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Introduction  
This paper provides a simple introduction to the NEONTM Vector-SIMD architecture. It 
continues by looking at the compiler support for SIMD, both through automatic recognition 
and through the use of intrinsic functions. 
 
NEON is a hybrid 64/128 bit SIMD architecture extension to the ARM v7-A profile, 
targeted at multimedia applications. Positioning NEON within the processor allows it to 
share the CPU resources for integer operation, loop control, and caching, significantly 
reducing the area and power cost compared with a CPU plus hardware accelerator 
combination. SIMD (Single Instruction Multiple Data) is where one instruction acts on 
multiple data items, usually carrying out the same operation for all data. 
 
The use of NEON instead of a CPU plus hardware accelerator combination allows savings 
to be made in software development time as it creates a much simpler programming model 
without forcing the programmer to search for ad-hoc concurrency and scheduling points. 
 
On the ARM Cortex™-A8 the NEON unit is positioned in the pipeline so that loads can 
come directly from the L2 cache. This means that a much larger dataset can be held in the 
cache than would be allowed when executing ARM or Thumb®-2 code.  
 
The NEON instruction set was designed to be an easy target for a compiler, including low 
cost promotion/demotion and structure loads capable of accessing data from their natural 
locations rather than forcing alignment to the vector size. 
 
The RealView Development Tools® Suite version 3.1 supports NEON both in the standard 
release using intrinsic functions and assembler, as well as through the vectorizing compiler 
add-on which can recognise code sequences and automatically generate SIMD code. The 
vectorizing compiler greatly reduces porting time, as well as reducing the requirement for 
deep architectural knowledge. 
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Overview of NEON Vector SIMD  

SIMD is the name of the process for operating on multiple data items in parallel using the 
same instruction. In the NEON extension, the data is organized into very long registers (64 
or 128 bits wide). These registers can hold "vectors" of items which are 8, 16, 32 or 64 bits. 

The traditional advice when optimizing or porting algorithms written in C/C++ is to use the 

natural type of the machine for data handling (in the case of ARM 32 bits). The unwanted 
bits can then be discarded by casting and/or shifting before storing to memory. The ability 
of NEON to specify the data width in the instruction and hence use the whole register 
width for useful information means keeping the natural type for the algorithm is both 
possible and preferable. Keeping with the algorithms natural type reduces the cost of 
porting an algorithm from one architecture to another and allows more data items to be 
simultaneously operated on. 

NEON appears to the programmer to have two banks of registers, 64 bit D registers and 
128 bit Q registers. In reality the D and Q registers alias each other, so the 64 bit registers 
D0 and D1 map against the same physical bits as the register Q0.  

 

When an operation is performed on the registers the instruction specifies the layout of the 
data contained in the source and, in certain cases, destination registers.  

4 x 32 bit Data

8 x 16 bit Data

16 x 8 bit Data

128 bit Q register
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Example: Add together the 16 bit integers stored in the 64 bit vector D2 and 64 bit vector 
D1 storing the resultant items in the 64 bit register D0 

VADD.I16 D0, D1, D2  This instruction will cause four 16 bit adds 

Promotion/demotion of types  
Promotion/demotion of types is a very common operation in C. Casting to larger types can 
be used to avoid overflow or increase precision. Shifting into smaller types allows 
compatibility at interfaces or reduced memory usage. In contrast with some other SIMD 
architectures, NEON provides compound operations which combine type promotion with 
arithmetic operations. This allows NEON code to make better use of the register file and 
use fewer instructions.  
 
Example: Multiply together the 16 bit integers stored in the 64 bit vectors D2 and D3 
storing the resultant items in the 128 bit register Q0 

VMUL.I32.S16 Q0, D2, D3 This instruction will cause four widening multiplies 

 

Example: Shift right by #5 the four 32 bit integers stored in 128 bit vector Q1, truncate to 
16 bits and store the resultant 16 bit integers in 64 bit register D0 

VSHR.I16.I32 D0, Q1,#5 This instruction will cause four narrowing shifts 
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 Structure load and store operations  
Often items are not held in memory as simple arrays, but rather arrays of structures for 
logically grouped data items.  

For example it is common to find a screen represented as an array of structures of pixels 
rather than split into three arrays of red, green and blue items. Storing all components of 
pixel data together allows faster operation for common operations such as colour 
conversion or display, however it can cause difficulties for some SIMD implementations. 

 

 

  
The NEON unit includes special structure load instructions which can load whole 
structures and spilt them accordingly across multiple registers. 

Example: Load 12 16 bit values from the address stored in R0, and split them over 64 bit 
registers D0, D1 and D2. Update R0 to point at next structure. 

VLD3.16 {D0,D1,D2}, [R0]! 

 

Structure load and store better matches how engineers write code, so code usually does not 
need to be rewritten to take advantage of it.  

struct rgb_pixel
{

short r; /* Red */
short g; /* Green */
short b; /* Blue */

}s[X_SIZE*Y_SIZE]; /* screen */
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Writing NEON code using the standard RealView compiler  
 
The standard tools shipped with RealView Development Suite 3.1 have support for NEON 
directly in the assembler and embedded assembler. The compiler also provides NEON 
support using pseudo functions called intrinsics. Intrinsic functions compile into one or 
more NEON instructions which are inserted at the call site. There is at least one intrinsic 
for each NEON instruction, with multiple intrinsic functions where needed for signed and 
unsigned types. 
 
Using intrinsics, rather than programming in assembly language directly, allows the 
compiler to schedule registers, as well as giving the programmer easy access to C variables 
and arrays. 
 
Using vector registers directly from assembler could lead to programming errors such as a 
64 bit vector containing data of 8 bits wide is operated upon by a 16 bit adder. These kind 
of faults can be very difficult to track down as only particular corner cases will trigger an 
erroneous condition. In the previous addition example, the output will only differ if one of 
the data items overflows into another. Using intrinsics is type-safe and will not allow 
accidental mixing of signed/unsigned or differing width data. 

Accessing vector types from C  
The header file arm_neon.h is required to use the intrinsics and defines C style types for 
vector operations. The C types are written in the form : 
 
uint8x16_t  Unsigned integers, 8 bits, vector of 16 items  - 128 bit “Q” register 
int16x4_t  Signed integers, 16 bits, vector of four items  - 64 bit "D" register 

As there is a basic incompatibility between scalar (ARM) and vector (NEON) types it is 
impossible to assign a scalar to a vector, even if they have the same bit length. Scalar 
values and pointers can only be used with NEON instructions that use scalars directly. 

Example: Extract an unsigned 32 bit integer from lane 0 of a NEON vector 

result =  vget_lane_u32(vec64a, 0) 

Vector types are not operable using standard C operators except for assignment, so the 
appropriate VADD should be used rather than the operator “+”.  

Where there are vector types which differ only in number of elements (uint32x2_t, 
uint32x4_t) there are specific instructions to ‘assign’ the top or bottom vector elements of a 
128 bit value to a 64 bit value and vice-versa. This operation does not use any code space 
as long as the registers can be scheduled as aliases. 

Example: Use the bottom 64 bits of a 128 bit register   

vec64 = vget_low_u32(vec128);   
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Access to NEON instructions using C  
To the programmer intrinsics look like function calls. The function calls are specified to 
describe the target NEON instruction as well as information about the source and 
destination types.  

Example: To add two vectors of 8 bytes, putting the result in a vector of 8 bytes requires 
the instruction  

VADD.I8 dx, dy, dz 

Which can be provoked by using either of the following intrinsic functions 

int8x8_t vadd_s8(int8x8_t a, int8x8_t b);  
uint8x8_t vadd_u8(uint8x8_t a, uint8x8_t b); 

The use of separate intrinsics for each type means that it is difficult to accidentally perform 
an operation on incompatible types because the compiler will keep track of which types are 
held in which registers. The compiler can also reschedule program flow and use alternative 
faster instructions; there is no guarantee that the instructions that are generated will match 
the instructions implied by the intrinsic. This is especially useful when moving from one 
micro-architecture to another. 

Programming using NEON intrinsics  

The process of writing optimal NEON code directly in the assembler or by using the 
intrinsic function interface requires a deep understanding of the data types used as well as 
the NEON instructions available.   

Possible SIMD operations become more obvious if you look at how an algorithm can be 
split into parallel operations. 

Commutative operations (add, min, max) are particularly easy from a SIMD point of view. 

Example: Add 8 numbers from an array  

unsigned int acc=0; 
for (i=0; i<8;i+=1) 
{ 
   acc+=array[i]; // a + b + c + d + e + f + g + h  
}  

could be split into several adds  ((a+e) + (b+f))+((c+g) + (d+h)) 

and recoded in C as:  
 

Continued on next page… 
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unsigned int acc1=0; 
unsigned int acc2=0; 
unsigned int acc3=0; 
unsigned int acc4=0; 
for (i=0; i<8;i+=4) 
{ 
   acc1+=array[i];   // (a, e) 
   acc2+=array[i+1]; // (b, f) 
   acc3+=array[i+2]; // (c, g) 
   acc4+=array[i+3]; // (d, h) 
} 
acc1+=acc2;          // (a+e) + (b+f) 
acc3+=acc4;          // (c+g) + (d+h) 
acc1+=acc3;          // ((a+e) + (b+f))+((c+g) + (d+h)) 

It should be more apparent now that we could use a vector register holding four 32 bit 
values for the accumulator and temp registers then do the operation using SIMD 
instructions. Now extending for any multiple of four:  

#include <arm_neon.h> 
uint32_t vector_add_of_n(uint32_t* ptr, uint32_t items) 
{ 
   uint32_t result,* i; 
   uint32x2_t vec64a, vec64b; 
   uint32x4_t vec128 = vdupq_n_u32(0); // clear accumulators 
    
   for (i=ptr; i<(ptr+(items/4));i+=4) 
   { 
      uint32x4_t temp128 = vld1q_u32(i); // load 4x 32 bit values 
      vec128=vaddq_u32(vec128, temp128); // add 128 bit vectors    
   } 
    
   vec64a = vget_low_u32(vec128);  // split 128 bit vector  
   vec64b = vget_high_u32(vec128); //  into 2x 64 bit vectors 
    
   vec64a = vadd_u32 (vec64a, vec64b); // add 64 bit vectors together 
    
   result =  vget_lane_u32(vec64a, 0); // extract lanes and 
   result += vget_lane_u32(vec64a, 1); //  add together scalars 
   return result; 
} 

The vget_high_u32 and vget_low_u32 are not analogous to any NEON 
instruction, but instruct the compiler to reference the Q register used to store vec128 as 
two separate 64 bit D registers.  

These operations therefore do not translate into actual code, but will have an effect on 
which registers are used to store vec64a and vec64b.  
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Depending on the version of the compiler, target processor and optimization options, the 
code generated becomes:  

vector_add_of_n PROC 
         VMOV.I8  q0,#0 
         BIC      r1,r1,#3 
         ADD      r1,r1,r0 
         CMP      r1,r0 
         BLS      |L1.36| 
 |L1.20| 
         VLD1.32  {d2,d3},[r0]! 
         VADD.I32 q0,q0,q1 
         CMP      r1,r0 
         BHI      |L1.20| 
 |L1.36| 
         VADD.I32 d0,d0,d1 
         VMOV.32  r1,d0[1] 
         VMOV.32  r0,d0[0] 
         ADD      r0,r0,r1 
         BX       lr 
         ENDP 
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Generating NEON code using the vectorizing compiler  
 
The vectorizing compiler is available as an add-on to ARM’s RealView Development Suite 
version 3.1. The vectorizing compiler uses supercomputer compiler techniques to evaluate 
vectorizable loops and potential SIMD applications.  

The compiler optimizes more efficiently with readable C/C++. Although it can generate 
some SIMD code without source modification, certain coding styles can promote more 
optimal output. Where the vectorizer finds code with potential SIMD opportunities but 
does not have enough information it can generate a ‘remark’ to the user to prompt changes 
to the source code that can provide more useful information.  

Although these modifications help the vectorizing compiler they are all standard C notation 
and will allow recompilation with any C99* compliant compiler.  

*C99 required for parsing of keyword “restrict”. In other compilation modes, armcc 
also allows the use of the equivalent ARM-specific extension “__restrict”. 

Compiler command line options  
With the vectorizing add-on installed the compiler can be told to generate SIMD code 
simply by switching “vectorize” on the command line.  

SIMD code is usually bigger than the equivalent ARM code due to array cleanup and other 
issues (see later), and the CPU should be set to a processor which has NEON hardware (at 
the time of writing the Cortex-A8 is the only supported processor)  

To generate fast SIMD code you should use the command line:  

 armcc --cpu=Cortex-A8 -O3 -Otime --vectorize ...  
 
Without an installation of the vectorizing add-on this command will respond with an error 
message.  
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Using the vectorizing compiler on the addition example 
Keeping with the vector add example from page 7 we can write the code in standard C 
much more succinctly: 
/* file.c */ 
unsigned int vector_add_of_n(unsigned int* ptr, unsigned int items) 
{ 
    unsigned int result=0; 
    unsigned int i; 
    for (i=0; i<(items*4);i+=1) 
    { 
        result+=ptr[i]; 
    } 
    return result;  
} 
Note: By using (items*4) we are telling the compiler that the size of the array is a 
multiple of four. Although this is not required for the vectorizer to create SIMD code, it 
provides the compiler with extra information about the array. In this case it knows the array 
can be consumed with vector arrays and does not require any extra scalar code to handle 
the cleanup of any ‘spare’ items. 

Compile:  “armcc --cpu=Cortex-A8 -O3 –c -Otime –-vectorize file.c” 
Viewing the generated code with: “fromelf –c file.o” 

vector_add_of_n PROC 
        LSLS     r3,r1,#2 
        MOV      r2,r0 
        MOV      r0,#0 
        BEQ      |L1.72| 
        LSL      r3,r1,#2 
        VMOV.I8  q0,#0 
        LSRS     r1,r3,#2 
        BEQ      |L1.48| 
|L1.32| 
        VLD1.32  {d2,d3},[r2]! 
        VADD.I32 q0,q0,q1 
        SUBS     r1,r1,#1 
        BNE      |L1.32| 
|L1.48| 
        CMP      r3,#4 
        BCC      |L1.72| 
        VADD.I32 d0,d0,d1 
        VPADD.I32 d0,d0,d0 
        VMOV.32  r1,d0[0] 
        ADD      r0,r0,r1 
|L1.72| 
        BX       lr 

This disassembly generated is different to the earlier intrinsic function example; the main 
reason behind this is that the hand coded example misses the important corner case 
where the array is zero in length.  
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Although the code is longer than the handwritten example the key parts of the routine (the 
inner loop) are the same length and contain the same instructions, this means that the time 
difference for execution is trivial when the dataset becomes reasonable in size.  

Issues with automatic vectorization 
The vectorizing compiler works best when it can see what you are doing. Simply written 
code which is easy for a human to understand is much easier to vectorize than code highly 
tuned for a specific processor. Some typical optimization tricks that can cause problems are 
listed below, along with better solutions. 

The C pointer aliasing problem  
One of the biggest problems in optimizing Standard C (ISO C90) comes from passing 
pointers which may (according to the standard) point at the same or overlapping datasets. 
In Standard C this issue is commonly worked around by assigning the data to local 
variables. Holding data in local variables from one loop iteration to another has to assume 
the availability of a certain number of registers in a particular processor design.  
 
This makes the code much more difficult to read and requires the engineer to write this 
variable caching code as well as the setup and exit portions explicitly. Unless written with 
explicit knowledge of the compilation target pipeline and register availability, it can often 
generate suboptimal code (although usually better than non optimized readable code). 
Obviously if code is written in this way it will behave badly when simply ported to an 
architecture or instruction set with a different working register set, for example moving 
from ARM (14 working registers) to Thumb (8 working registers). 

As the C standard has evolved this issue has been addressed by adding the keyword 
“restrict” to C99 and C++. Adding “restrict” to a pointer declaration is a promise 
that the data referenced through that pointer does not alias with anything else the function 
will modify using another pointer. This leaves the compiler to do the work in setup and exit 
restrictions, preload data with plenty of advance notice, and cache results.  

The RealView compilation tools allow the use of the keyword “__restrict” in all 
modes.  

“Natural” types  
Often algorithms will be written to expect certain types for legacy, memory size or 
peripheral reasons. It is common to cast these up to the “natural” type for the CPU as 
mathematical operations on “natural” sized data are usually faster, and truncation and 
overflow are only calculated when data gets passed or stored. Doing this for an algorithm 
requires knowledge of the target CPU.  
 
NEON SIMD has 8, 16, 32 and 64 bit type support, using the smallest valid type means 
that more data can be held in each SIMD register and executed in parallel, so when 
operating on 16 bit data, 8 items can be operated on with the same instruction. 
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Array grouping  
For CPU designs which have few memory pointers (such as x86), it is common to group 
several arrays into one. This can allow several different offsets from the same pointer to 
allow access to different parts of the data. Grouping arrays in this way can confuse the 
compiler into thinking that the offsets may cause overlapping datasets. Avoid this unless 
you can guarantee that there are no writes into the array. Splitting composite arrays into 
component restrict pointers should remove this risk. 

Inside knowledge 
For an anonymous array to be turned into SIMD code, the compiler has to assume the size 
may be anywhere between 0 and 4GB. Without additional information the compiler has to 
generate setup code which tests if the array is too small to consume a whole vector register 
as well as cleanup code which consumes the last few items in the array using the scalar 
pipeline.  
 
In some cases these sizes are known at compile time and should be specified directly rather 
than passed as arguments. In other cases it is common for the engineer to know more about 
the array layouts than the system, for instance, screen sizes tend to be expressed in powers 
of 2, so an engineer may know that a loop condition will always be a multiple of 2, 4, 8, 16, 
32 etc. and be able to write their code for this effect. Passing an array size in raw form does 
not communicate this to the compiler, but passing the bounds as “size/16” and using 
“size*16” as the loop iterations allows the compiler to see this and remove cleanup code.  

Write code with NEON instructions in mind  

Write loops to imply SIMD  
Writing loops to use all parts of the structure together is good practice as it exploits the 
cache better. Using the vectorizing compiler it becomes more important as each part of the 
structure needs to be accessed in the same loop: 
 
for (...) { outbuffer[i].r = ....; } 
for (...) { outbuffer[i].g = ....; } 
for (...) { outbuffer[i].b = ....; } 

Splitting the work here into three separate loops may have been done for a machine with 
very few working registers. A simple rewrite to fuse the loop will give better results on all 
cached processors as well as allowing the compiler to vectorize the loop:  

for (...) { 
  outbuffer[i].r = ....; 
  outbuffer[i].g = ....; 
  outbuffer[i].b = ....; 
} 
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Write structures to imply SIMD  
NEON structure loads require that the structure contains equal sized elements. The 
compiler will only try to vectorize loads if they use all data items from the structure.  

In some cases structures are padded to maintain alignment, in the example below some 
padding has been added to ensure that each pixel is in an aligned 32 bit word. This might 
be done to facilitate the use of special instructions such as ARMv6 SIMD extensions.  

struct aligned_pixel 
{ 
   char r; 
   char g; 
   char b; 
   char not_used; /* Padding used to keep r aligned on 32 bits */ 
}screen[10]; 
 
The use of padding will cause the structure to not match against available NEON 
scatter/gather loads and as such will not vectorize. There is no benefit in NEON of aligning 
every “r” component as NEON can load unaligned structures in many cases without 
penalty. Removing the padding in this case is preferable as the normal arrays will be 75% 
the size of aligned arrays. 
 
Another possible difficulty is where items in the structure are of different lengths. The 
NEON structure loads require that all items in the structure are the same length. Therefore 
the compiler will not attempt to use vector loads for the following code.  
 
struct pixel 
{ 
   char r; 
   short g; /* green contains more information */ 
   char b; 
}screen[10]; 

If “g” is to be held with higher precision consider widening the other elements to allow 
vectorizable loads.  

Tell the compiler where to unroll inner loops  
 
#pragma unroll (n)  
 
Can be used before a “for” statement to tell the compiler to unroll loops a certain number of 
times. Typically this is of use to totally unroll small internal loops which allows the 
compiler to vectorize an outer loop in more complex algorithms. 
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A real life example – FIR filter  

The FIR filter is a reasonably common and compact example of a vectorizable loop. In this 
final part of the paper we will look at the process of generating NEON code using both 
automatic compilation and using intrinsic functions.  

/*fir.c*/ 
void fir(short * y, 
   const short *x, const short *h, 
   int n_out, int n_coefs) 
{ 
   int n; 
   for (n = 0; n < n_out; n++) 
   { 
      int k, sum = 0; 
      for(k = 0; k < n_coefs; k++) 
      { 
         sum += h[k] * x[n - n_coefs + 1 + k]; 
      } 
      y[n] = ((sum>>15) + 1) >> 1; 
   } 
} 

Using intrinsics for SIMD  
If we look at the code, the central loop looks vectorizable; it is a summation of the product 
of two arrays, each of which have a stride of one. By comparison the outer loop doesn’t 
look vectorizable; we do not know how many n_coefs we have.  
 
We know that the accumulation operation is commutative, so to vectorize it we could spilt 
it thus:  
   for(k = 0; k < n_coefs/4; k++)  
   { 
      sum0 += h[k*4] * x[n - n_coefs + 1 + k*4]; 
      sum1 += h[k*4+1] * x[n - n_coefs + 1 + k*4 + 1]; 
      sum2 += h[k*4+2] * x[n - n_coefs + 1 + k*4 + 2]; 
      sum3 += h[k*4+3] * x[n - n_coefs + 1 + k*4 + 3]; 
   } 
   sum = sum0 + sum1 + sum2 + sum3;       

One side effect of this would be to quarter the loop overhead. This works for the majority 
of the array, but we do not know that the number of array items is a multiple of four, so 
extra code must be added to deal with this situation:  

   if(n_coefs % 4)  
   { 
      for(k = n_coefs - (n_coefs % 4); k < n_coefs; k++){ 
         sum += h[k] * x[n - n_coefs + 1 + k]; 
      } 
   } 
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We can now rewrite the main loop to use a vector operation instead of four scalars:  

   sum = 0; 
   result_vec = vdupq_n_s32(0); /* Clear the sum vector */ 
 
   for(k = 0; k < n_coefs / 4; k++){ 
      h_vec = vld1_s16(&h[k*4]); 
      x_vec = vld1_s16(&x[n - n_coefs + 1 + k*4]); 
      result_vec = vmlal_s16(result_vec, h_vec, x_vec); 
   } 
   sum += vgetq_lane_s32(result_vec, 0) + 
      vgetq_lane_s32(result_vec, 1) + 
      vgetq_lane_s32(result_vec, 2) + 
      vgetq_lane_s32(result_vec, 3); 

The final code is ARM compiler specific and looks like this:  

#include <arm_neon.h> 
void fir(short * y, 
   const short *x, const short *h, 
   int n_out, int n_coefs) 
{ 
   int n, k; 
   int sum; 
   int16x4_t h_vec; 
   int16x4_t x_vec; 
   int32x4_t result_vec; 
 
   for (n = 0; n < n_out; n++) 
   { 
/* Clear the scalar and vector sums */ 
      sum = 0; 
      result_vec = vdupq_n_s32(0);  
 
      for(k = 0; k < n_coefs / 4; k++) 
      { 
/* Four vector multiply-accumulate operations in parallel */ 
         h_vec = vld1_s16(&h[k*4]); 
         x_vec = vld1_s16(&x[n - n_coefs + 1 + k*4]); 
         result_vec = vmlal_s16(result_vec, h_vec, x_vec); 
      } 
/* Reduction operation - add each vector lane result to the sum */ 
      sum += vgetq_lane_s32(result_vec, 0); 
      sum += vgetq_lane_s32(result_vec, 1); 
      sum += vgetq_lane_s32(result_vec, 2); 
      sum += vgetq_lane_s32(result_vec, 3); 
/* consume the last few data using scalar operations */ 
      if(n_coefs % 4) 
      { 
         for(k = n_coefs - (n_coefs % 4); k < n_coefs; k++) 
            sum += h[k] * x[n - n_coefs + 1 + k]; 
      } 
/* Store the adjusted result */ 
      y[n] = ((sum>>15) + 1) >> 1; 
   } 
} 
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Using the vectorizing compiler  
Compile the unmodified FIR code from page 14 with 
 
armcc -O3 -Otime --vectorize --cpu=Cortex-A8 –c fir.c 
 
No source code changes are required, the code stays portable, readable and you know 
that you have not changed the behaviour by accident.  

Side by side output comparison  

NEON Intrinsics  
||fir|| PROC 
        PUSH     {r4-r9,lr} 
        MOV      r6,#0 
        LDR      r5,[sp,#0x1c] 
        ASR      r4,r5,#31 
        ADD      r12,r5,r4,LSR #30 
        B        |L1.200| 
|L1.24| 
        MOV      lr,#0 
        VMOV.I8  q0,#0 
        MOV      r4,lr 
        SUB      r7,r6,r5 
        B        |L1.76| 
|L1.44| 
        ADD      r8,r2,r4,LSL #3 
        VLD1.16  {d2},[r8] 
        ADD      r8,r7,r4,LSL #2 
        ADD      r4,r4,#1 
        ADD      r8,r1,r8,LSL #1 
        ADD      r8,r8,#2 
        VLD1.16  {d3},[r8] 
        VMLAL.S16 q0,d2,d3 
|L1.76| 
        CMP      r4,r12,ASR #2 
        BLT      |L1.44| 
        TST      r5,#3 
        VMOV.32  r4,d0[0] 
        ADD      r4,r4,lr 
        VMOV.32  lr,d0[1] 
        ADD      r4,r4,lr 
        VMOV.32  lr,d1[0] 
        ADD      r4,r4,lr 
        VMOV.32  lr,d1[1] 
        ADD      lr,lr,r4 
        BEQ      |L1.176| 
        BIC      r4,r12,#3 
        SUB      r4,r5,r4 
        SUB      r4,r5,r4 
|L1.136| 
        CMP      r4,r5 
        BGE      |L1.176| 
        ADD      r9,r7,r4 
        ADD      r8,r2,r4,LSL #1 
        ADD      r4,r4,#1 

NEON vectorizing compiler  
||fir|| PROC 
        PUSH     {r4-r11,lr}         
        CMP      r3,#0 
        MOV      r9,#0 
        LDR      r7,[sp,#0x24] 
        BLE      |L1.208|            
        MOV      lr,#1 
        ASR      r12,r7,#31 
        ADD      r11,r7,r12,LSR #30 
|L1.32| 
        CMP      r7,#0 
        MOV      r5,#0 
        BLE      |L1.180| 
        VMOV.I8  q0,#0 
        SUB      r8,r9,r7 
        MOV      r4,r2 
        ADD      r12,r1,r8,LSL #1 
        ADD      r6,r12,#2 
        ASRS     r12,r11,#2 
       BEQ      |L1.92|             
|L1.72| 
        VLD1.16  {d3},[r4]! 
        SUBS     r12,r12,#1 
        VLD1.16  {d2},[r6]! 
        VMLAL.S16 q0,d3,d2 
       BNE      |L1.72|             
|L1.92| 
        AND      r12,r7,#3 
        CMP      r12,#0 
        BLE      |L1.152| 
        SUB      r12,r7,r12 
        CMP      r12,r7 
        BGE      |L1.152| 
|L1.116|         
        ADD      r4,r2,r12,LSL #1 
        LDRH     r6,[r4,#0] 
        ADD      r4,r8,r12 
        ADD      r12,r12,#1 
        ADD      r4,r1,r4,LSL #1 
        CMP      r12,r7 
        LDRH     r4,[r4,#2] 
        SMLABB   r5,r6,r4,r5 
        BLT      |L1.116|            
|L1.152| 

4

1

1 

3

3 

2 



 

- 17 - 

        ADD      r9,r1,r9,LSL #1 
        LDRSH    r8,[r8,#0] 
        LDRSH    r9,[r9,#2] 
        MLA      lr,r8,r9,lr 
        B        |L1.136| 
|L1.176| 
        MOV      r4,#1 
        ADD      r7,r0,r6,LSL #1 
        ADD      r4,r4,lr,ASR #15 
        ADD      r6,r6,#1 
        ASR      r4,r4,#1 
        STRH     r4,[r7,#0] 
|L1.200| 
        CMP      r6,r3 
        BLT      |L1.24| 
        POP      {r4-r9,pc} 
        ENDP 

        ADD      r12,r7,#3 
        CMP      r12,#7 
       BCC      |L1.180|            
        VADD.I32 d0,d0,d1 
        VPADD.I32 d0,d0,d0 
        VMOV.32  r12,d0[0] 
        ADD      r5,r5,r12           
|L1.180| 
        ADD      r4,r0,r9,LSL #1 
        ADD      r9,r9,#1 
        ADD      r12,lr,r5,ASR #15 
        CMP      r9,r3 
        ASR      r12,r12,#1 
        STRH     r12,[r4,#0] 
        BLT      |L1.32| 
|L1.208| 
        POP      {r4-r11,pc} 
        ENDP 

Code shown in [1] is the main loop. Here we see that the complex calculation for memory 
address has been better optimized by the vectorizing compiler. Our simple re-write using 
intrinsics is not easily optimized.  

The effect of this is that the vectorizing compiler loop is five instructions long, where the 
hand coded loop is ten. As the instructions in this loop will be run the most, you can expect 
that the vectorizing compiler version will run significantly faster.  

Code shown in [3] is the cleanup code for the last results in the array. This code is 
effectively the same, except that the code has been written by the compiler in the automatic 
case, and written by a human in the intrinsics case. The algorithmic changes will require a 
peer review.  

Code shown in [2] is the reduction code. Here you can see a typical example of user error. 
The compiler knows which NEON instructions are available and picks the best ones for the 
task. In the intrinsics case we have chosen the vgetq_lane_s32 instruction to get each 
lane and performed the addition in the scalar core. Although correct algorithmically, we 
would have been better off using vector adds and retrieving a single scalar value. 

Code shown in [4] is code missing completely from the intrinsics version. The code written 
to use intrinsic functions has totally missed the corner case where the array is empty.  

3 
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Adding inside knowledge 

If we know that n_coefs is always divisible by four we can drop the cleanup code from the 
intrinsics version, but how can we tell the compiler in the vectorizing case?  

When we specify the loop count, we should show the compiler by modifying the values 
used  

for (n = 0; n < n_out; n++) 
 
becomes  
 
for (n = 0; n < ((n_out/4)*4); n++) 
 
or with some modification in the caller  
 
for (n = 0; n < n_out_by_4*4; n++) 
 
We recommend modification in the caller because it becomes obvious at the function 
interface that this source change has been made, and this will aid correct reuse.  

With this modification the function code now looks like this:  

void fir(short * y, 
 const short *x, const short *h, 
 int n_out, int n_coefs_by_4) 
{ 
 int n; 
 for (n = 0; n < n_out; n++) 
 { 
  int k, sum = 0; 
  for(k = 0; k < n_coefs_by_4*4; k++) 
  { 
   sum += h[k] * x[n - n_coefs_by_4*4 + 1 + k]; 
  } 
  y[n] = ((sum>>15) + 1) >> 1; 
 } 
} 

Note that the change is completely C portable and readable  
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Side by side output comparison where  n_coefs is divisible by 4 

NEON Intrinsics  
||fir|| PROC 
        PUSH     {r4-r9} 
        CMP      r3,#0 
        MOV      r6,#0 
        LDR      r7,[sp,#0x18] 
        BLE      |L1.144| 
        MOV      r9,#1 
        ASR      r12,r7,#31 
        ADD      r5,r7,r12,LSR #30 
|L1.32| 
        VMOV.I8  q0,#0 
        MOV      r12,#0 
        SUB      r4,r6,r7 
        B        |L1.80| 
|L1.48|  
        ADD      r8,r2,r12,LSL #3 
        VLD1.16  {d2},[r8] 
        ADD      r8,r4,r12,LSL #2 
        ADD      r12,r12,#1 
        ADD      r8,r1,r8,LSL #1 
        ADD      r8,r8,#2 
        VLD1.16  {d3},[r8] 
        VMLAL.S16 q0,d2,d3 
|L1.80| 
        CMP      r12,r5,ASR #2 
        BLT      |L1.48|  
        VMOV.32  r12,d0[0] 
        VMOV.32  r4,d0[1] 
        ADD      r12,r12,r4 
        VMOV.32  r4,d1[0] 
        ADD      r12,r12,r4 
        VMOV.32  r4,d1[1] 
        ADD      r12,r12,r4  
        ADD      r4,r0,r6,LSL #1 
        ADD      r6,r6,#1 
        ADD      r12,r9,r12,ASR #15 
        CMP      r6,r3 
        ASR      r12,r12,#1 
        STRH     r12,[r4,#0] 
        BLT      |L1.32| 
|L1.144| 
        POP      {r4-r9} 
        BX       lr 
        ENDP        
 
 
38 Instructions, 10 in internal loop – 
Missing corner case  

NEON vectorizing compiler  
||fir|| PROC 
        PUSH     {r4-r11} 
        CMP      r3,#0 
        MOV      r6,#0 
        LDR      r9,[sp,#0x20] 
        BLE      |L1.148| 
        MOV      r11,#1 
        RSB      r10,r9,#0 
        LSL      r8,r9,#2 
|L1.32| 
        MOV      r7,#0 
        CMP      r8,#0 
        BLE      |L1.120| 
        VMOV.I8  q0,#0 
        ADD      r12,r6,r10,LSL #2 
        MOV      r4,r2 
        ADD      r12,r1,r12,LSL #1 
        ADD      r5,r12,#2 
        MOVS     r12,r9 
        BEQ      |L1.92| 
|L1.72| 
        VLD1.16  {d3},[r4]! 
        SUBS     r12,r12,#1 
        VLD1.16  {d2},[r5]! 
        VMLAL.S16 q0,d3,d2 
        BNE      |L1.72| 
|L1.92| 
        ADD      r12,r8,#3 
        CMP      r12,#7 
        BCC      |L1.120| 
        VADD.I32 d0,d0,d1 
        VPADD.I32 d0,d0,d0 
        VMOV.32  r12,d0[0] 
        ADD      r7,r7,r12 
|L1.120| 
        ADD      r4,r0,r6,LSL #1 
        ADD      r6,r6,#1 
        ADD      r12,r11,r7,ASR #15 
        CMP      r6,r3 
        ASR      r12,r12,#1 
        STRH     r12,[r4,#0] 
        BLT      |L1.32| 
|L1.148| 
        POP      {r4-r11} 
        BX       lr 
        ENDP 
 
39 Instructions, 5 in internal loop –  
Corner case covered  
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The compiler is generating code to catch corner cases. If we know a certain variable is a 
constant we could propagate it using #define rather than passing it by value: 
 
#define N_COEFS 16 
void fir(short * y, 
 const short *x, const short *h, 
 int n_out /*, int n_coefs */) 
{ 
    int n; 
    for (n = 0; n < n_out; n++){ 
        int k, sum = 0; 
        for(k = 0; k < N_COEFS; k++) { 
            sum += h[k] * x[n - N_COEFS + 1 + k]; 
        } 
        y[n] = ((sum>>15) + 1) >> 1; 
    } 
} 

NEON Intrinsics  
||fir|| PROC 
        PUSH     {r4-r6} 
        CMP      r3,#0 
        MOV      r4,#0 
        BLE      |L1.124| 
        MOV      r5,#1 
|L1.20| 
        VMOV.I8  q0,#0 
        MOV      r12,#0 
|L1.28|  
        ADD      r6,r2,r12,LSL #3 
        VLD1.16  {d3},[r6] 
        ADD      r6,r4,r12,LSL #2 
        ADD      r12,r12,#1 
        ADD      r6,r1,r6,LSL #1 
        CMP      r12,#3 
        SUB      r6,r6,#0x16 
        VLD1.16  {d2},[r6] 
        VMLAL.S16 q0,d3,d2 
        BLT      |L1.28|  
        VMOV.32  r12,d0[0] 
        VMOV.32  r6,d0[1] 
        ADD      r12,r12,r6 
        VMOV.32  r6,d1[0] 
        ADD      r12,r12,r6 
        VMOV.32  r6,d1[1] 
        ADD      r12,r12,r6  
        ADD      r6,r0,r4,LSL #1 
        ADD      r4,r4,#1 
        ADD      r12,r5,r12,ASR #15 
        CMP      r4,r3 
        ASR      r12,r12,#1 
        STRH     r12,[r6,#0] 
        BLT      |L1.20| 
|L1.124| 
        POP      {r4-r6} 
        BX       lr 

NEON vectorizing compiler  
||fir|| PROC 
        PUSH     {r4-r8} 
        CMP      r3,#0 
        MOV      r6,#0 
        BLE      |L1.108| 
        MOV      r8,#1 
|L1.20| 
        MOV      r7,#0 
        VMOV.I8  q0,#0 
        ADD      r4,r1,r6,LSL #1 
        MOV      r12,r2 
        SUB      r4,r4,#0x1e 
        MOV      r5,#4 
|L1.44| 
        VLD1.16  {d3},[r12]! 
        SUBS     r5,r5,#1 
        VLD1.16  {d2},[r4]! 
        VMLAL.S16 q0,d3,d2 
        BNE      |L1.44| 
        ADD      r4,r0,r6,LSL #1 
        ADD      r6,r6,#1 
        CMP      r6,r3 
        VADD.I32 d0,d0,d1 
        VPADD.I32 d0,d0,d0 
        VMOV.32  r12,d0[0] 
        ADD      r12,r12,r7 
        ADD      r12,r8,r12,ASR #15 
        ASR      r12,r12,#1 
        STRH     r12,[r4,#0] 
        BLT      |L1.20| 
|L1.108| 
        POP      {r4-r8} 
        BX       lr 
        ENDP 
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Conclusion 

Using the vectorizing compiler allows fast porting of algorithms from one architecture to 
another, or the sharing of the same code across many processors, as C / C++ code can be 
used unchanged (or with minimum but standards compliant changes). 

The use of the vectorizing compiler allows engineers without SIMD experience to generate 
fast vector code without having to spend a lot of time having to learn a new instruction set 
or understand how it interacts with the rest of the system.  

Using the NEON extensions reduces system cost compared with a CPU with additional 
hardware accelerator in terms of power and area as well as ongoing royalty costs 

Using the vectorizing compiler reduces development cost in terms of design and debugging 
time as well as the removing the cost of maintaining multiple tools from different vendors. 
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