

- 1 -

NEON support in the RealView compiler
William Munns
18 June 2007

Introduction
This paper provides a simple introduction to the NEONTM Vector-SIMD architecture. It
continues by looking at the compiler support for SIMD, both through automatic recognition
and through the use of intrinsic functions.

NEON is a hybrid 64/128 bit SIMD architecture extension to the ARM v7-A profile,
targeted at multimedia applications. Positioning NEON within the processor allows it to
share the CPU resources for integer operation, loop control, and caching, significantly
reducing the area and power cost compared with a CPU plus hardware accelerator
combination. SIMD (Single Instruction Multiple Data) is where one instruction acts on
multiple data items, usually carrying out the same operation for all data.

The use of NEON instead of a CPU plus hardware accelerator combination allows savings
to be made in software development time as it creates a much simpler programming model
without forcing the programmer to search for ad-hoc concurrency and scheduling points.

On the ARM Cortex™-A8 the NEON unit is positioned in the pipeline so that loads can
come directly from the L2 cache. This means that a much larger dataset can be held in the
cache than would be allowed when executing ARM or Thumb®-2 code.

The NEON instruction set was designed to be an easy target for a compiler, including low
cost promotion/demotion and structure loads capable of accessing data from their natural
locations rather than forcing alignment to the vector size.

The RealView Development Tools® Suite version 3.1 supports NEON both in the standard
release using intrinsic functions and assembler, as well as through the vectorizing compiler
add-on which can recognise code sequences and automatically generate SIMD code. The
vectorizing compiler greatly reduces porting time, as well as reducing the requirement for
deep architectural knowledge.

© 2007 ARM Limited. All Rights Reserved.
ARM and RealView logo are registered
trademarks of ARM Ltd. All other trademarks
are the property of their respective owners and
are acknowledged

- 2 -

Overview of NEON Vector SIMD

SIMD is the name of the process for operating on multiple data items in parallel using the
same instruction. In the NEON extension, the data is organized into very long registers (64
or 128 bits wide). These registers can hold "vectors" of items which are 8, 16, 32 or 64 bits.

The traditional advice when optimizing or porting algorithms written in C/C++ is to use the

natural type of the machine for data handling (in the case of ARM 32 bits). The unwanted
bits can then be discarded by casting and/or shifting before storing to memory. The ability
of NEON to specify the data width in the instruction and hence use the whole register
width for useful information means keeping the natural type for the algorithm is both
possible and preferable. Keeping with the algorithms natural type reduces the cost of
porting an algorithm from one architecture to another and allows more data items to be
simultaneously operated on.

NEON appears to the programmer to have two banks of registers, 64 bit D registers and
128 bit Q registers. In reality the D and Q registers alias each other, so the 64 bit registers
D0 and D1 map against the same physical bits as the register Q0.

When an operation is performed on the registers the instruction specifies the layout of the
data contained in the source and, in certain cases, destination registers.

4 x 32 bit Data

8 x 16 bit Data

16 x 8 bit Data

128 bit Q register

- 3 -

Example: Add together the 16 bit integers stored in the 64 bit vector D2 and 64 bit vector
D1 storing the resultant items in the 64 bit register D0

VADD.I16 D0, D1, D2 This instruction will cause four 16 bit adds

Promotion/demotion of types
Promotion/demotion of types is a very common operation in C. Casting to larger types can
be used to avoid overflow or increase precision. Shifting into smaller types allows
compatibility at interfaces or reduced memory usage. In contrast with some other SIMD
architectures, NEON provides compound operations which combine type promotion with
arithmetic operations. This allows NEON code to make better use of the register file and
use fewer instructions.

Example: Multiply together the 16 bit integers stored in the 64 bit vectors D2 and D3
storing the resultant items in the 128 bit register Q0

VMUL.I32.S16 Q0, D2, D3 This instruction will cause four widening multiplies

Example: Shift right by #5 the four 32 bit integers stored in 128 bit vector Q1, truncate to
16 bits and store the resultant 16 bit integers in 64 bit register D0

VSHR.I16.I32 D0, Q1,#5 This instruction will cause four narrowing shifts

+ ++ +

D1

D2

D0

* * * *

D2

D3

Q0

D

#
>> >> >> >>

Q1

D0

#5

- 4 -

 Structure load and store operations
Often items are not held in memory as simple arrays, but rather arrays of structures for
logically grouped data items.

For example it is common to find a screen represented as an array of structures of pixels
rather than split into three arrays of red, green and blue items. Storing all components of
pixel data together allows faster operation for common operations such as colour
conversion or display, however it can cause difficulties for some SIMD implementations.

The NEON unit includes special structure load instructions which can load whole
structures and spilt them accordingly across multiple registers.

Example: Load 12 16 bit values from the address stored in R0, and split them over 64 bit
registers D0, D1 and D2. Update R0 to point at next structure.

VLD3.16 {D0,D1,D2}, [R0]!

Structure load and store better matches how engineers write code, so code usually does not
need to be rewritten to take advantage of it.

struct rgb_pixel
{

short r; /* Red */
short g; /* Green */
short b; /* Blue */

}s[X_SIZE*Y_SIZE]; /* screen */

- 5 -

Writing NEON code using the standard RealView compiler

The standard tools shipped with RealView Development Suite 3.1 have support for NEON
directly in the assembler and embedded assembler. The compiler also provides NEON
support using pseudo functions called intrinsics. Intrinsic functions compile into one or
more NEON instructions which are inserted at the call site. There is at least one intrinsic
for each NEON instruction, with multiple intrinsic functions where needed for signed and
unsigned types.

Using intrinsics, rather than programming in assembly language directly, allows the
compiler to schedule registers, as well as giving the programmer easy access to C variables
and arrays.

Using vector registers directly from assembler could lead to programming errors such as a
64 bit vector containing data of 8 bits wide is operated upon by a 16 bit adder. These kind
of faults can be very difficult to track down as only particular corner cases will trigger an
erroneous condition. In the previous addition example, the output will only differ if one of
the data items overflows into another. Using intrinsics is type-safe and will not allow
accidental mixing of signed/unsigned or differing width data.

Accessing vector types from C
The header file arm_neon.h is required to use the intrinsics and defines C style types for
vector operations. The C types are written in the form :

uint8x16_t Unsigned integers, 8 bits, vector of 16 items - 128 bit “Q” register
int16x4_t Signed integers, 16 bits, vector of four items - 64 bit "D" register

As there is a basic incompatibility between scalar (ARM) and vector (NEON) types it is
impossible to assign a scalar to a vector, even if they have the same bit length. Scalar
values and pointers can only be used with NEON instructions that use scalars directly.

Example: Extract an unsigned 32 bit integer from lane 0 of a NEON vector

result = vget_lane_u32(vec64a, 0)

Vector types are not operable using standard C operators except for assignment, so the
appropriate VADD should be used rather than the operator “+”.

Where there are vector types which differ only in number of elements (uint32x2_t,
uint32x4_t) there are specific instructions to ‘assign’ the top or bottom vector elements of a
128 bit value to a 64 bit value and vice-versa. This operation does not use any code space
as long as the registers can be scheduled as aliases.

Example: Use the bottom 64 bits of a 128 bit register

vec64 = vget_low_u32(vec128);

- 6 -

Access to NEON instructions using C
To the programmer intrinsics look like function calls. The function calls are specified to
describe the target NEON instruction as well as information about the source and
destination types.

Example: To add two vectors of 8 bytes, putting the result in a vector of 8 bytes requires
the instruction

VADD.I8 dx, dy, dz

Which can be provoked by using either of the following intrinsic functions

int8x8_t vadd_s8(int8x8_t a, int8x8_t b);
uint8x8_t vadd_u8(uint8x8_t a, uint8x8_t b);

The use of separate intrinsics for each type means that it is difficult to accidentally perform
an operation on incompatible types because the compiler will keep track of which types are
held in which registers. The compiler can also reschedule program flow and use alternative
faster instructions; there is no guarantee that the instructions that are generated will match
the instructions implied by the intrinsic. This is especially useful when moving from one
micro-architecture to another.

Programming using NEON intrinsics

The process of writing optimal NEON code directly in the assembler or by using the
intrinsic function interface requires a deep understanding of the data types used as well as
the NEON instructions available.

Possible SIMD operations become more obvious if you look at how an algorithm can be
split into parallel operations.

Commutative operations (add, min, max) are particularly easy from a SIMD point of view.

Example: Add 8 numbers from an array

unsigned int acc=0;
for (i=0; i<8;i+=1)
{
 acc+=array[i]; // a + b + c + d + e + f + g + h
}

could be split into several adds ((a+e) + (b+f))+((c+g) + (d+h))

and recoded in C as:

Continued on next page…

- 7 -

unsigned int acc1=0;
unsigned int acc2=0;
unsigned int acc3=0;
unsigned int acc4=0;
for (i=0; i<8;i+=4)
{
 acc1+=array[i]; // (a, e)
 acc2+=array[i+1]; // (b, f)
 acc3+=array[i+2]; // (c, g)
 acc4+=array[i+3]; // (d, h)
}
acc1+=acc2; // (a+e) + (b+f)
acc3+=acc4; // (c+g) + (d+h)
acc1+=acc3; // ((a+e) + (b+f))+((c+g) + (d+h))

It should be more apparent now that we could use a vector register holding four 32 bit
values for the accumulator and temp registers then do the operation using SIMD
instructions. Now extending for any multiple of four:

#include <arm_neon.h>
uint32_t vector_add_of_n(uint32_t* ptr, uint32_t items)
{
 uint32_t result,* i;
 uint32x2_t vec64a, vec64b;
 uint32x4_t vec128 = vdupq_n_u32(0); // clear accumulators

 for (i=ptr; i<(ptr+(items/4));i+=4)
 {
 uint32x4_t temp128 = vld1q_u32(i); // load 4x 32 bit values
 vec128=vaddq_u32(vec128, temp128); // add 128 bit vectors
 }

 vec64a = vget_low_u32(vec128); // split 128 bit vector
 vec64b = vget_high_u32(vec128); // into 2x 64 bit vectors

 vec64a = vadd_u32 (vec64a, vec64b); // add 64 bit vectors together

 result = vget_lane_u32(vec64a, 0); // extract lanes and
 result += vget_lane_u32(vec64a, 1); // add together scalars
 return result;
}

The vget_high_u32 and vget_low_u32 are not analogous to any NEON
instruction, but instruct the compiler to reference the Q register used to store vec128 as
two separate 64 bit D registers.

These operations therefore do not translate into actual code, but will have an effect on
which registers are used to store vec64a and vec64b.

- 8 -

Depending on the version of the compiler, target processor and optimization options, the
code generated becomes:

vector_add_of_n PROC
 VMOV.I8 q0,#0
 BIC r1,r1,#3
 ADD r1,r1,r0
 CMP r1,r0
 BLS |L1.36|
 |L1.20|
 VLD1.32 {d2,d3},[r0]!
 VADD.I32 q0,q0,q1
 CMP r1,r0
 BHI |L1.20|
 |L1.36|
 VADD.I32 d0,d0,d1
 VMOV.32 r1,d0[1]
 VMOV.32 r0,d0[0]
 ADD r0,r0,r1
 BX lr
 ENDP

- 9 -

Generating NEON code using the vectorizing compiler

The vectorizing compiler is available as an add-on to ARM’s RealView Development Suite
version 3.1. The vectorizing compiler uses supercomputer compiler techniques to evaluate
vectorizable loops and potential SIMD applications.

The compiler optimizes more efficiently with readable C/C++. Although it can generate
some SIMD code without source modification, certain coding styles can promote more
optimal output. Where the vectorizer finds code with potential SIMD opportunities but
does not have enough information it can generate a ‘remark’ to the user to prompt changes
to the source code that can provide more useful information.

Although these modifications help the vectorizing compiler they are all standard C notation
and will allow recompilation with any C99* compliant compiler.

*C99 required for parsing of keyword “restrict”. In other compilation modes, armcc
also allows the use of the equivalent ARM-specific extension “__restrict”.

Compiler command line options
With the vectorizing add-on installed the compiler can be told to generate SIMD code
simply by switching “vectorize” on the command line.

SIMD code is usually bigger than the equivalent ARM code due to array cleanup and other
issues (see later), and the CPU should be set to a processor which has NEON hardware (at
the time of writing the Cortex-A8 is the only supported processor)

To generate fast SIMD code you should use the command line:

 armcc --cpu=Cortex-A8 -O3 -Otime --vectorize ...

Without an installation of the vectorizing add-on this command will respond with an error
message.

- 10 -

Using the vectorizing compiler on the addition example
Keeping with the vector add example from page 7 we can write the code in standard C
much more succinctly:
/* file.c */
unsigned int vector_add_of_n(unsigned int* ptr, unsigned int items)
{
 unsigned int result=0;
 unsigned int i;
 for (i=0; i<(items*4);i+=1)
 {
 result+=ptr[i];
 }
 return result;
}
Note: By using (items*4) we are telling the compiler that the size of the array is a
multiple of four. Although this is not required for the vectorizer to create SIMD code, it
provides the compiler with extra information about the array. In this case it knows the array
can be consumed with vector arrays and does not require any extra scalar code to handle
the cleanup of any ‘spare’ items.

Compile: “armcc --cpu=Cortex-A8 -O3 –c -Otime –-vectorize file.c”
Viewing the generated code with: “fromelf –c file.o”

vector_add_of_n PROC
 LSLS r3,r1,#2
 MOV r2,r0
 MOV r0,#0
 BEQ |L1.72|
 LSL r3,r1,#2
 VMOV.I8 q0,#0
 LSRS r1,r3,#2
 BEQ |L1.48|
|L1.32|
 VLD1.32 {d2,d3},[r2]!
 VADD.I32 q0,q0,q1
 SUBS r1,r1,#1
 BNE |L1.32|
|L1.48|
 CMP r3,#4
 BCC |L1.72|
 VADD.I32 d0,d0,d1
 VPADD.I32 d0,d0,d0
 VMOV.32 r1,d0[0]
 ADD r0,r0,r1
|L1.72|
 BX lr

This disassembly generated is different to the earlier intrinsic function example; the main
reason behind this is that the hand coded example misses the important corner case
where the array is zero in length.

- 11 -

Although the code is longer than the handwritten example the key parts of the routine (the
inner loop) are the same length and contain the same instructions, this means that the time
difference for execution is trivial when the dataset becomes reasonable in size.

Issues with automatic vectorization
The vectorizing compiler works best when it can see what you are doing. Simply written
code which is easy for a human to understand is much easier to vectorize than code highly
tuned for a specific processor. Some typical optimization tricks that can cause problems are
listed below, along with better solutions.

The C pointer aliasing problem
One of the biggest problems in optimizing Standard C (ISO C90) comes from passing
pointers which may (according to the standard) point at the same or overlapping datasets.
In Standard C this issue is commonly worked around by assigning the data to local
variables. Holding data in local variables from one loop iteration to another has to assume
the availability of a certain number of registers in a particular processor design.

This makes the code much more difficult to read and requires the engineer to write this
variable caching code as well as the setup and exit portions explicitly. Unless written with
explicit knowledge of the compilation target pipeline and register availability, it can often
generate suboptimal code (although usually better than non optimized readable code).
Obviously if code is written in this way it will behave badly when simply ported to an
architecture or instruction set with a different working register set, for example moving
from ARM (14 working registers) to Thumb (8 working registers).

As the C standard has evolved this issue has been addressed by adding the keyword
“restrict” to C99 and C++. Adding “restrict” to a pointer declaration is a promise
that the data referenced through that pointer does not alias with anything else the function
will modify using another pointer. This leaves the compiler to do the work in setup and exit
restrictions, preload data with plenty of advance notice, and cache results.

The RealView compilation tools allow the use of the keyword “__restrict” in all
modes.

“Natural” types
Often algorithms will be written to expect certain types for legacy, memory size or
peripheral reasons. It is common to cast these up to the “natural” type for the CPU as
mathematical operations on “natural” sized data are usually faster, and truncation and
overflow are only calculated when data gets passed or stored. Doing this for an algorithm
requires knowledge of the target CPU.

NEON SIMD has 8, 16, 32 and 64 bit type support, using the smallest valid type means
that more data can be held in each SIMD register and executed in parallel, so when
operating on 16 bit data, 8 items can be operated on with the same instruction.

- 12 -

Array grouping
For CPU designs which have few memory pointers (such as x86), it is common to group
several arrays into one. This can allow several different offsets from the same pointer to
allow access to different parts of the data. Grouping arrays in this way can confuse the
compiler into thinking that the offsets may cause overlapping datasets. Avoid this unless
you can guarantee that there are no writes into the array. Splitting composite arrays into
component restrict pointers should remove this risk.

Inside knowledge
For an anonymous array to be turned into SIMD code, the compiler has to assume the size
may be anywhere between 0 and 4GB. Without additional information the compiler has to
generate setup code which tests if the array is too small to consume a whole vector register
as well as cleanup code which consumes the last few items in the array using the scalar
pipeline.

In some cases these sizes are known at compile time and should be specified directly rather
than passed as arguments. In other cases it is common for the engineer to know more about
the array layouts than the system, for instance, screen sizes tend to be expressed in powers
of 2, so an engineer may know that a loop condition will always be a multiple of 2, 4, 8, 16,
32 etc. and be able to write their code for this effect. Passing an array size in raw form does
not communicate this to the compiler, but passing the bounds as “size/16” and using
“size*16” as the loop iterations allows the compiler to see this and remove cleanup code.

Write code with NEON instructions in mind

Write loops to imply SIMD
Writing loops to use all parts of the structure together is good practice as it exploits the
cache better. Using the vectorizing compiler it becomes more important as each part of the
structure needs to be accessed in the same loop:

for (...) { outbuffer[i].r =; }
for (...) { outbuffer[i].g =; }
for (...) { outbuffer[i].b =; }

Splitting the work here into three separate loops may have been done for a machine with
very few working registers. A simple rewrite to fuse the loop will give better results on all
cached processors as well as allowing the compiler to vectorize the loop:

for (...) {
 outbuffer[i].r =;
 outbuffer[i].g =;
 outbuffer[i].b =;
}

- 13 -

Write structures to imply SIMD
NEON structure loads require that the structure contains equal sized elements. The
compiler will only try to vectorize loads if they use all data items from the structure.

In some cases structures are padded to maintain alignment, in the example below some
padding has been added to ensure that each pixel is in an aligned 32 bit word. This might
be done to facilitate the use of special instructions such as ARMv6 SIMD extensions.

struct aligned_pixel
{
 char r;
 char g;
 char b;
 char not_used; /* Padding used to keep r aligned on 32 bits */
}screen[10];

The use of padding will cause the structure to not match against available NEON
scatter/gather loads and as such will not vectorize. There is no benefit in NEON of aligning
every “r” component as NEON can load unaligned structures in many cases without
penalty. Removing the padding in this case is preferable as the normal arrays will be 75%
the size of aligned arrays.

Another possible difficulty is where items in the structure are of different lengths. The
NEON structure loads require that all items in the structure are the same length. Therefore
the compiler will not attempt to use vector loads for the following code.

struct pixel
{
 char r;
 short g; /* green contains more information */
 char b;
}screen[10];

If “g” is to be held with higher precision consider widening the other elements to allow
vectorizable loads.

Tell the compiler where to unroll inner loops

#pragma unroll (n)

Can be used before a “for” statement to tell the compiler to unroll loops a certain number of
times. Typically this is of use to totally unroll small internal loops which allows the
compiler to vectorize an outer loop in more complex algorithms.

- 14 -

A real life example – FIR filter

The FIR filter is a reasonably common and compact example of a vectorizable loop. In this
final part of the paper we will look at the process of generating NEON code using both
automatic compilation and using intrinsic functions.

/*fir.c*/
void fir(short * y,
 const short *x, const short *h,
 int n_out, int n_coefs)
{
 int n;
 for (n = 0; n < n_out; n++)
 {
 int k, sum = 0;
 for(k = 0; k < n_coefs; k++)
 {
 sum += h[k] * x[n - n_coefs + 1 + k];
 }
 y[n] = ((sum>>15) + 1) >> 1;
 }
}

Using intrinsics for SIMD
If we look at the code, the central loop looks vectorizable; it is a summation of the product
of two arrays, each of which have a stride of one. By comparison the outer loop doesn’t
look vectorizable; we do not know how many n_coefs we have.

We know that the accumulation operation is commutative, so to vectorize it we could spilt
it thus:
 for(k = 0; k < n_coefs/4; k++)
 {
 sum0 += h[k*4] * x[n - n_coefs + 1 + k*4];
 sum1 += h[k*4+1] * x[n - n_coefs + 1 + k*4 + 1];
 sum2 += h[k*4+2] * x[n - n_coefs + 1 + k*4 + 2];
 sum3 += h[k*4+3] * x[n - n_coefs + 1 + k*4 + 3];
 }
 sum = sum0 + sum1 + sum2 + sum3;

One side effect of this would be to quarter the loop overhead. This works for the majority
of the array, but we do not know that the number of array items is a multiple of four, so
extra code must be added to deal with this situation:

 if(n_coefs % 4)
 {
 for(k = n_coefs - (n_coefs % 4); k < n_coefs; k++){
 sum += h[k] * x[n - n_coefs + 1 + k];
 }
 }

- 15 -

We can now rewrite the main loop to use a vector operation instead of four scalars:

 sum = 0;
 result_vec = vdupq_n_s32(0); /* Clear the sum vector */

 for(k = 0; k < n_coefs / 4; k++){
 h_vec = vld1_s16(&h[k*4]);
 x_vec = vld1_s16(&x[n - n_coefs + 1 + k*4]);
 result_vec = vmlal_s16(result_vec, h_vec, x_vec);
 }
 sum += vgetq_lane_s32(result_vec, 0) +
 vgetq_lane_s32(result_vec, 1) +
 vgetq_lane_s32(result_vec, 2) +
 vgetq_lane_s32(result_vec, 3);

The final code is ARM compiler specific and looks like this:

#include <arm_neon.h>
void fir(short * y,
 const short *x, const short *h,
 int n_out, int n_coefs)
{
 int n, k;
 int sum;
 int16x4_t h_vec;
 int16x4_t x_vec;
 int32x4_t result_vec;

 for (n = 0; n < n_out; n++)
 {
/* Clear the scalar and vector sums */
 sum = 0;
 result_vec = vdupq_n_s32(0);

 for(k = 0; k < n_coefs / 4; k++)
 {
/* Four vector multiply-accumulate operations in parallel */
 h_vec = vld1_s16(&h[k*4]);
 x_vec = vld1_s16(&x[n - n_coefs + 1 + k*4]);
 result_vec = vmlal_s16(result_vec, h_vec, x_vec);
 }
/* Reduction operation - add each vector lane result to the sum */
 sum += vgetq_lane_s32(result_vec, 0);
 sum += vgetq_lane_s32(result_vec, 1);
 sum += vgetq_lane_s32(result_vec, 2);
 sum += vgetq_lane_s32(result_vec, 3);
/* consume the last few data using scalar operations */
 if(n_coefs % 4)
 {
 for(k = n_coefs - (n_coefs % 4); k < n_coefs; k++)
 sum += h[k] * x[n - n_coefs + 1 + k];
 }
/* Store the adjusted result */
 y[n] = ((sum>>15) + 1) >> 1;
 }
}

- 16 -

Using the vectorizing compiler
Compile the unmodified FIR code from page 14 with

armcc -O3 -Otime --vectorize --cpu=Cortex-A8 –c fir.c

No source code changes are required, the code stays portable, readable and you know
that you have not changed the behaviour by accident.

Side by side output comparison

NEON Intrinsics
||fir|| PROC
 PUSH {r4-r9,lr}
 MOV r6,#0
 LDR r5,[sp,#0x1c]
 ASR r4,r5,#31
 ADD r12,r5,r4,LSR #30
 B |L1.200|
|L1.24|
 MOV lr,#0
 VMOV.I8 q0,#0
 MOV r4,lr
 SUB r7,r6,r5
 B |L1.76|
|L1.44|
 ADD r8,r2,r4,LSL #3
 VLD1.16 {d2},[r8]
 ADD r8,r7,r4,LSL #2
 ADD r4,r4,#1
 ADD r8,r1,r8,LSL #1
 ADD r8,r8,#2
 VLD1.16 {d3},[r8]
 VMLAL.S16 q0,d2,d3
|L1.76|
 CMP r4,r12,ASR #2
 BLT |L1.44|
 TST r5,#3
 VMOV.32 r4,d0[0]
 ADD r4,r4,lr
 VMOV.32 lr,d0[1]
 ADD r4,r4,lr
 VMOV.32 lr,d1[0]
 ADD r4,r4,lr
 VMOV.32 lr,d1[1]
 ADD lr,lr,r4
 BEQ |L1.176|
 BIC r4,r12,#3
 SUB r4,r5,r4
 SUB r4,r5,r4
|L1.136|
 CMP r4,r5
 BGE |L1.176|
 ADD r9,r7,r4
 ADD r8,r2,r4,LSL #1
 ADD r4,r4,#1

NEON vectorizing compiler
||fir|| PROC
 PUSH {r4-r11,lr}
 CMP r3,#0
 MOV r9,#0
 LDR r7,[sp,#0x24]
 BLE |L1.208|
 MOV lr,#1
 ASR r12,r7,#31
 ADD r11,r7,r12,LSR #30
|L1.32|
 CMP r7,#0
 MOV r5,#0
 BLE |L1.180|
 VMOV.I8 q0,#0
 SUB r8,r9,r7
 MOV r4,r2
 ADD r12,r1,r8,LSL #1
 ADD r6,r12,#2
 ASRS r12,r11,#2
 BEQ |L1.92|
|L1.72|
 VLD1.16 {d3},[r4]!
 SUBS r12,r12,#1
 VLD1.16 {d2},[r6]!
 VMLAL.S16 q0,d3,d2
 BNE |L1.72|
|L1.92|
 AND r12,r7,#3
 CMP r12,#0
 BLE |L1.152|
 SUB r12,r7,r12
 CMP r12,r7
 BGE |L1.152|
|L1.116|
 ADD r4,r2,r12,LSL #1
 LDRH r6,[r4,#0]
 ADD r4,r8,r12
 ADD r12,r12,#1
 ADD r4,r1,r4,LSL #1
 CMP r12,r7
 LDRH r4,[r4,#2]
 SMLABB r5,r6,r4,r5
 BLT |L1.116|
|L1.152|

4

1

1

3

3

2

- 17 -

 ADD r9,r1,r9,LSL #1
 LDRSH r8,[r8,#0]
 LDRSH r9,[r9,#2]
 MLA lr,r8,r9,lr
 B |L1.136|
|L1.176|
 MOV r4,#1
 ADD r7,r0,r6,LSL #1
 ADD r4,r4,lr,ASR #15
 ADD r6,r6,#1
 ASR r4,r4,#1
 STRH r4,[r7,#0]
|L1.200|
 CMP r6,r3
 BLT |L1.24|
 POP {r4-r9,pc}
 ENDP

 ADD r12,r7,#3
 CMP r12,#7
 BCC |L1.180|
 VADD.I32 d0,d0,d1
 VPADD.I32 d0,d0,d0
 VMOV.32 r12,d0[0]
 ADD r5,r5,r12
|L1.180|
 ADD r4,r0,r9,LSL #1
 ADD r9,r9,#1
 ADD r12,lr,r5,ASR #15
 CMP r9,r3
 ASR r12,r12,#1
 STRH r12,[r4,#0]
 BLT |L1.32|
|L1.208|
 POP {r4-r11,pc}
 ENDP

Code shown in [1] is the main loop. Here we see that the complex calculation for memory
address has been better optimized by the vectorizing compiler. Our simple re-write using
intrinsics is not easily optimized.

The effect of this is that the vectorizing compiler loop is five instructions long, where the
hand coded loop is ten. As the instructions in this loop will be run the most, you can expect
that the vectorizing compiler version will run significantly faster.

Code shown in [3] is the cleanup code for the last results in the array. This code is
effectively the same, except that the code has been written by the compiler in the automatic
case, and written by a human in the intrinsics case. The algorithmic changes will require a
peer review.

Code shown in [2] is the reduction code. Here you can see a typical example of user error.
The compiler knows which NEON instructions are available and picks the best ones for the
task. In the intrinsics case we have chosen the vgetq_lane_s32 instruction to get each
lane and performed the addition in the scalar core. Although correct algorithmically, we
would have been better off using vector adds and retrieving a single scalar value.

Code shown in [4] is code missing completely from the intrinsics version. The code written
to use intrinsic functions has totally missed the corner case where the array is empty.

3

2

- 18 -

Adding inside knowledge

If we know that n_coefs is always divisible by four we can drop the cleanup code from the
intrinsics version, but how can we tell the compiler in the vectorizing case?

When we specify the loop count, we should show the compiler by modifying the values
used

for (n = 0; n < n_out; n++)

becomes

for (n = 0; n < ((n_out/4)*4); n++)

or with some modification in the caller

for (n = 0; n < n_out_by_4*4; n++)

We recommend modification in the caller because it becomes obvious at the function
interface that this source change has been made, and this will aid correct reuse.

With this modification the function code now looks like this:

void fir(short * y,
 const short *x, const short *h,
 int n_out, int n_coefs_by_4)
{
 int n;
 for (n = 0; n < n_out; n++)
 {
 int k, sum = 0;
 for(k = 0; k < n_coefs_by_4*4; k++)
 {
 sum += h[k] * x[n - n_coefs_by_4*4 + 1 + k];
 }
 y[n] = ((sum>>15) + 1) >> 1;
 }
}

Note that the change is completely C portable and readable

- 19 -

Side by side output comparison where n_coefs is divisible by 4

NEON Intrinsics
||fir|| PROC
 PUSH {r4-r9}
 CMP r3,#0
 MOV r6,#0
 LDR r7,[sp,#0x18]
 BLE |L1.144|
 MOV r9,#1
 ASR r12,r7,#31
 ADD r5,r7,r12,LSR #30
|L1.32|
 VMOV.I8 q0,#0
 MOV r12,#0
 SUB r4,r6,r7
 B |L1.80|
|L1.48|
 ADD r8,r2,r12,LSL #3
 VLD1.16 {d2},[r8]
 ADD r8,r4,r12,LSL #2
 ADD r12,r12,#1
 ADD r8,r1,r8,LSL #1
 ADD r8,r8,#2
 VLD1.16 {d3},[r8]
 VMLAL.S16 q0,d2,d3
|L1.80|
 CMP r12,r5,ASR #2
 BLT |L1.48|
 VMOV.32 r12,d0[0]
 VMOV.32 r4,d0[1]
 ADD r12,r12,r4
 VMOV.32 r4,d1[0]
 ADD r12,r12,r4
 VMOV.32 r4,d1[1]
 ADD r12,r12,r4
 ADD r4,r0,r6,LSL #1
 ADD r6,r6,#1
 ADD r12,r9,r12,ASR #15
 CMP r6,r3
 ASR r12,r12,#1
 STRH r12,[r4,#0]
 BLT |L1.32|
|L1.144|
 POP {r4-r9}
 BX lr
 ENDP

38 Instructions, 10 in internal loop –
Missing corner case

NEON vectorizing compiler
||fir|| PROC
 PUSH {r4-r11}
 CMP r3,#0
 MOV r6,#0
 LDR r9,[sp,#0x20]
 BLE |L1.148|
 MOV r11,#1
 RSB r10,r9,#0
 LSL r8,r9,#2
|L1.32|
 MOV r7,#0
 CMP r8,#0
 BLE |L1.120|
 VMOV.I8 q0,#0
 ADD r12,r6,r10,LSL #2
 MOV r4,r2
 ADD r12,r1,r12,LSL #1
 ADD r5,r12,#2
 MOVS r12,r9
 BEQ |L1.92|
|L1.72|
 VLD1.16 {d3},[r4]!
 SUBS r12,r12,#1
 VLD1.16 {d2},[r5]!
 VMLAL.S16 q0,d3,d2
 BNE |L1.72|
|L1.92|
 ADD r12,r8,#3
 CMP r12,#7
 BCC |L1.120|
 VADD.I32 d0,d0,d1
 VPADD.I32 d0,d0,d0
 VMOV.32 r12,d0[0]
 ADD r7,r7,r12
|L1.120|
 ADD r4,r0,r6,LSL #1
 ADD r6,r6,#1
 ADD r12,r11,r7,ASR #15
 CMP r6,r3
 ASR r12,r12,#1
 STRH r12,[r4,#0]
 BLT |L1.32|
|L1.148|
 POP {r4-r11}
 BX lr
 ENDP

39 Instructions, 5 in internal loop –
Corner case covered

1

2

1

2

- 20 -

The compiler is generating code to catch corner cases. If we know a certain variable is a
constant we could propagate it using #define rather than passing it by value:

#define N_COEFS 16
void fir(short * y,
 const short *x, const short *h,
 int n_out /*, int n_coefs */)
{
 int n;
 for (n = 0; n < n_out; n++){
 int k, sum = 0;
 for(k = 0; k < N_COEFS; k++) {
 sum += h[k] * x[n - N_COEFS + 1 + k];
 }
 y[n] = ((sum>>15) + 1) >> 1;
 }
}

NEON Intrinsics
||fir|| PROC
 PUSH {r4-r6}
 CMP r3,#0
 MOV r4,#0
 BLE |L1.124|
 MOV r5,#1
|L1.20|
 VMOV.I8 q0,#0
 MOV r12,#0
|L1.28|
 ADD r6,r2,r12,LSL #3
 VLD1.16 {d3},[r6]
 ADD r6,r4,r12,LSL #2
 ADD r12,r12,#1
 ADD r6,r1,r6,LSL #1
 CMP r12,#3
 SUB r6,r6,#0x16
 VLD1.16 {d2},[r6]
 VMLAL.S16 q0,d3,d2
 BLT |L1.28|
 VMOV.32 r12,d0[0]
 VMOV.32 r6,d0[1]
 ADD r12,r12,r6
 VMOV.32 r6,d1[0]
 ADD r12,r12,r6
 VMOV.32 r6,d1[1]
 ADD r12,r12,r6
 ADD r6,r0,r4,LSL #1
 ADD r4,r4,#1
 ADD r12,r5,r12,ASR #15
 CMP r4,r3
 ASR r12,r12,#1
 STRH r12,[r6,#0]
 BLT |L1.20|
|L1.124|
 POP {r4-r6}
 BX lr

NEON vectorizing compiler
||fir|| PROC
 PUSH {r4-r8}
 CMP r3,#0
 MOV r6,#0
 BLE |L1.108|
 MOV r8,#1
|L1.20|
 MOV r7,#0
 VMOV.I8 q0,#0
 ADD r4,r1,r6,LSL #1
 MOV r12,r2
 SUB r4,r4,#0x1e
 MOV r5,#4
|L1.44|
 VLD1.16 {d3},[r12]!
 SUBS r5,r5,#1
 VLD1.16 {d2},[r4]!
 VMLAL.S16 q0,d3,d2
 BNE |L1.44|
 ADD r4,r0,r6,LSL #1
 ADD r6,r6,#1
 CMP r6,r3
 VADD.I32 d0,d0,d1
 VPADD.I32 d0,d0,d0
 VMOV.32 r12,d0[0]
 ADD r12,r12,r7
 ADD r12,r8,r12,ASR #15
 ASR r12,r12,#1
 STRH r12,[r4,#0]
 BLT |L1.20|
|L1.108|
 POP {r4-r8}
 BX lr
 ENDP

1

2

1

2

- 21 -

Conclusion

Using the vectorizing compiler allows fast porting of algorithms from one architecture to
another, or the sharing of the same code across many processors, as C / C++ code can be
used unchanged (or with minimum but standards compliant changes).

The use of the vectorizing compiler allows engineers without SIMD experience to generate
fast vector code without having to spend a lot of time having to learn a new instruction set
or understand how it interacts with the rest of the system.

Using the NEON extensions reduces system cost compared with a CPU with additional
hardware accelerator in terms of power and area as well as ongoing royalty costs

Using the vectorizing compiler reduces development cost in terms of design and debugging
time as well as the removing the cost of maintaining multiple tools from different vendors.

ARM, ARM Powered, Thumb, RealView and The Architecture for the Digital World are registered trademarks of ARM
Limited. Cortex, ARM Development Suite are trademarks of ARM Limited. All other brand names or product names are the
property of their respective holders. "ARM" is used to represent ARM holdings plc (LSE: ARM and NASDAQ: ARMHY); its
operating company ARM Limited and the regional subsidiaries ARM, INC.; ARM KK; ARM Korea Ltd.; ARM Taiwan; ARM
France SAS; ARM Consulting(Shanghai) Co. Ltd.; ARM Belgium N.V.; and ARM Embedded Technologies Pvt. Ltd, ARM
Physical IP, Inc. and ARM Norway AS. Neither the whole nor any part of the information contained in, or the product
described in, this document may be adapted or reproduced in any material form except with the prior written permission of
the copyright holder. The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. All warranties implied or
expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This
document is intended only to provide information to the reader about the product.

To the extent permitted by local laws ARM shall not be liable for any loss or damage arising from the use of any information
in this document or any error or omission in such information.

