
Building 4.4BSD Kernels with Config

Samuel J. Leffler and Michael J. Karels

Computer Systems Research Group

Department of Electrical Engineering and Computer Science

University of California, Berkeley

Berkeley, California 94720

ABSTRACT

This document describes the use of config (8) to configure and create bootable

4.4BSD system images. It discusses the structure of system configuration files and how

to configure systems with non-standard hardware configurations. Sections describing the

preferred way to add new code to the system and how the system’s autoconfiguration

process operates are included. An appendix contains a summary of the rules used by the

system in calculating the size of system data structures, and also indicates some of the

standard system size limitations (and how to change them). Other configuration options

are also listed.

Revised July 5, 1993

1. INTRODUCTION

Config is a tool used in building 4.4BSD system images (the UNIX kernel). It takes a file describing

a system’s tunable parameters and hardware support, and generates a collection of files which are then used

to build a copy of UNIX appropriate to that configuration. Config simplifies system maintenance by isolat-

ing system dependencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the rules which

must be followed when creating these files. Example configuration files are constructed and discussed.

Later sections suggest guidelines to be used in modifying system source and explain some of the

inner workings of the autoconfiguration process. Appendix D summarizes the rules used in calculating the

most important system data structures and indicates some inherent system data structure size limitations

SMM:2-2 Building 4.4BSD Kernels with Config

(and how to go about modifying them).

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cpu type

• system identification

• timezone

• maximum number of users

• location of the root file system

• available hardware

Config allows multiple system images to be generated from a single configuration description. Each

system image is configured for identical hardware, but may have different locations for the root file system

and, possibly, other system devices.

2.1. Machine type

The machine type indicates if the system is going to operate on a DEC VAX-11† computer, or some

other machine on which 4.4BSD operates. The machine type is used to locate certain data files which are

machine specific, and also to select rules used in constructing the resultant configuration files.

2.2. Cpu type

The cpu type indicates which, of possibly many, cpu’s the system is to operate on. For example, if

the system is being configured for a VAX-11, it could be running on a VAX 8600, VAX-11/780,

VAX-11/750, VAX-11/730 or MicroVAX II. (Other VAX cpu types, including the 8650, 785 and 725, are

configured using the cpu designation for compatible machines introduced earlier.) Specifying more than

one cpu type implies that the system should be configured to run on any of the cpu’s specified. For some

types of machines this is not possible and config will print a diagnostic indicating such.

2.3. System identification

The system identification is a moniker attached to the system, and often the machine on which the

system is to run. For example, at Berkeley we hav e machines named Ernie (Co-VAX), Kim (No-VAX), and

so on. The system identifier selected is used to create a global C ‘‘#define’’ which may be used to isolate

system dependent pieces of code in the kernel. For example, Ernie’s Varian driver used to be special cased

because its interrupt vectors were wired together. The code in the driver which understood how to handle

this non-standard hardware configuration was conditionally compiled in only if the system was for Ernie.

The system identifier ‘‘GENERIC’’ is giv en to a system which will run on any cpu of a particular

machine type; it should not otherwise be used for a system identifier.

2.4. Timezone

The timezone in which the system is to run is used to define the information returned by the gettime-

ofday (2) system call. This value is specified as the number of hours east or west of GMT. Neg ative num-

bers indicate a value east of GMT. The timezone specification may also indicate the type of daylight sav-

ings time rules to be applied.

2.5. Maximum number of users

The system allocates many system data structures at boot time based on the maximum number of

users the system will support. This number is normally between 8 and 40, depending on the hardware and

expected job mix. The rules used to calculate system data structures are discussed in Appendix D.

† DEC, VAX, UNIBUS, MASSBUS and MicroVAX are trademarks of Digital Equipment Corporation.

Building 4.4BSD Kernels with Config SMM:2-3

2.6. Root file system location

When the system boots it must know the location of the root of the file system tree. This location and

the part(s) of the disk(s) to be used for paging and swapping must be specified in order to create a complete

configuration description. Config uses many rules to calculate default locations for these items; these are

described in Appendix B.

When a generic system is configured, the root file system is left undefined until the system is booted.

In this case, the root file system need not be specified, only that the system is a generic system.

2.7. Hardware devices

When the system boots it goes through an autoconfiguration phase. During this period, the system

searches for all those hardware devices which the system builder has indicated might be present. This

probing sequence requires certain pieces of information such as register addresses, bus interconnects, etc.

A system’s hardware may be configured in a very flexible manner or be specified without any flexibility

whatsoever. Most people do not configure hardware devices into the system unless they are currently

present on the machine, expect them to be present in the near future, or are simply guarding against a hard-

ware failure somewhere else at the site (it is often wise to configure in extra disks in case an emergency

requires moving one off a machine which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration file. As

such, a large portion of this document will be spent understanding it. Section 6.3 contains a description of

the autoconfiguration process, as it applies to those planning to write, or modify existing, device drivers.

2.8. Pseudo devices

Several system facilities are configured in a manner like that used for hardware devices although they

are not associated with specific hardware. These system options are configured as pseudo-devices. Some

pseudo devices allow an optional parameter that sets the limit on the number of instances of the device that

are active simultaneously.

2.9. System options

Other than the mandatory pieces of information described above, it is also possible to include various

optional system facilities or to modify system behavior and/or limits. For example, 4.4BSD can be config-

ured to support binary compatibility for programs built under 4.3BSD. Also, optional support is provided

for disk quotas and tracing the performance of the virtual memory subsystem. Any optional facilities to be

configured into the system are specified in the configuration file. The resultant files generated by config

will automatically include the necessary pieces of the system.

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We assume the sys-

tem source is located in the ‘‘/sys’’ directory and that, initially, the system is being configured from source

code.

Under normal circumstances there are 5 steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.

3) Run config on the configuration file to generate the files required to compile and load the system image.

4) Construct the source code interdependency rules for the configured system with makedepend using

make(1).

5) Compile and load the system with make.

Steps 1 and 2 are usually done only once. When a system configuration changes it usually suffices to

just run config on the modified configuration file, rebuild the source code dependencies, and remake the

system. Sometimes, however, configuration dependencies may not be noticed in which case it is necessary

to clean out the relocatable object files saved in the system’s directory; this will be discussed later.

SMM:2-4 Building 4.4BSD Kernels with Config

3.1. Creating a configuration file

Configuration files normally reside in the directory ‘‘/sys/conf ’’. A configuration file is most easily

constructed by copying an existing configuration file and modifying it. The 4.4BSD distribution contains a

number of configuration files for machines at Berkeley; one may be suitable or, in worst case, a copy of the

generic configuration file may be edited.

The configuration file must have the same name as the directory in which the configured system is to

be built. Further, config assumes this directory is located in the parent directory of the directory in which it

is run. For example, the generic system has a configuration file ‘‘/sys/conf/GENERIC’’ and an accompany-

ing directory named ‘‘/sys/GENERIC’’. Although it is not required that the system sources and configura-

tion files reside in ‘‘/sys,’’ the configuration and compilation procedure depends on the relative locations of

directories within that hierarchy, as most of the system code and the files created by config use pathnames

of the form ‘‘../’’. If the system files are not located in ‘‘/sys,’’ it is desirable to make a symbolic link there

for use in installation of other parts of the system that share files with the kernel.

When building the configuration file, be sure to include the items described in section 2. In particu-

lar, the machine type, cpu type, timezone, system identifier, maximum users, and root device must be speci-

fied. The specification of the hardware present may take a bit of work; particularly if your hardware is con-

figured at non-standard places (e.g. device registers located at funny places or devices not supported by the

system). Section 4 of this document gives a detailed description of the configuration file syntax, section 5

explains some sample configuration files, and section 6 discusses how to add new devices to the system. If

the devices to be configured are not already described in one of the existing configuration files you should

check the manual pages in section 4 of the UNIX Programmers Manual. For each supported device, the

manual page synopsis entry gives a sample configuration line.

Once the configuration file is complete, run it through config and look for any errors. Never try and

use a system which config has complained about; the results are unpredictable. For the most part, config’s

error diagnostics are self explanatory. It may be the case that the line numbers given with the error mes-

sages are off by one.

A successful run of config on your configuration file will generate a number of files in the configura-

tion directory. These files are:

• A file to be used by make (1) in compiling and loading the system, Makefile.

• One file for each possible system image for this machine, swapxxx.c, where xxx is the name of the sys-

tem image, which describes where swapping, the root file system, and other miscellaneous system

devices are located.

• A collection of header files, one per possible device the system supports, which define the hardware

configured.

• A file containing the I/O configuration tables used by the system during its autoconfiguration phase,

ioconf.c.

• An assembly language file of interrupt vectors which connect interrupts from the machine’s external

buses to the main system path for handling interrupts, and a file that contains counters and names for

the interrupt vectors.

Unless you have reason to doubt config, or are curious how the system’s autoconfiguration scheme

works, you should never hav e to look at any of these files.

3.2. Constructing source code dependencies

When config is done generating the files needed to compile and link your system it will terminate

with a message of the form ‘‘Don’t forget to run make depend’’. This is a reminder that you should change

over to the configuration directory for the system just configured and type ‘‘make depend’’ to build the

rules used by make to recognize interdependencies in the system source code. This will insure that any

changes to a piece of the system source code will result in the proper modules being recompiled the next

time make is run.

This step is particularly important if your site makes changes to the system include files. The rules

generated specify which source code files are dependent on which include files. Without these rules, make

Building 4.4BSD Kernels with Config SMM:2-5

will not recognize when it must rebuild modules due to the modification of a system header file. The

dependency rules are generated by a pass of the C preprocessor and reflect the global system options. This

step must be repeated when the configuration file is changed and config is used to regenerate the system

makefile.

3.3. Building the system

The makefile constructed by config should allow a new system to be rebuilt by simply typing ‘‘make

image-name’’. For example, if you have named your bootable system image ‘‘kernel’’, then ‘‘make kernel’’

will generate a bootable image named ‘‘kernel’’. Alternate system image names are used when the root file

system location and/or swapping configuration is done in more than one way. The makefile which config

creates has entry points for each system image defined in the configuration file. Thus, if you have config-

ured ‘‘kernel’’ to be a system with the root file system on an ‘‘hp’’ device and ‘‘hkkernel’’ to be a system

with the root file system on an ‘‘hk’’ device, then ‘‘make kernel hkkernel’’ will generate binary images for

each. As the system will generally use the disk from which it is loaded as the root filesystem, separate sys-

tem images are only required to support different swap configurations.

Note that the name of a bootable image is different from the system identifier. All bootable images

are configured for the same system; only the information about the root file system and paging devices dif-

fer. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used symbols in the

symbol table of the system image; the makefile generated by config does this automatically for you. This

is advantageous for programs such as netstat (1) and vmstat (1), which run much faster when the symbols

they need are located at the front of the symbol table. Remember also that many programs expect the cur-

rently executing system to be named ‘‘/kernel’’. If you install a new system and name it something other

than ‘‘/kernel’’, many programs are likely to give strange results.

3.4. Sharing object modules

If you have many systems which are all built on a single machine there are at least two approaches to

saving time in building system images. The best way is to have a single system image which is run on all

machines. This is attractive since it minimizes disk space used and time required to rebuild systems after

making changes. However, it is often the case that one or more systems will require a separately configured

system image. This may be due to limited memory (building a system with many unused device drivers

can be expensive), or to configuration requirements (one machine may be a development machine where

disk quotas are not needed, while another is a production machine where they are), etc. In these cases it is

possible for common systems to share relocatable object modules which are not configuration dependent;

most of the modules in the directory ‘‘/sys/sys’’ are of this sort.

To share object modules, a generic system should be built. Then, for each system configure the sys-

tem as before, but before recompiling and linking the system, type ‘‘make links’’ in the system compilation

directory. This will cause the system to be searched for source modules which are safe to share between

systems and generate symbolic links in the current directory to the appropriate object modules in the direc-

tory ‘‘../GENERIC’’. A shell script, ‘‘makelinks’’ is generated with this request and may be checked for

correctness. The file ‘‘/sys/conf/defines’’ contains a list of symbols which we believe are safe to ignore

when checking the source code for modules which may be shared. Note that this list includes the defini-

tions used to conditionally compile in the virtual memory tracing facilities, and the trace point support used

only rarely (even at Berkeley). It may be necessary to modify this file to reflect local needs. Note further

that interdependencies which are not directly visible in the source code are not caught. This means that if

you place per-system dependencies in an include file, they will not be recognized and the shared code may

be selected in an unexpected fashion.

3.5. Building profiled systems

It is simple to configure a system which will automatically collect profiling information as it oper-

ates. The profiling data may be collected with kgmon (8) and processed with gprof (1) to obtain information

regarding the system’s operation. Profiled systems maintain histograms of the program counter as well as

the number of invocations of each routine. The gprof command will also generate a dynamic call graph of

SMM:2-6 Building 4.4BSD Kernels with Config

the executing system and propagate time spent in each routine along the arcs of the call graph (consult the

gprof documentation for elaboration). The program counter sampling can be driven by the system clock, or

if you have an alternate real time clock, this can be used. The latter is highly recommended, as use of the

system clock will result in statistical anomalies, and time spent in the clock routine will not be accurately

attributed.

To configure a profiled system, the −p option should be supplied to config. A profiled system is

about 5-10% larger in its text space due to the calls to count the subroutine invocations. When the system

executes, the profiling data is stored in a buffer which is 1.2 times the size of the text space. The overhead

for running a profiled system varies; under normal load we see anywhere from 5-25% of the system time

spent in the profiling code.

Note that systems configured for profiling should not be shared as described above unless all the

other shared systems are also to be profiled.

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A complete gram-

mar for the input language can be found in Appendix A and may be of use if you should have problems

with syntax errors.

A configuration file is broken up into three logical pieces:

• configuration parameters global to all system images specified in the configuration file,

• parameters specific to each system image to be generated, and

• device specifications.

4.1. Global configuration parameters

The global configuration parameters are the type of machine, cpu types, options, timezone, system

identifier, and maximum users. Each is specified with a separate line in the configuration file.

machine type

The system is to run on the machine type specified. No more than one machine type can appear in

the configuration file. Legal values are vax and sun.

cpu ‘‘type’’

This system is to run on the cpu type specified. More than one cpu type specification can appear in a

configuration file. Legal types for a vax machine are VAX8600, VAX780, VAX750, VAX730 and

VAX630 (MicroVAX II). The 8650 is listed as an 8600, the 785 as a 780, and a 725 as a 730.

options optionlist

Compile the listed optional code into the system. Options in this list are separated by commas. Pos-

sible options are listed at the top of the generic makefile. A line of the form ‘‘options

FUNNY,HAHA’’ generates global ‘‘#define’’s −DFUNNY −DHAHA in the resultant makefile. An

option may be given a value by following its name with ‘‘=’’, then the value enclosed in (double)

quotes. The following are major options are currently in use: COMPAT (include code for compatibil-

ity with 4.1BSD binaries), INET (Internet communication protocols), NS (Xerox NS communication

protocols), and QUOTA (enable disk quotas). Other kernel options controlling system sizes and lim-

its are listed in Appendix D; options for the network are found in Appendix E. There are additional

options which are associated with certain peripheral devices; those are listed in the Synopsis section

of the manual page for the device.

makeoptions optionlist

Options that are used within the system makefile and evaluated by make are listed as makeoptions.

Options are listed with their values with the form ‘‘makeoptions name=value,name2=value2.’’ The

values must be enclosed in double quotes if they include numerals or begin with a dash.

timezone number [dst [number]]

Specifies the timezone used by the system. This is measured in the number of hours your timezone is

west of GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers indicate hours east of

GMT. If you specify dst, the system will operate under daylight savings time. An optional integer or

Building 4.4BSD Kernels with Config SMM:2-7

floating point number may be included to specify a particular daylight saving time correction algo-

rithm; the default value is 1, indicating the United States. Other values are: 2 (Australian style), 3

(Western European), 4 (Middle European), and 5 (Eastern European). See gettimeofday (2) and

ctime (3) for more information.

ident name

This system is to be known as name. This is usually a cute name like ERNIE (short for Ernie Co-

Vax) or VAXWELL (for Vaxwell Smart). This value is defined for use in conditional compilation,

and is also used to locate an optional list of source files specific to this system.

maxusers number

The maximum expected number of simultaneously active user on this system is number. This num-

ber is used to size several system data structures.

4.2. System image parameters

Multiple bootable images may be specified in a single configuration file. The systems will have the

same global configuration parameters and devices, but the location of the root file system and other system

specific devices may be different. A system image is specified with a ‘‘config’’ line:

config sysname config-clauses

The sysname field is the name given to the loaded system image; almost everyone names their standard sys-

tem image ‘‘kernel’’. The configuration clauses are one or more specifications indicating where the root file

system is located and the number and location of paging devices. The device used by the system to process

argument lists during execve(2) calls may also be specified, though in practice this is almost always selected

by config using one of its rules for selecting default locations for system devices.

A configuration clause is one of the following

root [on] root-device

swap [on] swap-device [and swap-device] ...

dumps [on] dump-device

args [on] arg-device

(the ‘‘on’’ is optional.) Multiple configuration clauses are separated by white space; config allows specifi-

cations to be continued across multiple lines by beginning the continuation line with a tab character. The

‘‘root’’ clause specifies where the root file system is located, the ‘‘swap’’ clause indicates swapping and

paging area(s), the ‘‘dumps’’ clause can be used to force system dumps to be taken on a particular device,

and the ‘‘args’’ clause can be used to specify that argument list processing for execve should be done on a

particular device.

The device names supplied in the clauses may be fully specified as a device, unit, and file system par-

tition; or underspecified in which case config will use builtin rules to select default unit numbers and file

system partitions. The defaulting rules are a bit complicated as they are dependent on the overall system

configuration. For example, the swap area need not be specified at all if the root device is specified; in this

case the swap area is placed in the ‘‘b’’ partition of the same disk where the root file system is located. Ap-

pendix B contains a complete list of the defaulting rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a per-

machine basis. A file, ‘‘/sys/conf/devices.machine’’ (where ‘‘machine’’ is the machine type specified in the

configuration file), is used to map a device name to its major block device number. The minor device num-

ber is calculated using the standard disk partitioning rules: on unit 0, partition ‘‘a’’ is minor device 0, parti-

tion ‘‘b’’ is minor device 1, and so on; for units other than 0, add 8 times the unit number to get the minor

device.

If the default mapping of device name to major/minor device number is incorrect for your configura-

tion, it can be replaced by an explicit specification of the major/minor device. This is done by substituting

major x minor y

where the device name would normally be found. For example,

SMM:2-8 Building 4.4BSD Kernels with Config

config kernel root on major 99 minor 1

Normally, the areas configured for swap space are sized by the system at boot time. If a non-standard

size is to be used for one or more swap areas (less than the full partition), this can also be specified. To do

this, the device name specified for a swap area should have a ‘‘size’’ specification appended. For example,

config kernel root on hp0 swap on hp0b size 1200

would force swapping to be done in partition ‘‘b’’ of ‘‘hp0’’ and the swap partition size would be set to

1200 sectors. A swap area sized larger than the associated disk partition is trimmed to the partition size.

To create a generic configuration, only the clause ‘‘swap generic’’ should be specified; any extra

clauses will cause an error.

4.3. Device specifications

Each device attached to a machine must be specified to config so that the system generated will know

to probe for it during the autoconfiguration process carried out at boot time. Hardware specified in the con-

figuration need not actually be present on the machine where the generated system is to be run. Only the

hardware actually found at boot time will be used by the system.

The specification of hardware devices in the configuration file parallels the interconnection hierarchy

of the machine to be configured. On the VAX, this means that a configuration file must indicate what

MASSBUS and UNIBUS adapters are present, and to which nexi they might be connected.* Similarly,

devices and controllers must be indicated as possibly being connected to one or more adapters. A device

description may provide a complete definition of the possible configuration parameters or it may leave cer-

tain parameters undefined and make the system probe for all the possible values. The latter allows a single

device configuration list to match many possible physical configurations. For example, a disk may be indi-

cated as present at UNIBUS adapter 0, or at any UNIBUS adapter which the system locates at boot time.

The latter scheme, termed wildcarding, allows more flexibility in the physical configuration of a system; if

a disk must be moved around for some reason, the system will still locate it at the alternate location.

A device specification takes one of the following forms:

master device-name device-info

controller device-name device-info [interrupt-spec]

device device-name device-info interrupt-spec

disk device-name device-info

tape device-name device-info

A ‘‘master’’ is a MASSBUS tape controller; a ‘‘controller’’ is a disk controller, a UNIBUS tape controller, a

MASSBUS adapter, or a UNIBUS adapter. A ‘‘device’’ is an autonomous device which connects directly

to a UNIBUS adapter (as opposed to something like a disk which connects through a disk controller).

‘‘Disk’’ and ‘‘tape’’ identify disk drives and tape drives connected to a ‘‘controller’’ or ‘‘master.’’

The device-name is one of the standard device names, as indicated in section 4 of the UNIX Pro-

grammers Manual, concatenated with the logical unit number to be assigned the device (the logical unit

number may be different than the physical unit number indicated on the front of something like a disk; the

logical unit number is used to refer to the UNIX device, not the physical unit number). For example,

‘‘hp0’’ is logical unit 0 of a MASSBUS storage device, even though it might be physical unit 3 on MASS-

BUS adapter 1.

The device-info clause specifies how the hardware is connected in the interconnection hierarchy. On

the VAX, UNIBUS and MASSBUS adapters are connected to the internal system bus through a nexus.

Thus, one of the following specifications would be used:

controller mba0 at nexus x

controller uba0 at nexus x

To tie a controller to a specific nexus, ‘‘x’’ would be supplied as the number of that nexus; otherwise ‘‘x’’

may be specified as ‘‘?’’, in which case the system will probe all nexi present looking for the specified

* While VAX-11/750’s and VAX-11/730 do not actually have nexi, the system treats them as having simulated

nexi to simplify device configuration.

Building 4.4BSD Kernels with Config SMM:2-9

controller.

The remaining interconnections on the VAX are:

• a controller may be connected to another controller (e.g. a disk controller attached to a UNIBUS

adapter),

• a master is always attached to a controller (a MASSBUS adapter),

• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and

• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS adapters).

The following lines give an example of each of these interconnections:

controller hk0 at uba0 ...

master ht0 at mba0 ...

disk hp0 at mba0 ...

tape tu0 at ht0 ...

disk rk1 at hk0 ...

device dz0 at uba0 ...

Any piece of hardware which may be connected to a specific controller may also be wildcarded across mul-

tiple controllers.

The final piece of information needed by the system to configure devices is some indication of where

or how a device will interrupt. For tapes and disks, simply specifying the slave or drive number is suffi-

cient to locate the control status register for the device. Drive numbers may be wildcarded on MASSBUS

devices, but not on disks on a UNIBUS controller. For controllers, the control status register must be given

explicitly, as well the number of interrupt vectors used and the names of the routines to which they should

be bound. Thus the example lines given above might be completed as:

controller hk0 at uba0 csr 0177440 vector rkintr

master ht0 at mba0 drive 0

disk hp0 at mba0 drive ?

tape tu0 at ht0 slave 0

disk rk1 at hk0 drive 1

device dz0 at uba0 csr 0160100 vector dzrint dzxint

Certain device drivers require extra information passed to them at boot time to tailor their operation

to the actual hardware present. The line printer driver, for example, needs to know how many columns are

present on each non-standard line printer (i.e. a line printer with other than 80 columns). The drivers for

the terminal multiplexors need to know which lines are attached to modem lines so that no one will be

allowed to use them unless a connection is present. For this reason, one last parameter may be specified to

a device, a flags field. It has the syntax

flags number

and is usually placed after the csr specification. The number is passed directly to the associated driver. The

manual pages in section 4 should be consulted to determine how each driver uses this value (if at all).

Communications interface drivers commonly use the flags to indicate whether modem control signals are in

use.

The exact syntax for each specific device is given in the Synopsis section of its manual page in sec-

tion 4 of the manual.

4.4. Pseudo-devices

A number of drivers and software subsystems are treated like device drivers without any associated

hardware. To include any of these pieces, a ‘‘pseudo-device’’ specification must be used. A specification

for a pseudo device takes the form

pseudo-device device-name [howmany]

SMM:2-10 Building 4.4BSD Kernels with Config

Examples of pseudo devices are pty, the pseudo terminal driver (where the optional howmany value

indicates the number of pseudo terminals to configure, 32 default), and loop, the software loopback net-

work pseudo-interface. Other pseudo devices for the network include imp (required when a CSS or ACC

imp is configured) and ether (used by the Address Resolution Protocol on 10 Mb/sec Ethernets). More

information on configuring each of these can also be found in section 4 of the manual.

5. SAMPLE CONFIGURATION FILES

In this section we will consider how to configure a sample VAX-11/780 system on which the hard-

ware can be reconfigured to guard against various hardware mishaps. We then study the rules needed to

configure a VAX-11/750 to run in a networking environment.

5.1. VAX-11/780 System

Our VAX-11/780 is configured with hardware recommended in the document ‘‘Hints on Configuring

a VAX for 4.2BSD’’ (this is one of the high-end configurations). Table 1 lists the pertinent hardware to be

configured.

Item Vendor Connection Name Reference

cpu DEC VAX780

MASSBUS controller Emulex nexus ? mba0 hp(4)

disk Fujitsu mba0 hp0

disk Fujitsu mba0 hp1

MASSBUS controller Emulex nexus ? mba1

disk Fujitsu mba1 hp2

disk Fujitsu mba1 hp3

UNIBUS adapter DEC nexus ?

tape controller Emulex uba0 tm0 tm(4)

tape drive Kennedy tm0 te0

tape drive Kennedy tm0 te1

terminal multiplexor Emulex uba0 dh0 dh(4)

terminal multiplexor Emulex uba0 dh1

terminal multiplexor Emulex uba0 dh2

Table 1. VAX-11/780 Hardware support.

We will call this machine ANSEL and construct a configuration file one step at a time.

The first step is to fill in the global configuration parameters. The machine is a VAX, so the machine

type is ‘‘vax’’. We will assume this system will run only on this one processor, so the cpu type is

‘‘VAX780’’. The options are empty since this is going to be a ‘‘vanilla’’ VAX. The system identifier, as

mentioned before, is ‘‘ANSEL,’’ and the maximum number of users we plan to support is about 40. Thus

the beginning of the configuration file looks like this:

#

ANSEL VAX (a picture perfect machine)

#

machine vax

cpu VAX780

timezone 8 dst

ident ANSEL

maxusers 40

To this we must then add the specifications for three system images. The first will be our standard

system with the root on ‘‘hp0’’ and swapping on the same drive as the root. The second will have the root

file system in the same location, but swap space interleaved among drives on each controller. Finally, the

third will be a generic system, to allow us to boot off any of the four disk drives.

Building 4.4BSD Kernels with Config SMM:2-11

config kernel root on hp0

config hpkernel root on hp0 swap on hp0 and hp2

config genkernel swap generic

Finally, the hardware must be specified. Let us first just try transcribing the information from Table

1.

controller mba0 at nexus ?

disk hp0 at mba0 disk 0

disk hp1 at mba0 disk 1

controller mba1 at nexus ?

disk hp2 at mba1 disk 2

disk hp3 at mba1 disk 3

controller uba0 at nexus ?

controller tm0 at uba0 csr 0172520 vector tmintr

tape te0 at tm0 drive 0

tape te1 at tm0 drive 1

device dh0 at uba0 csr 0160020 vector dhrint dhxint

device dm0 at uba0 csr 0170500 vector dmintr

device dh1 at uba0 csr 0160040 vector dhrint dhxint

device dh2 at uba0 csr 0160060 vector dhrint dhxint

(Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the ‘‘dm0’’ device.)

This will suffice, but leaves us with little flexibility. Suppose our first disk controller were to break.

We would like to recable the drives normally on the second controller so that all our disks could still be

used without reconfiguring the system. To do this we wildcard the MASSBUS adapter connections and

also the slave numbers. Further, we wildcard the UNIBUS adapter connections in case we decide some

time in the future to purchase another adapter to offload the single UNIBUS we currently have. The revised

device specifications would then be:

controller mba0 at nexus ?

disk hp0 at mba? disk ?

disk hp1 at mba? disk ?

controller mba1 at nexus ?

disk hp2 at mba? disk ?

disk hp3 at mba? disk ?

controller uba0 at nexus ?

controller tm0 at uba? csr 0172520 vector tmintr

tape te0 at tm0 drive 0

tape te1 at tm0 drive 1

device dh0 at uba? csr 0160020 vector dhrint dhxint

device dm0 at uba? csr 0170500 vector dmintr

device dh1 at uba? csr 0160040 vector dhrint dhxint

device dh2 at uba? csr 0160060 vector dhrint dhxint

The completed configuration file for ANSEL is shown in Appendix C.

5.2. VAX-11/750 with network support

Our VAX-11/750 system will be located on two 10Mb/s Ethernet local area networks and also the

DARPA Internet. The system will have a MASSBUS drive for the root file system and two UNIBUS

drives. Paging is interleaved among all three drives. We hav e sold our standard DEC terminal multiplexors

since this machine will be accessed solely through the network. This machine is not intended to have a

large user community, it does not have a great deal of memory. First the global parameters:

SMM:2-12 Building 4.4BSD Kernels with Config

#

UCBVAX (Gateway to the world)

#

machine vax

cpu "VAX780"

cpu "VAX750"

ident UCBVAX

timezone 8 dst

maxusers 32

options INET

options NS

The multiple cpu types allow us to replace UCBVAX with a more powerful cpu without reconfigur-

ing the system. The value of 32 given for the maximum number of users is done to force the system data

structures to be over-allocated. That is desirable on this machine because, while it is not expected to sup-

port many users, it is expected to perform a great deal of work. The ‘‘INET’’ indicates that we plan to use

the DARPA standard Internet protocols on this machine, and ‘‘NS’’ also includes support for Xerox NS

protocols. Note that unlike 4.2BSD configuration files, the network protocol options do not require corre-

sponding pseudo devices.

The system images and disks are configured next.

config kernel root on hp swap on hp and rk0 and rk1

config upkernel root on up

config hkkernel root on hk swap on rk0 and rk1

controller mba0 at nexus ?

controller uba0 at nexus ?

disk hp0 at mba? drive 0

disk hp1 at mba? drive 1

controller sc0 at uba? csr 0176700 vector upintr

disk up0 at sc0 drive 0

disk up1 at sc0 drive 1

controller hk0 at uba? csr 0177440 vector rkintr

disk rk0 at hk0 drive 0

disk rk1 at hk0 drive 1

UCBVAX requires heavy interleaving of its paging area to keep up with all the mail traffic it handles.

The limiting factor on this system’s performance is usually the number of disk arms, as opposed to memory

or cpu cycles. The extra UNIBUS controller, ‘‘sc0’’, is in case the MASSBUS controller breaks and a spare

controller must be installed (most of our old UNIBUS controllers have been replaced with the newer

MASSBUS controllers, so we have a number of these around as spares).

Finally, we add in the network devices. Pseudo terminals are needed to allow users to log in across

the network (remember the only hardwired terminal is the console). The software loopback device is used

for on-machine communications. The connection to the Internet is through an IMP, this requires yet

another pseudo-device (in addition to the actual hardware device used by the IMP software). And, finally,

there are the two Ethernet devices. These use a special protocol, the Address Resolution Protocol (ARP), to

map between Internet and Ethernet addresses. Thus, yet another pseudo-device is needed. The additional

device specifications are show below.

Building 4.4BSD Kernels with Config SMM:2-13

pseudo-device pty

pseudo-device loop

pseudo-device imp

device acc0 at uba? csr 0167600 vector accrint accxint

pseudo-device ether

device ec0 at uba? csr 0164330 vector ecrint eccollide ecxint

device il0 at uba? csr 0164000 vector ilrint ilcint

The completed configuration file for UCBVAX is shown in Appendix C.

5.3. Miscellaneous comments

It should be noted in these examples that neither system was configured to use disk quotas or the

4.1BSD compatibility mode. To use these optional facilities, and others, we would probably clean out our

current configuration, reconfigure the system, then recompile and relink the system image(s). This could,

of course, be avoided by figuring out which relocatable object files are affected by the reconfiguration, then

reconfiguring and recompiling only those files affected by the configuration change. This technique should

be used carefully.

6. ADDING NEW SYSTEM SOFTWARE

This section is not for the novice, it describes some of the inner workings of the configuration process

as well as the pertinent parts of the system autoconfiguration process. It is intended to give those people

who intend to install new device drivers and/or other system facilities sufficient information to do so in the

manner which will allow others to easily share the changes.

This section is broken into four parts:

• general guidelines to be followed in modifying system code,

• how to add non-standard system facilities to 4.4BSD,

• how to add a device driver to 4.4BSD, and

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them with

#ifdef SITENAME

...

#endif

to allow your source to be easily distributed to others, and also to simplify diff (1) listings. If you choose

not to use a source code control system (e.g. SCCS, RCS), and perhaps even if you do, it is recommended

that you save the old code with something of the form:

#ifndef SITENAME

...

#endif

We try to isolate our site-dependent code in individual files which may be configured with pseudo-device

specifications.

Indicate machine-specific code with ‘‘#ifdef vax’’ (or other machine, as appropriate). 4.4BSD under-

went extensive work to make it extremely portable to machines with similar architectures− you may some-

day find yourself trying to use a single copy of the source code on multiple machines.

6.2. Adding non-standard system facilities

This section considers the work needed to augment config’s data base files for non-standard system

facilities. Config uses a set of files that list the source modules that may be required when building a sys-

tem. The data bases are taken from the directory in which config is run, normally /sys/conf. Three such

files may be used: files, files.machine, and files.ident. The first is common to all systems, the second

SMM:2-14 Building 4.4BSD Kernels with Config

contains files unique to a single machine type, and the third is an optional list of modules for use on a spe-

cific machine. This last file may override specifications in the first two. The format of the files file has

grown somewhat complex over time. Entries are normally of the form

dir/source.c type option-list modifiers

for example,

vaxuba/foo.c optional foo device-driver

The type is one of standard or optional. Files marked as standard are included in all system configura-

tions. Optional file specifications include a list of one or more system options that together require the

inclusion of this module. The options in the list may be either names of devices that may be in the configu-

ration file, or the names of system options that may be defined. An optional file may be listed multiple

times with different options; if all of the options for any of the entries are satisfied, the module is included.

If a file is specified as a device-driver, any special compilation options for device drivers will be

invoked. On the VAX this results in the use of the −i option for the C optimizer. This is required when

pointer references are made to memory locations in the VAX I/O address space.

Tw o other optional keywords modify the usage of the file. Config understands that certain files are

used especially for kernel profiling. These files are indicated in the files files with a profiling-routine key-

word. For example, the current profiling subroutines are sequestered off in a separate file with the follow-

ing entry:

sys/subr_mcount.coptional profiling-routine

The profiling-routine keyword forces config not to compile the source file with the −pg option.

The second keyword which can be of use is the config-dependent keyword. This causes config to

compile the indicated module with the global configuration parameters. This allows certain modules, such

as machdep.c to size system data structures based on the maximum number of users configured for the sys-

tem.

6.3. Adding device drivers to 4.4BSD

The I/O system and config have been designed to easily allow new device support to be added. The

system source directories are organized as follows:

/sys/h machine independent include files

/sys/sys machine-independent system source files

/sys/conf site configuration files and basic templates

/sys/net network-protocol-independent, but network-related code

/sys/netinet DARPA Internet code

/sys/netimp IMP support code

/sys/netns Xerox NS code

/sys/vax VAX-specific mainline code

/sys/vaxif VAX network interface code

/sys/vaxmba VAX MASSBUS device drivers and related code

/sys/vaxuba VAX UNIBUS device drivers and related code

Existing block and character device drivers for the VAX reside in ‘‘/sys/vax’’, ‘‘/sys/vaxmba’’, and

‘‘/sys/vaxuba’’. Network interface drivers reside in ‘‘/sys/vaxif ’’. Any new device drivers should be placed

in the appropriate source code directory and named so as not to conflict with existing devices. Normally,

definitions for things like device registers are placed in a separate file in the same directory. For example,

the ‘‘dh’’ device driver is named ‘‘dh.c’’ and its associated include file is named ‘‘dhreg.h’’.

Once the source for the device driver has been placed in a directory, the file

‘‘/sys/conf/files.machine’’, and possibly ‘‘/sys/conf/devices.machine’’ should be modified. The files files in

the conf directory contain a line for each C source or binary-only file in the system. Those files which are

machine independent are located in ‘‘/sys/conf/files,’’ while machine specific files are in

‘‘/sys/conf/files.machine.’’ The ‘‘devices.machine’’ file is used to map device names to major block device

Building 4.4BSD Kernels with Config SMM:2-15

numbers. If the device driver being added provides support for a new disk you will want to modify this file

(the format is obvious).

In addition to including the driver in the files file, it must also be added to the device configuration

tables. These are located in ‘‘/sys/vax/conf.c’’, or similar for machines other than the VAX. If you don’t

understand what to add to this file, you should study an entry for an existing driver. Remember that the

position in the device table specifies the major device number. The block major number is needed in the

‘‘devices.machine’’ file if the device is a disk.

SMM:2-16 Building 4.4BSD Kernels with Config

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc (1) grammar used by config to parse

configuration files. Terminal symbols are shown all in upper case, literals are emboldened; optional clauses

are enclosed in brackets, ‘‘[’’ and ‘‘]’’; zero or more instantiations are denoted with ‘‘*’’.

Configuration ::= [Spec ;]*

Spec ::= Config_spec

| Device_spec

| trace

| /* lambda */

/* configuration specifications */

Config_spec ::= machine ID

| cpu ID

| options Opt_list

| ident ID

| System_spec

| timezone [−] NUMBER [dst [NUMBER]]

| timezone [−] FPNUMBER [dst [NUMBER]]

| maxusers NUMBER

/* system configuration specifications */

System_spec ::= config ID System_parameter [System_parameter]*

System_parameter ::= swap_spec | root_spec | dump_spec | arg_spec

swap_spec ::= swap [on] swap_dev [and swap_dev]*

swap_dev ::= dev_spec [size NUMBER]

root_spec ::= root [on] dev_spec

dump_spec ::= dumps [on] dev_spec

arg_spec ::= args [on] dev_spec

dev_spec ::= dev_name | major_minor

major_minor ::= major NUMBER minor NUMBER

dev_name ::= ID [NUMBER [ID]]

/* option specifications */

Opt_list ::= Option [, Option]*

Option ::= ID [= Opt_value]

Opt_value ::= ID | NUMBER

Building 4.4BSD Kernels with Config SMM:2-17

Mkopt_list ::= Mkoption [, Mkoption]*

Mkoption ::= ID = Opt_value

/* device specifications */

Device_spec ::= device Dev_name Dev_info Int_spec

| master Dev_name Dev_info

| disk Dev_name Dev_info

| tape Dev_name Dev_info

| controller Dev_name Dev_info [Int_spec]

| pseudo-device Dev [NUMBER]

Dev_name ::= Dev NUMBER

Dev ::= uba | mba | ID

Dev_info ::= Con_info [Info]*

Con_info ::= at Dev NUMBER

| at nexus NUMBER

Info ::= csr NUMBER

| drive NUMBER

| slave NUMBER

| flags NUMBER

Int_spec ::= vector ID [ID]*

| priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID

One or more alphabetics, either upper or lower case, and underscore, ‘‘_’’.

NUMBER

Approximately the C language specification for an integer number. That is, a leading ‘‘0x’’ indicates

a hexadecimal value, a leading ‘‘0’’ indicates an octal value, otherwise the number is expected to be a

decimal value. Hexadecimal numbers may use either upper or lower case alphabetics.

FPNUMBER

A floating point number without exponent. That is a number of the form ‘‘nnn.ddd’’, where the frac-

tional component is optional.

In special instances a question mark, ‘‘?’’, can be substituted for a ‘‘NUMBER’’ token. This is used to

effect wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a ‘‘#’’ character at the beginning of the line; the remainder

of the line is discarded.

A specification is interpreted as a continuation of the previous line if the first character of the line is tab.

SMM:2-18 Building 4.4BSD Kernels with Config

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a ‘‘config’’ rule which does not fully specify the location of the root file sys-

tem, paging area(s), device for system dumps, and device for argument list processing it applies a set of

rules to define those values left unspecified. The following list of rules are used in defaulting system

devices.

1) If a root device is not specified, the swap specification must indicate a ‘‘generic’’ system is to be built.

2) If the root device does not specify a unit number, it defaults to unit 0.

3) If the root device does not include a partition specification, it defaults to the ‘‘a’’ partition.

4) If no swap area is specified, it defaults to the ‘‘b’’ partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to find out where

dumps are placed within the partition).

The following table summarizes the default partitions selected when a device specification is incom-

plete, e.g. ‘‘hp0’’.

Type Partition

root ‘‘a’’

swap ‘‘b’’

args ‘‘b’’

dumps ‘‘b’’

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a ‘‘primary’’ swap

area which is always used. The remaining partitions are then interleaved into the paging system at the time

a swapon(2) system call is made. This is normally done at boot time with a call to swapon(8) from the

/etc/rc file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for the

‘‘dumps’’ device supports this. The dump contains the contents of memory, but not the swap areas. Nor-

mally the dump device is a disk in which case the information is copied to a location at the back of the par-

tition. The dump is placed in the back of the partition because the primary swap and dump device are com-

monly the same device and this allows the system to be rebooted without immediately overwriting the

saved information. When a dump has occurred, the system variable dumpsize is set to a non-zero value

indicating the size (in bytes) of the dump. The savecore (8) program then copies the information from the

dump partition to a file in a ‘‘crash’’ directory and also makes a copy of the system which was running at

the time of the crash (usually ‘‘/kernel’’). The offset to the system dump is defined in the system variable

dumplo (a sector offset from the front of the dump partition). The savecore program operates by reading the

contents of dumplo, dumpdev, and dumpmagic from /dev/kmem, then comparing the value of dumpmagic

read from /dev/kmem to that located in corresponding location in the dump area of the dump partition. If a

match is found, savecore assumes a crash occurred and reads dumpsize from the dump area of the dump

partition. This value is then used in copying the system dump. Refer to savecore (8) for more information

about its operation.

The value dumplo is calculated to be

dumpdev-size − memsize

where dumpdev-size is the size of the disk partition where system dumps are to be placed, and memsize is

the size of physical memory. If the disk partition is not large enough to hold a full dump, dumplo is set to 0

(the start of the partition).

Building 4.4BSD Kernels with Config SMM:2-19

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for completeness.

#

ANSEL VAX (a picture perfect machine)

#

machine vax

cpu VAX780

timezone 8 dst

ident ANSEL

maxusers 40

config kernel root on hp0

config hpkernel root on hp0 swap on hp0 and hp2

config genkernel swap generic

controller mba0 at nexus ?

disk hp0 at mba? disk ?

disk hp1 at mba? disk ?

controller mba1 at nexus ?

disk hp2 at mba? disk ?

disk hp3 at mba? disk ?

controller uba0 at nexus ?

controller tm0 at uba? csr 0172520 vector tmintr

tape te0 at tm0 drive 0

tape te1 at tm0 drive 1

device dh0 at uba? csr 0160020 vector dhrint dhxint

device dm0 at uba? csr 0170500 vector dmintr

device dh1 at uba? csr 0160040 vector dhrint dhxint

device dh2 at uba? csr 0160060 vector dhrint dhxint

SMM:2-20 Building 4.4BSD Kernels with Config

#

UCBVAX - Gateway to the world

#

machine vax

cpu "VAX780"

cpu "VAX750"

ident UCBVAX

timezone 8 dst

maxusers 32

options INET

options NS

config kernel root on hp swap on hp and rk0 and rk1

config upkernel root on up

config hkkernel root on hk swap on rk0 and rk1

controller mba0 at nexus ?

controller uba0 at nexus ?

disk hp0 at mba? drive 0

disk hp1 at mba? drive 1

controller sc0 at uba? csr 0176700 vector upintr

disk up0 at sc0 drive 0

disk up1 at sc0 drive 1

controller hk0 at uba? csr 0177440 vector rkintr

disk rk0 at hk0 drive 0

disk rk1 at hk0 drive 1

pseudo-device pty

pseudo-device loop

pseudo-device imp

device acc0 at uba? csr 0167600 vector accrint accxint

pseudo-device ether

device ec0 at uba? csr 0164330 vector ecrint eccollide ecxint

device il0 at uba? csr 0164000 vector ilrint ilcint

Building 4.4BSD Kernels with Config SMM:2-21

APPENDIX D. VAX KERNEL DAT A STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum number of simul-

taneous users expected, while others are calculated at boot time based on the physical resources present,

e.g. memory. This appendix lists both sets of rules and also includes some hints on changing built-in limi-

tations on certain data structures.

Compile time rules

The file /sys/conf /param.c contains the definitions of almost all data structures sized at compile time.

This file is copied into the directory of each configured system to allow configuration-dependent rules and

values to be maintained. (Each copy normally depends on the copy in /sys/conf, and global modifications

cause the file to be recopied unless the makefile is modified.) The rules implied by its contents are summa-

rized below (here MAXUSERS refers to the value defined in the configuration file in the ‘‘maxusers’’ rule).

Most limits are computed at compile time and stored in global variables for use by other modules; they may

generally be patched in the system binary image before rebooting to test new values.

nproc

The maximum number of processes which may be running at any time. It is referred to in other cal-

culations as NPROC and is defined to be

20 + 8 * MAXUSERS

ntext

The maximum number of active shared text segments. The constant is intended to allow for network

servers and common commands that remain in the table. It is defined as

36 + MAXUSERS.

ninode

The maximum number of files in the file system which may be active at any time. This includes files

in use by users, as well as directory files being read or written by the system and files associated with

bound sockets in the UNIX IPC domain. It is defined as

(NPROC + 16 + MAXUSERS) + 32

nfile

The number of ‘‘file table’’ structures. One file table structure is used for each open, unshared, file

descriptor. Multiple file descriptors may reference a single file table entry when they are created

through a dup call, or as the result of a fork. This is defined to be

16 * (NPROC + 16 + MAXUSERS) / 10 + 32

ncallout

The number of ‘‘callout’’ structures. One callout structure is used per internal system event handled

with a timeout. Timeouts are used for terminal delays, watchdog routines in device drivers, protocol

timeout processing, etc. This is defined as

16 + NPROC

nclist

The number of ‘‘c-list’’ structures. C-list structures are used in terminal I/O, and currently each holds

60 characters. Their number is defined as

60 + 12 * MAXUSERS

nmbclusters

The maximum number of pages which may be allocated by the network. This is defined as 256 (a

quarter megabyte of memory) in /sys/h/mbuf.h. In practice, the network rarely uses this much mem-

ory. It starts off by allocating 8 kilobytes of memory, then requesting more as required. This value

SMM:2-22 Building 4.4BSD Kernels with Config

represents an upper bound.

nquota

The number of ‘‘quota’’ structures allocated. Quota structures are present only when disc quotas are

configured in the system. One quota structure is kept per user. This is defined to be

(MAXUSERS * 9) / 7 + 3

ndquot

The number of ‘‘dquot’’ structures allocated. Dquot structures are present only when disc quotas are

configured in the system. One dquot structure is required per user, per active file system quota. That

is, when a user manipulates a file on a file system on which quotas are enabled, the information

regarding the user’s quotas on that file system must be in-core. This information is cached, so that

not all information must be present in-core all the time. This is defined as

NINODE + (MAXUSERS * NMOUNT) / 4

where NMOUNT is the maximum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the kernel’s address

space) are sized at compile time by the SYSPTSIZE definition in the file /sys/vax/vmparam.h. This is

defined to be

20 + MAXUSERS

pages of page tables. Its definition affects the size of many data structures allocated at boot time because it

constrains the amount of virtual memory which may be addressed by the running system. This is often the

limiting factor in the size of the buffer cache, in which case a message is printed when the system config-

ures at boot time.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer cache. Allocation is

done by allocating physical memory (and system virtual memory) immediately after the system has been

started up; look in the file /sys/vax/machdep.c. The amount of physical memory which may be allocated to

the buffer cache is constrained by the size of the system page tables, among other things. While the system

may calculate a large amount of memory to be allocated to the buffer cache, if the system page table is too

small to map this physical memory into the virtual address space of the system, only as much as can be

mapped will be used.

The buffer cache is comprised of a number of ‘‘buffer headers’’ and a pool of pages attached to these

headers. Buffer headers are divided into two categories: those used for swapping and paging, and those

used for normal file I/O. The system tries to allocate 10% of the first two meg abytes and 5% of the remain-

ing available physical memory for the buffer cache (where available does not count that space occupied by

the system’s text and data segments). If this results in fewer than 16 pages of memory allocated, then 16

pages are allocated. This value is kept in the initialized variable bufpages so that it may be patched in the

binary image (to allow tuning without recompiling the system), or the default may be overridden with a

configuration-file option. For example, the option options BUFPAGES="3200" causes 3200 pages (3.2M

bytes) to be used by the buffer cache. A sufficient number of file I/O buffer headers are then allocated to

allow each to hold 2 pages each. Each buffer maps 8K bytes. If the number of buffer pages is larger than

can be mapped by the buffer headers, the number of pages is reduced. The number of buffer headers allo-

cated is stored in the global variable nbuf, which may be patched before the system is booted. The system

option options NBUF="1000" forces the allocation of 1000 buffer headers. Half as many swap I/O buffer

headers as file I/O buffers are allocated, but no more than 256.

System size limitations

As distributed, the sum of the virtual sizes of the core-resident processes is limited to 256M bytes.

The size of the text segment of a single process is currently limited to 6M bytes. It may be increased to no

greater than the data segment size limit (see below) by redefining MAXTSIZ. This may be done with a

configuration file option, e.g. options MAXTSIZ="(10*1024*1024)" to set the limit to 10 million bytes.

Building 4.4BSD Kernels with Config SMM:2-23

Other per-process limits discussed here may be changed with similar options with names given in parenthe-

ses. Soft, user-changeable limits are set to 512K bytes for stack (DFLSSIZ) and 6M bytes for the data seg-

ment (DFLDSIZ) by default; these may be increased up to the hard limit with the setrlimit (2) system call.

The data and stack segment size hard limits are set by a system configuration option to one of 17M, 33M or

64M bytes. One of these sizes is chosen based on the definition of MAXDSIZ; with no option, the limit is

17M bytes; with an option options MAXDSIZ="(32*1024*1024)" (or any value between 17M and 33M),

the limit is increased to 33M bytes, and values larger than 33M result in a limit of 64M bytes. You must be

careful in doing this that you have adequate paging space. As normally configured , the system has 16M or

32M bytes per paging area, depending on disk size. The best way to get more space is to provide multiple,

thereby interleaved, paging areas. Increasing the virtual memory limits results in interleaving of swap

space in larger sections (from 500K bytes to 1M or 2M bytes).

By default, the virtual memory system allocates enough memory for system page tables mapping

user page tables to allow 256 megabytes of simultaneous active virtual memory. That is, the sum of the vir-

tual memory sizes of all (completely- or partially-) resident processes can not exceed this limit. If the limit

is exceeded, some process(es) must be swapped out. To increase the amount of resident virtual space possi-

ble, you can alter the constant USRPTSIZE (in /sys/vax/vmparam.h). Each page of system page tables

allows 8 megabytes of user virtual memory.

Because the file system block numbers are stored in page table pg_blkno entries, the maximum size

of a file system is limited to 2ˆ24 1024 byte blocks. Thus no file system can be larger than 8 gigabytes.

The number of mountable file systems is set at 20 by the definition of NMOUNT in /sys/h/param.h.

This should be sufficient; if not, the value can be increased up to 255. If you have many disks, it makes

sense to make some of them single file systems, and the paging areas don’t count in this total.

The limit to the number of files that a process may have open simultaneously is set to 64. This limit

is set by the NOFILE definition in /sys/h/param.h. It may be increased arbitrarily, with the caveat that the

user structure expands by 5 bytes for each file, and thus UPAGES (/sys/vax/machparam.h) must be

increased accordingly.

The amount of physical memory is currently limited to 64 Mb by the size of the index fields in the

core-map (/sys/h/cmap.h). The limit may be increased by following instructions in that file to enlarge those

fields.

SMM:2-24 Building 4.4BSD Kernels with Config

APPENDIX E. NETWORK CONFIGURATION OPTIONS

The network support in the kernel is self-configuring according to the protocol support options (INET

and NS) and the network hardware discovered during autoconfiguration. There are several changes that

may be made to customize network behavior due to local restrictions. Within the Internet protocol routines,

the following options set in the system configuration file are supported:

GATEWAY

The machine is to be used as a gateway. This option currently makes only minor changes. First, the

size of the network routing hash table is increased. Secondly, machines that have only a single hard-

ware network interface will not forward IP packets; without this option, they will also refrain from

sending any error indication to the source of unforwardable packets. Gateways with only a single

interface are assumed to have missing or broken interfaces, and will return ICMP unreachable errors

to hosts sending them packets to be forwarded.

TCP_COMPAT_42

This option forces the system to limit its initial TCP sequence numbers to positive numbers. Without

this option, 4.4BSD systems may have problems with TCP connections to 4.2BSD systems that con-

nect but never transfer data. The problem is a bug in the 4.2BSD TCP.

IPFORWARDING

Normally, 4.4BSD machines with multiple network interfaces will forward IP packets received that

should be resent to another host. If the line ‘‘options IPFORWARDING="0"’’ is in the system con-

figuration file, IP packet forwarding will be disabled.

IPSENDREDIRECTS

When forwarding IP packets, 4.4BSD IP will note when a packet is forwarded using the same inter-

face on which it arrived. When this is noted, if the source machine is on the directly-attached net-

work, an ICMP redirect is sent to the source host. If the packet was forwarded using a route to a host

or to a subnet, a host redirect is sent, otherwise a network redirect is sent. The generation of redirects

may be inhibited with the configuration option ‘‘options IPSENDREDIRECTS="0".’’

SUBNETSARELOCAL

TCP calculates a maximum segment size to use for each connection, and sends no datagrams larger

than that size. This size will be no larger than that supported on the outgoing interface. Furthermore,

if the destination is not on the local network, the size will be no larger than 576 bytes. For this test,

other subnets of a directly-connected subnetted network are considered to be local unless the line

‘‘options SUBNETSARELOCAL="0"’’ is used in the system configuration file.

The following options are supported by the Xerox NS protocols:

NSIP

This option allows NS IDP datagrams to be encapsulated in Internet IP packets for transmission to a

collaborating NSIP host. This may be used to pass IDP packets through IP-only link layer networks.

See nsip(4P) for details.

THREEWAYSHAKE

The NS Sequenced Packet Protocol does not require a three-way handshake before considering a

connection to be in the established state. (A three-way handshake consists of a connection request,

an acknowledgement of the request along with a symmetrical opening indication, and then an

acknowledgement of the reciprocal opening packet.) This option forces a three-way handshake

before data may be transmitted on Sequenced Packet sockets.

