
Getting the Most From
SSH

Brooks Davis
<brooks@one-eyed-alien.net>

Outline

SSH feature overview

Basic usage

Advanced usage

Client configuration, Public key
authentication and authorization, Port
forwarding, ProxyCommand

Specialized versions

Major features

Cryptographically secure protocol

Remote access (telnet, rsh)

Remote command execution (rsh)

File transfer (rcp, ftp)

X11 connection forwarding

TCP port forwarding

The SSH Protocol

Connects to a remote host and uses Diffie
Hellman or RSA public key cryptography to
exchange a secret key.

Uses secret key for transport encryption
with a symmetric cypher, usually using
Blowfish, AES or 3DES.

Also supports PKI authentication and
authorization.

The SSH protocol

There are two versions of the SSH protocol,
1 and 2. Version 1 should not be used.

SSH operates over a single data stream,
usually a TCP session.

Internally, SSH multiplexes multiple streams
over its encrypted channel. These streams
are used to support X11 connection
forwarding, port forwarding, and agent
forwarding.

Remote access

Connecting to a host

ssh <host>

Connecting as a specific user

ssh <user>@<host>

ssh -l <user> <host>

Remote execution

Run a simple command

ssh <host> <command>

Run an interactive command

ssh -t <host> <command>

Run an X11 command

ssh -X <host> <Xcommand>

File copy

Copy a file from localhost to your home
directory on remote host

scp <src_path> <host>:

Copy a file to a specific location on a remote
host

scp <src_path> <host>:<dest_path>

File copy

Copy a file to the local host

scp <host>:<src_path> <dest_path>

Copy a file from host1 to host2

scp <host1>:<src_path> <host2>:<dest_path>

ssh <host1> scp <src_path> \
<host2>:<dest_path>

SFTP

Provides an FTP-like interface to a remote
system secured using SSH

sftp <host>

Client configuration

Evaluated in order (first setting wins):

Command line options

User configuration in ~/.ssh/config

System wide defaults in etc/ssh/ssh_config
or etc/ssh_config

Config Example

Host *.example.org
User eouser
ForwardX11 yes

Host *.sub.example.com
User suser

Host *.example.com
User ecuser

Host *
ForwardX11 no

Set the user for
each site, defaulting
to the local user for

unlisted sites.

Do not forward X
connections by

default, except to
hosts at example.org.

Host keys

Host keys are used to verify the authenticity
of a host during the connection process

The public keys of verified hosts are stored
in etc/ssh/known_hosts and/or ~/.ssh/
known_hosts

Either whole keys or key fingerprints may be
verified

User keys

User keys authenticate users to hosts

Three types are supported:

DSA: ~/.ssh/id_dsa, ~/.ssh/id_dsa.pub

RSA: ~/.ssh/id_rsa, ~/.ssh/id_rsa.pub

RSA1 (obsolete): ~/.ssh/identity, ~/.ssh/
identity.pub

User keys

Keys are generated using ssh-keygen(1)

ssh-keygen -t dsa

ssh-keygen -t rsa

The ssh-keygen supplied with OpenSSH can
also convert between OpenSSH format key
files and “SECSH Public Key File Format” files
as used by some commercial implementations.

User keys

To use keys to authenticate to a host, place
your public key in the authorized_keys file
on the target host (usually under ~/.ssh/).

By default ssh will attempt to authenticate
using available keys.

You will have to enter your pass-phrase each
time you log in unless you configure an SSH
agent.

SSH agent

An SSH agent stores decrypted copies of
keys loaded into it to allow automatic, key
based authentication.

Starting an agent:

eval `ssh-agent`

Adding your keys:

ssh-add

SSH agent startup

While the agent can be started by hand, it is
generally better to start it automatically.

Usually done in startup/shutdown script
scripts.

Can be done by PAM to start an agent as
part of the login process.

Agents may also be forwarded between
hosts.

SSH agent startup:
csh/tcsh

~/.login
if(! ${?SSH_AUTH_SOCK} && -f `which ssh-agent`) then

eval `ssh-agent -c`
endif

~/.logout
if (${?SSH_AGENT_PID}) then

echo killing agent ${SSH_AGENT_PID}
kill ${SSH_AGENT_PID}

endif

SSH agent startup:
bash

~/.bash_login
if [-x `which ssh-agent` -a -z "${SSH_AUTH_SOCK-}"];
then

eval `ssh-agent -s`
fi

~/.bash_logout
if [-n "${SSH_AGENT_PID-}"]; then

kill ${SSH_AGENT_PID}
fi

SSH agent startup:
.xinitrc

if [-f `which ssh-agent` -a-z "${SSH_AUTH_SOCK-}"]; then
KILL_SSH_AGENT=1
eval `ssh-agent -s`
ssh-add &

fi

XXX: Start your window manager here

if [-n "${KILL_SSH_AGENT}"]; then
echo "killing ssh agent ${SSH_AGENT_PID}"
kill $SSH_AGENT_PID

fi

Dedicated keys

In addition to normal user keys, dedicated
keys (typically stored unencrypted) may be
used to automate tasks.

Extended options in the authorized_keys file
allow restrictions to be placed on a key’s use
to limit damage if the key is compromised.

Key restrictions

Normal key
1024 33 12121...312314325 user@example.com
#
Only from example.org and not from bad.example.org
from="*.example.org,!bad.example.org" 1024 35 23...2334 user@example.net
#
Automatically run "dump /home", do not allow allocation of a pseudo terminal or
port forwarding
command="dump /home",no-pty,no-port-forwarding 1024 33 23...2323 backup.example.net
#
only allow limited forwarding of ports
permitopen="10.2.1.55:80",permitopen="10.2.1.56:25" 1024 33 23...2323

Key restrictions

Forcing the command in the authorized_keys
file is less of a restriction than it appears.

The submitted command is passed to the
forced command via the
SSH_ORIGINAL_COMMAND environmental
variable where it can be executed after
appropriate filtering.

Writing a command filter is non-trivial, but
may be worth while in some cases.

Key restrictions
#!/bin/sh
Simple ssh command script.
From "Using Rsync and SSH" http://www.jdmz.net/ssh/
case "$SSH_ORIGINAL_COMMAND" in
 \&)
 echo "Rejected"
 ;;
 \;)
 echo "Rejected"
 ;;
 rsync\ --server*)
 $SSH_ORIGINAL_COMMAND
 ;;
 *)
 echo "Rejected"
 ;;
esac

Port forwarding

Port forwarding allows you to make a TCP
port on the local or remote host work like a
connection to another port reachable from
the remote or local host respectively.

Port forwarding can be used to support
secure an insecure application or to access a
service that is inaccessible from the local or
remote host.

Port forwarding

By default, forwarded ports are bound to
localhost and only allow connections from
localhost. This may be changed with the -g
option.

Basic local forwarding:

ssh -L<localport>:<targethost>:<targetport>
<host>

HTTP over SSH

Using SSH and a proxy server to access
restricted websites

ssh -L 8080:proxy:3128
gateway.restricted.example.com

/* proxy auto-configuration script */
function FindProxyForURL(url, host)
{
 if (dnsDomainIs(host, ".restricted.example.com"))
 return "PROXY localhost:8080;";
 return "DIRECT";
}

Securing VNC

VNC lacks any sort of useful transport
security.

If VNC servers are placed on a private
network, SSH can provide that security.

ssh -L 5900:<vnchost>:5900 <gateway>

vncviewer localhost

Securing VNC

If using tightvnc client:

vncviewer -via <gateway> <vnchost>

Hint: use vncreflector to add tight encoding
support to old vnc servers

ProxyCommand

In addition to the standard mode of
operation where the ssh client makes a TCP
connection to the remote host, an external
program can be used to make the connection
another way.

This program is specified by the
ProxyCommand configuration option.

The command should take two arguments,
target host and target port.

ProxyCommand

Behave normally, except use netcat to make
the connection

ssh -o "ProxyCommand nc %h %p" <host>

Connect through a gateway host

ProxyCommand ssh <gateway> nc %h %p

ProxyCommand

Use an SSH server on the POP3 port of your
home server to work from an internet cafe
with a stupid firewall

ProxyCommand ssh -p 111 <home_server>
nc %h %p

SSH through an HTTP proxy using corkscrew

ProxyCommand corkscrew
proxy.example.com 8080 %h %p

High performance file
transfer

Myth: encryption makes scp slow!

Over long, fat pipes, scp is slow due to the
use of a 64K hardwired window!

High Performance Enabled SSH/SCP sets the
maximum window using getsockopt():
195+Mbps

http://www.psc.edu/networking/projects/hpn-ssh/

Questions? Comments?

CACert Assurance

Requirements

CACert Identity Verification Form

Two forms of government issued photo ID

$20+ donation to The FreeBSD Foundation
with Name, Address

