
BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

1 of 7 04/18/09 15:39

BeagleBoardNAND

From eLinux.org

This page is about using (booting/running from) NAND
(http://en.wikipedia.org/wiki/Flash_Memory#NAND_flash) memory on BeagleBoard. Parts of
this page are inspired by Steve's flash procedure
(http://www.sakoman.net/omap3/flash%20procedure.txt) document.

Contents

1 Hardware
2 Software

2.1 X-Loader
2.2 U-Boot
2.3 Kernel

2.3.1 Writing kernel with U-Boot
2.3.2 Writing kernel with kernel

2.4 File system
2.4.1 Writing file system with U-Boot
2.4.2 Writing file system with kernel

Hardware

OMAP3530 has 256MB NAND flash in PoP (PoP: Package-On-Package implementation for
Memory Stacking) configuration.

BeagleBoard has 256MB of Micron NAND
EVM (http://focus.ti.com/docs/toolsw/folders/print/tmdxevm3503.html) 128MB of Samsung
OneNAND or 128MB of Micron NAND
Zoom MDK (http://www.logicpd.com/products/devkit/ti/zoom_mobile_development_kit)
also uses the Micron NAND

Software

The following software parts can be stored and booted/run from NAND:

X-Loader
U-Boot (+ environment/configuration data)
Linux kernel
Linux file system

The memory partitioning for this as used on BeagleBoard:

0x00000000-0x00080000 : "X-Loader"
0x00080000-0x00260000 : "U-Boot"
0x00260000-0x00280000 : "U-Boot Env"
0x00280000-0x00680000 : "Kernel"
0x00680000-0x10000000 : "File System"

BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

2 of 7 04/18/09 15:39

To be able to write something to (empty) NAND, you first need to boot from an other source,
e.g. MMC/SD card boot. Besides the files you need for MMC/SD card boot (MLO & U-Boot), put
the files you want to flash into first FAT partition of MMC/SD card, too. Then you can read them
from there and write them to NAND.

Note: If something goes wrong writing the initial X-Loader, your board might not boot any more
without pressing the user button. See BeagleBoard recovery article how to fix this, then.

X-Loader

Build (http://code.google.com/p/beagleboard/wiki/BeagleSoftCompile) or download binary
(http://code.google.com/p/beagleboard/downloads/list) (x-load.bin.ift_for_NAND) X-Loader. Put
it at first (boot) FAT partition of MMC/SD card and boot from card. Then start boot from card
and use the following to write X-Loader to NAND:

Note: The command nandecc hw is essential here! X-Loader is started by OMAP3 boot rom. This
uses HW ECC while reading the NAND, so while writing, we have to use OMAP3 HW ECC, too.
If you don't use HW ECC boot rom can't boot from NAND any more.

...40T.......

Texas Instruments X-Loader 1.41
Starting on with MMC
Reading boot sector

147424 Bytes Read from MMC
Starting OS Bootloader from MMC...

U-Boot 1.3.3-00411-g76fe13c-dirty (Jul 12 2008 - 17:12:05)

OMAP3530-GP rev 2, CPU-OPP2 L3-165MHz
OMAP3 Beagle Board + LPDDR/NAND
DRAM: 128 MB
NAND: 256 MiB
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0

OMAP3 beagleboard.org # mmcinit
OMAP3 beagleboard.org # fatload mmc 0:1 80000000 x-load.bin.ift_for_NAND
reading x-load.bin.ift_for_NAND

9808 bytes read
OMAP3 beagleboard.org # nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
OMAP3 beagleboard.org # nandecc hw
OMAP3 beagleboard.org # nand erase 0 80000

NAND erase: device 0 offset 0x0, size 0x80000
Erasing at 0x60000 -- 100% complete.
OK
OMAP3 beagleboard.org # nand write 80000000 0 80000

NAND write: device 0 offset 0x0, size 0x80000
524288 bytes written: OK
OMAP3 beagleboard.org #

BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

3 of 7 04/18/09 15:39

U-Boot

Build (http://elinux.org/BeagleBoard#U-Boot) or download binary
(http://code.google.com/p/beagleboard/downloads/list) (flash-uboot.bin) U-Boot. Put it at first
(boot) FAT partition of MMC/SD card and boot from card. Then start boot from card and use the
following to write U-Boot to NAND:

Note: You can use the same u-boot.bin you use to boot from MMC/SD card for NAND. There are
no differences between U-Boot used for MMC/SD card boot and NAND boot.

Note: Here, you don't need the nandecc hw option. X-Loader which loads & starts U-Boot is able
to understand SW ECC written by U-Boot.

Kernel

While X-Loader and U-Boot can be written only by U-Boot, for kernel and file system there are
two ways to write them to NAND: Either by U-Boot (similar way as for X-Loader and U-Boot
above) or from running kernel (e.g. booted from MMC card).

Note: X-Loader and U-Boot can't be written from already running kernel, too, because from
kernel point of view X-loader and U-Boot NAND partitions are marked as write only. See
omap3beagle_nand_partitions[] configuration structure in kernel's arch/arm/mach-omap2
directory.

Writing kernel with U-Boot

OMAP3 beagleboard.org # mmcinit
OMAP3 beagleboard.org # fatload mmc 0:1 80000000 u-boot.bin
reading u-boot.bin

147424 bytes read
OMAP3 beagleboard.org # nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
OMAP3 beagleboard.org # nandecc sw
OMAP3 beagleboard.org # nand erase 80000 160000

NAND erase: device 0 offset 0x80000, size 0x160000
Erasing at 0x1c0000 -- 100% complete.
OK
OMAP3 beagleboard.org # nand write 80000000 80000 160000

NAND write: device 0 offset 0x80000, size 0x160000
 1441792 bytes written: OK
OMAP3 beagleboard.org #

BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

4 of 7 04/18/09 15:39

Once you did this, use U-Boot commands to boot kernel (uImage) from NAND:

These, you can e.g. store as bootcmd and your board will automagically boot uImage from
NAND.

Writing kernel with kernel

Once you have a kernel booted, e.g. from MMC card, you can use it to write himself (uImage) to
NAND and then switch from MMC boot to kernel NAND boot. For this, observe kernel's boot
messages. These should have something like

At kernel's prompt command cat /proc/mtd will give you similar output:

While the first three partitions (X-Loader, U-Boot and U-Boot Env) are read only from kernel
point of view, Kernel and File System partition can be written by kernel itself. To do this, you
need MTD User modules (http://www.linux-mtd.infradead.org/doc/general.html) in your kernel's

OMAP3 beagleboard.org # mmcinit
OMAP3 beagleboard.org # fatload mmc 0:1 80000000 uImage
reading uImage

OMAP3 beagleboard.org # nandecc sw
OMAP3 beagleboard.org # nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size 0x400000
Erasing at 0x660000 -- 100% complete.
OK
OMAP3 beagleboard.org # nand write 80000000 280000 400000

NAND write: device 0 offset 0x280000, size 0x400000
 4194304 bytes written: OK
OMAP3 beagleboard.org #

nand read 80000000 280000 400000 ; bootm 80000000

...
omap2-nand driver initializing
NAND device: Manufacturer ID: 0x2c, Chip ID: 0xba (Micron NAND 256MiB 1,8V 16-bit)
cmdlinepart partition parsing not available
Creating 5 MTD partitions on "omap2-nand":
0x00000000-0x00080000 : "X-Loader"
0x00080000-0x00260000 : "U-Boot"
0x00260000-0x00280000 : "U-Boot Env"
0x00280000-0x00680000 : "Kernel"
0x00680000-0x10000000 : "File System"
...

root@beagleboard:~# cat /proc/mtd
dev: size erasesize name
mtd0: 00080000 00020000 "X-Loader"
mtd1: 001e0000 00020000 "U-Boot"
mtd2: 00020000 00020000 "U-Boot Env"
mtd3: 00400000 00020000 "Kernel"
mtd4: 0f980000 00020000 "File System"

BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

5 of 7 04/18/09 15:39

root file system.

In this example we mount boot (FAT) partition of MMC card (using a dual boot card) to read
kernel image (uImage) from. If you have network connection in your kernel, you can use this,
too. Or you put uImage in your root file system. Goal is to have access to uImage from running
kernel to be able to write it to NAND.

File system

As with kernel, while X-Loader and U-Boot can be written only by U-Boot, for file system there
are two ways to write them to NAND: Either by U-Boot (similar way as for X-Loader and U-Boot
above) or from running kernel (e.g. booted from MMC card). A lot of users report they have
issues with writing (root) file system with U-Boot. Main issue is that U-Boot has to write file
system exactly in format kernel expects. If there are minor incompatibilities, kernel will later
not be able to read file system written by U-Boot.

So, while we document here how to write file system with U-Boot, recommended way is to
write (root) file system by kernel itself. With this, it is ensured that kernel writes a file system it
will later be able to read.

Writing file system with U-Boot

This way is not recommended. See above.

root@beagleboard:~# mkdir -p /mnt/fat
root@beagleboard:~# mount /dev/mmcblk0p1 /mnt/fat/
root@beagleboard:~# ls -la /mnt/fat
-rwxr-xr-x 1 root root 16740 Jul 7 17:28 mlo
-rwxr-xr-x 1 root root 717116 Jul 24 2008 u-boot.bin
-rwxr-xr-x 1 root root 2106940 Jul 26 2008 uImage
root@beagleboard:~# cp /mnt/fat/uImage .
root@beagleboard:~# ls -la
-rwxr-xr-x 1 root root 2106940 Jul 22 00:30 uImage
root@beagleboard:~# flash_eraseall /dev/mtd3
Erasing 128 Kibyte @ 3e0000 -- 96 % complete.
root@beagleboard:~# nandwrite /dev/mtd3 uImage
Input file is not page aligned
Data did not fit into device, due to bad blocks
: Success
root@beagleboard:~#

BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

6 of 7 04/18/09 15:39

For more info see Steve's flash procedure
(http://www.sakoman.net/omap3/flash%20procedure.txt) .

Writing file system with kernel

This is the recommended way. See above.

First, we boot kernel with (root) file system on SD card, write (root) file system using file system
image at SD card to Beagle's NAND with running kernel. After this is done, we switch kernel's
boot arguments to take root file system from NAND instead of SD card, then.

To be able to manipulate/erase/write NAND from kernel's user space, we need MTD
(http://www.linux-mtd.infradead.org/) Utils (e.g. flash_eraseall).

If you don't have them already, you can get them

using the angstrom demo, you can install via

cross compiling them your self (good cross compile exercise)

For file system in Beagle's NAND, we use JFFS2 (http://sourceware.org/jffs2/) . As JFFS2 is part
of the standard git kernel, only thing is to configure kernel to be able to use JFFS2 is to enable
in make menuconfig (check if already enabled):

Having kernel supporting JFFS2 and MTD Utils, we now first erase file system partition and

OMAP3 beagleboard.org # mmcinit
OMAP3 beagleboard.org # fatload mmc 0:1 80000000 rootfs.jffs2
reading rootfs.jffs2

12976128 bytes read
OMAP3 beagleboard.org # nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
OMAP3 beagleboard.org # nandecc sw
OMAP3 beagleboard.org # nand erase 680000 F980000

NAND erase: device 0 offset 0x680000, size 0xf980000
Erasing at 0xffe0000 -- 100% complete.
OK
OMAP3 beagleboard.org # nand write.jffs2 80000000 680000 ${file_size}

NAND write: device 0 offset 0x680000, size 0xc60000

Writing data at 0x12df800 -- 100% complete.
 12976128 bytes written: OK
OMAP3 beagleboard.org #

opkg install mtd-utils

CONFIG_JFFS2_FS=y
CONFIG_JFFS2_FS_DEBUG=0
CONFIG_JFFS2_FS_WRITEBUFFER=y
CONFIG_JFFS2_ZLIB=y
CONFIG_JFFS2_RTIME=y

BeagleBoardNAND - eLinux.org http://elinux.org/BeagleBoardNAND

7 of 7 04/18/09 15:39

create JFFS2 into it:

Then, we can mount "File system" partition:

and extract the root file system image to it:

Now, you should reboot your board and edit bootargs in U-Boot to configure root fs in NAND:

Retrieved from "http://elinux.org/BeagleBoardNAND"

Categories: Linux | OMAP

This page was last modified 23:28, 6 January 2009.
This page has been accessed 8,252 times.
Content is available under GNU Free Documentation License 1.2.
Privacy policy
About eLinux.org
Disclaimers

root@beagleboard:~# cat /proc/mtd
dev: size erasesize name
mtd0: 00080000 00020000 "X-Loader"
mtd1: 001e0000 00020000 "U-Boot"
mtd2: 00020000 00020000 "U-Boot Env"
mtd3: 00400000 00020000 "Kernel"
mtd4: 0f980000 00020000 "File System"
root@beagleboard:~# flash_eraseall -j /dev/mtd4
Erasing 128 Kibyte @ f960000 -- 99 % complete. Cleanmarker written at f960000.

root@beagleboard:~# cd /mnt
root@beagleboard:~# mkdir nand
root@beagleboard:~# mount -t jffs2 /dev/mtdblock4 /mnt/nand

root@beagleboard:~# cd nand
root@beagleboard:~# tar xfz <where_ever_your_root_fs_image_is_at_sd_card>/rootfs.tar.gz .
... wait ...
root@beagleboard:~# cd ..
root@beagleboard:~# sync
root@beagleboard:~# umount nand

... root=/dev/mtdblock4 rootfstype=jffs2 ...

