Getting the Most From
SSH

Brooks Davis
<brooks@one-eyed-alien.net>

Outline

® SSH feature overview
@ Basic usage
@ Advanced usage

@ Client configuration, Public key
authentication and authorization, Port
forwarding, ProxyCommand

@ Specialized versions

Major features

@ Cryptographically secure protocol
® Remote access (telnet, rsh)

® Remote command execution (rsh)
@ File transfer (rcp, ftp)

@ X1l connection forwarding

@ TCP port forwarding

The SSH Protocol

® Connects to a remote host and uses Diffie
Hellman or RSA public key cryptography to
exchange a secret Key.

@ Uses secret key for transport encryption
with a symmetric cypher, usually using
Blowfish, AES or 3DES.

@ Also supports PKI authentication and
authorization.

The SSH protocol

® There are two versions of the SSH protocol,
1 and 2. Version 1 should not be used.

@ SSH operates over a single data stream,
usually a TCP session.

@ Internally, SSH multiplexes multiple streams
over its encrypted channel. These streams
are used to support Xll connection
forwarding, port forwarding, and agent
forwarding.

Remote access

@ Connecting fo a host
@ ssh <host>

@ Connecting as a specific user
@ ssh <user>@<host>

@ ssh -l <user> <host>

Remote execution

@ Run a simple command
@ ssh <host> <command>
@ Run an interactive command
@ ssh -t <host> <command>
® Run an Xl11 command

@ ssh -X <host> <Xcommand>

File copy

@ Copy a file from localhost to your home
directory on remote host

@ scp <src_path> <host>:

@ Copy a file to a specific location on a remote
host

@ scp <src_path> <host>:<dest_path>

File copy

@ Copy a file to the local host
@ scp <host>:<src_path> <dest_path>
@ Copy a file from hostl to host2
@ scp <hostl>:icksrc_path> <host2>:<dest_path>

@ ssh <hostl> scp <src_paths \
<host2>:<dest_path>

SFTP

® Provides an FTP-like interface to a remote
system secured using SSH

@ sftp <host>

Client configuration

@ Evaluated in order (first setting wins):
@ Command line options
@ User configuration in ~/.ssh/config

@ System wide defaults in etc/ssh/ssh_config
or etc/ssh_config

Config Example

Host *.example.org
User eouser
ForwardXll yes

Host *.sub.example.com
User suser

Host *.example.com
User ecuser

Host *

ForwardXll no

Set the user for
each site, defaulting
to the local user for

unlisted sites.

Do not forward X
connections by
default, except to
hosts at example.org.

Host keys

@ Host keys are used to verify the authenticity
of a host during the connection process

@ The public keys of verified hosts are stored
in etc/ssh/known_hosts and/or ~/.ssh/
Known__hosts

@ Either whole keys or key fingerprints may be
verified

User keys

@ User Keys authenticate users to hosts

@ Three types are supported:
@ DSA: ~/.ssh/id_dsa, ~/.ssh/id_dsa.pub
@ RSA: ~/.ssh/id_rsa, ~/.ssh/id_rsa.pub

@ RSAIl (obsolete): ~/.ssh/identity, ~/.ssh/
identity.pub

User keys

@ Keys are generated using ssh-keygen(l)
@ ssh-keygen -t dsa
@ ssh-keygen -t rsa

@ The ssh-keygen supplied with OpenSSH can
also convert between OpenSSH format key

files and "SECSH Public Key File Format” files
as used by some commercial implementations.

User keys

@ To use keys to authenticate to a host, place
your public key in the authorized_keys file
on the target host (usually under ~/.ssh/).

@ By default ssh will attempt to authenticate
using available keys.

@ You will have to enter your pass-phrase each

time you log in unless you configure an SSH
agent.

SSH agent

@ An SSH agent stores decrypted copies of
keys loaded into it to allow automatic, key
based authentication.

@ Starting an agent:
@ eval ‘ssh-agent’
@ Adding your keys:

® ssh-add

SSH agent startup

@ While the agent can be started by hand, it is
generally better fo start it automatically.

@ Usually done in startup/shutdown script
scripts.

@ Can be done by PAM fo start an agent as
part of the login process.

@ Agents may also be forwarded between
hosts.

SSH agent startup:
csh/tcsh

~/.login

if(! $1?SSH_AUTH_SOCK} && -f “which ssh-agent”) then
eval ‘ssh-agent -c

endif

-

~/.logout

if (${?SSH_AGENT_PID}) then
echo killing agent ${SSH_AGENT_PID;}
kill ${SSH_AGENT_PID}

endif

SSH agent startup:
bash

~/.bash_login
if [-x “which ssh-agent™ -a -z "${SSH_AUTH_SOCK-}"];
then
eval ‘ssh-agent -s
f

~/.bash_logout

if [-n "${SSH_AGENT_PID-}"]; then
kill ${SSH_AGENT_PID}

f

SSH agent startup:
XINItre

if [-f “which ssh-agent” -a-z "${SSH_AUTH_SOCK-}" 1; then
KILL_SSH_AGENT=1
eval ‘ssh-agent -s
ssh-add &

XXX: Start your window manager here

if [-n "${KILL_SSH_AGENT}"]; then
echo "killing ssh agent ${SSH_AGENT_PID}"
kill $SSH_AGENT_PID

Dedicated keys

@ In addition to normal user keys, dedicated
keys (typically stored unencrypted) may be
used fo automate tasks.

@ Extended options in the authorized_keys file
allow restrictions to be placed on a key's use
to limit damage if the key is compromised.

Key restrictions

Normal key
1024 33 12121...312314325 user@example.com
#

Only from example.org and not from bad.example.org
from="*.example.org,!bad.example.org" 1024 35 23..2334 user@example.net

#

Automatically run "dump /home", do not allow allocation of a pseudo terminal or

port forwarding

command="dump /home",no-pty,no-port-forwarding 1024 33 23..2323 backup.example.net
#

only allow limited forwarding of porfts
permitopen="10.2.1.55:80",permitopen="10.2.1.56:25" 1024 33 23...2323

Key restrictions

@ Forcing the command in the authorized_keys
file is less of a restriction than it appears.

@ The submitted command is passed to the
forced command via the
SSH_ORIGINAL_COMMAND environmental
variable where it can be executed after
appropriate filtering.

® Writing a command filter is non-trivial, but
may be worth while in some cases.

Key restrictions

#!/bin/sh
Simple ssh command script.
From "Using Rsync and SSH" http://www.jdmz.net/ssh/
case "$SSH_ORIGINAL_COMMAND" in
\&)
echo "Rejected"

*\;*I)I
echo "Rejected"
rsync\ --server®)
$SSH_ORIGINAL_COMMAND
*) 17
echo "Rejected"

esac

Port forwarding

@ Port forwarding allows you to make a TCP
port on the local or remote host work like a
connection to another port reachable from
the remote or local host respectively.

@ Port forwarding can be used to support
secure an insecure application or to access a
service that is inaccessible from the local or

remote host.

Port forwarding

@ By default, forwarded ports are bound to
localhost and only allow connections from
localhost. This may be changed with the -g
option.

@ Basic local forwarding:

@ ssh -L<localport>:<targethost>:<targetport>
<host>

HTTP over SSH

@ Using SSH and a proxy server fo access
restricted websites

@ ssh -L 8080:proxy:3128
gateway.restricted.example.com

/* proxy auto-configuration script */
function FindProxyForURL(url, host)
{
if (dnsDomainIs(host, ".restricted.example.com"))
return "PROXY localhost:8080;";
return "DIRECT";

;

Securing VNC

@ VNC lacks any sort of useful transport
security.

@ If VNC servers are placed on a private
network, SSH can provide that security.

@ ssh -L 5900:<vnchost>:5900 <gateway>

® vncviewer localhost

Securing VNC

@ If using tightvnc client:
@ vncviewer -via <gateway> <vnchost>

@ Hint: use vncreflector fo add tight encoding
support to old vnc servers

ProxyCommand

@ In addition to the standard mode of
operation where the ssh client makes a TCP
connection to the remote host, an external
program can be used to make the connection
another way.

@ This program is specified by the
ProxyCommand configuration option.

@ The command should take two arguments,
target host and target port.

ProxyCommand

@ Behave normally, except use netcat to make
the connection

@ ssh -0 "ProxyCommand nc %h %p" <host>
@ Connect through a gateway host

@ ProxyCommand ssh <gateway> nc %h %p

ProxyCommand

® Use an SSH server on the POP3 port of your
home server to work from an internet cafe
with a stupid firewall

@ ProxyCommand ssh -p 111 <home_server>
nc %h 7%p

@ SSH through an HTTP proxy using corkscrew

@ ProxyCommand corkscrew
proxy.example.com 8080 %h %p

High performance file
transfer

@ Myth: encryption makes scp slow!

@ Over long, fat pipes, scp is slow due to the
use of a 64K hardwired window!

@ High Performance Enabled SSH/SCP sets the
maximum window using getsockopt():
195+Mbps

@ http://www.psc.edu/networking/projects/hpn-ssh/

Questions? Comments?

CACert Assurance

@ Requirements
@ CACert Identity Verification Form
@ Two forms of government issued photo ID

@ $20+ donation to The FreeBSD Foundation
with Name, Address

