
The Challenges of Dynamic Network Interfaces

Brooks Davis
The FreeBSD Project

Seattle, WA
brooks@{aero,FreeBSD}.org

Abstract

On early BSD systems, network interfaces were
static objects created at kernel compile time. To-
day the situation has changed dramatically. PC
Card, USB, and other removable buses allow hard-
ware interfaces to arrive and depart at run time.
Pseudo-device cloning also allows pseudo-devices to
be created dynamically. Additionally, in FreeBSD
and Dragonfly, interfaces can be renamed by the ad-
ministrator. With these changes, interfaces are now
dynamic objects which may appear, change, or dis-
appear at any time. This dynamism invalidates a
number of assumptions that have been made in the
kernel, in external programs, and even in standards
such as SNMP. This paper explores the history of
the transition of network interfaces from static to dy-
namic. Issues raised by these changes are discussed
and possible solutions suggested.

1 Introduction

In the early days of UNIX, network interfaces were
static. The drivers were compiled into the kernel
along with their hardware addresses. The set of de-
vices on each machine changed only when the admin-
istrator modified the kernel. Those days are long
gone. Today devices, hardware and virtual, may
come and go at any time. This dynamism creates
a number of problems for both kernel and applica-
tion developers.

This paper discusses how the current dynamism
came about in FreeBSD, documents the problems
it causes, and proposes solutions to some of those
problems. The following section details the history
of dynamic devices from the era of purely static de-

Published in the Proceedings of EuroBSDCon 2004
c©2004 The Aerospace Corporation
c©2004 Brooks Davis

vices to the modern age of near complete dynamism.
Following this history, the problems caused by this
dynamism are discussed in detail. Then solutions to
some of these problems are proposed and analyzed,
and advice to implementers of userland applications
is given. Finally, the issues are summarized and fu-
ture work is discussed.

2 History

In early versions of UNIX, the exact set of devices
on the system had to be compiled in to the kernel. If
the administrator attempted to use a device which
was compiled in, but not installed, a panic or hang
was nearly certain. This system was easy to pro-
gram and efficient to execute. Unfortunately, it was
not convenient to administer as the set of available
interfaces grew.

4.1BSD, released June, 1981, included a solution to
this problem called autoconfiguration [McKusick2].
Autoconfiguration is a process by which devices are
detected at boot time [McKusick1]. Under autocon-
figuration, each system bus is probed for devices
and those devices that have drivers in the system
are enabled. The process of identifying devices is
called probing and devices which are found in prob-
ing are attached. The procedure used to probe de-
vices varies by bus. On some buses, such as non-
PnP ISA, compiled-in addresses are probed and if
they respond as expected the device is assumed to
be there. With more advanced buses such as PCI
or SCSI, devices are self-identifying. PCI devices
are identified by an ID number composed of a ven-
dor portion and a vendor allocated product portion.
SCSI devices are identified by a device class and a
free form string. With autoconfiguration, all devices
to be used still had to be compiled in to the kernel,
but a super set could be used enabling one kernel to
work with multiple system configurations.



In FreeBSD 2.0, the LKM (Loadable Kernel Mod-
ules) system modeled after the facility in SunOS
4.1.3 was implemented by Terry Lambert [man4-2].
The LKM system freed administrators from the re-
quirement that all device drivers be compiled into a
single static kernel. Now devices could be loaded at
run time. This enabled support for a number of new
features. Devices manufactured after the kernel was
first built could be supported without a full rebuild.
Pseudo devices could be added on the fly. And some
development testing could be done without a re-
boot1. With LKM came the possibility of devices
coming and going during run time. Generalized sup-
port for detaching interfaces was not implemented
until Doug Rabson replaced LKM with the dynamic
kernel linker (KLD) and newbus in FreeBSD 3.0.
As part of this process, he implemented a primitive
version of if detach(). The KLD interface is an
enhanced module system based on dynamic linking
of ELF binaries.

While modules introduced the possibility of dynamic
interfaces, dynamic interfaces were first used by or-
dinary people with the introduction of PC Card
(PCMCIA) devices. The PC Card standard sup-
ports hot insertion and removal of cards. Through
use of short pins, a few milliseconds of warning that
a device is departing are provided, but otherwise,
they come and go at will. In the 2.x time frame,
PAO2 was developed to provide PC Card support
to FreeBSD [PAO]. Fairly functional support was
available based on the work in PAO in FreeBSD 3.
With the release of FreeBSD 4, PAO development
ceased because all major changes had been incorpo-
rated into the FreeBSD tree. CardBus support was
added in FreeBSD 5.0 and is currently fairly mature
(roughly speaking, CardBus is to PCI what PC Card
is to ISA.)

In FreeBSD 4.0, support for USB Ethernet devices
was added. Like PC Card devices, USB devices may
be attached and detached at will.

Since the introduction of USB networking devices,
a number of new types of removable networking de-
vices have appeared. The fwe(4) [man4], Ethernet
over FireWire driver appeared in 5.0 and was later
merged in to 4.8. The fwip(4), IP over FireWire
interface, implements RFC 2734 [RFC2734], IPv4
over IEEE1394, and RFC 3146 [RFC3146], IPv6 over
IEEE1394; it was introduced in 5.3. Bluetooth sup-

1Assuming that the developer was fortunate enough to
make an error that did not result in a kernel panic.

2According to the PAO FAQ, “PAO stands for nomads.”

port was introduced in FreeBSD 5.2. Being wireless,
Bluetooth devices are inherently dynamic. While
not currently supported, hot plug PCI, Compact
PCI, PCI Express, and Express Card all support
some form of hot insertion and removal. Compact
PCI is of particular interest because it provides the
administrator with a button to press to indicate their
intention to remove a device and a light the OS can
use to notify the administrator that the device in
inactive and removal is now safe.

I anticipate that as bus standards evolve, an increas-
ing number will support hot plug devices. Further,
I expect that in the not too distant future, hot plug
interfaces will be the norm with the exception of in-
tegrated interfaces on motherboards.

In early autoconfiguration implementations, a finite
number of units was statically allocated when the
kernel or module was compiled. Devices implement-
ing these sorts of preallocations are referred to as
count devices due to the kernel configuration direc-
tive used to declare them. Today, this sort of hard
coding is frowned upon unless there can only be
a small, fixed number of devices (usually one). In
FreeBSD 6.x, support for count devices will be re-
moved from the config program. This will require
that device counts either be fully dynamic or speci-
fied at boot time. With physical devices, new driver
instances are allocated and destroyed as hardware is
added and removed so the removal of count devices
is no hardship.

In FreeBSD 3.4 the netgraph system was introduced-
netgraph(4). Netgraph allows dynamically config-
ured nodes implementing networking functions to be
configured into arbitrary graphs. One of the stan-
dard nodes is ng iface(4) which appears as a virtual
network interface. Since netgraph nodes are config-
ured dynamically using ngctl(8) [man8], this is an-
other source of dynamic interfaces.

For pseudo-devices such as the loopback interface,
lo(4), most devices are created by the network in-
terface cloning code, referred to as if clone. Net-
work interface cloning was introduced in FreeBSD
4.4. Typically, a cloned device is created with a
command like ”ifconfig vlan create” which cre-
ates a new vlan interface and prints its name. This
creates a number of interesting opportunities such
as an IPv6 tunnel server that creates gif(4) devices
on demand. The initial cloning code in FreeBSD
was obtained from NetBSD and has since been ex-
tended to allow cloned devices to match more com-



plex names in the ifconfig(8) create request. Ini-
tially, cloned devices could only be created with
a command of the form ”ifconfig <drivername>
[<unit>] create”. With enhanced cloning sup-
port, devices may support more complex names
such as <ethernet_interface>.<vlan_tag> for
vlan(4).

A new feature of FreeBSD 5.2 and DragonFly BSD is
the ability to rename network interfaces. This can be
useful to allow an administrator to hide the details of
interface types or to easily identify the purpose of a
dynamically created interface. Returning to the ex-
ample of a gif(4) based tunnel server, tunnels could
be named after registered users; so instead of gif42,
the interface could be named gif-<user>-<host>,
a much more meaningful name. Another way this
feature can be useful is to give logical names to
physical devices, allowing them to be upgraded or
replaced without changing most system configura-
tion. Eventually, devd(8) will support the ability to
make decisions based on attributes such as slot num-
ber which could allow interfaces to be named based
entirely on their location in the system.

As I have shown in this section, significant interface
dynamism is present in today’s network stack. With
hot-pluggable and wireless hardware, kernel mod-
ules, netgraph interfaces, pseudo interface cloning,
and interface renaming, virtually no device can
safely be assumed to be static.

3 Problems

With network interface dynamism come a variety of
problems of two major types. First are those having
to do with userland, typically network management
or monitoring applications. Most of the userland is-
sues revolve around the fact that applications have
not adapted to modern dynamic systems. In some
cases, the applications have been partially adapted,
but trip over problems such as the concept of a dif-
ferent interface. Second are problems in the kernel
which are typically hardware race conditions or stale
references to freed data.

To facilitate this discussion of the problems caused
by dynamic network interfaces, I will present three
example systems and the problems they face:

1. A laptop with removable wired and wireless in-

terfaces.

2. A server with hot swappable network interfaces.

3. An IPv6 tunnel server.

These systems are sufficient to expose most of the
issues of dynamic network interfaces.

The laptop I will consider has a USB Ethernet inter-
face supported by the aue(4) driver and a PC Card
wireless device supported by the wi(4) driver. This
situation presents several challenges. These chal-
lenges derive from the fact that these interfaces may
come and go at arbitrary times. From the user’s
perspective there will be three significant problems.
First, most of the simple network monitoring tools
used in this type of environment do not detect the ar-
rival or departure of interfaces. This causes them to
only show interfaces that were attached when they
were started. Second, because devices may come
and go in arbitrary order, the indexes of those de-
vices may not be consistent. Since many monitoring
applications assume that the kernel index of an in-
terface is unique for an instance of the application,
they may confuse the wired and wireless interfaces
with each other. Figure 1 shows an example of con-
flicting ifconfig(8) and wmnd [WMND] output. While
the index is the valid handle to an interface, the life
of that index is only the life of the driver attach-
ment; when the device is detached, the index may
be freely reused by another interface. Thus, it is
not safe to assume the index will remain associated
with the same interface unless the interface is be-
ing monitored for departure. The third and final
userland problem is caused by interface renaming.
Since interfaces may be renamed at any time, the
name must not be used as a handle for an inter-
face unless the interface list is somehow monitored
for changes or some external assurance is provided
that the name will not change. Automated monitor-
ing systems should therefore assume that interfaces
may change their names, but it is perfectly reason-
able to use names for start up configuration or as
part of an ifconfig(8) command line.

In addition to these userland problems, there are two
classes of kernel issues. The first is stale pointers to
the struct ifnet. When an interface is removed,
its struct ifnet is destroyed, but sometimes ref-
erences to the interface in the form of pointers to
that structure remain. The struct ifnet is the
device independent interface to a network interface
within the kernel. A number of structures including
struct mbuf may contain a pointer to the struct



Figure 1: The xterm shows the correct interface listing, but wmnd shows wi0 which has been removed and
replaced with aue0.

ifnet of an interface. Since the struct ifnet is de-
stroyed immediately when the interface is detached,
using these references may result in accessing ran-
dom data or, worse, an unmapped page. Today little
is done to prevent this race from occurring. Fortu-
nately, since the interface is marked as down and the
queues are drained early in the detach process, the
system will generally not retain stale references when
the struct ifnet is destroyed. There are however
some situations that will prolong this race making it
more likely it will be lost in a way that causes a ker-
nel panic. The main one is use of the dummynet(4)
system. Dummynet is a “traffic shaper, bandwidth
manager, and delay emulator.” While dummynet
is holding packets, it currently stores a pointer to
the destination interface which is used to send the
packet once the desired delay has occurred. This
increases the race window to the point that it will
almost certainly be triggered if a significant delay is
configured. This generally will not affect a typical
laptop user, but could easily affect a server user.

The second kernel issue is hardware races on eject.
These occur when a function that manipulates the
hardware runs during or after the physical removal
of a device. With devices such as PC Cards, drivers
manipulate the hardware in ways that may cause
system hangs or panics if the device is removed,

due to issues such as corrupted reads or writes to
nowhere. Complete solutions to these problems of-
ten require hardware modifications. These problems
can be avoided by powering down the device in an
orderly manner before removing it. My understand-
ing is that an eventual result of modernization of
the device code will be the addition of a devcon-
trol(8) program that allows such operations on all
devices that support them. In addition to this solu-
tion, there are some workarounds to reduce the risk,
but I will leave their discussion to others.

Having discussed the laptop case, I will move on to
the case of a server with hot swappable interfaces.
The server case has most of the problems of the lap-
top with two major differences. First, if hot-plug
PCI or compact PCI devices are used, they close
the hardware removal race by providing a mecha-
nism for the administrator to notify the OS that
the hardware is going to be detached. In theory
this mechanism could also close the reference races.
Unfortunately, these technologies are not currently
supported by FreeBSD.

The second way the server scenario differs from the
laptop scenario is that servers are often monitored
by SNMP [RFC1157]. Dynamic interfaces present
problems when dealing with SNMP. Today, most



SNMP agents use the kernel interface index as the
ifIndex variable. In MIB-II (RFC 1213 [RFC1213])
the ifIndex variable for each interface is defined to
be:

A unique value for each interface. Its
value ranges between 1 and the value
of ifNumber. The value for each inter-
face must remain constant at least from
one re-initialization of the entity’s net-
work management system to the next re-
initialization.

MIB-II defines, ifNumber to be:

The number of network interfaces (regard-
less of their current state) present on this
system.

This means that interfaces may not have sparse in-
dexes in SNMP. This in turn will not work if in-
terfaces are dynamic. In RFC 2233 [RFC2233],
”The Interfaces Group MIB using SMIv2”, section
3.1.5 attempts to revise the interface numbering con-
straints to allow for dynamic interfaces. They do
so by removing the constraint that ifIndex be less
than or equal to ifNumber which allows the index
space to be sparse, and by adding the constraint that
the same ifIndex may not be reused by a different
dynamic interface.

Unfortunately, the concept of a different interface
is complicated and application specific. RFC 2233
simply states that the following constraints must be
observed:

1. a previously-unused value of ifIndex
must be assigned to a dynamically
added interface if an agent has no
knowledge of whether the interface is
the “same” or “different” to a previ-
ously incarnated interface.

2. a management station, not noticing
that an interface has gone away and
another has come into existence, must
not be confused when calculating the
difference between the counter values
retrieved on successive polls for a par-
ticular ifIndex value.

In the simplest case of the server with hot-plug in-
terfaces, the current system mostly works because

interfaces are typically added but not removed ex-
cept to be replaced by a different device serving
the same function. However, the second constraint
above may not be handled correctly in this case
because the counters are attached to the interface
and will be reset. A slight modification to the
agent to allow detection of this case and setting the
ifCounterDiscontinuityTime object for the inter-
face when its removal is detected would correct this
issue.

The more complex case of a server with frequent
interface arrivals and departures is typified by the
IPv6 tunnel server scenario. This tunnel server has
hardware similar to that in the previous scenario,
but has a vastly different mode of operation. Reg-
istered users may request a tunnel for one or more
hosts. When requested, a gif(4) interface is created
using cloning. When the user requests that the tun-
nel be torn down or a specified timeout passed, the
interface is destroyed. Because interfaces are created
on demand, the automatically assigned kernel inter-
face indexes should not be used for SNMP ifIndex
values as is. The problem is that the only tunnel in-
terfaces that may be considered the same are those
which share the same user, host3 pair. Thus, since
kernel interface indexes will be allocated in a man-
ner which attempts to limit the sparseness of the
index space, kernel indexes will frequently reference
different interfaces once a few interfaces have been
destroyed. Ideally, the tunnel server should allocate
ifIndex values and inform the SNMP agent when
interfaces are created, but this is easier said than
done, as most agents simply assume that the kernel
index is the correct value for ifIndex. Since the
user and host are not known to the kernel, there
is no current mechanism for the kernel to choose a
correct value for ifIndex. Additionally, there is no
easy way to control the index from userland.

The problems posed by these three example systems
cover most of the issues caused by dynamic net-
work interfaces. Kernel and hardware races present
challenges for kernel developers, and the complex-
ity of maintaining consistent references to interfaces
causes problems in userland.

3By host we mean the machine itself, not the IP address
in most cases, e.g. a laptop might move about, but would be
the same host.



4 Solutions

In this section I propose and evaluate solutions to
some of the problems presented in the previous sec-
tion. In particular, I discuss two possible solutions
to the problem of stale struct ifnet references, as
well as the kernel framework for a partial solution
to the problems of inconsistent indexes to the same
interface.

At first glance, the problem of stale struct ifnet
references would seem to be solvable through the
simple addition of reference counts. After all, the
problem is that references to the interface’s struct
ifnet are still held when the structure is freed. Un-
fortunately, there are significant problems with this
approach. The first is simply that reference counts
are expensive to maintain. Incrementing or decre-
menting a reference count requires either obtaining a
lock or using another atomic operation. This is espe-
cially problematic when code is in the fast path since
ever moment counts and many atomic operations
take over a hundred cycles to complete. Since the
struct ifnet references in dummynet and struct
mbuf are used in the fast path, atomic or mutex op-
erations should be avoided there if possible. The
second problem is that the struct ifnet is part of
the softc of physical interfaces which is destroyed
when the device is detached. This means that a
reference count might not prevent the destruction
of the struct ifnet. The struct ifnet could be
moved to separate storage to be managed by the net-
working system, but doing so would required modi-
fications to virtually every one of the approximately
100 network drivers in the system plus all the ex-
ternally maintained ones. Not only would this be
difficult, but it would fail to resolve the hardware
races, so the effort is unlikely to be worthwhile. Due
to these problems, reference counting struct ifnet
is unlikely to work.

There is a second possible solution, which is ref-
erencing the interface by index instead of a di-
rect pointer to struct ifnet. In this case, each
long lived struct ifnet pointer would be replaced
with the interface’s index. The pointer deref-
erences would be replaced with ifnet byindex()
called. To avoid null-pointer dereferences in this
case, ifnet byindex() would be modified to return
a pointer to a special dead if interface which has no-
op functions in place of driver specific ones. Where
possible, the dead if struct ifnet would be filled
with values that will not provoke panics. In general,

struct ifindex_entry {
struct ifnet *ife_ifnet;
struct ifaddr *ife_ifnet_addr;
struct cdev *ife_dev;

};

#define ifnet_byindex(idx) \
ifindex_table[(idx)].ife_ifnet

#define ifaddr_byindex(idx) \
ifindex_table[(idx)].ife_ifnet_addr

#define ifdev_byindex(idx) \
ifindex_table[(idx)].ife_dev

Figure 2: ifnet byindex() and related macros from
sys/net/if var.h

kernel code should be modified to check the return
value of ifnet byindex() for dead if and abort
processing unless the check is more expensive than
completing the operation and the expense matters.
This solution avoids the need for an explicit (and
expensive) atomic operation because assignment to
pointers is atomic on all architectures supported by
FreeBSD. If the modifications to ifnet byindex()
are done by insuring that the array used to imple-
ment it has all empty entries filled with pointers to
dead if, there will be no performance impact on
ifnet byindex(). There will be some performance
impact on code that previously referenced struct
ifnet directly since an additional look up will be
needed. Since ifnet byindex() is simply a macro
as shown in Figure 2, this should be relatively cheap,
but performance testing will be needed to precisely
quantify the extent of the impact. If the perfor-
mance impact is deemed too high, it may be pos-
sible to use macros to choose between these solu-
tions at compile time so that environments such as
dummynet systems with dynamic interfaces could
optionally enable this extra level of indirection. It is
worth noting that while using indirect references to
struct ifnet will shrink the race, it will not com-
pletely close it.

The problem of SNMP agents assuming that the ker-
nel interface index is a good value for ifIndex is dif-
ficult to solve, short of rewriting the agent to remove
this assumption and forcing the agent to manage its
own application specific ifIndex space. The kernel
will assign the same indexes to interfaces across re-
boots and some effort is made to preserve indexes
across module reloads, but since the allocator at-
tempts to avoid sparse allocations, the indexes are
inherently unsuited to the requirements of SNMP



agents in applications such as an IPv6 tunnel server.
One possible solution to this problem is to enable
userland programs to set the kernel index of inter-
faces.

I propose an implementation of this functionality as
follows: setting the index will only be allowed when
the interface is not in the IFF UP state. The actual
change will take place by detaching the interface,
changing the index, clearing the interface statistics,
and reattaching the interface. From the perspec-
tive of userland applications, the interface will be
destroyed and a new interface will be created with
the desired index. A tunnel server controller process
could use this functionality to create interfaces with
userland managed indexes, thus allowing SNMP
agents to work with fewer modifications. The agent
will need to set ifCounterDiscontinuityTime ap-
propriately. To aid in setting it, it may be useful
to add a new per-interface variable indicating the
epoch of the interface. The epoch would be reset
any time the interface statistics were reset.

There are a few potential issues with this approach.
First, the if index variable in struct ifnet is a
signed short so the useful range of index values is 1 to
32767 (215−1) which is not very large for some appli-
cations. This could be solved by increasing if index
to an int or long, but that would raise other issues.
Specifically, there are some arrays that are currently
required to be at least as long as the highest index. If
the index is allowed to grow to INT MAX, these arrays
would be larger than the system address space of a
32-bit system. As such, these interfaces would have
to be modified to use more complex structures such
as trees or hashes. This would cause some operations
such as ifnet byindex() to change from constant
time to O(logn). This could severely impact system
performance if indirect references were used in the
fast path as suggested earlier in this section.

The second issue with expanding if index is related
to the problem of sparse indexes. With the current
limit on the maximum index, storage concerns are
not insoluble, but there are efficiency concerns. In
the kernel this should not be a major issue as there is
no reason to search for interfaces one index at a time
when the interface list can be walked directly. In
userland things are more difficult. The correct way
to access interface information is via sysctl(3), but
sysctl(3) does not provide the equivalent of SNMP’s
GetNext functionality. This means that walking the
list of interfaces by index could take 32767 syscalls
with the existing implementation. This is probably

not acceptable overhead for each update of a moni-
toring interface. Even without expanding if index,
it will probably be necessary to provide better sparse
access support to userland. Some options for this
include adding a GetNext equivalent to sysctl(3),
adding a next interface pointer to the sysctl(3) out-
put, or publishing a list or bitmap of allocated in-
dexes. A GetNext equivalent for sysctl(3) or the
addition of a next interface pointer would allow ap-
plications to only make syscalls for information that
actually exists. A list would be easy to produce and
cheap to process in userland, but a bitmap would
be smaller and could be maintained at virtually no
cost. A bitmap is probably the easiest option.

I have presented possible solutions to two of the
problems of dynamic interfaces. The solution of
adding a layer of indirection to long-lived, stored
references to struct ifnet shows some promise if
performance is acceptable. Allowing userland appli-
cations to control kernel interface index allocation
may or may not be useful in practice. It would al-
low tunnel servers to work with more or less unmod-
ified SNMP agents, but it would not provide a full
solution. A full solution will probably require ap-
plication specific agents or better generalization of
generic agents to allow application specific ifIndex
management.

5 Advice to Application Imple-
menters

Other than the problems with SNMP agents and in-
dexes, most userland issues with dynamic network
interfaces are problems of application design. Most
simple interface monitoring tools such as wmnd are
written with the assumption that once the appli-
cation is started, the set of interfaces will remain
constant. Since this is not the case with modern
versions of FreeBSD, these applications behave in
unexpected (though generally harmless) ways.

To prevent this problem, applications should use ap-
propriate APIs to access interface data, and should
use those APIs in ways that allow detection of
changes to the list of interfaces. In particular, ap-
plications need to detect the arrival, departure, and
renaming of interfaces. In this section, three possi-
ble ways to do so are presented. The first way is to
periodically rescan the entire list of interfaces. In
environments with few interfaces this may be done



for every application refresh or it may be done less
frequently if scanning the whole list is too expensive
and delayed detection of changes in the list is accept-
able. Another method is to monitor the /dev/net
directory for the comings and goings of device nodes.
This can be accomplished with the kqueue(2) [man2]
mechanism or by scanning the directory with read-
dir(3) [man3]. A third approach (applicable only
to programs that run as root outside a jail) is to
monitor the routing socket for arrival and departure
notifications.

There are two related complications with the third
approach. If an interface is destroyed and then re-
placed between update cycles, the application needs
to detect this some way. This isn’t an issue with
routing sockets or kqueues on /dev/net because no-
tices will be sent for for both arrival and departure,
but since the list is monitored via sysctl or by using
opendir on /dev/net, there may be continuity prob-
lems where an interface appears to still exist, but in
fact has been replaced with another. In the case of
the routing socket there is an issue that a rename
is modeled as a detach and attach which means a
application may need a heuristic to detect this situ-
ation. To aid in solving this problem, I have added
an interface epoch variable to FreeBSD. The epoch
helps with both the problem of detecting interfaces
that replace removed ones in the same cycle and in-
terfaces that were renamed rather then removed. In
this context, an interface is the same if and only if
both its index and epoch are the same. In the rout-
ing socket case, replacing the current detach and at-
tach notifications with a rename notification would
be the ideal solution.

Once applications have been modified or written
to notice new interfaces, the author may wish to
consider ways to bring these new interfaces to the
user’s or administrator’s attention. Exactly how this
should be done is application specific. For example,
in a WindowMaker dock application on a laptop,
bringing new interfaces to the front may be the best
approach, but that certainly wouldn’t be appropri-
ate to a tunnel server.

In addition to monitoring for added or removed in-
terfaces, application designers should avoid the fol-
lowing two practices. First, many current applica-
tions refer to interfaces by name internally. Since
interfaces can now be renamed at any time, this is
no longer considered good practice. Instead, appli-
cations should refer to interfaces by index and con-
vert that to a name when needed. Second, many

monitoring or status applications currently obtain
interface information via the kvm(3) interface which
provides direct access to kernel memory. This is bad
practice for a number of reasons. First, requiring
that applications be suid kmem is dangerous from
a security perspective as it is nearly always possi-
ble to leverage kmem access to obtain root access
in the case of a programming error. Second, since
the ifnet list is now dynamic, walking it without
a lock is not reliable. Third, perfectly good sysctl
interfaces exist to access this information, so there
is no actual need to put up with the first two draw-
backs.

6 Conclusions and Future Work

As I have shown above, dynamic network inter-
faces present a number of challenges to developers
of network device drivers and network monitoring
and management applications. In the kernel these
challenges are divided between hardware races which
may be reduced by careful programming, but may
only be eliminated with external signaling mecha-
nisms, and races involving freeing of struct ifnet
instances before all references to them have been re-
moved. The problem of stale struct ifnet refer-
ences may be reduced by replacing long lived refer-
ences to struct ifnet with interface indexes, allow-
ing a special no-op interface to be substituted when
the interface is removed. Further exploration of this
idea is needed before it can be put into common use.
Performance impacts will need to be quantified and
it will be necessary to determine whether or not the
solution reduces the race sufficiently to warrant the
overhead.

In userland the challenges are generally issues with
outdated assumptions in userland applications. The
most common problem today is network monitoring
applications that assume the set of network inter-
faces is static. Solving this problem requires modi-
fying the applications to monitor for changes in the
interface list such that attaches, detaches, and re-
names are all correctly detected. The addition of an
epoch variable on each interface should help detec-
tion of some of these cases.

A secondary userland problem is specific to SNMP
agents. SNMP agents need to maintain an ifIndex
which is unique for each different interface. Prior to
the introduction of dynamic interfaces, agents were



able to use the kernel interface index for ifIndex.
This no longer works because allocation of kernel in-
dexes is done in a manner which minimizes sparse
allocation and RFC 2233 requires that allocations
be sparse in a dynamic system. Allowing userland
applications to control kernel indexes may provide
a workaround in some circumstances, but enhance-
ment of SNMP agents to allow external management
of ifIndex variables for applications such as tunnel
servers will probably ultimately be necessary.

Going forward, I intend to implement a sample net-
work interface monitoring application demonstrat-
ing best practices in this area. Blind copy-and-paste
from outdated applications is probably the single
most significant cause of monitoring tools that do
not correctly handle network interface dynamism.
An up-to-date example should help this situation
significantly.

Today nearly all network interfaces are potentially
dynamic and in the future I believe dynamic in-
terfaces will be the rule rather then the exception.
Give this state of affairs, future kernel and applica-
tion programmers should keep the dynamic nature
of network interfaces in mind when they write in-
terface related code. In fact, programmers dealing
with kernel or application level management of any
hardware or virtual devices should keep dynamism
in mind to avoid the sort of problems we see with
network interfaces today.

References

[McKusick1] K. McKusick, K. Bostic, M. J. Karels,
and J. S. Quarterman, The Design and
Implementation of the 4.4BSD Operat-
ing System, Addison-Wesley, Boston,
MA, 1996.

[McKusick2] K. McKusick. Twenty Years of Berke-
ley Unix: From AT&T-Owned to
Freely Redistributable, Open Sources,
O’Reilly and Associates, January 1999.
http://www.oreilly.com/catalog/
opensources/book/kirkmck.html

[man2] The FreeBSD Project, FreeBSD Sys-
tem Calls Manual, FreeBSD 5.3, 2004.

[man3] The FreeBSD Project, FreeBSD Li-
brary Functions Manual, FreeBSD 5.3,
2004.

[man4-2] The FreeBSD Project, FreeBSD
Kernel Interfaces Manual, FreeBSD
2.0, 1995. http://www.freebsd.org/
cgi/man.cgi?query=lkm&manpath=
FreeBSD+2.0-RELEASE

[man4] The FreeBSD Project, FreeBSD Ker-
nel Interfaces Manual, FreeBSD 5.3,
2004.

[man8] The FreeBSD Project, FreeBSD Sys-
tem Manager’s Manual, FreeBSD 5.3,
2004.

[PAO] http://www.jp.freebsd.org/PAO/

[RFC1157] J. Case, M. Fedor, M. Schoffstall, and
J. Davin, A Simple Network Man-
agement Protocol (SNMP), RFC1157,
IETF Network Working Group, May
1990.

[RFC1213] K. McCloghrie and M. Rose, edi-
tors, Management Information Base
for Network Management of TCP/IP-
based internets: MIB-II, RFC1213,
IETF Network Working Group, March
1991.

[RFC2233] K. McCloghrie and F. Kastenholz, The
Interfaces Group MIB using SMIv2,
RFC2233, IETF Network Working
Group, November 1997.

[RFC2734] P. Johansson, IPv4 over IEEE 1394,
RFC2734, IETF Network Working
Group, December 1999.

[RFC3146] K. Fujisawa and A. Onoe, Transmis-
sion of IPv6 Packets over IEEE 1394
Networks, RFC3146, IETF Network
Working Group, October 2001.

[WMND] WindowMaker Network Devices.
http://www.yuv.info/wmnd/


