
The Challenges of Dynamic
Network Interfaces

by Brooks Davis
brooks@{aero,FreeBSD}.org
The Aerospace Corporation

The FreeBSD Project

EuroBSDCon 2004
October 29-31, 2004
Karlsruhe, Germany

Introduction

● History of Dynamic Interfaces
● Problems
● Possible Solutions
● Advice to Implementors
● Future Work

Early UNIX

● Totally static.
● All devices must be compiled in to

kernel
● Fast and easy to program
● Difficult to maintain as the number of

devices grows

Autoconfiguration

● Introduced in 4.1BSD (June 1981)
● One kernel can serve multiple hardware

configurations
● Probe

– Test for existence of devices, either using
stored addresses or matching devices on
self-identifying buses

● Attach
– Allocate a driver instance (as of 6.0, this

must be fully dynamic)

Kernel Modules

● Allows drivers to be added at run time
● LKM (Loadable Kernel Modules)

– Introduced in 2.0 by Terry Lambert
– Modeled after the facility in SunOS

● KLD (dynamic kernel linker)
– Introduced along with newbus in 3.0 by

Doug Rabson

– Added a generic if_detach() function

PC Card & CardBus

● Initial PC Card (PCMCIA) support via
PAO in 2.0

● Fairly good support in 3.0
● Most PAO changes merged in 4.0

– PAO development ceased

● CardBus support in 5.0

Other Removable Devices

● USB Ethernet (4.0)
● Firewire (fwe(4) in 4.8, fwip(4) in 5.3)
● Bluetooth (5.2)
● Hot plug PCI
● Compact PCI
● PCI Express
● Express Card

Netgraph

● Node implement network functions
● Arbitrary connection of nodes allowed
● ng_iface(4) node creates interfaces on

demand

Interface Cloning

● Handles most pseudo interface creation
– ifconfig vlan create

● Imported from NetBSD in 4.4
● Extended to support more complex

names in 5.3
– ifconfig fxp0.10 create

● Creates vlan(4) interface handling tag 10 on
fxp0

Interface Renaming

● Introduced in 5.2
● Allows interfaces to be given logical

names
● Aids hardware independence

– devd(8) should eventually support things
like setting interface names based on slot
number

Problems

● Userland
– Network management systems
– Network monitoring applications

● Kernel
– Stale references
– Hardware races

Not Detecting Arrival and
Departure

● Many (most?) applications do not detect
arrival or departure of interfaces

● Only interfaces that were attached at
startup are shown

● Mostly Harmless

Solution: Not Detecting
Arrival and Departure

● Detect Arrival and Departure
– Periodic rescan

● Beware races

– Routing socket
● Renaming looks like departure plus arrival

– /dev/net
● Use kqueue(2) or dir(3)

Inconsistent Interfaces
Indexes

● The index is the stable handle to an
interface

● Indexes are reused and are allocated in
a non-sparse manner

● Interfaces come and go in arbitrary
order

● Indexes are only good for the life of the
interface instance

Inconsistent Interfaces
Indexes

Solutions: Inconsistent
Interfaces Indexes

● Out of band notification (routing socket
or kqueue(2))

● Check the interface epoch
– struct if_data member, ifi_epoch is a
time_t containing the time the interface
was created (or its statistics were reset)

– Will not work in the case of sub-second
create-destroy-create cycles (insufficient
space to use higher resolution time)

SNMP ifIndex vs if_index

● RFC2233:
– A previously-unused value of ifIndex must

be assigned to a dynamically added
interface if an agent has no knowledge of
whether the interface is the “same” or
“different” to a previously incarnated
interface

SNMP ifIndex vs if_index

● Removing and replacing an interface
will work since the same index will
generally be allocated

● Hacks in place to maintain indexes
across driver reloads

● Does not meet this requirement in
general
– What is the “same” interface on a tunnel

server?

Solutions: SNMP ifIndex vs
if_index

● Handle ifIndex values in the agent
– May require application specific daemons

or hooks to allow external management

● Allow applications to manage if_index
assignments
– Easy to implement in kernel
– Very wasteful of memory

– Small index space (215-1)

SNMP Counters

● RFC2233:
– A management station, not noticing that an

interface has gone away and another has
come into existence, must not be confused
when calculating the difference between
the counter values retrieved on successive
polls of a particular ifIndex value

Solutions: SNMP Counters

● Detect interface departure and arrival
and produce synthetic counters
– Inaccurate since interfaces do not have a

zombie state

● Set the ifCounterDiscontinuityTime
variable defined in RFC2233
– The new ifi_epoch member of struct
if_data may be used

Stale struct ifnet Pointers

● struct ifnet is the device
independent part of the interface

● In-flight packets hold references to it in
struct mbuf

● In most cases, the packets are drained
from queues before the struct ifnet
is destroyed

● Dummynet prevents this by holding the
packets elsewhere

Solution: Stale struct ifnet
Pointers

● Refcount struct ifnet
– Expensive
– Since the hardware may really be gone,

delay in removing the struct ifnet should
be avoided

● Do not refer to struct ifnet via a
pointer in long-lived references
– Use the index and use ifnet_byindex()

– Return special dead_if when gone

Advice to Implementers

● Remember that interfaces are dynamic
– In general, assume devices will be dynamic

● Do not assume interface names are
stable handles to interfaces
– Use indexes instead

● Avoid kvm(3)

Conclusions

● Dynamic interfaces are here to stay
– More and more buses support hot

swapping

● SNMP agent enhancements are needed
● Solutions to stale struct ifnet

references are needed

Questions?

http://people.FreeBSD.org/~brooks/pubs/
eurobsdcon2004/

