
Ex Quick Reference

Entering/leaving ex

% ex name edit name, start at end

% ex +n name ... at line n

% ex −t tag start at tag

% ex −r list saved files

% ex −r name recover file name

% ex name ... edit first; rest via :n

% ex −R name read only mode

: x exit, saving changes

: q! exit, discarding changes

Ex states

Command Normal and initial state. Input

prompted for by :. Your kill character

cancels partial command.

Insert Entered by a i and c. Arbitrary text

then terminates with line having only .

character on it or abnormally with

interrupt.

Open/visual Entered by open or vi, terminates with

Q or ˆ\.

Ex commands

abbrev ab next n unabbrev una

append a number nu undo u

args ar open o unmap unm

change c preserve pre version ve

copy co print p visual vi

delete d put pu write w

edit e quit q xit x

file f read re yank ya

global g recover rec window z

insert i rewind rew escape !

join j set se lshift <

list l shell sh print next CR

map source so resubst &

mark ma stop st rshift >

move m substitute s scroll ˆD

Ex command addresses

n line n /pat next with pat

. current ?pat previous with pat

$ last x-n n before x

+ next x,y x through y

− previous ´x marked with x

+n n forward ´´ previous context

% 1,$

Specifying terminal type

% setenv TERM type csh and all version 6

$ TERM=type; export TERM sh in Version 7

See also tset(1)

Some terminal types

2621 43 adm31 dw1 h19

2645 733 adm3a dw2 i100

300s 745 c100 gt40 mime

33 act4 dm1520 gt42 owl

37 act5 dm2500 h1500 t1061

4014 adm3 dm3025 h1510 vt52

Initializing options

EXINIT place set’s here in environment var.

set x enable option

set nox disable option

set x=val give value val

set show changed options

set all show all options

set x? show value of option x

Useful options

autoindent ai supply indent

autowrite aw write before changing files

ignorecase ic in scanning

lisp () { } are s-exp’s

list print ˆI for tab, $ at end

magic . [* special in patterns

number nu number lines

paragraphs para macro names which start ...

redraw simulate smart terminal

scroll command mode lines

sections sect macro names ...

shiftwidth sw for < >, and input ˆD

showmatch sm to) and } as typed

slowopen slow choke updates during insert

window visual mode lines

wrapscan ws around end of buffer?

wrapmargin wm automatic line splitting

Scanning pattern formation

↑ beginning of line

$ end of line

. any character

\< beginning of word

\> end of word

[str] any char in str

[↑str] ... not in str

[x−y] ... between x and y

* any number of preceding

Vi Quick Reference

Entering/leaving vi

% vi name edit name at top

% vi +n name ... at line n

% vi + name ... at end

% vi −r list saved files

% vi −r name recover file name

% vi name ... edit first; rest via :n

% vi −t tag start at tag

% vi +/pat name search for pat

% view name read only mode

ZZ exit from vi, saving changes

ˆZ stop vi for later resumption

The display

Last line Error messages, echoing input to : / ? and !,

feedback about i/o and large changes.

@ lines On screen only, not in file.

˜ lines Lines past end of file.

ˆx Control characters, ˆ? is delete.

tabs Expand to spaces, cursor at last.

Vi states

Command Normal and initial state. Others return

here. ESC (escape) cancels partial com-

mand.

Insert Entered by a i A I o O c C s S R. Arbitrary

text then terminates with ESC character, or

abnormally with interrupt.

Last line Reading input for : / ? or !; terminate with

ESC or CR to execute, interrupt to cancel.

Counts before vi commands

line/column number z G |

scroll amount ˆD ˆU

replicate insert a i A I

repeat effect most rest

Simple commands

dw delete a word

de ... leaving punctuation

dd delete a line

3dd ... 3 lines

itextESC insert text abc

cwnewESC change word to new

easESC pluralize word

xp transpose characters

Interrupting, cancelling

ESC end insert or incomplete cmd

ˆ? (delete or rubout) interrupts

ˆL reprint screen if ˆ? scrambles it

File manipulation

:w write back changes

:wq write and quit

:q quit

:q! quit, discard changes

:e name edit file name

:e! reedit, discard changes

:e + name edit, starting at end

:e +n edit starting at line n

:e # edit alternate file

ˆ↑ synonym for :e #

:w name write file name

:w! name overwrite file name

:sh run shell, then return

:!cmd run cmd, then return

:n edit next file in arglist

:n args specify new arglist

:f show current file and line

ˆG synonym for :f

:ta tag to tag file entry tag

ˆ] :ta, following word is tag

Positioning within file

ˆF forward screenfull

ˆB backward screenfull

ˆD scroll down half screen

ˆU scroll up half screen

G goto line (end default)

/pat next line matching pat

?pat prev line matching pat

n repeat last / or ?

N reverse last / or ?

/pat/+n n’th line after pat

?pat?−n n’th line before pat

]] next section/function

[[previous section/function

% find matching () { or }

Adjusting the screen

ˆL clear and redraw

ˆR retype, eliminate @ lines

zCR redraw, current at window top

z− ... at bottom

z at center

/pat/z− pat line at bottom

zn . use n line window

ˆE scroll window down 1 line

ˆY scroll window up 1 line

Marking and returning

`` previous context

´´ ... at first non-white in line

mx mark position with letter x

`x to mark x

´x ... at first non-white in line

Line positioning

H home window line

L last window line

M middle window line

+ next line, at first non-white

− previous line, at first non-white

CR return, same as +

↓ or j next line, same column

↑ or k previous line, same column

Character positioning

↑ first non white

0 beginning of line

$ end of line

h or → forward

l or ← backwards

ˆH same as ←

space same as →

fx find x forward

Fx f backward

tx upto x forward

Tx back upto x

; repeat last f F t or T

, inverse of ;

| to specified column

% find matching ({) or }

Words, sentences, paragraphs

w word forward

b back word

e end of word

) to next sentence

} to next paragraph

(back sentence

{ back paragraph

W blank delimited word

B back W

E to end of W

Commands for LISP

) Forward s-expression

} ... but don’t stop at atoms

(Back s-expression

{ ... but don’t stop at atoms

Corrections during insert

ˆH erase last character

ˆW erases last word

erase your erase, same as ˆH

kill your kill, erase input this line

\ escapes ˆH, your erase and kill

ESC ends insertion, back to command

ˆ? interrupt, terminates insert

ˆD backtab over autoindent

↑ˆD kill autoindent, sav e for next

0ˆD ... but at margin next also

ˆV quote non-printing character

Insert and replace

a append after cursor

i insert before

A append at end of line

I insert before first non-blank

o open line below

O open above

rx replace single char with x

R replace characters

Operators (double to affect lines)

d delete

c change

< left shift

> right shift

! filter through command

= indent for LISP

y yank lines to buffer

Miscellaneous operations

C change rest of line

D delete rest of line

s substitute chars

S substitute lines

J join lines

x delete characters

X ... before cursor

Y yank lines

Yank and put

p put back lines

P put before

"xp put from buffer x

"xy yank to buffer x

"xd delete into buffer x

Undo, redo, retrieve

u undo last change

U restore current line

. repeat last change

"d p retrieve d’th last delete

