
Managing BSD Systems with Ansible

Managing BSD Systems with Ansible
AsiaBSDcon 2018 Tutorial

Benedict Reuschling

March 8, 2018

1 / 85

Managing BSD Systems with Ansible

Infrastructure As Code

When the number of machines to manage increases, it is neither efficient nor practical to
manually configure each one by hand. Deploying system configuration settings, installing new
software, or querying the systems for certain information are just a few of the tasks that can be
automated and controlled from a central point. These configuration management systems work
by describing how the target system should look like rather than listing individual commands to
get to that desired state. It is the job of the configuration management system to compare the
desired with the current state of the system and perform the necessary tasks to get there.
The actions to take on the target systems are often described in a domain specific language, so
that individual differences between operating systems are abstracted away. This infrastructure
as code can be shared, reused, and extended to fit the individual requirements of systems and
company policies. Administrators can deploy a large number of changes over the network in a
short amount of time as parallel jobs to be executed.

2 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

3 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Introduction to Ansible

This chapter will cover Ansible as an example on how to manage multiple machines in a
reliable and consistent way. We will look at how Ansible works, what kind of jobs it can do
(machine configuration, software deployment, etc.), and how it can be used.
Although there are many other software packages with the same features such as Ansible, it
has some distinct features. One of them is the clientless execution on target machines (only
SSH is required) and that it is relatively simple to get started. A command-line client is
available for ad-hoc commands, while so called playbooks allow for more complicated sets of
changes to be made to target machines.

4 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Idempotency

An important concept in this area is the so called idempotency. It describes the property of
certain actions or operations. An operation is said to be idempotent when the result is the same
regardless of whether the operation was executed once or multiple times. This is important
when changing the state of a machine and the target may already have the desired state.
For example, a configuration change might add a user to the system. If it does not exist, it will
be added. When that same action is run again and such a user is already present, no action is
taken. The result (a user is added) is the same and when that action is run multiple times, it
will still not change.
Another example would be adding a line to a configuration file. Some configuration files require
that each line is unique and does not appear multiple times. Hence, the system adding that
line needs to check whether that line is already present before adding it to the file. If not, it
would not be an idempotent operation.
Idempotency appears in many other computer science (and math) fields of study, though the
basic principle always stays the same.

5 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Requirements

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

6 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Requirements

Requirements

Ansible needs to be installed on at least one control machine, which sends the commands to a
target system (could be the same machine). This is typically done over the network to a set of
hosts. The target machines only have to run the SSH daemon and the control machine must
be able to log in via SSH and perform actions (sudo privileges).
At the time of this writing, Ansible is using Python version 2.6 or above installed on the control
machine and the managed systems. Some modules may have additional requirements listed in
the module specific documentation.
The target nodes are typically managed by SSH (secure shell), so a running SSH client is
needed (there is also a raw module that does not require SSH). File transfers are supported via
SFTP or SCP. The control machine does not require anything special (no database or daemons
running). Ansible can be installed using package managers (apt, pkg, pip, etc).

7 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Requirements

Setting up the Inventory File

Ansible manages systems (called nodes) from a list of hostnames called the inventory. This is a
file which is located by default in /usr/local/etc/ansible/hosts on BSD systems. It
contains a list of hosts and groups in INI-style format like this:

1 [webservers]
2 www1.example.com
3 www2.example.com

5 [dbservers]
6 oracle.example.com
7 postgres.example.com
8 db2.example.com

In this example, there are two groups of hosts: webservers and dbservers. Each group
contains a number of hosts, specified by their hostnames or IP addresses. Systems can be part
of more than one group, for example systems that have both a database and a webserver
running.

8 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

Requirements

Settings in the Inventory File
Multiple hosts with a numeric or alphanumeric naming scheme can be specified like this:

1 [computenodes]
2 compute [1:30]. mycompany.com

4 [alphabetsoup]
5 host -[a:z]. mycompany.com

This will include hosts named compute1.mycompany.com, compute2.mycompany.com,
. . . compute30.mycompany.com and host-a.mycompany.com, host-b.mycompany.com, . . .
host-z.mycompany.com, respectively.
Host-specific variables can be set by listing them after the hostname. For example, the BSDs
are using a different path to the ansible executable, so we list it in the inventory file:

1 [mybsdhosts]
2 mybsdhost1 ansible_python_interpreter =/usr/local/bin/python

A complete list of inventory settings can be found at
http://docs.ansible.com/ansible/intro_inventory.html.

9 / 85

http://docs.ansible.com/ansible/intro_inventory.html

Managing BSD Systems with Ansible
Introduction to Ansible

Requirements

Ansible Configuration File

Ansible can be configured in various ways. It looks for these configuration options in the
following order:

• ANSIBLE_CONFIG (an environment variable)
• ansible.cfg (in the current directory)
• .ansible.cfg (in the home directory)
• /usr/local/etc/ansible/ansible.cfg

We’ll specify a separate user called ansible in the file:

$ cat ~/. ansible.cfg
[defaults]
inventory = hosts
remote_user = ansible

http://docs.ansible.com/ansible/intro_configuration.html has a complete list of
the available configuration options.

10 / 85

http://docs.ansible.com/ansible/intro_configuration.html

Managing BSD Systems with Ansible
Introduction to Ansible

Requirements

Bootstrapping Python onto the Remote Machine

Ansible uses Python to execute remote commands. This requires Python to be installed on the
remote machine, even though we have not made Ansible working yet. This could also pose a
problem on devices that do not have SSH running like routers for example. To solve this
chicken-and-egg problem, we can use a different method for executing commands. This is
called raw mode and does not have any abstractions, but rather takes literal commands:

ansible mybsdhost1 -m raw -a "pkg install -y python27"

Once that command has executed successfully, Ansible is fully set up and can use other modes,
modules, and playbooks. To make sure our communication between the control machine and
the targets is encrypted, we set up SSH and exchange public keys for passwordless logins.

11 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

SSH Setup

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

12 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

SSH Setup

SSH Setup

Ansible communicates securely over SSH with the managed systems. Although this is not the
only option, it is the most common one, so we’ll cover it here. The SSH daemon (server) must
be running on the managed nodes.
The SSH public keys must be exchanged with the target systems so that the control machine
can log into them and execute commands without requiring a password. This can be done by a
separate user (i.e. ansible) that is available on all systems. To protect the key from
unauthorized access, it is recommended to set a passphrase for the key. Combined with an SSH
agent, the passphrase does not need to be entered each time, but will be handled by the agent
when communicating with the remote systems.
The steps are as follows:

1 Create a key pair (public/private) on the local machine
2 Distribute the key to the remote systems
3 Run the SSH agent to cache the key in memory

13 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

SSH Setup

Generating the SSH Key Pair
To generate a new key for the ansible user, use ssh-keygen:
ansible@host$ ssh -keygen -t ed25519 -f ansible
Generating public/private ed25519 key pair.
Enter passphrase (empty for no passphrase): <enter -your -passphrase >
Enter same passphrase again: <reenter -your -passphrase >
Your identification has been saved in /home/ansible /.ssh/ansible.
Your public key has been saved in /home/ansible /.ssh/ansible.pub.
The key fingerprint is:
SHA 256: Hcl0VflRPR 12ebzG2F/GoM5zENvFVf9mgI8N6Sl/5Tg ansible@host
The key 's randomart image is:
+--[ED25519 256]--+
| . o..+%|
| o o o=B|
| +. . =B|
| . .= Bo=|
| S .+ o=O+|
| o .ooO+|
| +..+o=|
| o.C o|
| .o |
+----[SHA256]-----+

The passphrase needs to be sufficiently long and the more complex it is, the less likely it is for
someone to guess it. Remember the passphrase! 14 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

SSH Setup

Distribute the Key to the Remote System
The following files were generated by ssh-keygen in /home/ansible/.ssh/:
ansible@host$ ls -l .ssh
total 8
-rw------- 1 ansible ansible 1,8K Jul 18 10:37 ansible
-rw-r--r-- 1 ansible ansible 395 Jul 18 10:37 ansible.pub
ansible@host :~/. ssh$

The public key has the extension .pub and can be distributed to remote systems. The file
called id_rsa represents the private key and must not be exposed to others. Do not copy this
file or change the permissions!
The public key can be copied to a remote system using either ssh-copy-id(1) or if that is not
available, by using the following command sequence (which requires entering the passphrase):
$ cat ansible.pub | ssh remote -host 'cat >> ~/. ssh/authorized_keys '

The remote system must have an ansible user and needs permission to log in via ssh. Add
the line

AllowUsers ansible

to /etc/ssh/sshd_config and restart the SSH server if required.
15 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

SSH Setup

Load the SSH Key into the SSH Agent
The ssh-agent(1) man page gives the following description about what the program does:

ssh-agent is a program to hold private keys used for public key authentication (RSA, DSA, ECDSA,
ED25519). The idea is that ssh-agent is started in the beginning of an X-session or a login session,
and all other windows or programs are started as clients to the ssh-agent program. Through use
of environment variables the agent can be located and automatically used for authentication when
logging in to other machines using ssh(1).

We start the agent together with a new shell so that all programs executed from that shell can
access the key:

ansible@host$ ssh -agent <myshell >

Then, we use ssh-add to load the key into the agent (we need to enter the passphrase one last
time):
ansible@host$ ssh -add
Enter passphrase for /home/ansible /.ssh/ansible: <the -passphrase >
Identity added: /home/ansible /.ssh/ansible (/home/ansible /.ssh/ansible)

16 / 85

Managing BSD Systems with Ansible
Introduction to Ansible

SSH Setup

Testing the Remote SSH Login
To verify that the key was copied successfully to the remote system and loaded into the SSH
agent on the local machine, we connect to the remote system with our ansible user:

ansible@host$ ssh ansible@remote -host
Linux remote -server 2.6.12 -10 -686 #1 Mon Feb 13 12:18:37 UTC 2006 i686 GNU/Linux
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/ copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY , to the extent permitted by
applicable law.
Last login: Fri Mar 13 13:41:17 2016
ansible@host$

It worked!
We were able to log into the system without the need to enter our passphrase. As long as the
shell is running, the key remains stored in memory and is used each time the passphrase is
required. That way, the private key is not transferred to the remote system.
Repeat the above steps for each host that should be managed by Ansible. We can now start
learning about the way Ansible does that.

17 / 85

Managing BSD Systems with Ansible
Ansible Commands

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

18 / 85

Managing BSD Systems with Ansible
Ansible Commands

Ansible Management from the Command-Line

Ansible can issue ad-hoc commands from the command-line to remote systems. A typical use
case is when a certain command should be executed, but does not need to be saved for later
use. The commands are being executed on all the hosts specified on the command line
simultaneously. These are the hosts we added to the inventory file in section 1 on page 8.
The syntax is as follows:

ansible <host -pattern > [-f forks] [-m module_name] [-a args]

The -f parameter specifies the level of parallelism, i.e. how many hosts to be contacted in
parallel. The default of 5 can be changed to match the number of target systems, as well as
available network and system ressources.
Modules specified by -m provide the actual functionality that Ansible should perform.
Arguments can be supplied to modules with the -a parameter.
Finally, a host pattern specifies on which machines the commands should be executed on.

19 / 85

Managing BSD Systems with Ansible
Ansible Commands

Ansible Command Example
A simple example to demonstrate Ansible’s functionality is using the ping module to verify
that the target systems are responding:
$ ansible all -m ping

Here, we want to connect to all hosts listed in our inventory and execute the module called
ping on them.
The output looks like this (most shells will even give you colors):
www1. example.com | SUCCESS => {

"changed ": false ,
"ping": "pong"

}
...
oracle.example.com | UNREACHABLE! => {

"changed ": false ,
"msg": "Failed to connect to the host via ssh.",
"unreachable ": true

}

This is a typical Ansible output, telling us whether the remote systems have changed their state
somehow or if there were any messages produced when running the command.

20 / 85

Managing BSD Systems with Ansible
Ansible Commands

Specifying Host Patterns

In the previous example, we used all as the host pattern to tell Ansible that we want to run
the module on all hosts listed in the /usr/local/etc/ansible/hosts file. Another way to
specify all hosts is using the Asterisk (*) character.
A single host can be provided by giving its name. Multiple hosts are separated by the colon
character like this:

$ ansible oracle:postgres -m ping

Since we grouped our hosts into logical units based on their purpose (database servers,
webservers), we can also issue commands to such a group by giving its name:

$ ansible webservers -m ping

More host patterns for Ansible are documented in
http://docs.ansible.com/ansible/intro_patterns.html.

21 / 85

http://docs.ansible.com/ansible/intro_patterns.html

Managing BSD Systems with Ansible
Ansible Commands

File Transfers

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

22 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Transfers

Transferring Files to Remote Systems (Upload)
A common task is to transfer files from the local to remote systems. This includes configuration
files, templates, or other data of any kind. Ansible is able to SCP (secure copy) files in parallel
to multiple machines. The copy module requires the source and destination as parameters.
$ ansible oracle -m copy -a "src=/home/ansible/hosts dest=/tmp/"
oracle | SUCCESS => {

"changed ": true ,
"checksum ": "a645d99dd7ac 54354df4fb61beaf6e38253e35f7",
"dest": "/tmp/hosts",
"gid": 0,
"group": "wheel",
"md5sum": "d6d598ab710d6e230e2a8d69fbbc34df",
"mode": "0644" ,
"owner": "ansible",
"size": 63606 ,
"src": "/home/ansible /. ansible/tmp/ansible -tmp -1468020/ source",
"state": "file",
"uid": 1067

}

If the file is not present on the remote system, it will be copied. When the command is run
twice, the file is not copied again due to the rule of idempotency described in section 1 on
page 5. 23 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Transfers

Transferring Files from Remote Systems (Download)
We can also retrieve files from remote systems and store them locally in a directory tree,
organized by hostname. The fetch module works similar to copy, but in the other direction.
$ ansible oracle -m fetch -a "src=/tmp/afile dest=/tmp/"
oracle | SUCCESS => {

"changed ": true ,
"checksum ": "a645d99dd7ac 54354fe4fb61beaf6e38253e45f7",
"dest": "/tmp/oracle/tmp/afile",
"md5sum": "d6d298ab710d6e1430e1a8d69fbbc76de",
"remote_checksum ": "a645d99dd7ac 54254ec4fc61beaf6e38253e45f7",
"remote_md5sum": null

}

After the file transfer has finished, the directory we specified in dest will contain directories
named after each host we targeted, with a subdirectory /tmp/ that contains afile, according
to our src.

/tmp
/oracle

/tmp
afile

24 / 85

Managing BSD Systems with Ansible
Ansible Commands

Package Management

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

25 / 85

Managing BSD Systems with Ansible
Ansible Commands

Package Management

Package Management

A common task for configuration management systems is to install, update, delete, and
configure application software on the target operating system. Usually, package managers are
provided by the OS vendor or by the application or programming language when there is a lot
of optional or third-party software available. Ansible provides the same functionality and can
sometimes abstract away the complexities of using the package manager directly.
Making changes to packages usually involves administrative permissions, so we’ll look at what
kind of options Ansible offers here as well.

26 / 85

Managing BSD Systems with Ansible
Ansible Commands

Package Management

Basic Package Management Command
Here, we will show how to use the package module that combines many package managers of
various Unix distributions to manage applications. Let’s say we just installed the operating
system on the webserver systems, but have not installed any webserver software yet. We’ll use
Ansible for that:

$ ansible webservers -m package -a "name=nginx state=present"

In this example, we install the Nginx1 webserver. Ansible compares the state of the system,
does not detect any installed version of nginx and performs the necessary steps (based on what
the package manager tells it to do) to make sure it is present afterwards.
Updating a package is supported as well. We do not have to know about any specific version
number and let Ansible figure that out for us.

$ ansible webservers -m package -a "name=nginx state=latest"

Removing packages is also possible:

$ ansible webservers -m package -a "name=nginx state=absent"

1https://nginx.org
27 / 85

https://nginx.org

Managing BSD Systems with Ansible
Ansible Commands

Package Management

Ansible Command Permissions
Installing packages or making other kinds of administrative changes normally requires root
privileges. By default, Ansible defaults to running with the privileges of the user that invoked
the command. In slide 10, we defined who the remote user is that is executing commands. We
can override that by providing the username on the command-line after -u:

$ ansible webservers -m package -a "name=nginx state=absent" -u root

This will ask for the root password and check whether the current user is allowed to switch to
the root user.
Typically, an unprivileged user like ansible is configured to use a passwordless privilege
escalation method such as sudo to temporarily gain higher privileges. That requires that the
ansible user is part of the sudo group (see /etc/group). That way, Ansible can ask for the
user’s password when needed to verify it against sudo before executing the privileged
commands. The two options to provide are -b (become) and -K (ask for the passphrase to
become that user):

$ ansible webservers -Kbm package -a "name=nginx state=present"

28 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Modifications

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

29 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Modifications

File Modifications

Ansible can perform actions on files like changing their permissions and ownership. It can also
make changes to the file contents such as adding lines at a specific location or replacing certain
strings. This is especially helpful with configuration files that are installed as part of a package
or the operating system.
This will create a symbolic link in the directory /var/tmp to /tmp.

$ ansible dbservers -Kbm file -a "src=/tmp dest=/var/tmp state=link"

The next command creates a directory /opt/db2 with rwxrwxr-x on the host (or group)
called db2.

$ ansible db2 -Kbm file -a "path=/opt/db2 state=directory mode =775"

Owner and group, as well as permissions (see mode above) can be set directly in most modules.
This helps keeping things logically together, without having to run a second or third command
to set permissions and/or ownership.

30 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Modifications

Editing Files

A common problem for system administrators is to edit configuration files, without adding a
certain string multiple times. Although this is usually checked by the configuration file parser,
it is better to avoid in the first place. This is where idempotency can help maintain order and
avoid clutter.
For example, we might be dealing with a configuration file with a similar style as our Ansible
inventory.

[general]
setting1 = true
setting2 = "a string"

[special]
option1 = 123
option2 = abc

31 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Modifications

Changing the Configuration File
The module lineinfile searches for a line in a file based on a regular expression that is either
absent or present.
$ ansible postgres -m lineinfile -a "dest=/tmp/file.ini
state=absent regexp =^ setting 2"

postgres | SUCCESS => {
"backup ": "",
"changed ": true ,
"found": 1,
"msg": "1 line(s) removed"

}

Afterwards, the file looks like this:
[general]
setting1 = true

[special]
option1 = 123
option2 = abc

32 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Modifications

Inserting Lines into the Configuration File
When a match is found by lineinfile, a parameter insertafter or insertbefore determines
where a new line should be placed.
$ ansible postgres -m lineinfile -a "dest=/tmp/file.ini
insertafter ='^setting1' line='setting2 = false '"

postgres | SUCCESS => {
"backup ": "",
"changed ": true ,
"msg": "line added"

}

Now, the file contains these lines:
[general]
setting1 = true
setting2 = false

[special]
option1 = 123
option2 = abc

33 / 85

Managing BSD Systems with Ansible
Ansible Commands

File Modifications

Replacing Strings in a file
Suppose we want to replace a string in a file based on a pattern without adding an extra line or
deleting it first. For example, we want to exchange the line option1 = 123 with
option1 = 321 in file.ini.

...
[special]
option1 = 123
option2 = abc

Ansible provides a module called replace to do this:

$ ansible postgres -m replace -a "dest=/tmp/file.ini
regexp='^option1 = 123' replace='^option1 = 321'"

Afterwards, the file looks like this:

...
[special]
option1 = 321
option2 = abc

Note: You have to make sure that the same pattern does not match any replacement strings.
Otherwise, idempotency is not guaranteed.

34 / 85

Managing BSD Systems with Ansible
Playbooks

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

35 / 85

Managing BSD Systems with Ansible
Playbooks

What are Playbooks?

While the ansible command allows ad-hoc commands to the issued to target systems,
playbooks allow for more complex and larger number of actions to be done on a host. Similar
to scripts, they can define and use variables, execute actions based on them and define a
number of tasks to be executed in a specific order. These playbooks are typically installing
machines for production use after the operating system is installed and the SSH access has
been configured. Ansible playbooks are written in a language called YAML (yet another
markup language), which has a minimal yet powerful enough syntax for this use. By learning to
write playbooks, we’ll also get to know YAML.

36 / 85

Managing BSD Systems with Ansible
Playbooks

Writing Playbooks

Our first Playbook
Each playbook is a text file with the suffix .yml and contains at least one or more plays in a
list. Each play is executed against a defined set of hosts and executes one or more tasks on it.
A task is running a module, similar to what we did with the ansible ad-hoc command. A
simple playbook is listed below:

1 ---
2 - name: My first playbook
3 hosts: dbservers
4 tasks:
5 - name: test connection
6 ping:
7 ...

A playbook is executed using ansible-playbook with the path to the playbook passed as a
parameter:

1 $ ansible -playbook ping.yml

37 / 85

Managing BSD Systems with Ansible
Playbooks

Writing Playbooks

Executing our First Playbook
1 PLAY [My first playbook] ***

3 TASK [setup] ***
4 ok: [oracle]
5 ok: [postgres]
6 ok: [db2]

8 TASK [test connection] ***
9 ok: [postgres]

10 ok: [oracle]
11 ok: [db2]

13 PLAY RECAP ***
14 oracle : ok=2 changed =0 unreachable =0 failed =0
15 db2 : ok=2 changed =0 unreachable =0 failed =0
16 postgres : ok=2 changed =0 unreachable =0 failed =0

From the output ordering, we see that tasks are executed in parallel and return any results when
available, without waiting for each other. Each time a play runs, it gathers facts about the
target hosts (setup). It can be turned off with gather_facts: false to speed up the play.

38 / 85

Managing BSD Systems with Ansible
Playbooks

Writing Playbooks

Example Playbook to Allow a User to Login via SSH
$ cat ssh -access.yml
- name: "Allow {{ user_id }} to log in via SSH"

gather_facts: false
hosts: '{{ host }}'
tasks:

- name: Adding the user {{ user_id }} to the AllowUsers line in sshd_config
replace:

backup: no
dest: /etc/ssh/sshd_config
regexp: '^(AllowUsers (?!.*\b{{ user_id }}\b).*)$'
replace: '\1 {{ user_id }}'

- name: Restarting SSH service
service:

name: sshd
state: restarted

Execute with:
$ ansible -playbook -Kb ssh -access.yml -e 'host=bsdhost1 user_id=joe '

39 / 85

Managing BSD Systems with Ansible
Playbooks

Writing Playbooks

Example Playbook to Allow a User to Login via SSH
$ cat ssh -access.yml
- name: "Allow {{ user_id }} to log in via SSH"

gather_facts: false
hosts: '{{ host }}'
tasks:

- name: Adding the user {{ user_id }} to the AllowUsers line in sshd_config
replace:

backup: no
dest: /etc/ssh/sshd_config
regexp: '^(AllowUsers (?!.*\b{{ user_id }}\b).*)$'
replace: '\1 {{ user_id }}'

- name: Restarting SSH service
service:

name: sshd
state: restarted

Execute with:
$ ansible -playbook -Kb ssh -access.yml -e 'host=bsdhost1 user_id=joe '

39 / 85

Managing BSD Systems with Ansible
Playbooks

Writing Playbooks

Making Playbooks work more like shell scripts

Playbooks are really nothing more than Python scripts and can be executed the same way as a
shell script. As we saw before, a normal invocation looks like this:

$ ansible -playbook myplaybook.yml

Adding an interpreter line to the beginning of the playbook and setting the executable bit
allows us to run it like a shell script:

$ head -n 1 myplaybook.yml
#!/usr/local/bin/ansible -playbook
$ chmod +x myplaybook.yml
./ myplaybook.yml

40 / 85

Managing BSD Systems with Ansible
Playbooks

YAML

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

41 / 85

Managing BSD Systems with Ansible
Playbooks

YAML

YAML

YAML is easy to grasp, but somewhat difficult to master. This is because it depends on the
proper indentation and number of spaces to correctly parse and subsequently execute the
instructions that are coded in it by the YAML programmer. One benefit of YAML is that it is
easy for humans to read and uses less syntactic sugar like JSON or XML.
If you are using vim as your editor, this setting in .vimrc will help with the proper YAML
formatting:

autocmd FileType yaml setlocal ts=2 sts=2 sw=2 expandtab

42 / 85

Managing BSD Systems with Ansible
Playbooks

YAML

YAML Syntax
YAML files start with three dashes (---) on a single line, similar to the #!/bin/sh definition
at the beginning of shell scripts. At the end of a YAML file, three ... indicate the end of the
script. Ansible will not complain if they are omitted, but generally, it is good style to add them
to let other programs parsing them know that this is a proper YAML file.

Comments begin with # and go until the end of the line.

1 --- # this starts the YAML file
2 This is a string
3 "This is a string in quotes with 'single ' quotes"
4 ...

There is no need to quote strings, except for cases where variables are used, a colon (:) is
contained, or regular quotes are required. In this case, single quotes can enclose double quotes
from a normal string.
Any of the following Booleans can be used:

true, True, TRUE, yes, Yes, YES, on, On, ON, y, Y
false, False, FALSE, no, No, NO, off, Off, OFF, n, N 43 / 85

Managing BSD Systems with Ansible
Playbooks

YAML

YAML Lists

Lists or sequences are what arrays are in other programming languages like C(++)/Java: a
collection of values. They must be delimited with hyphens, a space and must be on the same
indentation level:

1 list:
2 - item1
3 - item2
4 - item3

An alternative way to list them is:

1 [item1 , item2 , item3]

44 / 85

Managing BSD Systems with Ansible
Playbooks

YAML

YAML Dictionaries

Dictionaries or mappings in YAML are typical key-value pairs. They are delimited from each
other by a colon (:) and a space:

1 person:
2 name: John Miller
3 date: 31/12/2016
4 age: 38

Another way of specifying these mappings looks like this:

1 (name: John Miller , date: 31/12/2016 , age: 38)

Lists and Dictionaries can be mixed, starting with a new indendation level. This is similar to
multiple levels of { and } in C/Java.

45 / 85

Managing BSD Systems with Ansible
Playbooks

YAML

Wrapping Long YAML Lines

Playbooks that contain a lot of arguments for modules might run over the available line space.
To visually order them, the line folding characters > (ignores newlines) and | (pipe, includes
newlines) can be used:

1 address: >
2 Department of Computer Science ,
3 University of Applied Sciences Darmstadt

More information on YAML’s syntax can be found at
http://docs.ansible.com/ansible/YAMLSyntax.html.

46 / 85

http://docs.ansible.com/ansible/YAMLSyntax.html

Managing BSD Systems with Ansible
Playbooks

Variables

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

47 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Variables in Playbooks

Playbooks can become more dynamic by using variables and thus more powerful in what they
can do. For example, a playbook can do certain actions based on what values a host variable
has, like number of CPUs or available disk space.
Variables can come from different places:

• Declared in the inventory file as host and group variables
• Defined in the playbook
• From the host (fact gathering)
• Results from module runs

A variable is accessed in a playbook using the {{ variable_name }} syntax. Variable names
can contain letters, numbers, and underscores and should begin with a letter.
We will look at each of the above variable definitions.

48 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Inventory Variables for Hosts and Groups
Our inventory file (remember slide 8) contained a list of webservers. Let’s say we want to store
a variable that defines the default web server port for each of the hosts. Such an inventory file
will look like this:

1 [webservers]
2 www1. example.com wwwport =8080
3 www2. example.com wwwport =80

The following playbook called wwwvar.yml will output the variable for the first host:

1 ---
2 - name: This play will output the wwwport inventory variable
3 gather_facts: false
4 hosts: www1. example.com
5 tasks:
6 - name: Show the variable value of wwwport
7 debug: var=wwwport
8 ...

The debug module is useful to echo the values of variables to standard out. 49 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Running the Playbook

When the wwwvar.yml playbook is run, the output is:

1 PLAY [This play will output the wwwport inventory variable] ******

3 TASK [Show the variable value of wwwport] ************************
4 ok: [www1. example.com] => {
5 "wwwport ": 8080
6 }

8 PLAY RECAP ***
9 www1 : ok=1 changed =0 unreachable =0 failed =0

The above output has in line 5 the correct value for the port that we have set earlier in the
inventory file for that host.

50 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Using Group Variables
If we want to set a variable for all the hosts in a group, we need a special section in our
inventory file. Suppose we want all webservers to listen on the same port. We add a section
like this:

1 [webservers:vars]
2 wwwport =8000

In our playbook, we only need to change the hosts line 4 to the webservers group. The rest
of the play remains unchanged.

1 ---
2 - name: This play will output the wwwport inventory variables
3 gather_facts: false
4 hosts: webservers
5 tasks:
6 - name: Show the variable value of wwwport
7 debug: var=wwwport
8 ...

51 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Running the Playbook
1 PLAY [This play will output the wwwport inventory variables] *****

3 TASK [Show the variable value of wwwport] ************************
4 ok: [www1. example.com] => {
5 "wwwport ": 8000
6 }

8 ok: [www2. example.com] => {
9 "wwwport ": 8000

10 }

12 PLAY RECAP ***
13 www1. example.com : ok=1 changed =0 unreachable =0 failed =0
14 www2. example.com : ok=1 changed =0 unreachable =0 failed =0

Global variables that should be part of all hosts can also be defined in the inventory by using
the all placeholder:

1 [all:vars]
2 dns_server=dns1.mycorp.com

52 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Defining Variables in Playbooks

Playbooks can define a section called vars:, that are available in the whole playbook to use. If
we wanted to define our default webserver port in the playbook instead of the inventory, we
have to write it like this:

1 - name: The play will output the wwwport playbook variable
2 gather_facts: false
3 hosts: www1. example.com
4 vars:
5 wwwport: 8080
6 tasks:
7 - name: Show the playbook variable wwwport
8 debug: var=wwwport

Line 4 defines the variable section, the indented line below has the variable we want to declare.
The output is similar to the one from the previous slide.

53 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Registering Variables for Later Use
Things don’t often go as expected when running playbooks, so we need a way to store variables
from hosts to react to them later based on what value they hold. We could also retrieve
information from running commands and store them in a playbook variable to use it in one of
the next playbook steps.
In this example, we use the command module to execute the id command on each host for the
ansible user. Then, we output the variable the_id using debug to see how it is structured:

1 - name: The play executes the id command and stored the return value
2 gather_facts: false
3 hosts: dbservers
4 tasks:
5 - name: get the id of the ansible user
6 command: id ansible
7 register: the_id
8 - debug: var=the_id

54 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Looking at the Return Values
1 PLAY [The play executes the id command and stored the return value]
2 TASK [get the id of the ansible user] ******************************
3 TASK [debug] ***
4 ok: [postgres] => {
5 "the_id": {
6 "changed ": true ,
7 "cmd": [
8 "id",
9 "ansible"

10],
11 "delta": "0:00:00.014088" ,
12 "end": "2016 -07 -25 09:39:21.460684" ,
13 "rc": 0,
14 "start": "2016 -07 -25 09:39:21.446596" ,
15 "stderr ": "",
16 "stdout ": "uid =50000(ansible) gid =50008(ansible)
17 groups =50008(ansible)",
18 "stdout_lines": [
19 "uid =50000(ansible) gid =50008(ansible)
20 groups =50008(ansible)"
21],
22 "warnings ": []
23 }
24 }

55 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Using the Return Value’s Variables
We can access individual members of the the_id array using the variable we defined (the_id)
and the dot operator followed by the member name. In this example, we use the returned value
in the text of the new name: section below our original playbook content to see the value.

1 - name: The play executes the id command and stores the return value
2 gather_facts: false
3 hosts: dbservers
4 tasks:
5 - name: get the id of the ansible user
6 command: id ansible
7 register: the_id
8 - debug: var=the_id
9 name: The command returned {{ the_id.stdout_lines }}

The relevant section of the output looks like this:

TASK [The command returned [u'uid =50000(ansible) gid =50008(ansible)
groups =50008(ansible)']] ***

56 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Gathering Facts from the Host as Variables

Ansible inserts an implicit task into each playbook that begins to gather various facts from the
targer host. This can be suppressed (and has been so far) using the line
gather_facts: false in the playbook.
All variables from a single host can be accessed using the setup module:

1 $ ansible db2 -m setup

Typical facts include:

Network information: IPv4/v6 addressses, gateway, DNS, interface, etc.
Operating System: Distribution release, versions, environment variables
Hardware information: CPU, RAM, disk space, devices, available swap
Date and time: day, month, year (in various formats), weekday, time
Ansible information: Ansible user, version, nodename, package manager

57 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Filtering Gathered Facts
The full list of facts is often too much information since we are often interested in a single
variable only. The filter option allows to limit the results to a certain variable:

1 $ ansible winterfell -m setup -a "filter=ansible_distribution*"
2 winterfell | SUCCESS => {
3 "ansible_facts": {
4 "ansible_distribution": "FreeBSD",
5 "ansible_distribution_major_version": "11",
6 "ansible_distribution_release": "11.1-RELEASE -p1",
7 "ansible_distribution_version": "11.1"
8 },
9 "changed": false

10 }

Without the asterisk (*), sub-keys are omitted and only ansible_distribution is returned.
1 $ ansible winterfell -m setup -a "filter=ansible_distribution"
2 winterfell | SUCCESS => {
3 "ansible_facts": {
4 "ansible_distribution": "FreeBSD"
5 },
6 "changed": false
7 }

58 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Variables from the Command Line
Playbook variables can be overridden on the command line in case the variables in the
playbook should not be used for the current run.

1 - name: Echo the message from the command line
2 hosts: www1. example.com
3 vars:
4 message: "empty message"
5 tasks:
6 - name: echo the message
7 debug: msg ="{{ message }}"

The -e option can override the message variable in the playbook for the current invocation:
1 $ ansible -playbook message.yml -e "message=Hello"
2 ok: [www1. example.com] => {
3 "msg": "Hello"
4 }

When spaces are part of the variable value, single quotes need to be used:
1 $ ansible -playbook message.yml -e 'message=Hello world!'

59 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Lookups

Various external sources can provide variables to playbooks. Ansible provides so called lookups
to query external sources like files (text and JSON), environment variables, Redis, DNS, Jinja2
templates, MongoDB databases, etc. This list is not exhaustive and many more plugins are
available to query a certain source to provide Ansible with variables and values.
The syntax is as follows:

lookup(lookup-type, variable-to-lookup or command-to-execute)

For example, to lookup the HOME environment variable, we would use:

lookup(’env’,’HOME’)

A complete list of lookups with examples is available from
http://docs.ansible.com/ansible/latest/playbooks_lookups.html.

60 / 85

http://docs.ansible.com/ansible/latest/playbooks_lookups.html

Managing BSD Systems with Ansible
Playbooks

Variables

Reading usernames from a file

In the following playbook, usernames are read from a file users.txt and echoed onto the
screen using with_lines. The file contents can then be used later in the script to add or
manipulate the user accounts on the system.

1 #!/usr/local/bin/ansible -playbook
2 - name: "Reading file contents from {{ file }}"
3 gather_facts: false
4 hosts: '{{ host }}'
5 tasks:
6 - name: "Lines from {{ file }}"
7 debug: msg="{{ item }} came from the file {{ file }}".
8 with_lines: "cat {{ file|quote }}"

61 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Results from Running the File Lookup Playbook

1 $./ lookup.yml -e 'host=winterfell file=users.txt '
2 PLAY [Reading file contents from users.txt] **
3 ok: [winterfell] => (item=abc) => {
4 "changed": false ,
5 "item": "abc",
6 "msg": "\"abc came from the file users.txt\"."
7 }
8 ok: [winterfell] => (item=def) => {
9 "changed": false ,

10 "item": "def",
11 "msg": "\"def came from the file users.txt\"."
12 }

14 TASK [Lines from users.txt] **

16 PLAY RECAP ***
17 winterfell : ok=1 changed =0 unreachable =0 failed =0

62 / 85

Managing BSD Systems with Ansible
Playbooks

Variables

Assigning Lookup Values to Playbook Variables

Instead of using the debug module to echo the files content, we can assign it to a local
playbook variable for later use.

1 vars:
2 user_file: "{{ lookup('file ', 'users.txt ') }}"

4 tasks:
5 - user:
6 name: "{{ item }}"
7 with_lines: "{{ user_file|quote }}"

To sanitize inputs from the file we append |quote to the variable.

63 / 85

Managing BSD Systems with Ansible
Playbooks

Handlers & Conditional Execution

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

64 / 85

Managing BSD Systems with Ansible
Playbooks

Handlers & Conditional Execution

Handlers
So far, our playbooks have been running through the tasks from the beginning to the end.
Sometimes, it makes sense to run a task only when there has been a change. The concept of
idempotency that Ansible follows already checks for things that should be (and have not yet
been) done, but there is no dependency between playbook tasks yet. There are often cases
when the successful execution of a task should trigger another task to run. If there are no
changes being made (because they have already been applied), there is no need to run certain
other tasks that follow it.
A typical example are services that should only be restarted when there were actual changes.
Why restart a service (in production) if nothing has changed? Such a change could be
modifications of a configuration file (Apache, SSH) or the presence of new files in a directory
(document root, fileserver).
For these cases, handlers are available that only run when a task returns the state changed, as
opposed to ok when changes have already been applied in a previous run. Handlers can react
to these changes, allowing for additional tasks to run when changes occur and do not trigger
extra tasks if no changes were made.
Note: Handlers run after all the tasks of a playbook were executed.

65 / 85

Managing BSD Systems with Ansible
Playbooks

Handlers & Conditional Execution

Extending the SSH Playbook to use handlers
1 #!/ usr/local/bin/ansible -playbook
2 - name: "Enable SSH access on {{host}} for user {{ user_id }}"
3 hosts: '{{host}}'
4 tasks:
5 - name: "Adding the user {{ user_id }} to the AllowUsers line in sshd_config"
6 replace:
7 backup: no
8 dest: /etc/ssh/sshd_config
9 regexp: '^(AllowUsers (?!.*\b{{ user_id }}\b).*)$'

10 replace: '\1 {{ user_id}}'
11 validate: 'sshd -T -f %s'
12 notify: "Restart SSH"

14 handlers:
15 - name: "Restarting SSH"
16 service: name=ssh state=restarted
17 listen: "Restart SSH"

The task defines a notify part in line 12 that calls a handler with the same description or
name in line 17. When the state of a task is changed, a handler can listen for these changes
and run the tasks defined in the handler. Otherwise, the handler is not executed.

66 / 85

Managing BSD Systems with Ansible
Playbooks

Handlers & Conditional Execution

Running the Playbook with the Handler
PLAY [Enable SSH access on postgres for user foo] **************************************

TASK [Adding the user foo to the AllowUsers line in sshd_config] ***********************
changed: [postgres]

RUNNING HANDLER [Restarting SSH] ***

TASK [Restarting SSH] **
changed: [postgres]

PLAY RECAP ***
postgres : ok=0 changed =1 unreachable =0 failed =0

Running the playbook a second time, the handler is not called since the task is in the ok state.

PLAY [Enable SSH access on postgres for user foo] **************************************

TASK [Adding the user foo to the AllowUsers line in sshd_config] ***********************
ok: [postgres]

PLAY RECAP ***
postgres : ok=1 changed =0 unreachable =0 failed =0

67 / 85

Managing BSD Systems with Ansible
Playbooks

Handlers & Conditional Execution

Conditional Execution
Conditional execution is helpful when tasks should only run when certain conditions are met.
The conditions are typically defined by variable values. Instead of using if-statements,
playbooks use when to define a condition that should be checked upin execution of a task.
For example, the following playbook should only execute the task to restart the sshd service for
operating systems that are FreeBSD (detected by gather_facts). The task looks like this:

#!/ usr/local/bin/ansible -playbook
- name: Conditionally restart SSH when FreeBSD is detected

gather_facts: true
tasks:

- name: "Restart SSH on FreeBSD"
service:

name: sshd
state: restarted

when: ansible_os_family == "FreeBSD"

There is no need to use {{}} around variable names in when statements. Ansible is smart
enough to know that these are variables and evaluates them accordingly.
More about conditional executions with the when directive can be found here:
http://docs.ansible.com/ansible/latest/playbooks_conditionals.html

68 / 85

http://docs.ansible.com/ansible/latest/playbooks_conditionals.html

Managing BSD Systems with Ansible
Playbooks

Loops

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

69 / 85

Managing BSD Systems with Ansible
Playbooks

Loops

Loops in Playbooks

Loops can help a great deal when a certain action should be repeated multiple times. Who
wants to create 100 users from the command line manually when we can solve this problem
with a short loop statement?
To start with a simple example, consider adding two users, which is already good to automate
to not repeat yourself. Here, we create two users userA and userB based on the list we
provide.

1 - name: add two users
2 user: name ={{ item }} state=present groups=wheel
3 with_items:
4 - userA
5 - userB

70 / 85

Managing BSD Systems with Ansible
Playbooks

Loops

Loops over a sequence

In this example, we want to create 100 users (user1, user2, . . . , user100) without listing
them all in the with_items list one by one (tedious to type). To do that, we can make use of
the with_sequence construct, which acts like a for loop in languages like C and Java.

1 - user: name ={{ item }} state=present groups=wheel
2 with_sequence: start=1 end =100 format=user %02x

The format= definition specifies what kind of numerical value should be used (decimal,
hexadecimal (0x3f8), or octal (0775)).
We can also define a different increment with the stride option. We use this to create only
even-numbered users:

1 - user: name ={{ item }} state=present groups=wheel
2 with_sequence: start=0 end =100 stride =2 format=user %02x

71 / 85

Managing BSD Systems with Ansible
Playbooks

Loops

Nested Loops

So far, we only created users that got added to the same group wheel. If we want to define
which user should be added to which group, we have two options. We can define the group
together with the user as subkeys:

1 - name: Add several users and add them to their group
2 user: name ={{ item.name }} state=present groups ={{ item.groups }}
3 with_items:
4 - { name: 'userA ', groups: 'wheel ' }
5 - { name: 'userB ', groups: 'operator ' }

We can access the name we gave to the key-value pair by adding it to the end of the item
keyword, separated by a dot (item.groups).

72 / 85

Managing BSD Systems with Ansible
Playbooks

Loops

Nested Loops

The second way we can solve this is to use a nested loop. This is especially useful when the
user should be added to multiple groups:

1 - name: Add several users and add them to multiple groups
2 user: name ={{ item [0] }} state=present groups ={{ item [1] }}
3 with_nested:
4 - ['userA ', 'userB ']
5 - ['wheel ', 'operator ', 'www ']

This represents a two-dimensional array and to access an element from either list, we provide
the number in brackets. Thus, item[0] represents userA first and after all nested elements
(item[1] = wheel, operator, www) were processed, we do the same with userB.

73 / 85

Managing BSD Systems with Ansible
A Complete Example

Overview
1 Introduction to Ansible

Requirements
SSH Setup

2 Ansible Commands
File Transfers
Package Management
File Modifications

3 Playbooks
Writing Playbooks
YAML
Variables
Handlers & Conditional Execution
Loops

4 A Complete Example

74 / 85

Managing BSD Systems with Ansible
A Complete Example

A Complete Example - Deploying a Webserver

We’ll sum up what we’ve learned so far in a scenario for deploying a webserver on a target
system. The following steps are typically necessary to deploy a webserver in production:

1 Install the webserver application binaries
2 Configure the webserver (document root, ports to listen on, etc.)
3 Copy webpages or web applications to the document root directory
4 Start the service for the webserver

We will create a playbook that will cover all these steps, so that we will have a fully functional
webserver. The use of variables in our playbook will be based on what we’ve covered so far.
Of course, a webserver does usually require a secure environment to run in, SSL certificates, a
database for application data storage, and many other things to run in production. However,
we’ll omit most of these to keep the example focused enough to not run out of proportions.

75 / 85

Managing BSD Systems with Ansible
A Complete Example

Installing the Webserver Application Binaries
We will be using Nginx as the webserver for our little project. Our document root is located
under /var/www and has subdirectories for each webpage hosted on the server. We will run the
webserver under the www user and group, which may or may not be installed as part of the
webserver installation. The web application is split into several HTML files for now, so we
don’t need any fancy web application software like PHP, Python, or Ruby on Rails.
Already, we can define the following variables in our playbook:

1 vars:
2 server: nginx
3 user: www
4 group: {{ user }}
5 docroot: /var/www
6 project: demo
7 projectdir: /home /{{ project }}/web
8 projectfiles:
9 - index.html

10 - impressum.html
11 - about.html

76 / 85

Managing BSD Systems with Ansible
A Complete Example

Writing the Playbook, Part I

Using our variables, we start by writing the tasks for installing the webserver on a Ubuntu
system using the apt package manager. We also create a user and group (www), ensure the
document root directory is created, and set permissions for that user on it:

1 ---
2 - name: The webserver playbook
3 hosts: www3.example.com
4 vars:
5 ...
6 tasks:
7 - name: Install {{ server }} from packages
8 apt: pkg={{ server }} state=present

77 / 85

Managing BSD Systems with Ansible
A Complete Example

Writing the Playbook, Part II

In this step, we configure the webserver. This can be solved using templates, where variables
from the playbook are replaced with the actual values. These are the webserver IP address, the
port to listen on and the document root directory. To keep this example easy, we will use the
following file as a template for nginx.conf:

78 / 85

Managing BSD Systems with Ansible
A Complete Example

Nginx Configuration Template
1 user nobody;
2 worker_processes 1;

4 #error_log logs/error.log;
5 #pid /run/nginx.pid;

7 events {
8 worker_connections 1024;
9 }

11 http {
12 include /usr/local/etc/nginx/mime.types;

14 server {
15 listen 80;
16 server_name localhost;
17 location / {
18 root /var/www/;
19 index index.html index.htm;
20 }
21 include /usr/local/etc/nginx/sites -enabled /*;
22 }
23 }

79 / 85

Managing BSD Systems with Ansible
A Complete Example

Creating the template
1 user {{ user }};
2 worker_processes 1;

4 #error_log logs/error.log;
5 #pid /run/nginx.pid;

7 events {
8 worker_connections 1024;
9 }

11 http {
12 include /usr/local/etc/nginx/mime.types;

14 server {
15 listen 80;
16 server_name localhost;
17 location / {
18 root {{ docroot }};
19 index index.html index.htm;
20 }
21 include /usr/local/etc/nginx/sites -enabled /*;
22 }
23 }

80 / 85

Managing BSD Systems with Ansible
A Complete Example

Deploying the Template to the Target Machine

Ansible has a template module that can deploy Jinja2 templates to a target machine,
replacing the inline variables with the values defined in the playbook.
We store the template as nginx.conf.j2 as a Jinja template on our deployment machine.
The playbook line for it looks like that:

1 - name: "Deploy nginx.conf template"
2 template: src=/ deployment/nginx.conf.j2 \
3 dest=/usr/local/etc/nginx.conf \
4 owner ={{ user }} group ={{ group }} validate='nginx -t %s'

The module requires the src and dest to be specified in order to work, the rest is optional. We
set the ownership (owner and group) and run a command to validate the resulting nginx.conf
before using it with the -t parameter to nginx. The %s contains the path to the file to
validate. That way, we make sure to never deploy a new configuration that nginx won’t accept.

81 / 85

Managing BSD Systems with Ansible
A Complete Example

Writing the Playbook, Part III

Now that we have nginx installed and provided a working configuration template filled with the
variable values from the playbook, it is time to create the document root directory and copy
the HTML files to the target host. To achieve this, we use the file and copy modules.

1 - name: Create the document root directory
2 file: path ={{ docroot }} state=directory mode =0755
3 owner ={{ user }} group ={{ group }}

The above instructs Ansible to create a folder with the proper permissions and owner in the
/var/www directory as defined in our playbook variables.

82 / 85

Managing BSD Systems with Ansible
A Complete Example

Copying the files to the document root directory

The copy module will transfer the files to the directory we just created. Since we have multiple
HTML files, we will use a list in our task specification like this:

1 - name: copy files to the document root
2 file: src='{{ projectdir }}/{{ projectfiles }}' dest ={{ docroot }}
3 owner ={{ user }} group ={{ group }}

The copy modules requires a src and destination directory to work with and can optionally set
owner and permissions.

83 / 85

Managing BSD Systems with Ansible
A Complete Example

Writing the Playbook, Part IV

We can start the web server now to serve the files we just copied. To do that, we use the
Ansible service module.

1 - name: "Restarting nginx web server"
2 service: name=nginx state=restarted

We can now use a browser to look at the files served by nginx.

84 / 85

Managing BSD Systems with Ansible

Further Information
Lorin Hochstein
Ansible Up & Running
O’Reilly Media Inc.

Ansible Documentation
BSD Support
http://docs.ansible.com/ansible/intro_bsd.html

Ansible Documentation
Introduction to Ad-Hoc Commands
http://docs.ansible.com/ansible/intro_adhoc.html

Ansible Documentation
Module Index
http://docs.ansible.com/ansible/modules_by_category.html

Knp University Ansible Online Course
Hosts & the Inventory File
https://knpuniversity.com/screencast/ansible/hosts-inventory 85 / 85

http://docs.ansible.com/ansible/intro_bsd.html
http://docs.ansible.com/ansible/intro_adhoc.html
http://docs.ansible.com/ansible/modules_by_category.html
https://knpuniversity.com/screencast/ansible/hosts-inventory

	Introduction to Ansible
	Requirements
	SSH Setup

	Ansible Commands
	File Transfers
	Package Management
	File Modifications

	Playbooks
	Writing Playbooks
	YAML
	Variables
	Handlers & Conditional Execution
	Loops

	A Complete Example
	Appendix

