
Managing BSD systems with Ansible
AsiaBSDcon 2017 Tutorial

Benedict Reuschling
bcr@FreeBSD.org

March 10, 2017

Tokyo University of Science,
Tokyo, Japan

1 / 71

Infrastructure As Code

When the number of machines to manage increases, it is neither efficient
nor practical to manually configure each one by hand. Deploying system
configuration settings, installing new software, or querying the systems
for certain information are just a few of the tasks that can be automated
and controlled from a central point. These configuration management
systems work by describing how the target system should look like rather
than listing individual commands to get to that desired state. It is the job
of the configuration management system to compare the desired with the
current state of the system and perform the necessary tasks to get there.
The actions to take on the target systems are often described in a
domain specific language, so that individual differences between
operating systems are abstracted away. This infrastructure as code can
be shared, reused, and extended to fit the individual requirements of
systems and company policies. Administrators can deploy a large number
of changes over the network in a short amount of time as parallel jobs to
be executed.

2 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

3 / 71

Introduction to Ansible

This chapter will cover Ansible as an example on how to manage multiple
machines in a reliable and consistent way. We will look at how Ansible
works, what kind of jobs it can do (machine configuration, software
deployment, etc.), and how it can be used.
Although there are many other software packages with the same features
such as Ansible, it has some distinct features. One of them is the
clientless execution on target machines (only SSH is required) and that it
is relatively simple to get started. A command-line client is available for
ad-hoc commands, while so called playbooks allow for more complicated
sets of changes to be made to target machines.

4 / 71

Idempotency

An important concept in this area is the so called idempotency. It
describes the property of certain actions or operations. An operation is
said to be idempotent when the result is the same regardless of whether
the operation was executed once or multiple times. This is important
when changing the state of a machine and the target may already have
the desired state.
For example, a configuration change might add a user to the system. If it
does not exist, it will be added. When that same action is run again and
such a user is already present, no action is taken. The result (a user is
added) is the same and when that action is run multiple times, it will still
not change.
Another example would be adding a line to a configuration file. Some
configuration files require that each line is unique and does not appear
multiple times. Hence, the system adding that line needs to check
whether that line is already present before adding it to the file. If not, it
would not be an idempotent operation.
Idempotency appears in many other computer science (and math) fields
of study, though the basic principle always stays the same.

5 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

6 / 71

Requirements

Ansible needs to be installed on at least one control machine, which
sends the commands to a target system (could be the same machine).
This is typically done over the network to a set of hosts. The target
machines only have to run the SSH daemon and the control machine
must be able to log in via SSH and perform actions (sudo privileges).
At the time of this writing, Ansible is using Python version 2.6 or above
installed on the control machine and the managed systems. Some
modules may have additional requirements listed in the module specific
documentation.
The target nodes are typically managed by SSH (secure shell), so a
running SSH client is needed (there is also a raw module that does not
require SSH). File transfers are supported via SFTP or SCP. The control
machine does not require anything special (no database or daemons
running). Ansible can be installed using package managers (apt, pkg, pip,
etc).

7 / 71

Setting up the Inventory File

Ansible manages systems (called nodes) from a list of hostnames called
the inventory. This is a file which is located by default in
/usr/local/etc/ansible/hosts on BSD systems. It contains a list of
hosts and groups in INI-style format like this:

1 [webservers]
2 www1.example.com
3 www2.example.com

5 [dbservers]
6 oracle.example.com
7 postgres.example.com
8 db2.example.com

In this example, there are two groups of hosts: webservers and
dbservers. Each group contains a number of hosts, specified by their
hostnames or IP addresses. Systems can be part of more than one group,
for example systems that have both a database and a webserver running.

8 / 71

Settings in the Inventory File
Multiple hosts with a numeric or alphanumeric naming scheme can be
specified like this:

1 [computenodes]
2 compute [1:30]. mycompany.com

4 [alphabetsoup]
5 host -[a:z]. mycompany.com

This will include hosts named compute1.mycompany.com,
compute2.mycompany.com, . . . compute30.mycompany.com and
host-a.mycompany.com, host-b.mycompany.com, . . .
host-z.mycompany.com, respectively.
Host-specific variables can be set by listing them after the hostname. For
example, the BSDs are using a different path to the ansible executable,
so we list it in the inventory file:

1 [freebsdhost]
2 myhost ansible_python_interpreter =/usr/local/bin/python

A complete list of inventory settings can be found at
http://docs.ansible.com/ansible/intro_inventory.html.

9 / 71

Ansible Configuration File

Ansible can be configured in various ways. It looks for these configuration
options in the following order:

I ANSIBLE_CONFIG (an environment variable)
I ansible.cfg (in the current directory)
I .ansible.cfg (in the home directory)
I /usr/local/etc/ansible/ansible.cfg

We’ll specify a separate user called ansible in the file:

$ cat ~/. ansible.cfg
[defaults]
hostfile = hosts
remote_user = ansible

http://docs.ansible.com/ansible/intro_configuration.html
has a complete list of the available configuration options.

10 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

11 / 71

SSH Setup

Ansible communicates securely over SSH with the managed systems.
Although this is not the only option, it is the most common one, so we’ll
cover it here. The SSH daemon (server) must be running on the
managed nodes.
The SSH public keys must be exchanged with the target systems so that
the control machine can log into them and execute commands without
requiring a password. This can be done by a separate user (i.e. ansible)
that is available on all systems. To protect the key from unauthorized
access, it is recommended to set a passphrase for the key. Combined with
an SSH agent, the passphrase does not need to be entered each time,
but will be handled by the agent when communicating with the remote
systems.
The steps are as follows:
1. Create a key pair (public/private) on the local machine
2. Distribute the key to the remote systems
3. Run the SSH agent to cache the key in memory

12 / 71

Generating the SSH Key Pair
To generate a new key for the ansible user, use ssh-keygen:

ansible@host$ ssh -keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ansible /.ssh/id_rsa):
Enter passphrase (empty for no passphrase): <enter -your -passphrase >
Enter same passphrase again: <reenter -your -passphrase >
Your identification has been saved in /home/ansible /.ssh/id_rsa.
Your public key has been saved in /home/ansible /.ssh/id_rsa.pub.
The key fingerprint is:
fd :41:99:e2:7a:9f:76:9b:66:9e:df:2a:81:ca:5a:ed ansible@host
The key 's randomart image is:
+--[RSA 2048]----+
| .. |
| .F. +. |
| +. o |
| ++ o|
| S . oo..o|
| . . * |
| *. + . = .|
| + o . . o.|
| . * ..+|
+-----------------+

The passphrase needs to be sufficiently long and the more complex it is,
the less likely it is for someone to guess it. Remember the passphrase!

13 / 71

Distribute the Key to the Remote System
The following files were generated by ssh-keygen in
/home/ansible/.ssh/:

ansible@host$ ls -l .ssh
total 8
-rw------- 1 ansible ansible 1,8K Jul 18 10:37 id_rsa
-rw-r--r-- 1 ansible ansible 395 Jul 18 10:37 id_rsa.pub
ansible@host :~/. ssh$

The public key has the extension .pub and can be distributed to remote
systems. The file called id_rsa represents the private key and must not
be exposed to others. Do not copy this file or change the permissions!
The public key can be copied to a remote system using either
ssh-copy-id(1) or if that is not available, by using the following
command sequence (which requires entering the passphrase):

$ cat id_rsa.pub | ssh remote -host 'cat >> ~/. ssh/authorized_keys '

The remote system must have an ansible user and needs permission to
log in via ssh. Add the line

AllowUsers ansible

to /etc/ssh/sshd_config and restart the SSH server if required.
14 / 71

Load the SSH Key into the SSH Agent

The ssh-agent(1) man page gives the following description about what
the program does:

ssh-agent is a program to hold private keys used for public key authentication
(RSA, DSA, ECDSA, ED25519). The idea is that ssh-agent is started in the
beginning of an X-session or a login session, and all other windows or programs
are started as clients to the ssh-agent program. Through use of environment
variables the agent can be located and automatically used for authentication when
logging in to other machines using ssh(1).

We start the agent together with a new shell so that all programs
executed from that shell can access the key:

ansible@host$ ssh -agent <myshell >

Then, we use ssh-add to load the key into the agent (we need to enter
the passphrase one last time):

ansible@host$ ssh -add
Enter passphrase for /home/ansible /.ssh/id_rsa: <the -passphrase >
Identity added: /home/ansible /.ssh/id_rsa (/home/ansible /.ssh/id_rsa)

15 / 71

Testing the Remote SSH Login

To verify that the key was copied successfully to the remote system and
loaded into the SSH agent on the local machine, we connect to the
remote system with our ansible user:

ansible@host$ ssh ansible@remote -host
Linux remote -server 2.6.12 -10 -686 #1 Mon Feb 13 12:18:37 UTC 2006 i686 GNU/Linux
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/ copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY , to the extent permitted by
applicable law.
Last login: Fri Mar 13 13:41:17 2016
$

It worked! We were able to log into the system without the need to
enter our passphrase. As long as the shell is running, the key remains
stored in memory and is used each time the passphrase is required. That
way, the private key is not transferred to the remote system.
Repeat the above steps for each host that should be managed by Ansible.
We can now start learning about the way Ansible does that.

16 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

17 / 71

Ansible Management from the Command-Line

Ansible can issue ad-hoc commands from the command-line to remote
systems. A typical use case is when a certain command should be
executed, but does not need to be saved for later use. The commands
are being executed on all the hosts specified on the command line
simultaneously. These are the hosts we added to the inventory file in
section 1 on page 8.
The syntax is as follows:

ansible <host -pattern > [-f forks] [-m module_name] [-a args]

The -f parameter specifies the level of parallelism, i.e. how many hosts
to be contacted in parallel. The default of 5 can be changed to match
the number of target systems, as well as available network and system
ressources.
Modules specified by -m provide the actual functionality that Ansible
should perform. Arguments can be supplied to modules with the -a
parameter.
Finally, a host pattern specifies on which machines the commands should
be executed on.

18 / 71

Ansible Command Example

A simple example to demonstrate Ansible’s functionality is using the
ping module to verify that the target systems are responding:

$ ansible all -m ping

Here, we want to connect to all hosts listed in our inventory and execute
the module called ping on them.
The output looks like this (most shells will even give you colors):

www1. example.com | SUCCESS => {
"changed ": false ,
"ping": "pong"

}
...
oracle.example.com | UNREACHABLE! => {

"changed ": false ,
"msg": "Failed to connect to the host via ssh.",
"unreachable ": true

}

This is a typical Ansible output, telling us whether the remote systems
have changed their state somehow or if there were any messages
produced when running the command.

19 / 71

Specifying Host Patterns

In the previous example, we used all as the host pattern to tell Ansible
that we want to run the module on all hosts listed in the
/usr/local/etc/ansible/hosts file. Another way to specify all hosts
is using the Asterisk (*) character.
A single host can be provided by giving its name. Multiple hosts are
separated by the colon character like this:

$ ansible oracle:postgres -m ping

Since we grouped our hosts into logical units based on their purpose
(database servers, webservers), we can also issue commands to such a
group by giving its name:

$ ansible webservers -m ping

More host patterns for Ansible are documented in
http://docs.ansible.com/ansible/intro_patterns.html.

20 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

21 / 71

Transferring Files to Remote Systems (Upload)
Often, it is required to transfer files from the local to remote systems.
This includes configuration files, templates, or other data of any kind.
Ansible is able to SCP (secure copy) files in parallel to multiple machines.
The copy module requires the source and destination as parameters.

$ ansible oracle -m copy -a "src=/home/ansible/hosts dest=/tmp/"
oracle | SUCCESS => {

"changed ": true ,
"checksum ": "a645d99dd7ac 54354df4fb61beaf6e38253e35f7",
"dest": "/tmp/hosts",
"gid": 0,
"group": "wheel",
"md5sum": "d6d598ab710d6e230e2a8d69fbbc34df",
"mode": "0644" ,
"owner": "ansible",
"size": 63606 ,
"src": "/home/ansible /. ansible/tmp/ansible -tmp -1468020/ source",
"state": "file",
"uid": 1067

}

If the file is not present on the remote system, it will be copied. When
the command is run twice, the file is not copied again due to the rule of
idempotency described in section 1 on page 5.

22 / 71

Transferring Files from Remote Systems (Download)

We can also retrieve files from remote systems and store them locally in a
directory tree, organized by hostname. The fetch module works similar
to copy, but in the other direction.

$ ansible oracle -m fetch -a "src=/tmp/afile dest=/tmp/"
oracle | SUCCESS => {

"changed ": true ,
"checksum ": "a645d99dd7ac 54354fe4fb61beaf6e38253e45f7",
"dest": "/tmp/oracle/tmp/hosts",
"md5sum": "d6d298ab710d6e1430e1a8d69fbbc76de",
"remote_checksum ": "a645d99dd7ac 54254ec4fc61beaf6e38253e45f7",
"remote_md5sum": null

}

After the file transfer has finished, the directory we specified in dest will
contain directories named after each host we targeted, with a
subdirectory /tmp/ that contains afile, according to our src.

/tmp
/oracle

/tmp
afile

23 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

24 / 71

Package Management

A common task for configuration management systems is to install,
update, delete, and configure application software on the target operating
system. Usually, package managers are provided by the OS vendor or by
the application or programming language when there is a lot of optional
or third-party software available. Ansible provides the same functionality
and can sometimes abstract away the complexities of using the package
manager directly.
Making changes to packages usually involves administrative permissions,
so we’ll look at what kind of options Ansible offers here as well.

25 / 71

Basic Package Management Command

Here, we will show how to use FreeBSD’s pkg package manager to
manage applications. Let’s say we just installed the operating system on
the webserver systems, but have not installed any webserver software yet.
We’ll use Ansible for that:

$ ansible webservers -m pkgng -a "name=nginx state=present"

In this example, we install the Nginx1 webserver. Ansible compares the
state of the system, does not detect any installed version of nginx and
performs the necessary steps (based on what the package manager tells it
to do) to make sure it is present afterwards.
Updating a package is supported as well. We do not have to know about
any specific version number and let Ansible figure that out for us.

$ ansible webservers -m pkgng -a "name=nginx state=latest"

Removing packages is also possible:

$ ansible webservers -m pkgng -a "name=nginx state=absent"

1https://nginx.org
26 / 71

Ansible Command Permissions
Installing packages or making other kinds of administrative changes
normally requires root privileges. By default, Ansible defaults to running
with the privileges of the user that invoked the command. In slide 10, we
defined who the remote user is that is executing commands. We can
override that by providing the username on the command-line after -u:

$ ansible webservers -m pkgng -a "name=nginx state=absent" -u root

This will ask for the root password and check whether the current user is
allowed to switch to the root user.
Typically, an unprivileged user like ansible is configured to use a
passwordless privilege escalation method such as sudo to temporarily
gain higher privileges. That requires that the ansible user is part of the
sudo group (see /etc/group). That way, Ansible can ask for the user’s
password when needed to verify it against sudo before executing the
privileged commands. The two options to provide are -b (become) and
-K (ask for the passphrase to become that user):

$ ansible webservers -Kbm pkgng -a "name=nginx state=present"

27 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

28 / 71

File Modifications

Ansible can perform actions on files like changing their permissions and
ownership. It can also make changes to the file contents such as adding
lines at a specific location or replacing certain strings. This is especially
helpful with configuration files that are installed as part of a package or
the operating system.

$ ansible dbservers -Kbm file -a "src=/tmp dest=/var/tmp state=link"

This will create a symbolic link in the directory /var/tmp to /tmp.

$ ansible db2 -Kbm file -a "path=/opt/db2 state=directory mode =775"

Creates a directory /opt/db2 with rwxrwxr-x on the host (or group)
called db2.

29 / 71

Editing Files

A common problem for system administrators is to edit configuration
files, without adding a certain string multiple times. Although this is
usually checked by the configuration file parser, it is better to avoid in
the first place. This is where idempotency can help maintain order and
avoid clutter.
For example, we might be dealing with a configuration file with a similar
style as our Ansible inventory.

[general]
setting1 = true
setting2 = "a string"

[special]
option1 = 123
option2 = abc

30 / 71

Changing the Configuration File

The module lineinfile searches for a line in a file based on a regular
expression that is either absent or present.

$ ansible postgres -m lineinfile -a "dest=/tmp/file.ini
state=absent regexp =^ setting 2"

postgres | SUCCESS => {
"backup ": "",
"changed ": true ,
"found": 1,
"msg": "1 line(s) removed"

}

Afterwards, the file looks like this:

[general]
setting1 = true

[special]
option1 = 123
option2 = abc

31 / 71

Inserting Lines into the Configuration File

When a match is found by lineinfile, a parameter insertafter or
insertbefore determines where a new line should be placed.

$ ansible postgres -m lineinfile -a "dest=/tmp/file.ini
insertafter ='^setting1' line='setting2 = false '"

postgres | SUCCESS => {
"backup ": "",
"changed ": true ,
"msg": "line added"

}

Now, the file contains these lines:

[general]
setting1 = true
setting2 = false

[special]
option1 = 123
option2 = abc

32 / 71

Replacing Strings in a file

Suppose we want to replace a string in a file based on a pattern without
adding an extra line or deleting it first. For example, we want to
exchange the line option1 = 123 with option1 = 321 in file.ini.

...
[special]
option1 = 123
option2 = abc

Ansible provides a module called replace to do this:

$ ansible postgres -m replace -a "dest=/tmp/file.ini
regexp='^option1 = 123' replace='^option1 = 321'"

Afterwards, the file looks like this:

...
[special]
option1 = 321
option2 = abc

Note: You have to make sure that the same pattern does not match any
replacement strings. Otherwise, idempotency is not guaranteed.

33 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

34 / 71

What are Playbooks?

While the ansible command allows ad-hoc commands to the issued to
target systems, playbooks allow for more complex and larger number of
actions to be done on a host. Similar to scripts, they can define and use
variables, execute actions based on them and define a number of tasks to
be executed in a specific order. These playbooks are typically installing
machines for production use after the operating system is installed and
the SSH access has been configured. Ansible playbooks are written in a
language called YAML (yet another markup language), which has a
minimal yet powerful enough syntax for this use. By learning to write
playbooks, we’ll also get to know YAML.

35 / 71

Our first Playbook

Each playbook is a text file with the suffix .yml and contains at least one
or more plays in a list. Each play is executed against a defined set of
hosts and executes one or more tasks on it. A task is running a module,
similar to what we did with the ansible ad-hoc command. A simple
playbook is listed below:

1 ---
2 - name: My first playbook
3 hosts: dbservers
4 tasks:
5 - name: test connection
6 ping:
7 ...

A playbook is executed using ansible-playbook with the path to the
playbook passed as a parameter:

1 $ ansible -playbook ping.yml

36 / 71

Executing our First Playbook

1 PLAY [My first playbook] ***

3 TASK [setup] ***
4 ok: [oracle]
5 ok: [postgres]
6 ok: [db2]

8 TASK [test connection] ***
9 ok: [postgres]

10 ok: [oracle]
11 ok: [db2]

13 PLAY RECAP ***
14 oracle : ok=2 changed =0 unreachable =0 failed =0
15 db2 : ok=2 changed =0 unreachable =0 failed =0
16 postgres : ok=2 changed =0 unreachable =0 failed =0

From the ordering of the output, we can see that the playbooks are
executed in parallel and return their results (if any) when available,
without waiting for each other.
Each time a play runs, it gathers facts about the target hosts. We’ll
revisit this when we look at variables. It can be turned off with
gather_facts: false to speed up the play.

37 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

38 / 71

YAML

YAML is easy to grasp, but somewhat difficult to master. This is because
it depends on the proper indentation and number of spaces to correctly
parse and subsequently execute the instructions that are coded in it by
the YAML programmer. One benefit of YAML is that it is easy for
humans to read and uses less syntactic sugar like JSON or XML.

39 / 71

YAML Syntax
YAML files start with three dashes (---) on a single line, similar to the
#!/bin/sh definition at the beginning of shell scripts. At the end of a
YAML file, three ... indicate the end of the script. Ansible will not
complain if they are omitted, but generally, it is good style to add them
to let other programs parsing them know that this is a proper YAML file.

Comments begin with # and go until the end of the line.

1 --- # this starts the YAML file
2 This is a string
3 "This is a string in quotes with 'single ' quotes"
4 ...

There is no need to quote strings, except for cases where variables are
used, a colon (:) is contained, or regular quotes are required. In this
case, single quotes can enclose double quotes from a normal string.

Any of the following Booleans can be used:

true, True, TRUE, yes, Yes, YES, on, On, ON, y, Y
false, False, FALSE, no, No, NO, off, Off, OFF, n, N

40 / 71

YAML Lists

Lists or sequences are what arrays are in other programming languages
like C(++)/Java: a collection of values. They must be delimited with
hyphens, a space and must be on the same indentation level:

1 list:
2 - item1
3 - item2
4 - item3

An alternative way to list them is:

1 [item1 , item2 , item3]

41 / 71

YAML Dictionaries

Dictionaries or mappings in YAML are typical key-value pairs. They are
delimited from each other by a colon (:) and a space:

1 person:
2 name: John Miller
3 date: 31/12/2016
4 age: 38

Another way of specifying these mappings looks like this:

1 (name: John Miller , date: 31/12/2016 , age: 38)

Lists and Dictionaries can be mixed, starting with a new indendation
level. This is similar to multiple levels of { and } in Java/C.

42 / 71

Wrapping Long YAML Lines

Playbooks that contain a lot of arguments for modules might run over the
available line space. To visually order them, the line folding characters >
(ignores newlines) and | (pipe, includes newlines) can be used:

1 address: >
2 Department of Computer Science ,
3 University of Applied Sciences Darmstadt

More information on YAML’s syntax can be found at
http://docs.ansible.com/ansible/YAMLSyntax.html.

43 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

44 / 71

Variables in Playbooks

Playbooks can become more dynamic by using variables and thus more
powerful in what they can do. For example, a playbook can do certain
actions based on what values a host variable has, like number of CPUs or
available disk space.
Variables can come from different places:

I Declared in the inventory file as host and group variables
I Defined in the playbook
I From the host (fact gathering)
I Results from module runs

A variable is accessed in a playbook using the {{ variable_name }}
syntax. Variable names can contain letters, numbers, and underscores
and should begin with a letter.
We will look at each of the above variable definitions.

45 / 71

Inventory Variables for Hosts and Groups

Our inventory file (remember slide 8) contained a list of webservers. Let’s
say we want to store a variable that defines the default web server port
for each of the hosts. Such an inventory file will look like this:

1 [webservers]
2 www1. example.com wwwport =8080
3 www2. example.com wwwport =80

The following playbook called wwwvar.yml will output the variable for
the first host:

1 ---
2 - name: This play will output the wwwport inventory variable
3 gather_facts: false
4 hosts: www1. example.com
5 tasks:
6 - name: Show the variable value of wwwport
7 debug: var=wwwport
8 ...

The debug module is useful to echo the values of variables to standard
out.

46 / 71

Running the Playbook

When the wwwvar.yml playbook is run, the output is:

1 PLAY [This play will output the wwwport inventory variable] ******

3 TASK [Show the variable value of wwwport] ************************
4 ok: [www1. example.com] => {
5 "wwwport ": 8080
6 }

8 PLAY RECAP ***
9 www1 : ok=1 changed =0 unreachable =0 failed =0

The above output has in line 5 the correct value for the port that we
have set earlier in the inventory file for that host.

47 / 71

Using Group Variables

If we want to set a variable for all the hosts in a group, we need a special
section in our inventory file. Suppose we want all webservers to listen on
the same port. We add a section like this:

1 [webservers:vars]
2 wwwport =8000

In our playbook, we only need to change the hosts line 4 to the
webservers group. The rest of the play remains unchanged.

1 ---
2 - name: This play will output the wwwport inventory variables
3 gather_facts: false
4 hosts: webservers
5 tasks:
6 - name: Show the variable value of wwwport
7 debug: var=wwwport
8 ...

48 / 71

Running the Playbook

1 PLAY [This play will output the wwwport inventory variables] *****

3 TASK [Show the variable value of wwwport] ************************
4 ok: [www1. example.com] => {
5 "wwwport ": 8000
6 }

8 ok: [www2. example.com] => {
9 "wwwport ": 8000

10 }

12 PLAY RECAP ***
13 www1. example.com : ok=1 changed =0 unreachable =0 failed =0
14 www2. example.com : ok=1 changed =0 unreachable =0 failed =0

Global variables that should be part of all hosts can also be defined in the
inventory by using the all placeholder:

1 [all:vars]
2 dns_server=dns1.mycorp.com

49 / 71

Defining Variables in Playbooks

Playbooks can define a section called vars:, that are available in the
whole playbook to use. If we wanted to define our default webserver port
in the playbook instead of the inventory, we have to write it like this:

1 - name: The play will output the wwwport playbook variable
2 gather_facts: false
3 hosts: www1. example.com
4 vars:
5 wwwport: 8080
6 tasks:
7 - name: Show the playbook variable wwwport
8 debug: var=wwwport

Line 4 defines the variable section, the indented line below has the
variable we want to declare. The output is similar to the one from the
previous slide.

50 / 71

Registering Variables for Later Use

Things don’t often go as expected when running playbooks, so we need a
way to store variables from hosts to react on them later based on what
value they hold. We could also retrieve information from running
commands and store them in a playbook variable to use it in one of the
next playbook steps.
In this example, we use the command module to execute the id command
on each host for the ansible user. Then, we output the variable the_id
using debug to see how it is structured:

1 - name: The play executes the id command and stored the return value
2 gather_facts: false
3 hosts: dbservers
4 tasks:
5 - name: get the id of the ansible user
6 command: id ansible
7 register: the_id
8 - debug: var=the_id

51 / 71

Looking at the Return Values

1 PLAY [The play executes the id command and stored the return value]
2 TASK [get the id of the ansible user] ******************************
3 TASK [debug] ***
4 ok: [postgres] => {
5 "the_id": {
6 "changed ": true ,
7 "cmd": [
8 "id",
9 "ansible"

10],
11 "delta": "0:00:00.014088" ,
12 "end": "2016 -07 -25 09:39:21.460684" ,
13 "rc": 0,
14 "start": "2016 -07 -25 09:39:21.446596" ,
15 "stderr ": "",
16 "stdout ": "uid =50000(ansible) gid =50008(ansible)
17 groups =50008(ansible)",
18 "stdout_lines": [
19 "uid =50000(ansible) gid =50008(ansible)
20 groups =50008(ansible)"
21],
22 "warnings ": []
23 }
24 }

52 / 71

Using the Return Value’s Variables

We can access individual members of the the_id array using the variable
we defined (the_id) and the dot operator followed by the member name.
In this example, we use the returned value in the text of the new name:
section below our original playbook content to see the value.

1 - name: The play executes the id command and stores the return value
2 gather_facts: false
3 hosts: dbservers
4 tasks:
5 - name: get the id of the ansible user
6 command: id ansible
7 register: the_id
8 - debug: var=the_id
9 name: The command returned {{ the_id.stdout_lines }}

The relevant section of the output looks like this:

1 TASK [The command returned [u'uid =50000(ansible) gid =50008(ansible)
2 groups =50008(ansible)']] ***

53 / 71

Gathering Facts from the Host as Variables

Ansible inserts an implicit task into each playbook that begins to gather
various facts from the targer host. This can be suppressed (and has been
so far) using the line gather_facts: false in the playbook.
All variables from a single host can be accessed using the setup module:

1 $ ansible db2 -m setup

Typical facts include:

Network information: IPv4/v6 addressses, gateway, DNS, interface, etc.
Operating System: Distribution release, versions, environment variables
Hardware information: CPU, RAM, disk space, devices, available swap
Date and time: day, month, year (in various formats), weekday, time
Ansible information: Ansible user, version, nodename, package manager

54 / 71

Variables from the Command Line

Playbook variables can be overridden on the command line in case the
variables in the playbook should not be used for the current run.

1 - name: Echo the message from the command line
2 gather_facts: false
3 hosts: www1. example.com
4 vars:
5 message: "empty message"
6 tasks:
7 - name: echo the message
8 debug: msg ="{{ message }}"

The variable message can be passed on the command line with the -e
option to override the variable from the playbook:

1 $ ansible -playbook message.yml -e "message=Hello"
2 ok: [www1. example.com] => {
3 "msg": "Hello"
4 }

When spaces are part of the variable value, single quotes need to be used:

1 $ ansible -playbook message.yml -e '"message=Hello world!"'

55 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

56 / 71

Loops in Playbooks

Loops can help a great deal when a certain action should be repeated
multiple times. Who wants to create 100 users from the command line
manually when we can solve this problem with a short loop statement?
To start with a simple example, consider adding two users, which is
already good to automate to not repeat yourself. Here, we create two
users userA and userB based on the list we provide.

1 - name: add two users
2 user: name ={{ item }} state=present groups=wheel
3 with_items:
4 - userA
5 - userB

57 / 71

Loops over a sequence

In this example, we want to create 100 users (user1, user2, . . . ,
user100) without listing them all in the with_items list one by one
(tedious to type). To do that, we can make use of the with_sequence
construct, which acts as a for loop in languages like C and Java.

1 - user: name ={{ item }} state=present groups=wheel
2 with_sequence: start=1 end =100 format=user %02x

The format= definition specifies what kind of numerical value should be
used (decimal, hexadecimal (0x3f8), or octal (0775)).
We can also define a different increment with the stride option. We use
this to create only even-numbered users:

1 - user: name ={{ item }} state=present groups=wheel
2 with_sequence: start=0 end =100 stride =2 format=user %02x

58 / 71

Nested Loops
So far, we only created users that got added to the same group wheel. If
we want to specify which user should be added to which group, we make
two options. We can define the group together with the user as subkeys:

1 - name: add several users and add them to their group
2 user: name ={{ item.name }} state=present groups ={{ item.groups }}
3 with_items:
4 - { name: 'userA ', groups: 'wheel ' }
5 - { name: 'userB ', groups: 'operator ' }

We can access the name we gave to the key-value pair simply by adding
it to the end of the item keyword, separated by a dot (item.groups).
The second way we can solve this is to use a nested loop. This is
especially useful when the user should be added to multiple groups:

1 - name: add several users and add them to multiple groups
2 user: name ={{ item [0] }} state=present groups ={{ item [1] }}
3 with_nested:
4 - ['userA ', 'userB ']
5 - ['wheel ', 'operator ', 'www ']

This represents a two-dimensional array and to access an element from
either list, we provide the number in brackets. Thus, item[0] represents
userA first and after all nested elements (item[1] = wheel,
operator, www) were processed, we do the same with userB.

59 / 71

Overview

Introduction to Ansible
Requirements
SSH Setup

Ansible Commands
File Transfers
Package Management
File Modifications

Playbooks
Writing Playbooks
YAML
Variables
Loops

A Complete Example

60 / 71

A Complete Example - Deploying a Webserver

We’ll sum up what we’ve learned so far in a scenario for deploying a
webserver on a target system. The following steps are typically necessary
to deploy a webserver in production:
1. Install the webserver application binaries
2. Configure the webserver (document root, ports to listen on, etc.)
3. Copy webpages or web applications to the document root directory
4. Start the service for the webserver

We will create a playbook that will cover all these steps, so that we will
have a fully functional webserver. The use of variables in our playbook
will be based on what we’ve covered so far.
Of course, a webserver does usually require a secure environment to run
in, SSL certificates, a database for application data storage, and many
other things to run in production. However, we’ll omit most of these to
keep the example focused enough to not run out of proportions.

61 / 71

Installing the Webserver Application Binaries

We will be using Nginx as the webserver for our little project. Our
document root is located under /var/www and has subdirectories for
each webpage hosted on the server. We will run the webserver under the
www user and group, which may or may not be installed as part of the
webserver installation. The web application is split into several HTML
files for now, so we don’t need any fancy web application software like
PHP, Python, or Ruby on Rails.
Already, we can define the following variables in our playbook:

1 vars:
2 server: nginx
3 user: www
4 group: {{ user }}
5 docroot: /var/www
6 project: demo
7 projectdir: /home /{{ project }}/web
8 projectfiles:
9 - index.html

10 - impressum.html
11 - about.html

62 / 71

Writing the Playbook, Part I

Using our variables, we start by writing the tasks for installing the
webserver on a Ubuntu system using the apt package manager. We also
create a user and group (www), ensure the document root directory is
created, and set permissions for that user on it:

1 ---
2 - name: The webserver playbook
3 hosts: www3.example.com
4 vars:
5 ...
6 tasks:
7 - name: Install {{ server }} from packages
8 apt: pkg={{ server }} state=present

63 / 71

Writing the Playbook, Part II

In this step, we configure the webserver. This can be solved using
templates, where variables from the playbook are replaced with the
actual values. These are the webserver IP address, the port to listen on
and the document root directory. To keep this example easy, we will use
the following file as a template for nginx.conf:

64 / 71

Nginx Configuration Template

1 user nobody;
2 worker_processes 1;

4 #error_log logs/error.log;
5 #pid /run/nginx.pid;

7 events {
8 worker_connections 1024;
9 }

11 http {
12 include /usr/local/etc/nginx/mime.types;

14 server {
15 listen 80;
16 server_name localhost;
17 location / {
18 root /var/www/;
19 index index.html index.htm;
20 }
21 include /usr/local/etc/nginx/sites -enabled /*;
22 }
23 }

65 / 71

Creating the template

1 user {{ user }};
2 worker_processes 1;

4 #error_log logs/error.log;
5 #pid /run/nginx.pid;

7 events {
8 worker_connections 1024;
9 }

11 http {
12 include /usr/local/etc/nginx/mime.types;

14 server {
15 listen 80;
16 server_name localhost;
17 location / {
18 root {{ docroot }};
19 index index.html index.htm;
20 }
21 include /usr/local/etc/nginx/sites -enabled /*;
22 }
23 }

66 / 71

Deploying the Template to the Target Machine

Ansible has a template module that can deploy Jinja2 templates to a
target machine, replacing the inline variables with the values defined in
the playbook.
We store the template as nginx.conf.j2 as a Jinja template on our
deployment machine. The playbook line for it looks like that:

1 - name: "Deploy nginx.conf template"
2 template: src=/ deployment/nginx.conf.j2 \
3 dest=/usr/local/etc/nginx.conf \
4 owner ={{ user }} group ={{ group }} validate='nginx -t %s'

The module requires the src and dest to be specified in order to work,
the rest is optional. We set the ownership (owner and group) and run a
command to validate the resulting nginx.conf before using it with the
-t parameter to nginx. The %s contains the path to the file to validate.
That way, we make sure to never deploy a new configuration that nginx
won’t accept.

67 / 71

Writing the Playbook, Part III

Now that we have nginx installed and provided a working configuration
template filled with the variable values from the playbook, it is time to
create the document root directory and copy the HTML files to the
target host. To achieve this, we use the file and copy modules.

1 - name: Create the document root directory
2 file: path ={{ docroot }} state=directory mode =0755
3 owner ={{ user }} group ={{ group }}

The above instructs Ansible to create a folder with the proper permissions
and owner in the /var/www directory as defined in our playbook variables.

68 / 71

Copying the files to the document root directory

The copy module will transfer the files to the directory we just created.
Since we have multiple HTML files, we will use a list in our task
specification like this:

1 - name: copy files to the document root
2 file: src='{{ projectdir }}/{{ projectfiles }}' dest ={{ docroot }}
3 owner ={{ user }} group ={{ group }}

The copy modules requires a src and destination directory to work with
and can optionally set owner and permissions.

69 / 71

Writing the Playbook, Part IV

We can start the web server now to serve the files we just copied. To do
that, we use the Ansible service module.

1 - name: "Restarting nginx web server"
2 service: name=nginx state=restarted

We can now use a browser to look at the files served by nginx.

70 / 71

Further Information

Lorin Hochstein
Ansible Up & Running
O’Reilly Media Inc.

Ansible Documentation
BSD Support
http://docs.ansible.com/ansible/intro_bsd.html

Ansible Documentation
Introduction to Ad-Hoc Commands
http://docs.ansible.com/ansible/intro_adhoc.html

Ansible Documentation
Module Index
http://docs.ansible.com/ansible/modules_by_category.html

71 / 71

