Physical memory
anti-fragmentation mechanisms in
the FreeBSD kernel

Bojan Novkovic

$ whoami

e bnovkov@FreeBSD.org

e Software developer, Ph.D. candidate based in Zagreb,
Croatia

e GSoC ’'22 and '23 contributor, src commiter since 2024.

Introduction

°* Memory fragmentation - a recurring issue
® Practically eliminated by virtual memory
® Reintroduced in modern systems

e QOverview of several anti-fragmentation mechanisms
® Talk will focus on amd64

e Parts of this work were sponsored by GSoC '23

Background - physical memory allocation

® FreeBSD manages memory Perorderlists |

using the buddy allocator 0 S o Pl]

algorithm ’
® Manages power-of-two N ST T TR T
page blocks

e Each block size has its
own freelist

® Page order -

log, (block_size) ” »

® Blocks are broken up and . .
coalesced during runtime Figure 1: Buddy allocator freelists

Background - physical memory allocation

Background - physical memory allocation

Background - physical memory allocation

& o

Background - physical memory allocation

32 KB (order 3)

&

16 KB (order 2) 16 KB

8 KB (order 1) 8 KB 16 KB
4 KB

(order 0) SREE 8 KB 16 KB

Background - superpages

e Virtual address translation is costly
e Can take up to 10%-30% of process runtime [1]
® The TLB cache helps reduce performance cost

e Modern workloads are increasingly memory-hungry
® Lower TLB efficiency

e Solution - superpages
® Pages of larger size than a standard page
® Range from 2MB to 1G on amd64

Background - superpages

Physical memory

~6 MB reaEH‘n\

Figure 2: TLB reach on amd64 with regular pages.

Background - superpages

Physical memory

~3 GB reach

Figure 3: TLB reach on amd64 with superpages.

Background - superpages

e Superpages require a contiguous physical memory region

e OS needs a steady supply to maintain performance benefits

e Mixing 4K and 2M pages leads to external fragmentation
® Superpage allocation often fail in fragmented environments

Background - external fragmentation

Page order No. pages before No. pages after

12 (16384K) 337 11
11 (8192K) 1 3
10 (4096K) 2 23
9 (2048K) 1 68

2 (16K) 9 1139
1 (8K) 1 1712
0 (4K) 1 2156

Table 1: State of a buddy allocator freelist before and after a buildkernel
workload.

10

Background - external fragmentation

. Occupied page

|:| Free page

Lower half hole count: 3 : Upper half hole count: 2
A ! A

| D>
Address growth

Figure 4: A fragmented memory region.

11

Background - external fragmentation

. Occupied page

l:‘ Free page

Free contiguous page block :
Ju 1

Address growth

Figure 5: A rearranged memory region.

12

Memory compaction - overview

e Core idea - rearrange pages to increase contiguity

® An active defragmentation mechanism
® Focused on maintaining superpage pool

® Very invasive
® [nterferes with running processes

® Moving pages is expensive

e Stilla WIP

13

Memory compaction - moving pages

static size_t
vm_phys_compact_region(vm_paddr_t start, vm_paddr_t end, int domain)

vm_page_t free, scan;
free
scan

PHYS_TO_VM_PAGE(start);
PHYS_TO_VM_PAGE(end - PAGE_SIZE);

while (free < scan) {

};'Find suitable destination page ("hole"). */

while (free < scan & !vm_phys_compact_page_free(free)) {
free++;

}

};'Find suitable relocation candidate. */
while (free < scan & !vm_phys_compact_page_relocatable(scan)) {
scan--;

/* Swap the two pages and move "fingers". */
error = vm_page_relocate_page(scan, free, domain);
if (error == 0) {

nrelocated++;

scan--;

free++;

Listing 1: Two-finger compaction algorithm.

14

Memory compaction - metadata

* Which regions do we compact?

® |dea - maintain page stats for blocks of memory
® Must hook into the buddy allocator

* Two important requirements:
® Minimal performance overhead
® Must work with sparse physical memory

15

Memory compaction - metadata

Physical memory

I:>

0x0 0x10000000 0x20000000

struct vm_phys_search_chunk {

int holecnt; /* no. available @-order pages */

int score; /* chunk compaction ‘score ' */

int skipidx; /* index of next valid chunk. */

struct vm_phys_subseg head *shp; /* list of valid regions inside this chunk */

¥

Figure 6: Tracking compaction metadata.

16

Memory compaction - quantifying fragmentation

e When should we compact?

® Free Memory Fragmentation
Index (FMFI) [2]

NoP F 90
* Quantifies external Fi(o)=1— oPagesFree/
fragmentation of a BlocksFree
freelist

® Values range from
negative to 1

17

Memory compaction - background compaction

e Putting it all together - compactd
® Monitors fragmentation for superpage order
® Compacts when FMFI drops below a threshold
® Tunable - vm. phys_compact_thresh

® Rudimentary back-off mechanism

® One compaction thread per NUMA domain

e Evaluation
® Ryzen 5 5600 X, 48 GB DDR4 RAM
® Benchmark - buildkernel x 10

18

Memory compaction - results

No. promotions

45001 No. promotions gained by compaction
4000 A
3500 -

3000 A

= N N
wu o w
o o o
o o o
! L L

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Time (s)

Figure 7: Compaction benchmark results.

19

Reworking kernel stack allocations

e Fragmentation issues in
kernel stack allocation

® “Guard” pages
® Each kernel stack leaves
an unused O-order page

e |ssue - vm_object_t
page offset calculation
e KVA >> PAGE_SHIFT

VM _MAX KERNEL_ADDRESS

; Guard page

V

Figure 8: amd64 kstack layout.

20

Reworking kernel stack allocations

Vvirtual
memory E::::::::[:>

0xA000

Em_page_alloc(kstack_obj, OxAGBO >> PAGE_SHIFT, ...);

v

10

Physical
memory

21

Reworking kernel stack allocations

Vvirtual
memory E::::::::[:>

0x9000

%m_page_alloc(kstack_obj, 0x9000 >> PAGE_SHIFT, ...); }

v

10 9

Physical
memory

21

Reworking kernel stack allocations

Vvirtual
memory E::::::::£:>

0x6000

7
?

10 9 8 7

Physical
memory

21

Reworking kernel stack allocations

Vvirtual
memory

—>

0x1000

/

10

Physical
memory

21

Reworking kernel stack allocations

e Kernel stacks have two nice properties

1. Fixed size
2. Guard pages at fixed offsets

e These can be used to mathematically “pack” the pages
together

® Other backing mechanisms required

e Additional benefits
® Guard pages at each end
® More room for kernelspace superpages

22

Reworking kernel stack allocations

vm_pindex_t
vm_kstack_pindex(vm_offset_t ks, int kpages)

#ifdef

#else

#endif
}

vm_pindex_t pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);

__ILP32__

return (pindex);

/*

* Return the linear pindex if guard pages aren't active or if we are
* allocating a non-standard kstack size.

*

/
if (KSTACK_GUARD_PAGES == 0 || kpages != kstack_pages) {
return (pindex);

}
KASSERT(pindex % (kpages + KSTACK_GUARD_PAGES) >= KSTACK_GUARD_PAGES,
("%s: Attempting to calculate kstack guard page pindex", __func__));

return (pindex -
(pindex / (kpages + KSTACK_GUARD_PAGES) + 1) * KSTACK_GUARD_PAGES);

Listing 2: Improved page offset calculation

23

virtual
memory

0xA000

Reworking kernel stack allocations

0x1000

8
Physical

memory

Figure 9: Adjusted kstack allocations.

24

Batched page allocations

e Common idiom - allocate
0-order pages in a tight
loop

® Two issues:
1. Allocated pages might

for (1 = 1; 1 <= *rbehind; i++) {
p = vm_page_alloc(object,
ma[0]->pindex - i,
VM_ALLOC_NORMAL) ;
if (p == NULL)
break;
p->oflags |= VPO_SWAPINPROG;

*rbehind = 1 - 1;

not be contiguous
2. Poor cache usage

Listing 3: Swap pager - allocating multiple
pages

25

Batched page allocations

* New page allocation routine - vm_page_alloc_pages
® Promotes contiguity
® Cache-friendly

® Microbenchmark evaluation
® Measuring the time it takes to allocate N pages
* Ne{1,2,4,...,65536}

26

Batched page allocations - results

17507 _¢— batch
—— single
1500 A

1250 A

% 1000 A

Time (.

750 A

500 A

250 ~

0 1

0 2500 5000 7500 10000 12500 15000
Batch size

Figure 10: Batched allocation benchmark results. Smaller is better.

Speeding up mlock(2)

Motivation - wiring large amounts of memory is slow
® Especially problematic for hypervisors

mlock(2) allocates and maps one O-order page at a time

Idea - preallocate and insert higher order pages

Evaluated by booting bhyve VMs

28

Speeding up mlock(2) - results

baseline patched

Avg (ms) 875.02 92.49
Median (ms) 883.77 79.98
Stddev 80.79 18.56
Min 761.68 76.76
Max 992.12 115.02

Table 2: mlock benchmark results. Smaller is better.

29

Future work

e |ssues with “permanent” fragmentation
¢ Improving placement of long-lived wired (unmovable) pages

e Compaction efficiency
® Smarter heuristics

30

Conclusion

® Reviews:
o D44450, D43622, D40772, D38852

e Thanks to markj@ for his mentorship

31

References

® [1] Gupta, Siddharth, et al. “Rebooting virtual memory with midgard.” 2021
ACMY/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2021.

e [2] Gorman, Mel, and Andy Whitcroft. “The what, the why and the where to
of anti-fragmentation.” Ottawa Linux Symposium. Vol. 1. Citeseer, 2006.

32

	Introduction
	Background
	Compaction
	Kstack
	Contiguity-aware allocs

