

© 2005 ARM Limited. All Rights Reserved.
ARM and the ARM Powered logo are registered trademarks of ARM Ltd. All other trademarks are the property of their respective
owners and are acknowledged

Architecture and Implementation
of the ARM® Cortex™-A8
Microprocessor

October 2005

Introduction
The ARM® Cortex™-A8 microprocessor is the first applications microprocessor in ARM’s
new Cortex family. With high performance and power efficiency, it targets a wide
variety of mobile and consumer applications including mobile phones, set-top boxes,
gaming consoles and automotive navigation/entertainment systems. The Cortex-A8
processor spans a range of performance points depending on the implementation,
delivering over to 2000 Dhrystone MIPS (DMIPS) of performance for demanding
consumer applications and consuming less than 300mW for low-power mobile devices.
This translates into a large increase in processing capability while staying with the
power levels of previous generations of mobile devices. Consumer applications will
benefit from the reduced heat dissipation and resulting lower packaging and integration
costs.

It is the first ARM processor to incorporate all of the new technologies available in the
ARMv7 architecture. New technologies seen for the first time include NEON™ for media
and signal processing and Jazelle® RCT for acceleration of runtime compilers, such as
just-in-time, dynamic or ahead-of-time compilers. Other technologies recently
introduced that are now standard on the ARMv7 architecture include TrustZone®
technology for security, Thumb®-2 technology for code density and the VFPv3 floating
point architecture.

Overview of the Cortex Architecture
The unifying technology of Cortex processors is Thumb-2 technology. The Thumb-2
instruction set combines 16- and 32-bit instructions to improve code density and
performance. The original ARM instruction set consists of fixed-length 32-bit
instructions, while the Thumb instruction set employs 16-bit instructions. Because not
all operations mapped into the original Thumb instruction set, multiple instructions were
sometimes needed to emulate the task of one 32-bit instruction.

Page 2 of 10

Thumb-2 technology adds about 130 additional instructions to Thumb. The added
functionality removes the need to switch between ARM and Thumb modes in order to
service interrupts, and gives access to the full set of processor registers. The resulting
code maintains the traditional code density of Thumb instructions while running at the
performance levels of 32-bit ARM code. Entire applications can now be written in
Thumb-2 technology, removing the original architecture required for mode switching.

An entire application can be written using space-saving Thumb-2 instructions, whereas
with the original Thumb mode the processor had to switch between ARM and Thumb
modes.

Making its first appearance in an ARM processor is the NEON media and signal
processing technology targeted at audio, video and 3D graphics. It is a 64/128-bit
hybrid SIMD architecture. NEON technology has its own register file and execution
pipeline which are separate from the main ARM integer pipeline. It can handle both
integer and single precision floating-point values, and includes support for unaligned
data accesses and easy loading of interleaved data stored in structure form. Using
NEON technology to perform typical multimedia functions, the Cortex-A8 processor can
decode MPEG-4 VGA video (including dering, deblock filters and yuv2rgb) at 30
frames/sec at 275 MHz, and H.264 video at 350 MHz.

Also new is Jazelle RCT technology, an architecture extension that cuts the memory
footprint of just-in-time (JIT) bytecode applications to a third of their original size. The
smaller code size results in a boost performance and a reduction of power.

TrustZone technology is included in the Cortex-A8 to ensure data privacy and DRM
protection in consumer products like mobile phones, personal digital assistants and set-
top boxes that run open operating systems. Implemented within the processor core,
TrustZone technology protects peripherals and memory against a security attack. A
secure monitor within the core serves as a gatekeeper switching the system between
secure and nonsecure states. In the secure state, the processor runs “trusted” code
from a secure code block to handle security-sensitive tasks such as authentication and
signature manipulation.

Besides contributing to the processor's signal processing performance, NEON
technology enables software solutions to data processing applications. The result is a
flexible platform which can accommodate new algorithms and new applications as they
emerge with simply the download of new software or a driver.

The VFPv3 technology is an enhancement to the VFPv2 technology. New features
include a doubling of the number of double-precision registers to 32, and the

Page 3 of 10

introduction of instructions that perform conversions between fixed-point and floating-
point numbers.

Exploring Features of the Cortex-A8 Microarchitecture

The Cortex-A8 processor is the most sophisticated low-power design yet produced by
ARM. To achieve its high levels of performance, new microarchitecture features were
added which are not traditionally found in the ARM architecture, including a dual in-
order issue ARM integer pipeline, an integrated L2 cache and a deep 13-stage pipe.

Superscalar Pipeline
Perhaps the most significant of these new features is the dual-issue, in-order, statically
scheduled ARM integer pipeline. Previous ARM processors have only a single integer
execution pipeline. The ability to issue two data processing instructions at the same
time significantly increases the maximum potential instructions executed per cycle. It
was decided to stay with in-order issue to keep additional power required to a minimum.
Out-of-order issue and retire can require extensive amounts of logic consuming extra
power. The choice to go with in-order also allows for fire-and-forget instruction issue,
thus removing critical paths from the design and reducing the need for custom design in
the pipeline. Static scheduling allows for extensive clock gating for reduced power
during execution.

Instruction Execute and Load/Store

E1 E3 E4E2 E5

Shft
ALU
+

Flags
Sat

BP
upda
te

MUL
1

MUL
2

MUL
3 ACC

Instruction
Fetch

F1 F2

12 entry
fetch
queue

F0

RAM
+

TLB

BTB
GHB
RS

D1 D2 D3 D4

Branch mispredict
penalty = 13 cycles

Architectural register file

D0 E0

Instruction Decode

ALU/MUL pipe 0 BP
Update

AGU
ALU pipe 1

LS pipe 0 or 1

BP
Update

BP
Update

Page 4 of 10

The dual ALU (arithmetic logic unit) pipelines (ALU 0 and ALU 1) are symmetric and
both can handle most arithmetic instructions. ALU pipe 0 always carries the older of a
pair of issued instructions. The Cortex-A8 processor also has multiplier and load-store
pipelines, but these do not carry additional instructions to the two ALU pipelines. These
can be thought of as “dependent” pipelines. Their use requires simultaneous use of one
of the ALU pipelines. The multiplier pipeline can only be coupled with instructions that
are in ALU 0 pipeline, whereas the load-store pipeline can be coupled with instructions
in either ALU.

Branch Prediction
The 13-stage pipeline was selected to enable significantly higher operating frequencies
than precious generations of ARM microarchitectures. Note that stage F0 is not
counted because it is only address generation. To minimize the branch penalties
typically associated with a deeper pipeline, the Cortex-A8 processor implements a two-
level global history branch predictor. It consists of two different structures: the Branch
Target Buffer (BTB) and the Global History Buffer (GHB) which are accessed in parallel
with instruction fetches.

The BTB indicates whether or not the current fetch address will return a branch
instruction and its branch target address. It contains 512 entries. On a hit in the BTB a
branch is predicted and the GHB is accessed. The GHB consists of 4096 2-bit
saturating counters that encode the strength and direction information of branches. The
GHB is indexed by 10-bit history of the direction of the last ten branches encountered
and 4 bits of the PC.

In addition to the dynamic branch predictor, a return stack is used to predict subroutine
return addresses. The return stack has eight 32-bit entries that store the link register
value in r14 (register 14) and the ARM or Thumb state of the calling function. When a
return-type instruction is predicted taken, the return stack provides the last pushed
address and state.

Level-1 Cache
The Cortex-A8 processor has a single-cycle load-use penalty for fast access to the
Level-1 caches. The data and instruction caches are configurable to 16k or 32k. Each
is 4-way set associative and uses a Hash Virtual Address Buffer (HVAB) way prediction
scheme to improve timing and reduce power consumption. The caches are physically
addressed (virtual index, physical tag) and have hardware support for avoiding aliased
entries. Parity is supported with one parity bit per byte.

The replacement policy for the data cache is write-back with no write allocates. Also
included is a store buffer for data merging before writing to main memory.

Page 5 of 10

The HVAB is a novel approach to reducing the power required for accessing the
caches. It uses a prediction scheme to determine which way of the RAM to enable
before an access.

Level-2 Cache
The Cortex-A8 processor includes an integrated Level-2 cache. This gives the Level-2
cache a dedicated low latency, high bandwidth interface to the Level-l cache. This
minimizes the latency of Level-1 cache linefills and does not conflict with traffic on the
main system bus. It can be configured in sizes from 64k to 2M.

The Level-2 cache is physically addressed and 8-way set associative. It is a unified
data and instruction cache, and supports optional ECC and Parity. Write back, write
through, and write-allocate policies are followed according to page table settings. A
pseudo-random allocation policy is used. The contents of the Level-1 data cache are
exclusive with the Level-2 cache, whereas the contents of the Level-1 instruction cache
are a subset of the Level-2 cache. The tag and data RAMs of the Level-2 cache are
accessed serially for power savings.

NEON media engine
The Cortex-A8 processor’s NEON media processing engine pipeline starts at the end of
the main integer pipeline. As a result, all exceptions and branch mispredictions are
resolved before instructions reach it. More importantly, there is a zero load-use penalty
for data in the Level-1 cache. The ARM integer unit generates the addresses for NEON
loads and stores as they pass through the pipeline, thus allowing data to be fetched
from the Level-1 cache before it is required by a NEON data processing operation.
Deep instruction and load-data buffering between the NEON engine, the ARM integer
unit and the memory system allow the latency of Level-2 accesses to be hidden for
streamed data. A store buffer prevents NEON stores from blocking the pipeline and
detects address collisions with the ARM integer unit accesses and NEON loads.

Page 6 of 10

The NEON unit is decoupled from the main ARM integer pipeline by the NEON
instruction queue (NIQ). The ARM Instruction Execute Unit can issue up to two valid
instructions to the NEON unit each clock cycle. NEON has 128-bit wide load and store
paths to the Level-1 and Level-2 cache, and supports streaming from both.

The NEON media engine has its own 10 stage pipeline that begins at the end ARM
integer pipeline. Since all mispredicts and exceptions have been resolved in the ARM
integer unit, once an instruction has been issued to the NEON media engine it must be
completed as it cannot generate exceptions. NEON has three SIMD integer pipelines, a
load-store/permute pipeline, two SIMD single-precision floating-point pipelines, and a
non-pipelined Vector Floating-Point unit (VFPLite).

NEON instructions are issued and retired in-order. A data processing instruction is
either a NEON integer instruction or a NEON floating-point instruction. The Cortex-A8
NEON unit does not parallel issue two data-processing instructions to avoid the area
overhead with duplicating the data-processing functional blocks, and to avoid timing
critical paths and complexity overhead associated with the muxing of the read and write
register ports.

The NEON integer datapath consists of three pipelines: an integer multiply/accumulate
pipeline (MAC), an integer Shift pipeline, and an integer ALU pipeline. A load-
store/permute pipeline is responsible for all NEON load/stores, data transfers to/from
the integer unit, and data permute operations such as interleave and de-interleave. The

NEON

Load
data

queue

Instruction Execute
 and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

BIU pipeline
NEON store data

ARM register writeback

E0 M0

L2 Data
L1 Data

NEON
instruction

queue
NEON
Inst
Dec

NEON Instruction Execute

ARM
reg
file NEON

reg
file

NEON register writeback

Machine commit point

LS pipeline

ARM register writeback

Queue full

Inst
Decode

Page 7 of 10

NEON floating-point (NFP) datapath has two main pipelines: a multiply pipeline and an
add pipeline. The separate VFPLite unit is a non-pipelined implementation of the ARM

VFPv3 Floating Point Specification targeted for medium performance IEEE 754
compliant floating point support. VFPLite is used to provide backwards compatibility
with existing ARM floating point code and to provide IEEE 754 compliant single and
double precision arithmetic. The “Lite” refers to area and performance, not functionality.

Implementation
Because of the aggressive performance, power, and area targets (PPA) of the Cortex-
A8 processor, new implementation flows have been developed in order to meet goals
without resorting to a full-custom implementation. The resulting flows enable fine tuning
of the design to the desired application. The result is fundamentally a cell-based flow,
but under it lies semi-custom techniques that have been used where necessary to meet
performance.

NEON Pipeline

Load and store
with alignment

Instruction Decode

Mux L1/
MCR

16-entry
Inst

Queue
+

Inst
Dec

Integer
ALU,

MAC,
SHIFT
pipes

Non-IEEE
FMUL pipe

Non-IEEE
FADD pipe

IEEE
single/double

precision VFP

Load/store
and

permute

VFP

FDUP FMUL 1 FMUL 2 FMUL 3 FMUL 4 WB

FMT ALU ABS

SHIFT 1 SHIFT 2 SHIFT 3

DUP MUL
1

MUL
2

ACC
1

ACC
2

WB

WB

FFMT FADD 1 FADD 2 FADD 3 FADD 4 WB

PERM 1 PERM 2 Store
Align

8-entry
store

queue
WB

Dec
Queue

+
Rd/Wr
check

WB

8-entry
Load

Queue

Load
Align

NEON register writeback

Score-
board

+
Issue
logic

Reg
read

+
M3

fwding
muxes

Mux with
NRF

M1 M2 M3 N1 N6N2 N3 N4 N5M0

WB

Page 8 of 10

The Cortex-A8 processor uses a combination of synthesized, structured, and custom
circuits. The design was divided into seven functional units and then subdivided into
blocks, and the appropriate implementation technique chosen for each. Since the entire
design is synthesizeable, blocks that can easily meet their PPA goals can stick with a
standard synthesis flow.

A structured flow is used for blocks which contain logic that can take advantage of
controlled placement and routing approach to meet timing or area goals. This approach
is a semi-custom flow that manually maps the block into a gate-level netlist and
specifies a relative placement for all the cells in the block. The relative placement does
not specify the exact locations of the cells but how each cell is placed with respect to
the other cells in the block.

The structured approach is typically used for data blocks that have regular structure.
The logic implementation and technology mapping of the block is done manually to
maintain the regular data-oriented bus structure of the block instead of generating a
random gate structure through synthesis. The logic gates of the block are placed
according to the flow of data through the block. This approach offers more control over
the design than an automated synthesis approach and leads to a more predictable
timing closure. It is also possible to get better performance and area on complex, high-
performance designs than traditional techniques. The resulting netlists may be
interpreted with traditional tiling techniques using the ARM Artisan® Advantage-CE™ or
compatible library.

The Artisan Advantage-CE library contains more than a thousand cells. Besides the
standard cells used typical synthesis libraries, many tactical cells are included more in
line with custom implementation techniques. These are used in an automated fashion
in the structured flow. The library is specifically designed to deal with the high-density
routing requirements of high-performance processors with a focus on both high speed
operation and low static and dynamic power. Leakage reduction is achieved through
power gating MT-CMOS cells and retention flip-fops to support sleep and standby
modes. ARM has worked with tool vendors to ensure support for this critical new flow.

Finally, a few of the most critical timing and area sensitive blocks of the design are
reserved for full custom techniques. This includes memory arrays, register files and
scoreboards. These blocks contain a mix of static and dynamic logic. No self-timed
circuits are used.

Page 9 of 10

Conclusion
The Cortex-A8 processor is the fastest, most power-efficient microprocessor yet
developed by ARM. With the ability to decode VGA H.264 video in under 350MHz, it
provides the media processing power required for next generation wireless and
consumer products while consuming less than 300mW in 65nm technologies. Its new
NEON technology provides a platform for flexible software-based solutions for media
processing. Thumb-2 instructions provide code density while maintaining the
performance of standard ARM code; Jazelle RCT technology does likewise for runtime
compilers. TrustZone technology provides security for sensitive data and DRM.

Many significant new microarchitecture features make their first appearance on the
Cortex-A8 processor. These include a dual issue, in-order superscalar pipeline, an
integrated Level-2 cache and a significantly deeper pipeline than precious ARM
processors. To meet its aggressive performance targets while maintaining ARM’s
traditional small power budget, new flows have been developed which approach the
efficiency of custom techniques while keeping the flexibility of an automated flow. The
Cortex-A8 processor is a quantum jump in flexible low power, high-performance
processing.

Footnote:
ARM’s new processor naming convention

With the announcement of the Cortex™-M3 processor, ARM introduced a new naming
scheme for its processors. Previously processors were named for the base processor
core such as ARM7™, ARM9™ and ARM11™, and digits were added to designate the
features of that variation of the processor. Thus an ARM926EJ-S™ was based on the
ARM9 microarchitecture, and digits were added to designate the memory system, Java
support and arithmetic extensions.

The new ARM naming scheme is based on the generation of architecture of the
processor, and not sequence of arrival of the processor itself. (At ARM an architecture
refers to an instruction/feature set common to a group of processors.) Cores which
belong to the latest generation of ARM architecture, ARMv7, will all be know as “Cortex”
processors. The next generation of processors will be given yet another new name.
This was done to give a clearer understanding of the relative performance and target
application of a new processor from its name.

The ARMv7 architecture and thus the Cortex processors will be divided into three main
groups: Applications (A) processors, Realtime (R) processors and Microcontrollors (M).
Applications processors are intended for use with open OS and feature a memory

© 2005 ARM Limited. All Rights Reserved.
ARM and the ARM Powered logo are registered trademarks of ARM Ltd. All other trademarks are the property of their respective
owners and are acknowledged

management unit (MMU) providing for virtual addressing. Realtime processors will
focus more deeply embedded applications. They will feature a memory protection unit
(MPU) which protects regions of memory but does not provide for virtual addressing.
Microcontrollers will generally not have memory protection, and focus on providing very
low latency responses to interrupts and including features such as flash memory
controllers and interrupt controllers. The group to which a processor belongs is
designated by adding a -A, -R or -M to be base Cortex name.

