
11

Cortex A8 Processor

Richard Grisenthwaite

ARM Ltd

222

Evolution of the ARM Architecture
� Original ARM architecture:

� 32 bit RISC architecture
� 16 Registers

� 1 being the Program counter
� Conditional execution on all instructions
� Load/Store Multiple operations

� Good for Code Density
� Shifts available on data processing and address generation
� Original architecture had 26 bit address space

� Augmented by a 32 bit address space early in the evolution

� Thumb instruction set was the next big step
� ARMv4T architecture (ARM7TDMI)

� Introduced a 16 bit instruction set alongside the 32 bit instruction set

� Switching ISA as part of branch or exception

� Not a full instruction set – ARM still essential

333

Evolution of the Architecture (2)
� ARMv5TEJ (ARM926EJ-S) introduced:

� Better interworking between ARM and Thumb

� DSP focussed additional instructions

� Jazelle-DBX for Java byte code interpretation in hardware

� ARMv6 (ARM1136JF-S) introduced :
� Media processing – SIMD within the integer datapath
� Enhanced exception handling
� Overhaul of the memory system architecture

� ARMv7 rolls in a number of substantive changes:
� Thumb-2*
� TrustZone*
� Jazelle-RCT
� Neon
� ARMv7 is split into 3 profiles
* - Introduced initially as extensions to ARMv6

444

Thumb-2
� Combined 32 and 16 bit instruction set

� Instructions can be freely mixed
� 16 bit instructions include the original Thumb instruction set

� Complete compatibility with Thumb binaries
� Some new 16 bit instructions for key code size wins

� Virtually all instructions available in ARM ISA available in Thumb-2
� Some minor cleaning up of system management instructions
� In principle can stand-alone as a complete ISA

� Unified assembly language for ARM and Thumb-2
� Assembly can be targeted to either ISA

� Conditional execution made available via IT instruction:
ARM = 20 bytes Thumb-2 = 14 bytes
CMP r3,#1 CMP r3, #1 ;2 bytes
EOREQ r1,r1,#0x4000 ITTET ;2 bytes
EOREQ r1,r1,#2 MOVWEQ r3, #0x4002 ; 4 bytes
MOVNE r3,#0 EOREQ r1, r3 ; 2 bytes
MOVEQ r3,#1 MOVNE r3, #0 ; 2 bytes

MOVEQ r3, #1 ; 2 bytes

555

Thumb-2 (2)
� “Thumb Code density at ARM Performance”

� In principle this could be achieved with ARM and Thumb previously
� Much of the code running is not performance critical
� With code knowledge, can compile non-critical code to Thumb

� Much simpler with Thumb-2

�Expect to see growing emphasis on Thumb-2 in the future

�ARM still totally committed to ARM ISA compatibility

�The ARM instruction set is still completely supported

�No plans to “downgrade” the ARM ISA in the applications space

Performance

Code density

100% ARM code

100% Thumb code

Random mix
‘Profiled’ mix

Thumb-2

666

TrustZone
�Architectural extensions to
introduce a “Security” state

� Orthogonal to User/Privileged split

�Effectively two virtual CPUs
separated by a new mode

� Monitor mode the gatekeeper for
switching CPUs

� Some hardware registers duplicated
to aid switching

�Memory tagged as secure and
non-secure by the system

� Only the secure CPU can access the
secure memory & peripherals

� System can include secure and non-
secure peripherals

777

ARM NEONTM Technology Overview

� 64/128-bit Hybrid SIMD architecture

� Independent Register file with 2 aliased views:

� 32 x 64-bit registers (D0-D31)

� 16 x 128-bit registers (Q0-Q15)

� Integer and SP Floating-point processing

� 8, 16, 32, 64-bit Integers

� Single-precision Floating-point

� Encoded in ARM and Thumb-2

� 2 to 4x performance improvement over ARMv6 SIMD

� Accelerates audio, video, and 3D-graphics

Q0

Q1

Q15

:

D0

D1

D2

D3

:

D30

D31

D0.U8
Q0.F32

64-bit

128-bit

888

NEON SIMD Structure Load/Store

� Native support for structures
� e.g. Complex Numbers, Pixels, Co-ordinates

� Memory treated as an Array of Structures (AoS)

� Eliminates ‘shuffling’ overhead
� Optimised memory access as single transfer

� Data arranged for efficient SIMD processing

x0

y0

z0

x1

y1

z1

x2

y2

D0

D1

D2

x0

y0

z0

x1

y1

R0 VLD3.16 {D0,D1,D2}, [R0]!

VST3.16 {D0,D1,D2}, [R0]!

Load

StoreMemory Registers

Transfer four 3 x 16-bit structures

z2z3

y3

x3

999

NEON Vectorising Compiler Target

� NEON provides a consistent algorithm mapping

� Apply narrowing analysis

� Vectorize over loop iterations

� Enabled by architectural model

� Orthogonal instruction framework

� Few inter-lane operations

� Fused Data Type conversion

� NEON designed in conjunction with compiler technology

� Ensure architecture optimised for this compiled mode

� Benefits of CSE, unrolling, scheduling, register allocation

� Portable solutions by avoiding hand coding or intrinsics

ST

SHR

MUL

LD LD

ST

ST

MUL

LD LD

ST

ST

MUL

LD LD

ST

ST

MUL

LD LD

ST

SHR

MUL

LD LD

101010

-RCT: Runtime Compilation Target

�Beneficial to Java and a wide range of emerging languages
�Microsoft .NET MSIL, Perl, Python etc

� Enables high performance in smallest memory footprint
� Optimal balance between speed and code density with run-time compilers

� Low cost and low power
� Less than 8K gates and small memory footprint result in lower power

� Complementary to DBX on mid-tier devices
� for optimum Java performance and efficiency

�Broad industry adoption
� Sun Microsystems, Aplix and Esmertec are early adopters

�Builds on success of DBX technology

111111

Cortex-A8 Processor Highlights
� First implementation of the ARMv7 instruction-set architecture, including the

Advanced SIMD media instructions (NEON™)

� In-order, dual-issue, superscalar microprocessor core
� 13-stage main integer pipeline

� 10-stage NEON media pipeline

� dedicated L2 cache with 9-cycle latency

� branch prediction based on global history

� Key metrics
� delivers 2000 DMIPS for next-generation consumer applications

� average IPC of 0.9 across multiple benchmark suites
� includes EEMBC, SpecInt95, Mediabench, and partner-provided applications

� achieves 1GHz when fabricated in high-performance technologies

� consumes less than 300mW in low-power devices

� less than 4mm2 at 65nm, excluding NEON, L2 cache, and Embedded Trace

121212

ARM Cortex-A8: why Superscalar?
� In-order instruction issue

� less complex than out-of-order
� fewer structures means lower power
� less need for custom design

� can maintain high IPC with
� fully symmetric ALU pipelines
� all critical forwarding paths supported
� dual-issue of dependent instruction pairs

� Static scheduling with instruction replay on memory stall
� low-power consumption due to early availability of gate enables
� fire-and-forget instruction issue removes critical paths from the design

�Net result
� high-frequency design with out-of-order performance, but in-order

clock frequency and power consumption

� Average IPC of 0.9 across 150+ ARM and industry benchmarks

131313

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline

141414

Control Flow

� Dynamic branch predictor components
� 512-entry 2-way BTB

� 4K-entry GHB indexed by branch history and PC

� 8-entry return stack

� Branch resolution
� all branches are resolved in single stage
� Maintains speculative and non-speculative

versions of branch history and return stack

Branch prediction maintains 95% accuracy over a wide codebase

151515

Instruction Decode

Instruction Execute

Instruction Decode

Integer register writeback

Pending and replay

queue

Dec/seq
Dec

queue

read/write

Score-

board

+

issue

logic

Early

Dec

Early

Dec Dec

RegFile

ID

remap

Replay penalty = 9 cycles

E1 E3 E4E2 E5D1 D2 D3 D4D0 E0

ALU pipe 0

MUL pipe 0

ALU pipe 0

LS pipe 0 or 1

� Instruction decode highlights
� pending queue reduces Fetch stalls and increases pairing opportunities
� replay queue keeps instructions for reissue on memory system stall
� scoreboard predicts register availability using static scheduling techniques
� cross-checks in D3 allow issue of dependent instruction pairs

161616

Instruction Execution

� Execution pipeline highlights
� 2 symmetric ALU pipelines: Shift/ALU/SAT
� Load/store pipe used by instructions in either pipeline
� Multiply instructions are tied to pipe 0
� All key forwarding paths supported
� Static scheduling allows for extensive clock gating

171717

Memory System on Cortex-A8
� Harvard Level 1 Caches – both 32KByte 4 way set associative

� VIPT Instruction cache; VIPT Data cache with alias detection

� Level 1 Data cache is blocking

� Non-Neon read misses cache cause replay of subsequent instructions

� Reduces complexity in later pipeline stages

� Good for power and clock frequency

� Neon data not allocated to L1 (but will read/update in L1 if necessary)

� Unified Level 2 Cache

� PIPT, 8 way set associative

� Fully pipelined and non-blocking

� Up to 9 memory transactions in flight

� Streams to the Neon processing unit; up to 16GByte/s bandwidth

� 64 or 128 bit AMBA AXI interconnect to memory

� Split transaction burst based protocol

� Supports multiple outstanding memory transactions to minimise memory latencies

181818

Memory System

LS pipeline
� 32k 4-way set associative data cache

�Address hash array used to predict cache way

�Saves power and improves timing

� load data forwarding in E3 to all critical sources

� one-cycle load-use penalty for ALU

� store data not required until E3

BIU pipeline
� 9-cycle minimum access latency to L2 cache

� L2 built using standard compiled RAMS (64k-2MB configurable size)

� 64/128bit AXI L3 bus interface supports up to 9 outstanding transactions

191919

NEON Interfaces

� Skewed late in pipeline, past the retire point

� reduces interface complexity
� exception handling not required

� decoupling queues from integer machine

� removes load-use penalty

� negative impact on NEON -> ARM transfers
� nonblocking ARM register file helps hide latency

� Streaming to and from L2 memory system

� up to 8 outstanding transactions

� can receive 128 bits/cycle

� can receive data from L1 or L2 memory system

� independent NEON store buffer

202020

NEON Media Engine Unit

Instruction issue

� static scheduling with fire-and-forget issue

� 1 LS + 1 NINT/NFP can issue each cycle

Execution pipelines
� all pipelines are 64-bit SIMD

� floating-point MAC executed using both FADD and FMUL pipelines

212121

Cortex-A8 NEON Technology

MPEG-4

MP3 Decoder

GSM-AMR

1x 2x 4x3x

NEONARMv6ARMv5

1) MPEG-4 Simple Profile @ 30fps 512kbps , 133MHz SDRAM 10-1-1-1-1-1-1-1 memory, includes deblocking and deringing filters

2) MP3 Decoder @ 320kbps 48kHz (worst case), 133MHz SDRAM 10-1-1-1-1-1-1-1 memory

3) GSM-AMR (worst case), 3 cycle per word memory

4) H.264 Decoder Baseline profile

9.4MHzMP3 decode, 320kbps 48kHz, worst case3

13MHzGSM-AMR, worst case2

350MHzH.264 (estimated)4

Video, 30fps VGA decode

275MHzMPEG-4 including de-ring and de-block filters, yuv2rgb1

� Accelerating standardization of media processing for next generation
mobile and consumer products

� The ideal software target to run rapidly evolving downloadable media
players such as Windows Media Player 10 and Real Player

222222

Coresight Debug and Trace
� Hardware Debug and Trace are key components

� Valued by the people who use the systems!

� ARMs Coresight moves to a system-centric debug philosophy
� SoC are not just the core any more

� Multiple sources of trace data – cores, buses, software instrumentation

� Multiple debug components – cores, buses watchers etc

� Cross-triggering of debug events to multiple cores

� System identification of components in the SoC essential to debug

� Topology identification methodology as well

� Coresight is a debug and trace focussed system architecture
� Debug components part of a debug memory space

� Standardised interface to JTAG or Serial-Wire Debug

� Open standards to encourage 3rd party adoption

� Cortex-A8 incorporates Coresight compliant interfaces

232323

Implementation Strategy: Motivation
� Why use a semicustom design flow?

� required to achieve project frequency, area, and power targets

� Why not deliver a hard macrocell?
� too many restrictions on circuit and layout optimizations possible

� design porting does not scale well with increases in design size and
complexity

� The goal:
� provide our partners with an alternative method of IP delivery that

� achieves Cortex-A8 power, area, and frequency targets

� minimizes the additional effort required from the silicon partner

242424

ARM Cortex-A8 Processor Summary
� Industry-leading performance and power efficiency

� Greater than 2000 DMIPS for demanding tethered applications

� Less than 300mW for low power mobile applications

� More than 7 major new technology innovations:
� NEON, Jazelle-RCT, Thumb-2, TrustZone, AMBA AXI, CoreSight, IEM

� Supported end-to-end by ARM Technology
� RealView ARCHITECT ESL Models – Artisan AdvantageCE Libraries

� Industry momentum fueling wide adoption
� 5 licensees, 1/3 of the Top 15 WW Semiconductor Vendors *

* Source: Gartner Dataquest (March 2005)

2525

Questions?

