
Lessons Learned Building a General Purpose Cluster

for Space Mission Applications

Brooks Davis, Michael AuYeung, Matt Clark, Craig Lee,
 Mark Thomas, James Palko, and Robert Varney

The Aerospace Corporation
{brooks,mauyeung,mclark†,lee,mathomas†,jpalko†,varney†}@{†rush.}aero.org

Abstract

Over the past five years we have built and
operated a computing cluster for company-wide
unclassified technical and scientific computing. In
this paper we discuss our cluster architecture, some of
the architectural decisions we faced in the process, a
sampling of applications run by our users, and lessons
learned from building and operating this cluster. We
also discuss future plans to use the cluster to support
continuity of technical operations and netcentricity.

1. Introduction

Since 2001 we have designed, built, upgraded, and
expanded the Fellowship[1] (short for The Fellowship
of the Ring[2]) cluster, a computing cluster for
unclassified technical and scientific computing.
Fellowship was built both to meet the computing
needs of our users and to give us practical experience
with the issues of building and operating clusters. The
Aerospace Corporation's role as systems engineer
architect in support of national security space means
that we perform many different technical activities and
thus the cluster must support a array of different types
of computations. With this diversity of applications
comes an equally diverse set of users, many of whom
have conflicting desires. These desires lead us to the
current architecture of Fellowship. In this paper we
discuss our current architecture, some of the
architectural decisions we faced and how we met
them. Where initial decisions have not stood the test
of time we indicate that.

We then discuss a subset of our users' applications,
how those applications have been deployed on
Fellowship, the challenges they represent, and ways
they could be modified to better fit our and other
multi-user clustered environments.

Finally we conclude with lessons learned in the
process and our plans for future work.

2. The Fellowship Cluster

Fellowship, the Aerospace Corporate Computing
cluster consists of 232 compute nodes and a set of core
systems connected by a gigabit Ethernet switch. The
nodes each have two Intel Xeon or AMD Opteron
processors with 32 of the Opterons having dual cores
for a total of 528 CPU cores. We have equipped some
nodes with specialized hardware: 32 of the nodes are
connected by a separate 2Gbps Myrinet network
providing low latency communications and eight
others have high end graphics processing units
(GPUs) for GPU computing research. The core
systems consist of a variety of UNIX servers and a
Network Appliance filer that currently provides user
home directories. A high level diagram of Fellowship
is shown in Figure 1.

When users connect to Fellowship, they do so via a
core server named fe l l o w s h i p that is equipped to
provide shell access. There they edit and compile
their programs and submit jobs for execution on a
node or set of nodes. The scheduler is run on the core
server a r w e n that also provides network boot services
to the nodes to centralize node management. Other
core servers include: fr o d o which provides directory
service for user accounts and hosts the license servers
for commercial software including the Intel
FORTRAN compiler and Grid Mathematica; g a m g e e
which provides backups using the Bacula software and
a 21 tape LTO2 changer; e l r o n d and l e g o l a s
which host shared temporary file storage that is fast
and large respectively; and m o r i a , our Network
Appliance file server.

This equipment is housed in our corporate data
center. Sufficient cooling has been available from the
start and initially power was adequate, but as the
cluster has grown our power use has taxed existing
resources requiring significant facilities enhancement
projects. It has been necessary to add additional
power distribution units and a new dedicated UPS to
handle the cluster's load. Our nodes and networks
switches are housed in two-post telco-style racks for

easy of access and free air circulation. Our core
systems are installed in standard cabinets required by
most larger servers. To enable two-post mounting of
our nodes, the Opteron systems use custom 18-inch
deep chassis with all data ports on the front and power
supply ports on the back.

To enable automation of as many tasks as possible
and thus make routine administration feasible we have
made significant investments in remote access
technology for our cluster. In particular, we have
connected all machines to remote power controllers
and created scripts to control them over secure shell
(SSH) sessions. We have also installed network
accessible keyboard-video-mouse (KVM) switches to
allow access to core systems and selected nodes.
Initially we used terminal servers to provide remote
access to serial consoles on the nodes, but we later
concluded that it was not generally worthwhile,
largely because we found redirection of the hardware
console before boot to be extremely unreliable.

All nodes and core systems run the FreeBSD
operating system with exception of m o r i a which runs
a proprietary system. Most of them run FreeBSD 6-
STABLE with a few older core servers running
FreeBSD 4-STABLE. All of the nodes are booted
using the Intel Preboot Execution Environment (PXE)
and use a shared NFS home directory. This enables us
to change the operating system configuration on a
node by either updating the existing image or created
a new one and rebooting the node. This will
eventually cause scaling problems as the cluster
expands and the single file server is increasingly
loaded, but we have not seen significant problems to
date. We are exploring options for that eventuality.

For parallel programming we support the Message
Passing Interface (MPI) and the Parallel Virtual
Machine (PVM) along with higher level libraries
including the genetic algorithms libraries PGAPack
and the locally developed GAL discussed in section
4.4. We also support Grid Mathematica and
MATLAB. The specific MPI flavors we support
include MPICH, MPICH2, and Open MPI. We are
also beginning to test OpenMP support from the GNU

OpenMP (GOMP) project as part of the GNU
Compiler Collection (GCC) version 4.2.

3. Architectural Decisions

Now that we have covered the basic architecture of
Fellowship, we will discuss the major decisions we
faced and some of the available options. Space
considerations prohibit discussing all the issues. The
first and foremost decisions faced by a cluster architect
are that of processor architecture and operating
system. Other important decisions include physical
form factor, network interconnect, storage, remote
management infrastructure, node configuration
management, scheduling model, and node naming and
addressing scheme. Many of these are interdependent.
The most obvious dependencies are between operating
system and processor architecture, but others exist
including some not so obvious ones like network
interconnect and form factor (if the interconnect or
cables will not fit, they can not be used.)

3.1. Processor Architecture and Operating
System

The first architectural decision is often the choice
of processor and operating systems since these will
further constrain the other cluster design parameters.
The primary requirement when choosing an operating
system and processor architecture is that the chosen
solution be compatible with the applications the
cluster is designed for. If commercial applications are
to be used this can be a constraint, for internally
developed applications it may be a lesser issue though
the difficulty of porting from one Unix variant to
another varies significantly between applications.

For operating system selection price, compatibility
with existing applications, availability of supporting
tools, and local support staff experience are the most
critical criteria. Staff familiarity is often overlooked
as a key issue, but can be of major significance. The
need for custom automation and the need to diagnose
often Byzantine failures makes staff experience

Figure 1. Fellowship layout

Aerospace
Network

10.5.0.0/16

Cat6509

r03n01
r03n02

...
r03n03

r01n01
r01n02
r01n03

r02n01
r02n02
r02n03

...

...

r03n01
r03n02
r03n03
...

fellowship

frodo

gamgee

arwen

elrond

moria

extremely valuable, particularly since the most crucial
experience is difficult to learn except through practice.
All things being equal, some version of Linux will
likely be the easiest choice, particularly given the
number of cluster-oriented distributions available and
the general focus on using Linux for clustering. One
emerging option of interest is to use a virtualization
system such as Xen or VMWare to deploy OS images
on demand[3]. This can allow improved utilization,
better isolation or processes, better redundancy and
reliability, and easier maintenance[4]. We choose the
FreeBSD operating system due to local experience, the
ability to feed changes back to the developers (the
chief cluster architect is a FreeBSD committer), and
the fact that it can run most Linux binaries.

For the processor architecture, major considerations
include the ratios of power and price to performance
and any architectural features that impact the
performance the prospective job mix. All things being
equal, the IA32 architecture or the AMD64 (aka
x86_64) architecture is the path of least resistance
with the best economies of scale and the widest tool
chain support. We choose the IA32 architecture for
our initial nodes with AMD64 machines (currently
running in IA32 mode) in later purchases.

3.2. Network Interconnect

The major choices for cluster interconnects today
are gigabit Ethernet, 10 gigabit Ethernet, Infiniband,
and 10 gigabit Myrinet. 100Mbps Ethernet is
technically an option, but for clusters of any size it is
unlikely to save enough money relative to gigabit
Ethernet to be worthwhile, except perhaps as a control
network. The other options are currently all 10Gbps
with 10 gigabit Ethernet having higher latency, but
with the advantage of being just like any other
Ethernet only faster. 20 and 40Gbps versions of
Infiniband are on the horizon as well. At this point
there is no clear winner in the 10Gbps interconnect
space making consideration of price, upgrade path,
and latency are paramount in clusters where gigabit
Ethernet is not sufficient. When we made our initial
cluster purchases, 100Mbps Ethernet, gigabit
Ethernet, and 2Gbps Myrinet were the major options.
The use of gigabit Ethernet represented a compromise
between the users who wanted 100Mbps Ethernet due
to their nearly uncoupled applications and those who
wanted the high speed and low latency of Myrinet for
tightly coupled applications like computational fluid
dynamics (CFD) and weather prediction.

3.3. Storage

Cluster storage options range from disks on each
node with little or no shared storage to diskless nodes
where everything from the operating system to the

user data is in central storage. Central storage can
take several forms including a Storage Area Network
(SAN), a clustered storage system such as Lustre, or
protocol based storage either from a Network Attached
Storage (NAS) product or a server. SAN based
solutions have the advantage of providing each node
direct access to the disks eliminating the bottlenecks
associated with conventional protocol based storage.
The down side is that SANs tend to be expensive and
shared access to data requires special parallel file
systems such as GFS, Xsan, or CXFS. NAS and host
based storage have the downside of bottlenecks in
access to the actual data, but the up sides of better
support across multiple operating systems, avoiding
the requirement for separate network, and in the case
of host based storage, lower cost (sometimes
dramatically). Clustered storage including represents
an interesting middle ground with disks connected to
an ordinary network by dedicated storage nodes. The
solutions from Cluster File Systems (Lustre) and
Panasas can provide a single file system view to Linux
hosts with appropriate drivers and those solutions
along with Isilon's solution provide protocol based
access to the storage from multiple systems allowing
network capabilities to grow with storage. Due to
cost, initially low bandwidth requirements, and the
limited options supported by FreeBSD of we selected
host-based storage with local disks on each node to
provide swap, scratch space, and temporary storage for
large data sets. In 2005 we migrated our home
directories from host based storage to a Network
Appliance filer to improve performance and increase
capacity. We have begun evaluating clustered and
NAS storage for future high bandwidth applications.

3.4. Scheduler

Another major architectural decision is the choice
of schedulern. There are three classes of options
available: some form of batch job scheduling system,
an application specific scheduler, or no scheduler at
all. No scheduler is generally an option only when a
cluster is dedicated to one use or to a small group of
users with a single goal and no priority conflicts.
Otherwise some form of scheduler is generally
required to avoid overloading nodes (causing them to
waste resources on swapping or recovering from cache
misses) and to allow the enforcement of priorities
between users or projects. When possible, using a
batch job scheduling system is the easiest approach. A
number of popular batch job scheduling systems exist
including the Platform LSF, Portable Batch System
(PBS), Sun Grid Engine (SGE), and Torque. In some
cases such batch scheduling systems are impractical
due to the nature of jobs being run. For example in
applications where jobs are of indeterminate length
with most being very short, it may be difficult for the

scheduler to keep up with the jobs and to keep the
nodes busy and the workaround bundling jobs together
will result in poor time to solution. In such cases, it
may be advantageous to write a simple scheduler
where worker processes pull work from a database.
For Fellowship we chose the SGE scheduler as the
only free option that was stable on FreeBSD at the
time. If we were looking today we would consider
other options such as Torque which provides backfill
scheduling.

4. Applications

In this section we discuss some representative
applications being run on Fellowship. They include
VISPERS, a launch vehicle telemetry processing
application, a parameter sweep tool in the Satellite
Orbit Analysis Program (SOAP), a tightly coupled
code for atomistic modeling of radiation damage, and
a trajectory design tool that uses genetic algorithms.
For each application we discuss the application and
how it fits into the cluster environment. Where
appropriate, we discuss ways in which the application
could be adapted to better fit the model of computation
provided by modern, batch queued clusters. Finally,
we will discuss our current research using the
Fellowship cluster to address improving application
support and expand our experience with a state of the
art cluster design for space related applications.

4.1. VISPERS

VISPERS (Vibroacoustic Intelligent System for
Predicting Environments, Risk and Specifications) is a
suite of software tools used to analyze vibroacoustic
measurement data captured via launch vehicle
telemetry. Analysis of telemetry data is complicated by
the need to reconstruct and repair the original
telemetry stream by combining multiple stream
fragments received from several distinct Telemetry
Data Receiving Stations (TDRSs). Stream disruption
can occur because the radio path from a launch vehicle
antenna to a TDRS can be blocked, either by the
vehnicle’s exhaust plume, by a fin or other protrusion
on the vehicle, by weather, or by the horizon. Such
blockages produce so-called “data dropouts” in the
telemetry stream, places where measurement data is
missing. When stream fragments separated by data
dropouts are joined, discontinuities are produced. In
addition, vibration of the spacecraft can cause
intermittent glitches in the telemetry stream such as
spikes, or a single bit error can produce a
measurement value that appears as a spike.
Furthermore, charge build-up on the sensor can cause
a DC drift, and an AC current can induce a spurious
signal on the telemetry.
All of this would be easily dealt with if the telemetry
was timestamped at the source, but timestamps are not
inserted until the telemetry is received on the ground.
Each TDRS inserts its own timestamps, but there is no
guarantee that timestamps from different TDRSs will
by synchronized. There are also additional timing
anomalies that occur as a result during the
transmission-reception process. As a result it is
necessary to process and combine multiple imperfect
telemetry streams in order to produce a single stream
that is as close as possible to the original telemetry.

Table 1. Product Reference URLs
Product URL

CXFS http://www.sgi.com/products/storage/tech/
file_systems.html

FreeBSD http://www.freebsd.org/

Ganglia http://ganglia.info/

GFS http://www.redhat.com/software/rha/gfs/

Globus http://www.globus.org/toolkit/

GOMP http://gcc.gnu.org/projects/gomp/

Grid
Mathematica

http://www.wolfram.com/products/
gridmathematica/

Infiniband http://www.infinibandta.org/home

Isilon http://www.isilon.com/

LSF http://www.platform.com/products/LSF/

Lustre http://www.clusterfs.com/

MATLAB http://www.mathworks.com/

MPICH2 http://www-unix.mcs.anl.gov/mpi/
mpich/

Myrinet http://www.myri.com/

Nagios http://www.nagios.org/

OpenMP http://www.openmp.org/

OpenMPI http://www.open-mpi.org/

Panasas http://www.panasas.com/

PBS http://www.pbspro.com/

PGAPack ftp://ftp.mcs.anl.gov/pub/pgapack

PVM http://www.csm.ornl.gov/pvm/

Sun Grid
Engine

http://www.sun.com/software/gridware/
http://gridengine.sunsource.net/

Torque http://www.supercluster.org/projects/
torque/

Xsan http://www.apple.com/xsan/

The VISPERS toolkit includes many software
components for this purpose, but the two most
computationally intensive are the VISPERS Artificial
Intelligence Library (VAIL) for anomaly removal and
TACT for stream consolidation. VAIL assists a human
user to identify and eradicate dropouts and glitches. It
automatically identifies locations in a telemetry stream
where anomalies occur by searching the stream for
predefined patterns. TACT (Telemetry Alignment and
Consolidation Tool) consolidates multiple input
streams into a single result and attempts to remove all
anomalies (dropouts, spikes, DC-drift, signal bleed-
through, discontinuities, etc.) identified by VAIL.

Both VAIL and TACT process telemetry streams
by repeatedly applying algorithms to different local
segments of the stream until the entire stream has
been processed. This structure is well-suited for
parallel implementation to obtain solutions faster.
Since VAIL and TACT were part of a desktop tool kit,
the decision was made to run these functions as grid
services on remote machines rather than as traditional
batch jobs to preserve the model of interaction.
Hence, grid-enabled versions, called gVAIL and
gTACT, were developed. Initially VAIL was ported
to run on Globus version 3.2 and deployed on a
handful of workstations[5]. Subsequently, both VAIL
and TACT were ported to run on a later version of
Globus version 4, also deployed on a handful of
workstations. Near linear speedup of processing time
was achieved by the gVAIL and gTACT
combination[6].

The current design resulted from a straightforward
port of the original Java source code to Globus. While
expeditious, the resulting architecture has a number of
disadvantages. First, as part of implementing VAIL
and TACT as grid services, an application-specific
scheduler had to be developed in order to partition the
stream processing work across the particular set of
workstations running the analysis services (deployed
under Globus). Second, the analysis services must be
pre-deployed to nodes that have been configured to
register themselves with some central index. While
this design was implemented on a cluster, it is
impractical to run on many nodes due to the difficult
of deploying the Globus Toolkit and problematic
interactions with a cluster scheduler. In the future we
hope to address some of these issues by enhancing the
separation between the telemetry processing domain
and the scheduler, ideally relying on the clusters
scheduler rather than an internal one. We are also
investigating the possibility of making some
components stream oriented to allow live data to be
processed during launches with reasonable delay.

4.2. Satellite Orbit Analysis Program

SOAP is a cross-platform interactive simulation
engine for a variety of analyses related to orbital
mechanics, such as coverage, line-of-sight visibility,
and positional dilution of precision. Analytical results
are displayed using three-dimensional animation of
the relative motions of satellites, ground stations,
aircraft, ships, the Sun and the Moon. The positions
and velocities of these moving platforms are calculated
from user-defined initial conditions using embedded
propagation algorithms. Users can build coordinate
system hierarchies that are then used to construct
three-dimensional views, orient sensors, and define
spacecraft attitudes.

One recently added feature of SOAP is a parametric
study tool. This tool allows an analyst to vary one or
more attributes of a platform or platforms across a
range of values to optimize a particular metric over a
time period. Some example uses of this tool are
determining the optimum orbit for a new satellite in
an existing constellation to maximize coverage of a
particular region or determining the spacecraft solar
panel angles that will produce the best average solar
power. The tool works by examining the entire search
space at a user specified level of detail and producing
a table of metric values for examination by the analyst.
Any one point may not take long to analyze, but the
number of points can grow very rapidly with current
high-resolution analyses taking hours or days to
complete on a desktop. Fortunately this is an obvious
candidate for parallelization. SOAP users at the Jet
Propulsion Laboratory (JPL) observed this possibility
and are working with Aerospace to implement a
parallel capable version of SOAP. An initial MPI
version is currently running and we plan to have a
grid-enabled version working in July. The goal of this
work is to provide nearly transparent access to
Fellowship and other Aerospace computing resources
for SOAP users by wrapping the parametric study
function as a grid service. Users will fill out the
parametric study form on their desktop client as they
currently do and select the option to use grid
resources. This will result in the gSOAP client
contacting the available Parametric Study grid services
and submitting their work. A job handle is returned
to the client that can be used to check job status and
retrieve results.

A variety users who need to perform trade studies
including the Aerospace Concept Design Center
(CDC)[7] are interested in the gSOAP capability. To
support conceptual ground system design sessions at
the CDC, we must provide a capability to guarantee
turnaround times during primary study hours.
Supporting this will require adjustments to scheduler
policy.

4.3. Atomistic Modeling of Radiation Damage

Large-scale molecular dynamics (MD) simulation
capabilities are being developed on Fellowship as part
of a multi-scale modeling effort encompassing Monte-
Carlo, MD, and ab-initio electronic structure
computations aimed at a more fundamental
understanding of radiation damage in electronic
components. MD is a materials modeling technique
in which the trajectories of individual atoms or
particles are integrated based on interaction potentials
that can be derived from empirical or quantum
mechanical analyses. This project employs LAMMPS,
a fully parallelized MD code utilizing spatial
decomposition and MPI for interprocess
communication.

Radiation is the primary hazard facing satellites in
the space environment. Certain components (e.g.
solar cells, CCDs) are particularly susceptible to
degradation of the electronic properties of their
semiconductor materials due to the displacement of
atoms in their lattices by energetic particles in the
radiation field. We are performing atomistic
simulations to understand the electrical effects of
isolated clusters of damage in silicon produced by the
space radiation environment. By following the
motions of the atoms during irradiation using MD, we
are developing a catalog of defect structures produced
by displacement damage in silicon and evaluating
their relevant properties. Ab-initio electronic structure
simulations will then be applied to this catalog to
allow a better understanding of the types of damage
responsible for the electrical degradation of silicon
devices and the mechanism of these defects.
Subsequently, we will use the damage-structure
catalog to examine those events that are relevant to the
annealing of complex defects. That information will
then be employed in kinetic Monte-Carlo kMC
simulations to allow compilation of the electrical
effects of annealed damage structures in devices.

These systems are being investigated using the
LAMMPS MD code distributed by Dr. Steve Plimpton
of Sandia National Laboratory under an open source
license[8, 9]. LAMMPS uses spatial decomposition,
meaning that each processor is responsible for a
specific region of space and any particles that may
reside in it. The trajectories of the particles are
integrated using a simple finite difference method,
with the forces being calculated from the gradient of a
combination of pair potentials and multibody terms.
After each timestep, positions for those particles that
have left the processor's region or are near enough to
the boundary to produce a force on particles in
neighboring regions (i.e. within the force cutoff
distance) are transmitted to neighboring processors via
a 6-way stencil. For electrostatic potentials that are
important for the treatment of defect structures in
semiconductors and decay inversely with distance, a
cutoff of the potential produces unacceptable errors

and the contribution to the electric field from the
entire system must be calculated at each particle's
position. LAMMPS accomplishes this by
implementing the particle-mesh Ewald method where
a series solution for the electric field is divided into
real and reciprocal space contributions, and the
structure factor is then solved using fast Fourier
transforms (FFTs), resulting in computational expense
O(n log(n))[10]. These operations tend to result in
latency limited communication. The low latency
Myrinet interconnects of Fellowship are ideally suited
for this type of tightly-coupled application, allowing
treatment of millions of particles.

4.4. Genetic Algorithms for Trajectory Design

The Navigation and Geopositioning Systems
Department of Aerospace has produced the Genetic
Algorithm Library (GAL), which consists of routines
written in C (with interfaces for C and FORTRAN), to
perform the basic functions involved in genetic
algorithm optimization. It is capable of running in
both serial and parallel implementations. The latter
uses PVM interface for interprocess communication.
This library is generally applicable to all genetic
algorithm problems providing capabilities such as
multiple objects allowing for multiple objective
functions, positive and negative assortive mating, and
mutation rates that depend on population diversity,
among others.

This library has been applied in parallel form to
orbital and trajectory analysis projects on the
Fellowship cluster. One specific example of which
was the design of optimal trajectories for a mission to
the Jovian moon Europa. The SILO orbit propagator
routines were used to integrate interplanetary
trajectories for the individual solutions using a
constant thrust in three sequential arcs with different
rules controlling thrust direction. Two objective
functions determined the fitness of the trajectories
produced. The first was used to minimize the amount
of fuel required, while the second maximized the ease
of capture into orbit around Europa.

The search space consisted of launch date, total
time of flight, out of plane thrust for the first arc, time
of start for 2nd arc, and time of start for 3rd arc. 100
runs were conducted with different seeds for the initial
random population, and each run was conducted for
60 cycles. The total resulting runtime was
approximately 3 weeks on about 350 CPUs of
Fellowship.

Out of a search space of 281 trillion possibilities
the algorithm narrowed the results down to six
possible optimal trajectories. Using a brute forces
search a final optimal trajectory was chosen. The
results of this analysis have shown that the primary

factors affecting the optimal trajectory are the launch
date and start time of the second thrust arc.

While the use genetic algorithms allows a great
reduction in the number of points actually explored,
the elapsed computing time of roughly 20 CPU years
placed a significant strain on the resources of
Fellowship. We were able to accommodate it because
the system was lightly loaded at the time and we could
run the genetic algorithms processes at a reduced
priority on all nodes but this is incompatible with a
fully scheduled system and with some of our
applications that depend on minimal variation in
latency. Work on a solution to this problem is
discussed in the next section.

4.5. Scheduler Research

As previously mentioned, one of the goals in
building a cluster at Aerospace was gain direct
experience with cluster design and operation and
perform research on finding solutions to problems
encountered along the way. One of those problems is
the challenge of balancing the needs of users who need
rapid turnaround with those who need to run long jobs
like the three week trajectory design run described in
the previous section. Running the job in the
background worked at the time, but that will not be a
viable approach in the long term.

In a fortunate coincidence the genetic algorithms
library's parallel mode was designed to support
unreliable clusters where machines are periodically
removed due to reboots or crashes. The code assumes
such events are relatively rare and thus takes little care
to be efficient in handling them, but it does work. We
have been working on a prototype of a system to
extend Sun Grid Engine's concept of parallel
environments (PE) to allow them to change in size
over the life of the computation. In the case of the
GAL we have created a modified PVM PE that
attempts to add additional nodes to the computation by
submitting special jobs to the scheduler. When run,
these jobs cause their node to join the running PVM
virtual machine, wait a period of time, and then
depart. At this time we have a limited proof of
concept running and hope to have a production
capable version working soon which we will use to
produce benchmarks to determine if this approach is
practical.

5. Lessons Learned

As a result of our direct experience with the design,
implementation and operation of our cluster we
encountered many issues and problems. All of them
were things we had expected at some level, but were
reinforced or illuminated in the cluster context. Key
lessons include:

•Automate everything possible including monitoring
•Hardware failures happen with much greater
frequency in a cluster
•Managing user expectations is hard, and
•It is often difficult to convince facilities people what
your needs actually are.

We discuss each in turn.

5.1. Automation and Monitoring

The automation of routine or tedious tasks is
important on most computer systems, but is especially
critical on clusters where the same task may need to be
performed hundreds of times in a short period of time.
For example, once written, the software we use to
manage our remote power controllers has saved
countless hours, allowing quick and easy reboots of
hung nodes. Likewise, a little time spend
familiarizing ourselves with advanced uses of s s h
and x a r g s has greatly eased the pain of performing
simple tasks on each node. We have noticed that
cluster builders who start small often assume that a
more manual approach will remain feasible as the
cluster grows when in fact it is unlikely to unless
sufficient staff support is available.

Closely related to automation is monitoring.
Initially we did very little monitoring of machines
other than using Ganglia to monitor their load and
resource use. This had the unfortunate effect of users
finding problems with machines before we did. We
have since significantly improved our monitoring
infrastructure by adding a Nagios monitoring system
and we now generally find out about problems before
our users tell us.

5.2. Hardware Failures

Nearly all computer users have experienced the
occasional, apparently random hardware failure on
their desktop or laptop computers. With hundreds or
thousands of machines, failures are a much more
frequent occurrence. The two lessons we learned
related to this are to watch for bad batches of
components and to insure that your installation is neat
enough to facilitate node repair. We have experience
problems with bad batches of both power supplies and
disks. In both cases, initial failures looked random,
but it soon became apparent that we were looking at
systemic failure. In both cases we ended up ordering
replacement parts to insure that we could repair nodes
immediately rather than waiting for a replacement
from the vendor. In the case of the disks we also
switched brands once it became apparent that we were
dealing with a bad series of disks. In the process of
replacing this equipment we found that places where
our cable management was less than perfect made

node repair significantly more difficult. In later
installations we were much more careful about the
process and repairs haven been easier there. Thus the
observation that neatness counts. While there were
not really a viable option when we starting
architecting our cluster, this is one major advantage of
well designed blade system. The ability to replace
nodes or disks without touching any cables could be
very useful.

5.3. User Expectations

One of the challenges that we have continually
faced that we did not anticipate is that of managing
user expectations. The most specific problem has been
the classic problem of convincing users that schedulers
are a good idea. Related to that the problem of
adjusting users' often incorrect mental models of how
modern computers and clusters work. For example, it
is often hard to convince users that a job that starts
later due to queue delay may well finish sooner than a
job that starts immediately on a cluster with no
scheduler due to competing loads and thrashing.
Many of our problems with getting users to use the
scheduler stem from the fact that we delayed imposing
mandatory use of the scheduler for several years due to
lack of time to document its usage. At that point users
had a model of using the cluster and were disinclined
to accept the requirements of the scheduler. We are
working through those issues, but it is difficult and
time consuming. Based on this experience we
strongly recommend that implementers enforce
scheduler usage from day one to avoid teaching users
bad habits. We have also found that many users
assume they can simply start using the cluster with
little or no Unix experience. We have yet to find a
good way to address the communication and operation
problems this causes. One possible solution to some of
these may be web-based portals to specific
applications. We are investigating this possibility.

Another interesting user related challenge is that of
balancing the user's need to be able to run their code
locally with their need to run it on the cluster. In
many cases, users want to be able to run their code on
their workstations or laptops to ease development.
Unfortunately this means they can not easily use
services such as the scheduler's programmatic
interface for allocating work to processors. This
means the often end up with implementations that are
significant compromises relative to the ideal
architecture they would have developed if they were
building code only for the cluster. We have not found
a good solution to this problem, but suspect there may
be room for some more parallel computing toolkits to
help with the process.

5.4. Facilities

One final lesson learned from both the Fellowship
cluster and other clusters is to make absolutely certain
that whether they believe your system needs it or not,
your facilities people install sufficient power and
cooling. With Fellowship we have had problems were
we asked for a certain number of circuits of a given
capacity and they were provided, but they were fed by
power distribution units that did not have the total
capacity required. Other people installing clusters
have has similar issues, albeit on a smaller scale. We
have also seen problems with inadequate cooling
being installed causing significant system damage
when the units shut themselves down unexpectedly.

6. Future Work

These experiences with the design and use of a
cluster computer have clearly defined several key
directions for future work.

First, it is clear that a service architecture will
make it much easier to support desktop applications
for users who are non-computer-specialists.
Applications such as SOAP and VISPERS will have a
desktop client that is capable of many tasks. For those
analyses or functions that are too compute intensive
for a desktop machine, however, the client will be able
to (a) discover the available services and machine
resources, (b) select a particular machine or set of
machines, (c) invoke the desired service, and (d)
collect the results. Each of these steps could be pre-
configured or automated to make the interaction with
the remote resources as transparent as possible. Such
desktop clients could also orchestrate the workflow
among multiple remote services by using a workflow
engine that independently manages the transfer of data
and the execution of services [11]. These service-
oriented functions would be implemented using
emerging standards for grid computing. Globus [12]
is a de facto standard since it is used by many projects.
The current Globus version 4 (GT4) is based on the
Web Services Resource Framework (WSRF) family of
web service standards [13]. The application clients
could be implemented in a variety of ways, including
web-based portals, that rely on the appropriate security
models.

As already noted, the issue of scheduling and
scheduler policies is a key aspect. The ideal cluster
scheduler must be able to manage a jobs mix that
includes short jobs, very long-running jobs, queued
jobs, interactive jobs, jobs of known, deterministic
running time, jobs with unknown running times, jobs
that required a known, fixed number of nodes, and
jobs that can require a variable number of nodes
during execution that is not known until run-time. No
single scheduler currently addresses all of these
requirements well.

We are investigating ways to schedule variable
numbers of nodes for a particular job. The service
architecture approach for using the cluster, however,
will also impact the scheduler since some applications
would greatly benefit from the ability to run a
persistent service on the cluster, a service that is long-
lived and waits for requests to arrive. The use of
workflow engines could also impact the scheduler
since certain applications could require co-scheduling,
where multiple services must be scheduled at the same
time to meet mission-critical processing deadlines.
This could entail multiple services on the cluster, or
between the cluster and other resources.

Besides these technical scheduling issues, we also
point out that non-technical, organizational
scheduling policies are just as important. Despite the
best planning, there will be times when mission and
programmatic requirements demand that the scheduler
be overridden, e.g., to devote the entire cluster to one
particular application for some period of time. Hence,
it is best that an organizational scheduler exception
policy be in place that is well-known to the user
community. Such a policy should define the possible
scheduler exceptions, their duration and the required
level of management authorization. When a scheduler
exception is authorized, other users should understand
why and be given as much advance notice as possible
to re-arrange their own impacted computational
requirements.

Another key topic is that the notion of enhanced
scheduling capabilities and the service architecture
concept directly supports the goal of continuity of
technical operations. Many mission-critical functions
are computer-based and must be able to recover from
catastrophic failures, such as a massive power failure
or network outage. Hence, it should be possible to
flexibly re-schedule applications and re-direct remote
clients to available resources. The Fellowship cluster
and scheduler will be key resources in our efforts to
dynamically manage sets of distributed applications
and resources, including multiple clusters.

Finally we note that the use of remote clients,
portals, workflow engines, enhanced scheduling, and
dyanmically managing distributed resources, are
hallmarks of network-centric operations or
netcentricity. As these concepts are mapped to best
practices and concrete implementations in DoD and
the defense community, we will be ideally positioned
to evaluate and guide this long-term process.

7. Conclusions

Building and operating Fellowship has been a
challenging, but rewarding experience. Our users
have produced significant results and are in the

process of developing many interesting applications.
We are working to enhance Fellowship and are
constantly on the lookout for ways to improve the
overall user experience. Grid service interfaces to the
cluster from within new or existing external
applications, and application-specific web portals, are
promising approaches we plan to pursue.

8. References

[1] Davis, B. , Michael AuYeung, Gary Green, Craig A.
Lee: Building a High-performance Computing Cluster Using
FreeBSD. BSDCon 2003, 35-46

[2] Tolkin, J.R.R. The Lord of the Rings. 1955.

[3] Barham, P., B. Dragovic, et al. (2003). Xen and the Art
of Virtualization. SOSP'03, October 19-22, 2003, Bolton
Landing, New York.

[4] Clark, C., K. Fraser, et al. Live Migration of Virtual
Machines. NSDI 2005.

[5] Bentow, B., J. Dodge, A. Homer, C. Moore, R. Keller,
C. Lee, M. Thomas, J. Seidel, M. Presley, R. Davis, and J.
Betser, “Grid-Enabling a Vibroacoustic Analysis Toolkit”,
International Journal of High Performance Computing and
Networking, 2006. (To appear.)

[6] Bentow, B., J. Dodge, A. Homer, C. Moore, R. Keller,
M. Presley, R. Davis, J. Seidel, C. Lee, and J. Betser, “Grid-
Enabling a Vibroacoustic Analysis Application”, 6th
International Workshop on Grid Computing, November 13-
14, 2005, pp. 33-39.

[7] Smith, P.L., A.B. Dawdy, T.W. Trafton, R.G. Novak,
and S.P. Presley. Concurrent Design at Aerospace,
Crosslink. The Aerospace Corporation. Winter 2001.

[8] Plimpton, S. (1995). "Fast Parallel Algorithms for Short-
Range Molecular-Dynamics." Journal of Computational
Physics 117(1): 1-19.

[9] Plimpton, S. J., R. Pollock, et al. (1997). Particle-Mesh
Ewald and rRESPA for Parallel Molecular Dynamics
Simulations. Eighth SIAM Conference on Parallel
Processing for Scientific Computing, Minneapolis, SIAM.

[10] Essmann, U., L. Perera, et al. (1995). "A Smooth
Particle Mesh Ewald Method." Journal of Chemical Physics
103(19): 8577-8593.

[11] Lee, C., B.S. Michel, E. Deelman and J. Blythe, "From
Event-Driven Workflows towards A Posteriori Computing",
Future Generation Grids, (Reinefeld, Laforenza, Getov,
eds.), Springer-Verlag, 2006, pp. 3-29.

[13] OASIS Web Services Resource Framework (WSRF)
TC, http://www.oasis-open.org/committees/workgroup.php?
wg_abbrev=wsrf.

	1. Introduction
	2. The Fellowship Cluster
	3. Architectural Decisions
	3.1. Processor Architecture and Operating System
	3.2. Network Interconnect
	3.3. Storage
	3.4. Scheduler

	4. Applications
	4.1. VISPERS
	4.2. Satellite Orbit Analysis Program
	4.3. Atomistic Modeling of Radiation Damage
	4.4. Genetic Algorithms for Trajectory Design
	4.5. Scheduler Research

	5. Lessons Learned
	6. Future Work
	7. Conclusions
	8. References

