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ABSTRACT

The 4.4BSD implementation of the Network File System (NFS)1 is intended to interoperate with

other NFS Version 2 Protocol (RFC1094) implementations but also allows use of an alternate protocol that

is hoped to provide better performance in certain environments. This paper will informally discuss these

various protocol features and their use. There is a brief overview of the implementation followed by several

sections on various problem areas related to NFS and some hints on how to deal with them.

Not Quite NFS (NQNFS) is an NFS like protocol designed to maintain full cache consistency

between clients in a crash tolerant manner. It is an adaptation of the NFS protocol such that the server sup-

ports both NFS and NQNFS clients while maintaining full consistency between the server and NQNFS

clients. It borrows heavily from work done on Spritely-NFS [Srinivasan89], but uses Leases [Gray89] to

avoid the need to recover server state information after a crash.

1. NFS Implementation

The 4.4BSD implementation of NFS and the alternate protocol nicknamed Not Quite NFS (NQNFS)

are kernel resident, but make use of a few system daemons. The kernel implementation does not use an

RPC library, handling the RPC request and reply messages directly in mbuf data areas. NFS interfaces to

the network using sockets via. the kernel interface available in sys/kern/uipc_syscalls.c as sosend(), sore-

ceive(),... There are connection management routines for support of sockets for connection oriented proto-

cols and timeout/retransmit support for datagram sockets on the client side. For connection oriented trans-

port protocols, such as TCP/IP, there is one connection for each client to server mount point that is main-

tained until an umount. If the connection breaks, the client will attempt a reconnect with a new socket.

The client side can operate without any daemons running, but performance will be improved by running

nfsiod daemons that perform read-aheads and write-behinds. For the server side to function, the daemons

portmap, mountd and nfsd must be running. The mountd daemon performs two important functions.

1) Upon startup and after a hangup signal, mountd reads the exports file and pushes the export informa-

tion for each local file system down into the kernel via. the mount system call.

2) Mountd handles remote mount protocol (RFC1094, Appendix A) requests.

The nfsd master daemon forks off children that enter the kernel via. the nfssvc system call. The children

normally remain kernel resident, providing a process context for the NFS RPC servers. Meanwhile, the

master nfsd waits to accept new connections from clients using connection oriented transport protocols and

passes the new sockets down into the kernel. The client side mount_nfs along with portmap and mountd

are the only parts of the NFS subsystem that make any use of the Sun RPC library.

2. Mount Problems

There are several problems that can be encountered at the time of an NFS mount, ranging from an

unresponsive NFS server (crashed, network partitioned from client, etc.) to various interoperability prob-

lems between different NFS implementations.

1Network File System (NFS) is believed to be a registered trademark of Sun Microsystems Inc.
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On the server side, if the 4.4BSD NFS server will be handling any PC clients, mountd will require

the -n option to enable non-root mount request servicing. Running of a pcnfsd2 daemon will also be neces-

sary. The server side requires that the daemons mountd and nfsd be running and that they be registered

with portmap properly. If problems are encountered, the safest fix is to kill all the daemons and then restart

them in the order portmap, mountd and nfsd. Other server side problems are normally caused by problems

with the format of the exports file, which is covered under Security and in the exports man page.

On the client side, there are several mount options useful for dealing with server problems. In cases

where a file system is not critical for system operation, the -b mount option may be specified so that

mount_nfs will go into the background for a mount attempt on an unresponsive server. This is useful for

mounts specified in fstab(5), so that the system will not get hung while booting doing mount -a because a

file server is not responsive. On the other hand, if the file system is critical to system operation, this option

should not be used so that the client will wait for the server to come up before completing bootstrapping.

There are also three mount options to help deal with interoperability issues with various non-BSD NFS

servers. The -P option specifies that the NFS client use a reserved IP port number to satisfy some servers’

security requirements.3 The -c option stops the NFS client from doing a connect on the UDP socket, so that

the mount works with servers that send NFS replies from port numbers other than the standard 2049.4

Finally, the -g=num option sets the maximum size of the group list in the credentials passed to an NFS

server in every RPC request. Although RFC1057 specifies a maximum size of 16 for the group list, some

servers can’t handle that many. If a user, particularly root doing a mount, keeps getting access denied from

a file server, try temporarily reducing the number of groups that user is in to less than 5 by editing

/etc/group. If the user can then access the file system, slowly increase the number of groups for that user

until the limit is found and then peg the limit there with the -g=num option. This implies that the server

will only see the first num groups that the user is in, which can cause some accessibility problems.

For sites that have many NFS servers, amd [Pendry93] is a useful administration tool. It also reduces

the number of actual NFS mount points, alleviating problems with commands such as df(1) that hang when

any of the NFS servers is unreachable.

3. Dealing with Hung Servers

There are several mount options available to help a client deal with being hung waiting for response

from a crashed or unreachable5 server. By default, a hard mount will continue to try to contact the server

‘‘forever’’ to complete the system call. This type of mount is appropriate when processes on the client that

access files in the file system do not tolerate file I/O systems calls that return -1 with errno == EINTR

and/or access to the file system is critical for normal system operation.

There are two other alternatives:

1) A soft mount (-s option) retries an RPC n times and then the corresponding system call returns -1

with errno set to EINTR. For TCP transport, the actual RPC request is not retransmitted, but the

timeout intervals waiting for a reply from the server are done in the same manner as UDP for this

purpose. The problem with this type of mount is that most applications do not expect an EINTR

error return from file I/O system calls (since it never occurs for a local file system) and get confused

by the error return from the I/O system call. The option -x=num is used to set the RPC retry limit

and if set too low, the error returns will start occurring whenever the NFS server is slow due to heavy

load. Alternately, a large retry limit can result in a process hung for a long time, due to a crashed

server or network partitioning.

2 Pcnfsd is available in source form from Sun Microsystems and many anonymous ftp sites.

3Any security benefit of this is highly questionable and as such the BSD server does not require a client to use a reserved port

number.

4The Encore Multimax is known to require this.

5Due to a network partitioning or similar.
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2) An interruptible mount (-i option) checks to see if a termination signal is pending for the process

when waiting for server response and if it is, the I/O system call posts an EINTR. Normally this

results in the process being terminated by the signal when returning from the system call. This fea-

ture allows you to ‘‘ˆC’’ out of processes that are hung due to unresponsive servers. The problem

with this approach is that signals that are caught by a process are not recognized as termination sig-

nals and the process will remain hung.6

4. RPC Transport Issues

The NFS Version 2 protocol runs over UDP/IP transport by sending each Sun Remote Procedure Call

(RFC1057) request/reply message in a single UDP datagram. Since UDP does not guarantee datagram

delivery, the Remote Procedure Call (RPC) layer times out and retransmits an RPC request if no RPC reply

has been received. Since this round trip timeout (RTO) value is for the entire RPC operation, including RPC

message transmission to the server, queuing at the server for an nfsd, performing the RPC and sending the

RPC reply message back to the client, it can be highly variable for even a moderately loaded NFS server.

As a result, the RTO interval must be a conservation (large) estimate, in order to avoid extraneous RPC

request retransmits.7 Also, with an 8Kbyte read/write data size (the default), the read/write reply/request

will be an 8+Kbyte UDP datagram that must normally be fragmented at the IP layer for transmission.8 For

IP fragments to be successfully reassembled into the IP datagram at the receive end, all fragments must be

received within a fairly short ‘‘time to live’’. If one fragment is lost/damaged in transit, the entire RPC

must be retransmitted and redone. This problem can be exaggerated by a network interface on the receiver

that cannot handle the reception of back to back network packets. [Kent87a]

There are several tuning mount options on the client side that can prove useful when trying to allevi-

ate performance problems related to UDP RPC transport. The options -r=num and -w=num specify the

maximum read or write data size respectively. The size num should be a power of 2 (4K, 2K, 1K) and

adjusted downward from the maximum of 8Kbytes whenever IP fragmentation is causing problems. The

best indicator of IP fragmentation problems is a significant number of fragments dropped after timeout

reported by the ip: section of a netstat -s command on either the client or server. Of course, if the frag-

ments are being dropped at the server, it can be fun figuring out which client(s) are involved. The most

likely candidates are clients that are not on the same local area network as the server or have network inter-

faces that do not receive sev eral back to back network packets properly.

By default, the 4.4BSD NFS client dynamically estimates the retransmit timeout interval for the RPC

and this appears to work reasonably well for many environments. However, the -d flag can be specified to

turn off the dynamic estimation of retransmit timeout, so that the client will use a static initial timeout inter-

val.9 The -t=num option can be used with -d to set the initial timeout interval to other than the default of 2

seconds. The best indicator that dynamic estimation should be turned off would be a significant number10

in the X Replies field and a large number in the Retries field in the Rpc Info: section as reported by the nfs-

stat command. On the server, there would be significant numbers of Inprog recent request cache hits in the

Server Cache Stats: section as reported by the nfsstat command, when run on the server.

The tradeoff is that a smaller timeout interval results in a better average RPC response time, but

increases the risk of extraneous retries that in turn increase server load and the possibility of damaged files

on the server. It is probably best to err on the safe side and use a large (>= 2sec) fixed timeout if the

6Unfortunately, there are also some resource allocation situations in the BSD kernel where the termination signal will be ig-

nored and the process will not terminate.

7At best, an extraneous RPC request retransmit increases the load on the server and at worst can result in damaged files on the

server when non-idempotent RPCs are redone [Juszczak89].

86 IP fragments for an Ethernet, which has a maximum transmission unit of 1500bytes.

9After the first retransmit timeout, the initial interval is backed off exponentially.

10Even 0.1% of the total RPCs is probably significant.
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dynamic retransmit timeout estimation seems to be causing problems.

An alternative to all this fiddling is to run NFS over TCP transport instead of UDP. Since the 4.4BSD

TCP implementation provides reliable delivery with congestion control, it avoids all of the above problems.

It also permits the use of read and write data sizes greater than the 8Kbyte limit for UDP transport.11 NFS

over TCP usually delivers comparable to significantly better performance than NFS over UDP unless the

client or server processor runs at less than 5-10MIPS. For a slow processor, the extra CPU overhead of

using TCP transport will become significant and TCP transport may only be useful when the client to server

interconnect traverses congested gateways. The main problem with using TCP transport is that it is only

supported between BSD clients and servers.12

5. Other Tuning Tricks

Another mount option that may improve performance over certain network interconnects is -a=num

which sets the number of blocks that the system will attempt to read-ahead during sequential reading of a

file. The default value of 1 seems to be appropriate for most situations, but a larger value might achieve bet-

ter performance for some environments, such as a mount to a server across a ‘‘high bandwidth * round trip

delay’’ interconnect.

For the adventurous, playing with the size of the buffer cache can also improve performance for some

environments that use NFS heavily. Under some workloads, a buffer cache of 4-6Mbytes can result in sig-

nificant performance improvements over 1-2Mbytes, both in client side system call response time and

reduced server RPC load. The buffer cache size defaults to 10% of physical memory, but this can be over-

ridden by specifying the BUFPAGES option in the machine’s config file.13 When increasing the size of

BUFPAGES, it is also advisable to increase the number of buffers NBUF by a corresponding amount. Note

that there is a tradeoff of memory allocated to the buffer cache versus available for paging, which implies

that making the buffer cache larger will increase paging rate, with possibly disastrous results.

6. Security Issues

When a machine is running an NFS server it opens up a great big security hole. For ordinary NFS,

the server receives client credentials in the RPC request as a user id and a list of group ids and trusts them

to be authentic! The only tool available to restrict remote access to file systems with is the exports(5) file,

so file systems should be exported with great care. The exports file is read by mountd upon startup and

after a hangup signal is posted for it and then as much of the access specifications as possible are pushed

down into the kernel for use by the nfsd(s). The trick here is that the kernel information is stored on a per

local file system mount point and client host address basis and cannot refer to individual directories within

the local server file system. It is best to think of the exports file as referring to the various local file systems

and not just directory paths as mount points. A local file system may be exported to a specific host, all

hosts that match a subnet mask or all other hosts (the world). The latter is very dangerous and should only

be used for public information. It is also strongly recommended that file systems exported to ‘‘the world’’

be exported read-only. For each host or group of hosts, the file system can be exported read-only or

read/write. You can also define one of three client user id to server credential mappings to help control

access. Root (user id == 0) can be mapped to some default credentials while all other user ids are accepted

as given. If the default credentials for user id equal zero are root, then there is essentially no remapping.

Most NFS file systems are exported this way, most commonly mapping user id == 0 to the credentials for

the user nobody. Since the client user id and group id list is used unchanged on the server (except for root),

this also implies that the user id and group id space must be common between the client and server. (ie.

11Read/write data sizes greater than 8Kbytes will not normally improve performance unless the kernel constant MAXBSIZE is

increased and the file system on the server has a block size greater than 8Kbytes.

12There are rumors of commercial NFS over TCP implementations on the horizon and these may well be worth exploring.

BUFPAGES is the number of physical machine pages allocated to the buffer cache. ie. BUFPAGES * NBPG = buffer cache

size in bytes
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user id N on the client must refer to the same user on the server) All user ids can be mapped to a default set

of credentials, typically that of the user nobody. This essentially gives world access to all users on the cor-

responding hosts.

As well as the standard NFS Version 2 protocol (RFC1094) implementation, BSD systems can use a

variant of the protocol called Not Quite NFS (NQNFS) that supports a variety of protocol extensions. This

protocol uses 64bit file offsets and sizes, an access rpc, an append option on the write rpc and extended file

attributes to support 4.4BSD file system functionality more fully. It also makes use of a variant of short

term leases [Gray89] with delayed write client caching, in an effort to provide full cache consistency and

better performance. This protocol is available between 4.4BSD systems only and is used when the -q

mount option is specified. It can be used with any of the aforementioned options for NFS, such as TCP

transport (-T). Although this protocol is experimental, it is recommended over NFS for mounts between

4.4BSD systems.14

7. Monitoring NFS Activity

The basic command for monitoring NFS activity on clients and servers is nfsstat. It reports cumula-

tive statistics of various NFS activities, such as counts of the various different RPCs and cache hit rates on

the client and server. Of particular interest on the server are the fields in the Server Cache Stats: section,

which gives numbers for RPC retries received in the first three fields and total RPCs in the fourth. The first

three fields should remain a very small percentage of the total. If not, it would indicate one or more clients

doing retries too aggressively and the fix would be to isolate these clients, disable the dynamic RTO estima-

tion on them and make their initial timeout interval a conservative (ie. large) value.

On the client side, the fields in the Rpc Info: section are of particular interest, as they giv e an overall

picture of NFS activity. The TimedOut field is the number of I/O system calls that returned -1 for ‘‘soft’’

mounts and can be reduced by increasing the retry limit or changing the mount type to ‘‘intr’’ or ‘‘hard’’.

The Invalid field is a count of trashed RPC replies that are received and should remain zero.15 The X

Replies field counts the number of repeated RPC replies received from the server and is a clear indication of

a too aggressive RTO estimate. Unfortunately, a good NFS server implementation will use a ‘‘recent

request cache’’ [Juszczak89] that will suppress the extraneous replies. A large value for Retries indicates a

problem, but it could be any of:

• a too aggressive RTO estimate

• an overloaded NFS server

• IP fragments being dropped (gateway, client or server)

and requires further investigation. The Requests field is the total count of RPCs done on all servers.

The netstat -s comes in useful during investigation of RPC transport problems. The field fragments

dropped after timeout in the ip: section indicates IP fragments are being lost and a significant number of

these occurring indicates that the use of TCP transport or a smaller read/write data size is in order. A sig-

nificant number of bad checksums reported in the udp: section would suggest network problems of a more

generic sort. (cabling, transceiver or network hardware interface problems or similar)

There is a RPC activity logging facility for both the client and server side in the kernel. When log-

ging is enabled by setting the kernel variable nfsrtton to one, the logs in the kernel structures nfsrtt (for the

client side) and nfsdrt (for the server side) are updated upon the completion of each RPC in a circular man-

ner. The pos element of the structure is the index of the next element of the log array to be updated. In

other words, elements of the log array from log[pos] to log[pos - 1] are in chronological order. The include

14I would appreciate email from anyone who can provide NFS vs. NQNFS performance measurements, particularly fast clients,

many clients or over an internetwork connection with a large ‘‘bandwidth * RTT’’ product.

15Some NFS implementations run with UDP checksums disabled, so garbage RPC messages can be received.
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file <sys/nfsrtt.h> should be consulted for details on the fields in the two log structures.16

8. Diskless Client Support

The NFS client does include kernel support for diskless/dataless operation where the root file system

and optionally the swap area is remote NFS mounted. A diskless/dataless client is configured using a ver-

sion of the ‘‘swapkernel.c’’ file as provided in the directory contrib/diskless.nfs. If the swap device ==

NODEV, it specifies an NFS mounted swap area and should be configured the same size as set up by disk-

less_setup when run on the server. This file must be put in the sys/compile/<machine_name> kernel build

directory after the config command has been run, since config does not know about specifying NFS root

and swap areas. The kernel variable mountroot must be set to nfs_mountroot instead of ffs_mountroot and

the kernel structure nfs_diskless must be filled in properly. There are some primitive system administration

tools in the contrib/diskless.nfs directory to assist in filling in the nfs_diskless structure and in setting up an

NFS server for diskless/dataless clients. The tools were designed to provide a bare bones capability, to

allow maximum flexibility when setting up different servers.

The tools are as follows:

• diskless_offset.c - This little program reads a ‘‘kernel’’ object file and writes the file byte offset of the

nfs_diskless structure in it to standard out. It was kept separate because it sometimes has to be com-

piled/linked in funny ways depending on the client architecture. (See the comment at the beginning

of it.)

• diskless_setup.c - This program is run on the server and sets up files for a given client. It mostly just

fills in an nfs_diskless structure and writes it out to either the "kernel" file or a separate file called

/var/diskless/setup.<official-hostname>

• diskless_boot.c - There are two functions in here that may be used by a bootstrap server such as tftpd

to permit sharing of the ‘‘kernel’’ object file for similar clients. This saves disk space on the bootstrap

server and simplify organization, but are not critical for correct operation. They read the ‘‘kernel’’

file, but optionally fill in the nfs_diskless structure from a separate "setup.<official-hostname>" file

so that there is only one copy of "kernel" for all similar (same arch etc.) clients. These functions use

a text file called /var/diskless/boot.<official-hostname> to control the netboot.

The basic setup steps are:

• make a "kernel" for the client(s) with mountroot() == nfs_mountroot() and swdevt[0].sw_dev ==

NODEV if it is to do nfs swapping as well (See the same swapkernel.c file)

• run diskless_offset on the kernel file to find out the byte offset of the nfs_diskless structure

• Run diskless_setup on the server to set up the server and fill in the nfs_diskless structure for that

client. The nfs_diskless structure can either be written into the kernel file (the -x option) or saved in

/var/diskless/setup.<official-hostname>.

• Set up the bootstrap server. If the nfs_diskless structure was written into the ‘‘kernel’’ file, any vanilla

bootstrap protocol such as bootp/tftp can be used. If the bootstrap server has been modified to use the

functions in diskless_boot.c, then a file called /var/diskless/boot.<official-hostname> must be created.

It is simply a two line text file, where the first line is the pathname of the correct ‘‘kernel’’ file and the

second line has the pathname of the nfs_diskless structure file and its byte offset in it. For example:

/var/diskless/kernel.pmax

/var/diskless/setup.rickers.cis.uoguelph.ca 642308

• Create a /var subtree for each client in an appropriate place on the server, such as /var/disk-

less/var/<client-hostname>/... By using the <client-hostname> to differentiate /var for each host,

/etc/rc can be modified to mount the correct /var from the server.

16Unfortunately, a monitoring tool that uses these logs is still in the planning (dreaming) stage.
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9. Not Quite NFS, Crash Tolerant Cache Consistency for NFS

Not Quite NFS (NQNFS) is an NFS like protocol designed to maintain full cache consistency

between clients in a crash tolerant manner. It is an adaptation of the NFS protocol such that the server sup-

ports both NFS and NQNFS clients while maintaining full consistency between the server and NQNFS

clients. This section borrows heavily from work done on Spritely-NFS [Srinivasan89], but uses Leases

[Gray89] to avoid the need to recover server state information after a crash. The reader is strongly encour-

aged to read these references before trying to grasp the material presented here.

9.1. Overview

The protocol maintains cache consistency by using a somewhat Sprite [Nelson88] like protocol, but

is based on short term leases17 instead of hard state information about open files. The basic principal is that

the protocol will disable client caching of a file whenever that file is write shared18. Whenever a client

wishes to cache data for a file it must hold a valid lease. There are three types of leases: read caching, write

caching and non-caching. The latter type requires that all file operations be done synchronously with the

server via. RPCs. A read caching lease allows for client data caching, but no file modifications may be

done. A write caching lease allows for client caching of writes, but requires that all writes be pushed to the

server when the lease expires. If a client has dirty buffers19 when a write cache lease has almost expired, it

will attempt to extend the lease but is required to push the dirty buffers if extension fails. A client gets

leases by either doing a GetLease RPC or by piggybacking a GetLease Request onto another RPC. Piggy-

backing is supported for the frequent RPCs Getattr, Setattr, Lookup, Readlink, Read, Write and Readdir in

an effort to minimize the number of GetLease RPCs required. All leases are at the granularity of a file,

since all NFS RPCs operate on individual files and NFS has no intrinsic notion of a file hierarchy. Directo-

ries, symbolic links and file attributes may be read cached but are not write cached. The exception here is

the attribute file_size, which is updated during cached writing on the client to reflect a growing file.

It is the server’s responsibility to ensure that consistency is maintained among the NQNFS clients by

disabling client caching whenever a server file operation would cause inconsistencies. The possibility of

inconsistencies occurs whenever a client has a write caching lease and any other client, or local operations

on the server, tries to access the file or when a modify operation is attempted on a file being read cached by

client(s). At this time, the server sends an eviction notice to all clients holding the lease and then waits for

lease termination. Lease termination occurs when a vacated the premises message has been received from

all the clients that have signed the lease or when the lease expires via. timeout. The message pair eviction

notice and vacated the premises roughly correspond to a Sprite server→client callback, but are not imple-

mented as an actual RPC, to avoid the server waiting indefinitely for a reply from a dead client.

Server consistency checking can be viewed as issuing intrinsic leases for a file operation for the dura-

tion of the operation only. For example, the Create RPC will get an intrinsic write lease on the directory in

which the file is being created, disabling client read caches for that directory.

By relegating this responsibility to the server, consistency between the server and NQNFS clients is

maintained when NFS clients are modifying the file system as well.20

The leases are issued as time intervals to avoid the requirement of time of day clock synchronization.

There are three important time constants known to the server. The maximum_lease_term sets an upper

bound on lease duration. The clock_skew is added to all lease terms on the server to correct for differing

clock speeds between the client and server and write_slack is the number of seconds the server is willing to

wait for a client with an expired write caching lease to push dirty writes.

17 A lease is a ticket permitting an activity that is valid until some expiry time.

18 Write sharing occurs when at least one client is modifying a file while other client(s) are reading the file.

19 Cached write data is not yet pushed (written) to the server.

20 The NFS clients will continue to be approximately consistent with the server.
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The server maintains a modify_revision number for each file. It is defined as an unsigned quadword

integer that is never zero and that must increase whenever the corresponding file is modified on the server.

It is used by the client to determine whether or not cached data for the file is stale. Generating this value is

easier said than done. The current implementation uses the following technique, which is believed to be

adequate. The high order longword is stored in the ufs inode and is initialized to one when an inode is first

allocated. The low order longword is stored in main memory only and is initialized to zero when an inode

is read in from disk. When the file is modified for the first time within a given second of wall clock time,

the high order longword is incremented by one and the low order longword reset to zero. For subsequent

modifications within the same second of wall clock time, the low order longword is incremented. If the low

order longword wraps around to zero, the high order longword is incremented again. Since the high order

longword only increments once per second and the inode is pushed to disk frequently during file modifica-

tion, this implies 0 ≤ Current−Disk ≤ 5. When the inode is read in from disk, 10 is added to the high order

longword, which ensures that the quadword is greater than any value it could have had before a crash. This

introduces apparent modifications every time the inode falls out of the LRU inode cache, but this should

only reduce the client caching performance by a (hopefully) small margin.

9.2. Crash Recovery and other Failure Scenarios

The server must maintain the state of all the current leases held by clients. The nice thing about short

term leases is that maximum_lease_term seconds after the server stops issuing leases, there are no current

leases left. As such, server crash recovery does not require any state recovery. After rebooting, the server

refuses to service any RPCs except for writes until write_slack seconds after the last lease would have

expired21. By then, the server would not have any outstanding leases to recover the state of and the clients

have had at least write_slack seconds to push dirty writes to the server and get the server sync’d up to date.

After this, the server simply services requests in a manner similar to NFS. In an effort to minimize the

effect of "recovery storms" [Baker91], the server replies try_again_later to the RPCs it is not yet ready to

service.

After a client crashes, the server may have to wait for a lease to timeout before servicing a request if

write sharing of a file with a cachable lease on the client is about to occur. As for the client, it simply starts

up getting any leases it now needs. Any outstanding leases for that client on the server prior to the crash

will either be renewed or expire via timeout.

Certain network partitioning failures are more problematic. If a client to server network connection is

severed just before a write caching lease expires, the client cannot push the dirty writes to the server. After

the lease expires on the server, the server permits other clients to access the file with the potential of getting

stale data. Unfortunately I believe this failure scenario is intrinsic in any delay write caching scheme unless

the server is required to wait fore ver for a client to regain contact22. Since the write caching lease has

expired on the client, it will sync up with the server as soon as the network connection has been re-estab-

lished.

There is another failure condition that can occur when the server is congested. The worst case sce-

nario would have the client pushing dirty writes to the server but a large request queue on the server delays

these writes for more than write_slack seconds. It is hoped that a congestion control scheme using the

try_again_later RPC reply after booting combined with the following lease termination rule for write

caching leases can minimize the risk of this occurrence. A write caching lease is only terminated on the

server when there are have been no writes to the file and the server has not been overloaded during the pre-

vious write_slack seconds. The server has not been overloaded is approximated by a test for sleeping

nfsd(s) at the end of the write_slack period.

21 The last lease expiry time may be safely estimated as "boottime+maximum_lease_term+clock_skew" for machines that can-

not store it in nonvolatile RAM.

22 Gray and Cheriton avoid this problem by using a write through policy.
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9.3. Server Disk Full

There is a serious unresolved problem for delayed write caching with respect to server disk space

allocation. When the disk on the file server is full, delayed write RPCs can fail due to "out of space". For

NFS, this occurrence results in an error return from the close system call on the file, since the dirty blocks

are pushed on close. Processes writing important files can check for this error return to ensure that the file

was written successfully. For NQNFS, the dirty blocks are not pushed on close and as such the client may

not attempt the write RPC until after the process has done the close which implies no error return from the

close. For the current prototype, the only solution is to modify programs writing important file(s) to call

fsync and check for an error return from it instead of close.

9.4. Protocol Details

The protocol specification is identical to that of NFS [Sun89] except for the following changes.

• RPC Information

Program Number 300105

Version Number 1

• Readdir_and_Lookup RPC

struct readdirlookargs {

fhandle file;

nfscookie cookie;

unsigned count;

unsigned duration;

};

struct entry {

unsigned cachable;

unsigned duration;

modifyrev rev;

fhandle entry_fh;

nqnfs_fattr entry_attrib;

unsigned fileid;

filename name;

nfscookie cookie;

entry *nextentry;

};

union readdirlookres switch (stat status) {

case NFS_OK:

struct {

entry *entries;

bool eof;

} readdirlookok;

default:

void;

};

readdirlookres

NQNFSPROC_READDIRLOOK(readdirlookargs) = 18;

Reads entries in a directory in a manner analogous to the NFSPROC_READDIR RPC in NFS, but

returns the file handle and attributes of each entry as well. This allows the attribute and lookup

caches to be primed.
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• Get Lease RPC

struct getleaseargs {

fhandle file;

cachetype readwrite;

unsigned duration;

};

union getleaseres switch (stat status) {

case NFS_OK:

bool cachable;

unsigned duration;

modifyrev rev;

nqnfs_fattr attributes;

default:

void;

};

getleaseres

NQNFSPROC_GETLEASE(getleaseargs) = 19;

Gets a lease for "file" valid for "duration" seconds from when the lease was issued on the server23.

The lease permits client caching if "cachable" is true. The modify revision level and attributes for the

file are also returned.

• Eviction Message

void

NQNFSPROC_EVICTED (fhandle) = 21;

This message is sent from the server to the client. When the client receives the message, it should

flush data associated with the file represented by "fhandle" from its caches and then send the Vacated

Message back to the server. Flushing includes pushing any dirty writes via. write RPCs.

• Vacated Message

void

NQNFSPROC_VACATED (fhandle) = 20;

This message is sent from the client to the server in response to the Eviction Message. See above.

• Access RPC

struct accessargs {

fhandle file;

bool read_access;

bool write_access;

bool exec_access;

};

stat

NQNFSPROC_ACCESS(accessargs) = 22;

The access RPC does permission checking on the server for the given type of access required by the

client for the file. Use of this RPC avoids accessibility problems caused by client->server uid

23 To be safe, the client may only assume that the lease is valid for ‘‘duration’’ seconds from when the RPC request was sent to

the server.
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mapping.

• Piggybacked Get Lease Request

The piggybacked get lease request is functionally equivalent to the Get Lease RPC except that is

attached to one of the other NQNFS RPC requests as follows. A getleaserequest is prepended to all of the

request arguments for NQNFS and a getleaserequestres is inserted in all NFS result structures just after the

"stat" field only if "stat == NFS_OK".

union getleaserequest switch (cachetype type) {

case NQLREAD:

case NQLWRITE:

unsigned duration;

default:

void;

};

union getleaserequestres switch (cachetype type) {

case NQLREAD:

case NQLWRITE:

bool cachable;

unsigned duration;

modifyrev rev;

default:

void;

};

The get lease request applies to the file that the attached RPC operates on and the file attributes remain in

the same location as for the NFS RPC reply structure.

• Three additional "stat" values

Three additional values have been added to the enumerated type "stat".

NQNFS_EXPIRED=500

NQNFS_TRYLATER=501

NQNFS_AUTHERR=502

The "expired" value indicates that a lease has expired. The "try later" value is returned by the server when

it wishes the client to retry the RPC request after a short delay. It is used during crash recovery (Section 2)

and may also be useful for server congestion control. The "authetication error" value is returned for kerber-

ized mount points to indicate that there is no cached authentication mapping and a Kerberos ticket for the

principal is required.

9.5. Data Types

• cachetype

enum cachetype {

NQLNONE = 0,

NQLREAD = 1,

NQLWRITE = 2

};

Type of lease requested. NQLNONE is used to indicate no piggybacked lease request.

• modifyrev

typedef unsigned hyper modifyrev;

The "modifyrev" is an unsigned quadword integer value that is never zero and increases every time

the corresponding file is modified on the server.
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• nqnfs_time

struct nqnfs_time {

unsigned seconds;

unsigned nano_seconds;

};

For NQNFS times are handled at nano second resolution instead of micro second resolution for NFS.

• nqnfs_fattr

struct nqnfs_fattr {

ftype type;

unsigned mode;

unsigned nlink;

unsigned uid;

unsigned gid;

unsigned hyper size;

unsigned blocksize;

unsigned rdev;

unsigned hyper bytes;

unsigned fsid;

unsigned fileid;

nqnfs_time atime;

nqnfs_time mtime;

nqnfs_time ctime;

unsigned flags;

unsigned generation;

modifyrev rev;

};

The nqnfs_fattr structure is modified from the NFS fattr so that it stores the file size as a 64bit quan-

tity and the storage occupied as a 64bit number of bytes. It also has fields added for the 4.4BSD

va_flags and va_gen fields as well as the file’s modify rev lev el.

• nqnfs_sattr

struct nqnfs_sattr {

unsigned mode;

unsigned uid;

unsigned gid;

unsigned hyper size;

nqnfs_time atime;

nqnfs_time mtime;

unsigned flags;

unsigned rdev;

};

The nqnfs_sattr structure is modified from the NFS sattr structure in the same manner as fattr.

The arguments to several of the NFS RPCs have been modified as well. Mostly, these are minor changes to

use 64bit file offsets or similar. The modified argument structures follow.

• Lookup RPC

struct lookup_diropargs {

unsigned duration;

fhandle dir;

filename name;

};
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union lookup_diropres switch (stat status) {

case NFS_OK:

struct {

union getleaserequestres lookup_lease;

fhandle file;

nqnfs_fattr attributes;

} lookup_diropok;

default:

void;

};

The additional "duration" argument tells the server to get a lease for the name being looked up if it is

non-zero and the lease is specified in "lookup_lease".

• Read RPC

struct nqnfs_readargs {

fhandle file;

unsigned hyper offset;

unsigned count;

};

• Write RPC

struct nqnfs_writeargs {

fhandle file;

unsigned hyper offset;

bool append;

nfsdata data;

};

The "append" argument is true for apeend only write operations.

• Get Filesystem Attributes RPC

union nqnfs_statfsres (stat status) {

case NFS_OK:

struct {

unsigned tsize;

unsigned bsize;

unsigned blocks;

unsigned bfree;

unsigned bavail;

unsigned files;

unsigned files_free;

} info;

default:

void;

};

The "files" field is the number of files in the file system and the "files_free" is the number of addi-

tional files that can be created.

10. Summary

The configuration and tuning of an NFS environment tends to be a bit of a mystic art, but hopefully

this paper along with the man pages and other reading will be helpful. Good Luck.
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