 261

The label name may be omitted from the . end directive, which then de-
faults to the name used in the last .ent. Specifying the name explicitly al-
lows the assembler to check that you haven’t missed any earlier .ent or .end
directives.

.aent

Some functions may provide multiple, alternative entry points. The .aent
directive identifies labels as such, for example:

.text
.globl memcpy
.ent memcpy
memcpy: move t0,a0 # swap first two arguments
move a0,al
move al,to

.globl bcecopy
.aent becopy
bcopy: 1b t0,0(a0) # very slow byte copy
sb t0,0(al)
addu a0,1
addu al,1l
subu a2,1

bne a2, zero,bcopy
3 ra
.aend memcpy
frame, .mask, and .fmask ‘

Most functions need to allocate a stack frame in which to

s Save the return address register ra

u Save any of the registers s0—a9 and $ £20-$£31 that they modify (known
as the callee-saves registers)

s Store local variables and temporaries

® Pass arguments to other functions

In some CISC architectures, the stack frame allocation and possibly regis-
ter saving are done by special-purpose enter and leave instructions, but in the
MIPS architecture the allocation has to be coded by the compiler or assembly
language programmer. However, debuggers need to know 'the layout of each
stack frame to do stack back-traces and so on, and in the original MIPS Corpo-
ration toolchain these directives provided this information. In other toolchains

262 m ,Chapter 9—Assembler Language Programming

9.5.6

they may be quietly ignored and the stack layout determined at run time by
disassembling the function prologue. Putting these directives in your code is ,
therefore not always essential but can do no harm. Many toolchains supply a
header file, probably called asm. h, which provides C-style macros to generate
a number of standard directives as required (see Section 10.1).

The . £rame directive takes three operands:

.frame framereg, framesize, returnreg

® framereg: This is the register used to access the local stack frame—
usually $sp.

» returnreg: This register holds the return address. Some compilers in-
dicate $0, when the return address is stored in the stack frame {some
compilers convey this with the .mask directive instead); all use $31 if
this is a leaf function (i.e., it doesn’t call any other functions) and the
return address is not saved.

= framesize: This is the total size of stack frame allocated by this function:
It should always be the case that $sp + framesize = previous $sp.

The .mask directive indicates where the function saves general registers in
the stack frame; . £mask does the same for floating-point registers:

.mask regmask, regoffs
.fmask fregmask, fregoffs

Their first argument is regmask, a bitmap of which registers are being saved
(i, bit 1 set = $1, bit 2 set = $2, etc.); the second argument is regoffs, the
distance from framereg + framesize to the start of the register save area.

How these directives relate to the stack frame layout, and examples of their
use, can be found in Section 10.9. Remember that the directives do not create
the stack frame, they just describe its layout; that code still has to be written
explicitly by the compiler or assembly language programmer.

Assembler Control (.set)

The original MIPS Corporation assembler is an ambitious program that per-
forms intelligent macro expansion, delay slot filling, peephole optimization,
and sophisticated instruction reordering (scheduling) to minimize pipeline
stalls. Most other assemblers will be less complex: modern optimizing com-
pilers usually prefer to do these sort of optimizations themse}ves. In the in-
terest of source code compatibility and to make the programmer’s life easier,
however, all MIPS assemblers should at least perform macro expansion, insert

< 9.5 Assembler Directives W 263

extra nops as required to hide branch and load delay slots, and prevent pipeline
hazards in normal code. \

With a reordering assembler it is sometimes necessary to restrict the re-
ordering to guarantee correct timing or to account for side effects of instruc-
tions that the assembler cannot know about (e.g., enabling and disabling inter-
rupts). The . set directives provide this control.

.set noreorder/reorder

By default the assembler is in reorder mode, which allows it to reorder your
instructions to avoid pipeline hazards and (perhaps) to achieve better perfor-
mance; in this mode it will not allow you to insert your own nops. Conversely,
code that is in a noreorder region will not be optimized or changed in any way.
This means that you can completely control the instruction order, but the dis-
advantage is that you must now schedule the code yourself and fill load and
branch delay slots with useful instructions or nops. For example:

.set noreorder

1w t0, 0(ao)

nop # in the load delay slot
subu to, 1

bne t0, zero, loop

nop # in the branch delay slot
.get reorder

.set volatile/novolatile

Any load or store instruction within a volatile region will not be moved
(in particular, with respect to other loads and stores). This can be important
for accesses to memory-mapped device registers, where the order of reads and
writes is important. For example, if the following fragment did not use .set
volatile, then the assembler might decide to move the second 1w before the
sw to fill the first load delay slot:

.set volatile
1w t0,0(a0)
sw t0,0(al1)
lw tl,4(a0)
.8et novolatile

Hazard avoidance and other optimizations are not affected by this option.

.set noat/at

The assembler reserves register $1 (known as the assembler temporary, or at,
register) to hold intermediate values when performing macro expansions; if

264 B C/Ihapter 9—Assembler Language Programming

you attempt to use the register yourself, you will receive a warning or error
message. [t is not always obvious when the assembler will use at, and there are
certain circumstances when you may need to ensure that it does not (for exam-
ple, in exception handlers before $1 has been saved). Switching on noat will
make the assembler generate an error message if it needs to use $1 in a macro
expansion, and will allow you to use it explicitly without receiving warnings,
for example:

xcptgen:
.86t noat
subu k0, sp,XCP_SIZE
sw at,XCP_AT(k0)
.set at

.set nomacro/macro

Most of the time you will not care whether an assembler statement generates
more than one real machine instruction, but of course there are exceptions.
For instance, when you are manually filling a branch delay slot in a noreorder
region, it would almost certainly be wrong to use a complex macro-instruction;
if the branch were taken, then only the first instruction of the macro would be
executed. Switching on nomacro will cause a warning if any statement expands
to more than one machine instruction. For example, compare the following
two fragments:

.set noreorder

blt al,a2,loop

1i a0,0x12345 # should be the branch delay slot
.set reorder

.set noreorder

blt al,a2,loop

.sat nomacro

1i a0, 0x12345

.set macro

.set reorder

The first will generate what is probably incorrect code, because the 14 is
expanded into two machine instructions (1ui and ori) and only the 1ui will
be executed in the branch delay slot. With the second instruction you'll get an
error message. Some assemblers will flag the scheduling mistake’automatically,
but you cannot rely on that.

e

9.5.7

9.5.8

9.5 Assembler Directives W 265

.set nobopt/bopt

Setting the nobopt control prevents the assembler from carrying out certain
types of branch optimization. It is usually used only by compilers.

Compiler/Debugger Support

Found in autogenerated files, such as the output from a compiler or preproces-
sor, the directive . £11e is used by the assembler to attribute any errors back to
the generating source file.

Additional Directives in SGI Assembly Language

In this chapter I've tried to stick to a subset of assembly language that I be-
lieve most toolkits will support. However, SGI’s assembler (supporting the SGI
n32/n64 standards for register use) defines a whole lot more. Try not to rely on
these, but here’s what they mean.

.2byte, .4byte, and .8byte

These define data, but whereas the similar directives .half, .word, and
-dword pack out the section to align the data appropriately, these don’t. You
can achieve the same effect with .align 0 followed by a regular declara-
tion followed by a redefinition of the section name to get natural alignment
switched back on.

-cpadd, .cpload, .cplocal, .cprestore, .cpreturn, .cpsetup, .gpvalue, and
.gpword

These directives facilitate generation of the kind of position-independent code
used to build shared libraries on SGI systems and are not expected to be useful
for embedded systems.

.dynsym
This is some kind of ELF-specific name aliasing for a symbol.

dab

This defines a label that might contain characters that would be illegal in front
of a colon.

doc

This directive cross-references another file, like the .£ile ‘directive above—
but this one allows you to select a column number within the source line of the
generating program.

266 m ,'Chapter 9—Assembler Language Programming

.origin

This changes the current position in the section by a supplied offset.

.set [no]transform

This marks code that must not be modified by SGIs pixie program. pixie takes
any MIPS application and generates a version of it with profiling counters built
in. It is irrelevant to non-UNIX code.

.size and .type

These directives allow you to specify the size and/or type of a symbol. In most
object code formats, each symbol is associated with a size and the linker may
check that the importer and exporter of a symbol agree about its size or type.

Chapter

C Programming on MIPS

This chapter discusses things you are likely to need to know when building
a complete MIPS system using C code. Perversely, that means a lot of this
chapter is not about what you see when you write in the C language (which I'm
assuming you know or can find out about elsewhere), but what shows up in
the assembler language that is produced by the C compiler. To avoid turning
this chapter into a whole new book, I’ve tried to limit the discussion to issues
that are particularly likely to confront you when you first write or port code for
MIPS.

An efficient C run-time environment relies on conventions (enforced by
compilers, and therefore mandatory for assembly language programmers)
about register usage within C-compatible functions. Refer to Section 2.2.1 for
the overall conventions as to register use. In this chapter we'll cover

& The stack, subroutine linkage, and argument passing: how these processes
are implemented for MIPS and how they support everything while avoid-
ing unnecessary work

® Shared and nonshared libraries: a note on the complex mechanisms used
by shared-library OSs

= An introduction to compiler optimization: as it might affect you

® Hints about device access from C: since that’s how most device-driving
code is written

Regarding other high-level languages, I realize that some of you may not
be writing in C. However, if you are producing compiled code for MIPS that is
to link with standard libraries, much of this chapter is still relevant to you. [
haven’t dealt specifically with any other language, because I don’t understand
them well and I can’t figure out where I should stop.

267

268 m ,Qhapter 10—C Programming'on MIPS

10.1

The Stack, Subroutine Linkage, and Parameter Passing

1

Many MIPS programs are written in mixed languages—for embedded systems
programmers, this is most likely to be a mix of C (maybe C++) and assembler.

From the very start MIPS Corporation established a set of conventions
about how to pass arguments to functions (this is C-speak for “pass parameters
to subroutines”) and about how to return values from functions. These con-
ventions can look very complex, but partly that’s just appalling documentation.
The conventions follow logically from an unappreciated underlying principle.

The basic principle is that all arguments are allocated space in a data struc-
ture on the stack, but the contents of the first few stack locations are placed
in CPU registers—the corresponding memory locations are left undefined. In
practice, this means that for most calls the arguments are all passed in registers;
however, the stack data structure is the best starting point for understanding
the process.

Since about 1995 Silicon Graphics has introduced changes into the call-
ing conventions, in a search for higher performance. They have named these
calling conventions as follows:

m 032: The traditional MIPS convention (“o0” for old); described in de-
tail below. This convention (not including features SGI added to sup-
port shared libraries) is still pretty much universally used by embedded
toolchains; however, it seems likely that the two new models may be
supported as options by other toolchains sometime soon.

® n64: New convention for 64-bit programs. SGI’s 64-bit model implies
that both pointers and C 1ong integer types are compiled as 64-bit data
items. The longer pointers represent nothing but extra overhead for em-
bedded applications, so it’s questionable whether this convention will
be taken up outside the workstation environment. However, n64 also
changes the conventions for using registers and the rules for passing pa-
rameters; and because it puts more arguments in registers, it improves
performance.

= 132: This convention has identical rules to n64 for passing parameters,
but leaves pointers and the C long data types implemented as 32 bits.
However, SGI and other compilers support an extended integer data
type long long, which is a hardware-supported 64-bit integer. This
compilation model is becoming quite popular in embedded systems.

We'll describe the 032 standard first and then point out the changes with
n32 and n64. The changes are summarized in Section 10.8.

There are other standards in discussion as this book goes to press, most of
which seem to be called MIPS EABL The overall MIPS EABI project is aimed
at producing a range of standards to make embedded toolkits interwork better,

10.2

10.3

10.3 Using Registers to Pass Arguments W 269

which is a really good idea; however, the new calling conventions seem to have
arisen from a proprietary project to build something like SGI's n32 (but simpler
and regrettably incompatible). We hope something good comes out of this—
but for the time being you can reasonably use 032 compilers for embedded
applications and you won’t lose a lot.

Stack Argument Structure

This and subsequent sections describe the original MIPS conventions which
SGI now calls 032. We’ll summarize the changes implicit in the new standards
in Section 10.8.

The MIPS hardware does not directly support a stack, but the calling con-
vention requires one. The stack is grown downward and the current stack bot-
tom is kept in register sp (alias $29). Any OS that is providing protection and
security will make no assumptions about the user’s stack, and the value of sp
doesn’t really matter except at the point where a function is called. But it is
conventional to keep sp at or below the lowest stack location your function has
used.

At the point where a function is called, sp must be 8 byte aligned (not
required by 32-bit MIPS hardware, but essential for compatibility with 64-bit
CPUs and part of the rules). Subroutines can fit in with this by always adjusting
the stack pointer by a multiple of eight.

To call a subroutine according to the MIPS standard, the caller creates a data
structure on the stack to hold the arguments and sets sp to point to it. The first
argument (leftmost in the C source) is lowest in memory.. Each argument oc-
cupies at least one word (32 bits); 64-bit values like floating-point double and
(for some CPUs) 64-bit integer values must be aligned on an 8-byte boundary
(as are data structures that contain a 64-bit scalar field).

The argument structure really does look like a C struct, but there are
some more rules. Firstly, you should allocate a minimum of 16 bytes of argu-
ment space for any call, even if the arguments would fit in less. Secondly, any
partial-word argument (char or short) is “promoted” to an int and passed
as a 32-bit object. This does not apply to partial-word fields inside a struct
argument.

Using Registers to Pass Arguments

Any arguments allocated to the first 16 bytes (four words) of the argument
structure are passed in registers, and the caller can and does leave the first 16
L4

1. SGI's n32 and n64 standards call for the stack to be maintained with 16-byte alignment.

270 = (;hapter 10—C Programming on MIPS

bytes of the structure undefined. The stack-held structure must still be re-
served; the called function is entitled to save the register-held argument values
back into memory if it needs to (perhaps because someone generates a pointer
to the arguments—in C, arguments are variables and you can form a pointer
to any variable).

The four words of register argument values go in a0 through a3 ($4 through
$7), respectively, except where the caller can be sure that the data would be
better loaded into floating-point (FP) registers.

The criteria for deciding when and how to use FP registers look peculiar.
Old-fashioned C had no built-in mechanism for checking that the caller and
callee agreed on the type of each argument to a function. To help program-
mers survive this, the caller converted arguments to fixed types, int for inte-
ger values and double for floating point. There was no way of saving a pro-
grammer who confused floating-point and integer arguments, but at least some
possibilities for chaos were averted.

Modern C compilers use function prototypes available to all callers, which
define all the argument types. But even with function prototypes, there are
routines—notably the familiar printf () —where the type of arguments is
unknown at compile time; printf () discovers the number and type of its
arguments at run time.

MIPS made the following rules.

Unless the first argument is a floating-point type, no arguments can be
passed in FP registers. This is a kludge that ensures that traditional functions
like print£ () still work: Its first argument is a pointer, so all arguments are
allocated to integer registers and printf () will be able to find all its argu-
ment data (regardless of the argument type). The rule is also not going to
make common math functions inefficient, because they mostly take only FP
arguments.

Where the first argument is a floating-point type, it will be passed in an
FP register, and in this case so will any other FP types that fit in the first 16
bytes of the argument structure. Two doubles occupy 16 bytes, so only two
FP registers are defined for arguments—£a0 and £al, or $£12 and $£14. Ev-
idently nobody thought that functions explicitly defined to have lots of single-
precision arguments were frequent enough to make another rule.

Another peculiarity is that if you define a function that returns a structure
type that is too big to be returned in the two registers normally used, then the
return-value convention involves the invention of a pointer as the implicit first
argument before the first (visible) argument (see Section 10.7).

If you're faced with writing an assembler routine with anything but a simple
and obvious calling convention, it’s probably worth building a dummy func-
tion in C and compiling it with the “-S” option to produce an assembler file
you can use as a template.

T B A

10.5 An Exotic Example: Passing Structures m 271

Stack Position Contents Register Contents
sp+0 I undefined] a0 Laddress of "bear"j
sp+4 I undefined j al I address of “bearer"—l
sp+8 L undefined I a2 [4 —l
sp+12 L undefined j a3 L undefined 1

FIGURE 10.1 Argument structure, three non-FP operands

10.4

10.5

Examples from the C Library

Here is a code example:
thesame = strncmp(“"bear", "bearer", 4);

We'll draw out the argument structure and the registers separately (see Fig-
ure 10.1), though in this case no argument data goes into memory; but later
we’ll see examples where it does.!

There are fewer than 16 bytes of arguments, so they all fit in registers.

That seems a ridiculously complex way of deciding to put three arguments
into the usual registers! But let’s try something a bit more tricky from the math
library:

double ldexp (double, int);
y = ldexp(x, 23); /* y = x * (2%*23) */

Figure 10.2 on page 272 shows the corresponding structure and register
values.

An Exotic Example: Passing Structures

C allows you to use structure types as arguments (it is much more common
practice to pass pointers to structures instead, but the language supports both).
To fit in with the MIPS rules, the structure being passed just becomes partof the
argument structure. Inside a C structure, byte and halfword fields are packed

1. After much mental struggle, I decided it was best to have the arguments ordered top to bottom
in these pictures. Because the stack grows down that means memory addresses increase down
the page, which is opposite from how I've drawn memory elsewhere in the book.

‘272 m ;hapter 10—C Programming on MIPS

Stack Position

sp+0
sp+4

sp+8

sp+12

Contents Register Contents
ndefined s£12 doubl
undefine $£13 (double) x
[undefined | a2 | 23 |
I undefined J a3 r undefined]

FIGURE 10.2 Argument passing: A floating-point argument

together into single words of memory, so when we use a register to pass the
data that conceptually belongs to the stack-resident structure, we have to pack
the register with data to mimic the arrangement of data in memory.

So if we have

struct thing {
char letter;
short count;
int value;
} = {"z", 46, 100000};

(void) processthing (thing);

then the arguments show in in Figure 10.3 will be generated.

Stack Position
sp+0

sp+4

Contents Register Contents
r undefined J a0 I vz" l x l 46]
[undefined | a1 | 100000]

FIGURE 10.3 Arguments when passing a structure type

Note that because MIPS C structures are always laid out with fields so their
memory order matches the order of definition (though padded where neces-
sary to conform to the alignment rules), the placement of fields inside the reg-
ister follows the byte order exposed by load/store instructions, which differs
according to the CPU’s endianness. The layout in Figure 10.3 is inspired by a
big-endian CPU, when the char value in the structure should end up in the
most-significant 8 bits of the argument register but is packed together with the
short.

If you really want to pass structure types as arguments, and they must con-
tain partial-word data types, you should try this out and se¢ whether your
compiler gets it right.

A e S R - . N

TR T

10.6

printf ("length =

10.6 Passing a Variable Number of Arguments m 273

Passing a Variable Number of Arguments

{

Functions for which the number and type of arguments are determined only at
run time stress conventions to their limits. Consider this example:

$f, width = %f, num = %d\n", 1.414, 1.0, 12);

The rules above allow us to see that the argument structure and register
contents will be as shown in Figure 10.4.

Stack Position Contents Register Contents

sp+0 [undefined —l a0 [format pointer 1
sp+4 L undefined | al I undefined 1
Sp+8 undefined a2 (double) 1.414

sp+12 a3

Ser6) souble) 1.0

sp+20

sp+24 12 |

FIGURE 10.4 Argument passing for printf()

There are two things to note. Firstly, the padding at sp+4 is required to get
correct alignment of the double values (the C rule is that floating-point argu-
ments are always passed as double unless you explicitly decide otherwise with a
typecast or function prototype). Note that padding to an 8-byte boundary can
cause one of the standard argument registers to be skipped.

Secondly, because the first argument is not a floating-point value, the rules
tell us not to use any FP registers for arguments. So the data for the second
argument (coded as it would be in memory) is loaded into the two registers a2
and a3.

This is much more useful than it looks!

The printf () subroutine is defined with the stdarg.h macro package,
which provides a portable cover for the register and stack manipulation in-
volved in accessing an unpredictable number of operands of unpredictable
types. The printf () routine picks off the arguments by taking the address of
the first or second argument and advancing through memory up the argument
structure to find further arguments.

To make this work we need to persuade the C compiler working on the
printf () routine to store the registers a0 through a3 into their “shadow” lo-
cations in the argument structure. Some compilers will see you taking the ad-
dress of an argument and take the hint; ANSI C compilers should react to “...”

274 ® Chapter 10—C Programming on MIPS

10.7

10.8

in the function definition; others may need some horrible “pragma” which will
be decently concealed by the macro package.

Now you can see why it was necessary to put the double value into the
integer registers; that way stdarg and the compiler can just store the registers
a0-a3 into the first 16 bytes of the argument structure, regardless of the type
or number of the arguments.

Returning a Value from a Function

An integer or pointer return value will be in register vo ($2). By MIPS/SGI-
defined convention, register v1 ($3) is reserved, even though many compilers
don’t use it. However, expect it to be used in 32-bit code for returning 64-
bit, non-floating-point, values. Some compilers may define a 64-bit data type
(often called 1ong long) and some may use vi when returning a structure
value that fits in 64 bits but not in 32.

Any floating-point result comes back in register $£0 (implicitly using $£1
in a 32-bit CPU, if the value is double precision).

If a function is declared in C as returning a structure value that is too big
to fit into the return registers v0 and v1, something else has to be done. In this
case the caller makes room on its stack for an anonymous structure variable,
and a pointer to that structure is prepended to the explicit arguments; the called
function copies its return value to the template. Following the normal rules for
arguments, the implicit first argument will be in register a0 when the function
is called. On return, v0 points to the returned structure too.

Evolving Register-Use Standards: SGI’s n32 and n64

For the purposes of this section (calling conventions and integer register usage)
the n32 and n64 ABIs are identical.! The n32/n64 ABIs are applicable only to
MIPS III CPUs which have 64-bit registers.

Despite the significant attempts to keep the register conventions similar,
032 and n32/n64 are deeply incompatible and functions compiled in different
ways will not link together successfully. The following points summarize the
n32/n64 rules:

= They provide for up to eight arguments to be passed in registers.

u Argument slots and therefore argument registers are 64 bits in size.
Shorter integer arguments are promoted to a 64-bit register.
L4

1. Under the n64 convention long and pointer types are compiled as 64-bit objects; with n32 only
long long types are 64 bits.

10.8 Evolving Register-Use Standards: SGI'sn32and n64 m 275

8 They do not require the caller to allocate stack space for arguments
passed in registers.

w They pass structures and arrays in registers where possible (like the old
standard does).

® They pass any floating-point variable that fits into the first eight argu-
ment slots in an FP register. In fact, these rules will also use an FP regis-
ter for aligned double fields in arrays and structures, so long as the field
isn’'t in a union and isn’t a variable argument to printf () or a similar
variable-argument function.

When life gets complicated (as when passing structures or arrays), the use
of the registers is still figured out from a ghostly argument structure, even
though it doesn’t now have any stack space reserved.

The n32/n64 conventions abandon 032’s first-argument-not-FP kludge
which 032 uses to identify floating-point arguments as special cases for
printf () and so on. The new conventions require that both caller and callee
code be compiled with full knowledge of the number and type of arguments
and therefore that they need function prototypes.

For a function like print £ (), where the type of arguments is unknown at
compile time, all the variable arguments are actually passed in integer registers.

The n32/n64 organization has a different set of register-use conventions;
Table 10.1 compares the use of integer registers with the 032 system. There is
only one material difference: four registers that used to be regarded purely as
temporaries should now be used to pass the fifth through the eighth arguments.
I'm puzzled by the arbitrary and apparently unnecessary reallocation of names
among the temporary registers, but this is how they did it.

You might think that compiled code would suffer from losing four regis-
ters that were previously available for temporary storage, but this is only ap-
pearance. All argument registers and the v0 and v1 registers are available
for the compiler to use as temporaries most of the time. Also, the change to
n32/n64 has not affected which of the registers are designated as “saved” (i.e.,
the registers whose value may be assumed to survive a subroutine call).!

The floating-point register conventions (shown in Table 10.2) change more
dramatically; this is not surprising, since the n32/n64 conventions are for MIPS
III CPUs which have 16 extra FP registers to play with—recall that use of an
even-numbered register in the old architecture usually implied use of the next-

1. Thisis not quite true. In SGI computers functions manipulate the gp register to help implement
position-independent code (see Section 10.11.2 for details). In 032 each function could do what
it liked with gp, which meant that you might have to restore the register aftér each function call.
In n32/n64 the gp register is now defined as “saved” Most embedded systems leave gp constant,
so the differences are academic.

276 m Chapter 10—C Programming on MIPS

TABLE 10.1 Integer register usage evolution in newer SGI tools

Register number Name Use

$0 zero Always zero
$1 at Assembler temporary
$2,43 v0,v1i Return value from function
$4-§7 a0-a3 Arguments
032 n32/n64
Name Use ' Name Use
$8-$11 t0-t3 Temporaries ad4-a7 Arguments
$12-$15 ta-t7 to-t3 Temporaries
$24, $25 ts, t9 ts8, t9
$16-$23 80-87 Saved registers
$26, $27 k0,k1 Reserved for interrupt/trap handler
$28 gp Global pointer
$29 sp Stack pointer
$30 s8/fp Frame pointer if needed (additional

saved register if not)

$31 ra Return address for subroutine

up odd-numbered one.! While SGI could have interleaved the new registers
and maintained some vestiges of compatibility, the company decided instead
to tear up most of the existing rules and start again.

In addition to the larger number of arguments that can be passed in regis-
ters, the n32/n64 standard doesn’t make any rules dependent on whether the
first argument is a floating-point type. Instead, arguments are allocated to reg-
isters according to their position in the argument list. Here again is one of the
examples used above:

BoanEn g

e

double ldexp (double, int);

y = ldexp(x, 23); /* y = x * (2**23) */

Figure 10.5 shows the corresponding n32/n64 structure and register values.

»

1. MIPS III CPUs have a mode switch that makes their FP behavior totally compatible with earlier
32-bit CPUs; n32/n64 assume that the CPU is running with that switch off.

10.8 Evolving Register-Use Standards: SGI'sn32and n64 m 277

TABLE 10.2 FP register usage with 032 and n32/n64 conventions

Register number 032 use

Return values; £v1 is used only for complex data type and is not
$£0, $£2 available in C
$£4, $£6, $£8, $£10 Temporaries—functions can use without any need to save
$£12, $£14 Arguments
$£16, $£18 Temporaries

$£20, $£22, §£24,
$£26, $£28, $£30

Saved registers—functions must save and restore any of these registers
they want to write, making them suitable for long-lived values that
persist across function calls

Register number n32 use n64 use
Return values—$£2 is used only when returning a structure of exactly

$£0, $£2 two floating-point values; this is a special case that deals with Fortran
complex numbers

$£1, $£3

$£4-$£10 Temporaries

$£12-5£19 Arguments

$£20-$£23 Evens (from $£20-$£30) are temporary; odds (from Temporaries

$£24-$£31 $£21-$£31) are saved Saved registers

Stack Position Contents Register Contents
sp+0 .
undefined $£12 {double) x
sp+4
sp+8 undefined | al [23 —I

FIGURE 10.5 n32/n64 argument passing: a floating-point argument

Although n32/n64 can handle an arbitrary mix of floating-point and other
values and still put any double types that are in the first eight arguments in
FP registers, there are some careful rules. Any argument that is touched by a
union {and that therefore might not really be a double) is excluded and so are
any of the variable arguments of a variable-number-of-afguments function.
Note that this decision is made on the basis of having a function prototype;

278 m C}iapter 10—C Programming on MIPS

10.9

More arguments

(if won't fit in 16 bytes)

Jybiy ——

Space for argument 4
Space for argument 3
Space for argument 2
sp on _ Space for argument 1
entry el & o}_
: £ §’ &
qm:
a
(]
N §
- .
£
£ 5}
[V
&
8sp V\(hﬂe R j
running

FIGURE 10.6 Stack frame for a nonleaf function

with no prototype, you can break things. SGI’s linker will usually detect this
and warn you.

Stack Layouts, Stack Frames, and Helping Debuggers

Figure 10.6 gives a diagrammatic view of the stack frame of a MIPS function.
(We’re back to having the stack growing down, with higher memory at the top.)
You should recognize the slots reserved for the first four words of the function’s
arguments as required by the traditional MIPS function calling convention—
newer calling conventions will only provide any space they actually need.

The gray areas of the diagram show stack space used by the fupction itself;
the white area, above the bold line, belongs to the caller. All the gray compo-
nents of the stack frame are optional, and some functions need none of them;

10.9 Stack Layouts, Stack Frames, and Helping Debuggers m 279

such a simple function does not need to do anything to the stack. We'll see
some of those in the examples through the rest of the chapter. '

Apart from the arguments (whose layout must be agreed with the caller),
the stack structure is private to the function. The only reason we need a stan-
dard arrangement is for debugging and diagnostic tools, which want to be able
to navigate the stack. If we interrupt a running program for debugging, we'd
very much like to be able to run backward up the stack, displaying a list of the
functions that have been called en route to our breakpoint and the arguments
passed to those functions. Moreover, we'd like to be able to step the debugger
context back up the stack a few positions and in that context to discover the
value of variables—even if that piece of code was maintaining the variable’s
data in a register, as optimizing compilers should.

To perform this analysis, the debugger must know a standard stack layout
and must be fed information that allows it to see the size of each stack frame
component and the internal layout of each of those components. If a function
somewhere up the stack saved the value of 80 in order to use it, the debugger
needs to know where to find the saved value,

In CISC architectures, there is often a complex function call instruction
that maintains a stack frame similar to that in Figure 10.6 but with an addi-
tional frame pointer register that corresponds to the position marked “sp on
entry” on our diagram. In such a CPU, the caller’s frame pointer will be stored
at some known stack position, allowing a debugger to skip up the stack by an-
alyzing a simple linked list. But in a MIPS CPU, all this extra run-time work
is eliminated; most of the time a compiler knows how much to decrement the
stack pointer at the head of a function and how much to increment it before
return.

So in the minimal MIPS stack frame, where is a debugger to find out where
data is stored? Some debuggers are quite heroic and will even interpret the first
few instructions of a function to find how large the stack frame is and to locate
the stored return address. But most toolchains pass at least some stack frame
information in the object code, written there by suitable assembler directives.

Since the mixture of directives is quite dependent on the toolkit, it's worth
defining prologue and epilogue macros that both save you from having to re-
member the details and make it easier to change to another toolkit if you need
to. Most toolkits will come with some macros ready to use; you'll see simple
ones called LEAF and NESTED used in the examples below.

We haven't fully documented the SGI conventions, but the examples that
follow (using the recommended function prologue and epilogue macros) are
compatible with old versions of the SGI tools and therefore are probably com-
patible with most embedded toolkits.

The key directives are . frame and .mask, and you can read more about
them in Section 9.5.

We can divide up functions into three classes and presoribe three different
approaches, which will probably cover everything you need.

280 m Chapter 10—C Programming on MIPS

10.9.1

Leaf Functions

Functions that contain no calls to other functions are called leaf functions. They
don’t have to worry about setting up argument structures and can safely main-
tain data in the nonpreserved registers t0-t7, a0-a3, and v0 and v1. They
can use the stack for storage if they feel like it but can and should leave the
return address in register ra and return directly to it."

Most functions that you may write in assembler for tuning reasons or as
convenience functions for accessing features not visible in C will be leaf func-
tions; many of them will use no stack space at all. The declaration of such a
function is very simple, for example:

#include <mips/asm.h>
#include <mips/regdef.h>

LEAF (myleaf)
<your code goes here>
3 ra

END (myleaf)

Most toolchains can pass your assembler source code through the C macro
preprocessor before assembling it—unix-style tools decide based on the file-
name extension. The files mips/asm.h and mips/regdef . h include useful
macros (like LEAF and END, shown above) for declaring global functions and
data; they also allow you to use the software register names, e.g., a0 instead of
$4. If you are using the old MIPS or SGI toolchain, the above fragment would
be expandedto

.globl myleaf

.ent myleaf, 0
<your code goes here>
3 $31

.end myleaf

Other toolchains may have different definitions for these macros, as appro-
priate to their needs.
’

1. Storing the return address somewhere else may work perfectly well, but the debugger won't be
able to find it.

1

#include <mi
#include <mi

#

10.9 Stack Layouts, Stack Frames, and Helping Debuggers m 281

0.9.2 Nonleaf Functions

MmMijﬂmmuemmemMGmmmcﬂbmomﬂﬁmamm.Nmmdwme
function starts with code (the function prologue) to reset sp to the low-water
mark of argument structures for any functions that may be called and to save
the incoming values of any of the registers s0—s8 that the function uses. Stack
locations must also be reserved for ra, automatic (i.e., stack-based local) vari-
ables, and any further registers whose value this function needs to preserve
over its own calls. (If the values of the argument registers a0—a3 need to be
preserved, they can be saved into their standard positions on the argument
structure.)

Note that since sp is set only once (in the function prologue) all stack-held
locations can be referenced by fixed offsets from sp.

To illustrate this, we will walk through the following nonleaf function (in
conjunction with the picture of the stack frame in Figure 10.6):

ps/asm.h>
ps/regdef.h>

myfunc (argl, argz, arg3, argd, args)

#

framesize
myfunc_frmsz

= locals + regsave (ra,s0) + pad + fregsave (£20/21) + args + pad
=4 +8+4+8+ (5*4) +4

NESTED (myfunc, myfunc_frmsz, ra)

subu
.mask
sw

sw

. fmask
s.d

sp,myfunc_frmsz
0x80010000, -4
ra,myfunc_frmsz-8(sp)
s0,myfunc_frmsz-12(sp)
0x00300000, -16

$£20, myfunc_frmsz-24(sp)

<your code goes here, e.g.>

local
sw

1w

jal

sw

1.4

1w

1w
addu

= otherfunc (arg5, arg2, arg3, argd, argl)
a0,16(sp) # arg5 (out) = argl (in)
a0,myfunc_frmsz+16(sp) # argl (out) = arg5 (in)
otherfunc

v0,myfunc_frmsz-4(sp) # local = result

$£20, myfunc_frmsz-24 (sp)
80, myfunc_frmsz-12(sp)
ra,myfunc_frmsz-8(sp)
sp,myfunc_frmsz

282 m Chapter 10—C Programming on MIPS

jr ra
END (myfunc)

To begin with, the function myfunc expects five arguments: On entry the
first four of these will be in registers a0-a3 and the fifth will be at sp+16. The
next code is

framesize = locals + regsave (ra,s0) + pad + fregsave (£20/21) + args + pad
myfunc_frmsz = 4 + 8 + 4 + 8+ 20+ 4

3%
i

The total frame size is calculated as follows:

HEGRE

® locals (4 bytes): We are going to keep one local variable on the stack,
rather than in a register; perhaps we need to pass the address of the
variable to another function.

® regsave (8 bytes): We need to save the return address register ra, be-
cause we are calling another function; we also plan to use the callee-
saved register s0.

s pad (4 bytes): The rules say that double-precision floating point must
be 8 byte aligned, so we add one word of padding to align the stack.

= fregsave (8 bytes): We plan to use $£20, which is one of the callee-
saved floating-point registers.

m args (20 bytes): We are going to call another function that needs five
argument words; this size must never be less than 16 bytes if a nested
function is called, even if it takes no arguments.

» pad (4 bytes): The rules say that the stack pointer must always be 8 byte
aligned, so we add another word of padding to align it.

The next piece of code is

NESTED (myfunc, myfunc_frmsz, ra)
subu sp,myfunc_frmsz

In the MIPS Corporation toolchain this would be expanded to

.globl myfunc

.ent myfunc, 0

.frame $29,myfunc_frmsz,$0
subu $29,myfunc_£frmsz

This declares the start of the function and makes it globally accessible. The
. £rame function tells the debugger the size of stack frame we are about to
create and the subu instruction creates the stack frame itself.

10.9 Stack Layouts, Stack Frames, and Heiping Debuggers m 283

This is followed by
.mask 0x80010000, -4
sw ra,myfunc_£frmsz-8(sp)
sw 80, myfunc_frmsz-12 (sp)

We must save the return address and any callee-saved integer registers that
we use in the stack frame. The .mask directive tells the debugger which regis-
ters we are going to save ($31 and $16) and the offset from the top of the stack
frame to the top of the save area: This corresponds to regof£s in Figure 10.6.
The sw instructions then save the registers; the higher the register number, the
higher up the stack it is placed (i.e., the registers are saved in order). The next
code is

.fmask 0x00300000, -16
s8.d $£20, myfunc_frmsz-24(sp)

We do the same thing for the callee-saved floating-point registers $£20 and
(implicitly) $£21. The . £fmask offset corresponds to fregof£s in Figure 10.6
(i.e., local variable area + integer register save area + padding word).

Next comes

local = otherfunc (arg5, arg2, arg3, argd, argl)

sw a0,16(sp) # arg5 (out) = argl (in)
1w a0, myfunc_frmsz+16(sp) # argl (out) = arg5 (in)
jal otherfunc

We call function otherfunc. Its arguments 2 to 4 are the same as our
arguments 2 to 4, so these can pass straight through without being moved. We
have to swap our argument 5 and its argument 1, however, so we copy our argl
(in register a0) to the arg5 position in the outgoing argument build area (new
sp+16) and our arg5 (at old sp+16) to outgoing argument 1 (register a0).

Then in the code

sw v0,myfunc_frmsz-4 (sp) # local = result
the return value from otherfunc is stored in the local (automatic) variable,

allocated in the top 4 bytes of the stack frame.
Finally, we have

1.4 $£20,myfunc_frmsz-24(sp)

1w 80, myfunc_frmsz-12(sp)

1w ra,myfunc_frmsz-8(sp) R
addu sp,myfunc_frmsz

ir ra

END (myfunc)

284 m Chapter 10—C Programming on MIPS

10.9.3

-

Here the function epilogue reverses the prologue operations: It restores the
floating-point, integer, and return address registers; pops t'e stack frame; and
returns.

Frame Pointers for More Complex Stack Requirements

In the stack frames described above, the compiler has been able to manage the
stack with just one reserved register, sp. Those of you who are familiar with
other architectures will know that they often use two stack maintenance regis-
ters, an sp to mark the stack low-water point and a frame pointer to point to

the data structures created by the function prologue. However, so long as the

compiler can allocate all the stack space needed by the function in the function
prologue code, it should be able to decrement sp in the prologue and leave
it pointing to a constant stack offset for the life of the function. If so, every-
thing on the local stack frame is at a compile-time-known offset from sp and
no frame pointer is needed. But sometimes you want to mess with the stack
pointer at run time: Figure 10.7 shows how MIPS allocates a frame pointer to
cope with this need.

What leads to an unpredictable stack pointer? In some languages, and even
in some extensions to C, dynamic variables can be created whose size varies at
run time. And many C compilers can allocate stack space on demand through
the useful built-in function alloca().! In this case the function prologue
grabs another register, 8 (which has a regular alias of £p), and sets it to the
incoming value of sp.

Since £p (in its other guise as s8) is one of the saved registers, the prologue
must also save its old value, which is done just as if we were using s8 as a
subroutine variable. In a function compiled with a frame pointer, all local stack
frame references are made via £p, so if the compiler needs to lower sp to make
space for variables of run-time-computed size, it can go right ahead.

Note that if the function has a nested call that uses so many arguments that
it needs to pass data on the stack, that will be done with relation to sp.

One ingenious feature of this trick is that neither the caller of a frame
pointer function, nor anything called by it, see it as anything special. Func-
tions it calls are obliged to preserve the value of £p because it’s a callee_saved
register; and the callee-visible part of the stack frame looks like it should.

Assembler buffs may enjoy the observation that, when you create space
with alloca() the address returned is actually a bit higher than sp, since the
compiler has still reserved space for the largest argument structure required by
any function call.

L. Actually, some implementations of alloca () don’t just make space on the ldcal stack, and
some are pure library functions (which means that you never need go without alloca() for
portability reasons). But compilers that implement alloca () using stack space go faster.

10.9 Stack Layouts, Stack Frames, and Helping Debuggers m 285

More arguments

(if won t fit in 16 bytes)

19YBIH ——

Space for argument 4

Space for argument 3

Space for argument 2

Space for argument 1

Old value of

—
88/ £p saved here

$9553.ppY

sp while
running

"FIGURE 10.7 Stack frame using separate frame pointer register

286 m Chapter 10—C Programming on MIPS

Some tools also employ an £p-based stack frame when the size of the local
variables grows so large that some stack frame objects are too far from sp to be
accessed in a single MIPS load/store instruction (with its +32KB offset limit).

So let’s look at a slightly modified version of the example function used in
the last section, with the addition of a call to alloca():

#include <mips/asm.h>
#include <mips/regdef.h>

#
myfunc (argl, arg2, arg3, argd, arg$5)
#

framesize = locals + regsave (ra,s8,s80) + fregsave (£20/21) + args + pad
myfunc_frmsz =4 + 12 + 8 + (5 * 4) + 4

.globl myfunc
.ent myfunc, 0
.frame fp,myfunc_frmsz, $0

subu 8p,myfunc_frmsz

.mask 0xc0010000, -4

sw ra,myfunc_frmsz-8(sp)

8W fp,myfunc_frmsz-12(sp)

sw 80, myfunc_frmsz-16(s8p)

.fmask 0x00300000, -16

s.d $£20,myfunc_frmsz-24 (sp)

move fp, sp # save bottom of fixed frame

. ee

t6 = alloca (t5)

addu t5,7 # make sure that size
and t5,77 # is a multiple of 8
subu sp,t5 # allocate stack

addu t6,8p,20 # leave room for args

<your code goes here, e.g.>
local = otherfunc (arg5, arg2, arg3, argd, argl)

sw a0,16(sp) # arg5 (out) = argl (in)

lw a0, myfunc_frmsz+16(fp) # argl (out) = arg5 (in)

jal otherfunc

sw v0,myfunc_frmsz-4 (£fp) # local = result

move sp, £p # restore stack pointer .
1.4 $£20, myfunc_frmsz-24(sp) '
1w 80, myfunc_£frmsz-16(sp)

1w
1w
addu
ir

END (myfunc)

10.9 Stack Layouts, Stack Frames:and Helping Debuggers m 287

fp,myfunc_frmsz-12 (8p)

ra,myfunc_frmsz-8(sp) !
sp, myfunc_frmsz

ra

Let’s look at what is different from the previous example:

.globl myfunc
.ent myfunc, 0
.frame fp,myfunc_frmsz, $0

We can’t use the NESTED macro any more, since we are using a separate
frame pointer which must be explicitly declared using the . frame directive.
We are going to modify £p (which is, of course, the same as 88 or $30), so we
must save it in the stack frame too:

.mask 0xc0010000, -4

sw ra,myfunc_frmsz-8(sp)
8w fp,myfunc_frmsz-12 (8p)
sw 80 ,myfunc_frmgz-16 (sp)

The sequence

t6 = alloca (t5)

addu t5,7 # make sure that size
and t5,77 # is a multiple of 8
subu 8p,ts # allocate stack

addu t6,sp,20 # leave room for args

allocates a variable number of bytes on the stack and sets a register (t6) to
point to it. Notice how we must make sure that the size is rounded up to a
multiple of 8, so that the stack stays correctly aligned. Notice also how we add
20 to the stack pointer to leave room for the five argument words that will be
used in future calls.

When building another function’s arguments we use the sp register, but
when accessing our own arguments or local variables we must use the £p reg-

ister:
sw a0,16(sp) # arg5 (out) = argl (in)
1w a0, myfunc_frmsz+16 (fp) # argl (out) = arg5 (in)
jal otherfunc

sw v0,myfunc_frmsz-4 (£fp) # local = result

288 m Chapter 10—C Programming on MIPS

Finally, at the start of the function epilogue, we restore the stack pointer
to its post-prologue position and then restore the registers (not forgetting to
restore the old value of £p, of course):

nove sp, fp # restore stack pointer Jj
1.4 $£20,myfunc_frmsz-24 (sp) &
1w 80, myfunc_frmsz-16(sp) &
1w fp,myfunc_frmsz-12(sp)

10.10 Variable Number of Arguments and stdargs -

If you need to build a new function that takes a variable number of arguments,
use your toolkit’s stdarg . h macro package (compulsory for ANSI compatibil-
ity). The macro package delivers the macros—or possibly functions—
va_start (), va_end(), and va_arg (). To see how they’re used, look at how
the Algorithmics SDE-MIPS package implements printf ():

int printf(const char *format,...)
{

va_list arg;

int n;

va_start (arg, format) ;
n = vfprintf{stdout, format, arg);
va_end(arg) ;

return n;

Once we've called va_start (), we can extract any argument we like. So
somewhere in the middle of the code that implements the format conversions
for printf (), you'll see the following code used to pick up the next argument,
supposing it to be a double-precision floating-point type:

d = va_arg(ap, double);

. . . ’
Never try to build an assembler function that takes a variable number of argu-
ments—it isn’t worth the portability hassle.

10.11 Sharing Functions between Different Threads and Shared Library Problems m 289

10.11

Sharing Functions between Different Threads and Shared Li-
brary Problems

A C object library is a collection of precompiled modules, which are automati-
cally linked into your program’s binary when you refer to a function or variable
whose name is defined in the module. Standard C functions like print f are
just functions provided in libraries.

Although libraries provide a simple and powerful way of extending the lan-
guage, they can cause trouble when used within a multitasking OS. Most often,
you want library functions to behave like the code you write—just as if each
task had its own copy. But wed like to be able to share at least the library
function’s code, to avoid consuming memory space with multiple copies of the
same thing. Library functions may be huge: The graphics interface libraries
to the widely used X window system add about 300KB to the size of a MIPS
object.

Most MIPS operating systems provide some way in which library code
may be shared between different tasks. To understand the problems of shar-
ing functions, we’ll distinguish a number of different classes of data used by
functions:

® Read-only code and data: This can be freely shared so long as each thread
can find it.

& Dynamic data: Arguments, function variables, saved registers, and other
information that a function keeps on the stack will remain safely thread
specific. Every task has its own stack space: Even a thread sharing ad-
dress space with other threads must have its own stack. Such data van-
ishes when the function returns.

® Static transient data: These are static data items whose value is not ex-
pected to persist between invocations of the functions. In principle
these could be eliminated in favor of dynamic data—though not triv-
ially, if the data is shared by several subfunctions—but that would mean
rewriting the code and we’d rather be able to simply recompile it.

® Per-thread persistent data: These are static data items that persist be-
tween invocations of library functions, but where a separate copy must
be kept for each client thread. The global exrrno variable (which holds
an error code after a unix-style file I/O function is called) is one of these.

8 Global persistent data: These are static persistent data items that track
state changes in the system being organized by the library function.
Once a library routine starts deliberately keeping multitask state infor-
mation, it’s well on its way to being part of the operating system; that’s
beyond the scope of this book.

290 m Chapter 10—C Programming on MIPS

10.11.1

10.11.2

The strategies for these classes of data are quite different according to
whether the client threads are running in a common address space or each has
its own independent address space.

Sharing Code in Single-Address-Space Systems

In a single-address-space OS like most real-time OSs, a shared library function’s
code and static data are shared at fixed addresses; there’s no new problem for
the client to find the function nor for the function itself to find its own data.
However, the libraries must be written to be re-entrant: They may be used
by different tasks, and one task may be suspended in the middle of a library
function and that function reused by another. Dynamic data is safe enough, so
simpler routines that don’t keep state will often work correctly unmodified.

Static transient data accesses should be protected by semaphores to serialize
the code from before the first access to the data until after the last access (see
Section 5.8.4). The semaphore operations can be dummied out when we know
there’s only one thread active. Most often library functions for shared address
multitasking systems will be built with some reprogramming to eliminate static
transient data; when that’s too difficult, the code section relying on the static
data should be protected from being re-entered with a semaphore. Quite often,
the library will also have been reprogrammed in some OS-dependent way to
maintain some global persistent data.

Sharing Library Code in the MIPS ABI

In a protected OS where separate applications run in separate virtual address
spaces, the problems are quite different. We’ll outline the way in which unix-
style systems conforming to the MIPS ABI standard provide libraries that can
be shared between different applications, with no restriction on how the li-
braries and applications can be programmed.

Every MIPS ABI application runs in its own virtual address space, and the
shared library facility makes no provision for multiple threads in one address
space. The application’s own compiled code is fixed to particular locations in
this address space when it is linked. Library code is not built in: The application
carries a table of the names of library functions and variables it wants to use,
but those names are not yet resolved to addresses. In addition, the application
binary file includes a table that defines public symbols in the application for
use by library functions; under the MIPS ABI, library routines may freely refer
to public data, or call public functions, in application code.!

1. Though this probably isn’t ideal programming practice, it allows for the recompilation of un-
modified library functions that attached themselves to such globals; consider the way a library
function like malloc () uses the _end symbol.

Sharing Functions between Different Threads and Shared Library Problems m 291

[n the MIPS ABI model the section of memory that holds binary instruc-
tions may not be modified; there’s anothlr level of code sharing, implemented
by the virtual memory system, that allows multiple copies of the same applica-
tion to use the same physical memory for their code.

The MIPS ABI doesn't try to predefine the virtual addresses at which a li-
brary’s code or data will be located—libraries are built into the application’s
virtual address space starting at a fixed-by-convention location well away from
where the function’s data might grow up to or the stack grow down to.! That
means that the library must be compiled to position-independent code (PIC)—
it must run correctly regardless of its location in program memory. To make
the program independent of its code location, all branches, jumps, and other
instructions that reference code labels must operate correctly anywhere. All
MIPS branch instructions are PC relative, but the regular jump and subroutine
call instructions j and jal are useless. Within a library module, branch-like
instructions such as bal provide a PC-relative function call—so long as the
module isn’t too big. But it’s also possible to load a label’s address in a PC-
relative way, by using a branch-and-link instruction as a dummy call for the
side effect that loads its return address into the ra register:

la rd, label — bgezal zero, 1f
nop
1l: addu rd, $31, label - 1b

PIC is suitable for references to code within a single module of a library,
because the module’s code is loaded as a single entity into consecutive virtual
addresses. Data, or external functions, will be at locations that cannot be de-
termined until the application and library are loaded, and so their addresses
cannot be embedded in the program text.

Such addresses are held in a table built in the application’s address space as
the application and libraries are loaded—the global offset table (GOT). There’s
one GOT for each chunk of modules that were linked at compile time—
typically, one for the application and one for each module of related library
functions. At the start of any function, the address of its own GOT is loaded
into the gp register.

A MIPS ABI function refers to a dynamically linked variable or external
function through the GOT at a table index fixed when the group of mod-
ules sharing the GOT was compiled and linked. A load of the external integer
variable exrrno will come out as

L. Since most applications have quite a lot of virtual address to spare, it’s tempting to try to fix a
library’s code and data to well known addresses—and this was quite common in early shared
library systems. But with different applications building in different combinations of library
functions, this requires a commitment to find a unique memory space for each shared library
module we ever use. For a 32-bit system, virtual memory isn’t big enough to use like this.

-

292 ®m Chapter 10—C Programming on MIPS

lw rd, errmno — 1w rd, errno_offset (gp)
nop
1w rd, 0(rd)

Note the two loads: The double indirection is necessary because the GOT holds
pointers, not the data items themselves.

Similarly, invocation of the shared library function exit () would look like
this (assuming we've already set up the arguments):

jal exit — 1w t9, exit_offset(gp)
nop
jalr t9

The register gp is a good choice for the table base. Because of its role in
providing fast access to short variables, it is not modified by standard functions.
As an optimization, it is calculated only once per function (in the function
prologue). That in turn depends upon making a fixed convention that at the
point a function is entered the function’s own address will be in £9. We don’t
care that t9 itself may be reused by any subroutine, because once we’ve used it
to compute the GOT address we won’t use it again.

The function group’s GOT is located in the first page of memory after
the code of the function group; wherever a library gets loaded, the distance
between the function entry point and the GOT is constant, and we can get
the linker to figure that out at compile/link time. So a position-independent
function prologue might start like this:

func:
la gp, _gp_disp
addu gp, gp., t9
addu sp, sp, framesize
sw gp., 32(sp)

In the above example, _gp disp is 2 magic symbol that is recognized by
the linker when building a shared library: Its value will be the offset between
the instruction and the GOT. The gp value is saved on the stack and must be
restored from there after a call to an external function, since that function may
itself have modified gp.

‘There is much more that could be said about the way in which the MIPS
ABI implementation is optimized. For example, no attempt is made to link
in libraries when an application is first loaded into memory; dummy GOT
entries that point to illegal memory addresses are used instead. When and if
the application uses a library module, the illegal reference is caught by the OS,
recognized as a GOT dummy entry, and fixed up. If necessary, the appropriate
library function is paged in first.

A, 3& E

10.12

10.12.1 -

L

10.12 An Introduction to Compiler Optimization m 293

An Introduction to Compiler Optimization

In saying anything at all about compiler optimization we’re straying from the
main path of this book, so we’ll keep it brief. This section focuses on optimiza-
tion as a process that does things that a programmer may need to know about.
Interested readers will find a large literature on compiler techniques.

Compilers are not nearly as clever as you might think. The compiler writer’s
first responsibility is to ensure that the generated code does precisely what the
language semantics say it should; and that is hard enough. It has for a long
time been accepted good practice that cunning improvements to code should
be made as a sequence of transformations to an internal representation of the
program, with each individual optimization leaving a transformed but equiv-
alent program. This approach has the merit of allowing programs to be built
either including or leaving out a particular optimization step, thus containing
the complexity of the compiler debugging job.

Once you can do that, of course, it makes sense for the basic compiler to
ignore performance, generating dumb-but-correct code. The first optimiza-
tion stage will factor out the stupid code; however, by doing it in two stages we
expose even that first optimization stage to our debugging strategy.

It’s nice to imagine a compiler making a smooth transition from the front
end (concerned with syntax and program semantics) through to the back end
(concerned with representing the program using the machine code of the tar-
get). Unfortunately, it’s not like that; even during early compilation some over-
all features of the machine are likely to change the direction of compilation: Is
it stack oriented? Does it have special-purpose registers? Conversely, the use
of a machine-specific transformation down at the back end can often open up
a good opportunity for rerunning a machine-independent optimization stage.
The optimizers run with one eye on the logic of the program and another on
the limitations and opportunities of the target architecture.

The data structure representing the unit of compilation (a function, if you're
compiling C) is typically a tree whose branch structure shows the control flow
in the function and whose nodes are individual operations. GNU C’s RTL
nodes specify the operation concerned in a machine-independent language,
but usually also have a fragment of assembler attached to them that will do
the job. The assembler language is explicitly associated with the target ma-
chine; more subtly, the operation itself has been chosen by the compiler as one
available, in a general sense, on this target.

Common Optimizations

Most compilers will do all of the following. Occasionally, the assembler may
perform some of these, too. »

294 m Chapter 10—C Programming on MIPS

» Common subexpression elimination (CSE): This detects when the code is
doing the same work twice. At first sight this looks like it is just makiny
up for dumb programming,' but in fact CSE is critically important and
tends to be run many times to tidy up after other stages:

— Itis CSE that gives the compiler the ability to optimize globally across
the function. The basic code generator works through your code ex-
pression by expression; even if you write very neat code the expansion
of simple C statements into multiple MIPS instructions will lead to a
lot of duplicated effort. The very first CSE pass factors out the stupid
duplication and clears the way for register allocation. Older compil-
ers often allocated registers before CSE, and when some temporary
results were no longer required they ended up with spare registers
they were unable to benefit from.

— Most memory-reference optimization is actually done by CSE. The
code that fetches a variable from memory is itself a subexpression.

The enemy of CSE is unpredictable flow of control: the conditional
branch. Once code turns into spaghetti, the compiler finds it diffi-
cult to know which computation has run before which other one; with
some straightforward exceptions, CSE can really only operate inside ba-
sic blocks (a piece of code delimited by, but not containing, either an
entry point or a branch). CSE markedly improves both code density
and run-time performance.

Similar to CSE are the optimizations of constant folding, constant prop-
agation, and arithmetic simplification. These precompute arithmetic
performed on constants and modify other expressions using standard
algebraic rules so as to permit further constant folding and better CSE.

® Jump optimization: This removes redundant tests and jumps. Code pro-
duced by the earlier compiler stages often contains jumps to jumps,
jumps around unreachable code, redundant conditional jumps, and so
on. These optimizations will remove this redundancy.

m Strength reduction: This means the replacement of computationally ex-
pensive operations by cheaper ones. For example, multiplication by
a constant value can be replaced by a series of shifts and adds. This
actually tends to increase the code size while reducing run time.

» Loop optimization: This studies loops in your code, starting with the in-
ner ones (which, the compiler guesses, will be where most time is spent).
There are a number of useful things that can be done:

— Subexpressions that depend on variables that don’t change inside the
loop can be precomputed before the loop starts.

1. Here and elsewhere no disrespect is attached to dumb programming. Dumb programming is
often the best programming, and it’s really stupid to be unnecessarily clever.

&

10.12 An Introduction to Compiler Optimization ® 295

— Expressions that depend in some simple way on a loop variable can
be simplified. For example, in

int i, x[NX];

(1 = 0; 1 < NX; i++)
X[1)++;

the array access (which as written would involve a multiplication and
addition) can be implemented by an incrementing pointer. This kind
of optimization will usually recognize only a particular set of stylized
opportunities (a skeptic would point out that it is much better at
improving performance on benchmarks than it is on your real code).

~ Loops can be unrolled, allowing the work of two to a few iterations of
the loop to be performed in line. On some processors where branches
are inherently slow, this is valuable in itself, but branches are cheap
on most MIPS CPUs. However, the unrolled loop offers much better
pickings for other optimizations (CSE and register allocation being
the main beneficiaries).

Loop unrolling may significantly increase the size of your compiled
program, and you will usually have to request it with a specific com-
piler option.

® Function inlining: The compiler may guess that some small functions
can be usefully expanded in line, like a macro, rather than calling them.
This is another optimization that increases the size of your program to
give better performance and that usually requires an explicit compiler
option. Some compilers may recognize the inline keyword (formal-
ized in C++; an implementation-defined extension in C) to allow the
programmer to specify which functions’ invocations can be replaced by
inlined code.

Register allocation: 1t’s absolutely critical to good performance to make
the best possible use of the 32 general-purpose registers, to make your
code faster and smaller. The compiler identifies global variables (static
and external data stored in memory); automatic variables (defined within
a function, and notionally stored on the stack); and intermediate prod-
ucts of expression evaluation.

Any variable must be assigned to a machine register, and input data must
be copied to that register, before you can do anything useful with it.
The register allocator’s job is to minimize the amount of work done in
shuffling data in and out of registers; it does this by paintaining some
variables in registers for all or part of a function’s run time.

There are several points about register allocation that you should note:

296 m Chapter 10—C Programming on MIPS

This process usually entirely ignores the old-fashioned C register
attribute. It might be used as a hint, but most compilers figure out
for themselves which variables are best kept in registers and when.

The MIPS compiler has nine registers, 80—-s8, which can be freely
used as automatic variables. Any function using one of these must
save its value on entry and restore it on exit. These registers tend to
be suitable for long-term storage of user variables.

It also has a set of 10 temporary registers, t0-t9, which are typically
used for intermediate values in expression evaluation. The argument
registers a0—a3 and result registers v0 and v1 can be freely used too.
However, these values don’t survive a function call; if data is to be
kept past a function call it is more efficient to use one of the callee-
saved registers s0—s8, because then the work of saving and restoring
the value will be done only if a called function really wants to use that
register.

C’s loose semantics mean that any assignment through a pointer could
potentially dump on essentially any memory location and hence
change pretty much any declared variable. Since the programmer
might have meant this to happen, the compiler’s ability to main-
tain a variable in a register is strictly limited. It is safe to do so
for any function variable (automatic variable) that is nowhere sub-
ject to the “address of” operator “&”. And a variable value can be
left in a register during any piece of code where there is neither a
store-through-pointer operation nor a function call.

m Pipeline reorganization: The compiler or assembler can sometimes move
the logical instruction flow around so as to make good use of the branch
and load delay slots referred to so often in this book. In practice, the
delay slots are fine grained and tied to specific machine instructions;
this can only be done late in the compilation process.

The most obvious techniques are as follows:

If the instruction succeeding a load doesn’t depend on the loaded
value, just leave out the nop.

Move the logically preceding instruction around. You may be able
to find an instruction a few positions preceding the branch or load,
provided that there are no intervening entry points. The register-
register architecture makes it fairly simple to pick out instructions
that depend on each other and cannot be resequenced.

For a load, you may be able to find an instruction in the code after the
load that is independent of the load value and is able to be moved.

Move the instruction just before a branch into the branch delay slot.
Duplicate the instruction at a branch target into the branch delay
stot, and fix up the branch to go one more instruction forward. This
is particularly effective with loop-closing instructions. If the branch

10.12° An Introduction to Compiler Optimization m 297

is conditional, though, you can only do it if the inserted instruction
can be seen to be harmless when the branch is not taken. !

10.12.2 Optimizer-Unfriendly Code and How to Avoid It

Certain kinds of C programs will cause problems to a MIPS CPU and its opti-
mizing compiler and will cause unnecessary loss of performance. Some things
to avoid include the following:

= Subword arithmetic: Use of short or char variables in arithmetic op-
erations is not helpful. The MIPS CPU lacks subword arithmetic func-
tions and will have to do extra work to make sure that your expressions
overflow and wrap around when they should. The int data type repre-
sents the optimum arithmetic type for your machine; most of the time
short and char values can be correctly manipulated by int automatic
variables.

® Taking the address of a local variable: The compiler will now have to con-
sider the possibility that any function call or write through a pointer
might have changed the variable’s value, so it won’t live long in a ma-
chine register. Perhaps the best way of seeing this is observing that a
variable defined locally to a function (and whose address is not taken) is
essentially free. It will be assigned to a register, which would have been
needed in any case for the intermediate result.

® Function calls: In the MIPS architecture the direct overhead of a func-
tion call is very small (2-3 clock cycles). But the function call makes
it difficult for the compiler to make good use of registers, so it may be
much more costly in the long run. So a nested call inside a function
with a fairly complex set of local variables is probably as slow as a typical
CISC function call, and it adds a lot of code.

10.12.3 The Limits of Optimization

Compilers have been much studied for a long time. Modern compilers tend to
use only a fraction of the ideas and techniques that academics have come up
with; partly this is appropriate conservatism, in that a compiler that generates
incorrect code at just one point in your 100,000-line program isn’t much good
to you, even if the code it got right is 10% smaller and 10% faster. But another
reason for avoiding fancy techniques is that most of them deliver very little im-
provement. There are some really bad compilers in use, so if you are using one
of those you may see a big improvement by changing; reasonable compilers,
however, perform about equally. ;

Big-time improvements are traditionally possible in certain specific types
of programming. Notably, many big floating-point programs are somewhat

298 m Chapter 10—C Progran;ming on MIPS

10.13

10.13.1

“vectorizable” and can be sped up a lot by the use of supercomputer CPUs
that perform the same operation to arwhole array of variables at one time. It
turns out that the vector optimizer can also make improvements in code for
CPUs that can’t actually perform the operations in parallel but whose pipelines
permit one operation to start before the last one finishes. MIPS floating-point
operations are like that.

For example, SGI has been tuning its own compilers to the MIPS archi-
tecture for years, whereas the GNU C compiler is a peculiar public-domain
collaboration and MIPS is just one of many architectures. On plain integer
code there is some evidence that the GNU compiler slightly outpaces SGI’s;
where this is true it’s probably evidence of better register allocation. But on
floating-point code the SGI compilers, with their supercomputer heritage, are
often 20% or more faster. '

Hints about Device Access from C

Most of you will be writing code that accesses I/O registry in C—you certainly
shouldn’t be using assembler code. As C evolves, it becomes more high level
and increases the risk that the compiler won’t do what you think you’re telling
it to do. Here are some well-trodden hints.

Using “volatile” to Inhibit Destructive Optimization

I might write a piece of code that is intended to poll the status register of a serial
port and to send a character when it’s ready:

unsigned char *usart_sr = (unsigned char *) 0xBFF00000;
unsigned char *usart_data = (unsigned char *) O0xBFF20000;
#define TX_ RDY 0x40

void putc (ch)
char ch;
{
while ((*usart_sr & TX_RDY) == 0)

*usart_data = ch;

I'd be upset if this sent two characters and then looped forever, but that would
be quite likely to happen. The compiler sees the memory-mapped I/O reference
implied by *usart _sr as aloop-invariant fetch; there are no stores in the while
loop so this seems a safe optimization. Your compiler has recognized that your
C program is equivalent to

S

10.13 Hints about Device Access fromC ®m 299

void putc (ch)
char ch;
{
tmp = (*usart_sr & TX_RDY);

while (tmp)

*usart_data = ch;

With ANSI-compliant compilers,' you could prevent this particular problem
by defining your registers as follows:

volatile unsigned char *usart_sr = (unsigned char *) O0xBFF00000;
volatile unsigned char *usart_data = (unsigned char *) 0xBFF20000;

A similar situation can exist if you examine a variable that is modified
by an interrupt or other exception handler. Again, declaring the variable as
volatile should fix the problem.

I don’t know whether to tell you that this will always work: The C bible
describes the operation of volatile as implementation dependent. I suspect,
though, that compilers that ignore the volatile keyword are implicitly not
allowed to optimize away loads.

Programmers have some trouble using volatile. The thing to remember
is that it behaves just like any other C type modifier—just like unsigned in the
example above. You need to avoid syndromes like this:

typedef char * devptr:;
volatile devptr mypointer;

You've now told the compiler that it must keep loading the pointer value
from the variable devptr, but you have said nothing about the behavior of the
register you're using it to point at. More useful would be the following;

typedef volatile char * devptr;
devptr mypointer;

Once you've dealt with this, the most common reason why optimized code
breaks will be that you have tried to drive the hardware too fast. There are often
timing constraints associated with reads and writes of hardware registers, and
you'll often have to deliberately slow your code to fit in. v

1. And most others, too; this particular ANSI feature is a must.

300 m Chapter 10—C Programming on MIPS ‘ !

What is the moral of this section? While it’s easier to write and maintain
hardware driver code in C than in assembler, it’s your responsibility to under-
stand enough about the translation of that code to be sure it hasn’t introduced
something you didn’t want.

10.13.2 Unaligned Data from C

Some C compilers give you the chance to mark structure data as being
“packed”—that is, with no padding to enforce alignment—and will generate
code to cope.'

What's more unusual is a compiler that understands that the main source
of potentially unaligned data is not the data you’ve declared, but data that has
arrived from somewhere else. But you can probably code a routine that will
read an unaligned datum, something like this:

int unalignedload (ptr)
void *ptr;
{
#pragma pack (1)
/* define what you like here, with no assumptions about alignment */

struct unaligned {
int conts;
} *ip:

#pragma pack ()
/* back to default behavior */

ip = (struct unaligned *) ptr;

/* can now generate an unaligned locad of int size */
return ip->conts;

The pragma syntax shown is an ANSI-approved escape mechanism, which
means that while the syntax is standard, the meaning probably isn’t. The pa-
rameter to pack determines the level of alignment to enforce: #pragma
pack (1) proposes alignment on 1-byte boundaries (i.e., no padding at all);
you could also use #pragma pack(2) to have 2-byte and larger entities aligned
on 2-byte boundaries, though I can’t see where this would be useful. The
closing #pragma pack() is used to restore the default alignment rules.

1. All reasonable versions of GNU C will do this, but only compilers based orf code currently on
prerelease for gcc version 2.8 or some earlier versions from Algorithmics will generate reasonably
efficient code for unaligned accesses.

Chapter .

Portability Considerations
and C Code

There are not many completely new programs in the world, and most ap-
plications for MIPS will have formerly run on some other microprocessor.
Portability refers to the ease with which a piece of software can be transferred
successfully and correctly to a new environment, particularly a new instruction
set. We all know that so-called portable computers can make your arms ache;
portability is relative, and porting a substantial application is rarely easy.

All applications that have grown up in one particular environment are likely
to present some portability problems, both deliberate and inadvertent. The
object of this chapter is to draw your attention to areas that are particularly
likely to give problems.

Much of this chapter is necessarily somewhat vague and polemical; expe-
rienced programmers may feel that they are just being fed motherhood and
apple pie. Feel free to skip most of it; but take a look at the sections on data
alignment (different for every architecture) and endianness {which somehow
is so slippery that everyone, myself included, always makes mistakes).

Those parts of a system that drive relatively low-level hardware are nec-
essarily unportable; it isn’t cost effective or sensible to insist that the hard-
ware/software interface be preserved as you make faster and faster laser print-
ers, for example.

But outside those areas, .C code is frequently inadvertently unportable. C
is often lax about semantics in search of performance, implementability, and
functionality.! If a language abstraction stands between the programmer and a
potentially useful machine feature, the abstraction had better be efficient and
universal. C’s strength is that when such abstractions commanded a wide con-

L. This is not a reason for using other languages. Pascal, for example, is a much more prescriptive
language, but the consequent inability to do some vital things has encouraged a welter of incom-
patible dialects. C’s semantic looseness (and some other cultural factors) has allowed enough
room to breathe that a single language standard has survived.

301

302 m Chapter 11—Portability Considerations and C Code

sensus (like block structure, loop controls, and subroutine calls) it used them;
and when they did not (the semantics of pointers and pointer-dereference op-
erations, for example) it just provided the machine feature, perhaps slightly
cleaned up.

However, while C encourages portability by allowing a huge range of soft-
ware to be implemented with the same syntax, portability issues can creep back
in through the many machine-dependent gaps in C's coverage.

Porting to MIPS: A Checklist of Frequently Encountered
Problems

The following are problems that have come up fairly frequently in our practice
at Algorithmics:

» Need for explicit cache management: In many cases, the customer’s pre-
vious system either didn’t have caches or used a CPU and peripherals
that snoop direct memory accesses (DMA) to hide them from software.
we'll describe what to do about this in Section 11.7.

w Timing consequences of a faster CPU: Some problems happen just be-
cause the software is now going so much faster. There’s no general
solution for this, so you'll need to be vigilant.

» Data alignment and memory layout: Your program may make unportable
assumptions about the memory layout of data declared in C. It’s al-
most always unportable to use C struct declarations to map input files
or data received through a communication link, for example. Danger
can lurk in a program that employs multiple views of private data with
differently typed pointers or unions.

You should review and check your declarations. MIPS CPUs have more
rigid alignment requirements than some other CPUs, so you may find
that data structures change significantly.

We'll describe how to understand what MIPS compilers usually do in
Section 11.5.

w Endianness: The computer world is divided into little- and big-endian
camps, and a gulf of incomprehension falls between them. The MIPS
CPU can be set up to do either, but you probably ought to understand
this problem; read much more about it in Section 11.6.

» Negative pointers: When running unmapped code on a MIPS CPU, all
pointers are in the kseg0 or ksegl areas, and both use pointers whose
32-bit value has the top bit set. Unmapped programs on most other
architectures are dealing with physical addresses, whiclf are invariably a
lot smaller than 2GB!

1.1 Porting to MIPS: A Checklist of Frequently Encountered Problems m 303

Such pointer values could cause trouble when pointer values are being
compared, if the pointer were implicitly converted to a signed integer
type. Any implicit conversions between integer and pointer types (quite
common in C) should be made explicit and should specify an unsigned
integer type (you should use unsigned long for this).

Most compilers will warn about pointer-to-integer conversions, though
you may have to specify an option.

= Signed vs. unsigned characters: In early C compilers, the char type used
for strings was usually equivalent to signed char; this is consistent
with the convention for larger integer values. However, as soon as you
have to deal with character encodings using more than 7-bit values, this
is dangerous when converting or comparing. Modern compilers usually
make char equivalent to unsigned char instead.

If you discover that your old program depends on the default sign-
extension of char types, good compilers offer an option that will restore
the traditional convention.

® Moving from 16-bit int: A significant number of programs are being
moved up from 16-bit x86 or other CPUs where the standard int is
a 16-bit value. Such programs may rely, much more subtly than you
think, on the limited size and overflow characteristics of 16-bit values.
Although you can get correct operation by translating such types into
short, that will be inefficient. In most cases you can let variables qui-
etly pick up the MIPS int size of 32 bits, but you should be particu-
larly aware of places where signed comparisons are used to catch 16-bit
overflow.

™ Programming that depends on the stack: Some kind of function invoca-
tion stack and data stack are implicit in C’s block structure. Despite the
MIPS hardware’s complete lack of stack support, MIPS C compilers im-
plement a fairly conventional stack structure. Even so, if your program
thinks it knows what the stack looks like, it won’t be portable. Don’t try
to fix it by replacing the old assumptions with new ones.

Two respectable and standards-conforming macro/ library operations are
available that may tackle what your software was trying to do before:

— stdargs: Use this include-file-based macro package to implement
routines with a variable number of parameters. Your C code should
make no other assumptions about the calling stack.

— alloca(): Toallocate memory at run time, use this library function,
which is “on the stack” in the sense that it will be automatically freed
when the function allocating the memory returns. Some compil-
ers implement alloca () as a built-in function that actually extends
the stack; otherwise there are pure-library implementations available.
But don’t assume that such memory is actually at an address with
some connection with the stack.

304 m Chapter 11—Portability Considerations and C Cod¢

11.2

m Argument passing, autoconversions: Arguments passed to a function, and
not explicitly defined by a function prototype, are often ‘promoted”;
typically, for subword integers, to an int type. This can cause surprises,
particularly when you are promoting data unexpectedly interpreted as
signed.

It’s time your software used function prototypes everywhere!

» Ambiguous behavior of library functions: Library functions may behave

unexpectedly at the margins. A classic example is using the memcpy ()
routine (defined in many C environments) to copy bytes and acciden-
tally feeding it a source and destination area that overlap—this is for-
bidden by definition. A simple sequential loop that copies bytes from
source to destination one at a time behaves fairly gracefully with over-
lapping pointers, but a tuned routine is likely to pick up multiple bytes
at once.
Your problem is that if you are using a lightly tuned library, as you port
your code bizarre things may start happening as incorrect library usage
is exposed. Some test suites may have debug versions of library routines
that check for possible problems.

u Include file usage: This is closer to a system dependency, but you can
spend hours trying to untangle an incompatible forest of “. h” files. This
is probably an unavoidable chore when porting a program of any size.
We'll give some general words of wisdom.

Before we get onto the more thorny problems in detail, let’s describe how
Mr. Perfect might go about porting a program. You will rarely have the chance
to do it this way, of course, but at least you can point at this book to explain
where it went wrong!

An Idealized Porting Process

It is unlikely that the source code you have to port is literally the complete sys-
tem. Most programs depend on an environment implemented by underlying
third-party software; this may be bound in at run time (an operating system or
system monitor) or at link time (library functions, include files). Quite often
you won’t have sources; sometimes you will have source code, but this part of
the system will just be more trouble to port than to reproduce.

This is the point at which you can appreciate the purpose of attempts to
standardize a C run-time library. If only your old and new environments pro-
vided something like the same application program interface, the job would be
trivial. It isn’t, usually.

11.2 AnIdealized Porting Process ® 305

Two Golden Rules

While you're porting a program, don’t make any
functional change. None af all. Not even a litfle
bit.

You'll have quite enough trouble getting the new pro-
gram to behave just like the old one without Irying 1o

make it behave better; one of the few advantages
porters have over greenfield software engineers is

thal the old system provides a rigid and unarguable
specification.

Here's another golden rule: Use every tool you
have to make befter maps of the system. If you've
got tools that will figure out call trees or variable
cross-eferences, use them. If you haven'’t got them,
now would be a good time to get them; many are
available free.

11.2.1

Three Porting Choices

You're going to consider every source module in the old system and decide its
fate: port, reimplement, or discard:

® Port. This is a part of your application or its essential superstructure,
and its basic job is machine independent. You will make no CPU- or
hardware-dependent changes to such a module; any changes you make
will be to correct portability errors and will not prevent your new mod-
ule from being used to rebuild your old system. You won’t change the
logic of such a module in any way, so with care you shouldn’t introduce

many bugs.

® Reimplement. This is a “glue” function that provides a service (as a set
of functions or data items) to portable code but whose implementation
depends on the way the old system works. You'll produce a new version
of this module that exports the same service (possibly taking advantage
of cut-and-pasted code from the old one).

® Discard. This is 2 module whose service interface is no longer relevant
to the new system. Perhaps it was supplied as part of an OS you won’t
be using, as a library function that is not available (with exactly the
same semantics) in the new compilation system, or perhaps it is even
not licensed for use on your target system.

This is art as well as science; there is no single right way to do it. Your
objective will be to minimize the scope for introducing new errors, while min-
imizing the amount of work you have to do. To do this job right requires skill,
insight, and experience; programming is a hard craft and not quickly learned.

Usually, you should make your decision on whole existing modules. Where
it seems that a single module really contains a mixture of “port” and “reimple-
ment” functions, try splitting it in two as cleanly as possible and then reclassify

each half.

*

The modules identified for reimplementation are likely to represent a small
fraction of the code but will absorb a lot of your effort. It will be easier if your

306 m Chapter 11—Portability Considerations and C Code

11.2.2

11.2.3

11.2.4

new target and its toolkit provide a high-quality run-time system and libraries
that can provide an easy base for those reimplementations.

The other large source of effort in reimplementation is most characteris-
tic of device drivers: It's often very difficult to figure out how the hardware
works. It probably isn’t specified properly, and in any case it doesn’t adhere to
its specifications. If your software system is large and your hardware is new and
minimal, it's often a good idea to write a test program to allow you to weigh
empirical evidence against the lies and blandishments of documentation. The
test program will also let you become familiar with the new toolkit and CPU.

Fixing Up Dependencies

Once you've made your divisions among the three porting choices, you begin
by recompiling the “port” modules on the new system, fixing minor portability
problems as you go. When you link them together you'll get a list of unresolved
definitions that need to be patched up. Some of these, when investigated, will
turn out to be used only in code that really fell into the “reimplement” category;
move the boundary and iterate until the list of unresolved names makes sense.

Then tackle the reimplement modules. You have two choices for each func-
tion. The first is to recompile the function, adding some “underglue” defini-
tions or functions to mimic the behavior of the old environment using the new
one. (In a sense, you're pragmatically deciding that what was seen as glue is
better pushed back into the port category.) Alternatively, you can discard the
old function and write a new one (using the old one for inspiration and as a
source for cut and paste), aiming to mimic the function as a black box.

For each function or module, choose one of these strategies. It is nearly
always a bad idea to mix strategies in the same module.

Isolating Nonportable Code

No complete and useful program can be written portably. Two systems may
both implement the same OS and may allow you to carry programs between
them; but this is only because the OS writer has taken on the burden of the
nonportable bits.

The best you can do is to herd the nonportable parts of your code together
into modules, whose interfaces consist of stable data declarations and functions
whose operation can be expressed succinctly and clearly. You've got it right
when no potential user of a nonportable function ever feels the need to look
inside to see what it does!

When to Use Assembler .

There are three reasons for using assembler:

11.3 Portable C and Language Standards m 307

® Efficient implementation of critical functions: Removing the last unneces-
sary clock cycle from any much-used piece of code, even if it’s as simple
as a strepy (), may well be worthwhile. But you should always keep
a portable C version alongside. In fact, since you're going to keep the
portable version, don’t write the assembler yet: Wait until you've built a
complete system and measured it to see whether this function is really
heavily used enough to justify the effort. Never change the assembler
version without changing the portable version too.

® Access to features not available to compiled code: Routines may need to
access CPU control registers, for example. Sometimes these may be ap-
propriately implemented as C functions built on tiny subroutines and
sometimes by C asm statements. Tiny subroutines are particularly apt
when—although the implementation will be completely machine
dependent—the desired effect is machine independent, such as a prefer-
ence for a disable interrupts function to a set status register bits function.

= Some critical environmental deficiency: Most commonly, this is the in-
ability to provide the free use of CPU registers and the stack that the
compiler relies on. Classic examples are startup code (where you may
not want to rely on memory for the stack) or the early part of an inter-
rupt handler (before you've saved the interrupted program’s registers).
Make it a priority, in these situations, to build an environment from
which you can call C functions.

Portable C and Language Standards

C does not meet the academic ideal of a high-level programming language.
It is one of a class of languages that were evolved by working programmers
who were trying to obtain (on simple minicomputers that were unsuited to
the large run-time system or the inefficiency of early high-level languages) the
kind of programming ease available from block-structured, purists’ high-level
languages.

Algol or its successors (Pascal, Modula-2, and even Ada) set out to make
portability compulsory; these languages attempted to ensure that program be-
havior was exactly specified by the source code, so they certainly couldn’t be
dependent on what kind of CPU was being used. C lets the underlying imple-
mentation show through and in doing so makes itself usable for a larger range
of programming tasks. But that very power means that while it is possible to
write portable C by programming discipline, it doesn’t happen by accident.

An example of this is how basic data types change in their size (and there-
fore the number of bits of precision) between different implementations. An-
other is that C’s pointers (inevitably implemented as real machine pointers)
expose the memory layout of data, which is implementation dependent.

-

308 m Chapter 11—Portability Considerations and C Code

Some things have gotten easier with time: Early C implementations had .

to target machinés with 7-, 8-, and 9-bit char types and with 36-bit machine
words. Most of you can safely assume that all the targets you ever want to
compile for have an 8-bit char as the smallest addressable unit of memory;
other basic types will be 16, 32, or 64 bits in size.

C has evolved continuously since its early days. It has definitely evolved to
a higher level: Most changes have tended to increase the amount of abstraction
and checking. Like species, languages probably evolve more by “punctuated
equilibrium” than at a constant rate, so you can get quite a good fix on any
C dialect by fixing its position relative to three relatively stable and famous
variants.

First is traditional C, often called “K&R” from the authors (Kernighan and
Ritchie) of the C ProgrammingManual, first version.! This reflects the standard
used for the first few years’ of Unix’s life and the influence of a single imple-
mentation: the AT&T Bell Labs Portable C compiler. It has little type checking,
many defaults, and the compilers do little to check your code. However, it pro-
vides a useful lingua franca: Most compilers will (sometimes unwillingly and
with warnings) correctly translate programs written to K&R.

Second is the ANSI standard, which collects together improvements made
over the years and regulates them. ANSI adopted syntax that allows you to
make far more well-defined declarations of functions and then checks your us-
age against them. ANSI compilers are much noisier, with a tendency to produce
warning messages.

ANSI C is very much a commercial standard, and in many cases it standard-
ized ahead of current practice. Moreover, it contains features that many users
dislike: Users respond by using a not-quite-ANSI dialect, and compiler suppli-
ers respond by permitting the use of such a dialect with command line options.
Surprisingly, the outcome of this process seems to have left the C language in
better shape than it used to be.

Third is the Free Software Foundation’s GNU compiler, which is available
for a huge range of hosts and is encouraging the emergence of a new dialect.?
(Of course, Microsoft’s PC-oriented C and C++ compilers are more widely
used, but are much more rarely used off-desktop.) The GNU compiler, though
fully ANSI compliant, is often deployed to implement a language, liked by
its protagonists, that keeps some important ANSI features but ignores others.

1. One of the best pieces of writing in computer science, this book gives a comprehensive and
comprehensible description of the world’s most useful language in a remarkably small space.
I’s been updated for new language standards, which has made it fatter but hasn’t spoiled it. 1f
you haven’t got one, go out and buy it now!

5. GNU Cis also an extraordinary experiment; it is a major piece of ingenuity and intellectual work
that is being maintained and continually developed by a large, loose knit, worldwide community
of workers, many of them volunteers. No other piece of free software has filtered quite so far
into the body of the computer industry. ¥

11.4

11.5 Data Representations and Alignment ® 309

The virtue of this is that the protagonists of GNU C are themselves serious
programmers.

GNU also adds a number of very valuable extensions that extend the scope
of the language—examples include function inlining, a robust asm statement,
and the alloca () routine which allocates memory dynamically from the pro-
gram stack. If you can standardize on GNU, you minimize language portability
problems, with (probably) minimal loss of ability to move to novel and exotic
hardware. It’s tempting. However, most programmers needing portability are
writing ANSI-compliant C that has function prototypes but would otherwise
be acceptable to a K&R compiler.

C Library Functions and POSIX

C supports separate compilation of modules, and you can link together the
resulting object code without recourse to the source. C libraries are bunches
of precompiled object code defining common functions. The “standard” C
library of everyday functions is to all intents and purposes part of the language.

The ANSI standard addresses a subset of common library functions and
defines their functions. But this deliberately steers clear of OS-dependent func-
tions and that means avoiding even the simplest input/output routines.

The POSIX standard (IEEE1003.4) is probably the best candidate for defin-
ing a standard C language interface to a workable I/O system. POSIX has its
problems: It only includes a subset of OS features (probably a good thing), and
because its definers occasionally felt obliged to standardize an improvement of
current practice, full POSIX compliance is still hard to find even in big OSs.!
Moreover, Microsoft has steadfastly discouraged the use of POSIX standards;
its Win32 application programming interface was invented after the POSIX
system call interface had stabilized but is pointlessly incompatible. But you can
get software that implements a POSIX interface on top of Win32, and POSIX
is a useful reference point for desktop tools.

POSIX is as yet much further from reality in embedded systems. The POSIX
“threads” proposal is a reasonable and sensible attempt to standardize multi-
tasking in one address space, but few embedded systems follow it.

Data Representations and Alignment

The MIPS architecture can only load multibyte data that is “naturally”
aligned—a 4-byte quantity only from a 4-byte boundary, etc. Many CISC

1. A standards committee often finds it impossible to select one out of a iumber of competing
solutions, each one of which is already provided by one vendor, because any selection will benefit
one party at the expense of all the others.

310 m Chapter 11—Portability Considerations and C Code)

Offset (bytes) 0 12 3 4 5 78 1"
Ismall l bl I medium Iagain l bl big J

FIGURE 11.1 Structure layout and padding in memory

architectures don’t have this restriction. The MIPS compiler attempts to ensure
that data lands in the right place; this requires far-reaching (and not always ob-
vious) behaviors, such as leaving padding between fields of data structures and
ensuring that complex data structures are aligned to the largest unit to which
the architecture is sensitive (4 or 8 bytes in the MIPS architecture).

Your previous compiler may do this differently. Consider the following
example:

struct foo {
char small;
short medium;
char again;
int big;

This will be laid out in memory as shown in Figure 11.1. A word of warn-
ing is in order here, however: Figure 11.1 is not necessarily correct for all MIPS
compilers, and all these notes should be taken as typical of what a good com-
piler will do. A standard for interlinkable modules or binary-compatible pro-
grams would have to nail these down—as does, for example, the MIPS ABI
standard. But beware—a compiler could still be fully compliant with C stan-
dards and use bizarre and wholly counterintuitive data representations, so long
as these were internally consistent. Following are some typical behaviors:

m Alignment of structure base address: The data structure shown in Fig-

ure 11.1 will always be placed on a 4-byte boundary; a structure’s align-
ment is that of its most demanding record. struct foo contains an
int requiring 4-byte alignment, so the structure itself will be 4 byte
aligned.
Where memory is allocated dynamically, either implicitly on the stack or
explicitly by software routines such asmalloc (), the resulting pointers
could give rise to alignment problems; hence they are specified to return
pointers aligned to the largest size the architecture cares about. In the
case of 32-bit MIPS CPUs, this need only be 4 bytes, but the common
convention is to align to 8 bytes for compatibility with 64-bit implemen-
tations. Stack alignment is maintained by only altering the sp value by
a multiple of 8 bytes if needed.

1.5 Data Representations and Alignment m 311

& Memory order: Fields within structures are stored in memory in the
order declared.

® Padding: This is generated whenever the next field would otherwise have
the wrong alignment with respect to the structure’s base address.

® Endianness: This has no effect on the picture shown in Figure 11.1. En-
dianness determines how an integer value is related to the values of its
constituent bytes (when they are considered separately); it does not af-
fect the relative byte locations used for storing those values.! Endian-
ness does have some effect on the layout of C bitfields; this is discussed
in Section 11.6.2.

There’s an irrefutable, pure, and correct position on data structures and
portability: The memory representation of data is compiler dependent, and
you have no right to expect it to be in any way portable, even between two
different compilers for the same architecture. But in the real world it would be
hopelessly inefficient to make sure that all data ever exchanged or published by
programs was universally represented, and nonportable C is often a better way
of defining data than anything else at your disposal.

However, there are some tools that may help. ANSI compilers may support
an option using the pack pragma:?

#pragma pack(1l)

struct foo {
char small;
short medium;
char again;
int big;

}

#pragma pack()

This has the effect of causing the compiler to omit all padding, producing the
layout shown in Figure 11.2. A structure packed like this has no inherent align-
ment, so in addition to the lack of any padding, the structure base address may
also be unaligned. The compiler is therefore obliged to generate load and store
sequences to its fields that are alignment independent (and therefore to some
extent inefficient)—even though, in this particular case, the big field happens
to have the correct 4-byte alignment from the structure base.
The #pragma pack () at the end restores the default alignment rules.

L. If you find this difficult to believe, it’s probably because big-endians and little-endians draw
pictures differently.

2. GNU C users have a nicer, more specific syntax for this inside individual field declarations;
for example int n attribute ((packed)) would declare a field as an integer but avoid any
padding before it.

312 m Chapter 11—Portability Considerations and C Code

11.6

Offset (bytes) o 2 3 4 7
Fmall l medium ‘again l big4|

FIGURE 11.2 Data representation with #pragma pack{1l)

Offset (bytes) 0 12 3 4 56 9
l?mall l x l medium ‘again l X l bigJ

FIGURE 11.3 Data representation with #pragma pack(2)

The 1 in pack (1) refers to the maximum alignment that must be re-
spected, so pack (2) means align only to 2-byte boundaries. Hence the code
string

#pragma pack(2)

struct foo {
char small;
short medium;
char again;
int big;

}

#pragma pack()

has the effect of causing the compiler to pad items of 2 bytes or larger to 2-byte
boundaries, producing the layout shown in Figure 11.3.

The #pragma pack () feature would be more appealing if most compil-
ers supported it, and if when they did, they generated tolerably efficient code
using the MIPS instructions that are designed for unaligned accesses (see Sec-
tion 8.4.1). It would also help if there weren’t another quite different source
of incompatibility of data representation: endianness (Section 11.6). Nonethe-
less, used with care the “pragma pack’ feature can make it easier to configure
a source module between two or more different architectures. It’s less likely to
be a good choice for a one-off conversion.

Endianness: Words, Bytes, and Bit Order

The word endianness was introduced to computer science by Danny Cohen
(Cohen 1980). In a paper of rare humor and readability, Cohen observed
that computer architectures had divided up into two camp$, based on an ar-
bitrary choice of the way in which byte addressing and integer definitions are

11.6 Endianness: V/ords, Bytes, and Bit Order m 313

related. The name comes from Gulliver’s Travels, where the little-endians and
big-endians fought a war over the correct end at which to start eating a boiled
cgg. The satire highlights the inability of the protagonists to Lomprehend the
arbitrary nature of their difterence. The joke was appreciated, and the name
has stuck.

Computer programs are always dealing with sequence and order of differ-
ent types of data: iterating in order over the characters in a string, the words in
an array, or the bits in a binary representation. C programmers tend to make
the pervasive assumption that all these variables are stored in a memory that is
itself visible as a sequence of bytes—memcpy () will copy any data type. And
C’s I/O system models all [/O operations as bytes; you can also read () and
write () any chunk of memory containing anv data type.

So one computer can write out some data, and another computer can read
it: Suddenly we're interested in whether the second computer can understand
what the first one wrote.

We understand (from Section 11.5) that we need to be careful with padding
and alignment. And it’s probably too much to expect that complex data types
like floating-point numbers will always transfer intact. But we’d hope at least to
see simple twos complement integers coming across OK; the curse of endian-
ness is that they don’t. The 32-bit integer whose hexadecimal value was written
as 0x12345678 quite often reads in as 0x78563412.

A 32-bit binary integer is represented by a sequence of bits, with each bit
having a different significance. The least signiticant bit is “ones,” then “twos,”
then “fours”—just as a decimal representation is “ones,” “tens,” and “hun-
dreds.” To represent a number you have to agree on which bits are significant—
and some computers put the least-significant bit “first” (that is, in lower mem-
ory locations) and some put the most-significant bit first, i.e., they’re either
little-endian or big-endian. When I first came into computers in 1976 DEC’s
minicomputers were little-endian and IBM mainframes were big-endian; nei-
ther camp was about to give way.

But wait a moment. Surely, since 0x12345678 is also 00010010
00110100 01010110 01111000 in binary, when seen with the opposite or-
dering convention it should be the number you get by reversing all the bits,
which is 00011110 01101010 00101100 01001000 (and, in hex,
0xle6a2c48)? That would be logical and could arise in some circumstances;
IBM always called the most-significant bit “bit 0”"—i.e., a totally consistent big-
endian approach. But sometime in the 70s, when 8-bit bytes were winning out
as a universal base unit for both computers and computerized communications
systems, the war ended at the byte level. Since then bytes have bits numbered
0 through 7, and the most-significant bit is 7. IBM’s documentation stood out
against this, but it so happens that IBM didn’t really sell anything with a byte-
wide interface—neither hardware, software, or cross-platform communication
protocols. IBM could not have been converted but was just bypassed.

When Motorola introduced the 68000 microprocessor afound 1978, it made
the fateful decision to reflect IBM’s mainframe architecture. Motorola couldn’t

314 & Chapter 11—Portability Considerations and C Code

11.6.1

go against the prevailing bits-within-bytes convention (every 8-bit peripheral
would have had to be connected with its data bus backward) but when storing
16- and 32-bit integers Motorola put the byte containing the most-significant
bits at the lowest memory address. The bits and bytes were numbered in
opposite directions.

Danny Cohen’s paper is careful to be neutral, but I don’t have to be; if any
single decision can be held responsible for the trouble detailed in this section it
was Motorola’s.

There is software trouble when porting software or moving data between
incompatible machines; there is hardware trouble when connecting incom-
patible components or buses. We'll take the software and hardware problems
separately.

Here’s a software-oriented definition: A CPU/compiler system where the
Jowest addressed byte of a multibyte integer holds the least-significant bits is
called little-endian; a system where the lowest addressed byte of a multibyte in-
teger holds the most significant bits is called big-endian. The CPU/compiler is
strictly correct—a compiler can always produce the effect of reversed endian-
ness and on some architectures the decision is fairly arbitrary.! But on a 32-bit
byte-addressable CPU like MIPS, the compiler can’t reasonably cover over the
hardware; thus we talk of the endianness of the CPU.

Endianness and the Programmer

You can very easily find out if you have a big-endian, or little-endian, CPU, by
running a piece of deliberately nonportable code:

union {
int as_int;
short as_short{2};
char as_char(4};

} either;

either.as_int = 0x12345678;

if (sizeof (int) == 4 && either.as_char([0] == 0x78) {

printf ("Little endian\n");

}

else if (sizeci(int) == 4 && either.as_char[0] == 0x12) {
printf ("Big endian\n");

}

else {

1. A pure 8-bit micro has no built-in endianness; in fact, any computer whose'memory addressing,
registers, and operations all operate with the same width words has no built-in endianness.

11.6.2

1.6 Endianness: Words, Bytes, and Bit Order m 315

Bit 31 24 23 16 15 8 7 0
as_int
as_short [0} as_short (1]

as_char([0)]as_char{1l)| as_char[2] as_char[3]

Byte offset 0] 2 3

FIGURE 11.4 Typical big-endian’s picture

printf (“Confused\n");

So long as binary data items are never imported into an application from
elsewhere, and so long as you avoid the syndrome above where you access the
same piece of data under two different integer types, your CPU’s endianness is
invisible (and your code is portable). You should be able to check an applica-
tion in this respect with the type-checking facilities available with modern C
compilers.

But that still leaves foreign data reads into your system and the memo-
ry view of memory-mapped hardware registers: For these, you need to know
exactly how your compiler accesses memory.

Endianness: The Pictures and the Intellectual Problem

This all seems fairly harmless, but experience shows that of all data-mapping
problems, endianness is uniquely confusing. I think this is because it is difficult
even to describe the problem without taking a side. The origin of the two
alternatives lies in two different ways of drawing the pictures and describing
the data; both are natural in different contexts.

Big-endians typically draw their pictures organized around words (32 bits
in a MIPS system), as shown in Figure 11.4 for the code following:

union either {
int as_int;
short as_short[2];
char as_char(4};
};

What’s more, big-endians see words as a sort of number, so they put the high-
est bit number (most significant) on the left, like our familiar Arabic numbers.
And a big-endian sees memory as an array of words; to emphasize the separa-
tion of bit and word order, the words are likely to be drawn extending up and
down the page (Figure 11.4).

316 m Chapter | 1-—Portability Considerations and C Code

Byte offset 0 1 2 3
0 7 8 15 16 23 24 3N
as_int
0 7 8 150 7 8 15
as_short [0] as_short[1]
as_char{0]|as_char[l]}{as_char[2]]as_char[3]

FIGURE 11.5 Little-endian’s picture

But little-endians generally want to abstract a computer memory as an ar-
ray of bytes. So the same data structure looks like Figure 11.5. Little-endians
don’t think of computer data as primarily numeric, so they tend to put all the
low numbers (bits, bytes, or whatever) on the left. A little-endian sees memory
as extending off to the left and right of the picture.

You can’t describe endianness without drawing pictures; however, the pic-
ture you draw immediately commits you to one camp or the other. This is
the essence of the subject’s capacity to confuse: You can’t talk about it without
getting caught in it first.

Bitfields, Floating Point, and Endianness

Before discussing solutions, let’s look at one particularly messy issue. C permits
you to define bitfields in structures; you may recall that in Section 7.9.3 we
used a bitfield structure to map the fields of a single-precision IEEE floating-
point value (a C f1loat) stored in memory. An FP single value is multibyte,
s0 you should probably expect this definition to be endianness dependent. The
big-endian version looked like this:

struct ieee754sp_konst {

unsigned sign:1;
unsigned bexp:8;
unsigned mant:23;

}:

C bitfields are always packed—that is, the fields are not padded out to vield
any particular alignment. But compilers reject bitfields that span the bound-
aries of the C type used to hold them (in the example, that’s an unsigned,
which is short for unsigned int). Such fields are usually 32 bits for MIPS
microprocessors, even 64-bit ones. Some compilers will let you get a field of up
to 64 bits by using a long long as the basic type.

The structure and mapping for a big-endian CPU is shown in Figure 11.6
(using a typical big-endian’s picture); a little-endian version is*shown in Fig-
ure 11.7.

11.6.3

11.6 Endianness: Words, Bytes, and Bit Order m 317

Bit 31 30 23 22 0
sign l bexp I mant

Byte offset 0 [1 l 2 I 3

FIGURE 11.6 Bitfields from the big-endian viewpoint

Byte offset 0 | 1] 2

mant bexp sign

FIGURE 11.7 Bitfields from the little-endian viewpoint

The little-endian version of the structure has to define the fields in the other
direction to be compatible with the way the hardware registers work; the C
compiler insists that, even for bitfields, items declared first in the structure
occupy lower addresses:

struct ieee754sp_konst {

unsigned mant:23;
unsigned bexp:8;
unsigned sign:1;

Y

To see why that works, you can see from Figure 11.7 that in little-endian mode
the compiler packs bits into structures starting from low-numbered bits.

It's probably not surprising that the CPU’s endianness shows up when look-
ing inside a floating-point number; we said earlier that accessing the same data
with different C types often showed up the CPU’s nature. But it does demon-
strate that there is still a real and pervasive issue before we deal with foreign
data or hardware.

Endianness: The Hardware Problem

We saw above that a CPU’s native endianness only shows up when it offers di-
rect support both for word-length numbers and a finer-resolution, byte-sized
memory system. Similarly, your hardware system acquires a recognizable endi-
anness when a byte-addressed system is wired up with buses that are multiple
bytes wide. When you transfer multibyte data across the bus, each byte of that
data has its own individual address. ‘

If the lowest-address byte in the data travels on the eight bus lines (“byte
lane”) with the lowest bit numbers, the bus is little-endian. But if the lowest-

318 m Chapter 11—Portability Considerations and € Code

address byte in the data travels on the byte lane with the highest bit numbers,
the bus is big-endian.

In some IBM manuals you'll still see bit 0 used for the most-significant
bit of a byte. But that’s really obsolete, and for practical purposes everyone
has decided to agree that high bit numbers are interpreted as the most signifi-
cant. In hardware as in software, that means there’s general agreement on the
interpretation of 8-bit bytes.

Byte-addressable CPUs announce themselves as either big- or little-endian
every time they transfer data. Intel and DEC CPUs are little-endian; Motorola
680x0 and IBM CPUs are big-endian. MIPS CPUs can be either, as configured
from power-up; most other RISCs have followed the MIPS lead and chosen to
make endianness configurable, so that designers can choose what matches the
CPU they’re used to.

With all the CPUs I know, this matches up with the software-visible endi-
anness.! Since this hardware endianness shows up when data is transferred on
a bus, you can identify the endianness of any device that connects to more than
1 byte of a data bus.

So long as all the buses and devices in a system have the same endianness,
there’s no real problem for hardware engineers; you just connect up the data
buses by matching up the numbers. Trouble strikes when your system includes
buses, CPUs, or peripherals whose endianness doesn’t match. In this case the
choice is not a happy one; the system designer must choose the lesser of two
evils:

® Bit number consistent/byte address scrambled: Most obviously, the de-
signer can wire the two buses up according to their bit numbers, which
will have the effect of preserving bit numbering within aligned “words.”
But since the relationship between bit numbers and bytes-within-words
is different on the two buses, the two sides will see the sequence of bytes
in memory differently.
Byte-oriented data being transferred across the join will not make sense
until the software byte-swaps each word unit of the data as required.
This looks and feels different from the software endianness problem:
In the software problem you have no problem finding data type bound-
aries; it’s just that the data doesn’t make sense. With this hardware prob-
lem the boundaries are scrambled too (unless the data happened to be
aligned on bus-width “word” boundaries).

1. It doesn’t have to match up, though. You could build a CPU interface where instead of hav-
ing data bits numbered 0-31, you instead collected the data bits into byte lanes and perhaps
called the signals 0D0-7, 1D0-7, 2D0-7, 3D0~7, according to whether they were the bits of bytes
at low— high addresses. There would be no endianness visible in such an interface.

44

11.6 Endianness: Words, Bytes, and Bit Order m 319

If the data being passed across the interface is always aligned word-
length integers, then this may even be useful; the word data can be
converted from its opposite-endian fomrat to a this-endian format,

™ Byte address consistent/word scrambled: The designer can decide to pre-
serve byte addressing: That will mean connecting byte {anes that corre-
spond to the same byte-within-word address, even though the number-
ing of the data lines in the byte lane doesn’t match at all. Of course, that
means that a bus-width-aligned integer (the “natural” unit of transfer)
will get scrambled when travelling between the two buses; any multibyte
data will require reinterpretation by software from the other side.

For most purposes, byte address scrambling is much more pernicious:
When dealing with data representation and transfer problems, programmers
will usually fall back on C’s basic model of memory as an array of bytes, with
other data types built up from that. When your assumptions about memory
order don’t work out, it’s very hard to see what’s going on.

Unfortunately, a bit number consistent/byte address scrambled connection
looks much more natural on a schematic; it can be very hard to persuade
hardware engineers to do anything else.

Not every connection in a system matters. Suppose we have a 32-bit-wide
memory system bolted directly to a CPU. The CPU’s system interface may not
include a byte-within-word address—the address bus does not specify address
bits 1 and 0. Instead, many CPUs have four “byte enables” that show that data
is being transferred on particular byte lanes. The memory array is wired to the
whole bus, and on a write the byte enables tell the memory array which of four
possible byte locations within the word will actually get written. Internally,
the CPU associates each of the byte lanes with a byte-within-word address,
but that has no effect on the operation of the memory system. Effectively, the
memory/CPU combination acts together and inherits the endianness of the
CPU; where byte-within-word 0 actually goes in memory doesn’t matter, so
long as the CPU can read it back again.

It’s very important not to be seduced by this helpful characteristic of a
RAM memory into believing that there’s no intrinsic endianness in a simple
CPU/RAM system. You can spot the endianness of any transfer on a wide
bus. Here’s a sample list of conditions in which you can’t just ignore the CPU’s
endianness when building a memory system:

1. Hardware-familiarized engineers will recognize that this is a consequence of a more general
rule: It’s a property of a writable memory array that it continues to work despite arbitrary
permutations of the address and data lines to it. It doesn’t matter where any particular data
goes, so long as when you feed the matching read address into the array you get back the same
data you originally wrote.

320 ® Chapter 11—Portabiliy Considerations and C Code

11.6.4

11.6.5

s When a ROM memory is preprogrammed, the hardware address and
byte lane connections need to match those used for programming the
ROM, and the ROM data needs to match the CPU’s software endianness.

= When a DMA device gets to transfer data directly into memory, then its
notions of ordering will matter.

® When a CPU interface does not in fact use byte enables, but instead
issues byte-within-word addresses with a byte-width code, then the en-
dianness will matter. Many MIPS CPUs are like this.

Section 11.6.5 is a discussion for hardware engineers about how to set up a
byte address consistent system and survive.

Wiring a Connection between Opposite-Endian Camps

Suppose we’ve got a big-endian 64-bit CPU, perhaps a MIPS R4x00 configured
big-endian. And we’ve got a little-endian 32-bit bus, probably PCL

Figure 11.8 shows how we’d wire up the data buses to achieve the recom-
mended outcome of consistent byte addresses as seen by the big-endian CPU
and the little-endian bus.

The numbers called “byte lane” show the byte-within-bus-width part of the
address of the byte data travelling there. Writing in the byte lane numbers is
the key to getting one of these connections right.

Since the CPU bus is 64 bits wide and the PCI bus 32 bits, you need to
be able to connect each half of the wide bus to the narrow bus according to
the “word” address—that’s address bit 2, since address bits 1 and 0 are the
byte-within-32-bit-word address. The 64-bit bus is big-endian, so its high-
numbered bits carry the lower addresses, as you can see from the byte lane
numbers.

If you look just at the bit numbering around the bus switch, you'd think it
just couldn’t be right. Such are the joys of endianness.

Wiring an Endianness-Configurable Connection

Suppose you want to build a board or bus switch device that is designed to
handle MIPS CPUs of either endianness. How can we generalize the advice of
Section 11.6.4?

We'd suggest that, if you can persuade your hardware designer, you should
put a programmable byte lane swapper between the CPU and the 1/O system.
The way this works is shown diagrammatically in Figure 11.9; note that this is
only a 32-bit configurable interface and it’s an exercise for you to generalize it
to a 64-bit CPU connection.

We call this a byte lane swapper, not a byte swapper, to efnphasize that
it does not discriminate on a per-transfer basis, and in particular to indicate

11.6 Endianness: Words, Bytes, and Bit Order m 321

|
Big-endian MIPS section II Little-endian
PCl secti
byte bit | Cl section
lane numbers |
|
0 w5643 =
: byte bit
| m—48-55 = lane numbers
2 e 4047 = e O e 07
3 —32-39 = D G
Local
memory
4 v 2431 o 3 e 2431
5 wmn] 623 v |
6 mm—g_]5 - |
1
|
|

\ MIPS addr __ PCI

Sysad2 — apz - °
R4x00
/ MIPS addr __ PCl 1
Sysad2 AD2

FIGURE 11.8 Wiring a big-endian CPU to a little-endian bus

that it is not switched on and off for transfers of different sizes. There are
circumstances where it can be switched on and off for transfers to different ad-
dress regions—mapping some part of the system as bit number consistent/byte
address scrambled—but that’s for you to make work.

What a byte lane swapper does achieve is to ensure that, when your CPU
configuration is changed, the relationship between the CPU and the now-non-
matching external bus or device can still be one where byte sequence is pre-
served.

You normally won’t put the byte-lane swapper between the CPU and its
local memory—this is just as well, because the CPU/local memory connection
is fast and wide, which would make the byte swapper expensive. As mentioned
above, so long as you can decode the CPU’s system interface successfully you
can treat the CPU/local memory as a unit and install the byte swapper between

322 ®m Chapter l1—Portability Considerations and C Code

MIPS CPU MIPS CPU
(little-endian) (big-endian)

V) N | X X | N V)
07 8-15 1623 24-31 07 8-15 16-23 24-31
Byte lane
swapper
N
of w In T lx.

4
8
1O system

FIGURE 11.9 Byte lane swapper

the CPU/memory unit and the rest of the system. In this case the relationship
between bit number and byte order inside the local memory changes with the
CPU, but this fact is not visible from the rest of the world.

1166 Software to Cope with Both-Endianness of a MIPS CPU

You may want to write software that will run correctly on MIPS CPUs with ei-
ther endianness—either for a particular board that may be run either way or to
create a portable device driver that may run on boards of either configuration.
It’s a bit tricky, but you can do a much better job by thinking it out in advance.

The MIPS CPU doesn’t have to do too much to change endianness. The
only parts of the instruction set that recognize objects smaller than 32 bits

*1.6 Endianness: Words, Bytes, and Bit Order m 323

are partial-word loads and stores. On a MIPS CPU with a 32-bit bus, the

instruction .

lbu t0, 1(zero)

takes the byte at byte program address 1, loads it into the least-significant bits
(0 through 7) of register t0, and fills the rest of the register with zero bits.

This description is endianness independent; indeed, the signals produced
by the CPU are identical in the two cases: The address will be the appropriate
translation of the program address “1” and the transfer-width code will indi-
cate 1 byte. In big-endian mode, however, the data loaded into the register will
be taken from bits 16-23 of the CPU data bus; in little-endian mode, the byte is
loaded from bits 8-15 of the CPU data bus.

Inside the MIPS CPU, there are alternate data paths leading from each in-
dividual byte lane to bits 0-7 of the register so that the CPU can implement the
normal four different load-byte cases; the MIPS CPU can change endianness
by altering the choice of data path for each byte-within-word address.

[tis the change in the relationship between the active byte lane and the ad-
dress on partial-word loads and stores that characterizes the MIPS CPU’s endi-
anness. And complementing the chip’s ability to reconfigure itself, most MIPS
cross-compilers can produce code either way around based on a command line
option.

Ifyou just reconfigure a MIPS CPU to the wrong endianness for a particular
system, then a couple of things will happen. Firstly, if you change nothing else
the system will most likely stop working, since on any partial-word write the
memory system will pick up the CPU’s data from the wrong part of the bus and
will store garbage; thus, at the same time as reconfiguring the CPU, we’d better
reconfigure the logic that decodes CPU cycles.!

Once we’ve got around that, we’ll find that the CPU’s view of byte ad-
dressing becomes scrambled with respect to the rest of the system; in terms of
the description above, we’ve implicitly opted for a bit number consistent/byte-
address scrambled connection.

Of course, data written by the CPU after its sex change will seem fine to
the CPU; if we only select endianness at power-up then volatile memory that is
private to the CPU won't give us any trouble.

Note also that the CPU’s view of bit numbering within aligned bus-width
words continues to match the rest of the system. This is the choice we described
as bit number consistent/byte address scrambled and discouraged above dep-
recated for general use. But in this particular case it has a useful side effect,
because MIPS instructions are encoded as bitfields in 32-bit words. An in-
struction ROM that makes sense to a big-endian CPU will make sense to a little-

—_— L4
L. This first problem won’t happen on some CPUs, like IDT’s R3051 family, which signal partial-
word transfers with independent byte lane enable signals.

324 m Chapter 11—Portability Considerations and C Code

31 24 23 1615 8 7 0

T o [= | =
Byte address from BE CPU 0 1 2 3
Byte address from LE CPU 3 2 1 0

= I n I e I g
Byte address from BE CPU 4 5 6 7
Byte address from LE CPU 7 6 5 4

x | x] oo | ¥
Byte address from BE CPU 8 9 10 11
Byte address from LE CPU 11 10 9 8

FIGURE 11.10 Garbled string storage when mixing modes; see text

endian CPU too, allowing us to share a bootstrap. Nothing works perfectly—in
this case, any data in the ROM that doesn’t consist of aligned 32-bit words will
be scrambled. Algorithmics has never made a bi-endian bootstrap, but we do
have just enough bi-endian code to detect that the main ROM program does
not match the CPU’s endianness and to print the helpful message:

Emergency - wrong endianness configured.

The word Emergency is held as a C string, null-terminated. You should
now know enough to understand why the ROM startup code contains the
enigmatic lines

.align 4
.ascii "remEcneg\000\000\000y"

That’s what the string Emergency (with its standard C terminating null and
two bytes of essential padding) looks like when viewed with the wrong endi-
anness. It would be even worse if it didn’t start on a 4-byte-aligned location.
Figure 1.1.10 (drawn from the point of view of a confirmed big-endian) shows
what is going on.

Note that just because you can write some bi-endian code doesn’t mean it’s
going to be easy to load it into ROM. Typically, big-endian tools pack instruc-
tion words into the bytes of a load file with the most-significant bits first, and
little-endian tools work the other way around. You need to figuré out what you
need and make sure you get it.

11.6.7

11.6.8

11.6 Endianness: Words, Bytes, and Bit Order m 325

Portability and Endianness-Independent Code

By a fairly well-respected convention most MIPS toolchains define the symbol
BYTE_ORDER as follows:

#if BYTE_ORDER == BIG_ENDIAN
/* big-endian version... */
#else

/* little-endian version... */
#endif

However, wherever you can you should use endianness-independent code.
Particularly in a well-controlled situation (such as when writing code for a
MIPS system that may be initialized with the CPU in either mode) you can
get rid of a lot of dependencies by good thinking.

All data references that pick up data from an external source or device are
potentially endianness dependent. But according to how your system is wired
you may be able to produce code that works both ways. There are only two
ways of wiring the wrong endianness together: one preserves byte addresses
and the other bit numbers. For some particular peripheral register access in a
particular range of systems, there’s a good chance that the endianness change
consistently sticks to one of these.

If your device is typically mapped to be byte address compatible, then you
should program it strictly with byte operations. If ever, for reasons of efficiency
or necessity, you want to transfer more than 1 byte at a time, you need to write
endianness-conditional code that packs or unpacks that data.

If your device is compatible at the word (32-bit) level—for example, it con-
sists of registers wired (by however devious and indirect a route) to a fixed set
of MIPS data bus bits—then program it with bus-width read/write operations.
That will be 32-bit or 64-bit loads and stores. If the device registers are not
wired to MIPS data bus bits starting at 0, you'll probably want to shift the data
after a read and before a write. For example, 8-bit registers on a 32-bit bus in a
system originally conceived as big-endian are commonly wired via bits 31-24.

Endianness and Foreign Data

This is only a chapter on program porting, not a treatise on I/0 and communi-
cations, so we'll keep this section brief. Any data that is not initialized in your
code, chosen libraries, and OS is foreign. It may be data you read from some
memory-mapped piece of hardware, data put into memory by DMA, data in a
preprogrammed ROM that isn’t part of your program, or you may be trying to
interpret a byte stream obtained from an “abstract” I/0 device under your OS.

The first stage is to figure out what this data looks like’in memory; with
C that can usually be accomplished by mapping out what its contents are as
an array of unsigned char. Even if you know your data and compiler well

326 m Chapter 11—Portability Considerations and C Code

11.6.9

enough to guess what C structure will successfully map to the data, fall back to
the array of bytes when something is not as you expect; it’s far too easy to miss
what is really going on if your data structure is incorrect.

Apart from endianness, the data may consist of data types that are not sup-
ported by your compiler/CPU; it may have similar types but with completely
different encodings; it may have familiar data but be incorrectly aligned; or,
falling under this section’s domain, it may have the wrong endianness.

If the chain along which the data has reached you has preserved byte order
at each stage, the worst that will happen is that integer data will be represented
with an opposite order, and it’s easy enough to build a “swap” macro to restore
the 2, 4, or 8 bytes of an integer value.

But if the data has passed over a bit number consistent/byte address scram-
bled interface, it can be more difficult. In these circumstances you need to
locate the boundaries corresponding to the width of the bus where the data
got swapped, then taking groups of bytes within those boundaries swap them
without regard to the underlying data type. If you do it right, the result should
now make sense, with the correct byte sequence, although you may still need
to cope with the usual problems in the data—including, possibly, the need to
reswap multibyte integer data.

False Cures and False Prophets for Endianness Problems

Every design team facing up to endianness goes through the stage of thinking
it’s a hardware deficiency to be solved. It’s not. Here are a few examples.

Configurable I/O Controllers

Some newer I/O controllers can themselves be configured into big-endian and
little-endian modes. You're going to have to read the manual very carefully
before using such a feature, particularly when you are using it not as a static
(design time) option but rather as a jumper (reset time) option.

It is quite common for such a feature to affect only bulk data transfers,
leaving the programmer to handle other endianness issues, such as access to
bit-coded device registers or shared memory control fields. Also, the controller
designer probably didn’t have the benefit of this book—and confusion about
endianness is widespread.

Hardware That Byte-Swaps According to Transfer Type

If you're designing in some byte-swap hardware, it seems appealing to try to
solve the whole problem. If we just swapped byte data to preserve its addresses,
but left words alone, couldn’t we prevent the whole software problem? The
answer is no, there aren’t any hardware fixes for the software problem. For
example, many of the transfers in a real system are of cache lines. They may
contain a mixture of data types; how do we locate and fix them? Also, CPUs

11.7

11.7 What Can Go Wrong with Caches and How to Stoplt m 327

Uncached instructions/data DMA "eadL,

3{Uncached writes/ write-throughs

DMA writes

&
N

FIGURE 11.11 Data flow between CPU, memory, and caches

may sometimes deal with numeric data that spans memory-word boundaries;
how would we swap that?

Conditional byte-swapping just adds confusion. Nothing except uncondi-
tional byte lane swapping is any good.

What Can Go Wrong with Caches and How to Stop It

We've looked at how to manage caches in Section 4.6. This section will focus
on how you make sure that you always do the right thing to the cache when
necessary.

Most of the time the caches are completely invisible to software, doing
nothing except accelerating the system as they should. But when it comes to
DMA devices and some other issues, it can be helpful to see the caches as inde-
pendent extra buffer memories, as shown in Figure 11.11. When you're taking
this view, it’s important to remember that transfers between cache and mem-
ory fetch blocks of memory that fit the cache line structure—typically 16- or
32-byte-aligned blocks—so the cache may read and write data the CPU has not
explicitly referenced.

Note that MIPS CPUs with simple write-through data caches don’t need
the line called “write back” in Figure 11.11.

For a simple life, we’d want to be sure that the state of the memory exactly
reflects the operations the CPU has commanded and that aH valid cache lines
contain an exact copy of memory data. Unfortunately, such a simple life is not
compatible with the positive effects of caches on performance. We’ll assume

328 @ Chapter 11—Portability Considerations and C Code

11.7.1

that the caches are correctly initialized and that you avoid the dreaded cache
aliases described in Section 4.14.2. So what can go wrong with the ideal picture?

m Stale data in the cache: Either cache can be holding data that has been
updated in memory, by a DMA write, or by a CPU uncached write—or
in the case of the I-cache, by a D-cache write back.

» Stale data in memory: The CPU may have written some locations with
new data, but the data hasn’t yet been written back from the D-cache,
hence the memory data is stale.

The software weapons you have to fight these problems are a couple of stan-
dard subroutines that allow you to invalidate, or write back, any cache locations
corresponding to a specified area of memory.

Before we go on to that, [want to comment on accesses to 1/O registers and
other external memories where you need total control over what gets read and
written. Reads that hit in the cache or writes that hit in a write-back cache are
nonevents outside the CPU/cache subsystem. Obviously, you will have planned
that hardware register accesses are uncached, which can conveniently be done
by accessing those registers through pointers in ksegl or some other uncached
space; if you use cached space for 1/0, bad things will happen!

If (unusually) you need to use the TLB to map hardware register accesses,
you can mark the page translation as uncached. That’s useful if someone has
built hardware whose 1/O registers are not in the low 512MB of the physical
memory space.

I suppose it’s possible that one day you might want to map a device through
cached space so as to benefit from the speed of the block reads and writes that
the CPU only uses to implement cache refills and write backs. You'd have to
explicitly manage the cache by invalidation and write back on every such access.

Cache Management and DMA Data

This is a common source of errors, and we've heard tales of lurking cache
problems besetting MIPS OS ports done by experienced, hardened low-level
programmers. But it’s really not so bad.

When a DMA device puts data into memory (you're reading from a disk
or receiving network data), the CPU/cache subsystem doesn’t know about it.
Your last system may not have been like this: Your last CPU may not have had
a cache, or it may have snooped DMA transfers from its local bus and adjusted
its caches accordingly. But the MIPS CPUs don’t do that for you.

If any locations that have just been written by the DMA device are currently
in either cache, then when the CPU goes to read the data it will get the old, stale
data from the cache instead. This will be a disaster. v

You need to invalidate any location in the cache where any of your DMA
data may land. The invalidation must be inclusive, incorporating any odd re-

P
e
A

11.7.2

11.7.3

-

1.7 What Can Go Wrong with Caches and How to StopIt m 329

mains of cache lines that are partially in the buffer. And that needs to be done
between the last reference your program made to any of those locations and the
point (after the DMA has finished) where you first try to read any of the DMA
data.

Note that if the DMA locations don’t completely fill the first or last cache
line, you can inadvertently reload the cache line before the DMA is complete by
referencing some other data in the line. It’s best to segregate DMA data buffers
on cache line boundaries. And remember that on many MIPS CPUs a write
will bring something into the cache as surely as a read will.

In the other direction, before allowing a DMA device to take data out of
memory (writing to a disk or sending to a network) you must make quite sure
that none of the data that the CPU has prepared for this purpose is still lurking
in your cache. After your program has finished writing the DMA buffer con-
tents, but before setting off the DMA, you must write back all the DMA data in
the buffer. This can't happen for an older CPU with a write-through cache.

It would save trouble to map the buffer memory uncached. But it will also
cost performance. Even if your program access to the buffers is purely sequen-
tial, caching the buffers will mean that data gets read and written in efficient
cache-line-sized bursts rather than single transfers. My general advice, also
given in this book, is to cache everything. I'd make an exception for a small
shared memory control structure like a status word maintained by a DMA
master controller.

Cache Management and Writing Instructions

The writing of instructions is the other place where explicit cache management
can bite you; this problem can’t happen on a system with a unified (instruction
and data) cache or one where the [-cache snoops all reads and writes,

On a MIPS CPU, after your program has written instructions to memory
and before you try to execute them, you need to do a write back of the chunk of
memory with instructions in it, followed by an I-cache invalidation to discard
any stale copies of whatever used to be in memory at those locations.

Cache Management and Uncached/Wri te-Through Data

If you mix cached and uncached references to memory the hardware gives you
10 help. Uncached writes will leave stale data in the I-cache and D-cache, and
uncached loads will bypass data that may have been updated in the D-cache,
returning possibly stale data from memory.

If you feel that your system (beyond the bootstrap) needs to make uncached
references to cacheable memory, then I strongly recommend that you divide
memory into regions that are always accessed uncached and regions that are
always accessed through the cache—and don’t let them overlap. The region
boundaries should not split a cache line block.

o<

330 m Chapter 11—Portability Considerations and C Code

11.8

Different Implementations of MIPS

Although MIPS has grown up a long way, the path has been one of guar-
anteed compatibility for regular user-level programs and careful evolution of
lower-level features. MIPS IV CPUs quite happily run MIPS I binaries; the
biggest change (the change to 64 bits) is not normally important except for
small chunks of embedded software, and occasional use of 64-bit data requires
recompilation rather than program changes.

So we don’t expect you to have large porting problems as you go up the
MIPS CPU family. The software-visible differences you will find in these CPUs
are listed following:

Type of cache: Essentially all 32-bit MIPS CPUs used a write-through
data cache, but 64-bit CPUs have used write-back caches. (The different
types of cache are described in Chapter 4.) Write-back caches introduce
a new caching hazard, where data that the CPU has written is held only
in the cache but not in main memory and so is not available to a device
that reads memory for itself.

On the bright side, there have really only been two programming mod-
els for MIPS cache families, and once again the split coincides with the
change from 32 to 64 bit; a 32-bit MIPS CPU probably has caches like
an R3000 and a 64-bit CPU has caches like an R4000. See Section 12.2
for examples of a set of reasonable cache management functions imple-
mented for both R3000- and R4000-type CPUs.

Raw speed: This is most easily characterized as clock rate. MIPS pipeline
clock rates have increased from 8MHz to 200MHz over the 10 years since
the first commercial R2000 appeared. As CPUs speed up, you meet more
occasions where you have to deliberately slow down accesses to devices.

64-bit support: This is rarely a portability problem. Just because the
CPU is 64 bit capable, there’s no call to go changing all the data types
used by your program. The 64-bit support does create new hardware
alignment requirements for long data types, but your old compiler for
MIPS probably anticipated that.

Cache size: All CPUs have separate I- and D-caches, but they vary in size
and some have separate primary and secondary caches. R4x00 CPUs
have an authoritative cache size field in the config register; for other
types you should sense the cache size at system initialization. Do not
infer cache size from the CPU type and revision fields in the ID register;
nobody changes those fields when they spin a CPU variant with bigger
caches.

Cache line size: This is the number of bytes loaded into or written back
from the cache in a unit; it varies from one word (4 bytes) for early data
caches up to 32 bytes for many R4x00 I-caches. Management routines

11.8 Different Implementations of MIPS m 33]

need to know the line size, of course; less obviously, the cache line size
defines important boundaries for DMA data. Bear in mind that even the
one-word “line” of the data cache in early R3000-style CPUs is a cache
line; it can cause implicit loading of the other bytes in the same word.

Write buffer differences and wbflush (): To make the write-through
cache efticient, all CPUs have some kind of write buffer, which holds
the address/data of a write while the CPU runs on. The operation of the
write buffer should be invisible when writing and reading regular mem-
ory that is free of side-effects; but it can have effects when accessing 1/O
buffers.

The programmer only needs an implementation of wb £ 1ush (), which
i1s a routine defined not to return until all pending writes have been com-
pleted. There is no universal implementation of this; see Section 4.13.1
for a discussion.

EP hardware: Some CPUs have this hardware; most 32-bit integrated
CPUs don’t. For occasional FP instruction use, trap-based software
emulators exist: Because you really need an FP trap handler to make
any use of the FPA, the use of the emulator can be completely software
transparent. However, for any serious use, the emulator will be far too
slow.

Most compilation systems give you the option of compiling programs to
use built-in subroutines to perform FP calculations.

MMU hardware: If present, such hardware is always the same software-
refilled TLB and control set (see Chapter 6). Some TLB-free CPUs recy-
cle what would otherwise be the mapped program address spaces for
other purposes, but portable software will use only the kseg0, ksegl
regions which are supported by all processors.

Integrated I/O devices: Some CPUs integrate timers, watchpoint regis-
ters, DRAM controllers, DMA, and lots more. You’re on your own with
these; however, do isolate such code into “driver” modules, just as if you
were dealing with external device controllers.

Software Examples

r I this chapter is based on real workable chunks of software, which often means
we sacrifice clarity and are less than concise; but then, real software is like
that. We’re going to cover the following:

= Starting up MIPS: getting the CPU and system going, to the point where
you can run a C program

® MIPS cache management: an example of the system you might need to
be able to invalidate and/or write back cache locations to make your [/O
system work

® MIPS exception handling: grisly details from low-level interrupt to com-
fortable C handler

& MIPS interrupts: not particularly efficient, but showing the essential
features; builds on the structures of the previous section

® Tuning for MIPS: a simple function rewritten in assembler with many
tricks to improve bandwidth

12.1 Starting Up MIPS

Starting up a CPU from reset with code in ROM always involves a number of
complicating factors:

u Configuration: We probably want to use the same ROM for many dif-
ferent board configurations, so we have to proceed warily until we’ve
figured out what it is we’re running on.

333

o

334 m Chapter 12—Software Examples

® CPU initialization: The CPU itself may not be prepared to do much until
its own registers have been attended to. Tlie ROM may have to cope with
more than one type of CPU, too.

® Memory initialization: Most modern memory systems require some pro-
gramming before they work, which means that we’ll have to run from
on-chip resources (registers, basically) until we’ve done that.

® Traceability: When something goes wrong, mere silence from a ROM
bootstrap is undesirable. So the code should attempt to communicate
with the user before relying on some part of the hardware that might
not work.

u Compatibility: Running somewhere over the ROM there may be all sorts
of old crusty software, which has its own idea of what the ROM should
be doing.

[t might be nice to show you an example without these complications, but
then it wouldn’t ever have been tested. ...

We'll look at software from Algorithmics SDE-MIPS, which comes in two
modules. There’s a generic from-reset ROM module (entered at _.reset) and
a hardware-specific module for the Algorithmics P-4032 prototyping board
(which is only ever fitted with R4x00 and R5x00 CPUs) starting with
-sbd_reset.

The MIPS reset-time entry point is at physical address 0x1£c0.0000,
which puts it at the start of a 4MB chunk of memory; no Algorithmics board
has more than 4MB of ROM, so the reset-time entry point is the very first lo-
cation in the ROM, which happens automatically because it’s the first line of
code in the first module linked into the ROM:

.text

.8et noreorder
b __reset; move k0, zero /* RESET */
/* ... */

Starting with a branch is regarded as good form. If absolutely nothing
works, we can watch the CPU address bus with a logic analyzer: If it goes to
the reset location and then branches to the right place, a fair amount of the
ROM and data bus system must be working.

This system uses k0 (if it’s nonzero) to hold the address of an alternate
exception handler. From reset, if we get an unexpected exception, we want to
handle it ourselves. So now let’s go on:

/* *
* We jump here on a Reset Exception
*/

12.1 Starting Up MIPS m 335

SLEAF (___reset)

/*
* Determine relocation factor and set $gp
*/

bal _rom_reloc

la gD, _gp

/*

* Call board-specific initialization code
*/

bal _8bd_reset

We'll ignore the _rom_reloc routine for now—it’s used when the ROM
code is running at an address different from where it was linked, which this
ROM might want to do for reasons we won’t go into. If necessary, this ROM
uses the 88 register to remember the difference between where we were linked
and where we really are.

So it’s off to _sbd reset, in the board-specific module. We’ll go through
that in detail.

/*

* P4032/sbdreset.S: low-level code for Algorithmics P4032 board
* Copyright (c) 1996 Algorithmics Ltd.

*/

#include <mips/asm: >~
#include <mips/regdef.h>
#include <mips/cpu.h>
#include <mips/endian.h>

#include "gbd.h"
#include "rtc.h"
#include "v96xpbc.h"
#include "w83777f.h"
#include "z80pio.h"

#if l#cpu(rd000) && I#cpu(xr5000)
error Wrong CPU type selected
#endif

The #include files contain the following material:
¥
® mips/asm.h: some things for assembly language, like the LEAF macro
used to introduce externally callable functions.

336 m

#define DISPLAY(d0,dl,d2,d3)

1i
1i
sw
1i
sw
1i
sw
1i
sw

Chapter 12—Software Examples

® nmips/regdef .h: conventional register names for MIPS registers

® mips/cpu. h: coprocessor 0 register and bitfield constants for your CPU
(with conditional compilation used to specialize this for a particular
CPU type or family)

This usual collection of include files for low-level code is accompanied by

® mips/endian.h: some standard ways of deducing current endianness
configuration

® sbd.h: characteristics of the board, its address map, and definitions of
board-specific registers

® v96xpbc. h, etc.: registers and bitfields specific to the device

Here is a macro to write four characters to the onboard LED display:

t8,PA_TO_KVAl(LED_BASE);
t9,d0;

t9,LED(0) (t8);

t9,dl;

t9,LED(1) (t8);

t9,d42;

t9,LED(2) (t8);

t9,d43;

t9,LED(3) (t8)

P A A A

If the software dies, the last value so written will be left there, which will give
us a clue about what happened.

These macros are used to access the battery-backed-up memory locations
(about 100 bytes) that are implemented by this board’s real-time clock chip,
which is used as a scratch nonvolatile store:

#define WBFLUSH

##define MEG 0x100000

/*
* Include standard memory test/clear code
*/
#define BUSWIDTH 4 /* 32-bit, noninterleaved */
#define MEMSTART (32*MEG) /* simml start */
#define MEMINCR (8*MEG) /* simml gquanta */

#include "../share/memprobe.s"

g

12.1 Starting Up MIPS m 337

* Basic board initialization, called strailght from RESET.
* It is only called if this program is built for ROM.
* It can use any registers except s8, kO, and kl.

*

* Note that 88 holds a “relocation factor" (see ../share/romlow.sx)
* that must be added to any address before it is used. This

* is to support relocatable roms.

*/

#define rtcptr s2
#define crptr 83
#define crval 84
#define msize 85

#define rasave 86
##define RELOC s8

#define RTC_STORE(rtcoffs, reg) \
1i t8,rtcoffs; \
sw t8,RTC_ADDR(rtcptr); \
sw reg,RTC_DATA(rtcptr)

#define RTC_LOAD(rtcoffs, reg) \
1i t8,rtcoffs; \
sw t8,RTC_ADDR(rtcptr); \
1w reg,RTC_DATA(rtcptr); \
and reg, Oxff

But here’s the actual entry point; we're going to start with CPU registers
that may cause trouble if left:

LEAF (_sbd_reset)
move rasave,ra

#if #cpu(rd300)
/* set config register for kseg0 cacheable */
mfco t1l,CO_CONFIG ‘
or tl,CFG_C_NONCOHERENT
/* we can also control the endianness */
#if #endian(big)

or tl,CFG_BE
#felse v
and tl, “CFG_BE

#endif

L

338 m Chapter 12—Software Examples

mtc0 tl,CO0_CONFIG
#endif /* rd300 */ !

#ifdef CO_WATCHLO

mtco zero,CO0_WATCHLO
mtcO zexro,CO0_WATCHHI
#endif

#1f #cpu(rd640)
/* reset default cache algorithm and watchpoints */

141 tl,0x22233333

mtcO tl,C0_CALG

mtcO zero,CO_IWATCH

mtc) zero, CO_DWATCH
#endif

This is all very CPU specific, but most MIPS CPUs from R4000 onward
have a Config register that wants to be set early. The watchpoint registers
are initialized because the manual suggests that hardly anything prevents a
watchpoint exception, and we don’t want unsolicited exceptions.

We need to set most fields in the status register SR to make sure the CPU
runs OK; the SR(SR) (soft reset) bit distinguishes a nonmaskable interrupt
from a hardware reset and may be important:

mfco tl,CO_STATUS

and tl,SR_SR # leave the SoftReset bit

or tl,SR_BEV # force boot exceptions
1: mtco t1l,CO_STATUS

mtco zero,CO_CAUSE

cause is zeroed to make sure the software interrupt bits Cause (IP0-1)
are inactive.

That's done enough to the CPU to prevent disasters (so long as we don’t
touch the caches, interrupts, or the TLB just yet), so we get on with the board:

la crptr, PA_TO_KVAl(BCR_BASE)
la rtcptr, PA_TO_KVAl (RTC_BASE)

/* initialise board control register, toggling the V3 reset
and making sure everything else is disabled */

1i crval, BCR_V96X_ ENABLE

bal crwrite .
move crval, zero

bal crwrite

{

12.1 Starting Up MIPS m 339

#1f #endian(big)

1i crval, BCR_LED_ON|BCR_V96X_ENABLE
#else

1i crval, BCR_LED_ON|BCR_V96X_ENABLE |BCR_IO_LE
#endif

bal crwrite

RTC_STORE (RTC_BCR, crval)

The assembler function crwrite sets the board control register (BCR), a
collection of output-only bits, many of which are used to keep chunks of the
logic in reset until needed. We keep a soft copy of the BCR in the real-time
clock chip’s (RTC’s) little memory, because the value doesn’t read back.!

reginittab (defined at the end of the section) is a list of address/data
pairs; just take each data item and write it to the corresponding address:

/* initialise I/0 devices */

1: 1la a0, reginittab
addu a0, RELOC

1: 1w v0,0(a0) # reg addr
1w vl,4(a0) # reg data
beqgz v0,2f
sw v1l,0(v0)
addu a0,8
b 1b

2:

You can initialize a lot of hardware like that (at least to a first-pass, just-shut-up
level).
We may even have to initialize some programmable logic devices here:

/* load ICU firmware via JTAG interface */
bal icuload

L. There’s a cautionary tale about hardware and software evolution here, It takes extra hardware
resources to add a read-back port to a simple output register. That leads to the following:

The software problem: To change only one bit of the port and leave the rest alone requires
a global soft copy of the register—which is always hard to organize when several only loosely
related pieces of software are used to initialize the board.

The software solution: Keep a soft copy in a magic location—in this case, the NVRAM of the
real-time clock chip. But the hardware engineers didn’t know this so they came up with...

The hardware solution: The board’s BCR register is implemented as 8 separately writable
bits, so there’s no need to know the value of other bits when changing ope. But, of course, the
software was already written, so the bit-writable hardware produces. ..

The software response: A subroutine crwrite() that loops around and writes all 8 bits.

340 m Chapter 12—Software Examples

Now that so much logic is designed into in-system programmable devices, logic
that is not required for simple dumb ROM and /O cycles can be loaded by the
CPU.

MIPS CPUs (post-R4000) can have several different flavors of reset, from
ground-up to nonmaskable interrupt:

/* skip memory size/clear if a soft reset */
t1,CO0_STATUS
tl,SR_SR

mfco
and
beqgz

tl,1€

/* get previous memory size from rtc sram */
RTC_LOAD(RTC_MEMSZ, msize)

sll
b

/*

msize,

20

.noinit

I don’t think you can actually make a soft reset happen on the P-4032 board;
however, if you could, it would skip the DRAM system reset, leaving the mem-
ory contents intact for postmortem debugging.

For the DRAM configuration we’ll reassign the registers yet again:

* Determine DRAM bank arrangement and size

*/
#define
#define
#define
#define
#define
#define
#define
##define
#define
#tdefine
#define

aces to
fives t1
base t2
tval t3
simmmap
SIMMO_O
SIMMO_1
sSIMM1_0O
SIMM1_1
msize0 vO
msizel v1

t4
0x01
0x02
0x04
0x08

/* initialise DCR memory speed and type from option links */

1w
and

crval
crval

,PA_TO_KVAL (OPTION_BASE)
,DCR_SIMMl_DRAMIDCR_TYPE|DCR_DRAMTAST

What's this PA_TOXVAL () macro? It takes a physical address (the header
files define register locations as physical addresses) and adds seme high-order

bits to deliver the corresponding program address in ksegl, which will give us

an uncached access.

pel

12.1 Starting Up MIPS m 341

Here, the program is reading a software image of a jumper block and will
shortly write that value (stortd in crval) to the DRAM configuration register,
telling the hardware what sort of memories are fitted:

/* initialise registers */

move
move
11
not
1i

/* make

msizel, zero
msizel, zexo

aces, Oxaaaaaaaa
fives, aces
base,PA_TO_KVAl1(0)

sure memory has started up properly */

/* configure for 4MB double sided and read at 4MB intervals */

or
DISPLAY
1i

bal

DISPLAY
1i
.initmem:

sw

sw

sw

sw
subu
bnez

crval,DCR_4MB

(‘D’,’C’,'R’,'1")

crptr, PA_TO_KVAl (DCR_BASE)

crwrite # write the BCR

At this stage any modules plugged in will store a minimum of 4MB per side
(the SIMM modules have one or two banks of memory chips, and the second
bank is usually soldered to the back of the board). Detect what’s there first and
figure out what it actually is:

(IMI, IEIIIMI'III)
tval, 8

zero, +0*MEG (base)
zero, +4 *MEG (base)
zero, +8 *MEG (base)
zero, 12*MEG (base)
tval, 1l

tval, .initmem

This eight-times-around loop seems to be paranoia about DRAM working
right from the first cycle; this paranoia may or may not be justified in this
particular system.

Then we’ll write to each possible module and see which ones retain the data
(and can therefore be assumed to be present):

/* now detect the presence of SIMMS and their sides */
DISPLAY (’S‘,’L’,’0’,’T’)

sw
sWw
sw

aces, +0*MEG (base) . v
aces, +4*MEG (base)
aces, +8*MEG (base)

342 ®m Chapter 12—Software Examples

8w aces, 12*MEG (base)

sw fives, +0*MEG+4 (base)
sw fives, +4*MEG+4 (basge)
sw fives, +8*MEG+4 (base)
sw fives,12*MEG+4 (base)
sw zero, +0*MEG+8 (base)
8w zero, +4*MEG+8 (base)
sw zZero, +8*MEG+8 (base)
sw zero, 12*MEG+8 (base)

We’ve written three different values to the first three words of each of four
possible banks. The last write (zero to the third word) is really intended to i
prevent a false-positive that you sometimes get in sizing memory, in which you
appear to read data back successfully from memory that isn’t there at all. The ‘
effect is caused by the stray capacitance of the memory bus, and is common
with modern CMOS circuits: You're actually reading back from the bus wires
the “ghost” of the last data you wrote.

So now we find where there are modules plugged in:

/* generate map of SIMM slots/sides */

move gimmmap, zero
1w tval, +0*MEG (base)
bne tval,aces, 1f
or simmmap, SIMMO_0

1:
1w tval, +4*MEG (base)
bne tval,aces, 1f
or gimmmap, SIMMO_ 1

1: -
1w tval, +8*MEG(base)
bne tval,aces,1f
or simmmap, SIMM1_0

1:
1w tval, +12*MEG (base)
bne tval,aces, 1f
or simmmap, SIMM1 1

You're probably getting the idea by now, so we’re now going to skip the rest
of the code that figures out how big each module is and that configures the
addresses to make a nice sequential map.

12.1 Starting Up MIPS m 343

The code string ends thus:

.noinit:
DISPLAY (‘R‘,‘U’,’N’,’ *)

/* return to generic code, with available memory size */

move ra,rasave
move v0,msize
3 ra

END(_sbd_reset)

That’s it, apart from a couple of things jumped to from above that you
might like to look at, starting with the fatal-error routine _sbd.memfail 0,
which never exits:

LEAF(_sbd_memfail)

DISPLAY (‘1’,’M’,’E’,'M’)
1l: b 1b

3 ra
END(_sbd_memfail)

Also, here is cxrwritae (), the subroutine designed to hide the hardware
features we thought software engineers were calling for:

/* crwrite (base, val)

* Write 8-bit <val> to 8 consecutive 1-bit registers,
* starting at <base>
* Uses: t8, t9
*/
SLEAF (crwrite)
move t9,crval
1i ts8,s8
1: .set noat
and AT,t9,1
sw AT, 0(crptr)
.8et at
srl t9,1

subu t8,1
addu crptr, 4
bnez t8,1b

subu crptr,8*4 # reset pointer v
3 ra
SEND(crwrite)

344 m Chapter 12—Software Examples <

Finally, here is reginittab:

#define INIT(addr,val) \
.word PA_TO_KVAl(addr), val

.rdata

reginittab:
/* initial magic cycle for PCI bridge */
INIT(V96XPBC_BASE+VI96X_LB_IO BASE, V96XPBC_BASE+V96X LB_IO BASE)
/* led message */
INIT(LED_BASE+LED(0), ’'P’)
INIT(LED_BASE+LED(1l), ’4’)
INIT(LED_ BASE+LED(2), ’3’)
INIT(LED_BASE+LED(3), ’2’)
/* program a 32KHz sqQuare wave from the RTC */
INIT (RTC_BASE+RTC_ADDR, RTC_STATUSA)
INIT(RTC_BASE+RTC_DATA, RTC_OSC_32KHZIRTC_RATE_NONE)
INIT(RTC_BASE+RTC_ADDR, RTC_STATUSB)
INIT(RTC_BASE+RTC_DATA, RTCSB_BINARYIRTCSB_Z‘HRIRTCSB_SQWE)
INIT(RTC_BASE+RTC_ADDR, RTC_INTR)
INIT(RTC_BASE+RTC_DATA, RTCIR_32KE)
/* disable the combi chip configuration registers */
INIT(EFER, EFER_ DISABLE)
/* initialize the z80pio chip, B channel */
INIT(ZPIO_BASE+ZPIO_B_CTL, ZPIO MODE CTRL) # control mode
INIT(ZPIO_BASE+ZPIO_B_CTL, ZPIOB_E2_DO) # input mask
INIT(ZPIO_BASE+ZPIO_B_DAT, 0) # initial value
.word 0,0 # terminate table

reginittab is the table we mentioned earlier on page 339; it contains pairs
of entries consisting of a register address and a data value to be written to that
register. Lots of obscure hardware can be adequately initialized by appropriate
table entries.

122 MIPS Cache Management

We're going to look at two large, indigestible chunks of assembler code that
are provided as part of the Algorithmics SDE-MIPS.! They implement the
following functions:

L4
1. Like the rest of this book, this software is copyrighted. You can obtain the right to use this
software for commercial purposes from Algorithmics, Ltd.

b

/*

2.2 MIPS Cache Management m 345

void mips.size cache(): When first called, initialize cache and leave
cache sizes in global variables. If called again, do nothing,

void mips.init._cache(): Work out and record the size of I- and
D-caches and initialize them.

void mips.flush.cache (): Write back (if required) and invalidate
all caches. I dislike the term “flush” because of its ambiguity, but in this
case it’s historical and derives from a time when caches were always write
through and so never needed a write back.

void mips_clean._cache (uns igned kva, size_t n): Write
back and invalidate the address range in all caches.

void mips.flush dcache (void): Write back and invalidate the en-
tire contents of data cache.

void mips.cleandcache {unsigned kva, size.t n): Write
back and invalidate the address range in data caches.

void rdk.hit writeback_inv_dcache (unsigned kva, size_t
n): Write back and invalidate the address range in the primary data
cache.

void mips_clean_icache (unsigned kva, size_t n): Invali-
date the address range in instruction caches.

The files retain their original (light) comments and are going to be inter-
spersed with further commentary. But they’re still assembler code and likely to
be fairly hard going.

12.2.1 Cache Operations: 32-Bit MIPS before Cache Instructions

Before the cache instruction was invented, cache management was done by
doing stores with the CPU in strange modes (“isolated” to access caches,
“swapped” to write the I-cache rather than the D-cache). Here’s how Algo-
rithmics does it:

* r3kcache.S: generic R3000 cache support functions for SDE-MIPS

*/

#if l#cpu(xr3000)
#lerror use -mcpu=r3000 option with this file

#tendif

#include
#include
#include
#include

<mips/asm.h>

<mips/regdef.h>

<mips/r3kc0.h>

<mips/prid.h>

346 m Chapter 12—Software Examples

The #include files contain the following:

asm. h: some things for assembly language, like the LEA®F macro used to
introduce externally callable functions

regdef . h: conventional register names for MIPS registers

r3kcO. h: register and bitfield constants for R3x00 coprocessor 0 regis-
ters

prid.h: processor ID and revision values for MIPS CPUs

Declare some variables, make them global, and give them initial values:

#define DECL(x, val)
EXPORTS (x, 4)
.word val

.sdata

\
\

DECL(mips_icache_size, -1)
DECL (mips_dcache_size, -1)
DECL(mips_scache_size, -1)
DECL(mips_tcache_size,-1)
DECL(mips_icache_linesize,-1)
DECL (mips_dcache_linesize, -1)
DECL(mips_tcache_linesize,-1)
DECL (mips_pcache_ways, 1)
DECL(mips_scache_ways, 1)
DECL (mips_tcache_ways, 1)

/*

* void mips_size_cache()
* Initialise I- and D- caches and flush them, but only if size is unknown

*/
LEAF (mips_size_cache)
1w t0,mips_icache_size
blez t0,mips_init_cache
3 ra

END(mips_size_cache)

* % % * * % *

void mips_init_cache()

work out size of I- and D-caches and flush them

uses: vO,vl,t0,t1,t2,t3,t4,t7,t8,ra
save regs: t3,t7,t8,v1l

oy

~

* calls:
*/
LEAF (mips_init_ cache)

move

mfcO
and
mtco

12.2 MIPS Cache Management = 347

_init_cache

t8, ra

t7,48sr

t3,t7,SR_BEV # disable interrupts

t3,8$srxr

/* run uncached (but do it in pic form) */

.set
bal
nop
or
addu
jr
nop

.8et

noreorder

1f

tl,ra,KSEGl_BASE

tl,16
tl

reorder

Note the following points:

Save ra: By keeping the return address somewhere else, we can at least
use one level of subroutine call instructions inside this module.

Disable interrupts: We’ve zeroed everything in SR except for SR(BEV),
which is left in its previous state. Disabling interrupts is one of the side
effects of this draconian action.

nops: Most of this code is not surrounded by .set noreorder di-
rectives, so we're going to let the assembler figure out when accesses to
coprocessor 0 registers need nops added. Not all MIPS assemblers do
this.

Sometimes we’ll need to put in explicit nops, for example where what
we're doing affects the operation of the caches. No assembler is clever
enough to figure that out.

Run uncached...: We obviously don’t want to be running code from
cache while initializing it; however, the CPU doesn’t have a mode, so we
just force the address we’re executing in to be in the ksegl region.

... but do it in pic form: This code needs to be position independent, so
assembly language constructs can’t give us our own location directly.
The only way to get the real code address is to do a subroutine call
instruction and retrieve the value from ra.

348 m Chapter 12—Software Examples «

Almost all MIPS write buffers (see Section 4.13) flush all writes before at-
tempting an uncached read: Here we're reading the instruction memory (we
don’t have any other known-valid pointer around at the moment).

/* Generic R3000 caches */

/* make
1w

/*
* Size
*/
orxr
mtc0
bal
move

/*
* gize
*/
or
mtco
bal

sure write buffer is empty */
zero, 0(tl)

Next comes the following:

and initialise instruction cache

td,t3,SR_ISC|SR_SWC # isolate and swap cache (see Section 4.9)
t4, $sxr

_init_cache # ... which you’ll £ind on page 349

vl,v0

and initialise data cache
td4,t3,SR_ISC # isolate cache

td,$sr
_init_cache

.set noreorder

mtcO

t7,8sr # restore IE and ISC to normal

nop; nop; nop; nop; nop # ... can take a long time to settle

.set reorder

/* save
sw
swW

/* most
nfco

1i

1i

The nop instructions delay the CPU for long enough that the cache behav-
ior changes implicit in those SR changes will be fixed before the next instruc-
tion does anything at all to the caches.

Relying on the contents of the PRID register is not usually a good idea, but
the I-cache line size for R3000s is otherwise opaque:

results */
v0,mips_dcache_size
vl,mips_icache_size

r3000 family CPUs have 1 word (4 bytes) per cache line */
t2,$prid
t0,4 ' ¢

tl,4

=3

122 MIPS Cache Management m 349

and t2,0x££00

sxrl t2,8

bne t2,PRID_R3IDT,1f # IDT core has 4 word/line I-cache

11 to,16

/* can‘t identify other r30xi1 variants, since PrID == R3000A */
1: 8w t0,mips_icache_linesize

sw tl,mips_dcache_linesize

move ra,t8

3 ra

END (mips_init_cache)

Next is an internal function to size and initialize an R3000 cache; the size is
returned in v0. It works by writing address to address at all possible cache
boundaries (256K down to 512). Due to address wraparound, whatever is
found at cache location zero is the cache size.

Here is the code:

#define MIN_CACHE_SIZE (512)
#define MAX CACHE_SIZE (256*1024)
/*

* int _init_cache()

*

* returns size of one cache and flushes it

*

* uses: v0,tl,t2,a0,al,ra

* save regs: none

*

calls: nothing
*/

SLEAF(_init_cache)

.8et noreorder

1i t1,MIN_CACHE_ SIZE
11 t2,MAX_ CACHE_SIZE
nop
8w t2,KSEGO_BASE(t2)
bne t2,ti,1b
srl t2,1 # BDSLOT (branch delay slot)
1w v0,KSEGO_BASE (zero) # get cache size
/*
* now flush the cache
*/

1i a0,KSEGO_BASE

350 m Chapter 12—Software Examples "

addu
sw
sw
sw
sw
sb
sb
sb
addu
bne
8b

nop;
.8et

3

nop;

al,a0,v0

zero, 0(a0) # clear parity
zero,4(a0)

zZero, 8(al)

zero,l1l2(ao0)

zero,0(a0) # invalidate
zerxo,4 (a0)

zero, 8 (al)

a0,16

al0,al,1b
Zero, -4 (a0) # BDSLOT

ra

SEND(_init_cache)

#define SIZE_CACHE (which)
v0,which;

t5,ra;

v0,9f;
mips_init_cache;
v0,which;

ra,ts;

/*
*

*

*

*/

LEAF(mips_clean_dcache)
SIZE_CACHE(mips_dcache_size)

1w
move
bgez
bal
1w
move
blez

void mips clean_dcache (unsigned kva, size_t n)

invalidate address range in data cache

/* n = MIN(dcachesize,n) */
al,vo,

bltu
move

v0,9f

al,vo

nop
reorder

pipe clear of stores

L P Y

The SIZECACHE() macro is going to get used quite heavily. It tests to see
whether the particular cache (referred to by its size variable) has been initial-
ized, and if not it attempts initialization (saving ra around the call). It also
jumps out to the label “9£,” which by local convention is used to mark the end
of each subroutine, so it will exit quietly (but leaving the size marker set to — 1)
if something goes wrong.

Next comes the following;

1f

12.2 MIPS Cache Mailagement ® 351

/* disable interrupts */

mfcO v0,$sr
and vl,v0,SR_BEV
mtco vl, $sx

/* make sure write buffer is empty */

la v1,1b
or v1l,KSEGl1_BASE
1w zero, 0(vl)

.set noreorder

/* r3000: isolate caches, no swap */
or vl,SR_ISC
mtc0 vli, $sr

/* make sure the address is inside kseg0 */
and a0, "KSEG1_BASE
or a0,KSEG0_BASE

addu al,al

That was just paranoia; with the caches isolated, all R3000 loads and stores
hit the cache and only the cache.

More significant is what we haven’t done, which is to make sure we’re ex-
ecuting code from the uncached region—so we may well be running cached.
The isolation of the cache affects only the data cache for loads and stores. This
mips_clean.dcache () routine is regularly called by I/O functions that are
cleaning up before or after DMA, and it needs to be efficient. Now we have the
following:

/* length -> ending address */

/* unrolled loop: £flush 32 bytes at a time */
/* r3000: 4-byte cache lines */

/* store byte

when isolated invalidates the cache entry */

sb zero, 0(a0)
sh zero,4(a0)
sb zero, 8(al)
8b zero, 12 (a0)
sb zero,16(a0)
sb zero, 20 (al)
sb zexo, 24 (al)

addu a0,32
bltu a0,al

,1b

sb zero, -4 (a0)

352 m Chapter 12—Sofiware Examples

/* 1solated stores out of pipe */
nop; nop; nop

The three nop instructions make quite sure that all stores have finished and
that the last cache line is invalidated before we reset SR and restore normal
cache operation:

/* restore status register (pipe clean) */
mtco v0, $sr

nop

.8et reorder

9: 3 ra
END(mips_clean_ dcache)

/*
* void mips_clean_icache (unsigned kva, size_t n)
*
* Invalidate address range in instruction cache
*/
LEAF (mips_clean_icache)
XLEAF (mips_clean_icache_indexed)
SIZE_CACHE (mips_icache_size)

/* n = MIN(icachesize, n) */
bltu al,v0,1f

move al,v0

/* disable intrs */

mfco v0, $sr
and vl1l,v0,SR_BEV
mtco vl,$sr

/* run uncached */

la vl,1lf
ox vl,KSEG1l_BASE
jr vl

Note that we’re not worrying here about position-independent code: Only
the initialization functions may be called at the wrong address. We can there-
fore leave the assembler and linker to figure out the address for us.

We probably could run cached (but swapped) here in most cdses. But this
code is supposed to be safe and universal, so we take the coward’s way out.

9:

12.2 MIPS Cache Management ®m 353

The rest of this code is just like the mips_clean dcache () function de-
scribed above.

/* make sure write buffer is empty */
1lw zero, 0(vl)

.set noreorder

/* r3000: isolate caches and swap */
or vl,SR_ISC|SR_SWC

mtco vl, $sr

/* ensure address is inside kseg0 */

and a0, "KSEG1_BASE
or a0,KSEG0_BASE
addu al,a0 /* length -> ending address */

/* unrolled loop: flush 32 bytes at a time */

/* x3000: 4-byte cache lines */

/* store byte when isolated invalidates the cache entry */
sb zero,0(a0)

sb zero,4(a0)
sb zero, 8 (ao)
sb zero,12(a0)
sb zero, 16 (a0)
sb zero, 20 (a0)
sb zero, 24 (a0)

addu a0,32
bltu a0,al,1b
sb zero, -4 (a0)

nop; nop; nop # pipe clear of stores

/* restore status register (pipe clear) */
mtcl v0,$sr

nop

.set reorder

/* restore cached mode */
3 ra

END (mips_clean_icache)

/*

* void mips_clean_cache (unsigned kva, size _t n)

*

* Invalidate address range in all caches

354 @ Chapter 12—Software Examples

*/
LEAF (mips_clean_cache)

move t9,ra

move a2,a0

move al3,al

bal mips_clean_dcache
move al,a2

move al,a3

bal mips_clean_icache
move ra,t9

3 ra

END (mips_clean_cache)

/*
* void mips_flush_cache () "
*

* Invalidate all caches
*/
LEAF (mips_flush_cache)
move t9,ra

SIZE_CACHE (mips_dcache_size)

1i a0,KSEG0O_BASE

move al,vO0

bal mips_clean_dcache
9: 1w al,mips_icache_size

1i a0,KSEGO_BASE

blez al,9f

bal mips_clean_ icache
9: move ra,t9

3 ra

END(mips_£flush_cache)

12.2.2 Cache Operations: After MIPS I1I and Cache Instructions

Things are much tidier from the R4x00 onward, and we don’t expect them to
ever revert to the R3000 cache access mechanisms. Here are the same functions
implemented for the new version:

12.2 MIPS Cache Management ®m 355

/t
* rdkcache.s: R4000 cache support functions £4r SDE-MIPS
*/

#if 1#cpu(rd000)
#error use -mcpu=rdk option with this file
#endif

#include <mips/asm.h>
#include <mips/regdef.h>
#include <mips/rdkc0.h>
#include <mips/prid.h>

#define NO 0
#define YES 1
#define MAYBE 2

#ifndef RAKSCACHE

#if #cpu(rd000sc) || #cpu(rdad00sc) || #cpu(rd000mec) || #cpu(r4d400mc)
#define RAKSCACHE YES

#else

#define R4KSCACHE NO

#endif

#endif

#ifndef R4AKPC2WAY

#if #cpu(rd600) || #cpu(rd640) || #cpu(rd650) || #cpu(re700)

#define RAKPC2WAY YES

#elif RAKSCACHE || #cpu(rd100) || #cpu(r4200) || #cpu(ré400) \
|| #cpu(cwd010) || #cpu(cwd001)

#define R4KPC2WAY NO

#telse

#define RAKPC2WAY MAYBE

#endif

#tendif

Those horrible macros are being used to try to figure out whether there’s a
secondary cache and whether the primary/seconda ry caches are direct mapped
or two-way set associative.

Whether a secondary cache exists is of vital importance.

For most purposes, the set associativity of the cache does not matter. Nei-
ther the initialization nor the clean_cache functions need rely on it.

L4

356 ®m Chapter 12—Software Examples

* R4000 cache operations

*

* * *

»

for a given system.
*/

#define DECL(x, val) \
EXPORTS (x, 4) \
.woxrd val

.sdata

DECL (mips_icache_size,-1)
DECL(mips_dcache_size,-1)
DECL(mips_scache_size,-1)
DECL (mips_tcache_size,-1)
DECL(mips_icache_linesize,-1)
DECL (mips_dcache_linesize,-1)
DECL (mips_scache_linesize, ~1)
DECL(mips_tcache_linesize,-1)
DECL(mips_pcache_ways, 1)
DECL(mips_scache_ways, 1)

DECL (mips_tcache_ways,0)

DECL (mips_scache_split,0)

/*
* macros to automate cache operations
*x/

#define addr to
#define maxaddr t1l
#define mask t2

#define cacheop(kva, n, linesize, op)
.set noreorder ;
/* check for bad size */
blez n,11f ;

addu maxaddr,kva,n ;

/* align to line boundaries */
subu mask, linesize,l ;

not mask ;

and addr,kva,mask ;

The flush and _clean functions are complex composites that do whatever
is necessary to flush/clean ALL caches,
The other functions are targeted explicitly at a particular cache,

* I-, D-, or 8D; it is up to the user to call the correct set of functions

P I A

in the quickest possible way.

12.2 MIPS Cache Management B 357

addu maxaddr, -1 ; \

and maxaddr,mask ; \

/* the cacheop loop */ \
10: cache op, 0(addr) ; \

bne addr,maxaddr, 10b ; \

addu addr,linesize ; \
11: .set reorder

The cacheop () macro applies the appropriate flavor of cache instruction
on a bunch of cache lines. This makes most sense when kva is being used as
the address of a memory region of which any cached copies should be treated.

/*
* gtatic void _size_cache()
*

* Internal routine to determine cache sizes by looking at R4000 config
* register. Sizes are returned in registers, as follows:

*/
#define icachesize t2
#define dcachesize t3
#define scachesize t4d
#define ilinesize t5
#define dlinesize té6
#define slinesize t7
#define cacheflags t8
#define CF_SCSPLIT 0x2
#define CF_PC2WAY Oxl
#define SCACHE_MIN SIZE 0x010000 /* minimum S-cache: 64KB */
#define SCACHE_MAX SIZE 0x400000 /* maximum S-cache: 4MB */

SLEAF(_size_cache)
mfc0 t0, $config # config register fields in Figure 3.4 above

/* work out primary I-cache size */

and tl1l,t0,CFG_ICMASK
sxrl tl1l,CFG_ICSHIFT

1i icachesize, 0x1000
sll icachesize,tl

/* work out primary I-cache line size */
1i ilinesize, 32

358

#if

W Chapter 12—Software Examples

and tl,t0,CFG_IB
bnez t1,1f i'
14 ilinesize, 16 .

/* work out primary D-cache size */

and tl1l,t0,CFG_DCMASK
srl tl,CFG_DCSHIFT
1i dcachesize, 0x1000
811 dcachesize,tl

/* work out primary D-cache line size */

1i dlinesize, 32

and tl,t0,CFG_DB

bnez tl,1f

11 dlinesize, 16

move scachesize, zero

move slinesize, zero

move cacheflags, zero

R4KSCACHE

/* no secondary cache if Config.8C = 1 */
and tl,t0,CFG_SC

bnez t1,9f

/* note split cache */

and tl,t0,CFG_SS
beqz tl,1f
or cacheflags,CF_SCSPLIT

/* work out secondary cache line size */

and tl,t0,CFG_SBMASK

srl tl,CFG_SBSHIFT

1i slinesize, 16

sll slinesize,tl

/* disable all interrupts and cache exceptions */ ﬁ
mfco t9, $sr é
14 t8,SR_BEV B
and t8,t9 ¢ *
or t8,SR_DE

.8et noreorder

8:

12.2 MIPS Cache Management
mtcO t8,8sr
nop; nop; nop (
mtc0 zero, $taglo # initial cache tag

/* set initial zero marker */
11 t8, KSEG0_BASE
cache Index_Store_Tag_ SD,0(t8) # sdcache[0].tag = 0

/* check all secondary cache boundaries, until we wrap around */

11 scachesize, SCACHE_MIN_SIZE

11 t0,SCACHE_MAX SIZE

ntco scachesize, $taglo

addu tl,t8,scachesize # calc &sdcachel[size]
cache Index_Store_Tag SD,0(tl) # sdcache[size].tag = size
nop; nop

cache Index Load Tag_ SD,0(t8) # check sdcache[0].tag ==
nop

.8et reorder

mfc0 tl, $taglo

and tl1l, TAG_STAG_MASK

bnez tl,8f # wrap around, got it
sll scachesize, 1l # try next boundary
bne scachesize,t0,2b # up to maximum size
mtc0 t9,$sx

#fandif /* R4KSCACHE */

9:

#if R4KPC2WAY == MAYBE

/* have we got two-way set-associative primary caches? */

mfcO t0, $prid # get processor ID
and t0,0x££00 # get implementation
srl t0,8

seq t1l,t0,PRID_R4600 # rd600

or cacheflags,tl

seq t1,t0,PRID_R4700 # rd700

or cacheflags, tl

seq tl,t0,PRID R4650 # rd4650/xrd640

or cacheflags,tl

seq tl1l,t0,PRID_R5000 # r5000

or cacheflags, tl v
seq t1l,t0,PRID_RM52XX # rm52xx

or cacheflags,tl

| 359

360 ® Chapter 12—Software Examples

#elif RAKPC2WAY == YES

or cacheflags,CF_PC2WAY
#endif s
3 ra B

SEND(_size_cache)

[t would probably have made better sense to assume that any PrID (Impl)
field from R5000 up would be (at least) two-way set associative, so if you must
read the CPU ID, do that.

/*
* void size_cache()

* ;

* Work out size of I-, D-, and S-caches

*/
LEAF (mips_size_cache)
1w t0,mips_icache_size
move v0,ra
bgtz t0,8f # already known?
bal _8ize_cache
move ra,vo
sw icachesize,mips_icache_size
sw dcachesize,mips_dcache_size
sw scachesize,mips_scache_size
sw ilinesize,mips_icache_linesize
sw dlinesize,mips_dcache_linesize
8w slinesize,mips_scache_linesize
and t0, cacheflags,CF_SCSPLIT
sw t0,mips_scache_split
and t0, cacheflags,CF_PC2WAY
move tl, zero
beqgz t0,1£
1i t1,2
1: 8w tl,mips_pcache_ways
8: J ra

END(mips_size_cache)

/*
* void mips_init_cache()
*

* Work out size of and initialise I-, D-, and S-caches
*

12.2 MIPS Cache Management ®m 361

* assumes that at least a cache’s worth of memory has been initialiged
* with correct parity

*/
LEAF (mips_init_cache)

/*
* determine the cache sizes
*/

move v0, ra

bal _size_cache

move ra,v0

/*

* The caches may be in an indeterminate state,

* 80 we force good parity into them by doing an

* invalidate, load/fill, invalidate for each line.
*/

/* disable all interrupts and cache exceptions */

mfco v0, $sr

1i a0,SR_BEV
and a0, v0

or a0, SR_DE

.set noreorder

mtcO a0,$sr

nop; nop; nop

/* set up initial cache tag - certainly invalid! */
mtco zero, $taglo

nop

.8et reorder

The caches need to be invalidated, but all data fields must be filled with
good parity data, or we’ll get random cache parity errors while running the
system. We work in this sequence:

1. Write cache tags to invalidate the secondary cache—we’re going to fill
the primary caches from memory and we don’t want to pick up garbage
from the secondary.

2. Invalidate the primary cache lines and load known-to-be-good data from
memory into them.

3. Fill the secondary cache data lines by creating “dirty” primary cache
lines and pushing them out. We can’t fill the secondary cache from
memory, because we may not have that much memor¥ set up yet.

4. Leave all invalidated again.

362 m Chapter 12—Software Examples

#if RAKSCACHE

/*
* Initialise secondary cache tags (if present)
*/
blez scachesize, 3f # S-cache present?

/* first data/unified tags */

1i a0,KSEG0_BASE
addua al,a0,scachesize # limit = base + S-cache size
.set noreorder
1: addu a0,slinesize
bne a0,al,lb
cache Index_Store_Tag SD, -4 (a0) # BDSLOT: clear tag
.8et reorder
and a0, cacheflags,CF_SCSPLIT # S-cache split?
beqgz a0,3f .
The R4000 cache can be programmed as split, so I- and D-cache accesses are
directed to distinct blocks. If so, we need to do the I-cache section separately:
/* then split I-cache, if present */
1i a0,KSEG0_BASE
addu al,a0,scachesize # limit = base + S-cache size
.set noreorder
1l: addu a0,slinesize
bne a0,al,1b
cache Index_Store_Tag SI,-4(a0l) # BDSLOT: clear tag
.set reorder
#endif

3:

/*
* assume bottom of RAM will generate good parity for the
* primary caches (max 32K)

*/

/*

* initialise primary instruction cache

*/

.set noreorder v
1i a0,KSEG0_BASE

addu al,a0,icachesize # limit = base + I-cache size

-,

[

addu a0,ilinesize

cache Index_Store_flag I,-4(a0)
nop

cache Fill 1,-4(a0)

nop

bne al0,al,1ldb

cache Index_Store_Tag I,-4(a0)
.set reorder

/*
* Initialise primary data cache

12.2 MIPS Cache Management ® 363

clear tag

£ill line

BDSLOT: clear tag

* (for R4600 2-way set-associative caches, we do it in 3 passes)

*/

You've seen this primary cache initialization algorithm before in Section
4.10.4. The comment above specifies two-way caches, but in fact this method
copes with a cache of any level of set associativity, so long as it has a least
recently accessed or least recently written replacement policy.

/* 1: initialise D-cache tags */

/* three separate loops, unlike I-cache: see Section 4.10 for why */

.86t noreorder

11 a0,KSEG0_BASE
addu al,a0,dcachesize
addu a0,dlinesize
bne a0,al,1b

cﬁche Index_Store_Tag_D,-4(a0)
.8et reorder

/* 2: £il1ll D-cache */
.8et noreorder

1i a0,KSEGO0_BASE
addu al,a0,dcachesize
addu al0,dlinesize
bne al0,al,1b

1w zero, -4 (a0)

.set reorder

/* 3: clear D-cache tags */
.8et noreorder

1i a0,KSEG0O_BASE
addu al,a0,dcachesize
addu a0,dlinesize
bne a0,al,1b

cache Index_Store_Tag D, -4(a0)

limit = base + D-cache size

BDSLOT: clear tag

limit = base + D-cache size

BDSLOT: f£ill line

limit = base + D-cache size
v

BDSLOT: clear tag

364

#if

m Chapter 12—Software Examples

.set reorder

R4KSCACHE
/ *
* Initialise the secondary data cache data array
*/
blez scachesize,3f # S-cache present?

This is rather ugly, because we're not prepared to assume the existence of
enough correctly initialized memory to fill the whole secondary cache. Instead,
we generate lines in the primary cache and push them out. This is seriously
unportable and probably works only on R4x00 CPUs.

1i a0,KSEG0_BASE
addu al,a0, scachesize # al = base + S-cache size

.set noreordexr

/* create matching dirty lines in primary and secondary */
cache Create_Dirty Exc_SD,0(al)

nop; nop

cache Create_ Dirty Exc_D,0(a0)
nop; nop

/* write primary cache line, so it’s modified */
sw zero, 0 (a0l)
nop; nop

/* push primary cache line out to secondary */
cache Hit Writeback_Inv_D,0(a0)

nop; nop

/* reset secondary tag */

addu a0,dlinesize
bne a0,al,1b
cache Index_Store_Tag_SD, -4 (a0) # BDSLOT: clear tag

.set reorder

/*

* Initialise the secondary instruction cache data array

*/ ’
and a0,cacheflags,CF_SCSPLIT # S-cache split?

beqgz a0,3f

12.2 MIPS Cache Management ®m 363

14 a0,KSEG0_BASE
addu al,a0,scachesize # al = base + S-cache size

.8et noreorder

/* £ill primary I-cache from secondary (ignoring ecc) */
cache Fill_I,0(a0)
nop; nop

/* write primary I-cache to secondary */
cache Hit_Writeback_I,0(a0)
nop; nop

/* reset secondary tag */

addu a0,ilinesize

bne a0,al,1b

cache Index_Store_Tag SI,-4(a0) # BDSLOT: clear tag
.8et reorder

#endif

/* we store the sizes only after the caches are initialised */

sw icachesize,mips_icache_size
sw dcachesize,mips_dcache_size
sw scachesize,mips_scache_size

sw ilinesize,mips_icache_linesize
sw dlinesize,mips_dcache_linesize
sw slinesize,mips_scache_linesize
and t0,cacheflags,CF_SCSPLIT

sw t0,mips_scache_split

and t0,cacheflags,CF_PC2WAY

move tl, zero

beqz t0,1£f

1i t1,2

sw tl,mips_pcache_ways

mtcO vo0, $sr

3 ra

END(mips_init cache)

#idefine SIZE_CACHE (reg,which)
1w reg,which;
move vl,ra;

bgez reg,9f;
bal mips_size_cache;

i R g
-

366 ®m Chapter 12—Software Examples F
1w reg,which; \ i
move ra,vl; \ !

9: blez reg,9f

* void mips_flush_cache (void)

* write back and invalidate all caches
*/
LEAF (mips_£1lush_cache)
#1f R4KSCACHE
/* secondary cacheops do all the work if present */
SIZE_CACHE(al,mips_scache_size)

1w a2,mips_scache_linesize
1w v1,mips_scache_split
1i a0,KSEGO0_BASE

/* here we go with the macro (see above) */
cacheop(ao,al,az,Index_Writeback_Inv_SD)

begz vli,2f # split S-cache?
cacheop(ao,al,az,Index_Invalidate_SI)

b 2f
9: 1w al,mips_dcache_size
#else
SIZE_CACHE(al,mips_dcache_size)
#endif
/* else flush primary caches individually */
1w a2,mips_dcache_linesize
1i a0,KSEG0O_BASE

cacheop(ao,al,az,Index_Writeback_Inv_D)

1w al,mips_icache_size
1w a2,mips_icache_linesize
cacheop (a0,al,a2, Index_Invalidate_I)

$:9: j ra
END (mips_£lush_cache)

¢

The syntax 2:;9: is a bit odd, but the assembler treats the semicolon as a
line break for all purposes, including another label. We want two labels here

122 MIPS Cache Management m 367

because we need a 9: at the end of every routine that uses the cacheop ()
(macro.

/t
* void mips_clean cache (unsigned kva, size_t n)
*
* Write back and invalidate address range in all caches
*/
LEAF (mips_clean_cache)
#1f R4KSCACHE
/* secondary cacheops do all the work (1f fitted) ¥/
SIZE_CACHE (a2,mips_scache_linesize)
1w vl,mips scache_split

cacheop(aO,al,az,Hit_Writeback_Inv_SD)

beqz vl,2f # split S-cache?
cacheop(a0,al,a2,Hit_Invalidate_SI)

b 2f
9: 1w a2,mips_dcache_linesize
#else

SIZE_CACHE (a2,mips_dcache_linesize)
#endif

cacheop(al,al,a2,Hit_Writeback_Inv D)

1w a2,mips_icache_linesize
cacheop(al,al,a2,Hit_Invalidate_T)

2:;9:3 ra
END(mips_clean_cache)

/*
* void mips_flush_dcache (void)
*
* Flush and invalidate data cache only
*/ :
LEAF (mips_flush_dcache)
#if RAKSCACHE
/* use secondary cacheops if present */

SIZE_CACHE(al,mips_scache_size) P
1w a2,mips_scache_linesize
1i a0,KSEG0_BASE

368 m Chapter 12—Software Examples

cacheop(ao,al,a2,Index_Writeback_Inv_SD)

b 2f
9: 1w al,mips_dcache_size
#else
SIZE_CACHE (al,mips_dcache_size)
#endif
/* else flush primary data cache */
1w a2,mips_dcache_linesize
1i a0,KSEGO_BASE

cacheop(ao,al,az,Index_Writeback_Inv_D)

2:;9:3 ra
END(mips_flush_dcache)

/*
* void mips_clean_dcache (unsigned kva, size_t n)
*
* Write back and invalidate address range in data caches
*/
LEAF (mips_clean_dcache)
#if RAKSCACHE
/* secondary cacheops do all the work (if fitted) */
SIZE_CACHE(a2,mips_scache_linesize)
cacheop(ao,al,az,Hit_Writeback_Inv_SD)

b 2f
9: 1w a2,mips_dcache_linesize
#else
SIZE_CACHE(a2,mips_dcache_linesize)
#endif

cacheop(aO,al,a2,Hit_Writeback_Inv_D)

2:;9: 3 ra
END (mips_clean_dcache)

/*

* yvoid rdk _hit_writeback_ inv_dcache (unsigned kva, size_t n)

*

* Write back and invalidate address range in primary data cache

*/
LEAF (r4k_hit_writeback_inv_dcache)
SIZE_CACHE(az,mips_dcache_linesize)
cacheop(ao,al,aZ,Hit_Writeback_Inv_D)

&

12.3 MIPS Exception Handling * ® 369

9: 4 ra
END(rdk_hit_writeback_inv_dcache)

/ *
* void mips_clean_icache (unsigned kva, size t n)
*
* Write back and invalidate address range in instruction caches
*/
LEAF (mips_clean_icache)
#if RAKSCACHE
/* secondary cacheops do all the work (1f fitted) */
SIZE_CACHE(a2,mips_scache_linesize)
cacheop(al,al,a2,Hit_Invalidate_SI)

b 2f
9: 1w a2, mips_icache linesize
#telse

SIZE_CACHE (a2,mips_icache_linesize)
#tendif

cacheop(ao,al,a2,Hit_Invalidate_I)

2::9: j ra
END (mips_clean_icache)

123 MIPS Exception Handling

The exception-handling routines are once again taken (sometimes simplified)
with permission from the Algorithmics SDE-MIPS—note again that the code
is copyrighted and not freely reusable for commercial purposes. In this case,
the mechanism is called xcption; it connects MIPS machine-level exceptions
through to C interrupt handlers and POSIX-like signal handlers.

123.1 Xcption: What It Does for Programmers
Firstly, we need to swallow a rather heroic C data type definition:
typedef int (*xcpt_t) (int, struct xcptcontext *);
The golden rule of C declarations is “read it backward, from the name of

the thing being declared”; thus the data type xcpt _t is a pointer to a function
that returns an integer. Moreover, the parentheses after the function declara-

370 m Chapter 12—Software Examplé‘s

tion give us the function’s argument types; there’s an int and a pointer to an
exception context, saved on the stack after antexception.

An xcpt_t is just the thing to use in a table of function pointers. As used,
they’re often found bundled with some other data (not important here) in a
structure called xcptaction.

A programmer can provide an xcpt_t as a pointer to a handler function,
which will then be invoked whenever a low-level exception occurs with the field
Cause (ExcCode) of the Cause register set to a particular value (there’s a list
of possible values in Table 3.3). In Section 12.4 we’ll show you how this can be
used to catch MIPS interrupts.

The xcption handler routine should return 0 if all goes as expected, but if
it doesn’t the value will be interpreted as a POSIX signal number and a signal
will be delivered to the current application. That in turn provides a somewhat-
portable way for applications to respond to asynchronous events.

The same mechanism also supports a GNU-standard debug stub, which
allows unexpected exceptions to drop into the debugger rather than off the
edge of the universe.

Note that all interrupts are disabled during exception processing, until and
unless they are explicitly unmasked inside a user-supplied handler.

12.3.2 Xcption: C Interface Code

The C routine called from assembler to dispatch xcptions is short and simple:!

int
_xcpt_deliver (struct xcptcontext *xcp)
{
int xcode, sig;
xcode = (xcp->cr & CR_XMASK) >> 2;
if (sig = (xcpthandlertab[xcode]) (xcode, xcp)) {
_sig_raise (sig, xcp);
}
return 0;
}

What’s going on here?
4

1. The real code is more opaque than this, because it abstracts register types and field positions
and such to a larger extent. It can also invoke lower-level user handlers if they’re linked in.

Sty

-

12.3.3

12.3 MIPS Exception Handling m 371

xcode picks up the value that was in the cause (ExcCode) field in the
Cause register; CR XMASK is defined in one of the CPU-family-specific
include files.

We look up that code in an array xcpthandlertab[] of pointers to
handler functions. The function whose address has been loaded in
the appropriate position will be called with two arguments: the
Cause (ExcCode) value and the pointer to the exception context.

If the handler function return value is nonzero, we invoke a signal.

Xcption: Low-Level Module

The foundation is an assembler routine that is entered from the MIPS general-
exception entry point and that builds the environment to allow the user to
supply an exception handler written to the xcption framework.

The module is fairly long; here are some signposts to find your way around:

struct xcptcontext {

reg_t
reg_t
reg_t
reg_t

reg_t

sr;
cr;
epc;
vaddr;

LEAF (xcpt_vecbev) is the entry point of the exception-handling code
(page 374).

(Actually, the MIPS CPU jumps to one of its standard entry points; tiny
fragments of code that jump to xcpt_vecbev are defined at places like
-xcpt_vecutlb on page 383, and then copied into the right place by
the initialization routine.)

LEAF (_xcptlow._init) sets up the vectors and initializes the CPU ap-
propriately (page 384).

Somewhere down on page 379 we finally have saved enough registers
and built an environment suitable for C programs, and we branch to
xcptcall to go off and do something useful. But even then,
LEAF (_xcptcall), on page 386: fakes an indirect call to the C routine
xcpt_deliver () to help the debugger keep track of the stack when
being used on exception-triggered code.

Lastly, the single argument to the C code is a pointer to an exception-
context structure. We use #1ifdefs to vary the definition, but we’ll show
the structure for a CPU from the R4000 family.

Astruct xcptcontext contains the saved value of all general-purpose
registers and those coprocessor 0 registers that need saving:

regs[32];

372 m Chapter 12—Software Examples

g
reg_t mdlo;
reg_t mdhi ;
#if #cpu(rd640) || #cpu(rd650)
reg_t iwatch;
reg_t dwatch;
#elif #cpu(cwd(010)
reg_t dcs;
reg_t bda;
#elif !#cpu(rd600) && !'#cpu(rd700)
reg_t watchlo;
reg_=t watchhi;
#else
reg_t _spare0;
reg_t _sparel;
#endif

struct xcptcontext *prev;
unsigned xclass;
Y

It also provides copies of the key exception-related CPO registers SR, Cause
(er), EPC, and Badvaddr (vaddr). C exception code will pick up fields from
those registers to decide what to do next.

Note that because it’s convenient—particularly for emulators and debug-
gers that may need to reference the pre-exception values of registers—to de-
fine all 32 registers together, we’ll store in the table the value of the register
$0, which is hardly going to be a surprise, and the values of the reserved-for-
exception registers k0 and k1. These are completely useless and in any case
can’t reflect their real pre-exception values—they’re going to be used early in
the exception routine.

So here goes with the assembler code.

/*

* xcptlowb.S: SDE-MIPS basic low-level exception handling

*

* Thig exception handler is not very sophisticated, but it is

* gimple and does what is required for most embedded code.

*

* Tt assumes that sp is at all times a valid, current stack pointer
*

into unmapped memory. If your application has sp pointing into
possibly mapped memory (i.e., kuseg/kseg2), then you will need
something more like xcptlow.S. It does not save/restore

* floating-point registers: This must be done explicitly if

* exception-level code needs to use the FPA.

*

*

| SR

) 12.3 MIPS Exception Handling m 373

*/

#include <mips/asm.h>
#include <mips/regdef.h>
#include <mips/cpu.h>
#include <mips/xcpt.h>
#if #cpu(lr3i3k)

#include <1s8i/1r33000.h>
#endif

#if _ mips >= 3
#ifndef _ mipsé64d

.set gpé64d /* force 64-bit register support */
#tendif
#define 1r 14
#define sr sd

#if l#cpu(rd640) && !#cpu(rd650)
#define rmfc0 dmfc0
#define rmtc0 dmtcO

#endif

#define RS 8
#else

#define 1r 1w
#define srx sw
#define RS 4
#endif

#ifndef rmfco
#define rmfc0 mfcO
fidefine rmtc0 mtcO
#fendif

What we’ve done with these macros is to define a set of operators (load,
store, and move between general-purpose and CPO registers) that do register-
length operations—64 bit if the system configuraticn requires us to load and
save 64-bit registers, 32 bit otherwise.

Any system where users may have run 64-bit instructions has important
data in the top half of registers, and the exception/interrupt system must always
preserve the whole 64-bit register value. Conversely, if a system uses only 32-
bit instructions, then the top half of registers is known to consist of just a sign
extension (Section 2.7.3), and we need only save/restore 32 bits.

374 wm Chapter 12—Software Examples

.data '

class: .word 0

/t
* Low-level flags controlling exception handling
*/
EXPORTS (_xcpt_£lags,NXCPT*4)
.word 0 : NXCPT

*

We get here from ROM boot exception handler (kO points here),
* or from one of the RAM exception stubs below

* On entry, kl = exception class

* Note: exceptions do not save and restore registers k0 or kl
*/

In this system, the cached exception entry points are just patched to branch
to _xcpt_vecbev. Algorithmics' ROM exception entry points (not listed here)
use a convention to allow ROM exceptions to be redirected too; if k0 is nonzero
on entry to the ROM exception routine, its contents are assumed to be the
address of an alternative handler. While running the xcption system, it will
point here.

Until this exception handler has saved enough state to permit nested excep-
tions, it will keep k0 zero; that way if anything bad happens, the ROM handler
will trap it and we won’t get into an exception loop.

Also, before jumping here the exception vectors set k1 to a value (which
we call “exception class”) that tells us which vector was used; think of that as
an extension of the CPU Cause register. It gets stored in a global variable and
eventually is copied into the exception frame.

LEAF (_xcpt_vecbev)
.set noreorder
.set noat

-

/* save exceptién class in meﬁory %/

la kO0,class
sw k1,0(k0) # had better not trapl!
move k0, zero # now boot exceptions will abort

/* allocate exception stack frame (on 8-byte boundary) */
subu k1l,8p,XCP_SIZE

sxl
sll

/* save

sr
axr
sx
ar
8r
sr
8x
sr
-3

/* fool

sw

12.3 MIPS Exception Handling m 375

k1,3
k1,3

enough registers to get by */
AT, XCP_AT (k1)
v0,XCP_vVvO0(kl)
vli,XCp_vi1 (k1)
a0, XCP_AO0 (k1)
al,XCp_Al(kl)
a2,XCP_A2(kl)
a3, XCP_A3 (k1)
8p,XCP_SP(kl)
ra,XCP_RA(kl)

modern exception code by pretending we are NOT nested */
zero, XCP_PREV (k1)

Every now and again, something is beyond explanation. That last line is one of
those.

/* get coprocessor 0 exception state */

mfcO
mfc0
rmfc0
rmfco

a0, $cr
al,$sr
a2, $vaddr
a3, $epc

#if #cpu(lri3k)

mfco
#tendif

vl,$dcic

/* we can safely use AT now */

.8et

at

We've now saved a good set of everyday registers, which we’re now free to
use, and we have got the exception state into some general registers where it’s
easy to look at.

We're now going to have lots of #i fdefs, dealing with things that only oc-
cur in some CPUs. You'll note that while some of these test for specific CPUs,
where possible we’ll use the existence/nonexistence of some register or feature.
R3000-type CPUs depend on swapping data and instruction caches for I-cache
manipulation, under the control of a status register bit SR (8wc) which is de-
fined in the include file as SR_SWc; therefore, when we’re testing for exceptions
in cache managers (they’re fatal) we prefer testing for SR_SWC to trying to list
affected CPUs.

376 m Chapter 12—Software Examples

/* switch to using sp to point at exception frame */ '{z
move sp, k1 e

#ifdef SR_SWC
/* If SR_PZ || SR_SwC || SR_IsC are set then
* the exception has occurred in some VERY hairy code such
* as during cache handling and is unrecoverable.

*/
and v0,al, SR_PZ|SR_SWC|SR_ISC
bnez v0,xcpt_hairy
nop
#endif

#if #cpu(lr3i3k)
/* save LR330x0 dcic register */
sr v1l,XCP_DCIC(sp)

#endif

/* save watchpoint registers and disable watchpoint */
#if defined(C0_DCIC)
mfcO v0,C0_DCIC

mfcO v1l,CO_BDA

mtc zero,CO0_DCIC
sr v0,XCP_DCIC(8p)
sr vl1l,XCP_BDA(sp)

#elif defined(C0_DCS)
mfcO v0,C0_DCS
mfcO vl,CO0_BDA

mtcO zero,C0_DCS
sxr v0,XCP_DCS(sp)
sr v1,XCP_BDA(sp)

#elif defined (CO_WATCHLO)
mfco v0,CO_WATCHLO

mfcO vl,CO_WATCHHEI
mtcO zero,CO0_WATCHLO
sr v0,XCP_WATCHLO(s8pD)
sxr v1,XCP_WATCHHI (sp)

#elif defined (CO_IWATCH)
mfc0 v0,CO_IWATCH
mfcO vl,CO_DWATCH

mtcO zero,CO0_IWATCH
mtcO zero,C0_DWATCH
sTr v0,XCP_IWATCH(spD) 4
sr v1l,XCP_DWATCH(sp)
#endif

/*
1w
/t
sr
sr
or
sw

/*

*
*/
la

12.3 MIPS Exception Handling m 377

stash axception class */
v0,class

nothing sensible to store for k0/k1l, store zero */
zexo,XCP_KO(sp)
zZero, XCP_K1(sp)
v0,XCPC_USRSTACK # we are still on the user stack
v0, XCP_XCLASS (sp)

We have now finished with the uninterruptible code
(using k0/k1l, and saving exception state), so

we can permit nested exceptions; however, we cannot
permit device interrupts until the interrupt handler
does its prioritisation and sets SR_IMASK.

k0, _xcpt_vecbev # restore rom boot exception hook

#if defined(SR_EXL)

/*

R4x00-style exceptions */

and v0,al,” (SR_IMASK|SR_EXL|SR_KSU_MASK)
#elif defined(SR_IEC)

/* R3x00-style exceptions */
and v0,al, " (SR_IMASK) # sr.SR_IMASK := 0
srl vli,al,2 # sr.SR_IEC := 8r.SR_IEP
and vl,SR_IEC
or vo,vl
#endif
mtco v0,$sr

.set reorder

/*
*

*

We are now interruptible: dump all remaining state
into the exception stack frame.

*/

/*
sx

Actually, interrupts are guaranteed to be disabled at this stage and will re-
main- that way until and unless we invoke some kind of interrupt routine that
can figure out which interrupt is active and service it. But a nested exception
now would not overwrite any vital state, and we could return from it and to
our user program intact.

coprocessor exception state */
a0, XCP_CR(sp)

378 ®m Chapter 12—Software Examples

8sr al,XCP_8SR(sp)
sr a2,XCP_VADDR(sp)
sr a3, XCP_EPC(sp)

/* mdhi and mdlo */

'

mfhi v0
mflo vl
sr v0,XCP_MDHI (sp)
-3 o vl1,XCP_MDLO(sp)
It’s easy to forget the not-quite-registers hi and 1o which are the results from :
the multiply unit. But you can’t go trampling randomly on them every time i
there’s an interrupt. :
/ *
* gave all the other general registers.
*
* You might think that you don‘t need to save zero,
* g0-g7, and s8, but software instruction emulators (required
* for FP operation) and debuggers both rely on having all the
* uger’s register values stored together in a well-defined
* gtructure.
*/
sr zero, XCP_ZERO(sp)
sxr t0,XCP_TO(sp)
sr tl,XCpP_T1(sp)
sx t2,XCP_T2(sp)
sx t3,XCP_T3(sp)
sr t4,XCP_TA4 (8p)
-3 4 t5,XCP_TS5(s8D)
8sxY t6,XCP_T6(sp)
34 t7,XCP_T7 (8p)
sr 80,XCP_S0(sp)
[:3 4 s8l,XCP_S1(sp)
-3 4 82,XCP_S2(sp)
sr 83,XCP_S3(sp)
sr 84 ,XCP_S4 (s8p)
sr 85,XCP_S5(8p)
sx 86,XCP_86(sp)
sr 87,XCP_S7 (8p) oy
sr t8,XCP_T8(sp)
sx t9,XCP_T9(sp)
sr gp, XCP_GP (s8p) .

sY 88, XCP_S8(s8p)

12.3 MIPS Exception Handling m 379

/* load our _gp pointer */
la gp,_gp

/* and call the C exception handler */

move a0, sp # argl = g&xcp

subu sp, 16 # (arg save area)
move ra, zero # fake return address
b _xcptcall

xcptrest:
.8et noat

Remember gp? It’s the register that is maintained to point into the mid-
dle of the data area, so that a lot of static and extern data items can be
loaded/stored with a single instruction (see Section 9.4.1).

The subu sp, 16 is an artifact of the MIPS convention for passing subrou-
tine arguments (see Section 10.1).

The bizarre call to_xeptcal1 (a bit of code on page 386) with a zero return
address is a bit of debugger-support trickery. It interposes a bogus stackframe
(with a zero return address) between the C exception handler and the actual
machine exception; innocent debuggers will stop a stack backtrace there, and
xcption-aware debuggers can use it to invoke special knowledge to trace back
over the exception event.

addu at,sp, 16 # at points to exception frame

xcptrest_other:
/ *

And here we are back again. We just have to restore all registers from where we
saved them on entry, rewind the stack, and return. (The choice of at for the
frame pointer here is rather arbitrary; we wanted to choose something we can
restore last.)

* Restore all state

*/

/* restore most general registers */

1r t0,XCP_TO(at)

1r tl,XCP_T1l(at)

1r t2,XCp_T2(at)

1r t3,XCP_T3(at)

1r td,XCP_T4 (at)

1r t5,XCP_TS(at) .
1r t6,XCP_T6(at)

1r t7,XCP_T7 (at)

380 m Chapter 12—Software Examples

i

1r 80,XCP_8S0(at)
1r 8l,XCP_Sl(at) !
1r 82,XCP_S2(at)
1r 83,XCP_83(at)
1x 8d4,XCP_84 (at)
1r 85,XCP_85(at)
1lr 86 ,XCP_S6(at)
1lr 87 ,XCp_S7(at)
1r t8,XCP_T8(at)
1r t9,XCP_T9 (at)
1r gp,XCP_GP (at)
1lr 88,XCP_S8(at)

/* mdhi and mdlo */

1r v0,XCP_MDHI (at)
1r vl,XCP_MDLO(at)
mthi vo0
ntlo vl

/* remaining general registers */

1r a0,XCP_AO(at) -
ir al,XCP_Al(at) .
1r a2,XCP_A2(at)

1ir a3,XCP_A3(at) L
ir ra,XCP_RA(at) i
/*

* Restore the exception-time status register, which has the
* gide effect of disabling interrupts.

*/
.set noreorder
1r v0,XCP_SR(at)

Now we have serious magic coming up. In MIPS CPUs, not much care is
taken to hide the pipeline when you're doing control register updates; control
bits in SR take effect when they take effect, and users are supposed to read a
table of when that is in each case and to program accordingly. But it may still be
-unexpected that on R4000 CPUs the process of disabling interrupts implicitly
by setting the exception level bit SR (EXL) takes one clock cycle longer than
the process of enabling interrupts explicitly by clearing the interrupt enable
bit srR (IE). If you update SR to do both those things simultaneously, you can
get an unwanted interrupt. An additional and worse implication is that by the
time that interrupt event works its way up the pipeline, the CPU thinks it’s

12.3 MIPS Exception Handling m 381

at exception level and then it processes the interrupt exception as if it were a
nested exception.

Although this behavior is bad, it can be documented not to be a bug by
patching the table of control bit delays. It’s easy enough to fix: Set SR(EXL)
first and then wait a couple of clock cycles before restoring the start-of-
exception value of SR (which most likely has interrupts enabled).

The #if uses the presence of the S8R(EXL) bit as characteristic of R4x00-
style exception handling.

#1f defined(SR_EXL)
clear SR_IMASK before setting SR_EXL (nasty window)

1i v1l,” (SR_IMASK|SR_EXL)
and vl,v0
mtco vl, $sr
or v0, SR_EXL # make sure that EXL really is set
nop
#elif defined(SR_IEC)
1i v1l,~ (SR_IEC|SR_KUC) # make sure than interrupts are disabled
and vo,vl
#endif
1lr vl,XCP_Vl1(at)
mtco v0,$sr

An R3000-like CPU (with the SR (IEc) bit defined) is just cheerfully over-
writing the status register to clear out the privilege and interrupt bits—can this
be right? Yes, because when we return from the exception below, the rfe in-
struction is going to pop the SR(Kux, IUx) stack and lose the value we just
overwrote in any case.

#if defined(CO_DCIC)

1lr v0,XCP_BDA(at)
1r sp,XCP_DCIC(at)
mtc0 v0,C0_BDA
mtcO sp,CO0_DCIC

#elif defined(C0_DCS)
1r v0,XCP_BDA(at)
1x 8p,XCP_DCS(at)
mtcl v0,CO_BDA
mtc0 sr,C0_DCS

#elif defined(CO_WATCHLO)
1ir v0,XCP_WATCHLO (at)
1r sp, XCP_WATCHHI (at)
mtco v0,CO0_WATCHLO
mtco sp, CO_WATCHHI ’

#elif defined (CO_IWATCH)

382 W Chapter 12—Software Examples

g e R

1r v0,XCP_IWATCH(at)
1lr 8p,XCP_DWATCH (at)
mtcO v0,CO_IWATCH
mtco 8p,CO_DWATCH
#endif
1r v0,XCP_VO0(at)
1x 8p,XCP_SP(at)
/ *
* We are now uninterruptible and can use k1l safely
*/ 5
ir k1,XCP_EPC (at) :
ir AT, XCP_AT (at) ‘
#ifdef SR_EXL :
rmtc0 k1, $epc ¥
nop; nop :
eret o
nop %
#else
5 k1
rfe
#tendif
.set reorder
.8et at

END(_xcpt_vecbev)

/*
* See comment above about this catastrophe
*/

SLEAF (xcpt_hairy)
b xcpt_hairy # no hope - loop forever
SEND (xcpt_hairy)

Let’s return to exceptions. This generates pieces of code suitable to be
copied to the MIPS standard exception entry points, which will jump into
the handler above. Note that we use the same exception handler for every
kind of event, including the TLB miss exceptions that the MIPS architecture
so kindly separated out. Now we know why RISC architectures don’t have
multiple interrupt vectors.

Anyway, here are the branches. They don’t look very exciting.

.3

.set noat
.g8et noreorderxr

12.3 MIPS Exception Handling m 383

#ifndef XCPC_XTLBMISS

/* utlb exception code (copied to 0xa0000000) */
_xcpt_vecutlb:

la kl,_xcpt_vecbev
j k1
11 kl,XCPC_TLBMISS

_xcpt_endutlb:

#else

/* tlbmiss exception code (copied to 0xa0000000) */
_xcpt_vectlb:

la k1, _xcpt_vecbev
3 k1
1i k1, XCPC_TLBMISS

_xcpt_endtlb:

/* xtlbmiss excqption code (copied to 0xa0000080) */
_xcpt_vecxtlb:

la k1, xcpt_vecbev
3 k1
1i k1l,XCPC_XTLBMISS

_xcpt_endxtlb:

#fendif

/* general exception code */
_Xcpt_vecgen:

la kl,_ xcpt_vecbev
bl kl
1i kl,XCPC_GENERAL

_xcpt_endgen:

#if #cpu(rd640) || #cpu(x4650) || #cpu(rm52xx) || #cpu(rm7000)
/* interrupt exception code (copied to 0xa0000200) */

/* XXX you could fast vector here */

_xcpt_vecint:

la kl, _xcpt_vecbev
b} k1
1i k1, XCPC_GENERAL

_xcpt_endint:
#endif

384 ®m Chapter 12—Software Examples

#if #cpu(lr33k)
/* debug exception code (copied to 0xa0000040)
_xcpt_vecdbg: !

la k1, xcpt_vecbev
3 k1
11 k1, XCPC_DEBUG
_xcpt_enddbg:
#endif

.set reorder
.set at

f#ifdef XCPC_CACHEERR
#include "xcptcache.s"
#endif

*/

/* Macro to copy exception handlexr to UNCACHED low memory */

#define XCPTCOPY (offs,start,end) \
1i t0,KSEG1_BASE+offs; \
la tl,start; \
la t2,end; \

1: 1w t3,0(tl); \
addu t1,4; \
sw t3,0(t0); \
addu t0,4; \
bne ti,t2,1b

Why uncached? Because you can’t execute instructions out of the data
cache. In fact, you're also going to need to be sure that the I-cache does not
already contain some previous contents of these locations. This code assumes

that this cannot be the case.

* * * * *

*

catching exceptions itself.
/

* * * *

LEAF (_xcptlow_init)
#if !1#cpu(l164360)

lLow-level exception handler initializationmn function.
Call only when a stack is set up and memory valid.
RAM handler stubs are installed via UNCACHED memory;
also sets k0 = & xcpt_vecbev for ROM BEV handler.

It will normally not be called when running under a
PROM monitor, which we want to allow to continue

12.3 MIPS Exception Handling m 385

/* disable all interrupts */

mfcO td,$sr
and t4, "SR_IE
mtco td,$sx

/* copy exception handlers down to low memory */
#ifndef XCPC_XTLBMISS
XCPTCOPY (0x000, _xcpt_vecutlb, _xcpt_endutlb)
XCPTCOPY (0x080, _xcpt_vecgen, _xcpt_endgen)
#else
XCPTCOPY (0x000, _xcpt_vectlb, _xcpt_endtlb)
XCPTCOPY (0x080, _xcpt_vecxtlb, _xcpt_endxtlb)
XCPTCOPY (0x180, _xcpt_vecgen, _xcpt_endgen)
#endif
#ifdef XCPC_CACHEERR
XCPTCOPY (0x100, _xcpt_veccache, _xcpt_endcache)
#endif
#if #cpu(lr33k)
XCPTCOPY (0x040, _xcpt_vecdbg, _xcpt_enddbg)

#endif

#if #cpu(rd640) || #cpu(rd650) || #cpu(rm52xx) || #cpu(rm7000)
XCPTCOPY (0x200, _xcpt_vecint, _xcpt_endint)

#tendif
lw t0,_ram based
beqz t0,1f

/* using RAM-based handlers, so switch off boot exceptions */
and t4, "SR_BEV
mtc0 td,$sr

#endif /* 1#cpu(l1l64360) */

/* set up ROM BEV handler hook (always, cannot hurt) */
1: 1la k0, _xcpt_vecbev

b ra
END(_xcptlow_ init)

/*
* This function exists simply for the debugger.

*

The debugger can see that ra is the return address
and in the normal case it is zero so it looks no further.

* %

It also recognises this special name "_xcptcall" and can .

*

trace back across the exception frame.

386 m Chapter 12—Software Examples

* On entry: a0 == &xcp
*/
LEAF(_xcptcall)

subu 8p, 24

sr ra,1l6(sp) /* == 0 normally */

/* punt out to xcpt_deliver */

jal _xcpt_deliver
1r ra,1l6(sp)

addu 8sp, 24

beqz ra,xcptrest

3 ra

END (_xcptcall)

12.4 MIPS Interrupts

The interrupt handler we’re going to look at here is built on the exception han-
dler described in Section 12.3. The interrupt handler is just one of the possible
exception action routines, so we know that

xcpthandlertab[XCPTINTR] == &intrhandler

where XCPTINTR is actually zero, because that’s the cause (ExcCode) value
for an interrupt.

Once an interrupt occurs and control transfers into intrhandler (), the
handler looks for interrupts that are active and wanted and the handler can call
a different routine for each of the MIPS CPU’s eight possible interrupt flags.
There are utility routines to keep a table of individual interrupt routines, to
allow you to register drivers’ interrupt routines, and to handle unregistered or
spurious interrupts.

But here’s the guts of the handler:

/ *
* low-level interrupt exception handler
*/
static int intrhandler (int xcptno, struct xcptcontext *xcp)
{
unsigned int cr = XCP_CAUSE (xcp) & XCP_STATUS (xcp) & CR_IMASK;
14
The cause (IP) interrupt active bits simply track the corresponding CPU
inputs. The matching bits of the status register, SR (IM), are individual active-

£
®
;

124 MIPS Interrupts ®m 387

high enables for those interrupts. So we’'ve now computed a bit vector of
interrupts that are trying to be active.

struct intraction *ia;
int sig = 0;
int intr;

while (cr != 0) {
if ((cr & _intrmask) == 0) {
_mon_printf (“\nUnregistered interrupt: epc=%p, sr=%x, cr=%$x\n",
REG_TO_VA (xcp->epc), XCP_STATUS (xcp),
XCP_CAUSE (xcp));
return SIGKILL;

-intrmask is a soft interrupt mask, which enables only interrupts for which
a registered interrupt handler exists. The xcption allows us to just return a
nonzero value and will send a signal to the controlling application—in this
case, it is usually fatal.

/* find highest-priority interrupt bit number */
intr = priotabf(cr & _intrmask) >> 81;
ia = &intrtab[intr];

/* call its handler at its ipl */
splx (ipltab{ia->ia_ipl}.mask);
sig = (ia->ia_handler) (ia->ia_arg, xcp):

priotabisjusta table to speed a find-first-set-bit operation. Then we can find
a structure pointer ia relating to this interrupt input.

The splx () function adjusts the mask in the status register, SR(IM), to
disable this interrupt and all those lower in priority. Then we call the handler:

intrblock();

intrblock () disables all interrupts in the status register, to make sure no
hardware interrupt can get in while we figure out what's happening.

/* check for a signal request */
if (sig)
return sig;

/* fetch new cause register */
cr = mips_getcr () & XCP_STATUS (xcp) & CR_IMASK;

388 m Chapter 12—Software Examples

~
*

* % % * % * ® F * % * F % % % % *

* % % * * ¥ % * * ® %

As we said before, the interrupt flags in the cause register just track input signals
and may change at any time, so we recompute and go around again until there
are really no active interrupts.

}

return 0;

125 Tuning for MIPS

The following example is the heavily used Clibrary function memcpy (), tuned
heroically. This is freely redistributable code from a BSD release, used with
thanks to the University of California.

Copyright (c) 1991, 1993
The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by
Ralph Campbell.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
california, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS V‘AS IS’’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR C6NSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

12.5 Tuning for MIPS m 389

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY oOF LIABILITY, WHETHER IN CONTRACT, STRICT

* SUCH DAMAGE.
*/

#include <mips/asm.h>
#include <mips/regdef.h>

/* use 64-bit operations if available */
#if _ _mips >= 3

#define L la
#define L1 ldl
#define LR ldar
#define s sd
#define sL sdl
#define SR sdr
#define RS 8
#else

#define L 1w
#define LL 1wl
#define LR lwr
#define s sw
#define SL swl
#define SR swr
#define RS 4
#endif

/* moving bytes in chunks, so endianness matters */
#ifdef MIPSEL

define LHI LR
define LLO LL
define SHI SR
define SLO SL
#endif

#ifdef MIPSEB

define LHI LL
define LLO LR
define SHI SL
define sIO SR

#endif

390 m Chapter 12—Software Examples “

Let’s review these definitions. The strange instructions like 1dr and 141
are for unaligned accesses; these two act in a pair to load a doubleword from
an arbitrarily aligned location. '

What we have defined are the following:

Symbol Means

L Load a word-size chunk
S Store a word-size chunk
RS Size of a word, in bytes

LHI Word-size unaligned load (higher addresses)
LLO Word-size unaligned load (lower addresses)
SHI Word-size unaligned store (higher addresses)

SLO Word-size unaligned store (lower addresses)

Wwe'll also use free registers. The £0—t9 registers are by definition free for
our use in a subroutine; so are the argument registers a0—a3 and the return-
value registers v0 and v1.

/* memcpy{to, from, n) */

LEAF (memcpy)
.set noreorder
move v0,al # save to for return
beq a2, zero, .ret
sltu t2, a2, 12 # check for small copy
bne t2, zero, .smallcpy # do a small bcopy

We’re going to consign small copies (12 bytes or less by measurement) to some-
thing simple.

memcpy () —by the rules of the C standards—doesn’t have to handle over-
lapped regions, which would make life a lot more complicated.

The basic strategy is to try to do the bulk of the copy with aligned big
chunks of data. Where the source and destination are aligned the same, that’s
good (we make it a special case); where they’re not, we use unaligned loads and
aligned stores.

xor vl, ali, a0 # compare low bits of addresses
and vli, RS-1
subu a3, zero, a0 # compute # bytes to word align address
beq vl, zero, .aligned # addresses can both be word aligned
and a3, RS-1 # BDSLOT - harmless if we branch

14
beg a3, zero, 1f

subu a2, a3 # subtract from remaining count

LHI vl,
LLO vi,
addu al,
SHI vi,
addu a0,

/* Try a 4X

0(al)
RS-1(al)
a3

0(a0)

a3

#

#

125 Tuning for MIPS m 391

get next RS bytes (unaligned)

store 0..RS-1 bytes to align a0

unrolled unaligned block copy */

and vl, a2, (RS*4)-1
subu a3, a2, vi

beg a3, zero, 1f
move a2, vi

addu a3, al

LHI vl, RS*0(al)

LLO vl, RS*0+RS-1(al)
LHI t0, RS*1(al)

LLO t0, RS*1+RS-1(al)
LHI tl, RS*2(al)

LLO tl, RS*2+RS-1(al)
LHEI t2, RS*3(al)

LLO t2, RS*3+RS-1(al)
s vl, RS*0(a0)

S t0, RS*1(a0)

s tl, RS*2(a0)

addu al, RS*4

addu a0, RS*4

bne al, a3, 2b

s t2, -RS(a0)

and vl, a2, RS-1
subu a3, a2, vi

beq a3, zero, .smallcpy
move a2, vi

addu a3, al

LHI vli, O(al)

LLO vl, RS-1(al)

addu al, RS

addu a0, RS

bne al, a3, 2b

s vl, -RS(a0)

b .smallcpy

nop

#
#

#
#
#

*

remaining size % blocksize

size of remaining blocks

none?

bytes remaining after block copy
compute ending address

copy block al unaligned, a0 aligned

keep back 1 store for the BDSLOT
compute number of words left
none?

bytes remaining after word copy

compute ending address

copy words al unaligned, a0 aligned

392 m Chapter 12—Software Examples

.aligned:

/* Both addresses have the same alignment: do initial bytes to align */

beq
subu
LHI
addu
SHI
addu

a3,
a2,
vl,
al,
vl,
al,

/* Try a 4X

1: and
subu
beq

nmnntte e

addu
addu
bne

vl,
a3,
a3,
a2,
a3,

vl,
to,
tl,
t2,
vli,
to,
t1,
al,
a0,
al,
t2,

zero, 1lf
a3

0(al)

a3
0(a0)

a3

unrolled block copy

a2, (RS*4)-1
a2, vl

zero, 1f

vl

al

RS*0(al)
RS*1(al)
RS*2(al)
RS*3 (al)
RS*0(a0)
RS*1(ao0)
RS*2 (a0)
RS*4
RS*4

a3, 2b
-RS(a0)

/* Try a word at a time */

1: and
subu
beq
move
addu

2: L
addu
addu
bne
S

.smallcpy:
/* Last
beq

vl,
a3,
a3,
a2,
a3,

vl,
al,
ao,
al,
vl,

a2, Rs-1
a2, vl
zero, .smallcpy
vl

al

0(al)
RS

RS

a3, 2b
~RS(a0)

subtract from remaining count
copy 1, 2, or 3 bytes to align

*

remaining size % blocksize

size of remaining blocks

none?

bytes remaining after block copy
compute ending address

remaining size % word size

size of remaining words

none?

bytes remaining after word copy
compute ending address

* 3k # N

*

copy words

resort: byte at a time */

a2,

zero, .ret

addu a3, a2, al

1l: 1lbu vl, 0(al)
addu al, 1
addu a0, 1

bne al, a3, 1b
8sb vl, -1(a0)
.ret: j ra
nop
.8et reorder
END (memcpy)

125 Tuningfor MIPS m 393

compute ending address

copy bytes

Appendix

Al

Instruction Timing and
Optimization

MIPS CPUs are heavily pipelined, so the speed with which they can execute

a piece of code depends on how well the pipeline works. In some cases,
the correctness of the code depends on how the pipeline works—particularly
with the CPU control coprocessor 0 instructions and registers.

Dependencies passing through explicitly used registers are fairly obvious, if
messy; in addition, there are also occasional dependencies on implicitly used
registers. For example, CPU control flags in the status register SR affect the
operation of all instructions, and changes must be made very carefully.

The great majority of MIPS instructions need to obtain their operands for
the end of the RD pipeline stage and need to produce their result at the end
of the immediately following ALU stage, as illustrated in Figure A.1. If all in-
structions could always stick to these rules, any instruction sequence could be
correctly run at maximum speed. The best trick in the MIPS architecture is
that the vast majority of instructions can stick to these rules.

Where this can’t be done, for some reason, then an instruction taking oper-
ands from the immediately preceding instruction can’t run on time and cor-
rectly. This situation can be detected by the hardware and fixed by delaying the
second instruction until the data is ready (an interlock) or it can be left to the
programmer to avoid sequences of instructions that try to use data that isn’t
ready (a pipeline hazard).

Avoiding Hazards: Making Code Correct

Possible hazards include the following:

8 Load delay: This was a hazard in early MIPS CPUs; theinstruction im-
mediately following a load could not reference the loaded data. That
sometimes required the compiler/assembler to use a nop instruction

395

396 m Appendix A—Instruction Timing and Optimization

{-cache Register ~ ALU D-cache Register
o fle { o fle
|nstrud:.ion i f IF. l RD ALY ! MEM | WBJ
- : : / :
S isnugion2 | | _F__[RD] AW | MeM w |
$: i T 3
g : : : :
% srucion3 | i [F o[Au | wem |we
Time

FIGUREA.1 Pipeline stages for two instructions with no delay needed

when nothing useful could be safely moved into the delay slot. But from
the R4000 onward, MIPS CPUs have been interlocked so as to be free of
hazards affecting ordinary user-level instructions.

® Multiply unit hazards: Results from the integer multiplier on MIPS CPUs
are interlocked, so there’s no delay slot from the mflo instruction that
obtains the result. However, the independence of the integer multiply
hardware produces its own problems; see Section A.3.

m Coprocessor 0 hazards: The coprocessor 0 control instructions often read
or write registers with unusual timing, creating pipeline problems. Many
of these are not interlocked. Detailed information must be sought in the
user’s manual for your particular CPU, but we'll look at what you have
to do on an R4000 CPU (probably the most tricky of any MIPS CPU).

Note that the branch delay slot, although introduced to ease pipelining, is

by definition part of the MIPS architecture and therefore not a hazard; it’s just
peculiar.

A2 Avoiding Interlocks to Increase Performance

We lose performance with any interlock that happens when the CPU could,
with cunning, have been doing useful work instead. We'd like to get the com-
piler (or for heavily used functions perhaps a dedicated hurhan programmer)
to reorganize code to run optimally.

A3

A.3 Multiply Unit Hazards: Early Modification of hiandlo m 397

Compilers—and humans—find this challenging. A program that is heavily
optimized to avoid interlocks usually has several stages of computation pulled
apart and then interleaved, and it gets very difficult to see what is going on.
If code has only been moved from its natural sequential position by four or
five instructions, it’s usually possible to cope. Larger movements get more and
more problematic.

In a single-pipeline machine (most MIPS CPUs to date), most instructions
take one clock cycle, so we can expect to succeed at reorganizing instructions
that take four to five clock cycles to complete and that can successfully overlap
with other instructions. In MIPS CPUs, these criteria are a good fit only for
floating-point instructions, so heroic scheduling improves FP performance but
does little for integer code.! It’s beyond the scope of this book to go into this in
detail; if you want an excellent review of applicable compiler techniques look
in Hennessy and Patterson, Computer Architecture: A Quantitative Approach.
For detailed timing of individual CPUs, look in the specific user’s manual,

On a smaller scale, there’s an example of code optimized around load in-
terlocks in Chapter 12 on page 388.

Multiply Unit Hazards: Early Modification of hi and lo

When a MIPS CPU takes an interrupt or other exception, most of the instruc-
tions in the pipeline are cancelled and the result write back is inhibited. But the
integer multiply unit has few connections to the rest of the CPU and runs on,
indifferent to an exception. This means that changes to the multiply unit result
registers Lo and hi cannot be prevented once multiply and divide instructions
start.

An exception might occur just in time to prevent an mfhi or mflo from
completing its write back but still might allow a subsequent multiply or divide
instruction to start—and once the second operation gets launched the original
data will be lost.

To avoid this, it’s enough (on all MIPS CPUs) to ensure that at least two
clock cycles separate an m€hi or mf1o instruction from a following multiply
or divide instruction. Good compilers and assemblers will police this for you,
and you’ll never know it’s happening until you disassemble the code and find
unexpected nops.

’

1. That’s one of the reasons why the Silicon Graphics compiler, while slightly worse than GNU C on

integer code, is substantially faster—perhaps as much as 30%—on heavyweight floating-point
programs,

398 m Appendix A—Instruction Timing and Optimization

A4 Avoiding Coprocessor 0 Hazards: How Many nops?

The programmer’s question is, how many instructions (perhaps nops) do I
need to putbetweena particular pair of instructions to make them work safely?

It would be possible, in principle, to produce an exhaustive list of pairs of
instructions and how many clock cycles were required between them, but that
would take a long time. But we can reduce the size of the job by noting that
trouble occurs only when

a The instruction producing the data takes longer than the standard time
(the standard time is the end of the ALU stage) and/or

s The instruction using the data requires it to be valid before the standard
time (in this case, the standard time is the start of the ALU pipestage)

We don’t need to document instructions that produce and use data at the
standard time, only those that deviate from this righteous path. For each of
those, we need to note when the result is produced and/or when the operand
is needed.! Armed with that, we should be able to produce correct or efficient
sequences for the most complicated cases.

Table A.1 shows the timing foran R4000/4400 CPU, essentially as found in
Heinrich, The R4000/R4400 User Manual (see bibliography for Web address).
This table gives the pipestage in which operands are used and in which re-
sults become available to succeeding instructions. The number of clock cycles

1. It would be enough—and simplest—to document the number of clock cycles by which the result
is late or the operand early. But the MIPS-derived table uses pipeline stages.

TABLEA.1 Hazardous coprocessor 0 instructions and event timings for an R4000/R4400 CPU

Instruction/event Operands Results
What Pipestage | What Pipestage
mtco CP reg 7
dmtc0
mfcO CP reg 4
dmfco
tlbr Index, TLB 5-7 PageMask, EntryHi 8 ,
EntryLo0, EntryLol
tlbwi Index/Random 5-8 TLB 8 ‘>
tlbwr PageMask, EntryHi
EntryLo0, EntryLol ,

continued

[

e

TABLE A.1 continued

A4 Avoiding Coprocessor 0 Hazards: How Many nops? m 399

Instruction/event Operands Results
What Pipestage | What Pipestage
tlbp PageMask, EntryHi 3-6 Index 7
eret EPC/ErrorEPC 4 SR[EXL,ERL] 4-8
TLB
SR 3 LLbit 7
cache xxHitax SR[CH] 8
cache cache line X cache line X
load/store EntryHi 4
ASID
SR[KSU,EXL,ERL,RE]
Config[K0,DB]
.TLB
Config[SB] 7
WatchHi 4-5
WatchLo
exception EPC 8
(load/store) SR
Cause
BadVaddr
Context, XContext
exception EPC 8
(I-fetch) SR
Cause 4
BadVaddr
Context, XContext
I-fetch EntryHi[ASID] 0
SR[KSU,EXL,ERL,RE]
Config[K0,IB]
Config[SB]
TLB 2
CP usable SR -
Interrupt Cause[IP] 3
seen SR[IM,IE,EXL,ERL]

400 ®m Appendix A—Instruction Timing and Optimization

A5

(typically nops) required between a pair of dependent instructions is
ResultPipestage — OperandPipestage — 1

Why —12 A result produced in pipestage n + 1 and an operand needed
in pipestage n produces ideal pipelining, so no nop is required. The —1 is an
artifact of the way the pipestages are counted, really.

For most other MIPS CPUs you should find a similar table in the appropri-
ate user’s manual. We've used the R4000/4400 as an example here because its
long pipeline (you'll see up to 8 pipestages in the table) and position as the head
of the MIPS III CPU family mean that pretty much any sequence that runs on
an R4000 will be safe (though perhaps not optimal) on any subsequent CPU.

Note that although the instruction m£co delivers data late into its general-
purpose register destination, the late result is not noted in the table because it’s
interlocked. This table only lists timings that can cause hazards.

Coprocessor 0 Instruction/Instruction Scheduling

We saw the following piece of code for a TLB miss handler on a 64-bit CPU
(32-bit address space) in Chapter 6:

.set noreorder
.8et noat
TLBmissR4K:
dmfc0 kl,CO_CONTEXT
nop # (1)
1w k0, 0(k1)
1w k1,8(k1)

mtcO kO, CO_ENTRYLOO
mtco kl1l,C0_ENTRYLO1
nop

tlbwr

nop

eret

nop

.set at

(2)

(3)
(4)
(5)

L R R]

.set reorder
We’re now in a position to account for the number of nops placed in it:

(1) The R4000 CPU and most of its descendants are not capable of passing a
coprocessor 0 register value through to the next instructien; the dmfco
instruction’s timing is much like a load. The Heinrich R4000/R4400
User Manual gives hints that this operation may be fully interlocked in

(2)

(3)

(4)

A6 Coprocessor 0 Flags and Instructions m 401

an R4000, and certainly any delay greater than one clock cycle is inter-
locked. But it’s not made plain, and tlie nop here won't have any adverse
effect on performance, so we’ll leave it in.

From Table A.1, mtco writes the register EntryLol in pipestage 7, and
the t1bwr instruction needs that data set up for pipestage 5. So just one
nop is needed (calculated as 7 — § — 1). It may well not be required for
some other CPU, but it’s worth leaving in for portability reasons,

The t1bwr has no obvious dependencies, but in fact it’s important that
all its side effects are completed before we return to user code. tlbwr
does not finish writing the TLB until pipestage 8, and the fetch of a nor-
mal instruction needs the TLB set up in pipestage 2; we must have a
minimum of 5 instruction slots between the t1lbwr and the exception
return. The eret is followed by its branch delay slot—there’s a nop at
(5) in this case—and then (because of the R4000’s long pipeline) by a
two-clock-cycle delay while the pipeline refills after the branch. How-
ever, that’s still only four instructions; so we need an additional nop at
(3), before the eret.

Another dependency exists between eret, which resets the status reg-
ister SR(EXL) field into its normal user state, and the first I-fetch of
the user program. However, this timing is beyond the reach of the pro-
grammer, so the machine is built so that the branch delay slot plus the
two-cycle further branch delay is sufficient.

Armed with Table A.1, you should be able to work out anything!

A6 Coprocessor 0 Flags and Instructions

As we saw previously, some of the CPU control registers (coprocessor 0) con-
tain bitfield values or flags that have side effects on the operation of other in-
structions. A usual rule of thumb is to assume that any such side effects will
be unpredictable on the three instruction periods following the execution of an

mtcO.

But the following are specifically noted:

Enabling/disabling a group of coprocessor instructions: If you enable a co-
processor (making its particular instructions usak le) by changing one of
the SR (cv) bits, the mtc0 instruction takes effect at pipestage 7 and the
new value must be stable by Pipestage 2 of a coprocessor instruction. So
four intervening instruction issues are required in this case.

Enabling/disabling interrupts: 1 you change the interrupt state of the
CPU by writing to SR(IE), SR(IM), or SR(EXL), then Table A.1 says
that that takes effect in pipestage 7. The interrupt signals are sampled

-

402 m Appendix A—Instruction Timing and Optimization

‘ for an instruction in pipestage 3, determining whether the instruction
proceeds or is preempted by the interrupt. That means that three in-
structions (worked out as 7 — 3 — 1) must be executed before the new
interrupt state is safely installed.

During those three instruction times, an interrupt can be detected and
can lead to an exception. But the status register was changed by an
instruction that issued before the interrupted one, so the rules say the
status register change will still occur.

Suppose then that you've disabled interrupts by setting the exception-
level bit SR (EXL). You will normally do this at only one place and that’s
at the end of an exception handler. An exception handler of any com-
plexity saves the start-of-exception value of SR to be restored when con-
trol is about to be returned to the user program, and part of that start-
of-exception value is that SR (EXL) is set.

If an interrupt occurs in one of the three instruction slots following the
instruction that sets SR(EXL), an interrupt exception will occur but
with SR(EXL) already set; that causes very peculiar things to happen,
including that the exception return address EPc is not recorded.! This
would be unrecoverable, so it’s vital to make sure that interrupts are al-
ready disabled when you set SR (EXL); you can do this by making sure
that you clear SR(IE) and/or SR(ImM) at least three instruction times
earlier.

:
¢

® TLB changes and instruction fetches: There is a five-instruction delay o
between a change to the TLB and when it can take effect on instruc-
tion translation. Additionally, there is a single-entry cache used for in-
struction translations (called the micro-TLB) that is implicitly flushed
by loading EntxyHi; this can also delay the effect.

You must obviously do TLB updates only in code running in an un-
mapped space. kseg0 is the usual choice.

1. See Section 6.7.2 for a discussion of why this bizarre behavior is a good idea.

Bt

Assembler Language
Syntax

f you really want to figure out what can be in your assembler sources, read
this appendix. The compiler-dir directives in the syntax are for use by com-

pilers only, and they are not described in this book.

statement-list:
statement
statement statement-list

statement:
stat /n
stat ;

stat:
label
label instruction
label data
instruction
data
symdef
directive

label:
identifier s
decimal :

identifier:
[A-Za-2.5_][A-Za-20-9.$_]

403

404 = Appendix B—Assembler Language Syntax

instruction:
op-code
op-code operand
op-code operand , operand
op-code operand , operand , operand

op-code:
add
sub
etc.

operand:
register
(register)
addr-immed (register)
addr-immed
float-register
float-const

register:
$decimal

float-register:
$£decimal

addr-immed:
label-expr
label-expr + expr
label-expr - expr
expr

label-expr:
label-ref
label-ref - label-ref

label-ref:
numeric-ref
identifier

numeric-ref:
decimal£
decimalb

Appendix B—Assembler Language Syntax ® 405

data:
data-mode data-list
.ascii string
.asciiz string
. Bpace expr

data-mode:
.byte
.half
.word
.float
.double

data-list:
data-expr
data-list , data-expr

data-expr:
expr
float-const
expr : repeat
float-const : repeat

repeat:
expr

symdef:
constant-id = expr

constant-id:
identifier

directive:
set-dir
segment-dir
align-dir
symbol-dir
block-dir
compiler-dir

set-dir:
.set [no]volatile
.set [no]reorder ’
.set [nolat
.set [nolmacro

406 ®m Appendix B—Assembler Language Syntax

.set [nolbopt
.set [no]move

segment-dir:

.text
.data
.rdata
.sdata

align-dir:

.align expr

symbol-dir:

.globl identifier

.extern identifier , constant
.comm identifier , constant
.lcomm identifier , constant

block-dir:

.ent identifier

.ent identifier , constant
.aent identifier , constant
.mask expr , expr

. fmask expr , expr

.£rame register , expr , register
.end identifier

.end

compiler-dir:

expr:

.alias register , register
-bgnb expr

.endb expr

.file constant string
.galive

.gjaldef

.girlive

.1lab identifier

.livereg expr, expr
.noalias register , register
.option flag

.verstamp constant constant
.vreg expr , expr

expr binary-op expr
term

B W R T

e e

Appendix B—Assembler Language Syntax m 407

term:
unary-operator term
primary

primary:
constant
(‘expr)

binary-op: one of the following:
*/ %
+ -
<< >>
&

~

unary-operator: one of the following:
+ - ~

constant:
decimal
hexadecimal
octal
character-const
constant-id

decimal:
[1-9]{0-9]+

hexadecimal:
0x[0-9a-fA-F]+
0x[0-9a-fA-F]+

octal:
0[0-7]+

character-const:
I x I '

string:
" XXKX"

float-const: for example:
1.23 .23 0.23 1. 1.0 1.2e10 1.2e-15

Object Code

bject code is the unsavory gunk that becomes necessary so you can com-
pile programs one module at a time and grows into the stuff that holds
the many parts of a software development toolchain together.
To do its job properly, the object code must encapsulate the whole output
of the compilation of a module, including the following:

m The code and initialized data.

s A symbol table relating shared names (functions, variables, etc.) to
locations within the object module.

m Fixup records: These are recipes for how to reach and update address
fields inside the code and data, as the module is linked with other mod-
ules and assigned a fixed set of program addresses.

8 Debug information: A source-level debugger generally makes no at-
tempt to interpret source code (C is easy enough to parse, but think of
the difficulties involved when using conditional compilation). Instead,
information such as the C source file and line number that gave rise to a
problem piece of code and data is generated by the compiler and passed
through the object module.

In an attempt to bring some order into this chaos, object files are split into
chunks that are usually called sections: A section may contain code, a symbol
table, or debug information, but all sections can be treated the same way for
some purposes.

If object code were standardized, customers could mix and match tools
from different vendors and have them cooperate seamlessly, and there would
be a market in reusable software modules that could be distributed in object
form. However, some source owners are unwilling to distribute source code
because it can so easily be copied and disguised. The open-ended nature of

409

410 ®m Appendix C—Object Code

these aims, the need to evolve the object code as functions are added to tools
anywhere within the toolchain, and the commitment to binary encoding have
combined to make standardization difficult.

The problems have been further exacerbated by much-publicized standards
efforts—notably common object file format (COFF), introduced by AT&T in
the 80s—which fell far short of achieving interworking. COFF’s successor ex-
ecutable and linking format (ELF), is better; however, the standards still tend
to define the boxes in which information is kept, rather than the information
inside them.

This appendix describes two object file formats that are often used in MIPS
development systems: a COFF derivative called ECOFF, used and promoted by
MIPS Corporation in its heyday, and a MIPS-specific variant of ELF.

The object files you meet can be classified as one of a few forms. A relocat-
able object file is the immediate output file generated by compiling a module,
which is suitable for linking with other relocatable object files to create an exe-
cutable object file, which holds a complete program, ready for direct execution
by a CPU. A relocatable file includes fixup (relocation) information and sym-
bol tables which allow the link editor to combine the individual modules and
to patch instructions or data that depend on the program’s final location in
memory. Other parts of the file carry debug information, if the compiler was
asked to provide it.

Although it’s usual to link relocatable files into an executable file in a single
step, it’s not compulsory. You can just link relocatable files into another, larger
file; some linkers give you ways to hide some symbols at this stage too, which
can be useful if you're trying to glue together chunks of software that have name
clashes (i.e., the same name used for two different functions).

An executable object file will not include relocation information and the
program sections of it are accurate images of how the program should be in
memory before you start it. The object file may add a simple header that tells
the operating system or bootstrap loader where each part of the object file is to
be located in memory and possibly where execution should start.

An object code library holds a collection of relocatable object files, with
some kind of overall symbol table that allows a tool to pick out which file con-
tains a definition for a particular named function or variable. Object code
libraries provide a natural way to import into a program as much as is needed
of a set of prebuilt software; they are an absolutely essential part of program
development.

Unix-tradition libraries appear to have been shoehorned by accident into
an existing mechanism designed to support multifile archives (for backup or
transportation). The necessary symbol file was just glued on as another item
in the archive. That’s why unix-influenced systems call the library-generating
tool ar and use a “. a” suffix for library files.

Your software development system will be equipped with fools to allow
you to inspect the contents of an object file and tools to convert an executable

Cl1

C.2

C.2 Sections and Segments W 411

file into alternative (possibly ASCII) formats that are acceptable to a PROM
programmer or evaluation board. It’s time we looked at what those are.

Tools

Figure C.1 shows you a typical compilation system. This figure shows the com-
piler generating an assembler intermediate file. This has the dual advantages of
isolating the compiler from object code standards and ensuring that everything
that the compiler can say to the linker has a textual (assembler) form. It would
be more efficient for the compiler to generate object code directly, and some
still do; however, as development platforms have become faster, that becomes
less important.

To keep the picture fairly straightforward, we've left off a whole raft of tools
that fiddle with object code, and we have ignored useful items like user-written
libraries.

At the bottom of Figure C.1 you'll find the eventual consumers of object
files: programs that interpret the file either to generate a runnable program
in memory or debuggers that want to relate raw addresses in the program to
symbols and line numbers in the code. With that in mind, we’ll take a look
inside a typical object file.

Sections and Segments

An object file consists of a number of separate sections: The biggest ones corre-
spond to your program’s instructions and data; additional sections hold infor-
mation for linkers and debuggers. Each section has a name to identify it, such
as .text or .rdata. A name starting with “.” is one of those strange con-
ventions that was probably intended to avoid conflict with any possible name
of a function or variable. The standard program sections recognized by typical
unix-influenced MIPS development systems are discussed in Section 9.5, and
there’s a bare list in Appendix B.

The object file needs to distinguish the program’s code and data because
the linker will eventually want to merge the different parts of your program
that need to be located together in memory (e.g., a ROMmable program needs
all code and read-only data in ROM, but writable data in RAM). When the link
editor produces the final executable object file it concatenates all sections of the
same name together and then further merges those sections that are located
together in memory into a smaller number of contiguous segments. An object
file header is prepended to identify the position of each segment in the file and
its intended location in memory. .

Of course, once we’ve invented separate sections to hold program data it’s
convenient to use the mechanisms for delimiting and naming sections to sepa-

412 m Appendix C—Object Code

i
!

Third-party

source

Assembler

code

Debug
monitor

Runnable
program

FIGURE C.1 Components of a typical cross-development toolkit: user-supplied files
are dark, files that come with the toolkit are medium, and third-party
files are light.

C3

C.3.1

C.3 ECOFF (RISC/OS) m 413

rate out other components of the module, such as symbol tables and relocation
records. But we’re now getting down toward individual flavors of object code.

ECOFF (RISC/OS)

The original MIPS Corporation compilers were UNIX-based and used the ex-
tended common object file format (ECOFF); this was eventually replaced in
Silicon Graphics systems in about 1994. But development systems from other
vendors often use or at least support interlinking with this format, in the in-
terests of compatibility. ECOFF is based on an earlier format called common
object file format (COFF), which first appeared in early versions of UNIX Sys-
tem V. COFF was a brave (and largely unsuccessful) attempt to define a flexi-
ble object code format that would be portable to a large number of processor
architectures.

The MIPS engineers wanted the flexibility of COFF to support gp-relative
addressing (Section 9.4.1), which would have been impossible with the restric-
tive format used on earlier UNIX systems. However, they decided to replace
the COFF symbol table and debug data with a completely different design. The
ECOFF symbol table format is certainly much more powerful and compact
than the rather primitive COFF format, but it’s complicated and proprietary——
so much so that for several years its description was not generally available.

Fortunately, end users are unlikely to be concerned with the internal struc-
ture of the symbol tables: The most complex interface between the object code
and user software is likely to be a run-time loader in your system, and helpful
tool vendors should give you an example of such a loader as part of the software
package. In any case, to load a fully resolved program you probably only need
to recognize the COFF file header and optional a.out header, which are largely
unchanged from the original COFF definitions.

File Header

The COFF file header consists of the 20 bytes at the start of the file listed in
Table C.1 on page 414. Of this list, only the following fields are really important:

= f magic: This must be one of the following values

Name Value Meaning

MIPSEBMAGIC 0x0160 Big-endian MIPS binary

MIPSELMAGIC 0x0162 Little-endian MIPS binary
SMIPSEBMAGIC 0x6001 Big-endian MIPS binary with little-endian headers
SMIPSELMAGIC 0x6201 Little-endian MIPS binary with big-endian headers

414 m Appendix C—Object Code

TABLE C.1 COFF file header

Offset

Type Name Purpose

0
2

4
8
12
16
18

unsigned short f.magic Magic number (see below)

unsigned short f._nscns Number of sections

long f-timdat Time and date stamp (unix-style)
long f_symptr File offset of symbol table
long f nsyms Number of symbols

unsigned short f_opthdr Size of optional header

unsigned short f_flags Various flag bits

The endianness stuff looks worrisome, and it should be: You're looking
ata naive bug retrospectively made into a feature. The COFF file is just a
stream of bytes, and the way it represents longer integers (16-bit short
and 32-bit 1long values) can be either big-endian (most-significant byte
first) or little-endian (least-significant byte first). MIPS decided that the
COFF file’s convention would vary to match the endianness of the target
for which this module was compiled. So long as the development host
and target are the same sort of machine, the COFF format fits naturally
onto the host.

But in cross-development the host and the target are different. It’s quite
possible to write endianness-safe object tools (you have to avoid the
temptation to just lay C-defined data structures over raw file data); but
MIPS didn’t do that. So the SMIPSEBMAGIC and SMIPSELMAGIC
magic numbers are what you see on object files where the host is of
the wrong endianness for the target and the object code tools have been
written naively.)

Modern toolkits should only generate the first two file types, but toler-
ating the alternative forms might occasionally be useful.

8 fnscns: This is the number of section headers in the file. This is also

needed to work out the program’s offset.

w f opthdr: This is the size in the file of the a.out header. You'll need this

value to work out the program’s offset in the file.

C3.2 Optional a.out Header

The a. out header is a fossil from an earlier, simpler object code format, which
has been shoehorned into COFF to make it easier to port loaders. It follows
the COFF file header and does the job of coalescing the COFF sections into
exactly three contiguous segments: text (instructions and read-ofly data); data
(initialized, writable data); and BSS (uninitialized data, set to zero).

TABLE C.2 a.out header

C.3 ECOFE (RISC/OS)

m 415

Offset Type Name Purpose
0 short magic Magic number
2 short wvstamp Version stamp
4 long tsize Text size
8 long dsize Data size
12 long bsize BSS size
16 long entry Entry-point address
20 long text_start Text base address
24 long data_start Data base address
28 long bss_start® BSS base address
32 long gprmask® General registers used mask
36 long cprmask(4]® Coprocessor registers used masks
52 long gpvalue® GP value for this file

a. New to ECOFF; not found in the original COFF definition.

The a. out header consists of the bytes listed in Table C.2.
The magic number in this structure does not specify the type of CPU, but
instead describes the layout of the object file, as follows:

Name Value Meaning

OMAGIC 0x0107 Text segment is writable

NMAGIC 0x0108 Textsegment is read-only

ZMAGIC 0x010b File is demand-pageable (not for embedded use)

The following macro shows how to calculate the file offset of the text segment:

#define FILHSZ
#define SCNHSZ

#define N_TXTOFF(£f, a)

((a) .magic == ZMAGIC ? 0 :

\

sizeof (struct filehdr)
/*sizeof (struct scnhdr)*/ 40

((a).vstamp < 23 ? \

((FILHSZ + (f).f_opthdr + (f).f_nscns*SCNHSZ + 7) & ~7) : \
((FILHSZ + (f).f_opthdr + (f).f_nscns*SCNHSZ + 15) & ~15)))

In words, and ignoring ZMAGIC files, it is found after the»COFF file header,
a.out header, and COFF section headers, rounded up to the next 8- or 16-byte
boundary (depending on the compiler version).

416 m Appendix C—Object Code *

C.3.3

C34

Example Loader

The following code fragment, which returhs the entry-point address of the pro-
gram or zero on failure, draws together the above information to implement
a very simple-minded ECOFF file loader, as might be found in a bootstrap
PROM that can read files from disk or network:

unsigned long load_ecoff (int £4)
{

struct filhdr fh;

struct aouthdr ah;

/* read file header and check */
read (fd, &fh, sizeof (fh)); :
#ifdef MIPSEB ?

if (fh.f_magic != MIPSEBMAGIC)
#else ¥
if (fh.f_magic != MIPSELMAGIC) :
#$endif
return 0;

/* read a.out header and check */

read (fd, &ah, sizeof (ah));

if (ah.magic !'= OMAGIC && ah.magic != NMAGIC)
return 0;

/* read text and data segments, and clear bss */
1lseek (fd, N_TXTOFF (fh, ah), SEEK_SET) ;

read (fd, ah.text_start, ah.tsize);

read (fd, ah.data_start, ah.dsize);

memset (ah.bss_start, 0, ah.bsize);

return ah.entry;

Further Reading

For more detailed information on the original COFF format, consult any pro-
grammer’s guide for UNIX V.3. The ECOFF symbol table extensions are not
documented, but the header files that define it (copyright MIPS Corporation,
now MT]) are available for reuse and redistribution. You'll find*copies with the
rights documented in recent versions of GNU binary utilities.

C4 ELF(MIPSABI) m 417

TABLE C.3 ELF file header

Offset Type Name Purpose
0 unsigned char e_.ident[16] File format identification
16 unsigned short e_type Type of object file
18 unsigned short emachine CPU type
20 unsigned long eversion File format
24 unsigned long e_entry Entry-point address
28 unsigned long ephoff Program header file offset
32 unsigned long e_shoff Section header file offset
36 unsigned long e_flags CPU-specific flags
40 unsigned short e_ehsize File header size
42 unsigned short ephentsize Program header entry size
44 unsigned short e _phnum Number of program header entries
46 unsigned short e_shentsize Section header entry size
48 unsigned short e_shnum Number of section header entries
50 unsigned short e_shstrndx Section header string table index
C.4 ELF(MIPS ABI)

C4.1

Executable and linking format (ELF) is an attempt to improve on COFF and
to define an object file format that supports a range of different processors
while allowing vendor-specific extensions that do not break compatibility with
other tools. It first appeared in UNIX System V Release 4 and is used by recent
versions of MIPS Corporation compilers and some other development systems.
As in our examination of COFF/ECOFF, we will look only at the minimum
amount of the structure necessary to load an executable file into memory.

File Header

The ELF file header consists of 52 bytes at the start of the file and provides the
means to determine the location of all the other parts of the file, as listed in
Table C.3. The following fields are relevant when loading an ELF file:

® e_ident: This contains machine-independent data te identify this as
an ELF file and to describe its layout. The individual bytes within it are
as follows:

418 m Appendix C—Object Code

Offset Name Expected value Purpose
0 EI_MAGO ELFMAGO0=0x7f Magic number identifying an ELF file
1 EI.LMAGI ELFMAG1=F’
2 EI_MAG2 ELFMAG2=T
3 EI_MAG3 ELFMAG3=F
4 EI_CLASS ELFCLASS32=1 Identifies file’s word size
5 EI_DATA ELFDATA2LSB=1 Indicates little-endian headers and program
ELFDATA2MSB=2 Indicates big-endian headers and program
6 ELLVERSION EV_CURRENT=1 Gives file format version number

® emachine: This specifies the CPU type for which this file is intended,

selected from among the following:

Name Value Meaning
EM_M32 1 AT&T WE32100
EM_SPARC 2 SPARC

EM_386 3 Intel 80386
EM_68K 4 Motorola 68000
EM_88K 5 Motorola 88000
EM_860 7 Intel 80860
EM_MIPS 8 MIPS R3000

Obviously, for this discussion the vélue should be EM_MIPS.

e_entry: This is the entry-point address of the program.

ephoff: This is the file offset of the program header, which will be

required to load the program.

e.phentsize: Thisis the size (in bytes) of each program header entry.

e_phnum: This is the number of entries in the program header.

C4.2 Program Header

Having verified the ELF file header, you will require the program header. This
part of the file contains a variable number of entries, each of which specifies a
segment to be loaded into memory. Each entry is at least 32 bytés long and has
the layout as noted in Table C.4. The relevant fields are as follows:

TABLE C.4 Program header

C4 ELF(MIPSABI) =a 419

Offset Type Name Purpose

0 unsigned long p.type Type of entry

4 unsigned long poffset File offset of segment

8 unsigned long p.vaddr Virtual address of segment

12 unsigned long p_paddr Physical address of segment (unused)
16 unsigned long p._filesz Size of segment in file
20 unsigned long pmemsz Size of segment in memory

24 unsigned long p.flags Segment attribute flags

28 unsigned long p.align Segment alignment (power of 2)

C.4.3

p-type: Only entries marked with a type of PT_LOAD (1) should be
loaded; others can be safely ignored.

p-offset: This holds the absolute offset in the file of the start of this

segment.

p-vaddr: This is the virtual address in memory at which the segment

should be loaded.

p-filesz: This is the size of the segment in the file; it may be zero.

p-memsz: This is the size of the segment in memory. Ifit is greater than
p-filesz, then the extra bytes should be cleared to zero.

p-flags: This contains a bitmap giving read, write, and execute per-
missions for the segment:

Name Value Meaning
PF X 0x1 Execute
PF.W 0x2 Write
PFR 0x4 Read

It is largely irrelevant for embedded systems, but it does allow you to
identify the code segment.

Example Loader

The following code fragment, which returns the entry-point address of the pro-
gram or zero on failure, draws together the above informatioh to implement a
very simple-minded ELF file loader, as might be found in a bootstrap PROM
that can read files from disk or network:

420 m Appendix C—Object Code

unsigned long load_elf (int f£d)

{
E1£32_Ehdr eh;
E1£32_Phdr ph(16];
int i;
/* read file header and check */
read (fd, &eh, sizeof (eh));
/* check header validity */
if (eh.e_ident [EI_MAGO] != ELFMAGO ||
eh.e_ident [EI_MAG1] != ELFMAG1 ||
eh.e_ident [EI_MAG2] !'= ELFMAG2 ||
eh.e_ident [EX_MAG3] != ELFMAG3 ||
eh.e_ident [EI_CLASS] != ELFCLASS32 ||
#ifdef MIPSEB
eh.e_ident [EI_DATA] != ELFDATA2MSB ||
#else
eh.e_ident (EI_DATA] != ELFDATA2LSB ||
#endif
eh.e_ident [EI_VERSION] != EV_CURRENT ||
eh.e_machine != EM_MIPS)
return 0;

/* is there a program header of the right size? */

if (eh.e_phoff == 0 || eh.e_phnum == || eh.e_phnum > 16 ||
eh.e_phentsize != sizeof (E1f32_Phdr))
return 0O;

/* read program header */
lseek (fd, eh.e_phoff, SEEK_SET);
read (fd, ph, eh.e_phnum * eh.e_phentsize);

/* load each program segment */
for (i = 0; i < eh.e_phnum; i++) {
if (ph[i).p_type == PT_LOAD) {
if (ph->p_filesz) {
lseek (fd, phl[i].p_offset, SEEK_SET);
read (fd, ph[i]l.p_vaddr, ph[i].p_filesz);
}
if (ph{i).p_filesz < phl[i].p_memsz)
memset (ph{i].p_vaddr + ph{i].p_filesz, O,
ph(i}.p_memsz - phi{il.p_filesz);

C.44

C.5

C.5 Object Code Tools m 421

return eh.eh_entry;

Further Reading

The ELF format, including MIPS-specific extensions, is extensively documented
in the book System Five ABI MIPS Processor Supplement (Prentice Hall 1991).

Object Code Tools

Your software development system will be equipped with a number of tools for
examining and manipulating object files. The following list assumes unix-type
names, but systems with a different ancestry will have similar tools, even if the

names are different.

Program name

Function

ar

convert

1d

objdump/odump

ranlib

size

strip

This tool allows you to list object files and to add them to or remove them
from a library. The name comes from archive, the historical UNIX name for
the file type used to store libraries and later specialized for this purpose.

Converts an executable object file from binary to some other format which
can be downloaded to a PROM programmer or evaluation board.

This is the linker/loader, which is used to glue object codes together and also
to assign fixed target system addresses to sections (in some systems this would
involve two separate programs, typically called 1ink and locate).

This lists the names in an object file’s symbol table in alphabetic or numeric
order.

This displays the program data of the object file in various useful forms; in
particular, it can usually disassemble the code sections.

[f present, this builds a global table of contents in a library, which makes it
much faster for 14 to read. On modern systems ar usually has an option to do
this job, and ranlib may well just be an alias for that option.

This displays the size of each section in the object file.

This removes everything from the object file that is not necessary to load the
program, making it (much) smaller; it gets rid of symbol tables and debug
information. Some people do this to make it harder to disassemble the
program.

Appendix

D.1

Evolving MIPS .

MIPS16

IPS16 is an optional instruction set extension that can reduce the size of
binary programs by 30-40%, and was launched to the world in mid-97.
Its implementors hope that it will make the CPUs more attractive in contexts
where code size is a major concern—which mostly means very low cost sys-
tems. While it will only be used in certain implementations, it is a multivendor
standard: LSI, NEC, and Philips are all producing CPUs that support MIPS16.

We said back in Section 1.2 that what makes MIPS binaries larger than those
for other architectures is not that MIPS instructions do less work, but that they
are larger—each is 4 bytes in size, in contrast to a typical average of 3 bytes for
some CISC architectures.

MIPS16 adds a mode in which the CPU decodes fixed-size 16-bit instruc-
tions. Most MIPS16 instructions expand to one regular MIPS III instruction,
s0 it’s clear that this will be a rather restricted subset of instructions. The trick
is to make the subset sufficient to encode enough of the program efficiently to
make a substantial impact on the overall program size.

Of course, 16-bit instructions don’t make this a 16-bit instruction set;
MIPS16 CPUs are real MIPS CPUs with either 32- or 64-bit registers and oper-
ations that work on the whole of those registers.

MIPS16 is far from a complete instruction set—there’s neither CPU con-
trol nor floating-point instructions, for example.! But that’s OK, because ev-
ery MIPS16 CPU must also run a complete MIPS ISA. You can run a mix-
ture of MIPS16 and regular MIPS code; every function call or jump-register
instruction can change the mode.

1. MIPS did.not invent the idea of providing an alternate half-size versiorf of just part of the
instruction set; Advanced RISC Machine’s Thumb version of its ARM CPU was out first.

423

424 m Appendix D—Evolving MIPS

D.1.1

In MIPS16 it’s convenient and effective to encode the mode as the least-
significant bit of an instruction address. MIPS16 instructions have to be even
byte aligned, so bit 0 has no role as part of the instruction pointer; instead, ev-
ery jump to an odd address starts MIPS16 execution, and every jump to an even
address returns to regular MIPS. The target address of the MIPS subroutine-
call instruction jal is always word-aligned, so a new instruction jalx hides
the mode change in the instruction.

To crush the instruction to half size we allocate only 3 bits to choose a reg-
ister for most instructions, allowing free access to only eight general-purpose
registers; also, the 16-bit constant field found in many MIPS instructions gets
squeezed, often to 5 bits. Many MIPS16 instructions only specify two registers,
not three; in addition, there are some special encodings described in the next
section.

Special Encodings and Instructions in MIPS16

The squashed general-purpose instructions are OK, but there are two par-
ticular weaknesses that will add size back to the program; the 5-bit imme-
diate field is inadequate to build constants, and there’s not enough address
range on load/store operations. Three new kinds of instruction and one extra
convention help out.

extend is a special MIPS16 instruction consisting of a 5-bit code and an
11-bit field that is concatenated with the immediate field in the following in-
struction, to allow an instruction pair to encode a 16-bit immediate. It appears
as an instruction prefix in assembly language.

Loading constants takes extra instructions even in regular MIPS and would
be a huge burden in MIPS16; it’s quicker to put the constants into memory
and load them. MIPS16 adds support for loads relative to the instruction’s
own location (PC-relative loads), allowing constants to be embedded in the
code segment (typically, just before the start of a function). These are the
only MIPS16 instructions that don’t correspond exactly to a normal MIPS
instruction—MIPS has no PC-relative data operations.

Many MIPS load/stores are directed at the stack frame and $29/sp is prob-
ably the most popular base register. MIPS16 defines a group of instructions
that implicitly use sp, allowing us to encode a function’s stack frame references
without needing a separate register field.

MIPS load instructions always generate a full 32-bit address. Since load
word instructions are only valid for an address that is a multiple of four, the two
least-significant bits are wasted. MIPS16 loads are scaled: The address offset is
shifted left according to the size of the object being loaded/stored, increasing
the address range available from the instruction.

As an additional escape mechanism, MIPS16 defines instructions that allow
it to do an arbitrary move between one of the eight MIPS16-accessible registers
and any of the 32 MIPS general registers.

D.1.2

D.1 MIPS16 m 425

MIPS16 Evaluated

MIPS16 is not a suitable language for assembly coding, and we’re not going to
document it here. It’s intended for compilers. Most programs compiled with
MIPS16 seem to shrink to 60-70% of their MIPS size, which is more com-
pact than 32-bit CISC architectures, similar to ARM’s Thumb and reasonably
competitive with pure 16-bit CPUs.

There’s no such thing as a free lunch however; a MIPS16 program will prob-
ably compile into 40—50% more instructions than would be required for MIPS.
That means that running a program through the CPU core will take 40-50%
more clock cycles. However, low-end CPUs are usually largely memory limited,
not core limited, and the smaller MIPS16 program requires less bandwidth to
fetch and will promote lower cache miss rates. Where the caches are small
and program memory is narrow, MIPS16 will close the gap on and possibly
overhaul regular MIPS code.

Because of the performance loss, MIPS16 code is not attractive in comput-
ers with large memory resources and wide buses. That’s why it’s an optional
extension.

At the upper end of its range, MIPS16 will find itself in competition with
software compression techniques. A regular MIPS program compressed into
ROM storage with a general-purpose file compression algorithm will be smaller
than the unencoded MIPS16 equivalent and little larger than the compressed
MIPS16 equivalent;' if your system has enough volatile memory to be able to
use ROM as a file system and to decompress code into RAM for execution,
software decompression of a full ISA will most likely give you better overall
performance.

There’s also a clear trend toward writing systems that make extensive use of
code written in a byte-coded interpreted language (Java or its successors) for
the bulk of code that is not time critical. That kind of intermediate code is very
small, much more efficient than any machine binary; if only the interpreter
and a few performance-critical routines are left in the native machine ISA, a
tighter instruction set encoding will only affect a small part of the program.
Of course, interpreters (particularly for Java) may themselves be quite large,
but the inexorable increase in application complexity should soon cause that
to dwindle in importance.

[expect to see MIPS16 applied to a small range of low-power, size-, and
cost-constrained systems between 1998-2003. It was worth inventing, because
some of these systems—such as “intelligent” mobile phones—are likely to be
produced in huge volumes.

L. Tighter encodings have less redundancy for a compression algorithm to exploit.

426 m Appendix D—Evolving MIPS

D.2

MIPS V/IMDMX

MIPS V and MDMX were announced together in early 1997, and both were
slated for introduction in a new MIPS/SGI CPU in 1998. But that CPU was
cancelled, and there is some doubt about their future.

Both are aimed at overcoming the perceived deficiencies of conventional in-
struction sets when the ISAs are confronted by multimedia applications. Jobs
like encoding/decoding audio for soft modem or streaming applications or im-
age/video compression/decompression use mathematically based algorithms
that were once seen as the preserve of special-purpose digital signal proces-
sors. At the computational level, multimedia tasks like this often involve the
repeated application of the same operation to large vectors or arrays of data.

Inside a register-based machine, the solution commonly adopted is to pack
multiple data items into a single machine register and then to perform a register-
to-register instruction that does the same job on each field of each of its regis-
ters. This is a very explicit form of parallel processing called single instruction,
multiple data (SIMD).

This idea was first seen in a microprocessor in Intel’s now-vanished i860
CPU (circa 1988); it resurfaced much more visibly as the MMX extension to
Intel’s x86 instruction set, launched in 1996.

MDMX provides for manipulation of 8 x 8-bit integers within a 64-bit reg-
ister, with a set of operations that do the same thing to all eight slices. The
instructions include normal arithmetic (add, subtract, multiply), but there
are also multiply-accumulate instructions that collect their results in a giant
accumulator with enough precision to prevent overflow.

Since these instructions are used in contexts where the special data types
are fairly clearly separated from normal program variables, it makes sense for
the MDMX instruction set to work with the floating-point registers. Recy-
cling existing registers in this way means that existing operating systems need
not be changed (they already save and restore floating-point registers on task
switches). "

Like MDMX, Intel’s MMX provides “octibyte” eight-way instructions for
8x 8-bit numbers that are packed into one 64-bit register. The MIPS MDMX
also defines 4 x 16-bit (quad-short) and 2x32-bit (paired-word) formats, but
the early signs are that some MDMX implementations may decide that the
octibyte formats and instructions are enough.

When arithmetic works on only 8-bit numbers, results frequently under-
flow and overflow. Multimedia application performance would not be en-
hanced if we had to program in lots of overflow test conditions, and it’s often
more helpful for the machine operations to quietly truncate overflowed and
underflowed results to the largest and smallest representable numbers (255 and
0 for unsigned 8-bit), a process called saturating arithmetic. MDMX has that
ability. R

]

D.2.1

D2 MIPSVIMDMX = 427

That brings us to MIPS V. Although named as if it intends to be an incre-
mental instruction set like MIPS I through IV, MIPS V is a direct analog of
MDMX in the floating-point domain, providing paired-single operations that
do twin FP functions on pairs of single-precision numbers that are packed into
64-bit floating-point registers.

MIPS V is less weird than MDMX; MIPS 1V includes a fairly compre-
hensive set of floating-point operations and it is straightforward to provide
paired-single versions of most of them; even paired-compare can be done, since
MIPS IV CPUs already have multiple floating-point condition bits to receive
results. However, MIPS V does not provide paired versions of complex mul-
ticycle functions that would have required extensive new resources (no square
root or divide, for example).

Can Compilers Use Multimedia Instructions?

The argument that led to the introduction of SIMD multimedia instructions
parallels the argument that led to the provision of vector processing units in su-
percomputers from the late 70s onward. It’s fairly easy to build a handcrafted
matrix-arithmetic package for a vector processor. It’s significantly harder to
compile a program written in a high-level language to make use of vector oper-
ations, but supercomputer vendors made some progress with that, too. Often
they were focusing on Fortran; the semantic weakness that makes Fortran a
poor language for general programming does make it an easier language to
optimize, because side effects are pretty explicit.

The consensus view seemed to be that a vectorizing Fortran compiler did
not work well on old programs (“dusty decks,” a charming piece of Fortran
slang). Such a compiler required the programmer to write or adapt loops to
make them optimizer friendly before it could deliver significant benefits. That
may be a good division of labor: The loops may be stylized but can still be
understood by programmers as sequential code when the resulting explicitly
parallel code is hard to fathom. The term “optimizer friendly” is vague: A par-
allel processing theoretician would define it as the absence of specific kinds of
side effects whereas a practical compiler may be looking for a loop that adheres
to some much more rigid conventions so that a dumb pattern matcher can
recognize it as safe to vectorize.

Vectorizing C is more difficult, because the memory and pointer-based
model it uses implicitly for any array access can make it very hard to eliminate
all side effects in anything but the simplest loops. It hasn’t been done much in
production.

Given this history, what prospect is there of developing C and C++ compil-
ers that successfully optimize programs to exploit multimedia SIMD instruc-
tions? My guess is that prospects are poor in the immediate future. Intel’s
MMX is the most widely used modern SIMD instruction set and is currently

428 m Appendix D—Evolving MIPS «

D.2.2

D.2.3

being marketed to assembler language users only.! T don’t expect to see com-
pilers using x86 MMX. If large-scale successful use is made of MMX and is de-
pendent on assembler subroutines, its effect would be to tie those applications
into the x86 architecture; this would hardly be something that Intel would be
in a hurry to change.

It's widely speculated, however, that in 1998 or 1999 Intel will introduce a
further ISA extension that will add more data formats to a “son of MMX,” in-
cluding paired single-precision floating point. If this more capable instruction
set gets compiler support, then that might create a pool of software that could
also be applied to MIPS V.

Applications for MDMX

Like x86 MMX, MDMX should be useful for 3D graphics and video applica-
tions where the CPU pushes pixel values about and for the kind of relatively
low-precision signal processing needed for a software modem.

Unfortunately, near-display 3D rendering depends for its performance on
careful integration of video memory. CPUs, even well-equipped ones, can’t
compete with cheap PC-world accelerators which have glueless interfaces to
wide video memory.? Image and video retouching applications do run pro-
grams that access pixels on this level, but they’re desktop PC applications.

Software modems could be useful for low-end consumer devices that want
to use telephony. They're in competition with cheap integrated modem de-
vices, and on a wider scale they’re in competition with a shift toward digital
telephony delivered to the home.

It looks to me as if MDMX’s best opportunity would be in a games console,
in conjunction with a tightly integrated CPU/video system.

Applications for MIPS V

The paired-single floating-point instructions and formats aim to increase band-
width on the kind of repetitive floating-point calculations found in applica-
tions for high-end graphics and multimedia. Although that looks like the Sili-
con Graphics market, increasing use of 3D graphics everywhere may make this
kind of capability useful in a wider sphere.

Limited compiler support for MIPS V is also more plausible than for
MDMX. While the paired operations look as if they are an alternative to dual-

1. A cynic would say that MMX has served its purpose by becoming required by any x86 clone
and that whether it is actually used is quite beside the point. And such games and graphics
applications as are likely to benefit are written by programmers who take a perverse delight in
writing assembier.

2. Perhaps they could compete if anyone built CPUs with glueless interfaces to,wide memory and
integrated video refresh data channels. But1 don’t see much sign of MIPS products of that kind.

»

D.2.4

D2 MIPSV/IMDMX m 429

issue instructions in a superscalar CPU, they are actually complementary. The
parallelism exploited by SIMD instructions comes from a higher level in the
compiler, and the low-level scheduler may still find opportunities for dual-
issuing a paired floating-point instruction with some integer or housekeeping
operations.

Likely Success of MDMX/MIPS V

SGI's 1997 decision to abandon development of its H1 high-end processor
project left both instruction sets without an announced vehicle. But I believe
there will be at least one CPU aimed at the embedded market that supports
MDMX. It will be interesting to see what happens.

So far MIPS V is without a CPU; however, it has a longer shelf life than
MDMX and would still be a useful adjunct to a CPU launched in 1999.

MIPS Glossary

$£0-$£31 registers: The 32 general-purpose 32-bit floating-point registers.
In MIPS I (32-bit) CPUs, only even-numbered registers can be used for arith-
metic (the odd-numbered registers hold the low-order bits of 64-bit, double-
precision numbers).

$nn register: One of the CPU’s 32 general-purpose registers.

a0-a3 register: Aliases for CPU registers $4—$7, conventionally used for pass-
ing the first four words of the arguments to a function.

ABI (application binary interface): A particular standard for building pro-
gram binaries that in turn is supposed to guarantee correct execution on a
conforming environment. Note, in particular, MIPS/ABI which is an ABI for
32-bit MIPS programs available on computers from Silicon Graphics, Siemens/
Nixdorf, and some other manufacturers.

Acrobat: Trade name for an online document-viewing program distributed
(free, to date) by Adobe Systems. Often abused to mean the file format accept-
able to the viewer, which Adobe calls PDF (Portable Document Format). PDF
is a compressed, indexed, and obfuscated relative of PostScript.

address regions: Refers to the division of the MIPS program address space
into regions called kuseg, kseg0, ksegl, and kseg2. See under individual region
names.

address space: The whole range of addresses as seen by the application pro-
gram. Programs running under a protected OS have their addresses checked
for validity and translated since such an OS can run many applications concur-
rently, there are many address spaces.

Algorithmics: The UK company, specializing in MIPS technology and tools,
of which the author is a partner.

431

432 ® MIPS Glossary

alignment: Positioning of data in a memory with respect to byte-address
boundaries. Data items are called naturally aligned if they start on an address
that is zero modulo their own size. MIPS CPUs require that their machine-
supported data objects are naturally aligned; hence words (4 bytes) must be on
4-byte boundaries, and a floating-point double datum must be on an 8-byte
boundary.

alloca: Clibrary function returning a memory area that will be implicitly freed
on return from the function where the call is made from.

Alpha: The range of RISC CPUs made by Digital Semiconductor; it is the
nearest relative to MIPS.

ALU (arithmetic/logic unit): A term applied to the part of the CPU that does
computational functions

analyzer: See logic analyzer.

Apache group (§VR4.2): An industry group of suppliers of MIPS-architecture
UNIX systems who are cooperating on a standard version of Univel’s System V
Release 4.2 operating system and the MIPS ABI standard.

architecture: See instruction set architecture.
archive: Alternative name for an object code library.

argument: In C terminology, a value passed to a function. Often called a pa-
rameter in other languages. C arguments are parameters passed by value, if
that helps.

ASCII: Used very loosely for the character encoding used by the C language.

ASIC (Application-Specific Integrated Circuit): A chip specially designed or
adapted for use in a particular circuit.

ASIC-core CPU: A microprocessor designed to be built in as one component
of an ASIC, making what is sometimes called a “system on a chip.” MIPS CPUs
are increasingly being used as cores.

ASID: The address space ID maintained in the CPU register EntxyBi. Used
to select a particular set of address translations: Only those translations whose
own ASID field matches the current value will produce valid physical addresses.

assembler, assembly code: Assembler code (sometimes called assembly code
or assembly language) is the human-writable form of a computer’s machine
instructions. The assembler is the program that reads assembly language and
translates it to an executable program, probably through an interim object code.

associative store: A memory that can be looked up by presenting part of the
stored data. It requires a separate comparator for each data field, sq large asso-
ciative stores use up prodigious amounts of logic. The MIPS TLB, if fitted, uses
a fully associative memory with between 32 and 64 entries.

MIPS Glossary M 433

associativity: See cache, set-associativity.

ATMizer: A component made by LSI Logic for ATM network interfacing,
which has an internal MIPS CPU as just one component inside.

atomic, atomically, atomicity: In computer science jargon, a group of opera-
tions is atomic when either all of them happen or none of them do.

backtrace: See stack backtrace.

BadVaddr register: CPU control register that holds the value of an address
that just caused a trap for some reason (misaligned, inaccessible, TLB miss,
etc.).

beopy: Clibrary function to copy the contents of a chunk of memory.

benchmark: A program that can be run on many different computers, with a
view to finding something about their relative performance. Benchmarks have
evolved from fragments of code intended to measure the speed at some very
specific task to large suites that should give some guidance as to the speed at
which a system handles common applications.

BEV (boot exception vectors): A bit in the CPU status register that causes
traps to go through a pair of alternate vectors located in uncached (ksegl)
memory. The locations are close to the reset-time start point so that they can
both conveniently be mapped to the same read-only memory.

bias: See floating-point bias.

BiCMOS: A particular technology for building chips, mixing dense and cool
CMOS transistors for internal logic with faster and electrically quieter bipolar
transistors for interface. It had a vogue for CPUs in the late 80s, but nobody
used it successfully until Intel, who built some early Pentiums this way.

big-endian: Describes an architecture where the most-significant part of a
multibyte integer is stored at the lowest byte address; see Section 11.6.

bitfield: A part of a word that is interpreted as a collection of individual bits.
blocksize: See cache line size.

bootstrap: A program or program fragment that is responsible for starting up
from a condition where the state of the CPU or system is uncertain.

branch: In the MIPS instruction set, a PC-relative jump.
branch and link: A PC-relative subroutine call.

branch delay slot: The position in the memory-stored instruction sequence
immediately following a jump/branch instruction. The instruction in the
branch delay slot is always executed before the instruction that is the target
of the branch. It is sometimes necessary to fill the branch delay slot with a
“nop” instruction.

434 m~ MIPS Glossary

branch optimization: The process (carried out by the compiler, assembler, or
programmcr) of adjusting the memory sequence of instructions so as to make
the best use of branch delay slots.

branch penalty: Many CPUs pause momentarily after taking a branch, be-
cause they havé fetched instructions beyond the branch into their pipeline and
must backtrack and refill the pipeline. This delay (in clock cycles) is called the
branch penalty. It’s zero on short-pipeline MIPS chips, but the two-clock-cycle
branch penalty on the long-pipeline R4000 was a significant factor in reducing
its efficiency.

18
o

Rat = —

BrCond3-0: CPU inputs that are directly tested by the coprocessor conditional
branch instructions.

breakpoint: When debugging a program, a breakpoint is an instruction po-
sition where the debugger will take a trap and return control to the user. Im-
plemented by pasting a break instruction into the instruction sequence under
test.

BSS: In a compiled C program, that chunk of memory that holds variables
declared but not explicitly initialized. Corresponds to a segment of object code.
Nobody seems to be able to remember what BSS ever stood for!

bss: Most C compilation systems use this strange name for the data area to
which are assigned global variables that have not been explicitly initialized.

burst read cycles: MIPS CPUs (except for some very early parts) refill their
caches by fetching more than one word at a time from memory (4 words is
common) in a burst read cycle.

busctrl register: CPU register, implemented only on IDT’s R3041 CPU, that
allows the programmer to set up some options for how bus accesses are carried
out.

byte: An 8-bit datum.

byte order: Used to emphasize the ordering of items in memory by byte ad-
dress. This seems obvious, but it can get confusing when considering the
constituent parts of words and halfwords.

byte-swap: The action of reversing the order of the constituent bytes within
a word. This may be required when adapting data acquire from a machine of
nonmatching endianness.

C preprocessor: A program typically run as the first pass of the C compiler,
which is responsible for textual substitutions and omissions. It processes com-
ments and the useful directives that start with a “#”, like #define, #include,
and #ifdef. Despite its pairing with C, it is in fact a general-purpose macro
language that can be, and often is, used with other languages. In this book, its
important non-C application is to preprocess assembly language programs.

MIPS Glossary m 435

C++: A compiled language retaining much of the syntax and appearance of C
but offering a range of object-oriented extensions.

cache: A small auxiliary memory located close to the CPU, which holds copies
of some data recently read from memory. MIPS caches are covered extensively
in Chapter 4.

cache, direct-mapped: A direct-mapped cache has, for any particular loca-
tion in memory, only one slot where it can store the contents of that location.
Direct-mapped caches are particularly liable to become inefficient if a program
happens to make frequent use of two variables in different parts of memory
that happen to require the same cache slot; however, direct-mapped caches are
simple, so they can run at high clock rates.

MIPS CPUs prior to some of the later members of the R4x00 family were di-
rect mapped for speed. However, since about 1994 on-chip caches seem to have
had little trouble keeping up with the CPU pipeline, and cache miss rates have
become extremely important in performance. Most new CPU introductions
from the mid-90s on feature more complicated caches.

cache, duplicate tags: In cache-coherent multiprocessors, the bus interface
controller must often look at the CPU’s cache—specifically, at the cache tags—
to check whether a particular bus transaction should interact with the data cur-
rently in the cache. Such accesses are costly, either in delays to the CPU if the
bus interface time-slices the tags with the CPU or in hardware and interlocks if
the tags are dual ported. It’s often cheaper to keep a second copy of the cache
information the bus interface is interested in, which is updated in parallel with
the main cache—the events that cause either to change are bus-visible anyway.
The duplicate tags don’t need to be perfect to be useful; if they allow the bus
interface to avoid accessing the CPU’s tags in a high proportion of cases, they’'ll
still make the system more efficient.

cache, physical-addressed: A cache that is accessed entirely by using physi-
cal (translated) addresses. Early MIPS CPU caches, and all MIPS secondary
caches, are like this.

cache, set-associative: A cache where there is more than one place in the cache
where data from a particular memory location may be stored. You'll commonly
see two-way set associative caches, which means there are two cache slots avail-
able for any particular memory data. In effect there are two caches searched
simultaneously, so the system can cope with a situation where two frequently
accessed items are sitting at the same cache index.

A set-associative cache requires wider buses than a direct-mapped cache
and cannot run quite as fast. Early RISCs used direct-mapped caches to save
pins on the external cache. Although the wide buses are not much of a problem
for on-chip caches, some early integrated CPUs still had direct-mapped caches
to boost the clock frequency. These days, set-associative ort-chip caches are
usually preferred for their lower miss rate.

436 W MIPS Glossary

cache, snooping: In a cache, snooping is the action of monitoring the bus
activity of some other device (another CPU or DMA master) to look for ref-
erences to data that are held in the cache. Originally, the term “snooping”
was used for caches that could intervene, offering their own version of the data
where it was more up to date than the memory data that would otherwise be
obtained by the other master; the word has come to be used for any cache that
monitors bus traffic.

cache, split: A cache that has separate caches for instruction fetches and for
data references.

cache, write-back: A D-cache where CPU write data is kept in the cache but
not (for the time being) sent to main memory. The cache line is marked as
“dirty” The data gets written back to main memory either when that line
in the cache is needed for data from some other location or when the line is
deliberately targeted by a write-back operation.

cache, write-through: A D-cache where every write operation is made both
to the cache (if the access hits a cached location) and simultaneously to mem-
ory. The advantage is that the cache never contains data that is not already in
memory, so cache lines can be freely discarded.

Usually, the data bound for memory can be stored in a write buffer while
the memory system’s (relatively slow) write cycle runs, so the CPU does not
have to wait for the memory write to finish.

Write-through caches work very well as long as the memory cycles fast
enough to absorb writes at something a little higher than the CPU’s average
write rate.

cache aliases: In a memory-mapped OS you can sometimes have the same
data mapped at different locations. This can happen with data shared between
two tasks’ distinct address spaces or with data for which there is a separate
application and kernel view.

Now, many MIPS CPUs use program (virtual) addresses to index the .

cache—it saves time to be able to start the cache search in parallel with translat-
ing the address. But if different program addresses can access the same data, we
could end up with the same data in the cache at two locations—a cache alias.
If we then start writing the locations, that’s going to o horribly wrong,.

Cache aliases turn out to be avoidable. The paged address translation used
in MIPS CPUs means that at least 12 low-order addresses are unchanged by
translation, and it turns out that you only use about 15 low-order address bits
to index the biggest likely cache. Kernel software needs to be careful when
generating multiple different addresses for a page that the pages are allocated
to program addresses where bits 12—15 are the same.

cache coherency: The name for that state of grace where the contents of your
cache will always deliver precisely what your program and the rest of the system
has stored into the cache/memory combination. Many complex techniques

MIPS Glossary m 437

and hardware tricks are deployed in the search for coherency; MIPS CPUs like
the R4000SC and R10000 have clever features in the cache for this. But such
technology is not much used outside the world of large server computers, as

yet.

cache flush: A somewhat ambiguous term, which we think is worth avoiding,
It is never quite clear whether it means write back or invalidate or both.

cache hit: What happens when you look in the cache and find what you were
looking for.

cacheindex: All practical caches are either direct mapped, consisting of a sin-
gle memory array, or n-way set associative for some small #; in an n-way set-
associative cache each set behaves like a direct-mapped cache. The cache index
is that part of the address that is used to select the cache location in each set.

cache invalidation: Marks a line of cache data as no longer to be used. There’s
always some kind of valid bit in the control bits of the cache line for this
purpose. It is an essential part of initialization for a MIPS CPU.

cacheisolation: The basic mechanism for D-cache maintenance on pre-R4000
MIPS CPUs, described in Section 4.9. It puts the CPU into a mode where
data loads/stores occur only to the cache and not to memory. In this mode
partial-word stores cause the cache line to be invalidated.

cache line size: Each cache slot can hold one or more words of data, and the
chunk of data marked with a single address tag is called a line. Big lines save
tag space and can make for more efficient refill; but big lines waste space by
loading more data you don’t need.

The best line size tends to increase as you get further from the CPU and for
big cache miss penalties. MIPS I CPUs always had 1-word data cache lines, but
later CPUs tend to favor 4 or 8 words.

cache miss: What happens when you look in the cache and don’t find what
you are looking for.

cache miss penalty: The time the CPU spends stalled when it misses in the
cache, which depends on the system’s memory response time.

cache profiling: Measuring the cache traffic generated when a particular pro-
gram runs, with a view to rearranging the program in memory to minimize the
number of cache misses. It is not clear how practicable this is except for very
small programs or sections of program.

cache refill: The memory read that is used to obtain a cache line of data af-
ter a cache miss. This is first read into the cache, and the CPU then restarts
execution, this time “hitting” in the cache.

cache set: One chunk of a set-associative cache. .

cache simulator: A software tool used for cache profiling.

438 m MIPS Glossary

cache tag: The information held with the cache line that identifies the main
. memory location of the data.

cache writeback: The process that takes the contents of a cache line and copies
them back into the appropriate block of main memory. It’s usually performed
conditionally, because cache lines have a “dirty” flag that remembers when
they’ve been written since being fetched from memory.

cacheable: Used of an address region or a page defined by the memory trans-
lation system.

CacheERR register: CPU control (coprocessor 0) register in R4000 CPUs and
descendants, full of information for analyzing and fixing cache parity/ECC
errors.

cacheop: A CPU control instruction found in R4000 and later CPUs that pro-
vides all kinds of cache line maintenance operations.

callee: In a function call, the function that is called.

caller: In a function call, the function where the call instruction is found and
where control is returned to afterward.

cause register: CPU control register that, following a trap, tells you what
kind of trap it was. Cause also shows you which external interrupt signals
are active.

ceiling: A floating-point-to-integer conversion, rounded to the nearest integer
that is as least as positive. Implemented by the MIPS instruction ceil.

char: C name for a small quantity used to hold character codes. In MIPS CPUs
(and practically always, nowadays) this is a single byte.

CISC: An acronym used to refer to non-RISC architectures. In this book, we
mean architectures like the DEC VAX, Motorola 680x0, and Intel x86 (32-
bit version). All these instruction sets were invented before the great RISC
discovery and all are much harder than a RISC CPU to execute fast.

clock cycle: The period of the CPU’s clock signal. For a RISC CPU, this is the
rate at which successive pipeline stages run. ‘

CMOS: The transistor technology used to make all practical MIPS CPUs.
CMOS chips are denser and use less power per transistor than any other kind,
so they are favored for leading-edge integration. With CPUs the ability to puta
Jot of circuitry into a small space has proven to be the key performance factor,
so all fast CPUs are now CMOS.

COFF: A standard object file format, which turned out to be far too loosely

specified to let tools interoperate.
L4

coherency: See cache coherency.

e

MIPS Glossary ® 439

compare register: CPU control register provided on CPUs for implementing
a timer (all MIPS III CPUs do this, as do some MIPS I CPUs such as IDT’s
R3041).

configregister: CPU control register for configuring basic CPU behavior. It
is standard on MIPS III and also found in some MIPS I derivatives.

console: The putative I/O channel on which messages can be sent for the user
and user input can be read.

const: Cdata declaration attribute, implying that the data is read-only. It will
often then be packed together with the instructions.

Context register: CPU control register seen only on CPU types with a TLB.
Provides a fast way to process TLB misses on systems using a certain arrange-
ment of page tables.

context switch: The job of changing the software environment from one task
to another in a multitasking OS.

coprocessor: Some part of the CPU, or some other closely coupled machine
part, that executes some particular set of reserved instruction encodings. This
is a MIPS architecture concept that has succeeded in separating off optional or
implementation-dependent parts of the instruction set and thus reducing the
changes to the mainstream instruction set. It’s been fairly successful, but the
nomenclature has caused a lot of confusion.

coprocessor condition: Every coprocessor subset of special instructions in the
MIPS architecture gets a single bit for communicating status to the integer
CPU, tested by a bext/bex£ instruction. See Chapter 3.

coprocessor conditional branches: The instructions such as bc0t label
branch according to the sense of coprocessor conditions which are usually CPU
input signals; these can be useful sometimes. If there is a floating-point unit
on-chip, coprocessor condition bit 1 is hardwired to the FP condition code.

coprocessor 0: The (rather fuzzily defined) bits of CPU function that are con-
nected with the privileged control instructions for memory mapping, excep-
tion handling, and such like.

core CPU: See ASIC-core CPU.

Count register: Continuously running timer register, available in R4000-like
CPUs and some earlier ones.

CPCOND: See coprocessor conditional branches.
cpp: The C preprocessor program.

14
CSE (common subexpression elimination): The most fundamental optimiza-
tion step for an optimizing compiler (see Section 10.12).

440 m MIPS Glossary

cycle: Clock cycle.

D-cache: Data cache (MIPS CPUs always have separate instruction and data
caches).

D-TLB: Some MIPS processors have tiny separate translation caches fed from
the main TLB to avoid a resource conflict when translating both instruction
and data addresses; a D-TLB is specifically for data and is found on the R4600
CPU and its successors. Its operation is invisible to software, other than an
occasional extra clock spent fetching main TLB entries.

data dependencies: The relationship between an instruction that produces a
value in a register and a subsequent instruction that wants to use that value.

data path swapper: See byte-swap.

data/instruction cache coherency: The job of keeping the I-cache and D-
cache coherent. No MIPS CPU does this for you; it is vital to invalidate I-
cache locations whenever you write or modify an instruction stream. See cache
coherency.

debugger: A software tool for controlling and interrogating a running pro-
gram.

DECstation: Digital Equipment Corporation’s trade name for the MIPS-
architecture workstations they produced between 1990 and 1993.

delayed branches: See branch delay slot.
delayed loads: See load delay slot.

demand paging: A process by which a program is loaded incrementally. It re-
lies on an OS and underlying hardware that can implement virtual memory—
references to thus-far-unloaded parts of the program are caught by the OS,
which reads in the relevant data, maps it so that the program will see it in the
right place, and then returns to the program, re-executing the reference that
failed. It's called paging because the unit of memory translation and loading is
a fixed-size block called a page.

denormalized: A floating-point number is denormalized when it is holding
a value too small to be represented with the usual precision. The way the
IEEE754 standard is defined means that it is quite hard for hardware to cope
directly with denormalized representations, so MIPS CPUs always trap when
presented with them or asked to compute them.

dereferencing: A fancy term for following a pointer and obtaining the mem-
ory data it points at. '

direct mapped: See cache, direct-mapped.

MIPS Glossary m 441

directive: One of the terms used for the pieces of an assembler program that
don’t generate machine instructions but that tell the assembler what to do; for
example, .globl. They’re also called “pseudo-ops.”

dirty: In a virtual memory system, this describes the state of a page of mem-
ory that has been written to since it was last fetched from or written back to
secondary storage. Dirty pages must not be lost.

disassembler: A program that takes a binary instruction sequence in memory
and produces a readable listing in assembler mnemonics.

DMA (direct memory access): An external device transferring data to or from
memory without CPU intervention.

double: C and assembler language name for a double-precision (64-bit)
floating-point number.

doubleword: The preferred term for a 64-bit data item (not used for floating
point) in MIPS architecture descriptions.

download: The act of transferring data from host to target (in case of doubt,
host tends to mean the machine to which the user is connected).

DRAM: Used sloppily to refer to large memory systems (which are usually
built from DRAM components). Sometimes used less sloppily to discuss the
typical attributes of memories built from DRAM:s.

DSP (digital signal processor): A particular style of microprocessor aimed at
applications that process a stream of data derived from an analog-to-digital
convertor. DSPs focus on speed at certain popular analog algorithms, such as
FFT, and are good at multiplying. Compared to a general-purpose processor
they often lack precision, easy programming in high-level language, and the
facilities to build basic OS facilities. But the definition of DSP is not much
more firm than that of RISC.

duplicate tags: See cache, duplicate tags.
dword: The MIPS assembler name for a 64-bit integer datum, or doubleword.

dynamic linking: A term for the process by which an application finds a li-
brary subroutine at run time, immortalized by Microsoft as DLLs. Run-time
linking with shared library functions is part of the MIPS/ABI standard and is
used in every modern desktop and server OS; it is not yet relevant to embedded
systems.

dynamic variables: An old-fashioned programmer’s term for variables (like
those defined inside C functions) that are really or notionally kept on the stack.

ECC (error correcting code): Stored data is accompanied by check bits that
are not only effective in diagnosing corruption but permit errors (supposed to
affect only a small number of bits) to be rectified. Some MIPS R4x00 CPUs use

442

MIPS Glossary

an ECC that adds 8 check bits to each 64-bit doubleword for data both in the
caches and on the memory bus (and probably in memory too, though that’s a
system design decision).

ECL (emitter-coupled logic): An electrical standard for deciding whether a
signal represents a one or a zero. ECL allows faster transitions and less noise
susceptibility than the more common standard TTL, but with a penalty in
higher power consumption. It's now pretty much obsolete. The name describes
the transistor implementation originally used in this sort of chip.

ECOFF (extended common object file format): An object code format, par-
ticularly used by MIPS Corporation and Silicon Graphics, extensively evolved
from Unix Systems Laboratories’ COFF (common object file format).

ELF (executable and linking format): An object code format defined by Uni-
vel for UNIX SVR4.2, and which is mandated by the MIPS ABI standard.

emacs: The Swiss Army knife of text editors and the essential tool for real pro-
grammers, emacs runs the Lisp program of your choice every time you hit a
key. It is indescribably customizable, so with any job you do you get small and
valuable contributions from numerous people who went before you. This book
was written with it.

embedded: Describes a computer system that is part of a larger object that is
not (primarily) seen as a computer. Describes everything from video games to
glass furnace controllers.

emulator: See in-circuit emulator; software instruction emulators.

endianness: Whether a machine is big-endian or little-endian. See Chap-
ter 11.

endif: The end of a piece of code conditionally included by the magic of cpp.
See also ifdef, ifndef.

EntryHi/EntryLoregister: CPU control registers implemented only in CPUs
with a TLB. Used to stage data to and from TLB entries.

EPC (exception program counter) register: CPU control register telling you
where to restart the CPU after an exception.
epilogue: See function epilogue.

EPROM (erasable programmable read-onty memory): The device most com-
monly used to provide read-only code for system bootstrap; used sloppily here
to mean the location of that read-only code.

errno: The name of the global variable used for reporting I/O errors in most
C libraries.

’
ErrorEPC register: R4x00 and later CPUs detect cache errors, and to allow -

them to do so even if the CPU is halfway through some critical (but regu-

oo

MIPS Glossary ™ 443

lar) exception handler the cache-error system has its own separate register for
remembering where to return to. See section 4.10.1.

ExcCode: The bitfield in the Cause register that contains a code showing what
type of exception just occurred.

exception: In the MIPS architecture, an exception is any interrupt or trap that
causes control to be diverted to one of the two trap entry points.

exception, IEEE: See floating-point (IEEE) exception. Alas, this is a different
animal from a MIPS exception.

exception victim: On an exception, the victim is the first instruction in se-
quence not to be run (yet) as a result of the exception. For exceptions that are
caused by the CPU’s own activity, the victim is also the instruction that led to
the exception. It’s also normally the point to which control returns after the
exception; but not always, because of the effect of branch delays.

Executable: Describes a file of object code that is ready to run.
exponent: Part of a floating-point number. See Chapter 7.

extended floating point: Not provided by the MIPS hardware, this usually
refers to a floating-point format that uses more than 64 bits of storage (80 bits
is popular).

extern: C data attribute for a variable that is defined in another module.
fault, faulting: See page fault.

FCC (Floating-point unit condition code): MIPS I through MIPS III CPUs
have only one; higher-numbered ISAs have eight.

FCR31 register: Another name for £pcsr (floating-point control/status reg-
ister). See Chapter 7.

FIFO (First-in, first-out): A queue that temporarily holds data, where the
items have to come out in the same order they went in,

fixup: In object code, this is the action of a linker/locator program when it
adjusts addresses in the instruction or data segments to match the location at
which the program will eventually execute.

flag: Used here (and often in computer books) to mean a single-bit field in a
control register.

floating-point accelerator (FPA): The name for the part of the MIPS CPU
that does floating-point math. Historically, it was a separate chip.

floating-point bias: An offset added to the exponent of a floating-point num-
ber held in IEEE format to make sure that the exponent is positive for all
legitimate values.

444 m MIPS Glossary «

floating-point condition code/flag: A single bit set by FP compare instruc-
tions, which is communicated back to the main part of the CPU and tested by
beit and belf instructions.

floating-point emulation trap: A trap taken by the CPU when it cannot im-
plement a floating-point (coprocessor 1) operation. A software trap handler
can be built that mimics the action of the FPA and returns control, so that ap-
plication software need not know whether FPA hardware is installed or not.
The software routine is likely to be 50~300 times slower.

e

floating-point (IEEE) exception: The IEEE754 standard for floating-point
computation considers the possibility that the result can be “exceptional”—a
catch-all term for various kinds of result that some users may not be happy
with. The standard requires that conforming CPUs allow each type of excep-
tion to be caught—and then it gets confusing, because the MIPS mechanism
for catching events in general is also called exception.

foo: The ubiquitous name for a junk or worthless file.

Fortran: Early computer language favored for scientific and numerical uses,
where its reasonable portability outweighed its appalling flaws.

FP: Floating point.

fp (frame pointer) register: A CPU general-purpose register ($30) sometimes
used conventionally to mark the base address of a stack frame.

FPA: Floating-point accelerator.

fpcond: Another name for the FP condition bit (also known as coprocessor 1
condition bit).

fpcsr register: The MIPS FPA’s control/status register. See Chapter 7.

fraction, fractional part: Part of a floating-point value. (Also called the man-
tissa.} See Chapter 7.

frame, framesize: See stack frame.

Free Software Foundation: The Lone Rangers of free software and the (loose)
organization that keeps the copyright of GNU software.

fully associative: See associative store.

function: The C language name for a subroutine, which we use through most
of this book.

function epilogue: In assembler code, the stereotyped sequence of instruc-
tions and directives found at the end of a function and concerned with return-
ing control to the caller.

function inlining: An optimization offered by advanced combpilers, where a
function call is replaced by an interpolated copy of the complete instruction

MIPS Glossary B 445

sequence of the called function. In many architectures this is a big win (for
very small functions) because it eliminates the function-call overhead. In the
MIPS architecture the function-call overhead is negligible, but inlining is still
sometimes valuable because it allows the optimizer to work on the function in
context.

function prologue: In assembler language, a stereotyped set of instructions
and directives that start a function, saving registers and setting up the stack
frame.

gee: The usual name for the GNU C compiler.
gdb: The GNU debugger, partner to GNU C.

global: Old-fashioned programmer’s name for a data item whose name is
known and whose value may be accessed across a whole program. Sloppily ex-
tended to any named data item that is awarded its own storage location—and
that should properly be called static.

global pointer: The MIPS gp register, used in some MIPS programs to pro-
vide efficient access to those C data items defined as static or extern that
live at a fixed program address. See Section 2.2.1.

globl: Assembler declaration attribute for data items or code entry points
that are to be visible from outside the module.

GNU: The name of the Free Software Foundation’s project to provide freely
redistributable versions for all the components of a unix-like OS (with the
possible exception of the kernel itself).

GNU C compiler: Free product of an extraordinary interaction between mav-
erick programmer and Free Software Foundation leading light Richard Stall-
man and a diverse collection of volunteers from all over the world. GNU C
is the best compiler for MIPS targets unless you're using a Silicon Graphics
workstation.

GOT (global offset table): An essential part of the dynamic linking mecha-
nism underlying MIPS/ABI applications.

gp register: CPU register $28, often used as a pointer to program data. Pro-
gram data that can be linked within +32K of the pointer value can be loaded
with a single instruction. Not all toolchains, nor all run-time environments,
support this.

halfword: MIPS architecture name for a 16-bit data type.
hazard: See pipeline hazard.
heap: Program data space allocated at runtime.

Heinrich, Joe: Esteemed author of the definitive MIPS U;er’s Manual, from
which almost all official MIPS ISA manuals are derived.

446 m MIPS Glossary

Hennessy, John: MIPS’s intellectual father and founding parent, Professor Hen-
nessy led the original MIPS research project at Stanford University.

i

hit, cache: See cache hit.

I-cache: Instruction cache (MIPS CPUs always have separate instruction and
data caches). The I-cache is called upon when the CPU reads instructions.

ICU: Interrupt control unit.

idempotent: A mathematician’s term for an operation that has the same effect
when done twice as done once (and hence also the same effect when done nine
times or 99). Stirring your coffee is an idempotent operation, but adding sugar
isn’t.

When a pipelined CPU takes an exception, and subsequently returns to
the interrupted task, it’s difficult to make sure that everything gets done ex-
actly once; if you can make some of the operations idempotent, the system can
survive a spuriously duplicated operation. All MIPS branch instructions, for
example, are idempotent.

IDT: Integrated Device Technology Corporation.

IEEE: An acronym for the Institute of Electrical and Electronics Engineers.
This professional body has done a lot to promulgate standards in computing.
Their work is often more practicable, sensible, and constructive than that of
other standards bodies.

IEEE754 floating-point standard: An industry standard for the representa-

tion of arithmetic values. This standard mandates the precise behavior of a

group of basic functions, providing a stable base for the development of portable
numeric algorithms.

ifdef,ifndef: #ifdef and #endif bracket conditionally compiled codein
the C language. This feature is actually affected by the C preprocessor and so can
be used in other languages too.

immediate: In instruction set descriptions, an immediate value is a constant
that is embedded in the code sequence. In assembler language, it is any constant
value.

implementation: Used in opposition to “architecture” In this book it most
often means we're talking about how something is done in some particular
CPU.

in-circuit emulator (ICE): A device that replaces a CPU chip with a module
that, as well as being able to exactly imitate the behavior of the CPU, provides
some means to control execution and examine CPU internals. Microprocessor
ICE units are inevitably based on a version of the microprocessot chip (often a
higher-speed grade).

MIPS Glessary m 447

It is often possible to do development without an ICE—and they are ex-
pensive and can prove troublesome.

index register: CPU control register used to define which TLB entry’s con-
tents will be read into or written from EntryHi /EntrylLo.

index, cache: See cache index.
Indy: A popular Silicon Graphics workstation, powered by a MIPS CPU.

inexact: Describes a floating-point calculation that has lost precision. Note
that this happens very frequently on the most everyday calculations; for exam-
ple, the number 1/3 has no exact representation. IEEE754 compliance requires
that MIPS CPUs can trap on an inexact result, but nobody ever turns that trap
on.

infinity: A floating-point data value standing in for any value too big (or too
negative) to represent. IEEE754 defines how computations with positive and
negative versions of infinity should behave.

inline, inlined, inlining: See function inlining.

instruction scheduling: The process of moving instructions around to exploit
the CPU’s pipelining for maximum performance. On a simple pipelined MIPS
CPU, that usually comes down to making the best use of delay slots. This is
done by the compiler and (sometimes) by the assembler.

instruction set architecture (ISA): The functional description of the CPU,
which defines exactly what it does with any legitimate instruction stream (but
does not have to define how it is implemented).

instruction synthesis by assembler: The MIPS instruction set omits many
useful and familiar operations (such as an instruction to load a constant out-
side the range +-32K). Most assemblers for the MIPS architecture will accept
instructions (sometimes called macro-instructions) that they implement with
a short sequence of machine instructions.

int: The C name for an integer data type. The language doesn’t define how
many bits are used to implement an int, and this freedom is intended to allow
compilers to choose something that is efficient on the target machine.

interlock: A hardware feature where the execution of one instruction is de-
layed until something is ready. There are few interlocks in the MIPS architec-
ture.

interrupt: An external signal that can cause an exception (if not masked).

interrupt mask: A bit-per-interrupt mask, held in the CPU status register,
that determines which interrupt inputs are allowed to cause an interrupt at
any given time.

448 ®m MIPS Glossary

interrupt priority: In many architectures the interrupt inputs have built-in
priority; an interrupt will not take effect during the execution of an interrupt
handler at equal or higher priority. The MIPS hardware doesn’t do this, but the
system software often imposes a conventional priority on the interrupt inputs.

=

e

interruptible: Generally used of a piece of program where an interrupt can
be tolerated (and where the programmer has therefore allowed interrupts to
occur).

invalidation: See cache invalidation.

IPL (interrupt priority level): A concept used in designing and describing
operating systems. See Section 5.8.

Irix: The operating system on the Silicon Graphics workstations/servers.
ISA: Instruction set architecture.
isolate cache: See cache isolation.

issue, instruction: When talking about computer implementations, issue is
the point where some CPU resources get used to begin doing the operations
associated with some instruction.

I-TLB: A tiny hardware table duplicating information from the TLB that is
used for translating instruction addresses without having to fight the hardware
that is translating data addresses. Called the “micro-TLB” in early MIPS CPUs.
It is not visible to software, unless you're counting time so carefully that you
notice the one-clock pause in execution when an [-fetch has to access the main
TLB.

JPEG: A standard for compressing image data.

JTAG: A standard for connecting electronic components to implement test
functions. The JTAG signals are intended to be daisy chained through all the
active components in a design, allowing one single point of access for every-
thing. It’s never been successful enough to do that, but it remains a popular
and useful way of connecting up on-chip test functions.

jump and link (jal) instruction: MIPS instruction set name for a function
call, which puts the return address (the link) into ra.

k0 and k1 registers: Two general-purpose registers that are reserved, by con-
vention, for the use of trap handlers. It is difficult to contrive a trap handler
that does not trash at least one register.

kernel: The smallest separately compiled unit of an operating system that con-
tains task scheduling functions. Some OSs (like UNIX) are monolithic with
big kernels that do a lot; some are modular with small kernels Surrounded by -
helper tasks.

MIPS Glossary m 449

kernel privilege: For a protected CPU, a state where it’s allowed to do any-
thing. That’s usually how it boots up; and in small systems or simple operating
systems, that’s how it stays.

Kernighan, Brian: Co-author (with Dennis Ritchie) of The C Programming
Language, and generally held responsible for systematizing the C language. No
programmer should ever read another book about C.,

kludge: An engineer’s derogatory expression for a quick and dirty fix.

kseg0, ksegl: The unmapped address spaces (actually, they are mapped in the
sense that the resulting physical addresses are in the low 512MB). kseg0 is for
cached references and ksegl for uncached references. Standalone programs, or
programs using simple OSs, are likely to run wholly in ksegO/ksegl.

KSU, KU: The kernel/user privilege field in the status register (described in
Section 3.3.)

kuseg: The low half of the MIPS program address space, which is accessi-
ble by programs running with user privileges and always translated (in CPUs
equipped with a TLB). See Figure 2.1.

latency: The delay attributable to some unit or other. Memory read latency is
the time taken for memory to deliver some data and is generally a much more
important (and more neglected) parameter than bandwidth.

leaf function: A function that itself contains no other function call. This kind
of function can return directly to the ra register and typically uses no stack
space.

level sensitive: An attribute ofa signal (particularly an interrupt signal). MIPS
interrupt inputs are level sensitive; they will cause an interrupt any time they
are active and unmasked.

library: See object code library.
line size: See cache line size.

linker: A program that joins together separately compiled object code mod-
ules, resolving external references.

little-endian: An architecture where the least-significant part of a multibyte
integer is stored at the lowest byte address; see Section 11.6.

LLAddr register: A CPU control (coprocessor 0) register in R4000 and later
CPUs, with no discernible software use outside diagnostics. It holds an address
from a previous load-linked (11) instruction.

lo, hi registers: Dedicated output registers of the integer multiply/divide u-
nit. These registers are interlocked—an attempt to copy data from them into a
general-purpose register will be stalled until the multiply/divide can complete.

450 wm MIPS Glossary i

load delay: See load delay slot.

load delay slot: The position in the instruction sequence immediately follow-
ing aload. An instruction in the load delay slot cannot use the value just loaded
(the results would be unpredictable). The compiler, assembler, or program-
mer may move code around to try to make best use of load delay slots, but
sometimes you just have to put a “nop” there.

load/store architecture: Describes an ISA like MIPS, where memory data can
be accessed only by explicit load and store instructions. Many other architec-
tures define instructions (e.g., “push” or arithmetic on a memory variable) that
implicitly access memory.

loader: A program that takes an object code module and assigns fixed pro-
gram addresses to instyuctions and data, in order to make an executable file.

local variable: A named data item accessible only within the module currently
being compiled/assembled.

locality of reference: The tendency of programs to focus a large number of
memory references on a small subset of memory locations (at least in the short
term). It’s what makes caches useful.

logic analyzer: A piece of test equipment that simultaneously monitors the
logic level (i.e., as 1 or 0) of many signals. It is often used to keep a list of the
addresses of accesses made by a microprocessor.

long: C extra-precision integer; it is 32 bits on MIPS (same as an int).

loop unrolling: An optimization used by advanced compilers. Program loops
are compiled to code that can implement several iterations of the loop with-
out branching out of line. This can be particularly advantageous on architec-
tures (unlike MIPS) where a long pipeline and instruction prefetching makes
taken branches costly. Even on the MIPS architecture, however, it can help by
alfowing intermingling of code from different loop iterations.

LSI: LSI Logic Corporation, which makes MIPS CPUs—these days, mostly as
ASIC core components to be integrated by their customers into systems on a
chip.

MAC (multiply/accumulate): An instruction that both does multiplications
and keeps a running total of the results. Several 90s MIPS CPUs implement
such instructions in the integer multiplier, accumulating in the multiply unit’s
own hi/lo output register. However, these instructions tend to be called mad.

macro: A “word” in a computer language that will be replaced by some prede-
fined textual substitution before compilation/assembly. More specifically, it’s
something defined in a C preprocessor #define statement.

MAD, MADD: See multiply-add.

MIPS Glossary m 451

mantissa: Part of the representation of a floating-point number. (Also called
fraction or fractional part.):See Chapter 7.

mapped: Term used to describe a range of addresses generated by a program
that will be translated in some nontrivial way before appearing as physical
addresses.

mask: A bitfield used to select part of a data structure with a bitwise logical
“and” operation.

MDMX: A MIPS-proposed extension to the MIPS IV ISA that uses the FP reg-
isters to represent small arrays of integers (of length 8 or 16 bits) and provides
arithmetic- and graphics-oriented operations that do the same thing simulta-
neously to all the integers in the array. This is similar to the MMX to the x86
architecture defined by Intel and available in their Pentium-MMX CPUs,

This kind of operation iy thought to be useful for accelerating common
tasks in audio and video processing (multimedia).

memcpy (): A function from the standard C library for copying blocks of data.

micro-TLB: The MIPS TLB is dedicated to translating data addresses. Use of
the TLB to translate addresses for I-fetch would lead to resource conflict and
would slow the CPU. The micro-TLB remembers the last used I-fetch program
page and physical page and saves a reference to the real TLB until execution

crosses a page boundary. When this happens, a one-clock-cycle stall occurs
while the micro-TLB is refilled from the data TLB.

microcode: Many CPUs consist of a low-level core (the micro-engine) pro-
grammed with a wide, obscure machine language (microcode). Instructions
from the official ISA are implemented by microcode subroutines.

During the 70s microcode was the favored way of managing the complexity
of a CPU design. As better design tools were developed in the 80s, particularly
better circuit simulators, it became possible to go back to implementing ISA
operations directly in hardware. But many CPUs (particularly CISCs) still use
microcode for complicated or obscure instructions.

MiniRISC: An LSI Logic trade name for a series of MIPS CPU cores optimized
for small size. '

MIPS: We use this as the name of the architecture.

MIPS/ABI: The latest standard for MIPS applications, supported by all UNIX
system vendors using the MIPS architecture in big-endian form.

MIPS Corporation: The organization that commercialized and promoted the
MIPS architecture. Sometimes sloppily used to include its successor, the MIPS
Technologies group within Silicon Graphics.

L4
MIPS silicon vendor: Any company building and selling MIPS CPUs or com-
ponents containing MIPS CPUs. The roll call includes LSI Logic, IDT, Perfor-

,,,,,

452 m MIPS Glossary %
£
¥
g

mance Semiconductor, NEC, Siemens, Toshiba, NKK, Philips Semiconductor,
QED, and Sony.

MIPS System VR3, RISC/OS, and Irix: These are all ways of referring to the
same basic operating system, a derivative of UNIX System V Release 3. This OS
supports RISCware applications.

MIPS UMIPS 4.3BSD: MIPS Corporation’s first operating system was a deriva-
tive of Berkeley’s BSD4.3 version of UNIX.

MIPSEB, MIPSEL: These are the words you use to request big-endian and
little-endian output (respectively) from most MIPS compiler toolchains.

-misaligned: Unaligned.
/

MMU (memory management unit): The only memory management hard-
ware provided in the MIPS architecture is the TLB, which can translate pro-
gram addresses from any of up to 64 pages into physical addresses.

Modula-2: Pascal programming language with a standardized separate-
compilation extension. Mostly used in European computer science education.

MPEG: Standard for the efficient (compressed) digital representation of mov-
ing video images.

MTI (MIPS Technologies, Inc.): Subsidiary of Silicon Graphics and inheritor
of the MIPS architecture.

multiply-add: A single instruction that multiplies two numbers together and
then performs an addition sum. Multiply-add instructions are often a powerful
and effective way of encoding numerical algorithms, particularly for floating
point. MIPS IV and higher CPUs have an FP instruction called madd, and
Toshiba’s R3900 and its descendants have a genuine integer multiply-add.

Several other variant CPUs of the 90s have integer instructions called MAD
or something like it, but they are strictly multiply-accumulate instructions,
where the addend and results must both use a fixed register.

multiprocessor: A system with multiple processing elements; in practice we’ll
use it only when there are multiple similar processing elements dynamically
scheduled to run a common pool of programs.

multitasking: A CPU operating system that supports multiple threads of con-
trol. At the most mundane level, a thread is characterized by a stack and a
next-instruction address. There needs to be some scheduler in the OS that
picks which task to run next and makes sure that all tasks make progress.

’

NaN (not a number): A special floating-point value defined by IEEE754 as the
value to be returned from operations presented with illegal operands.

MIPS Glossary m 453

naturally aligned: A datum of length n is naturally aligned if its base address
is zero mod n. A word is naturally aligned if it is on a 4-byte boundary; a
halfword is naturally aligned if it is on a 2-byte boundary; see also alignment.

NEC: Electronic component manufacturer and leading supplier of MIPS CPU
chips.

nested exception/interrupt: What happens when you get a MIPS exception
while still executing the exception handler from the last one. This is sometimes
OK.

nibble: A 4-bit quantity.

NKK: The semiconductor division of a large Japanese trading company. NKK
started selling MIPS CPUs about 1994, in a generally low-key way, with second
sources of IDT R46xx products.

/
NMI (nonmaskable interrupt): Available (both as an input signal and as an
event) on R4000 and subsequent components. On MIPS CPUs, it’s not quite
clear whether it's a nonmaskable interrupt or a very soft reset; there’s no real
difference.

noalias, noat, nobopt, nomacro, noreorder, novolatile: Assembler
language controls, which turn off various aspects of the way the assembler
works. See Section 9.5.6 for details.

nonleaf function: A function that somewhere calls another function. Nor-
mally the compiler will translate them with a function prologue that saves the
return address (and possibly other register values) on a stack and a function
epilogue that restores these values.

nonvolatile memory: Applied to any memory technology that retains data
with the system power off.

nop, no-op: No operation. On MIPS this is actually an alias for s11v zero,
zero, zero, which doesn’t have much effect; its binary code is all zeroes.

normalize: The action of converting a floating-point value to the normalized
form by shifting the mantissa and modifying the exponent. The IEEE standard
for all except very small numbers is a normalized representation.

NT: Windows/NT.

nullified: Applied to an instruction that although it has been started in the
pipeline, will not be allowed to have any effect—its write back is suppressed
and it’s not allowed to cause an exception. In general, instructions never have
any effect until at least the MEM pipestage. In 32-bit MIPS CPUs, instructions
are only nullified when an exception occurs before they have committed to the
MEM stage, but from MIPS II onward this technique is used more widely, for
example to implement the “likely” variants of branch instructions.

454 m MIPS Glossary

NVRAM: Nonvolatile RAM, used rather generically to refer to any writable
storage that is preserved while the system is powered down.!

objdump: Typical name for a utility program that decodes and prints infor-
mation from an object file.

object code: A special file format containing compiled program source and
data, in a form that can be quickly and easily converted to executable format.

object code library: A file holding several (separately compiled) modules of
object code, together with an index showing what public function or variable
names are exported by each module. Sometimes called an archive. The system
linker can accept libraries as well as object modules and will link only those
modules from the library that are required to satisfy external references from -
the supplied modules.

octal: Base 8 notation for binary numbers, traditionally written with a lead-
ing zero. In fact, an integer written with a leading zero Avill most likely be
interpreted as octal by the assembler.

offset: The name commonly used for the signed 16-bit integer field used in
many MIPS instruction types.

op-code: The field of the binary representation of an instruction that is con-
stant for a given instruction mnemonic, excluding register selectors, embedded
constants, and so on.

operand: A value used by an operation.

optimizer: The part of a compiler that transforms one correct representation
of a program into a different equivalent representation that (it is to be hoped)
is either smaller or likely to run faster.

0S: Operating system.

overflow: When the result of an operation is too big to be represented in the
output format.

padding: Spaces left in memory data structures and representations that are
caused by the compiler’s need to align data to the boundaries the hardware
prefers.

page: A chunk of memory, a power-of-two bytes in size and naturallv aligned,
that is the unit of memory handled by the address translation system. Most
MIPS operating systems deal in 4KB fixed-size pages, but the hardware is some-
times capable of mixing translations with a number of different page sizes.

page fault: An OS term meaning an event where a program accesses a location
in a page for which there is no valid physical page translation assigned; in such
an OS a page fault is resolved by fetching the appropriate contents, allocating

MIPS Glossary m 455

physical memory, setting up the translation, and restarting the program at the
offending instruction.

page mode memory: A way of using a DRAM memory array. In DRAMs it
is much faster to make repeated access to a single region of memory where the
row address presented to the DRAM component is common. Some memory
controllers use this to optimize accesses where the CPU repeatedly reads/writes
a particular area of memory.

page table: A possible implementation of the TLB miss exception is to keep a
large number of page translations in a table indexed by the high-order virtual
address; such a structure is called a page table.

paged: A memory management system (such as MIPS) where fixed-size pages
(in MIPS they are 4KB in size) are mapped; high bits are translated while the
low bits (11 bits for MIPS) are passed through unchanged.

PageMask register: Register used in the MIPS memory management system,
see Chapter 6.

parameter: When talking about subroutines, some programmers talk about
passing parameters to subroutines and some (following the C programming
manual) talk about passing arguments to functions. They’re talking about the
same thing.

parity: The simplest error check. A redundant bit is added to a byte or other
multibit datum and set so that the total number of 1 bits (including the parity
bit) is made odd (odd parity) or even (even parity).

partial word: A piece of data less than a whole word but that the hardware can
transfer as a unit. In the MIPS architecture this can be 1, 2, or 3 bytes.

Pascal: Computing language invented by Niklaus Wirth in the 70s as a simpli-
fied block-structured language suitable for teaching. There was a time during
the 80s when Pascal was seriously canvassed as an alternative to C, but with no
consensus on the desperately needed extensions it didn’t succeed.

Patterson, David: From the MIPS point of view, he is Professor Hennessy’s
sidekick and co-author (see Hennessy and Patterson). Outside the MIPS field,
David Patterson is probably just as famous, having led the Berkeley RISC project
from which the Sparc descended.

PC (program counter): Shorthand for the address of the instruction currently
being executed by a CPU.

PCrelative: An instruction is PC relative if it uses an address that is encoded
as an offset from the instruction’s own location. PC-relative branches within
modules are convenient because they need no fixing when the entire module is
shifted in memory; this is a step toward position-independent code.

456 m MIPS Glossary

PCL: 1/0 bus invented for PCs about 1993 and now a universal way of gluing
/O controllers to computers.

PDP-11: The world’s favorite minicomputer in the 70s, made by DEC. It was
vastly influential, because good design decisions and superb documentation
made it the best thing for programmers to play with.

peephole optimization: A form of optimization that recognizes particular pat-
terns of instruction sequence and replaces them by shorter, simpler patterns.
Peephole optimizations are not terribly important for RISCs, but they are very
important to CISCs, where they provide the only mechanism by which com-
pilers can exploit complex instructions.

PFN (physical frame number): The high-order part of the physical address,
which is the output of the paged MMU.

Philips: A chip company that makes MIPS chips, mostly as cores.

physical address: The address that appears on the outer pins of your CPU
and that is passed on to main memory and the I/O system. Not the same as the
program address (virtual address).

physical cache: Short for “cache that is physically indexed and physically
tagged,” meaning that the physical (translated) address is used for both these
functions.

PIC: See position-independent code.

pinout: For a chip, the allocation of signals to physical pins (and perhaps the
list of interface signals required).

pipeline: The critical architectural feature by which several instructions are
executed at once; see Section 1.1.

pipeline concealment by assembler: MIPS assembler language does not usu-
ally require the programmer to take account of the pipeline, even though the
machine language does. The assembler moves code around, or inserts nops, to
prevent unwanted behavior.

pipeline hazard: A case where an instruction sequence won't work due to
pipeline problems. Hazards affecting user-level programs are described in Sec-
tion 1.5.5, and those resulting from CPU control instructions are discussed in
Section A.4.

pipeline stall: See stall.
pipestage: One of the five phases of the MIPS pipeline.

pixie, pixprof: Profiling tools. pixie is a special tool provided by MIPS Corpo-
ration that can be used to measure the instruction-by-instruction behavior of
programs at high speed. It works by translating the original program binary
into a version that includes metering instructions that count the number of

* MIPS Glossary m 457

times each basic block is executed (a basic block is a section of code delimited
by branches and/or branch targets). ;

pixprof takes the huge undigestible array of counts produced by a pixie run
and munches them down into useful statistics. One day, perhaps, these tools
or similar ones will be available with other toolkits.

PlayStation: Sony’s 1995 games machine, driven by a 32-bit MIPS micropro-
cessor.

porting/portability/portable: Adapting a program designed to work on one
computer to work on another. A readily ported program is portable, and you
can rate programs according to their portability.

Portsizeregister: CPU control register provided on IDT’s R3041 CPU vari-
ant and used to define the bus transfer width used for accesses in various
regions.

position-independent code (PIC): Code that can execute correctly regardless
of where it is positioned in program address space. PIC is usually produced by
making sure all references are PC relative. PIC is an essential part of the MIPS
ABI standard, where sharable library code must be compiled to be position
independent. Unfortunately, the MIPS architecture is poorly adapted for PIC.

POSIX: A still-evolving IEEE standard for the programming interface pro-
vided by a compliant operating systemn.

PostScript: A computing language as well as a digital way of representing a
printed page. A truly brilliant idea, originally from Xerox Parc, which failed to
take over the world mostly because Adobe Systems, Inc. thought it would make
more money by keeping it out of the mass market.

pragma: The C compiler #pragma directive is used to select compiler options
from within the source code.

precise exception: Following an exception, all instructions earlier in instruc-
tion sequence than the instruction referenced by EPC are completed whereas
all instructions later in instruction sequence appear never to have happened.
The MIPS architecture offers precise exceptions.

precision of data type: The number of bits available for data representation.
preprocessor: See C preprocessor.

PRIA register: CPU control register (read-only) that tells you the type and
revision number of your CPU. You shouldn’t rely on it for much.

primary cache: In a system with more than one level of cache, this is the cache
closest to the CPU.

privilege level: CPUs capable of running a secure OS must be able to oper-
ate at different privilege levels. The MIPS CPU can operate at just two: kernel

458 m MIPS Glossary

and user. This is sufficient. User-privilege programs are not allowed to in-

terfere with each other or with the privileged kernel programs; the privileged
{

programs have got to work.

privilege violation: A program trying to do what it’s not allowed to, which
will cause an exception. The OS must then decide what punishment to mete
out.

process: A unix word for that chunk of computation that corresponds to a
word on the command line; it consists of a thread of control, a program to run,
and an address space in which it can run safely.

profiling: Running a program with some kind of instrumentation to derive
information about its resource usage and running.

program address: The software engineer’s view of addresses, as generated by
the program. Also known as virtual address.

prologue: The mysterious bit at the beginning of a function which is stan-
dardized by the needs of the toolchain, OS, or architecture.

PROM (programmable read-only memory): Used sloppily to mean any read-
only program memory.

protected OS: An operating system that runs tasks at a low privilege level,
where they can be prevented from doing destructive things.

PTEBase: Part of the MIPS Context or XContext registers and typically
loaded with a pointer to an in-memory page table of translations ready to be
loaded into the TLB.

QED: Quantum Effect Devices, Inc., the most prolific MIPS CPU design group
of the 90s.

quad-precision (128-bit) floating point: Not supported by MIPS hardware,
but referred to in some documentation.

R2000, R3000: The original implementations of the MIPS ISA, packaged to
use external static RAMs as cache.

raregister: CPU register $31, conventionally used for the return address from
subroutines. This use is supported by the ISA, in that it is used by the jal in-
struction (whose 26-bit target address field leaves it no room to specify which
register should receive the return address value).

RAM (random access memory): Computer memory that can be both read
and written. See ROM.

Random register: A CPU control register present only if there is a TLB. It
increments continually and autonomously and is used for pseudorandom re-
placement of TLB entries.

MIPS Glossary m 459

ranlib: A program used to maintain object-code libraries: It makes indexes.

read priority: Because of the write buffer, the CPU package may simultane-
ously want to do a read and a (delayed) write. It is possible, and can boost
performance, to do the read first. If the CPU is always waiting for the read
data, the condition is called read priority. But it causes coherency problems
when the location being read is affected by a pending write, so few MIPS CPUs
tried it (LSI’s LR33000 was an exception).

register renaming: A technique for implementing high-performance com-
puters that permits instructions to be executed out of their normal sequence, -
without this sequence being visible to the programmer. Used (heroically) in
the MIPS R10000.

relocatable object module: A chunk of object code that still contains the nec-
essary information and records for a program to be able to find and alter all
the offsets and hidden addresses that tie the module to a particular location in
memory.

relocation: The process of patching binary object code to make it runnable at
a different location in memory.

renormalization: After a floating-point calculation, the number is probably
no longer normalized. Renormalization is the process of making it so again.

reset: Used in this manual for the event that happens when you activate the
Reset input to the CPU; this happens at power-on or system re-initialization.

RISC (reduced instruction set computer): Generic term used in this book for
a class of CPU architectures designed for easy pipelining. They were introduced
in the second half of the 80s.

RISCware: A long-forgotten standard for interchange of binary programs be-
tween different unix-style OSs on MIPS CPUs.

RMW (read-modify-write): A frequently encountered sequence of actions on
a storage location of any kind.

ROM (read-only memory): A storage device that can’t be written. (More of-
ten these days, it means it can’t be written in normal operation—there’s often
some off-line or exceptional means by which it can be reprogrammed.)

roundingmode: Defines the exact behavior of floating-point operations. Con-
figurable through the floating-point status/control register (see Chapter 7).

s0-s9 registers: A collection of CPU general-purpose registers ($16—$23 and
$30) conventionally used for variables of function scope. They must be saved
by any function that modifies them. ‘

S-cache: See secondary cache.

460 m MIPS Gldssary

sandbox: A safely fenced off set of resources (disk, filespace, memory, CPU
time) within which unt‘rusted programs can be safely run. One of the Internet’s
best pieces of jargon.

scalar: A simple variable (as distinct from an array or data structure). By anal-
ogy, a CPU that operates on single chunks of data ata time is called scalar. This
term was originally used to distinguish such a CPU from a vector processor,
which can operate on a whole chunk at a time.

scheduler: In a multitasking system, the scheduler is the program that decides
what task to run next.

SDE-MIPS: The Algorithmics toolkit for developing programs for MIPS tar-
gets, built around GNU C.

SDRAM (synchronous DRAM): Bulk memory chips with a supercharged in-
terface that provide much bigger transfer rates than their predecessor (regular
DRAM).

secondary cache: In a system with more than one level of cache, this is the
cache second closest to the CPU.

section: The name for the chunks used to separate out the code, various kinds
of data, debug information, and so on from a program and to carry them
through the object code. Eventually, you get to decide where in memory each
section ends up.

segment: See kseg0;ksegl.

segmentation: An obsolete approach to memory translation and protection,
where program addresses are modified by being added to a base address. It was
used in the x86, but it hasn’t been needed since the 386.

semaphore: A powerful organizing concept for designing robustly cooperat-
ing multitasking or multiprocessing systems; se¢ Section 5.8.4.

set, cache: See cache set.
set associative: See cache, set associative.

SGI: Silicon Graphics, Inc., dominant supplier of MIPS-powered computers
and guardians of the MIPS architecture.

short: In C, the name for an integer data type at least as big as a char and
no larger than an int. In 32- and 64-bit architectures, a short seems always
to be a 16-bit integer.

signal: A kind of primitive interrupt that is fed to regular programs in a unix-
type OS. Improved in Berkeley UNIX, and codified by the POSIX working
group to representa reasonably clean and simple way of communicating simple
events in a multitasking system.

. Y ¥

MIPS Glossary m 461

silicon vendor: In the MIPS world, one of the companies making and selling
MIPS CPUs. i

SIMM (single in-line memory module): A way of packaging memory on tiny
plug-in circuit boards so you can fit it to PCs just prior to sale or even upgrade
them in the field. Like a lot of PC hardware, this has taken over everywhere and
is now the most popular way of attaching memory chips.

snooping, snoopy: See cache, snooping.

soft reset: In digital electronics, reset is that ubiquitous signal that is asserted
to get everything back to a starting condition. For a CPU, it represents an
instant roll of the karmic wheel—death and resurrection in a few milliseconds.
Sometimes you'd rather reset your CPU in a way that allows it to rémember
something of its past life—that’s a “soft reset.” See Section 5.9.

software instruction emulators: A program that emulates the operation of a
CPU/memory system. It can be used to check out software too low level to be
compatible with a debugger.

software interrupts: Interrupts invoked by setting bits in the cause register
and that happen when those bits are unmasked. See Section 5.8.

Sony: Consumer electronics company that used MIPS chips in its PlaySta-
tions.

source-level debugger: A debugger that interprets current program state in
terms of the source program (instruction lines, variable names, data struc-
tures). Source-level debuggers need access to source code, so when working
with embedded system software the debugger must run on the host and ob-
tains its information about the program state from a simple debug monitor
running on the target.

sp register/stack pointer: CPU register $29, used by convention as a stack
pointer.

SPARC: The Sun Microsystem RISC architecture, which has sold more desk-
top systems than any other. Derived fairly directly from the University of
California at Berkeley RISC project, whereas MIPS came out of Stanford Uni-
versity. Stanford (on the San Francisco peninsula) is private and somewhat
conservative; Berkeley (across the bay) is public and radical. There’s a lot of
social history in microprocessor design.

sparse address space: Some OS tactics (notably, using an object’s address as
a long-term handle) work only if you have a much larger address space than
you really need, so you can afford to spread things out thigly and allocate
space recklessly as a sparse address space. No sparse-address OS has been
commercially successful yet.

462 m MIPS Glossary

speculative execution: A CPU implementation technique where the CPU runs
instructions before it really knows it should (most commonly, while it’s still fig-
uring out whether or not a conditional branch should have happened). Used
in the MIPS R10000.

SR register: CPU status register, one of the privileged control registers. Con-
tains control bits for any modes the CPU respects. See Section 3.3 for details.

SRAM (Static RAM): Writable random-access memory that does not require
periodic refresh and that has faster initial access time.

SRBrCond: See BRCOND=0.

stack: The last in, first out data structure used to record the execution state of
CPUs that are running the most interesting languages.

stack argument structure: A conceptual data structure used in Section 10.1
to explain how arguments are passed to functions according to the MIPS con-
vention.

stack backtrace: A debugger function that interprets the state of the program
stack to show the nest of function calls that has got to the current position.
Depends wholly on strict stack usage conventions, which assembler programs
must notate with standard directives.

stack frame: A fancy phrase for the piece of stack used by a particular func-
tion.

stack underrun: An error that occurs when you try to pop more off a stack
than was ever putonit. .

stale data: Term used for data lying about that has been superseded by a more
recent write. It could be data in memory where a CPU’s cached copy has been
updated but has not yet been written back; it could be data in a cache where
the memory contents have been replaced by a DMA device and the cache has
not yet been invalidated. Using stale data is a bug.

stall: Condition in which the pipeline is frozen (no instruction state is ad-
vanced) while the CPU waits for some resource to do its thing.

standalone software: Software operating without the benefit of any kind of
operating system or standard run-time environment.

Stanford: The San Francisco-area university where the MIPS academic project
was run by Professor Hennessy, and from where the MIPS company was born.

static variable: C terminology for a data item that has a compile-time fixed
place in memory.

status register: The MIPS register SR. In an older CPU it would have been
the control/status register and in fact there are far more control functions than
status-reading functions provided through sR.

MIPS Glossary B 463

stdarg: ANSI-approved C macro package that hides the implementation-
dependent details of how to provide for functions with a variable number of
arguments or arguments whose type can only be determined at run time (or
both).

stremp: Clibrary function that compares two (null-terminated) strings.
strcpy: Clibrary function that copies a (null-terminated) string.

strength reduction: Optimization technique in which an “expensive” opera-
tion is replaced, where possible, by one or a short sequence of “cheaper” oper-
ations. For example, multiply by a constant may be more efficiently replaced
by a sequence of shift and add operations.

supercomputer: Colloquially, a computer built for performance essentially
without regard for cost. Computer architecture people tend to be referring
to processors with vector floating-point instructions.

superpipelined CPU: If pipelining is a good thing, perhaps it can be made
better by cranking up the clock rate and breaking down execution stages into
smaller pieces, each of which can fit into the shrunken clock cycle. The MIPS
R4000 CPU was slightly superpipelined, breaking each of the I-fetch and D-
cache access stages into two and removing half clock cycles to get an eight-stage
pipeline. In doing so, the R4000 established that over a wide range of RISC-like
architectures, five stages is just about optimal.

superscalar: A CPU implementation that attempts to start more than one in-
struction at the same time. This ugly word comes from an attempt to define a
third alternative to supercomputers or superpipelined CPUs.

supervisor privilege level: Intermediate privilege level between kernel and
user; see Section 3.3.2.

swap caches: To temporarily reverse the roles of the I- and D-caches, so that
the cache maintenance functions can operate on the I-cache. Controlled bya
status register bit.

swapper: See byte-swapper.

Sweazey, Paul: Lead author of the “FutureBus” paper, which first described
the approach to cache coherence used by modern multiprocessors.

sync, synchronization barrier: An instruction that allows a programmer to
indicate where the order of reads and writes in a program really matters. Any
read or write preceding the syne instruction in program order must be carried
out before any read or write following the synec. ’

synthesized instructions: See instruction synthesis by assembler.

I

464 m MIPS Glossary “

syscall (system call): An instruction that produces a trap. It has a spare field,
uninterpreted by the hardware, that software can use to enlcode different system
call types.

£0-t9 register/temporaries: CPU registers $8-$15, $24—$25, convention-
ally used as temporaries; any function can use these registers. The downside is
that the values can’t be guaranteed to survive any function call.

TagHi, TagLo registers: Coprocessor 0 registers in R4000-style MIPS CPUs,
which are staging posts for cache tag contents. See Section 4.10.

temporary register: See tO0.

thrashing: Collapse of a heuristic optimization characterized by a repeated cy-
cle of failure. Cache thrashing is a specific case where two locations in frequent
use by a program compete for the same cache storage, repeatedly displacing
each other and making the cache ineffective.

timer: As a facility for CPUs, a constant-rate counter with some mechanism
to cause an interrupt when the counter reaches some specified value.

TLB (translation lookaside buffer): The associative store that translates pro-
gram to physical page numbers. When the TLB doesn’t contain the translation
entry you need, the CPU takes an exception and it is up to system software to
load an appropriate entry before returning to re-execute the faulting reference.
See Chapter 6.

TLB, wired entries: The first eight TLB entries are conventionally reserved for
statically configured entries and are not randomly replaced.

TLB Invalid exception: The exception taken when a TLB entry matches the
address but is marked as not valid.

TLB miss: The exception taken when no TLB entry matches the program
address.

TLB Modified exception: The exception taken when a TLB entry matches a
store address but that entry is not flagged as writable.

TLB Probe: An instruction used to submit a program address to the TLB to
see what translations are currently in force.

TLB refill: The process of adding a new entry to the TLB following a miss.

toolchain, toolkit: The complete set of tools required to produce runnable

programs starting from source code (compiler, assembler, linker, librarian, etc.).

Toshiba: Japanese chip maker and MIPS licensee. Toshiba has not been promi-
nent as a supplier of CPU components but is more visible iff the core CPU
market, where their R3900 design has been influential.

St

MIPS Glossary m 465

translated address or address region: A MIPS program (virtual) address that
is destined to be translated through the TLB (or to cause an error). This in-
cludes the kuseg region where all user-privilege software must run as well as the
mapped kernel-privilege region kseg2. The 64-bit CPUs have more translated
regions.

translation lookaside buffer: See TLB.

trap: An exception caused by some internal event affecting a particular in-
struction.

tribyte: A load/store that carries 3 bytes of data. Produced only by the special
instructions 1wl/1wz, as described in Section 2.5.2.

trunc: The floating-point instruction trunc rounds a floating-point number
to the next integer toward zero.

TTL: An acronym for transistor-transistor logic, this is a signalling conven-
tion that enables you to decide whether an electrical signal represents 1, 0, or
something in between and undefined. TTL is based on the habits of some early
5V logic families. TTL signalling has commonly been used in all micropro-
cessor systems at least up to the late 90s; its most likely replacement is a slight
modification to fit in with 3.3V power supplies.

two-way set associative: See cache, set-associative.
UART (universal asynchronous receiver/transmitter): A serial port controller.

Ultrix: DEC’s trade name for their BSD-family operating system running on
MIPS-based DECstation computers. Note that Ultrix, unlike practically all
other MIPS unix-like systems, runs in little-endian mode and thus is com-
pletely software incompatible with MIPS ABI or RISCware.

UMIPS: MIPS Corporation’s first unix port, a version of 4.3BSD.

unaligned access exception: Trap caused by a memory reference (load/store
word or halfword) at a misaligned address.

unaligned data: Data stored in memory but not guaranteed to be on the proper
alignment boundary. Unaligned data can only be accessed reliably by special
code sequences.

uncacheable: Memory areas where CPU reads and writes never search through
or affect the cache. True of the region kseg1 or translated address regions where
the TLB entry is flagged as uncached.

uncached: A CPU read/write that doesn’t search through or write to the cache.
. 1 4
underflow: What happens when a floating-point operation should produce a

result that is too small to represent properly. See also denormalized.

466 ®m MIPS Glossary

unified cache: A cache that is searched and updated for all CPU cycles, re-
gardless of whether they are instruction fetches or data references. By contrast,
most MIPS caches are split into I- and D-cache.

unimplemented instruction exception: Exception taken when the CPU does
not recognize the instruction code; it is also used when it cannot successfully
complete a floating-point instruction and wants the software emulator to take
over.

union: A C declaration of an item of data that is going to have alternative
interpretations with different data types. If you store data of one type and read
it back as the other type, the result is highly unportable, in an interesting sort
of way.

uniprocessor: A CPU that doesn’t share its memory with another.

Unisoft V.4 (Uniplus+): Another version of Unix SVR4, this one MIPS ABI
compliant.

unix-type: When lowercase, means a system something of the manner of real
UNIX, but without any implication as to ownership or regulation. Includes
freeware like Linux and OSs from the various OpenBSD and FreeBSD groups
and commercial OSs like Sun’s Solaris or SGIs Irix.

unmapped: The kseg0,ksegl address spaces.

unrolled loop: A loop in a program, transformed by arranging that (most
of the time) the work of more than one iteration of the loop is done between
jumps. It can often make programs go faster; it’s sometimes done automatically
by clever compilers.

user-privilegelevel: The lowest privilege state for a MIPS CPU, where only the
regular instruction set is usable and program addresses must stay inside kuseg.
An operating system can prevent user-privilege programs from interfering with
each other or the OS.

user space: The space of user-privilege-accessible addresses (kuseg).

utlbmiss exception: An exception caused by a user-privilege address for which
no mapping is present in the TLB. A utlbmiss exception is vectored to a unique,
second exception entry point. This was done because this is by far the most
common trap in a hardworking operating system, and it saves time to avoid
the code that must work out what kind of trap has occurred. Strictly speaking,
the name only applies to the R3000; R4000-style CPUs send all TLB misses
through the special entry point.

v0—v1l registers: CPU registers $§2—4$3, conventionally used to hold values

being returned by functions. ,

varargs: An old but now deprecated version of stdarg.

[y

MIPS Glossary m 467

VAX: DEC’s groundbreaking 32-bit minicomputer architecture, definitely not
a RISC. The first minicomputer to support virtual memory (hence the “V”).
)

vector, vector processor: A processor that has instructions that perform the
same operation on a whole collection of data at a time, mostly floating-point
operations. This is an example of parallel processing characterized as single
instruction, multiple data (SIMD); it was the first kind of parallel processing
to be useful. Number-crunching supercomputers depend on vector processing
for their speed.

virtual address: See program address.

virtual memory (VM): A way of running an application without actually giv-
ing it all the memory it thinks it needs, but in such a way that it doesn’t know
the difference. You do this by arranging that an attempt to access something
that isn’t really there causes the operating system to be called in. The OS finds
the required memory (be it code or data), changes the mapping so the applica-
tion will find it, and then restarts the application at the instruction that led to
the bad access. Bigger OSs (unix-like or modern Windows) always use virtual
memory.

VMS: The operating system DEC developed for the VAX minicomputer.

void: A data type used to tidy up C programs, indicating that no value is
available.

volatile: An attribute of declared data in either C or assembler. A volatile vari-
able is one that may not simply behave like memory (i.e., does not simply re-
turn the value last stored in it). In the absence of this attribute, optimizers may
assume that it is unnecessary to reread a value; and if the variable represents a
memory-mapped I/O location you are polling, this will be a mistake.

VPN (virtual page number): The part of a program (virtual) address that gets
translated. The low-order bits of the program address (which are the address
within a page, usually a 4KB page) pass unchanged through to the physical
address.

VxWorks: A real-time OS used in embedded applications, written and sold by
Wind River Systems, Inc.

WatchHi, WatchLo register: Coprocessor 0 registers that implement a data
watchpoint, available in some R4000-style CPUs.

watchpoint: A debugger feature that will cause the running program to be
suspended and control passed back to the user whenever an access is made to
the specified address. NEC’s Vr4300 CPU has one of these.

wbflush: A standard name for the routine/macro that enstires that the write
buffer is empty.

468 m MIPS Giossary

wbflush(): The MIPS-convention name for a function that returns only af-
ter all the CPU’s pending writes are completed on the CPU bus interface.

Whitechapel: A briefly flowering UK-based unix workstation company that
shipped the first MIPS desktop computers.

workstation: Used here to mean a desktop computer running a unix-like OS.

wraparound: Some memory systems (including the MIPS cache when iso-
lated) have the property that accesses beyond the memory array size simply
wrap around and start accessing the memory again at the beginning.

write buffer: A FIFO store that keeps both the address and data of a CPU write
cycle (usually up to four of each). The CPU can continue execution while the
writes are carried out as fast as the memory system will manage. A write buffer
is particularly effective when used with a write-through cache.

write-back cache: See cache, write-back.
write-through cache: See cache, write-through.

XContext register: Coprocessor 0 register associated with the TLB (memory
management hardware). Provides a fast way to process TLB misses on systems
using a certain arrangement of page tables for 64-bit-addressed virtual memory
regions.

zero register: CPU register $0, which is very special: Regardless of what is
written to it, it always returns the value zero.

References

Books and Papers

Cohen, D. “On Holy Wars and a Plea for Peace” USC/ISI IEN 137, April 1,
1980.

Farquhar, E., and Bunce, P. The MIPS Programmer’s Handbook. San Francisco:
Morgan Kaufmann, 1994,

A readable introduction to the practice of programming MIPS at the
low level. A strength is the use of lots of examples. A weakness is that
the book left out some big pieces of the architecture (such as mem-
ory management, floating point, and advanced caches) because they
didn’t feature in the LSI embedded products that the book was meant
to partner.

Heinrich, J. MIPS R4000 User’s Manual. Englewood Cliffs, NJ: Prentice Hall,
1993.
The bible of the MIPS architecture; lots of details, but sometimes hard
to find. It also takes a rather rigid view of what is implementation spe-
cific and can thus be left out. You can probably find a version of this to
download from SGI's technical library.

Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative Ap-
proach. San Francisco: Morgan Kaufmann, 1996.
Outside the MIPS-specific field, this is the only book worth having on
modern computer architecture. Its sole defect is its size, but in this case
it's worth it.

Kernighan, B., and Richie, D. The C Programming Language, 2nd edition. En-
glewood Cliffs, NJ: Prentice Hall, 1988.

469

470 ® References

This is the book to have if you want to learn more about C. You should
probably get the updated ANSI edition now, although regrettably it is
somewhat fatter.

Sweazey, P., and Smith, A.J. “A Class of Compatible Cache-Consistency Pro-
tocols and Their Support by the IEEE Future Bus.” Proceedings of the
13th International Symposium on Computer Architecture, 1986.

On-Line Resources

Algorithmics: On the web at http://www.algor.co. uk/. This gives
additional information about the author’s more commercial activities
and MIPS support operations.

IDT: IDT is on the web at http: / /www. idt . com/. This site gives a fair
amount of on-line data.

MIPS Technologies: The current guardians of the MIPS architecture are a
wholly owned subsidiary of Silicon Graphics and are on the web at
http://www.mips .com. You'll find numerous links to other com-
panies involved in MIPS.

NEC: NEC is not so used to being on-line. You can find some data starting
athttp: //www.nec.com/. NEC’s European and Japanese web sites
tend to provide better information and on-line datasheets. These can be
found at

http://www.nec.co.jp/index_e.html (English pages)
http://www.ic.nec.co.jp/index_e.html
http://www.nec.de/ (German site, but in English).

QED: QED is the newest MIPS silicon vendor. QED keeps data sheets on-line
and can be found at http: //www.gedinc.com/.

R4000/R4400 User Manual: The second edition of Joe Heinrich’s book is avail-
able on-line at http://www.sgi.com/MIPS/products/
r4400/UMan/. You can view a web (HTML) version or download
PostScript or Acrobat files.

SGI’s FTP server: This is at ftp://sgigate.sgi.com/pub/doc/. It
has some older documents.

SGP’s technical document library: This is at http://techpubs.sgi.
com/. Although it is focused on information for SGI workstation users,
it seems to have documents available that are not to be found elsewhere.
You'll find an assembler language manual under the Irix headings, and
ISA manuals for the MIPS CPUs that are in current SGI products in the
Hardware section. ,

As with any printed information about the world wide web, these point-
ers are likely to change. Fortunately, there are lots of ways of finding
where they went.

1

Index

character, 21

32-bit instructions, 12, 250

64-bit architecture, 32-35
need for, 33

64-bit instructions, 250

a0—a3 registers, 23, 24
abs instruction, 167, 181, 203,
223
addciu instruction, 181, 229
addi instruction, 223
add instruction, 166, 178, 203,
221
addiu instruction, 223
addresses, 36-39
16-bit offset, 39
physical, 37
program, 37, 68, 125
translation of, 146
unavailable, 146
virtual, 68, 121, 138
addressing, 13-14
cache, 80
gp-relative, 251-253
in simple systems, 38
addressing modes, 250-253
loading/storing, 26-27
support, 250
address space, 36-39
process, 120
program, 37-38
address space ID (ASID), 120,
129

length, 124
match, 124
running out of, 136
settings, 135
using, 135-136
addu instruction, 178, 181, 221
Algol, 307
Algorithmics
ROM exception entry
points, 374
SDE-MIPS, 334, 344, 369
aliases
cache, 90
instruction, 219
andi instruction, 223
and instruction, 181, 221
ANSIC, 308
a.out header, 414415
applications
MIPS ABI, 290
starting up, 113
arguments, 269-274
floating-point type, 270
registers for passing,
269-271
structure, 269
structure types as, 271
variable number of, 288
See also passing arguments
arithmetical/logical
instructions, 232-234
ar program, 421
ASIC core CPUs, 10

assembler

32-bit load immediate, 30

addressing modes, 250-253

branch conditions, 30

branch delay slot hiding, 31

comment convention, 21

C preprocessor, 20-21

defined, 20

delimiters, 247

efficient access to memory
variables, 30

forms of instruction, 30

load delay hiding, 31

load from memory location,
30

MIPS version, 20--21

optimizations, 31

programming, 243-266

reasons for using, 306307

reordering, 263

svntax, 403—407

syntax overview, 247-248

svnthesized instructions in,
29-31

temporary register, 249, 263

unaligned transfers, 31

assembler directives, 403-407

.2byte, 265

.4byte, 265

.8byte, 265

.aent, 261

.align,257

.ascii, 257

472 W Index

assembler directives

(contijued)

.asciiz, 257

.bss, 255

.byte, 256257

.comm, 255, 258

.cpadd, 265

.cpload, 265

.cplocal, 265

.cprestore, 265

.cpreturn, 265

.cpsetup, 265

.data, 253-254

.double, 257

.aword, 256-257

.dynsym, 265

.end, 260-261

.ent, 260-261

.extern, 259

.file, 265

.float, 257

. fmask, 261-262

. frame, 261-262, 279

.globl, 259

.gpvalue, 265

.gpword, 265

.half, 256-257

.lab, 265

. lcomm, 255, 258

.1it4, 254

.1it8, 254

.loc, 265

.mask, 261-262, 279

.origin, 266

.rdata, 253-254

.sbsas, 255

.sdata, 255

.section, 255

.set more-
order/reorder,
263

.set noat/at, 263-264

.set nobopt/bopt, 265

.set nomacro/macro, 264

.set [no] transform,
266

.8et
volatile/novolatile,
263

.size, 266
.space, 258
.text, 253-254
.type, 266
.weakext, 260
.word, 256-257
assembler directive types,
253-266
assembler control, 262-265
compiler/debugger support,
265
data definition/alignment,
256-258
function, 260262
program layout, 255-256
section selection, 253-255
in SGI assembly language,
265-266
symbol-binding attribute,
258-260
assembler mnemonics,
177-179
divide, 179
U/non-U, 178-179
associative memory, 123
at register, 23-24
ATMizer-1I floating-point
instructions, 242
autoconversions, 304

Badvaddr register, 56, 125

bal instruction, 181

beOf instruction, 181, 223

bcO£1 instruction, 181, 223

beot instruction, 181, 224

bcotl instruction, 181, 224

belf instruction, 168, 182,
203, 227

bc1£1 instruction, 168, 182,
227

belt instruction, 182, 203, 227

beitl instruction, 168, 182,
227

bc2£ instruction, 182, 228

be2£1 instruction, 182, 228

be2t instruction, 182, 228

be2tl instruction, 182, 228

begezl instruction, 183

beq instruction, 182, 222

beql instruction, 182, 228
beqz instruction, 182
beqzl instruction, 182
bge instruction, 182
bgel instruction, 182
bgeu instruction, 182
bgeul instruction, 182
bgezal instruction, 183, 222
bgezall instruction, 183, 222
bgez instruction, 183, 222
bgezl instruction, 222
bgt instruction, 183
bgtl instruction, 183
bgtu instruction, 183
bgtul instruction, 183
bgtz instruction, 183, 223
bgtzl instruction, 183,229
biased exponents, 153
bi-endian code, 324
big-endian, 314, 315
bitfield view, 317
bus, 318
See also endianness
binary formats, 152
b instruction, 181
bitfields, 316-317
big-endian viewpoint, 317
little-endian viewpoint, 317
bitwise logical instructions,
233
ble instruction, 183
blel instruction, 183
bleu instruction, 183
bleul instruction, 183
blez instruction, 183, 223
blezl instruction, 183, 228
blt instruction, 183
bltl instruction, 183
bltu instruction, 184
bltul instruction, 184
bltzal instruction, 184, 222
bltzall instruction, 184, 222
bltz instruction, 184, 222
bltzl instruction, 184, 222
bne instruction, 184, 222
bnel instruction,’ 184, 228
bnez instruction, 184
bnezl instruction, 184, 228

ft

board control register (BCR),
339
bootstrapping, 99
C functions during, 112
sequences, 112
branch delays, 16-17, 40—41
hiding, 31
pipeline and, 16
slot, 16, 396
branches
conditional move in-
structions and,
212
loop-closed, 35-36
branch instructions, 114,

239-240
conditional, 164, 168169
MIPS IV, 160
branch likely instructions, 36,
213-214

branch delay slot
instruction and, 213
defined, 212
break instruction, 48, 184,
220, 240
byte, 13
address scrambling,
318-319
arithmetic and, 14
gathering, 89
loads, 27
swapping, 326-327
byte-addressable CPUs,
318-319
byte lane
defined, 320
numbers, writing in, 320
swapper, 321, 322

ANSI, 308

compilers, 300

declarations, 369

device access from, 298—300

evolution, 308

global variables and, 252

hardware driver code in,
300

library functions, 309

pointers, 307
portability considerations
and, 301-331
programming, 267300
semantics and, 301
traditional, 308
unaligned data from, 300
cache aliases, 68
cache efficiency, 83-87
changes for better, 86-87
defined, 83
software reorganization
and, 85-87
cache instruction, 46, 58,
79-81, 184, 230
before, 345
form, 79
operation codes, 80
option choices, 79-81
cache management, 69-71,
302, 327-329
DMA data and, 328-329
software example, 344—369
uncached/write-through
data and, 329
writing instructions and,
329
See also caches
cache misses, 4
classifications, 85-86
first-time access, 86
number of, 84
rate, 83
reducing, 84
replacement, 86
thrashing, 86
See also cache efficiency
cache miss/refill penalty
decreasing, 84-85
defined, 83
sub-block order and, 85
cache operations, 345-369
32-bit MIPS cache
instructions, 345-354
after MIPS III and cache
instructions, 354-369
cacheop () macro, 357, 367
caches, 63-90
addressing, 80

Index m 473

aliases, 90

CISC architecture and, 5

configuration of, 81

control of, 43

data (D-cache), 64, 69

defined, 4

direct-mapped, 65

error handling, 78-79

as extra buffer memories,
327

functioning of, 6466

hitting and, 71

initialization routines,
81-82

initializing, 75

instruction (I-cache), 64, 69

invalidating, 73, 75-76, 83

isolation, 74

line size, 69

managing. See cache
management

MIPS architecture and, 5

multiprocessor features, 90

off-chip, 69, 72

physically-addressed, 68

pipelining and, 4-5

primary, 71

probing, 76

problems, 327-331

R3000, 72, 73-76

R4000, 76-83, 362

secondary, 71

size determination, 111

sizing, 75, 81

stale data in, 328

swapping, 74

testing, 76

two-way set-associative, 66

virtually-addressed, 68

write-back, 6768, 7

write-through, 66—67, 87,
327

cache store, 64
cache tags, 4, 64, 90
calling conventions, 268

n32, 268, 274-277
n64, 268, 274277
032, 268,269, 274-277

sk e s
ARG L e e J—

R SRR

N s
et

474 m Index

Cause register, 48, 51, 55-56,
103
defined, 55
ExcCode values, 57-58
fields, 55
See also CPU control
registers
<.cond instruction, 169
ceil instruction, 168, 203, 225
c.eq instruction, 203
cfco/cfcl/cfc2 instruction,
184, 223, 224, 228
c. £ instruction, 203, 226
CISC architectures, 7
caches and, 5
defined, 7
MIPS compared with,
12-18
c.le instruction, 203, 227
clock rate, 112
c.1t instruction, 203, 227
CMOS processors, 8
< .nge instruction, 203, 227
c.ngt instruction, 203, 227
code
atomic chunks of, 107
bi-endian, 324
hazards, 395396
library, sharing in MIPS
ABI, 290-292
nonportable, 305,306
object, 409421
optimizer-unfriendly, 297
read-only, 289
sharing, in single-
address-space systems,
290
coherent cached accesses, 217
c.ole instruction, 203,
226-227
c.olt instruction, 203, 226
common object file format
(COFF), 410, 413
file header, 413
further reading on, 416
optional a.out header,
414-415
See also object code

common subexpression
elimination (CSE),
294
Compare register, 59
compilers
ANSI, 299, 311
C, 298, 308-309
CPU, 314
GNU, 298, 308-309
MIPS, 310
optimization, 293-298
registers, 296
support, 265
complex instruction set
computer. See CISC
architectures
computational instructions,
248-249
with constants, 249
three-register, 248
Computer Architecture: A
Quantitative Approach,
397
conditional instructions,
168-170
branch, 168-169
defined, 164
move, 211-213,232
" test, 169-170
conditional traps, 36
config register, 47, 53, 58,
59-62, 81
BE field, 61
CM field, 59
CU field, 61
EB field, 61
EC field, 59
EM field, 61
EP field, 59-60
EW field, 61
fields, 59
IB/DB field, 61
IC/DC field, 61
KO, 61
SB field, 60
SC field, 61
SM field, 61
SS field, 61
SW field, 61

See also CPU control
registers
Context register, 126, 128,
132-133
defined, 128
field descriptions, 132-133
fields, 132
for immediate entry access,
135
conversion operations,
167-168
defined, 164
to integer with explicit
rounding, 168
list of, 168
convert program, 421
coprocessor 0 (CP0), 4346
defined, 44
flags and instructions,
401402
functions, 4344, 240-241
hazards, 396, 398—400
instruction/instruction
scheduling, 400—401
registers, getting data out
of, 46
coprocessor 2 (CP2), 44
COprocessor 3 (CP3), 44
Count register, 58
cpp, 247-248
CPU control instructions,
4142, 4647
MMU, 133-134
problems, 41—42
CPU control registers, 44
padvaddr, 56, 125
cause, 48, 51, 55-56, 103
Compare, 59
config, 47, 53, 58, 59-62,
81
context, 126, 128,
132-133, 135
Count, 58
encoding of, 48
EntryHi, 127-130, 134
Entrylo, 127-130, 134
ERC, 47, 48, 56, 94, 144
Index, 128, 131

introduced with the R4000,
45
list of, 45
LLAAdr, 62
for memory management,
128
PageMask, 127-130
PRIAQ, 49-50
for R4000 and followers,
58-62
Random, 128, 131-132
SR, 47, 48, 50-55, 142
standard, encodings of,
48-58
WatchHi, 62
WatchLo, 62
Xcontext, 126, 128,
132-133, 135
See also registers
CPUs. See MIPS CPUs
crwrite function, 339, 343
c.seq instruction, 203, 227
c.sf instruction, 203, 227
ctcl/ctel/ete2 instruction,
184, 223, 224, 228
c.uegq instruction, 203, 226
c.ule instruction, 203, 227
c.ult instruction, 203, 226
c.un instruction, 203, 226
cvt instruction, 167-168, 203,
226

dabs instruction, 184
daadi instruction, 184, 229
dadd instruction, 184, 221
daddiu instruction, 184, 229
daddu instruction, 185, 221
data

alignment, 256258, 302

breakpoint, 62

cache resident, 86-87

definition, 256-258

DMA, 328-329

dynamic, 289

floating-point format,

154-155

flow, 327

foreign, 325-326

global persistent, 289

initializing, 113
integrity problems, 92
per-thread persistent, 289
read-only, 289
representations, 309-312
stale, 328
static transient, 289
unaligned, 206, 300
uncacheable, 87
data types
int, 14
integer, 27-28
long, 268
in memory and registers,
27-29
signed char, 303
unsigned char, 303
D-cache (data cache), 64, 69
defined, 69
isolation, 74
in R3000-style caches, 109
searching, 76
small, 112
See also caches; 1-cache
(instruction cache)
ddivd instruction, 185
daivdu instruction, 185
ddiv instruction, 185, 221
ddivu instruction, 185, 221
debugger support, 265
DEC Alpha, 1, 54
delayed branches, 16-17
demand paging, 148
direct-mapped caches, 65
direct memory access (DMA)
cache management and,
328-329
into memory, 70
I/O controller, 69
out of memory, 69
snoop, 302
dirty bits, 145
dirty lines, 67, 361
dirty pages, 145
divd instruction, 179, 186
divdu instruction, 186
div instruction, 95, 166, 179,
185-186, 203, 220, 223
divo instruction, 179, 186

Index m 475

divou instruction, 186
divu instruction, 179, 186, 220
dla instruction, 186
d1li instruction, 187
dmadd16 instruction, 187, 221
dmfc0/dmfcl/dmfc2 instruc-
tion, 165, 187, 203, 223,
224, 400
dmtc0/dmtcl/dmtc2 instruc-
tion, 165, 187, 204, 223,
224
dmul instruction, 187
dmulo instruction, 187
dmulou instruction, 187
dmult instruction, 188, 220
dmultu instruction, 188, 220
dneg instruction, 188
dnegu instruction, 188
double precision floating point,
154-155
DRAM memory, 88
configuration, 340
configuration register, 341
system reset, 340
See also memory
drem instruction, 188
dremu instruction, 188
dret instruction, 188, 223
drol instruction, 188
dror instruction, 189
drsa instruction, 189
ds1132 instruction, 189, 222
dsll instruction, 189, 222
dsllv instruction, 220
dsra32 instruction, 189, 222
dsra instruction, 189, 222
dsrav instruction, 220
dsrl32 instruction, 190, 222
dsrl instruction, 189, 222
dsrlv instruction, 220
dsub instruction, 190, 221
dsubu instruction, 190, 221
dynamic data, 289

emulating instructions,
113-114
decodi’ng and, 114
process for, 113

476 ® Index

emulation
hardware, 147
run-time, 173
soft-float, 172-173
endianness, 311, 312-327
configurable connection,
writing, 320-322
defined, 302, 312-313
false cures/prophets for,
326-327
foreign data and, 325-326
hardware problem, 317-320
MIPS CPU and, 323
pictures and, 315-316
portability and, 325
programmers and, 314-315
software for, 322-324
visible, 315
See also big-endian;
little-endian
END macro, 246—247, 280
enough state, 109
EntryHi register, 127-130, 134
defined, 128
field descriptions, 127129
fields, 127
EntryLo register, 127-130, 134
defined, 128
field descriptions, 129-130
fields, 127
EPC register, 47, 48, 56, 94, 144
defined, 56
stored value, 47, 48
See also CPU control
registers
eret instruction, 48, 100, 190,
223,401
ERR register, 79
error-correcting code (ECC),
78
errors
address alignment, 92
hardware-detected, 92
parity, 92
parity/ECC, 96
exception frames, 100
exception handling, 15, 99-100
basics, 99-100
cause register and, 55

for every kind of event, 382
nonprecise, 95
software example, 369-386
TLB miss, R4x00, 141-144
TLB miss, R3000-style,
139-141
XTLB miss, 144
See also exceptions
Exception Return Address
register. See EPC register
exception routine, 101
exceptions
cache error, 97
control of, 43
defined, 91
dispatching different, 99
entry points, 97
event types, 91-92
floating-point, 158—159
handling, 4748
[EEE754 and, 153
instructions always causing,
48
in instruction sequence, 94
memory translation, 91
nested, 92, 100-101, 377
occurrence of, 94-95
precise, 93-94
processing, 99
processing environment
construction, 99
returning from, 48, 100
TLB refill, 96, 123
victim, 93
See also exception handling;
interrupts
exception vectors, 9599, 374
executable and linking format
(ELF), 410, 417421
defined, 417
example loader, 419-420
file header, 417418
further reading on, 421
program header, 418-419
See also object code
explicit multitasking, 117
exponents
biased, 153
reserved, values, 153-154

extended common object
file format (ECOFF),
413417
example loader, 416
file header, 413414
optional a.out header,
414415
symbol table extensions,
416
system table format, 413
See also common object file
format (COFF); object
code
external events, 91

FCRO register, 162-163
defined, 162
fields, 162
FP accelerator ID codes

from, 163

Imp field, 162
operation timing, 171
Rev field, 163
setting up, 172

FCR31 register, 159162
Causes/Enables/Flags, 161
defined, 159
FCC7-1, 160
FS (flush to zero), 160
RM (rounding mode), 160
rounding modes, 160
Unlmp, 161

££c instruction, 190, 220

££8s instruction, 190, 220

first in, first out (FIFO) store,

67

fixup records, 409

floating point
computations, 41
condition bits, 215
data formats, 154-155
data in memory, 29
description, 149-150
double precision, 154-155
emulation, 172-173
exceptions, 158—159
extended, 36
hardware,"111, 331
interrupts, 158—159

single precision, 154-155
support, 149-173
trap handler, 157
floating-point accelerator
(FPA)
control/status register fields,
159
denormalized numbers
and, 153
emulation software,
161-162
foibles, 41
ID codes, 163
implementation/revision
register, 162
performance, 149
traps, 157, 161
floating-point instructions,
163-170, 241-242
arithmetic, 242
ATMizer-11, 242
conditional branch/test,
164, 168-170
conventions, 201-202
conversion operation, 164,
167-168, 242
exceptions, 202
load constant, 241
load/store, 163, 164-165
move between registers,
163, 165-166, 241
multiply-add operation,
163, 166-167, 214
test, 242
three-operand arithmetic
operation, 163, 166
timing, 170-171
timing for speed, 171
unary (sign-changing)
operation, 164, 167,
241-242
floating point registers, 22, 41,
111, 157-158, 270
callee-saved, 283
for manipulating signed
integer data, 158
number of, 157
odd-numbered, 157
restoring, 172

saving, 172, 283
timing, 171
usage conventions, 158
uses of, 158
floor instruction, 158, 204,
225
flushd instruction, 190, 230
£1lushid instruction, 230
£lushi instruction, 230
£p register, 23, 25, 284, 287
function calls, 297
function inlining, 295
functions
alloca(), 284, 286287
ambiguous behavior of, 304
cailed, 270, 274
end of, 260-261
intrblock(), 387
leaf, 280
library, 289
memcpy (), 388
MIPS ABI, 291
mips _clean_icache(),
345
multiple entry points of,
261
nonleaf, 281-284
otherfunction, 283
print£(), 273, 275, 288
returning values from, 274
sharing, 289-292
splx(), 387
stack frame allocation, 261
start, 260-261, 282
va_arg(), 288
va_end(), 288
va_start(), 288
void
mips.clean_cache(),
345
void
mips_clean_dcache(),
345
void
mips_flush cache(),
345
void
mips_flush dcache(),
345

Index m 477

void mips_init_cache(),
345

void mips_size_cache(),
345

void rdk hit writeback.
inv dcache(), 345

global offset table (GOT), 291,
292
global persistent data, 289
global pointers, 252
GNU compiler, 298, 308-309
op register, 23, 24, 292, 379
gp-relative addressing, 251-253
defined, 252
problems with, 253

halfword, 13
arithmetic and, 14
loads, 27
hazards, 3942
coprocessor 0, 396, 398—400
defined, 171
load delay, 395-396
multiply unit, 396, 397
heaps
defined, 118
definition of, 256
extendable, 147
hidden bit, 153
high-level atomicity, 108
HP Precision, 1

I-cache (instruction cache), 64,
69
defined, 69
swapped, 74
See also caches; D-cache
(data cache)

IEEE754 standard, 150-152
binary formats, 152
defined, 151
exception result actions,

151-152
exceptions and, 151
hidden bit, 153
legislatidn, 151-152
mantissa, 153

478 m Index

IEEE754 standard (continued)
MIPS implementation of,
156-157
multiply-add operations
and, 167
normalization, 153
problems, 156
rounding/precision of
results and, 151
#ifdefs, 375
immediate files, 411
immediate values, 249
include files, 336
Index register, 128, 131
defined, 128
fields, 131
use of, 131
initialization
cache, 75, 81-82
data, 113
memory, 334
MIPS CPU, 334
primary cache, 363
SR register, 172
TLB, 110, 136-137
instruction encodings, 217-231
double use of, 219
fields, 217-219
MIPS16, 424
simple implementation
and, 231
table, 219-230
instructions, 183, 184, 187
32-bit, 12, 250
64-bit, 250
add, 233
aliases, 219
arithmetical/logical,
232-234
ATMizer-II floating-point,
242
bitwise logical, 233
branch, 114, 239-240
branch likely, 36, 213-214
breakpoint, 240
by functional group,
231-242
causing exceptions, 48
computational, 248-249

conditional move, 211-213

condition flags and, 13

constraints, 12-13

coprocessor, 219

CP0 function, 240-241

CPU control, 41-42, 4647

decode-oriented table, 114

decoding, 114

emulating, 113-114

enter, 261

exception-causing, finding,
114

floating-point, 163-171,
241-242

immediate values, 249

immediate versions of, 178

integer multiply-
accumulate, 213-214,
236-237

integer multiply, divide,
remainder, 234-236

jump, 14, 47, 239-240

leave, 261

load constant, 232

loads/stores, 237-239

MIPS16, 423, 424

miscellaneous arithmetic,
233

multimedia, 427428

multiply-add, 213-214

obscure bit-related, 234

peculiar, 202-217

register/register move, 232

rules for, 248-250

shifts and rotates, 233-234

subroutine call, 239-240

table conventions, 180

three-operand, 12

trap, 240

writing, 329

instructions list

abs, 167, 181, 203, 223

add, 166, 178, 203, 221, 223

addciu, 181,229

addi, 223

addiu, 223

addu, 178, 181, 221

and, 181, 221

andi, 223

b, 181

bal, 181

bcof, 181, 223

bcO0£1, 181, 223

beot, 181,224

bcotl, 181, 224

beilf, 168, 182, 203, 227
beclfl, 168, 182

beit, 168, 182, 203, 227
bcltl, 168, 182, 227
bc2f, 182, 228
bc2f£1, 182, 228

be2t, 182,228

be2tl, 182,228
begezl, 183

beq, 182, 222

beql, 182, 228

beqz, 182

beqgzl, 182

bge, 182

bgel, 182

bgeu, 182

bgeul, 182

bgez, 183, 222
bgezal, 183, 222
bgezall, 183, 222
bgezl, 222

bgt, 183

bgtl, 183

bgtu, 183

bgtul, 183

bgtz, 183, 223
bgtzl, 183, 229

ble, 183

blel, 183

bleu, 183

bleul, 183

blez, 183,223

blezl, 183,228

blt, 183

bitl, 183

bltu, 184

bltul, 184 :
bitz, 184,222]
bltzal, 184, 222
bltzall, 184, 222
bltzl, 184,222
bne, 184,222
bnel, 184, 228

bnesz, 184

bnezl, 184, 228

break, 48, 184, 220

cache, 46, 58, 79-81, 184,
230

c.cond, 169

ceil, 168, 203, 225

c.eq, 203

c.f£, 203,226

cfco0/cfcl/cfc2, 184, 223,
224,228

c.le, 203, 227

c.1lt, 203, 227

c.nge, 203, 227

c.ngt, 203, 227

c.ole, 203, 226-227

c.olt, 203, 226

c.seq, 203, 227

c.sf, 203, 227

ctc0/ctel/cte2, 184, 223,
224,228

c.ueq, 203, 226

c.ule, 203, 227

c.ult, 203, 226

c.un, 203, 226

cvt, 167-168, 203, 226

dabs, 184

dadd, 184, 221

daddi, 184, 229

daddiu, 184,229

daddu, 185, 221

ddiv, 185, 221

ddivd, 185

ddivdu, 185

ddivu, 185, 221

div, 95, 166, 179, 185-186,
203, 220, 223

divd, 179, 186

divdu, 186

divo, 179, 186

divou, 186

divu, 179, 186, 220

dla, 186

d1ii, 187

dmaddisé, 187, 221

dmfc0/dmfcl/dmec2, 165,
187, 203, 223, 224, 400

dmtc0/dmtcl/dmtc2, 165,
187, 204, 223, 224

aml, 187

dnulo, 187

dmulou, 187 ot
&mult, 188, 220
@multu, 188, 220
dneg, 188

dnegu, 188

drem, 188

dremu, 188

dret, 188, 223

drol, 188

dror, 189

drsa, 189

ds1132, 189, 222
dsll, 189, 222

dsllv, 220

dsra32, 189, 222
dsra, 189, 222

dsrav, 220

dsrl32, 190, 222
dsrl, 189, 222

dsrlv, 220

dsub, 190, 221

dsubu, 190, 221

eret, 48, 100, 190, 223, 401
£fc, 190, 220

£fs, 190, 220

floor, 158, 204, 225
£lushd, 190, 230
£lushi, 230

£lushid, 230

3, 190, 222

jal, 190, 222

jalr, 190, 220

jr, 190, 219
1,204,230

la, 178, 191, 251

1b, 191, 229

1bu, 191, 229

14, 191, 230

1dct, 165, 204

1de2, 230

141, 191, 207, 208, 229
ldr, 191, 207, 208, 229
ldxci1, 165, 191, 204, 228
ih, 191, 229

lhu, 191, 229

11,191, 204, 251

11, 108, 192, 210-211, 230

Index = 479

114, 230

1lui, 192, 223

1w, 35, 192, 229

1lwel, 164, 192, 204

1wc2, 230

1wl, 192,229

1lwx, 192, 229

1wu, 35, 192, 229

1lwxcl, 165, 192,228

mad, 192, 214, 229

maddié, 193, 221

madd, 167, 192, 193, 204, -
214, 220, 228

maddu, 192, 193, 221

madu, 192, 229

max, 193

mfco, 193, 223, 400

mfcl, 41, 165, 193, 204, 224

mfc2, 193, 228

mfhi, 25, 26, 193, 220, 397

mflo, 25, 26, 95, 193, 220,
397

min, 193

mov, 165, 204, 223

move, 193, 232

movE, 166, 193, 204, 219,
225

movn, 166, 193, 204, 220,
225

movt, 165, 193, 204, 219,
225

movz, 166, 193, 204, 212,
220, 225, 232

msub, 167, 193, 204, 214,
221,228

msubu, 193, 221

mtco, 194, 223

mtel, 165, 194, 205, 224

mte2, 194, 228

mthi, 26, 194, 220

mtlo, 26, 194, 220

mul, 166, 194, 205, 223, 229

mulo, 194

mulou, 194

mult, 95, 179, 194, 220

multu, 179, 194, 220

mulu, 194

neg, 187, 195, 205, 223

negu, 195

o

480 m Index

instructions list (continued)

ngl, 203, 227
nmadd, 167, 205,214, 228
nmsub, 167, 205, 214, 228

nop, 195, 219, 231, 348, 352

nor, 195, 221

not, 195

or, 195, 221

ori, 195,223

pref, 195,215-216, 230

prefx, 195,228

r2u, 195

radd, 195

recip, 166, 205, 225, 226

rem, 196

remu, 196

rfe, 48, 98, 100, 141, 196,
223

rmul, 196

rol, 196

ror, 196

round, 168, 205, 225

rsqrt, 166, 205, 226

rsub, 196

s, 205, 230

sb, 197, 229

se, 108, 197, 210-211, 230

scd, 197, 230

sd, 197, 230

sdbbp, 220

sdbp, 197

sdel, 165, 197, 205, 230

sde2, 230

sdl, 197, 229

sdr, 197, 229

sdxcl, 165, 197, 205, 228

selsl, 197,219

selsr, 197,219

seq, 197

sge, 197

sgeu, 197

sgt, 198

sgtu, 198

sh, 198, 229

sle, 198

sleu, 198

s11, 198, 219

sliv, 198,219

slt, 178, 198,221

slti, 223

sltiu, 198,223
sltu, 178, 198, 221
sne, 198

sqrt, 166, 205, 223
sra, 179, 198,219
srav, 198,219
srl, 179, 199, 219
srlv, 199,219
standby, 199, 223

sub, 166, 199, 205, 221, 223

gsubu, 199, 221
suspend, 199,223

sw, 199, 229

swcl, 164, 199, 205, 230
aswc2, 230

awl, 199, 229

swr, 199, 229

swxel, 165, 199, 228
sync, 199, 216-217, 220
syscall, 48, 199, 220
teq, 199, 221

teqi, 199, 222

tge, 199, 221

tgei, 199, 222

tgeiu, 200, 222

tgeu, 200, 221

t1lbp, 134, 200, 223
£1br, 133, 134, 200, 223
t1lbwi, 133, 200, 223
t1lbwr, 133, 200, 223, 401
t1t, 200, 221

titi, 200, 222

titiu, 200, 222

tltu, 200, 221

tne, 200, 221

tnei, 200, 222

trune, 168, 205, 225
u2r, 200

uld, 200

ulh, 29, 200

ulhu, 201

ulw, 201

usd, 201

ush, 201

usw, 201

waiti, 201, 223

wb, 201, 230

xor, 201, 221

xori, 201,223

integer multiply-accumulate

instructions, 213-214,
236-237

integer multiply, divide, re-

mainder instructions,
234-236

integers

32-bit binary, 313

with explicit rounding, 168

multiplier, 95

multiply/divide trouble, 41
multiply/divide unit, 16, 18,

25-26
registers, 41

integrated 32-bit CPUs, 10
integrated 64-bit CPUs, 10
Intel MMX, 426, 427
interlocKs

avoiding, 396-397
defined, 171

interrupt flags, 388
interrupt masks, 387

adjusting, 48, 387
bits, 102

interrupt priority level ¢IPL),

104, 105

interrupts, 101-109

bit vector of, 387

control of, 43

disabling, 102, 107

enable bit, 102

enabling/disabling,
401-402

floating-point, 157-158

handling, 15, 386

high-IPL, 105

latency, 109

nonmaskable (NMI,, 97

number, 103

priority implementation,
102, 104-106

processing, 103

resources in MIPS CPUs,
102-104

software, bits, 103

software example, 386-388

See also éxceptions

intrhandler(), 386

invalidate, 71

/O controllers
configurable, 326
DMA, 69

1/0O devices, integrated, 331

jal instruction, 190, 222

jalr instruction, 190, 220

j instruction, 190, 222

jr instruction, 190, 219

jump instructions, 14, 47,
239-240

jump optimization, 294

k0, k1 registers, 23, 24, 48
kernel
facilities, 119
mode, 37, 38-39
0s, 119
page table miss, 144
TLB misses, 139, 144
unusual program
conditions for, 91-92
ksegl, 38
kseg?, 38, 134, 138, 340
kseg(), 37-38

labels, 176, 247
la instruction, 178, 191, 251
1b instruction, 191, 229
1bu instruction, 191, 229
1del instruction, 165, 204
1ldc2 instruction, 230
14 instruction, 191, 230
141 instruction, 191, 207, 208,
229
14 program, 421
1dr instruction, 191, 207, 208,
229
ldxc1 instruction, 165, 191,
204, 228
leaf functions, 280
LEAF macro, 246, 279, 280, 371
1h instruction, 191, 229
lhu instruction, 191, 229
libraries, 267
defined, 289
examples, 271
functions, 289

graphics interface, 289
object code, 410
shared, problems, 289-292
Unix-tradition, 410
14 instruction, 191, 204, 251
1 instruction, 204, 230
little-endian, 314, 316
bitfield view, 317
bus, 317
See also endianness
LLAAdr register, 62
11d instruction, 230
11 (load linked) instruction,
108, 192, 210-211, 230
load constant instructions, 232,
241
load delays, 17~18, 41
avoiding, 395-396
hiding, 31
pipeline and, 17
slot, 17-18
loads
partial-register, 179
word size, 206
load/store instructions,
237-239
defined, 163
left, 210
machine, 164
MIPS III ISA, 164-165
MIPS IV ISA, 165
right, 210
load/stores
64-bit, 164
alignment, 14
architecture, 6
unaligned, 28-29, 206-210
loop-closing branches, 35-36
loop optimization, 294-295
low-level atomicity, 108
1ui instruction, 192, 223
1wel instruction, 164, 192, 204
1wc2 instruction, 230
1w instruction, 35, 192, 229
1wl instruction, 192, 229
1wr instruction, 192, 229
1wu instruction, 35, 192, 229
1lwxcl instruction, 165, 192,
228

Index m 481

madd16 instruction, 193, 221
madad instruction, 167, 192,
193, 204, 214, 220, 228
maddu instruction, 192, 193,
221
mad instruction, 192, 214, 229
madu instruction, 192, 229
max instruction, 193
memory
allocation, 115-116, 119
associative, 123
data types in, 27-29
DRAM, 88
floating-point data in, 29
initialization, 334
layout, 302
mapping process addresses
to, 119-120
order, 311
padding in, 310
physical, 138
references, 13
resources for exception
routine, 147
stale data in, 328
system checks, 78
uncached, 71
writing back, in cache, 83
memory management,
115-148
in big computers, 117-123
for BSD UNIX, 115
CPU control registers, 128
hardware. See mem-
ory management unit
(MMU)
in non-unix OS, 147-148
memory management unit
(MMU)
address range extension
and, 116
control, 43, 126-127
control instructions,
133-134
defined, 115
hardware, 331
hiding/protection and, 116

482 m Index

memory management unit
(continued)
memory allocation and,
115-116
memorv map and, 116
paging and, 116
purposes, 115-116
registers, 126-133
relocation and, 115
memory map, 39, 40
64-bit view of, 39
illustrated, 37, 40
pages, 120
for protected process, 118
suiting program, 116
TLB, 135
memory translation, 96
64-bit pointers and,
145-146
exceptions, 91
hardware, 112
setup, 136-138
system illustration, 122
mEcO instruction, 193, 223, 400
mfcl instruction, 41, 165, 193,
204,224
mfc2 instruction, 193, 228
mf£hi instruction, 25, 26, 193,
220,397
mflo instruction, 25, 26, 95,
193, 220, 397
microcomputer without inter-
locked pipeline stages.
See MIPS architecture;
MIPS CPUs
micro-TLB, 402
min instruction, 193
MIPS16, 423425
defined, 423
evaluation, 425
instructions, 423
mode encoding, 424
special encodings and
instructions in, 424
MIPS [architecture, 19
CPU, 32
defined, 19
implementations, 330--331
MIPS II architecture, 19, 32

defined, 19
ISA, 32
MIPS III architecture, 19
64-bit, 32-35
conditional traps, 36
CPU, 20, 32, 39
defined, 19
extended floating point, 36
FP registers, 22, 33
innovations, 35-38
instruction set, 145
loop-closing branches,
35-36
multiprocessor synchro-
nization operations,
" 35
MIPS IV architecture, 19
branch instructions, 160
defined, 19
instruction set, 156, 160
MIPS V, 426429
applications, 428—429
defined, 427
likely success of, 429
MIPS ABJ, 310
applications, 290
binary instruction memory,
291
functions, 291
sharing library code in,
290-292
MIPS architecture, 1942
caches, 5, 63-90
CISC architectures
compared with, 12-18
design origins, 123
exception handling, 15
generations, 19
interrupt handling, 15
memory map, 37, 39
pipelining and, 5-6
range of, 1
simplicity, 1
subroutine support, 15
MIPS CPUs, 7-11
64-bit support, 330
ASIC core, 10
bit numbering and, 323
byte-addressable, 318-319

cache configurations for,
71-73

cache evolution in, 72

cache line size, 330-331

cache management
hardware and, 70

cache size, 330

cache type, 330

clock rate, 112

endianness and, 323

exception entry points, 97

FP hardware, 331

initialization, 334

integer multiply/divide
unit, 16, 18

integrated 32-bit, 10

integrated 64-bit, 10

integrated I/O devices, 331

interrupt resources in,
102-104

kernel mode, 37

milestones, 11

MIPS [, 32

MIPS 111, 20, 32, 39

MMU hardware, 331

privilege state mini-stack,
98

R2000/R3000, 7-8

R4000, 9, 32

R5000, 9-10

R6000, 8

R8000, 10

R10000, 9-10

raw speed, 330

reset-time entry point, 334

size of, 1

starting up, 333-344

ultimate power machine, 10

user mode, 37

write buffer differences, 331

write buffers outside of,-89

MIPS five-stage pipeline, 5-6

defined, 5

illustrated, 5

limitations, 6

pipestages,' 5-6

See also pipelines

MIPS instruction set ar-
chitecture (ISA),
14 ‘
definitions, 32
evolution, 32
MIPS II, 32
MIPS MDMX, 426-429
applications, 428
defined, 426
likely success of, 429
move between registers
instructions, 165~166
conditional, 165-166
defined, 163
between FP registers, 165
between integer and FP
registers, 165
move instruction, 193, 232
movf instruction, 166, 193,
204, 219, 225
mov instruction, 165, 204, 223
movn instruction, 166, 193,
204, 220, 225
movt instruction, 165, 193,
204, 219, 225
movz instruction, 166, 193,
204, 212, 220, 225, 232
msub instruction, 167, 193,
204, 214, 221, 228
mgubu instruction, 193, 221
mtc0 instruction, 194, 223
mtcl instruction, 165, 194,
205, 224
mtc2 instruction, 194, 228
mthi instruction, 26, 194, 220
mt1lo instruction, 26, 194, 220
mul instruction, 166, 194, 205,
223,229
mulo instruction, 194
mulou instruction, 194
muitimedia instructions,
427-428
mult instruction, 95, 179, 194,
220
multiply-add operations,
166-167
defined, 163
list of, 167
multiply-result registers, 25

multiply unit hazards, 396, 397

multiprocessor synchro-
nization operations,
35

multitasking, 117

multu instruction, 179, 194,
220

mulu instruction, 194

n32, 274-277
argument passing, 277
defined, 268
FP register usage, 277
integer register usage
evolution, 276
register use conventions,
275
rules, 274-275
See also calling conventions
né4, 274-277
argument passing, 277
defined, 268
FP register usage, 277
integer register usage
evolution, 276
register use conventions,
275
rules, 274-275
See also calling conventions
NaN (not a number), 152
negative pointers, 302-303
neg instruction, 167, 195, 205,
223
negu instruction, 195
nested exceptions, 92, 100101,
377
deep, 100
defined, 100
See also exceptions
NESTED macro, 279, 287
nested scheduling, 105
ngl instruction, 203, 227
nmadd instruction, 167, 205,
214,228
nm program, 421
nmsub instruction, 167, 205,
214,228
nonblocking load, 85
nonleaf functions, 281-284

Index m 483 -

defined, 281
example, 281-284
nonmaskable interrupt (NMI),
97
nop instruction, 195, 219, 231,
348, 352
nor instruction, 195, 221
not instruction, 195

032, 269, 274-277
defined, 268
FP register usage with, 277 -
integer register usage
evolution, 276
See also calling conventions
objdump! /odump program,
421
object code, 409421
COFF format, 410, 413,
414416
defined, 409
ECOFF format, 413417
elements, 409
ELF format, 410, 417421
library, 410
relocatable files, 410
sections, 409, 411413
segments, 411413
tools, 411, 412, 421
off-chip caches, 69, 72
operating system (OS)
kernel, 119
non-unix, memory
management, 147—-148
real-time, 147-148
optimizations, 293-298
CSE, 294
destructive, limiting,
298-300
function inlining, 295
jump, 294
limits, 297-298
loop, 294-295
pipeline reorganization,
296-297
register allocation, 295-296
strength reduction, 294
unfriendly code, 297
ori instruction, 195, 223

484 m Index

or instruction, 195, 221

padding, 310, 311
PageMask, 124
pageMask register, 127-130
defined, 128
fields, 127
implementation, 130
page sizes and, 130
pages
defined, 120
modified, keeping track of,
145
page table
compatibility with
Xcontext entries,
146
kernel miss, 144
memory-held, 135
size of, 121
paging
demand, 148
MMU and, 116
parity
errors, 92, 96
implementation, 78
passing arguments
floating-point, 272
n32/n64, 277
portability and, 304
for print (), 273
registers for, 269-271
structures and, 271274
variable number, 273-274
See also arguments
per-thread persistent data, 289
physical addresses, 37, 147
physical frame number (PFN),
125,129
physical memory, 138
pipelines, 2-5
branch delays and, 16
bubbles, 4
caching and, 4-5
defined, 2
effective, 4
fish shop example, 3
hazards, 3942
inefficiency of, 3—4

load delays and, 17
MIPS five-stage, 56
reorganization of, 296-297
visible, 171
pipestages
defined, 5
MIPS, 5-6
portability, 301-331
argument passing and, 304
cache management and,
302
choices, 305
data alignment/memory
layout and, 302
defined, 301
endianness and, 302
endianness-independent
code and, 325
functional changes and, 305
golden rules, 305
idealized process, 304-307
include file usage and, 304
library functions and, 304
MIPS problems, 302-304
negative pointers and,
302-303
signed vs. unsigned
characters and, 303
stack programming and,
303
standards, 307-309
timing sequences and, 302
See also C
porting modules, 305-306
decision, 305
recompiling, 306
POSIX standard, 309
#pragma pack(), 311-312
precise exceptions, 93-94
defined, 93
ingredients, 93-94
See also exceptions
pref (prefetch) instruction,
195, 215-216, 230
prefx instruction, 195, 228
PRId register, 49-50, 348
fields, 49
implementation numbers,
49

testing, 111
visibility, 111
See also CPU control'
registers
primary caches, 71
initialization algorithm, 363
invalidating, 361
lines, dirty, 361
size of, 111
See also caches
printf () function, 273, 275,
288
Processor 1D register. See PRIA
register
program addresses, 37, 68, 125
programming
assembler language,
243-266
C, 267-300
stack, 303

QED-designed R5000 chip, 9,
11

r2u instruction, 195
R2000 chip, 7-8
R3000 chip, 7-8
common key fields to
R4000, 50-51
in DECstation, 54
fields in SR register, 52-53
obscure, bits, 53
privilege levels, 54
shared fields with R4000,
51-52
TLB initialization, 136—-137
TLB miss exception handler,
139-141
R3000-style caches, 72, 73-76
cache isolation, 74
D-cache, 109
initializing and sizing, 75
invalidation, 7576
programming, 73-76
swapping, 74
testing and probing, 76
R4000 chip, 9, 32
cache, 362

common key fields to
R3000, 50-51
common SR fields in, 53-55
configuration, 59-62
coprocessor 0 hazards,
398-399
CPU control registers, 45
CPU-dependent fields in,
55
shared fields with R3000,
51-52
special entry points, 141
SR register fields, 142-143
supervisor mode, 54
TagLo/TagHi register, 77,
81
timer, 58-59
TLB initialization, 137
TLB miss exception handler,
141-144
The R4000/R4400 User Manual,
398
R4000-style caches, 76-83
_error handling, 78-79
initialization routines,
81-82
invalidating, 83
programming, 76-83
sizing, 81
R5000 chip, 9-10
~ R6000 chip, 8
R8000 chip, 10
R10000 chip, 9-10
branch predication circuits,
212
debugging, 10
ra register, 21, 23, 25
radd instruction, 195
Random register, 128, 131-132
defined, 128
fields, 131
range, changing, 132
Wired entries and, 136
ranlib program, 421
read-modify-write (RMW),
206
atomic, 35
hardware, 206
sequence, 73

read-only code/data, 289
real-time OSs (RTOSs),
147-148
recip instruction, 166, 205,
225,226
reduced instruction set
computer. See RISC
architecture
register-length operations, 373
registers, 21-25
a0-a3, 23,24
allocation, 295-296
at, 23-24
Badvaddr, 56, 125
Cause, 48, 51, 55-56, 103
Compare, 59
compiler, 296
Config, 47, 53, 58, 59-62,
81
Context, 126, 128,
132-133, 135
conventional names of, 23
Count, 58
CPU control, 44, 45
data types in, 27-29
EntryHi/EntryLo,
127-130, 134
EPC, 47, 48, 56, 94
ERR, 79
FCRO, 162163
FCR31, 159-162
floating-point, 22, 41, 111,
157-158, 270
£p, 23, 25, 284, 287
general-purpose, 22-25
g, 23, 24, 292, 379
Index, 128, 131
integer, 41
integer multiply unit and,
25-26
k0, k1, 23, 24, 47, 48
LLAAAr, 62
MMU, 126-133
multiply-result, 25
naming conventions, 176
PageMask, 127
for passing arguments,
269-271
PRIA, 49-50, 348

Index W 485

ra, 21, 23,25
Random, 128, 131-132
as returning structures, 274
80-s8, 23, 24
8D, 23, 24, 269, 284, 287
SR, 47, 48, 5055, 142, 380,
381, 402
T t0-t9, 23,24
TagLo/TagHi, 77, 81
temporary, 296
use standards, 274-278
vo0,vl, 23, 24
WatchLo/WatchHi, 62
watchpoint, 338
Wired, 132, 136
Xcontext, 126, 128,
132-133, 135
zero, 21,22,23
reimplementation modules,
305, 306
relocatable object files, 410
rem instruction, 196
remu instruction, 196
reset
cold, 97
CPU response to, 109
DRAM system, 340
normal operations and, 109
soft, 340
types of, 340
rfe instruction, 48, 98, 100,
141, 196, 223
RISC architecture, 1, 7
rmul instruction, 196
rol instruction, 196
ROMmable programs, 253, 254
ror instruction, 196
round instruction, 168, 205,
225
rsqrt instruction, 166, 205,
226
rsub instruction, 196
run-time emulation, 173

s0—s8 regisfers, 23, 24
saturating arithmetic, 426
scd instruction, 197, 230

486 ®m Index

sc (store conditional) instruc-
tion, 108, 197, 210-211,
230
sdbbp instruction, 220
sdbp instruction, 197
sdc1 instruction, 165, 197,
205, 230
sdc2 instruction, 230
ad instruction, 197, 230
ed1 instruction, 197, 229
sdr instruction, 197, 229
gdxcl instruction, 165, 197,
205, 228
secondary caches, 71
aliases and, 90
data lines, filling, 361
invalidating, 361
off-chip, 69
See also caches
sections, 411413
defined, 409
large, 411
names, 411
See also object code
segments, 411-413
selsl instruction, 197,219
gelsr instruction, 197, 219
semaphores, 107-109
defined, 107
values, 107
seq instruction, 197
. set directives, 262-265
age instruction, 197
sgeu instruction, 197
SGI assembly language
directives, 265-266
sgt instruction, 198
sgtu instruction, 198
sh instruction, 198, 229
sign extension, 179
single instruction multiple data
(SIMD), 426
single precision floating point,
154-155
s instruction, 205, 230
STZE_CACHE () macro, 350
size program, 421
sle instruction, 198
sleu instruction, 198

sll instruction, 198, 219
sllv instruction, 198,219
slti instruction, 223
slt instruction, 178, 198, 221
sltiu instruction, 198,223
sltu instruction, 178, 198, 221
sne instruction, 198
snoopy cache controller, 70
soft-float emulation, 172-173
software examples, 333-393
MIPS cache management,
344-369
MIPS exception handling,
369-386
MIPS interrupts, 386388
starting up MIPS, 333344
tuning for MIPS, 388-393
source-level debugger, 409
sp register, 23, 24, 269, 284,
287
special symbols, 256
sqrt instruction, 166, 205, 223
SR register, 47, 48, 50-55, 380,
381,402
bit setting/clearing and, 105
common fields in R4x00
CPUs, 53-55
exception fields, 142
fields, 50
following reset, 75
guarantees, 109
initializing, 172
R3000-specific fields in,
52-53
R4000, 142-143
See also CPU control
registers
sra instruction, 179, 198, 219
srav instruction, 198, 219
srl instruction, 179, 199, 219
srlv instruction, 199, 219
stack, 117-118
argument structure, 269
extendable, 147
layout, 278-279
locations, 281
maintenance registers, 284
memory allocation, 119
programming, 303

stack frame, 278-279
£p-based, 286
minimal, 279
for nonleaf function, 278
pointers, 284288
with separate frame pointer
register, 285
size calculation, 282
standby instruction, 199, 223
startup, 109-111
application, 113
sequence, 110-111
static transient data, 289
Status Register. See SR register
stdarg.h macro package, 288
stremp() function, 243244
strength reduction, 294
strip program, 421
strongly ordered, 216
structures
base address, alignment,
310
layout, 310
passing, 271-274
returning, functions as, 274
sub-block order, 85
sub instruction, 166, 199, 205,
221,223
subroutine
call instructions, 239-240
linkage, 268269
support, 15
subu instruction, 199, 221
subword arithmetic, 297
suspend instruction, 199, 223
swcl instruction, 164, 199,
205, 230
swc2 instruction, 230
sw instruction, 199, 229
swl instruction, 199, 229
swr instruction, 199, 229
swxcl instruction, 165, 199,
228 ’
symbols
binding attributes of,
258-260
exte,rnal, 259
global, 259
local, 259

special, 256
visibility levels, 238-259
weak global, 259
symbol table, 409
svnchronous DRAM
(SDRAM), 83
sync instruction, 199,
216~217, 220
syscall instruction, 48, 199,
220
system calls, 92

t0-t9 registers, 23, 24
TagLo/TagHi register, 77, 81
teqi instruction, 199, 222
teq instruction, 199, 221
test-and-set process, 108
test instructions, 170~171
EP, 170
timing, 171
tgei instruction, 199, 222
tge instruction, 199, 221
tgeiu instruction, 200, 222
tgeu instruction, 200, 221
thrashing, 86
avoiding, 87
losses, 86
three-operand arithmetic
operations
added in MIPS 11, 166
added in MIPS 1V, 166
defined, 163
in ISA versions, 166
two-operand, 177
timing sequences, 302
TLB, 115-148
cache control, 125
defined, 122
entries, 123
entry fields, 124
exception sample code,
138-144
facts, 123-126
fully associative, 124
initialization, 110
process, 138
R3000, 136~137
R4000, 137
key, 124

memory mapping, 135
micro, 402
physical frame number
(PEN), 125
programming, 134-136
shutdown, 110
use of, 146-147
valid bit, 125
write control bit, 125
TLB misses
caused by privileged-access
addresses, 139
defined, 101-102
exception, 98
handler, 99
kernel, 139, 144
UTLB exception, 140
XTLB exception, 144
See also exceptions
t1bp instruction, 134, 200, 223
TLB refill, 123, 139
of 64-bit address spaces, 96
processing, 139
trap, 126
of user-privilege address, 96
t1br instruction, 133, 134,
200, 223
tlbwi instruction, 133, 200,
223
t1bwr instruction, 133, 200,
223, 401
tlti instruction, 200, 222
tlt instruction, 200, 221
tltiu instruction, 200, 222
t1ltu instruction, 200, 221
tnei instruction, 200, 222
tne instruction, 200, 221
tools, object code, 411, 412,
421
translation lookaside buffer.
See TLB; TLB misses
traps, 92, 157
FPA, 157, 161
instructions, 240
unimplemented, 157
trunc instruction, 168, 205,
225
tuning for MIPS, 388-393

Index m 487

two-way set-associative caches,
66

u2r instruction, 200
uld instruction, 200
ulh instruction, 29, 200
ulhu instruction, 201
ulw instruction, 201
unaligned data, 206
unary (sign changing)
operations, 167, 249

defined, 164

list of, 167
uad instruction, 201
user mode, 37, 38-39
user space, 118, 119
ush instruction, 201
usw instruction, 201

v0, v1 registers, 23, 24
virtual addresses, 68, 121, 138
virtual page number (VPN),
121

defined, 120

VPN2, 124, 127
visible pipelining, 171
volatile keyword, 299

waiti instruction, 201, 223
WatchLo/WatchHi registers, 62
watchpoint, 62
wbflush() routine, 331
wb instruction, 201, 230
Wired register, 132, 136
wiring
big-endian CPU to
little-endian bus, 321
connection between
opposite-endian camps,
320
endianness-configurable
connection, 320-322
word coprocessor, 44
write allocate, 67, 68
write back, 70
write-back caches, 67-68, 76
write buffers, 67, 87-89
defined, 88
differences, 331

488 W Index

write buffers (continued)
outside CPU, 89
programmers and, 88-89
write posting, 89
write priority, 89
write-through caches, 66-67,
87,327

Xcontext register, 126, 128,
132-133
defined, 128

field descriptions, 132-133
fields, 132
for immediate entry access,
135
page table compatibility,
146
xcptaction structure, 370
xcption
assembler code, 372-386
C interface code, 370-371
defined, 369

low-level module, 371-386

nonzero value return, 387

programmers and, 369-370
xori Instruction, 201, 223
xor instruction, 201, 221
XTLB miss handler, 144

zero register, 21, 22, 23

zero extension, 179

e

	Cover
	Foreword
	Contents
	Preface
	1. RISCs and MIPS
	2. MIPS Architecture
	Index

