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Abstract

Over  the  past  five  years  we  have  built  and  
operated a  computing  cluster  for  company-wide 
unclassified  technical  and  scientific  computing.   In  
this paper we discuss our cluster architecture, some of  
the architectural decisions we faced in the process, a 
sampling of applications run by our users, and lessons 
learned from building and operating this cluster.  We  
also discuss future plans to use the cluster to support  
continuity of technical operations and netcentricity.

1. Introduction

Since 2001 we have designed, built, upgraded, and 
expanded the Fellowship[1] (short for The Fellowship 
of  the  Ring[2])  cluster,  a  computing  cluster  for 
unclassified  technical  and  scientific  computing. 
Fellowship  was  built  both  to  meet  the  computing 
needs of our users and to give us practical experience 
with the issues of building and operating clusters.  The 
Aerospace  Corporation's  role  as  systems  engineer 
architect  in  support of national  security space means 
that we perform many different technical activities and 
thus the cluster must support a array of different types 
of computations.   With  this  diversity of applications 
comes an equally diverse set of users, many of whom 
have conflicting desires.  These desires lead us to the 
current  architecture of Fellowship.   In  this paper  we 
discuss  our  current  architecture,  some  of  the 
architectural  decisions  we  faced  and  how  we  met 
them.  Where initial decisions have not stood the test 
of time we indicate that.

We then discuss a subset of our users' applications, 
how  those  applications  have  been  deployed  on 
Fellowship,  the  challenges  they represent,  and  ways 
they  could  be  modified  to  better  fit  our  and  other 
multi-user clustered environments.

Finally  we conclude  with  lessons  learned  in  the 
process and our plans for future work.

2. The Fellowship Cluster

Fellowship,  the  Aerospace  Corporate  Computing 
cluster consists of 232 compute nodes and a set of core 
systems connected by a gigabit Ethernet switch.  The 
nodes  each  have  two Intel  Xeon  or  AMD  Opteron 
processors with 32 of the Opterons having dual cores 
for a total of 528 CPU cores.  We have equipped some 
nodes with specialized hardware: 32 of the nodes are 
connected  by  a  separate  2Gbps  Myrinet  network 
providing  low  latency  communications  and  eight 
others  have  high  end  graphics  processing  units 
(GPUs)  for  GPU  computing  research.   The  core 
systems  consist  of a  variety of UNIX servers  and  a 
Network Appliance filer  that  currently provides user 
home directories.  A high level diagram of Fellowship 
is shown in Figure 1.

When users connect to Fellowship, they do so via a 
core server named  fe l l o w s h i p that  is equipped to 
provide  shell  access.   There  they  edit  and  compile 
their  programs  and  submit  jobs  for  execution  on  a 
node or set of nodes.  The scheduler is run on the core 
server a r w e n  that also provides network boot services 
to the nodes to centralize node management.   Other 
core servers include: fr o d o  which provides directory 
service for user accounts and hosts the license servers 
for  commercial  software  including  the  Intel 
FORTRAN compiler and Grid Mathematica; g a m g e e  
which provides backups using the Bacula software and 
a  21  tape  LTO2  changer;  e l r o n d  and  l e g o l a s  
which host  shared  temporary file storage that  is  fast 
and  large  respectively;  and  m o r i a ,  our  Network 
Appliance file server.

This  equipment  is  housed  in  our  corporate  data 
center.  Sufficient cooling has been available from the 
start  and  initially  power  was  adequate,  but  as  the 
cluster  has  grown our  power  use has  taxed  existing 
resources requiring  significant  facilities enhancement 
projects.   It  has  been  necessary  to  add  additional 
power distribution units and a new dedicated UPS to 
handle  the  cluster's  load.   Our  nodes  and  networks 
switches are  housed in  two-post telco-style racks  for 



easy  of  access  and  free  air  circulation.   Our  core 
systems are installed in standard cabinets required by 
most larger servers.  To enable two-post mounting of 
our  nodes,  the  Opteron  systems use custom 18-inch 
deep chassis with all data ports on the front and power 
supply ports on the back.

To enable automation of as many tasks as possible 
and thus make routine administration feasible we have 
made  significant  investments  in  remote  access 
technology for  our  cluster.   In  particular,  we have 
connected  all  machines  to  remote  power  controllers 
and  created scripts to control  them over secure shell 
(SSH)  sessions.   We  have  also  installed  network 
accessible  keyboard-video-mouse (KVM) switches  to 
allow  access  to  core  systems  and  selected  nodes. 
Initially we used terminal  servers  to provide remote 
access to  serial  consoles on  the  nodes,  but  we later 
concluded  that  it  was  not  generally  worthwhile, 
largely because we found redirection of the hardware 
console before boot to be extremely unreliable.

All  nodes  and  core  systems run  the  FreeBSD 
operating system with exception of m o r i a  which runs 
a proprietary system.  Most of them run FreeBSD 6-
STABLE  with  a  few  older  core  servers  running 
FreeBSD 4-STABLE.   All  of  the  nodes  are  booted 
using the Intel Preboot Execution Environment (PXE) 
and use a shared NFS home directory.  This enables us 
to  change  the  operating  system  configuration  on  a 
node by either updating the existing image or created 
a  new  one  and  rebooting  the  node.   This  will 
eventually  cause  scaling  problems  as  the  cluster 
expands  and  the  single  file  server  is  increasingly 
loaded, but we have not seen significant  problems to 
date.  We are exploring options for that eventuality.

For parallel programming we support the Message 
Passing  Interface  (MPI)  and  the  Parallel  Virtual 
Machine  (PVM)  along  with  higher  level  libraries 
including  the  genetic  algorithms  libraries  PGAPack 
and  the  locally developed GAL discussed in  section 
4.4.   We  also  support  Grid  Mathematica  and 
MATLAB.   The  specific  MPI  flavors  we  support 
include MPICH, MPICH2,  and  Open MPI.   We are 
also beginning to test OpenMP support from the GNU 

OpenMP  (GOMP)  project  as  part  of  the  GNU 
Compiler Collection (GCC) version 4.2.

3. Architectural Decisions

Now that we have covered the basic architecture of 
Fellowship,  we will  discuss  the  major  decisions  we 
faced  and  some  of  the  available  options.   Space 
considerations prohibit discussing all the issues.  The 
first and foremost decisions faced by a cluster architect 
are  that  of  processor  architecture  and  operating 
system.   Other  important  decisions  include  physical 
form  factor,  network  interconnect,  storage,  remote 
management  infrastructure,  node  configuration 
management, scheduling model, and node naming and 
addressing scheme.  Many of these are interdependent. 
The most obvious dependencies are between operating 
system  and  processor  architecture,  but  others  exist 
including  some  not  so  obvious  ones  like  network 
interconnect  and  form factor  (if  the  interconnect  or 
cables will not fit, they can not be used.)

3.1.  Processor  Architecture  and  Operating 
System

The first architectural  decision is often the choice 
of processor  and  operating  systems  since  these  will 
further  constrain  the other cluster design parameters. 
The primary requirement when choosing an operating 
system and  processor  architecture  is  that  the  chosen 
solution  be  compatible  with  the  applications  the 
cluster is designed for.  If commercial applications are 
to  be used  this  can  be a   constraint,  for  internally 
developed applications it may be a lesser issue though 
the  difficulty  of  porting  from  one  Unix  variant  to 
another varies significantly between applications.

For operating system selection price, compatibility 
with  existing  applications,  availability  of supporting 
tools, and local support staff experience are the most 
critical  criteria.   Staff familiarity is often overlooked 
as a key issue, but can be of major significance.  The 
need for custom automation and the need to diagnose 
often  Byzantine  failures  makes  staff  experience 

Figure 1. Fellowship layout
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extremely valuable, particularly since the most crucial 
experience is difficult to learn except through practice. 
All  things  being  equal,  some version  of Linux  will 
likely  be  the  easiest  choice,  particularly  given  the 
number of cluster-oriented distributions available and 
the general focus on using Linux for clustering.  One 
emerging  option of interest  is  to use a  virtualization 
system such as Xen or VMWare to deploy OS images 
on demand[3].   This  can allow improved utilization, 
better  isolation  or  processes,  better  redundancy  and 
reliability, and easier maintenance[4].  We choose the 
FreeBSD operating system due to local experience, the 
ability  to  feed  changes  back  to  the  developers  (the 
chief cluster  architect  is  a  FreeBSD committer),  and 
the fact that it can run most Linux binaries.

For the processor architecture, major considerations 
include the ratios of power and price to performance 
and  any  architectural  features  that  impact  the 
performance the prospective job mix.  All things being 
equal,  the  IA32  architecture  or  the  AMD64  (aka 
x86_64)  architecture  is  the  path  of  least  resistance 
with the best economies of scale and the widest tool 
chain  support.   We choose the IA32 architecture for 
our  initial  nodes  with  AMD64  machines  (currently 
running in IA32 mode) in later purchases.

3.2. Network Interconnect

The major  choices for  cluster  interconnects today 
are gigabit Ethernet,  10 gigabit Ethernet,  Infiniband, 
and  10  gigabit  Myrinet.   100Mbps  Ethernet  is 
technically an option, but for clusters of any size it is 
unlikely  to  save  enough  money  relative  to  gigabit 
Ethernet to be worthwhile, except perhaps as a control 
network.  The other options are currently all 10Gbps 
with  10  gigabit  Ethernet  having  higher  latency,  but 
with  the  advantage  of  being  just  like  any  other 
Ethernet  only  faster.   20  and  40Gbps  versions  of 
Infiniband are on the horizon as well.  At this point 
there  is  no clear  winner  in  the  10Gbps interconnect 
space  making  consideration  of  price,  upgrade  path, 
and  latency are  paramount  in  clusters  where gigabit 
Ethernet is not sufficient.  When we made our initial 
cluster  purchases,  100Mbps  Ethernet,  gigabit 
Ethernet, and 2Gbps Myrinet were the major options. 
The use of gigabit Ethernet represented a compromise 
between the users who wanted 100Mbps Ethernet due 
to their  nearly uncoupled applications and those who 
wanted the high speed and low latency of Myrinet for 
tightly  coupled  applications  like  computational  fluid 
dynamics (CFD) and weather prediction.

3.3. Storage

Cluster  storage options  range  from disks on each 
node with little or no shared storage to diskless nodes 
where  everything  from  the  operating  system  to  the 

user  data  is  in  central  storage.   Central  storage  can 
take several forms including a Storage Area Network 
(SAN), a clustered storage system such as Lustre,  or 
protocol based storage either from a Network Attached 
Storage  (NAS)  product  or  a  server.   SAN  based 
solutions have the advantage of providing each node 
direct access to the disks eliminating  the bottlenecks 
associated  with  conventional  protocol  based storage. 
The down side is that SANs tend to be expensive and 
shared  access  to  data  requires  special  parallel  file 
systems such as GFS, Xsan, or CXFS.  NAS and host 
based  storage  have  the  downside  of  bottlenecks  in 
access to the  actual  data,  but  the  up  sides of better 
support  across  multiple  operating  systems,  avoiding 
the requirement for separate network, and in the case 
of  host  based  storage,  lower  cost  (sometimes 
dramatically).  Clustered storage including represents 
an interesting middle ground with disks connected to 
an ordinary network by dedicated storage nodes.  The 
solutions  from  Cluster  File  Systems  (Lustre)  and 
Panasas can provide a single file system view to Linux 
hosts  with  appropriate  drivers  and  those  solutions 
along  with  Isilon's  solution  provide  protocol  based 
access to the storage from multiple systems allowing 
network  capabilities  to  grow with  storage.   Due  to 
cost,  initially  low bandwidth  requirements,  and  the 
limited options supported by FreeBSD of  we selected 
host-based storage  with  local  disks  on each  node to 
provide swap, scratch space, and temporary storage for 
large  data  sets.   In  2005  we  migrated  our  home 
directories  from  host  based  storage  to  a  Network 
Appliance filer to improve performance and increase 
capacity.   We have  begun  evaluating  clustered  and 
NAS storage for future  high bandwidth applications.

3.4. Scheduler

Another  major architectural  decision is the choice 
of  schedulern.   There  are  three  classes  of  options 
available: some form of batch job scheduling system, 
an  application  specific scheduler,  or  no scheduler  at 
all.  No scheduler is generally an option only when a 
cluster is dedicated to one use or to a small group of 
users  with  a  single  goal  and  no  priority  conflicts. 
Otherwise  some  form  of  scheduler  is  generally 
required to avoid overloading nodes (causing them to 
waste resources on swapping or recovering from cache 
misses)  and  to  allow  the  enforcement  of  priorities 
between  users  or  projects.   When  possible,  using  a 
batch job scheduling system is the easiest approach.  A 
number of popular batch job scheduling systems exist 
including  the  Platform  LSF,  Portable  Batch  System 
(PBS), Sun Grid Engine (SGE), and Torque.  In some 
cases such  batch  scheduling  systems are  impractical 
due to the nature of jobs being run.   For example in 
applications  where  jobs are  of indeterminate  length 
with most being very short, it may be difficult for the 



scheduler  to keep up  with  the  jobs and  to  keep the 
nodes busy and the workaround bundling jobs together 
will result in poor time to solution.  In such cases, it 
may  be  advantageous  to  write  a  simple  scheduler 
where  worker  processes pull  work  from a  database. 
For  Fellowship  we chose  the  SGE scheduler  as  the 
only free option  that  was stable  on  FreeBSD at  the 
time.   If  we were looking  today we would consider 
other options such as Torque which provides backfill 
scheduling.

4. Applications

In  this  section  we  discuss  some  representative 
applications  being run  on Fellowship.   They include 
VISPERS,  a  launch  vehicle  telemetry  processing 
application,  a  parameter  sweep  tool  in  the  Satellite 
Orbit  Analysis  Program  (SOAP),  a  tightly  coupled 
code for atomistic modeling of radiation damage, and 
a trajectory design  tool that  uses genetic algorithms. 
For  each  application  we discuss  the  application  and 
how  it  fits  into  the  cluster  environment.   Where 
appropriate, we discuss ways in which the application 
could be adapted to better fit the model of computation 
provided by modern,  batch queued clusters.   Finally, 
we  will  discuss  our  current  research  using  the 
Fellowship  cluster  to  address  improving  application 
support and expand our experience with a state of the 
art cluster design for space related applications.

4.1. VISPERS

VISPERS  (Vibroacoustic  Intelligent  System  for 
Predicting Environments, Risk and Specifications) is a 
suite  of software tools used to analyze vibroacoustic 
measurement  data  captured  via  launch  vehicle 
telemetry. Analysis of telemetry data is complicated by 
the  need  to  reconstruct  and  repair  the  original 
telemetry  stream  by  combining  multiple  stream 
fragments  received  from  several  distinct  Telemetry 
Data Receiving Stations  (TDRSs).  Stream disruption 
can occur because the radio path from a launch vehicle 
antenna  to  a  TDRS  can  be  blocked,  either  by the 
vehnicle’s exhaust plume, by a fin or other protrusion 
on the  vehicle,  by weather,  or  by the  horizon.  Such 
blockages  produce  so-called  “data  dropouts”  in  the 
telemetry stream,  places  where  measurement  data  is 
missing.  When  stream  fragments  separated  by data 
dropouts  are  joined,  discontinuities  are  produced.  In 
addition,  vibration  of  the  spacecraft  can  cause 
intermittent  glitches in  the telemetry stream such as 
spikes,  or  a  single  bit  error  can  produce  a 
measurement  value  that  appears  as  a  spike. 
Furthermore, charge build-up on the sensor can cause 
a DC drift, and an AC current can induce a spurious 
signal on the telemetry.
All of this would be easily dealt with if the telemetry 
was timestamped at the source, but timestamps are not 
inserted until the telemetry is received on the ground. 
Each TDRS inserts its own timestamps, but there is no 
guarantee that timestamps from different TDRSs will 
by  synchronized.  There  are  also  additional  timing 
anomalies  that  occur  as  a  result  during  the 
transmission-reception  process.   As  a  result  it  is 
necessary to process and  combine multiple imperfect 
telemetry streams in order to produce a single stream 
that is as close as possible to the original telemetry.

Table 1. Product Reference URLs
Product URL

CXFS http://www.sgi.com/products/storage/tech/
file_systems.html

FreeBSD http://www.freebsd.org/

Ganglia http://ganglia.info/

GFS http://www.redhat.com/software/rha/gfs/

Globus http://www.globus.org/toolkit/

GOMP http://gcc.gnu.org/projects/gomp/

Grid 
Mathematica

http://www.wolfram.com/products/
gridmathematica/

Infiniband http://www.infinibandta.org/home

Isilon http://www.isilon.com/

LSF http://www.platform.com/products/LSF/

Lustre http://www.clusterfs.com/

MATLAB http://www.mathworks.com/

MPICH2 http://www-unix.mcs.anl.gov/mpi/
mpich/

Myrinet http://www.myri.com/

Nagios http://www.nagios.org/

OpenMP http://www.openmp.org/

OpenMPI http://www.open-mpi.org/

Panasas http://www.panasas.com/

PBS http://www.pbspro.com/

PGAPack ftp://ftp.mcs.anl.gov/pub/pgapack

PVM http://www.csm.ornl.gov/pvm/

Sun Grid 
Engine

http://www.sun.com/software/gridware/
http://gridengine.sunsource.net/

Torque http://www.supercluster.org/projects/
torque/

Xsan http://www.apple.com/xsan/



The  VISPERS  toolkit  includes  many  software 
components  for  this  purpose,  but  the  two  most 
computationally intensive are the  VISPERS Artificial 
Intelligence Library (VAIL) for anomaly removal and 
TACT for stream consolidation. VAIL assists a human 
user to identify and eradicate dropouts and glitches. It 
automatically identifies locations in a telemetry stream 
where  anomalies  occur  by searching  the  stream  for 
predefined patterns. TACT (Telemetry Alignment and 
Consolidation  Tool)  consolidates  multiple  input 
streams into a single result and attempts to remove all 
anomalies  (dropouts,  spikes,  DC-drift,  signal  bleed-
through, discontinuities, etc.) identified by VAIL.

Both  VAIL and  TACT process telemetry streams 
by repeatedly  applying  algorithms  to  different  local 
segments  of  the  stream  until  the  entire  stream  has 
been  processed.  This  structure  is  well-suited  for 
parallel  implementation  to  obtain  solutions  faster. 
Since VAIL and TACT were part of a desktop tool kit, 
the decision was made to run these functions as  grid 
services on remote machines rather than as traditional 
batch  jobs  to  preserve  the  model  of  interaction. 
Hence,  grid-enabled  versions,  called  gVAIL  and 
gTACT, were  developed.  Initially VAIL was ported 
to  run  on  Globus  version  3.2  and  deployed  on  a 
handful of workstations[5].  Subsequently, both VAIL 
and  TACT were ported to run  on a  later  version  of 
Globus  version  4,  also  deployed  on  a  handful  of 
workstations.  Near linear speedup of processing time 
was  achieved  by  the  gVAIL  and  gTACT 
combination[6].

The current design resulted from a straightforward 
port of the original Java source code to Globus. While 
expeditious, the resulting architecture has a number of 
disadvantages.  First,  as  part  of implementing  VAIL 
and  TACT  as  grid  services,  an  application-specific  
scheduler had to be developed in order to partition the 
stream  processing  work  across  the  particular  set  of 
workstations  running  the  analysis services (deployed 
under Globus).  Second, the analysis services must be 
pre-deployed to  nodes  that  have  been  configured  to 
register  themselves with  some central  index.   While 
this  design  was  implemented  on  a  cluster,  it  is 
impractical to run on many nodes due to the difficult 
of  deploying  the  Globus  Toolkit  and  problematic 
interactions with a cluster scheduler.  In the future we 
hope to address some of these issues by enhancing the 
separation  between the  telemetry processing  domain 
and  the  scheduler,  ideally  relying  on  the  clusters 
scheduler  rather  than  an  internal  one.   We are  also 
investigating  the  possibility  of  making  some 
components  stream oriented to allow live data  to be 
processed during launches with reasonable delay.

4.2. Satellite Orbit Analysis Program

SOAP  is  a  cross-platform  interactive  simulation 
engine  for  a  variety  of  analyses  related  to  orbital 
mechanics,  such  as  coverage,  line-of-sight  visibility, 
and positional dilution of precision.  Analytical results 
are  displayed  using  three-dimensional  animation  of 
the  relative  motions  of  satellites,  ground  stations, 
aircraft,  ships,  the Sun and the Moon. The positions 
and velocities of these moving platforms are calculated 
from user-defined  initial  conditions  using  embedded 
propagation  algorithms.   Users  can  build  coordinate 
system  hierarchies  that  are  then  used  to  construct 
three-dimensional  views,  orient  sensors,  and  define 
spacecraft attitudes.

One recently added feature of SOAP is a parametric 
study tool.  This tool allows an analyst to vary one or 
more  attributes  of a  platform  or  platforms  across  a 
range of values to optimize a particular metric over a 
time  period.   Some  example  uses  of  this  tool  are 
determining  the optimum orbit for a new satellite in 
an  existing  constellation  to  maximize  coverage  of a 
particular  region  or  determining  the  spacecraft  solar 
panel  angles that  will produce the best average solar 
power.  The tool works by examining the entire search 
space at a user specified level of detail and producing 
a table of metric values for examination by the analyst. 
Any one point  may not take long to analyze, but the 
number of points can grow very rapidly with current 
high-resolution  analyses  taking  hours  or  days  to 
complete on a desktop.  Fortunately this is an obvious 
candidate for parallelization.   SOAP users at  the Jet 
Propulsion Laboratory (JPL) observed this  possibility 
and  are  working  with  Aerospace  to  implement  a 
parallel  capable  version  of  SOAP.   An  initial  MPI 
version  is  currently  running  and  we plan  to  have a 
grid-enabled version working in July.  The goal of this 
work  is  to  provide  nearly  transparent  access  to 
Fellowship and other  Aerospace computing resources 
for  SOAP  users  by wrapping  the  parametric  study 
function  as  a  grid  service.   Users  will  fill  out  the 
parametric study form on their  desktop client  as they 
currently  do  and  select  the  option  to  use  grid 
resources.   This  will  result  in  the  gSOAP  client 
contacting the available Parametric Study grid services 
and submitting their work.  A job handle is returned 
to the client that  can be used to check job status and 
retrieve results.

A variety users who need to perform trade studies 
including  the  Aerospace  Concept  Design  Center 
(CDC)[7] are interested in the gSOAP capability.  To 
support  conceptual  ground system design  sessions at 
the CDC, we must  provide a  capability to guarantee 
turnaround  times  during  primary  study  hours. 
Supporting this will require adjustments to scheduler 
policy.

4.3. Atomistic Modeling of Radiation Damage



Large-scale  molecular  dynamics  (MD) simulation 
capabilities are being developed on Fellowship as part 
of a multi-scale modeling effort encompassing Monte-
Carlo,  MD,  and  ab-initio  electronic  structure 
computations  aimed  at  a  more  fundamental 
understanding  of  radiation  damage  in  electronic 
components.   MD is a materials  modeling  technique 
in  which  the  trajectories  of  individual  atoms  or 
particles are integrated based on interaction potentials 
that  can  be  derived  from  empirical  or  quantum 
mechanical analyses.  This project employs LAMMPS, 
a  fully  parallelized  MD  code  utilizing  spatial 
decomposition  and  MPI  for  interprocess 
communication.

Radiation is the primary hazard facing satellites in 
the  space  environment.   Certain  components  (e.g. 
solar  cells,  CCDs)  are  particularly  susceptible  to 
degradation  of  the  electronic  properties  of  their 
semiconductor  materials  due  to  the  displacement  of 
atoms  in  their  lattices  by energetic  particles  in  the 
radiation  field.   We  are  performing  atomistic 
simulations  to  understand  the  electrical  effects  of 
isolated clusters of damage in silicon produced by the 
space  radiation  environment.   By  following  the 
motions of the atoms during irradiation using MD, we 
are developing a catalog of defect structures produced 
by  displacement  damage  in  silicon  and  evaluating 
their relevant properties.  Ab-initio electronic structure 
simulations  will  then  be  applied  to  this  catalog  to 
allow a better  understanding  of the types of damage 
responsible  for  the  electrical  degradation  of  silicon 
devices  and  the  mechanism  of  these  defects. 
Subsequently,  we  will  use  the  damage-structure 
catalog to examine those events that are relevant to the 
annealing of complex defects.  That  information will 
then  be  employed  in  kinetic  Monte-Carlo  kMC 
simulations  to  allow  compilation  of  the  electrical 
effects of annealed damage structures in devices.

These  systems  are  being  investigated  using  the 
LAMMPS MD code distributed by Dr. Steve Plimpton 
of Sandia  National  Laboratory under  an  open source 
license[8,  9].   LAMMPS uses spatial  decomposition, 
meaning  that  each  processor  is  responsible  for  a 
specific  region  of space  and  any  particles  that  may 
reside  in  it.   The  trajectories  of  the  particles  are 
integrated  using  a  simple  finite  difference  method, 
with the forces being calculated from the gradient of a 
combination  of pair  potentials  and  multibody terms. 
After each timestep, positions for those particles that 
have left the processor's region or are near enough to 
the  boundary  to  produce  a  force  on  particles  in 
neighboring  regions  (i.e.  within  the  force  cutoff 
distance) are transmitted to neighboring processors via 
a  6-way stencil.   For  electrostatic  potentials  that  are 
important  for  the  treatment  of  defect  structures  in 
semiconductors  and  decay inversely with  distance,  a 
cutoff  of  the  potential  produces  unacceptable  errors 

and  the  contribution  to  the  electric  field  from  the 
entire  system  must  be  calculated  at  each  particle's 
position.   LAMMPS  accomplishes  this  by 
implementing the particle-mesh Ewald method where 
a  series solution  for the electric  field is divided into 
real  and  reciprocal  space  contributions,  and  the 
structure  factor  is  then  solved  using  fast  Fourier 
transforms (FFTs), resulting in computational expense 
O(n log(n))[10].   These  operations  tend  to  result  in 
latency  limited  communication.   The  low  latency 
Myrinet interconnects of Fellowship are ideally suited 
for this  type of tightly-coupled application,  allowing 
treatment of millions of particles.

4.4. Genetic Algorithms for Trajectory Design

The  Navigation  and  Geopositioning  Systems 
Department  of Aerospace  has  produced  the  Genetic 
Algorithm Library (GAL), which consists of routines 
written in C (with interfaces for C and FORTRAN), to 
perform  the  basic  functions  involved  in  genetic 
algorithm  optimization.  It  is  capable  of  running  in 
both serial  and  parallel  implementations.   The latter 
uses PVM interface for  interprocess communication. 
This  library  is  generally  applicable  to  all  genetic 
algorithm  problems  providing  capabilities  such  as 
multiple  objects  allowing  for  multiple  objective 
functions, positive and negative assortive mating, and 
mutation  rates  that  depend  on  population  diversity, 
among others.

This  library has  been applied  in  parallel  form to 
orbital  and  trajectory  analysis  projects  on  the 
Fellowship  cluster.   One  specific  example  of which 
was the design of optimal trajectories for a mission to 
the Jovian moon Europa.  The SILO orbit propagator 
routines  were  used  to  integrate  interplanetary 
trajectories  for  the  individual  solutions  using  a 
constant  thrust in three sequential arcs with different 
rules  controlling  thrust  direction.   Two  objective 
functions  determined  the  fitness  of  the  trajectories 
produced.  The first was used to minimize the amount 
of fuel required, while the second maximized the ease 
of capture into orbit around Europa.

The  search  space  consisted  of launch  date,  total 
time of flight, out of plane thrust for the first arc, time 
of start for 2nd arc, and time of start for 3rd arc.  100 
runs were conducted with different seeds for the initial 
random population,  and  each run  was conducted for 
60  cycles.   The  total  resulting  runtime  was 
approximately  3  weeks  on  about  350  CPUs  of 
Fellowship.

Out of a  search  space of 281  trillion  possibilities 
the  algorithm  narrowed  the  results  down  to  six 
possible  optimal  trajectories.   Using  a  brute  forces 
search  a  final  optimal  trajectory  was  chosen.   The 
results  of this  analysis have shown that  the  primary 



factors affecting the optimal trajectory are the launch 
date and start time of the second thrust arc.

While  the  use  genetic  algorithms  allows  a  great 
reduction  in  the  number  of points  actually explored, 
the elapsed computing time of roughly 20 CPU years 
placed  a  significant  strain  on  the  resources  of 
Fellowship.  We were able to accommodate it because 
the system was lightly loaded at the time and we could 
run  the  genetic  algorithms  processes  at  a  reduced 
priority on all  nodes but this  is  incompatible  with  a 
fully  scheduled  system  and  with  some  of  our 
applications  that  depend  on  minimal  variation  in 
latency.   Work  on  a  solution  to  this  problem  is 
discussed in the next section.

4.5. Scheduler Research

As  previously  mentioned,  one  of  the  goals  in 
building  a  cluster  at  Aerospace  was  gain  direct 
experience  with  cluster  design  and  operation  and 
perform  research  on  finding  solutions  to  problems 
encountered along the way.  One of those problems is 
the challenge of balancing the needs of users who need 
rapid turnaround with those who need to run long jobs 
like the three week trajectory design run described in 
the  previous  section.   Running  the  job  in  the 
background worked at the time, but that will not be a 
viable approach in the long term.

In  a  fortunate  coincidence the  genetic  algorithms 
library's  parallel  mode  was  designed  to  support 
unreliable  clusters  where  machines  are  periodically 
removed due to reboots or crashes.  The code assumes 
such events are relatively rare and thus takes little care 
to be efficient in handling them, but it does work.  We 
have  been  working  on  a  prototype  of  a  system  to 
extend  Sun  Grid  Engine's  concept  of  parallel 
environments  (PE)  to  allow them  to change  in  size 
over the life of the computation.   In  the case of the 
GAL  we  have  created  a  modified  PVM  PE  that 
attempts to add additional nodes to the computation by 
submitting  special  jobs to the scheduler.   When run, 
these jobs cause their  node to join the running  PVM 
virtual  machine,  wait  a  period  of  time,  and  then 
depart.   At  this  time  we  have  a  limited  proof  of 
concept  running  and  hope  to  have  a  production 
capable version  working  soon which  we will  use to 
produce benchmarks to determine if this  approach is 
practical.

5. Lessons Learned

As a result of our direct experience with the design, 
implementation  and  operation  of  our  cluster  we 
encountered many issues and problems.  All of them 
were things we had expected at some level, but were 
reinforced or illuminated in the cluster context.  Key 
lessons include:

•Automate everything possible including monitoring
•Hardware  failures  happen  with  much  greater 
frequency in a cluster
•Managing user expectations is hard, and
•It is often difficult to convince facilities people what 
your needs actually are.

We discuss each in turn.

5.1. Automation and Monitoring

The  automation  of  routine  or  tedious  tasks  is 
important on most computer systems, but is especially 
critical on clusters where the same task may need to be 
performed hundreds of times in a short period of time. 
For  example,  once  written,  the  software  we  use  to 
manage  our  remote  power  controllers  has  saved 
countless  hours,  allowing  quick  and  easy reboots of 
hung  nodes.   Likewise,  a  little  time  spend 
familiarizing  ourselves  with  advanced  uses  of  s s h  
and  x a r g s  has greatly eased the pain of performing 
simple  tasks  on  each  node.   We  have  noticed  that 
cluster  builders  who start  small  often assume that  a 
more  manual  approach  will  remain  feasible  as  the 
cluster  grows  when  in  fact  it  is  unlikely  to  unless 
sufficient staff support is available.

Closely  related  to  automation  is  monitoring. 
Initially  we  did  very  little  monitoring  of  machines 
other  than  using  Ganglia  to  monitor  their  load  and 
resource use.  This had the unfortunate effect of users 
finding  problems with machines  before we did.   We 
have  since  significantly  improved  our  monitoring 
infrastructure by adding  a Nagios monitoring  system 
and we now generally find out about problems before 
our users tell us.

5.2. Hardware Failures

Nearly  all  computer  users  have  experienced  the 
occasional,  apparently  random  hardware  failure  on 
their desktop or laptop computers.  With hundreds or 
thousands  of  machines,  failures  are  a  much  more 
frequent  occurrence.   The  two  lessons  we  learned 
related  to  this  are  to  watch  for  bad  batches  of 
components and to insure that your installation is neat 
enough to facilitate node repair.   We have experience 
problems with bad batches of both power supplies and 
disks.   In  both cases,  initial  failures looked random, 
but it  soon became apparent  that  we were looking at 
systemic failure.  In both cases we ended up ordering 
replacement parts to insure that we could repair nodes 
immediately  rather  than  waiting  for  a  replacement 
from the  vendor.   In  the  case of the  disks  we also 
switched brands once it became apparent that we were 
dealing with a bad series of disks.  In the process of 
replacing this equipment we found that  places where 
our  cable  management  was  less  than  perfect  made 



node  repair  significantly  more  difficult.   In  later 
installations  we were  much  more  careful  about  the 
process and repairs haven been easier there.  Thus the 
observation  that  neatness  counts.   While  there  were 
not  really  a  viable  option  when  we  starting 
architecting our cluster, this is one major advantage of 
well  designed  blade  system.   The  ability  to  replace 
nodes or disks without touching  any cables could be 
very useful.

5.3. User Expectations

One  of  the  challenges  that  we  have  continually 
faced that  we did not  anticipate is that  of managing 
user expectations.  The most specific problem has been 
the classic problem of convincing users that schedulers 
are  a  good  idea.   Related  to  that  the  problem  of 
adjusting users' often incorrect mental models of how 
modern computers and clusters work.  For example, it 
is often hard  to convince users that  a job that  starts 
later due to queue delay may well finish sooner than a 
job  that  starts  immediately  on  a  cluster  with  no 
scheduler  due  to  competing  loads  and  thrashing. 
Many of our  problems with  getting  users  to use the 
scheduler stem from the fact that we delayed imposing 
mandatory use of the scheduler for several years due to 
lack of time to document its usage.  At that point users 
had a model of using the cluster and were disinclined 
to accept the requirements of the scheduler.   We are 
working  through  those issues,  but  it  is  difficult  and 
time  consuming.   Based  on  this  experience  we 
strongly  recommend  that  implementers  enforce 
scheduler usage from day one to avoid teaching users 
bad  habits.   We  have  also  found  that  many  users 
assume they can  simply start  using  the  cluster  with 
little or no Unix experience.   We have yet to find a 
good way to address the communication and operation 
problems this causes.  One possible solution to some of 
these  may  be  web-based  portals  to  specific 
applications.  We are investigating this possibility.

Another interesting user related challenge is that of 
balancing the user's need to be able to run their code 
locally with  their  need  to  run  it  on  the  cluster.   In 
many cases, users want to be able to run their code on 
their  workstations  or  laptops  to  ease  development. 
Unfortunately  this  means  they  can  not  easily  use 
services  such  as  the  scheduler's  programmatic 
interface  for  allocating  work  to  processors.   This 
means the often end up with implementations that are 
significant  compromises  relative  to  the  ideal 
architecture  they would have developed if they were 
building code only for the cluster.  We have not found 
a good solution to this problem, but suspect there may 
be room for some more parallel computing toolkits to 
help with the process.

5.4. Facilities

One final lesson learned from both the Fellowship 
cluster and other clusters is to make absolutely certain 
that whether they believe your system needs it or not, 
your  facilities  people  install  sufficient  power  and 
cooling.  With Fellowship we have had problems were 
we asked for a certain  number of circuits  of a given 
capacity and they were provided, but they were fed by 
power  distribution  units  that  did  not  have  the  total 
capacity  required.   Other  people  installing  clusters 
have has similar issues, albeit on a smaller scale.  We 
have  also  seen  problems  with  inadequate  cooling 
being  installed  causing  significant  system  damage 
when the units shut themselves down unexpectedly.

6. Future Work

These  experiences  with  the  design  and  use  of  a 
cluster  computer  have  clearly  defined  several  key 
directions for future work.

First,  it  is  clear  that  a  service  architecture  will 
make it  much easier  to support  desktop applications 
for  users  who  are  non-computer-specialists. 
Applications such as SOAP and VISPERS will have a 
desktop client that is capable of many tasks.  For those 
analyses or  functions  that  are  too compute intensive 
for a desktop machine, however, the client will be able 
to  (a)  discover  the  available  services  and  machine 
resources,  (b)  select  a  particular  machine  or  set  of 
machines,  (c)  invoke  the  desired  service,  and  (d) 
collect the results.  Each  of these steps could be pre-
configured or automated to make the interaction with 
the remote resources as transparent  as possible. Such 
desktop  clients  could  also  orchestrate  the  workflow 
among multiple remote services by using a workflow 
engine that independently manages the transfer of data 
and  the  execution  of  services  [11].  These  service-
oriented  functions  would  be  implemented  using 
emerging standards for grid computing.  Globus [12] 
is a de facto standard since it is used by many projects. 
The current  Globus version 4 (GT4) is based on the 
Web Services Resource Framework (WSRF) family of 
web service  standards  [13].  The  application  clients 
could be implemented in a variety of ways, including 
web-based portals, that rely on the appropriate security 
models.

As  already  noted,  the  issue  of  scheduling  and 
scheduler  policies is a key aspect.   The ideal  cluster 
scheduler  must  be  able  to  manage  a  jobs  mix  that 
includes  short  jobs,  very long-running  jobs,  queued 
jobs,  interactive  jobs,  jobs  of  known,  deterministic 
running time, jobs with unknown running times, jobs 
that  required  a  known,  fixed number  of nodes,  and 
jobs  that  can  require  a  variable  number  of  nodes 
during execution that is not known until run-time.  No 
single  scheduler  currently  addresses  all  of  these 
requirements well.



We  are  investigating  ways  to  schedule  variable 
numbers  of nodes for  a  particular  job.   The  service 
architecture approach for using the cluster,  however, 
will also impact the scheduler since some applications 
would  greatly  benefit  from  the  ability  to  run  a 
persistent service on the cluster, a service that is long-
lived  and  waits  for  requests  to  arrive.   The  use  of 
workflow  engines  could  also  impact  the  scheduler 
since certain applications could require co-scheduling, 
where multiple services must be scheduled at the same 
time  to  meet  mission-critical  processing  deadlines. 
This could entail  multiple  services on the cluster,  or 
between the cluster and other resources.

Besides these technical  scheduling issues, we also 
point  out  that  non-technical,  organizational 
scheduling policies are just as important.  Despite the 
best planning,  there will be times when mission and 
programmatic requirements demand that the scheduler 
be overridden, e.g., to devote the entire cluster to one 
particular application for some period of time.  Hence, 
it  is  best  that  an  organizational  scheduler  exception 
policy  be  in  place  that  is  well-known  to  the  user 
community.  Such a policy should define the possible 
scheduler  exceptions,  their  duration and the required 
level of management authorization.  When a scheduler 
exception is authorized, other users should understand 
why and be given as much advance notice as possible 
to  re-arrange  their  own  impacted  computational 
requirements.

Another  key topic is  that  the  notion  of enhanced 
scheduling  capabilities  and  the  service  architecture 
concept  directly  supports  the  goal  of  continuity  of  
technical operations.  Many mission-critical functions 
are computer-based and must be able to recover from 
catastrophic failures, such as a massive power failure 
or  network  outage.   Hence,  it  should  be possible  to 
flexibly re-schedule applications and re-direct remote 
clients to available resources.  The Fellowship cluster 
and  scheduler  will  be key resources in  our efforts to 
dynamically  manage  sets  of  distributed  applications 
and resources, including multiple clusters.

Finally  we  note  that  the  use  of  remote  clients, 
portals,  workflow engines,  enhanced scheduling,  and 
dyanmically  managing  distributed  resources,  are 
hallmarks  of  network-centric  operations or 
netcentricity.   As these concepts are mapped to best 
practices  and  concrete  implementations  in  DoD and 
the defense community, we will be ideally positioned 
to evaluate and guide this long-term process.

7. Conclusions

Building  and  operating  Fellowship  has  been  a 
challenging,  but  rewarding  experience.   Our  users 
have  produced  significant  results  and  are  in  the 

process of developing  many interesting  applications. 
We  are  working  to  enhance  Fellowship  and  are 
constantly  on  the  lookout  for  ways to  improve  the 
overall user experience.  Grid service interfaces to the 
cluster  from  within  new  or  existing  external 
applications, and application-specific web portals, are 
promising approaches we plan to pursue.
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