
Physical memory anti-fragmentation mechanisms in
the FreeBSD kernel

Bojan Novković
Zagreb, Croatia

bnovkov@freebsd.org

Abstract—The use of virtual memory practically
eliminated the need for the contiguity of physical mem-
ory allocation as physically discontiguous memory can
be contiguous in the virtual address space. Unfortu-
nately, avoiding performance degradation for memory-
intensive workloads on modern CPUs requires a steady
supply of contiguous physical memory, making external
physical memory fragmentation in modern operating
systems a serious issue once again.

This paper presents the design and implementa-
tion of several anti-fragmentation mechanisms for the
FreeBSD kernel. Parts of this work were sponsored by
the Google Summer of Code ’23 program.

I. Introduction
Memory fragmentation is a long-standing problem in

computer science that can often have dire consequences
for the performance or memory capacity of a running
computer system. Historically, the introduction of virtual
memory and scatter-gather DMA transfers made com-
puter systems virtually insensitive to physical memory
fragmentation. Unfortunately, the same cannot be said
for modern computer systems where new page sizes were
introduced to reduce the performance hit from the virtual
address translation process. The performance of memory-
intense workloads has once again become very sensitive to
the rate of external fragmentation in physical memory.

This paper gives an overview of recent work done to
reduce the rate of external fragmentation in the FreeBSD
operating system. Section II gives the necessary theoretical
background and presents the problem at hand. Section III
describes the details related to the design of several new
anti-fragmentation mechanisms in the FreeBSD kernel. We
describe our experimental setup in Section IV, analyze and
discuss the evaluation results in Section V, and conclude
the paper in Section VII.

II. Background
A. Physical memory allocation

All physical memory allocation in the FreeBSD kernel
is done by the page allocator (vm/vm_phys.c), which uses
the well-known buddy allocator algorithm to partition the
memory and fulfil allocation requests. A buddy allocator
is a power-of-two allocator, meaning that it breaks free
memory up into power-of-two-sized blocks of contiguous
pages which are subsequently used to serve allocation
requests. The order of each block is the exponent of that

block size. A buddy allocator freelist maintains a list of free
blocks for each order. If a block of a requested size is not
available, higher order blocks are repeatedly split in half
until the requested block size is available. When a block
is freed (i.e. returned to its respective list of free blocks),
the allocator first inspects the state of its buddy block and
coalesces the two blocks if the buddy block is free. Figure
1 depicts the layout of a single buddy allocator freelist.

Figure 1: High-level overview of a buddy allocator freelist.

The FreeBSD physical memory allocator maintains
queues for orders [0, 12].

B. Superpages
Virtual address translation is a costly operation which

can account for up to 10-30% of total system runtime
for some workloads [1]. To make matters worse, the con-
stantly increasing memory footprint of modern workloads
puts even more pressure on the virtual memory system
[2]. Modern computer systems offer a way of decreasing
pressure on the virtual address translation caches using
superpages - i.e. pages of larger size than a standard page.
The size of these superpages is a multiple of the base page
size and ranges from 2MB up to 1GB. Their use brings
several important benefits. First off, superpages greatly
increase the maximum amount of memory mapped by the

Translation Lookaside Buffer (TLB) (i.e. its reach) since
they occupy only one TLB entry. For example, modern
Intel processors can store a maximum of 1536 entries in
their shared TLB [3]. Using 2 MB superpages instead of
standard 4K pages increases the TLB’s reach from 6 MB to
3072 MB. [4]. Furthermore, they reduce the total number
of memory accesses required for the address translation
process, as depicted in Figure 2.

Figure 2: Overview of the address translation process for
2MB pages on Intel CPUs [5].

Superpage mappings require a contiguous and properly
aligned physical memory region, which in turn means
that the operating system must be able to handle mixed-
size page allocations and maintain a steady source of
contiguous physical memory regions to maintain the per-
formance benefits provided by superpages. Unfortunately,
the addition of another page size class (re)introduced a
previously largely irrelevant problem - external memory
fragmentation.

C. External fragmentation
External fragmentation occurs when the patterns of

allocating and releasing memory leave ”holes” between
allocated blocks. Allocating a contiguous chunk of memory
in this situation may fail even though there is enough
discontiguous memory to satisfy the request.

The previous section briefly mentioned superpages as
an example of a feature that is very sensitive to external
fragmentation. However, this isn’t the only situation where
performance suffers in highly fragmented environments.
Modern network devices offer performance boosts that
require a contiguous physical memory spanning multiple
pages. A great example of this are Ethernet Jumbo frames -
Ethernet frames of sizes between 1500 to 9000 bytes. When
in use, jumbo frames offer increased throughput and lower
per-packet processing overhead [6]. Leveraging this feature
requires a steady supply of contiguous memory chunks
to allocate the frames, making it very sensitive to highly
fragmented physical memory.

A machine with a long uptime will have a harder
time finding spans of contiguous pages to fulfil certain
allocation requests. This effect can be easily observed even
on freshly booted machines. Table I shows the number of
pages in the buddy allocator queues before and after a
single buildkernel workload on a bhyve virtual machine
with 6 GB of RAM. The overall state of the physical
memory space can be indicated by the number of blocks
stored on buddy allocator freelists. For instance, if we
observe Table I, we can see that the free physical memory
before the buildkernel workload was less fragmented
since it was mostly comprised of higher-order pages. The
situation changes drastically in the second column where
most of the free memory is now mostly comprised of 0-
order pages. This type of workload is especially effective
at fragmenting physical memory, mostly due to the nature
of the build workloads where a large number of short-lived
processes are spawned in a short period.

Page order No. pages before No. pages after
12 (16384K) 337 11
11 (8192K) 1 3
10 (4096K) 2 23
9 (2048K) 1 68

2 (16K) 9 1139
1 (8K) 1 1712
0 (4K) 1 2156

Table I: State of a buddy allocator freelist before and after
a buildkernel workload. Some orders were left out for the
sake of brevity.

III. Design and implementation

This chapter gives a brief overview of each anti-
fragmentation mechanism that was developed as a part of
this work. The mechanisms listed below can be grouped
into two categories: passive and active anti-fragmentation
mechanisms. Passive mechanisms refer to a set of allo-
cation policies and fragmentation-aware usage of page
allocations. Their primary goal is to lower the rate of
fragmentation as a part of the regular page allocation
process. On the other hand, active mechanisms seek to
improve free memory contiguity by rearranging individual
pages.

A. Memory compaction
Memory compaction is an active anti-fragmentation

mechanism that tries to rearrange scattered free pages
into a single contiguous block. The vm_phys subsystem
was extended to support system-wide, per-domain physical
memory compaction. It uses a compaction function based
on the ’two-finger’ mark-compact algorithm [7] to rear-
range 0-order pages inside a given physical memory region.
Since system-wide compaction is an expensive operation
the vm_phys subsystem uses a special data structure to
quickly identify heavily fragmented regions of a memory
domain, increasing the overall efficiency of the compaction.

1) Quantifying fragmentation: The compaction subsys-
tem implements a well-known metric for tracking external
fragmentation - the ’Free Memory Fragmentation Index
(FMFI)’ [8]. The ’FMFI’ metric measures the degree of
physical memory fragmentation for a given order by using
metadata from the buddy allocator freelists. Figure 3
shows the formula for calculating FMFI, where o is the
page order to be allocated, NoPagesFree is the total num-
ber of free 0-order pages in the system, and BlocksFree is
the total number of contiguous pages stored on the buddy
allocator freelists.

Fi(o) = 1− NoPagesFree/2o

BlocksFree

Figure 3: The Free Memory Fragmentation Index.

Its values range from arbitrary negative values up to
1000. A negative value implies that there is ample mem-
ory to serve an allocation request of the given order.
A value between 0 (no fragmentation) and 1000 (highly
fragmented) indicates the degree of physical memory frag-
mentation. The value of the FMFI metric for each memory
domain can be retrieved using the vm.phys_frag_idx
sysctl.

2) Metadata structures: System-wide memory com-
paction is an expensive process since it involves scanning
large regions of memory and lots of copying. Compaction
might not even be effective (or even necessary) in some
memory regions, so blindly running a compaction algo-
rithm will result in a lot of wasted CPU time. To improve
the accuracy and efficiency of the whole process, the
compaction subsystem maintains a set of metadata about
the state of individual memory regions. It does so by
tracking fixed-size, aligned chunks of physical memory.
The core idea behind these data structures is to ”divide”
the physical memory space into power-of-two-sized chunks
and track various metrics for each of these chunks. Listing
1 shows the data structures used by the compaction
subsystem.

1 struct vm_phys_search_chunk {
2 int holecnt; /* no. available 0-order pages */
3 int score; /* chunk compaction 'score' */
4 int skipidx; /* index of next valid chunk. */
5 struct vm_phys_subseg_head *shp; /* list of valid

regions inside this chunk */
6 };
7

8 struct vm_phys_search_index {
9 struct vm_phys_search_chunk *chunks;

10 int nchunks;
11 vm_paddr_t domain_start;
12 vm_paddr_t domain_end;
13 };

Listing 1: Compaction metadata.

Page allocation is a very critical operation used by all

parts of the system, which is why the guiding principle
for this design was to minimize the overhead related to
compaction metadata management in the buddy allocator.
The search index currently tracks the amount of available
memory and the number of free 0-order pages in each
chunk. This information is updated each time a page gets
added or removed from the buddy allocator freelists. Since
the metadata is tracked for power-of-two-sized chunks,
finding the corresponding metadata slot is cheap since we
only have to mask the page’s physical address to index into
the metadata array. Since the physical memory space may
contain holes, the search index also tracks a list of valid
memory regions for each chunk to prevent the compaction
algorithm from operating on invalid or non-existent re-
gions of physical memory. Figure 4 depicts the way the
search index maps to chunks of physical memory. The
search index is also used by the vm_phys_compact_search
function to identify memory regions suitable for com-
paction.

Figure 4: Tracking physical memory metadata in the
compaction subsystem.

3) Proactive background compaction: All of the previ-
ously described components come together in the form of
the ’compaction daemon’. This daemon is started during
boot and spawns a kernel thread for each NUMA domain
present in the system. The vm_phys_compact_thread
function monitors the state of each NUMA domain and
periodically performs compaction on its given domain. The
compaction daemon also relies on the FMFI metric to
reduce its CPU time and to track the impact of each
compaction run. The main goal of the compaction daemon
is to reduce the value of the FMFI metric for a given
order, in this case, the VM_LEVEL_0_ORDER. Compaction
will not be started if the value of the FMFI metric falls
below a certain threshold. This threshold is exposed as
a sysctl (vm.phys_compact_thresh). Furthermore, if the
compaction daemon was unable to relocate any pages or
reduce the fragmentation after several runs, it sleeps for
a longer period before trying again to avoid wasting CPU
time.

B. Kernel stack allocation
The first implemented passive anti-fragmentation mech-

anism deals with contiguity issues caused by kernel stack
allocations. Each kernel stack has at least one ”guard”
page (i.e. an unmapped page) that acts as a debugging tool

and a defensive mechanism. Assuming that the total size of
the kernel stack is N physical pages, the kernel stack ends
up using N+1 virtual pages in the kernel’s virtual address
space. On amd64 this defaults to 4 physical pages and 1
extra guard page. Mapping the stack is done by grabbing
N consecutive physical pages from the kstack vm_object
structure, starting at an index derived from the virtual
address (KVA) of the stack. Since stack guard pages aren’t
backed by physical pages, the index corresponding to the
N +1 -th physical page is simply skipped, leaving a single
unallocated 0-order page for each kernel stack. The new
mapping scheme is used to effectively ”skip” guard pages
and assign pindices for non-guard pages in a contiguous
fashion, resulting in fewer wasted 0-order pages. Figure
5 depicts the state of a physical memory region used to
back two kernel stacks on the amd64 architecture with and
without the new mapping scheme. Allocating kernel stacks
with the new scheme ”packs” all physical pages together.

Figure 5: Illustration of the guard page-aware kernel stack
allocation.

This scheme requires that all default-sized kstack KVA
allocations come from a separate, specially aligned region
of the KVA space. For this to work, the work also in-
troduced a new, dedicated kstack KVA arena used to
allocate kernel stacks of default size. Aside from fulfilling
the requirements imposed by the new scheme, a separate
kstack KVA arena has additional performance benefits
(keeping guard pages in a single KVA region facilitates
superpage promotion in the rest of the KVA space) and
security benefits (packing kstacks together results in most
kernel stacks having guard pages at both ends).

This mechanism runs the risk of increasing fragmen-
tation in the kernel’s virtual address space, which is
especially problematic on 32-bit machines. However, this
may not be an issue since future releases of FreeBSD are
not expected to have support for 32-bit machines [cite].
C. Contiguity-aware allocations

1) Batched page allocations: The main goal of this
mechanism was to reduce the rate of fragmentation by
improving the contiguity of common page allocation oper-
ations in the kernel. Currently, allocating multiple pages
boils down to allocating individual 0-order pages in a for
loop. Before each allocation, the code must also use a
”domain iterator” to determine from which NUMA domain
the page is going to be allocated from.

This work introduced a new routine for batched alloca-
tion of pages, vm_page_alloc_pages, along with a new
domain iterator (Listing 2) to ensure that the batched
allocations are done according to the active NUMA policy.
Aside from reducing the rate of fragmentation, this routine
offers a performance boost when allocating pages since it
will attempt to allocate higher-order pages instead of one
0-order page at a time.

1 static void
2 vm_domainset_batch_iter_npages_first(struct

vm_domainset_batch_iter *dbi, struct vm_object*
obj, vm_pindex_t pindex, int *npages)

3 {
4 struct vm_domainset_iter *di = &dbi->di;
5

6 switch (di->di_policy) {
7 case DOMAINSET_POLICY_FIRSTTOUCH:
8 /* FALLTHROUGH */
9 case DOMAINSET_POLICY_PREFER:

10 *npages = dbi->dbi_npages;
11 break;
12 case DOMAINSET_POLICY_ROUNDROBIN:
13 *npages = dbi->dbi_npages / vm_ndomains;
14 break;
15 case DOMAINSET_POLICY_INTERLEAVE:
16 vm_domainset_batch_iter_npages_interleave(dbi,

obj, pindex, npages);
17 break;
18 default:
19 panic("%s: Unknown policy %d", __func__,
20 di->di_policy);
21 }
22 }

Listing 2: Batch page domain iterator

2) Speeding up mlock: This mechanism is another exam-
ple of contiguity-aware allocation. The primary motivation
behind this change was to speed up wiring large amounts
of memory. This is especially important for hypervisors
that wire guest memory to avoid the performance penalty
from on-demand paging.

The vm_map_wire routine currently uses vm_fault to
allocate and map one 0-order page at a time. This work
attempts to speed up that process by preallocating and
inserting higher order pages into an entry’s object in order
to avoid the excessive overhead of vm_fault’s slow path.
Aside from speeding up the whole process, allocating in
a contiguity-aware manner also serves as a passive anti-
fragmentation mechanism.

IV. Experimental setup
Prototype implementations of all previously listed mech-

anisms were evaluated on a system featuring an AMD
Ryzen 5 5600X CPU and 48 GB of DDR4 RAM.

The memory compaction mechanism was evaluated by
repeatedly building the FreeBSD kernel. The directories
containing the source files and the build output were
mounted as tmpfs filesystems, mimicking a real-life build
server. Each measurement involved running the build

process 10 times and tracking the number promotions and
superpage mapping in the system.

Evaluation of passive anti-fragmentation mechanisms
was focused on smaller microbenchmarks. Batched page
allocation was evaluated by measuring the amount of time
it takes to allocate N pages at a time, repeating the
measurements 30 times for each batch size. The mlock
changes were evaluated by measuring the amount time
spent in the mlock system call when booting a bhyve
virtual machine with 10GB of (wired) memory. The timing
was repeated 10 times for the patched and the baseline
kernel.

V. Results
Table II lists the mlock benchmark results. The results

show a significantly shorter duration of the mlock system
call when compared to the baseline kernel, 9.26x faster on
average.

patched baseline
Avg (ms) 92.49 875.02

Median (ms) 79.98 883.77
Stddev 18.56 80.79

Min 76.76 761.68
Max 115.02 992.12

Table II: mlock benchmark results.

Figure 7 illustrates the total number of superpage pro-
motions gained when compared to the baseline kernel. The
number of additional superpages that were able to be
reused by the operating system grows steadily throughout
the benchmark.

Figure 6: Batched page allocation benchmark results.

Figure 6 represents the average amount of time it took
to allocate a number of pages, along with the standard de-
viation for each data point. The results show a significant
speedup when using the proposed batched page allocation
approach and more tightly bound execution times due to
a smaller standard deviation. This is due to better overall

CPU cache usage as all individual subsystems involved in
the allocation process get invoked batched.

Figure 7: Compaction benchmark results.

VI. Future work
The compaction subsystem currently uses a naive heuris-

tic to select compaction candidates. Future work will focus
on designing and implementing more suitable heuristics to
increase compaction efficiency.

Another issue that affected the effectiveness of the
compaction subsystem was related to the placement of
zones for UMA NOFREE objects and wired pages with
a long lifetime. Revision D16620 attempted to solve the
first issue by segregating UMA NOFREE zones but still
hasn’t been merged. Furthermore, there is currently no
way of signalling the lifetime of wired pages, which leads
to poor placement of wired pages used for various caches
in the kernel (e.g. buffer cache, ARC).

VII. Conclusion
This paper presented the design and implementation

details of several physical memory anti-fragmentation
mechanisms for the FreeBSD kernel. Parts of this work
are available at D40772 and are under review.

Acknowledgment
Parts of this work have been done as a part of the

Google Summer Of Code 2023. program, funded by Google
LLC. I’d like to thank Mark Johnston (markj@) for his
mentorship and support during this work.

References
[1] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Fal-

safi, and M. Payer, “Rebooting virtual memory with midgard,”
in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2021, pp. 512–525.

[2] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem,
“Supporting superpages in non-contiguous physical memory,” in
2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2015, pp. 223–234.

https://reviews.freebsd.org/D16620
https://reviews.freebsd.org/D40772

[3] CPU-World, “Cpuid for intel core i5-8265u.” [Online].
Available: https://web.archive.org/web/20231121205358/https:
//www.cpu-world.com/cgi-bin/CPUID.pl?CPUID=66505

[4] W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis
of superpage management mechanisms and policies,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020,
pp. 829–842.

[5] P. Guide, “Intel® 64 and ia-32 architectures software developer’s
manual,” Volume 3: system programming guide, vol. 3, 2023.

[6] P. Prakash, M. Lee, Y. C. Hu, R. R. Kompella et al., “Jumbo
frames or not: That is the question!” 2013.

[7] R. Jones, A. Hosking, and E. Moss, The garbage collection hand-
book: the art of automatic memory management. CRC Press,
2023.

[8] M. Gorman and A. Whitcroft, “The what, the why and the where
to of anti-fragmentation,” in Ottawa Linux Symposium, vol. 1.
Citeseer, 2006, pp. 369–384.

https://web.archive.org/web/20231121205358/https://www.cpu-world.com/cgi-bin/CPUID.pl?CPUID=66505
https://web.archive.org/web/20231121205358/https://www.cpu-world.com/cgi-bin/CPUID.pl?CPUID=66505

	Introduction
	Background
	Physical memory allocation
	Superpages
	External fragmentation

	Design and implementation
	Memory compaction
	Quantifying fragmentation
	Metadata structures
	Proactive background compaction

	Kernel stack allocation
	Contiguity-aware allocations
	Batched page allocations
	Speeding up mlock

	Experimental setup
	Results
	Future work
	Conclusion
	References

