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Evolution of the ARM Architecture
� Original ARM architecture:

� 32 bit RISC architecture 
� 16 Registers 

� 1 being the Program counter
� Conditional execution on all instructions
� Load/Store Multiple operations 

� Good for Code Density
� Shifts available on data processing and address generation
� Original architecture had 26 bit address space

� Augmented by a 32 bit address space early in the evolution

� Thumb instruction set was the next big step
� ARMv4T architecture (ARM7TDMI)

� Introduced a 16 bit instruction set alongside the 32 bit instruction set

� Switching ISA as part of branch or exception 

� Not a full instruction set – ARM still essential



333

Evolution of the Architecture (2)
� ARMv5TEJ (ARM926EJ-S) introduced:

� Better interworking between ARM and Thumb

� DSP focussed additional instructions

� Jazelle-DBX for Java byte code interpretation in hardware

� ARMv6 (ARM1136JF-S) introduced :
� Media processing – SIMD within the integer datapath
� Enhanced exception handling
� Overhaul of the memory system architecture

� ARMv7 rolls in a number of substantive changes:
� Thumb-2*
� TrustZone*
� Jazelle-RCT
� Neon 
� ARMv7 is split into 3 profiles
* - Introduced initially as extensions to ARMv6
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Thumb-2
� Combined 32 and 16 bit instruction set

� Instructions can be freely mixed
� 16 bit instructions include the original Thumb instruction set 

� Complete compatibility with Thumb binaries
� Some new 16 bit instructions for key code size wins

� Virtually all instructions available in ARM ISA available in Thumb-2
� Some minor cleaning up of system management instructions
� In principle can stand-alone as a complete ISA 

� Unified assembly language for ARM and Thumb-2
� Assembly can be targeted to either ISA

� Conditional execution made available via IT instruction:
ARM = 20 bytes Thumb-2 = 14 bytes
CMP         r3,#1 CMP r3, #1     ;2 bytes
EOREQ    r1,r1,#0x4000             ITTET                             ;2 bytes
EOREQ    r1,r1,#2                          MOVWEQ r3, #0x4002 ; 4 bytes
MOVNE    r3,#0 EOREQ r1, r3  ; 2 bytes
MOVEQ    r3,#1   MOVNE r3, #0 ; 2 bytes

MOVEQ r3, #1 ; 2 bytes
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Thumb-2 (2)
� “Thumb Code density at ARM Performance”

� In principle this could be achieved with ARM and Thumb previously
� Much of the code running is not performance critical
� With code knowledge, can compile non-critical code to Thumb

� Much simpler with Thumb-2 

�Expect to see growing emphasis on Thumb-2 in the future 

�ARM still totally committed to ARM ISA compatibility 

�The ARM instruction set is still completely supported

�No plans to “downgrade” the ARM ISA in the applications space

Performance

Code density

100% ARM code

100% Thumb code

Random mix
‘Profiled’ mix

Thumb-2
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TrustZone
�Architectural extensions to 
introduce a “Security” state

� Orthogonal to User/Privileged split 

�Effectively two virtual CPUs 
separated by a new mode

� Monitor mode the gatekeeper for 
switching CPUs

� Some hardware registers duplicated 
to aid switching  

�Memory tagged as secure and 
non-secure by the system

� Only the secure CPU can access the 
secure memory & peripherals

� System can include secure and non-
secure peripherals
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ARM NEONTM Technology Overview

� 64/128-bit Hybrid SIMD architecture

� Independent Register file with 2 aliased views:

� 32 x 64-bit registers (D0-D31)

� 16 x 128-bit registers (Q0-Q15)

� Integer and SP Floating-point processing

� 8, 16, 32, 64-bit Integers

� Single-precision Floating-point

� Encoded in ARM and Thumb-2

� 2 to 4x performance improvement over ARMv6 SIMD

� Accelerates audio, video, and 3D-graphics

Q0

Q1

Q15

:

D0

D1

D2

D3

:

D30

D31

D0.U8
Q0.F32

64-bit

128-bit
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NEON SIMD Structure Load/Store

� Native support for structures
� e.g. Complex Numbers, Pixels, Co-ordinates

� Memory treated as an Array of Structures (AoS)

� Eliminates ‘shuffling’ overhead
� Optimised memory access as single transfer

� Data arranged for efficient SIMD processing 

x0

y0

z0

x1

y1

z1

x2

y2

D0

D1

D2

x0

y0

z0

x1

y1

R0 VLD3.16 {D0,D1,D2}, [R0]!

VST3.16 {D0,D1,D2}, [R0]!

Load

StoreMemory Registers

Transfer four 3 x 16-bit structures

z2z3

y3

x3



999

NEON Vectorising Compiler Target

� NEON provides a consistent algorithm mapping

� Apply narrowing analysis

� Vectorize over loop iterations

� Enabled by architectural model

� Orthogonal instruction framework

� Few inter-lane operations 

� Fused Data Type conversion

� NEON designed in conjunction with compiler technology

� Ensure architecture optimised for this compiled mode

� Benefits of CSE, unrolling, scheduling, register allocation

� Portable solutions by avoiding hand coding or intrinsics
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-RCT: Runtime Compilation Target

�Beneficial to Java and a wide range of emerging languages 
�Microsoft .NET MSIL, Perl, Python etc

� Enables high performance in smallest memory footprint
� Optimal balance between speed and code density with run-time compilers

� Low cost and low power
� Less than 8K gates and small memory footprint result in lower power

� Complementary to                  DBX on mid-tier devices
� for optimum Java performance and efficiency

�Broad industry adoption
� Sun Microsystems, Aplix and Esmertec are early adopters

�Builds on success of                  DBX technology
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Cortex-A8 Processor Highlights
� First implementation of the ARMv7 instruction-set architecture, including the 

Advanced SIMD media instructions (NEON™)

� In-order, dual-issue, superscalar microprocessor core
� 13-stage main integer pipeline

� 10-stage NEON media pipeline

� dedicated L2 cache with 9-cycle latency

� branch prediction based on global history

� Key metrics
� delivers 2000 DMIPS for next-generation consumer applications

� average IPC of 0.9 across multiple benchmark suites 
� includes EEMBC, SpecInt95, Mediabench, and partner-provided applications

� achieves 1GHz when fabricated in high-performance technologies 

� consumes less than 300mW in low-power devices 

� less than 4mm2 at 65nm, excluding NEON, L2 cache, and Embedded Trace
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ARM Cortex-A8: why Superscalar?
� In-order instruction issue

� less complex than out-of-order
� fewer structures means lower power
� less need for custom design

� can maintain high IPC with
� fully symmetric ALU pipelines
� all critical forwarding paths supported 
� dual-issue of dependent instruction pairs

� Static scheduling with instruction replay on memory stall
� low-power consumption due to early availability of gate enables
� fire-and-forget instruction issue removes critical paths from the design

�Net result 
� high-frequency design with out-of-order performance, but in-order 

clock frequency and power consumption 

� Average IPC of 0.9 across 150+ ARM and industry benchmarks
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Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline
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Control Flow 

� Dynamic branch predictor components
� 512-entry 2-way BTB 

� 4K-entry GHB indexed by branch history and PC

� 8-entry return stack

� Branch resolution
� all branches are resolved in single stage
� Maintains speculative and non-speculative 

versions of branch history and return stack

Branch prediction maintains 95% accuracy over a wide codebase
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Instruction Decode

Instruction Execute

Instruction Decode

Integer register writeback

Pending and replay 

queue

Dec/seq
Dec 

queue 

read/write

Score-

board

+

issue

logic

Early

Dec

Early

Dec Dec

RegFile

ID

remap

Replay penalty = 9 cycles

E1 E3 E4E2 E5D1 D2 D3 D4D0 E0

ALU pipe 0

MUL pipe 0

ALU pipe 0

LS pipe 0 or 1

� Instruction decode highlights
� pending queue reduces Fetch stalls and increases pairing opportunities
� replay queue keeps instructions for reissue on memory system stall
� scoreboard predicts register availability using static scheduling techniques 
� cross-checks in D3 allow issue of dependent instruction pairs
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Instruction Execution

� Execution pipeline highlights
� 2 symmetric ALU pipelines: Shift/ALU/SAT
� Load/store pipe used by instructions in either pipeline
� Multiply instructions are tied to pipe 0
� All key forwarding paths supported
� Static scheduling allows for extensive clock gating
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Memory System on Cortex-A8
� Harvard Level 1 Caches – both 32KByte 4 way set associative

� VIPT Instruction cache; VIPT Data cache with alias detection  

� Level 1 Data cache is blocking

� Non-Neon read misses cache cause replay of subsequent instructions

� Reduces complexity in later pipeline stages

� Good for power and clock frequency

� Neon data not allocated to L1 (but will read/update in L1 if necessary)

� Unified Level 2 Cache

� PIPT, 8 way set associative 

� Fully pipelined and non-blocking 

� Up to 9 memory transactions in flight

� Streams to the Neon processing unit; up to 16GByte/s bandwidth

� 64 or 128 bit AMBA AXI interconnect to memory

� Split transaction burst based protocol 

� Supports multiple outstanding memory transactions to minimise memory latencies
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Memory System

LS pipeline
� 32k 4-way set associative data cache

�Address hash array used to predict cache way

�Saves power and improves timing

� load data forwarding in E3 to all critical sources

� one-cycle load-use penalty for ALU 

� store data not required until E3

BIU pipeline
� 9-cycle minimum access latency to L2 cache

� L2 built using standard compiled RAMS (64k-2MB configurable size)

� 64/128bit AXI L3 bus interface supports up to 9 outstanding transactions
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NEON Interfaces

� Skewed late in pipeline, past the retire point

� reduces interface complexity
� exception handling not required

� decoupling queues from integer machine 

� removes load-use penalty

� negative impact on NEON -> ARM transfers
� nonblocking ARM register file helps hide latency 

� Streaming to and from L2 memory system

� up to 8 outstanding transactions 

� can receive 128 bits/cycle

� can receive data from L1 or L2 memory system

� independent NEON store buffer
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NEON Media Engine Unit

Instruction issue

� static scheduling with fire-and-forget issue

� 1 LS + 1 NINT/NFP can issue  each cycle

Execution pipelines
� all pipelines are 64-bit SIMD

� floating-point MAC executed using both FADD and FMUL pipelines
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Cortex-A8 NEON Technology

MPEG-4

MP3 Decoder

GSM-AMR

1x 2x 4x3x

NEONARMv6ARMv5

1) MPEG-4 Simple Profile @ 30fps 512kbps , 133MHz SDRAM 10-1-1-1-1-1-1-1 memory, includes deblocking and deringing filters

2) MP3 Decoder @ 320kbps 48kHz (worst case), 133MHz SDRAM 10-1-1-1-1-1-1-1 memory

3) GSM-AMR (worst case), 3 cycle per word memory

4) H.264 Decoder Baseline profile   

9.4MHzMP3 decode, 320kbps 48kHz, worst case3

13MHzGSM-AMR, worst case2

350MHzH.264 (estimated)4

Video, 30fps VGA decode 

275MHzMPEG-4 including de-ring and de-block filters, yuv2rgb1 

� Accelerating standardization of media processing for next generation 
mobile and consumer products

� The ideal software target to run rapidly evolving downloadable media 
players such as Windows Media Player 10 and Real Player
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Coresight Debug and Trace
� Hardware Debug and Trace are key components

� Valued by the people who use the systems!

� ARMs Coresight moves to a system-centric debug philosophy
� SoC are not just the core any more

� Multiple sources of trace data – cores, buses, software instrumentation

� Multiple debug components – cores, buses watchers etc

� Cross-triggering of debug events to multiple cores

� System identification of components in the SoC essential to debug

� Topology identification methodology as well

� Coresight is a debug and trace focussed system architecture
� Debug components part of a debug memory space 

� Standardised interface to JTAG or Serial-Wire Debug

� Open standards to encourage 3rd party adoption

� Cortex-A8  incorporates Coresight compliant interfaces
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Implementation Strategy: Motivation
� Why use a semicustom design flow?

� required to achieve project frequency, area, and power targets 

� Why not deliver a hard macrocell?
� too many restrictions on circuit and layout optimizations possible

� design porting does not scale well with increases in design size and 
complexity

� The goal: 
� provide our partners with an alternative method of IP delivery that

� achieves Cortex-A8 power, area, and frequency targets

� minimizes the additional effort required from the silicon partner
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ARM Cortex-A8 Processor Summary
� Industry-leading performance and power efficiency

� Greater than 2000 DMIPS for demanding tethered applications

� Less than 300mW for low power mobile applications

� More than 7 major new technology innovations:
� NEON, Jazelle-RCT, Thumb-2, TrustZone, AMBA AXI, CoreSight, IEM

� Supported end-to-end by ARM Technology
� RealView ARCHITECT ESL Models – Artisan AdvantageCE Libraries

� Industry momentum fueling wide adoption
� 5 licensees, 1/3 of the Top 15 WW Semiconductor Vendors * 

* Source:  Gartner Dataquest (March 2005)
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Questions?


