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Introduction

°* Memory fragmentation - a recurring issue
® Practically eliminated by virtual memory
® Reintroduced in modern systems

e QOverview of several anti-fragmentation mechanisms
® Talk will focus on amd64

e Parts of this work were sponsored by GSoC '23



Background - physical memory allocation

® FreeBSD manages memory Perorderlists |

using the buddy allocator 0 S o Pl ]

algorithm ’
® Manages power-of-two N ST T TR T
page blocks

e Each block size has its
own freelist

® Page order -

log, (block_size) ” »

® Blocks are broken up and . .
coalesced during runtime Figure 1: Buddy allocator freelists
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Background - superpages

e Virtual address translation is costly
e Can take up to 10%-30% of process runtime [1]
® The TLB cache helps reduce performance cost

e Modern workloads are increasingly memory-hungry
® Lower TLB efficiency

e Solution - superpages
® Pages of larger size than a standard page
® Range from 2MB to 1G on amd64



Background - superpages
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Figure 2: TLB reach on amd64 with regular pages.



Background - superpages
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Figure 3: TLB reach on amd64 with superpages.



Background - superpages

e Superpages require a contiguous physical memory region

e OS needs a steady supply to maintain performance benefits

e Mixing 4K and 2M pages leads to external fragmentation
® Superpage allocation often fail in fragmented environments



Background - external fragmentation

Page order No. pages before No. pages after

12 (16384K) 337 11
11 (8192K) 1 3
10 (4096K) 2 23
9 (2048K) 1 68

2 (16K) 9 1139
1 (8K) 1 1712
0 (4K) 1 2156

Table 1: State of a buddy allocator freelist before and after a buildkernel
workload.
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Background - external fragmentation

. Occupied page

|:| Free page

Lower half hole count: 3 : Upper half hole count: 2
A ! A

| D>
Address growth

Figure 4: A fragmented memory region.

11



Background - external fragmentation
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Figure 5: A rearranged memory region.
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Memory compaction - overview

e Core idea - rearrange pages to increase contiguity

® An active defragmentation mechanism
® Focused on maintaining superpage pool

® Very invasive
® [nterferes with running processes

® Moving pages is expensive

e Stilla WIP
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Memory compaction - moving pages

static size_t
vm_phys_compact_region(vm_paddr_t start, vm_paddr_t end, int domain)

vm_page_t free, scan;
free
scan

PHYS_TO_VM_PAGE(start);
PHYS_TO_VM_PAGE(end - PAGE_SIZE);

while (free < scan) {

};'Find suitable destination page ("hole"). */

while (free < scan & !vm_phys_compact_page_free(free)) {
free++;

}

};'Find suitable relocation candidate. */
while (free < scan & !vm_phys_compact_page_relocatable(scan)) {
scan--;

/* Swap the two pages and move "fingers". */
error = vm_page_relocate_page(scan, free, domain);
if (error == 0) {

nrelocated++;

scan--;

free++;

Listing 1: Two-finger compaction algorithm.
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Memory compaction - metadata

* Which regions do we compact?

® |dea - maintain page stats for blocks of memory
® Must hook into the buddy allocator

* Two important requirements:
® Minimal performance overhead
® Must work with sparse physical memory
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Memory compaction - metadata

Physical memory
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struct vm_phys_search_chunk {

int holecnt; /* no. available @-order pages */

int score; /* chunk compaction ‘score ' */

int skipidx; /* index of next valid chunk. */

struct vm_phys_subseg head *shp; /* list of valid regions inside this chunk */

¥

Figure 6: Tracking compaction metadata.
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Memory compaction - quantifying fragmentation

e When should we compact?

® Free Memory Fragmentation
Index (FMFI) [2]

NoP F 90
* Quantifies external Fi(o)=1— oPagesFree/
fragmentation of a BlocksFree
freelist

® Values range from
negative to 1
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Memory compaction - background compaction

e Putting it all together - compactd
® Monitors fragmentation for superpage order
® Compacts when FMFI drops below a threshold
® Tunable - vm. phys_compact_thresh

® Rudimentary back-off mechanism

® One compaction thread per NUMA domain

e Evaluation
® Ryzen 5 5600 X, 48 GB DDR4 RAM
® Benchmark - buildkernel x 10

18



Memory compaction - results

No. promotions

45001 No. promotions gained by compaction
4000 A
3500 -

3000 A

= N N
wu o w
o o o
o o o
! L L

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Time (s)

Figure 7: Compaction benchmark results.
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Reworking kernel stack allocations

e Fragmentation issues in
kernel stack allocation

® “Guard” pages
® Each kernel stack leaves
an unused O-order page

e |ssue - vm_object_t
page offset calculation
e KVA >> PAGE_SHIFT

VM _MAX KERNEL_ADDRESS

; Guard page

V

Figure 8: amd64 kstack layout.
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Reworking kernel stack allocations
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Reworking kernel stack allocations
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Reworking kernel stack allocations
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Reworking kernel stack allocations
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Reworking kernel stack allocations

e Kernel stacks have two nice properties

1. Fixed size
2. Guard pages at fixed offsets

e These can be used to mathematically “pack” the pages
together

® Other backing mechanisms required

e Additional benefits
® Guard pages at each end
® More room for kernelspace superpages
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Reworking kernel stack allocations

vm_pindex_t
vm_kstack_pindex(vm_offset_t ks, int kpages)

#ifdef

#else

#endif
}

vm_pindex_t pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);

__ILP32__

return (pindex);

/*

* Return the linear pindex if guard pages aren't active or if we are
* allocating a non-standard kstack size.

*

/
if (KSTACK_GUARD_PAGES == 0 || kpages != kstack_pages) {
return (pindex);

}
KASSERT(pindex % (kpages + KSTACK_GUARD_PAGES) >= KSTACK_GUARD_PAGES,
("%s: Attempting to calculate kstack guard page pindex", __func__));

return (pindex -
(pindex / (kpages + KSTACK_GUARD_PAGES) + 1) * KSTACK_GUARD_PAGES);

Listing 2: Improved page offset calculation
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Figure 9: Adjusted kstack allocations.
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Batched page allocations

e Common idiom - allocate
0-order pages in a tight
loop

® Two issues:
1. Allocated pages might

for (1 = 1; 1 <= *rbehind; i++) {
p = vm_page_alloc(object,
ma[0]->pindex - i,
VM_ALLOC_NORMAL ) ;
if (p == NULL)
break;
p->oflags |= VPO_SWAPINPROG;

*rbehind = 1 - 1;

not be contiguous
2. Poor cache usage

Listing 3: Swap pager - allocating multiple
pages
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Batched page allocations

* New page allocation routine - vm_page_alloc_pages
® Promotes contiguity
® Cache-friendly

® Microbenchmark evaluation
® Measuring the time it takes to allocate N pages
* Ne{1,2,4,...,65536}
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Batched page allocations - results
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Figure 10: Batched allocation benchmark results. Smaller is better.



Speeding up mlock(2)

Motivation - wiring large amounts of memory is slow
® Especially problematic for hypervisors

mlock(2) allocates and maps one O-order page at a time

Idea - preallocate and insert higher order pages

Evaluated by booting bhyve VMs
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Speeding up mlock(2) - results

baseline patched

Avg (ms) 875.02 92.49
Median (ms) 883.77 79.98
Stddev 80.79 18.56
Min 761.68 76.76
Max 992.12 115.02

Table 2: mlock benchmark results. Smaller is better.
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Future work

e |ssues with “permanent” fragmentation
¢ Improving placement of long-lived wired (unmovable) pages

e Compaction efficiency
® Smarter heuristics
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Conclusion

® Reviews:
o D44450, D43622, D40772, D38852

e Thanks to markj@ for his mentorship
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