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1 Abstract

The first example in the classic book “The C Pro-
gramming Language” by Kernighan and Ritchie[1]
is in fact a remarkably complete test of the C pro-
gramming language. This paper provides a guided
tour of a slightly more complex program, where
printf() is called with multiple arguments. Along
the way from the initial processes’s call to exec()
to the final _exit(), we’ll tour the program loading
code in the kernel, the basics of system-call imple-
mentation, the implementation of the memory allo-
cator, and of course printf(). We’ll also touch on
localization, a little on threading support, and a brief
overview of the dynamic linker.

2 Introduction

The first example in the classic K&R C book is a
simple program that prints the text “hello, world”
on a single line and exits. It’s seemingly simple
and straightforward (once the programmer under-
stands that \n means newline). In reality though,
it compiles to over 550KiB on MIPS64! This pa-
per explores the complexities behind the simple
helloworld binary and uncovers the impressive
engineering required to make this program work in
a modern C environment.

#include <stdio.h>
main() {

printf("hello , world\n");
}

The example above shows the classic K&R ver-
sion of helloworld. Unfortunately, it won’t even

compile with a modern compiler in C11 mode. In
practice we need to specify a return type (or at least
void for returning nothing) and arguments. In the-
ory the main() function is defined to return an inte-
ger and take two arguments for the command line
argument list; however, compilers tend to accept
this alternative form for compatibility sake.

#include <stdio.h>
void
main(void)
{

printf("hello , world\n");
}

One of the more interesting features of the
printf() function is that it takes a variable number
of arguments. Varidac functions such as printf()
are both interesting and error prone, so it’s useful to
understand how they work. As such, we’ll use the
following enhanced version of helloworld with a
string argument and an integer argument. The re-
sulting program prints “hello, world 123” on a sin-
gle line.

int
main(void)
{

const char hello [] =
"hello , world";

printf("%s %d\n", hello , 123);
return (0);

}

2.1 A minimal version

Before we dive into the version above, let’s consider
the simplest program with the same result. For ex-
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ample, this C program avoids all the complex for-
matting routines in printf() and writes a string
to standard output directly via the write() system
call:

void
main(void)
{

const char *hello[] =
"hello , world 123\n";

write(1, hello , sizeof(hello));
exit (0);

}

Taking things one step further, the following
MIPS64 assembly does the same without the need
for any standard startup code:

.text

.global __start

.ent __start
__start:

li $a0 , 1
dla $a1 , hello
li $a2 , 13
li $v0 , 4

# write(1, "hello , world 123\n",
# 16)

syscall
li $a0 , 0
li $v0 , 1
syscall # exit (0)
.end __start

.data hello:

.ascii "hello , world 123\n"

This version assembles down to 9 instructions
and is less than one 1KiB in size. The vast majority
of that size is due to ELF headers and MIPS plat-
form support bits like specify details of the target
architecture and required features.

3 The process life cycle

The life of a traditional Unix process is fairly
straightforward. An existing process creates a copy
of itself via the fork() system call. This copy is
identical to the parent process, with exceptions in
the parent/child relationship in the process tree and
by extension the return value of fork(): 0 in the
child and the process ID of the child in the par-
ent. The child process has a copy of the memory

of the parent process. (In practice, writable pages
are marked copy-on-write to avoid unnecessary du-
plication.) Pages marked shared will be available
in both processes. All of this is interesting and com-
plicated, but beyond the scope of this paper, because
the next thing the shell (or other process running
helloworld) does is call exec() – which wipes
away all this state to create a fresh process. Un-
less the process triggers an unhandled signal and
is killed, it eventually calls _exit() and is termi-
nated.

Modern UNIX systems may employ the
posix_spawn() function to create a new process
with a new executable, in one fell swoop eliminat-
ing the need for exec() to tear down the memory
mappings fork() just created.

3.1 The exec system call

The execve() system call underpins all variants of
exec() and has the prototype:

int execve(const char *path ,
char *const argv[],
char *const envp []);

Figure 1 on the following page displays a flame
chart of the execution of the sys_execve() system
call. The execve() system call’s job is to open the
file to be executed, clear the memory image of the
current process, map the file to be executed into the
process space, set up a stack with argument and en-
vironment vectors embedded, and finally return to
user space with argument and program counter reg-
isters set up to call the __start() function.
execve() accomplishes this in a few phases.

First, the exec_copyin_args() function copies
the program name, argument vector, and environ-
ment vector into kernel memory. This varies be-
tween ABIs, as the pointers in the argument ar-
rays may be of different sizes (for example, 32-bit
pointers in an i386 binary running on an amd64
system). Once complete, do_execve(), the ABI-
independent core of sys_execve() is called via the
thin wrapper kern_execve(). It first uses namei()
to resolve the path of the executable into a file, and
then calls exec_check_permissions() – which
verifies that the caller has permission to open the file
and then opens it. The exec_map_first_page()
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Figure 1: Flame chart of sys_execve() execution

function then does what you would expect: allow-
ing the program headers to be parsed and the binary
format determined (or in the case of a script, the in-
terpreter to be found, but that is outside the scope of
this paper). Next, the credentials of the new process
are updated if the binary is marked setuid or setgid.

A binary-specific loading function referred to as
an image activator is then called to parse and con-
figure the process address space. One interesting
side-effect of the use of exec_map_first_page()
is that current image activators all require that any
information required to set up the address space be
stored in the first page of the binary. In practice, this
isn’t a significant limitation.

In the case of our MIPS n64 helloworld,
the image activator is exec_elf64_imgact()
– since we’re mapping a native 64-bit ELF bi-
nary. (Confusingly, you won’t find this function
anywhere in the kernel, as it is declared via
multiple macros in kern/imgact_elf.c as
__CONCAT(exec_, __elfN(imgact))(struct
image_params *imgp).) exec_elf64_imgact()
examines the ELF branding information to de-
termine the ABI of the new process and finds
the sysvec structure associated with the ABI. It
then calls exec_new_vmspace(), which removes
all the page mappings copied from the parent
process by fork() creating an empty address
space. It then maps the default stack and returns.
exec_elf64_imgact() then maps segments of
type PT_LOAD into the address space with appro-
priate permissions, the ELF auxiliary arguments
vector is allocated, and portions derived directly
from the ELF file are added.

At this point all the initial memory mappings
for the process are set up. The kernel now needs
to copy out the argument array, environment array,
and ELF auxiliary arguments. This is performed
by the exec_copyout_strings() function. The
function exec_copyout_strings() is somewhat
overloaded. In addition to copying out the program
path, and the argument and environment strings,
it reserves space for some auxiliary argument val-
ues and constructs the arrays of pointers to the
aforementioned strings. It also copies out sigcode
(the return trampoline for single handlers), gener-
ates and copies out the stack canary, and copies out
a list of page sizes. Next do_execve() calls the
elf64_freebsd_fixup() function, which updates
the pointers in the previous allocated auxiliary argu-
ment array and writes argc (the number of program
arguments) to the top of the stack. The layout of
an n64 ABI process’s memory at the time execution
begins can be see in Figure 2 on the next page

Finally, exec_setregs() is called to initialize
the state of the registers when execve() returns to
the process. On MIPS, this means zeroing the reg-
ister set, setting the stack pointer to the top of the
default stack (less all the values copied out above),
the program counter to the address of __start(), a
few other MIPS specific registers to appropriate val-
ues, and the first argument register to the location of
argc. (As a holdover from the port of MIPS sup-
port from NetBSD, we also set the fourth argument
register to point to ps_strings, but that is unused
in FreeBSD code.)

At this point do_execve() performs a bit
of cleanup and then returns. We return to
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Figure 2: MIPS n64 static process memory

kern_execve() and sys_execve(), finally re-
turning to userspace from the execve() system
call.

3.2 Entering __start

As previously mentioned, and contrary to naïve ex-
pectations, statically linked programs begin in the
__start() function, not in main(). This function
handles initialization of process state that is not eas-
ily compiled into the static binary, and which may
change over time – and thus is not suitable for em-
bedding in the kernel. The __start() function
and related infrastructure account for a consider-
able portion of the size of the helloworld binary.
They are linked with the main program by the com-
piler, and are typically hidden from the program-
mer. For example, a typical command to link a
helloworld.o object file into a helloworld ex-
ecutable looks like:

cc -static -o helloworld helloworld.o

Under the hood, the compiler actually calls the
linker (ld) a s follows:

ld -EB -melf64btsmip_fbsd -Bstatic \
-o helloworld /usr/lib/crt1.o \
/usr/lib/crti.o /usr/lib/crtbeginT.o \
-L/usr/lib helloworld.o \
--start-group -lgcc -lgcc_eh -lc \
--end-group \
/usr/lib/crtend.o /usr/lib/crtn.o

These files include the implementation of
__start() and an assortment of startup code re-
sponsible for invoking various initialization mech-
anisms. A brief explanation of the contents of the
various files is shown in Table 1 on the following
page.

In addition to invoking these initialization mech-
anisms, __start() calls main(); if main returns,
__start() calls exit() with main()’s return
value. The majority of time in __start() before
entering main() is in _init_tls(), which sets up
thread-local storage. This thread-local storage setup
primarily consists of initializing data structures re-
quired for malloc() to allocate a buffer. In a pro-
gram as simple as helloworld, this initialization
takes more time than the actual main() function.
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File Purpose
crt1.o Contains __start() function which initializes process environment and calls

main().
crti.o Entry points for old style _init() and _fini() functions.
crtbegin.o
crtbeginS.o
crtbeginT.o

Declares .ctor and .dtor constructor and destructor sections. Declares functions to
call constructors and destructors.

crtend.o NULL terminates .ctor and .dtor sections.
crtn.o Trailers for _init() and _fini() functions.

Table 1: C Runtime files and their purposes

Figure 3: Flame chart of __start() execution

Figure 4: Flame chart of _init_tls() execution
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The _init_tls() function’s job is to allocate
and initialize the thread-local storage area for the
first thread. Examining the call graph in Figure 4 on
the previous page, it is clear that most of the time
is spent in __je_bootstrap_calloc(), which in
turn spends most of its time in malloc initializa-
tion code. This is because the TLS area may need
to be expanded in the future, due to dlopen() in-
cluding new libraries that use TLS; when that hap-
pens, memory will be released with free(), and a
new segment allocated. Thus, virtually every pro-
gram linked against libc initializes the malloc()
subsystem before main(). After memory is allo-
cated, it needs to be initialized. The majority of
thread-local variables are initialized to zero, so the
use of calloc() takes care of their initialization;
however, some have other default values defaults
(e.g., a pointer to a default object, -1 for an invalid
file descriptor). For those, default values are stored
in the executable at a location accessible via the ELF
auxiliary arguments. The _init_tls() function
thus needs to locate the auxiliary arguments vector.
There is no standard way to do this, but the known
layout of the stack provides a mechanism.
Elf_Addr *sp;
sp = (Elf_Addr *) environ;
while (*sp++ != 0)

;
aux = (Elf_Auxinfo *) sp;

Because the auxiliary argument vector lies just
beyond the environment array, the code starts at the
beginning of the argument array and proceeds to
walk on past the end to find the auxiliary argument
vector. This relies on behavior that is undefined in
the C language.

Once the argument vector is located and cast to an
appropraite type, _init_tls() walks it to find the
ELF program headers; it then walks the header list
to find the PT_TLS segment, copies values to the be-
ginning of the previously allocated TLS entry, and
sets the TLS pointer. On MIPS, the TLS pointer
is set via sysarch() system calls, and historically
retrieved by sysarch() as well. For setting, this
is not important (as changes are infrequent). How-
ever, retrieving the pointer this way is another mat-
ter. Having to perform a system call every time a
thread-local variable is accessed is quite expensive,
since functions as common as malloc() and (as we

see later) printf() use thread-local storage. On
modern MIPS processors, the TLS point is stored in
a special register that is updated on context switch
or when set via the sysarch().

Following TLS initialization, the
handle_static_init() function calls vari-
ous initialization functions. For historical reasons,
there are more of these than strictly necessary.
First, a .pre_init_array section contains a list
of function pointers. Each is called in turn. Next,
the .init section is a concatenation of all .init
sections in the program and is the _init function.
As previously mentioned, the prolog of _init() is
defined in crti.o and the epilog in crtn.o. The
body of the function is arbitrary machine code from
various object files and libraries. This functionality
is deprecated, and little use is made of it in modern
software. However, the GNU startup code uses
it to call code to handle constructors stored in
the .ctors section and register a handler for the
destructors in the .dtors section via the atexit()
function. The .ctors section works similarly to the
.pre_init_array section. After _init() returns,
the .init_array section is handled identically to
the .pre_init_array section.

All in all, there are more initialization methods
than necessary, but we’re stuck with them all on cur-
rent platforms. New platform ports should consider
removing .init/.fini sections entirely, and having
handle_static_init() or its equivalent process
.ctor and .dtor entries directly.

3.3 Calling main()

The main() function seen in Figure 5 on the
following page simply calls printf() before re-
turning to __start() in order to exit. printf
() is implemented as a call to vfprintf(),
which in turn retrieves the current thread’s locale
via __get_locale() and passes it to the func-
tion vfprintf_l(). vfprintf_l() finally calls
__vfprintf() to do the actual work. One might
reasonably ask, why do we need the locale in
printf()? In the common case, the answer is that
the format string might indicate thousands separa-
tors or decimal-points in numbers (commas and pe-
riods respectively in English). The locale is required
to select the proper character. As shown in the flame
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Figure 5: Flame chart of main() execution

chart, the majority of time in printf() is actually
spent allocating an internal buffer in __swsetup(),
which is beyond the scope of this paper.

The pertinent part of __vfprintf() seen in Fig-
ure 6 on the next page parses the format string in a
loop, emitting output each time a format variable
is parsed via the __sprint() function. Because
output in this case goes to the buffered STDOUT file
stream, actual output occurs only when the buffer is
full or when a newline is detected. In this example,
that occurs when outputting the last element of the
format string.

The __sprint() function seen in Figure 7 on
the following page scans the data to be output with
memchr(), and locates a newline character. The
data is output to the buffer as usual, except that at the
end the buffer is flushed by the __fflush() func-
tion – which ultimately culminates in a call to the
write() system call outputting:
hello , world 123

In our example implementation main() returns 0
to __start(), which calls exit().

3.4 Exiting

Processes ultimately exit by being killed due to a
signal or by calling the _exit() system call. Pro-
grams, including those that return to the standard
__start() function, call the exit() library func-
tion to do this. The exit() function visible in Fig-
ure 8 on the next page is responsible for more than
just calling the _exit() system call. In particu-
lar, it needs to call any finalizers or destructors. In

the case of helloworld, the only one that is par-
ticularly interesting is _cleanup(). _cleanup()
is called by any program that uses a buffered file
stream to walk the list of buffered streams and flush
any with outstanding data. Since our STDOUT()
stream was flushed by the newline terminating the
format string passed to printf(), _cleanup() just
needs to observe that no data is buffered.

After _cleanup(), exit() calls _exit(),
which terminates the process, and helloworld is
complete.

4 Dynamic linking

Dynamically linked programs are similar to stati-
cally linked programs with a few key differences.
First, statically linked programs directly include all
code they may call. Second, statically linked pro-
grams are generally compiled to be invoked at a
single predetermined userspace address (which is
known as being non-relocatable). Third, for dynam-
ically linked programs, the kernel loads both the the
program (as is done for static programs) and the run-
time linker. When execve() returns to userspace, it
returns calling rtld_start() in the runtime linker
rather than __start() in the program.

The runtime linker relocates itself, analyzes and
relocates the program if necessary, and loads and
relocates dynamically linked libraries. In the case
of helloworld, this means loading and relocating
libc, the C standard library. After relocation has
occurred (at considerable cost in our trivial pro-
gram), the linker calls __start() and execution
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Figure 6: Flame chart of __vfprintf() execution, post buffer allocation

Figure 7: Flame chart of __sprint() execution

Figure 8: Flame chart of exit() execution
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largely proceeds as before. The primary exception
is that calls to symbols in another library result in
symbol lookups on the first trip through. These
lookups are performed by the _mips_rtld_bind()
function, which locates the function in question, up-
dates the pointer in the Global Offset Table (GOT),
and calls the function. These lookups are performed
on first use because they are quite expensive (about
ninety-thousand userspace instructions on FreeBSD
MIPS when calling into libc), so it is important to
avoid performing them on functions that are linked
but not actually called by a given execution of the
program.

The way we call _mips_rtld_bind() is inter-
esting. Each undefined function (that is to say, each
function whose implementation is expected to be
found in another library) has an entry in the global
offset table. On MIPS, this initially points to a tiny
bit of stub code in the .MIPS.stubs section – which
loads the offset of the GOT entry and the original
return address into a temporary register and calls
the _rtld_bind_start() function. The stub for
atexit() in our dynamic helloworld program is:

ld t9 , -32752(gp)
move t3 ,ra
jalr t9
daddiu t8 ,zero ,9

_rtld_bind_start() then sets up a stack frame
saving the usual values including all argument reg-
isters, but with the original return address rather
than the address of the stub stored and calls
_mips_rtld_bind(). _mips_rtld_bind() per-
forms some locking, looks up the location of
this function in the GOT, and locates teh sym-
bol address by calling the run-time linker func-
tion find_sysdef(). When the symbol is is re-
turned, its address is stored in the GOT (so we
don’t need to call the stub code again), and we re-
turn to _rtld_bind_start(). The remainder of
_rtld_bind_start() restores the argument regis-
ters with which it was called, as well as the return
address of the stub code. It then makes a tail call to
the newly discovered address of the function.

5 Conclusions

All the pieces required to make a simple
helloworld program work require considerable
engineering efforts. A few things are influenced
by the need to support legacy code. However, the
vast majority of the half-megabyte size of a static
helloworld is there currently for good reasons.
Indeed, the engineering efforts form the basis for
much more complex systems that help run our daily
lives.

Were you really afraid to ask? Or glad that you
did?

6 Further reading

If you would like to know more about the under-
pinnings of helloworld and other C programs, a
number of resources are available. The classic book
Linkers and Loaders[2] covers linking in consider-
able detail. It’s showing its age, but still worthwhile.
For a more modern view, Ian Lance Taylor has a se-
ries of blog posts on linkers beginning with . For
aspects of startup files, the GCC Internals Manual
provides some useful coverage. The layout of the
stack prior to return from execve() is architecture
dependent, but for ELF systems derives from the
System V i386 ABI[3] designed by SCO.
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