
rpcgen Programming Guide

1. The rpcgen Protocol Compiler

The details of programming applications to use Remote Procedure Calls can be overwhelming. Perhaps

most daunting is the writing of the XDR routines necessary to convert procedure arguments and results into

their network format and vice-versa.

Fortunately, rpcgen(1) exists to help programmers write RPC applications simply and directly. rpcgen does

most of the dirty work, allowing programmers to debug the main features of their application, instead of

requiring them to spend most of their time debugging their network interface code.

rpcgen is a compiler. It accepts a remote program interface definition written in a language, called RPC

Language, which is similar to C. It produces a C language output which includes stub versions of the client

routines, a server skeleton, XDR filter routines for both parameters and results, and a header file that con-

tains common definitions. The client stubs interface with the RPC library and effectively hide the network

from their callers. The server stub similarly hides the network from the server procedures that are to be

invoked by remote clients. rpcgen’s output files can be compiled and linked in the usual way. The devel-

oper writes server procedures—in any language that observes Sun calling conventions—and links them

with the server skeleton produced by rpcgen to get an executable server program. To use a remote pro-

gram, a programmer writes an ordinary main program that makes local procedure calls to the client stubs

produced by rpcgen. Linking this program with rpcgen’s stubs creates an executable program. (At present

the main program must be written in C). rpcgen options can be used to suppress stub generation and to

specify the transport to be used by the server stub.

Like all compilers, rpcgen reduces development time that would otherwise be spent coding and debugging

low-level routines. All compilers, including rpcgen, do this at a small cost in efficiency and flexibility.

However, many compilers allow escape hatches for programmers to mix low-level code with high-level

code. rpcgen is no exception. In speed-critical applications, hand-written routines can be linked with the

rpcgen output without any difficulty. Also, one may proceed by using rpcgen output as a starting point, and

then rewriting it as necessary. (If you need a discussion of RPC programming without rpcgen, see the

Remote Procedure Call Programming Guide).

2. Converting Local Procedures into Remote Procedures

Assume an application that runs on a single machine, one which we want to convert to run over the net-

work. Here we will demonstrate such a conversion by way of a simple example—a program that prints a

message to the console:

- 1 -

Page 2 rpcgen Programming Guide

/*

* printmsg.c: print a message on the console

*/

#include <stdio.h>

main(argc, argv)

int argc;

char *argv[];

{

char *message;

if (argc < 2) {

fprintf(stderr, "usage: %s <message>\n", argv[0]);

exit(1);

}

message = argv[1];

if (!printmessage(message)) {

fprintf(stderr, "%s: couldn’t print your message\n",

argv[0]);

exit(1);

}

printf("Message Delivered!\n");

exit(0);

}

/*

* Print a message to the console.

* Return a boolean indicating whether the message was actually printed.

*/

printmessage(msg)

char *msg;

{

FILE *f;

f = fopen("/dev/console", "w");

if (f == NULL) {

return (0);

}

fprintf(f, "%s\n", msg);

fclose(f);

return(1);

}

And then, of course:

example% cc printmsg.c -o printmsg

example% printmsg "Hello, there."

Message delivered!

example%

If printmessage() was turned into a remote procedure, then it could be called from anywhere in the net-

work. Ideally, one would just like to stick a keyword like remote in front of a procedure to turn it into a

remote procedure. Unfortunately, we hav e to live within the constraints of the C language, since it

existed long before RPC did. But ev en without language support, it’s not very difficult to make a proce-

dure remote.

rpcgen Programming Guide Page 3

In general, it’s necessary to figure out what the types are for all procedure inputs and outputs. In this

case, we have a procedure printmessage() which takes a string as input, and returns an integer as output.

Knowing this, we can write a protocol specification in RPC language that describes the remote version of

printmessage(). Here it is:

/*

* msg.x: Remote message printing protocol

*/

program MESSAGEPROG {

version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 99;

Remote procedures are part of remote programs, so we actually declared an entire remote program here

which contains the single procedure PRINTMESSAGE. This procedure was declared to be in version 1 of

the remote program. No null procedure (procedure 0) is necessary because rpcgen generates it automati-

cally.

Notice that everything is declared with all capital letters. This is not required, but is a good convention to

follow.

Notice also that the argument type is “string” and not “char *”. This is because a “char *” in C is ambigu-

ous. Programmers usually intend it to mean a null-terminated string of characters, but it could also rep-

resent a pointer to a single character or a pointer to an array of characters. In RPC language, a null-ter-

minated string is unambiguously called a “string”.

There are just two more things to write. First, there is the remote procedure itself. Here’s the definition of

a remote procedure to implement the PRINTMESSAGE procedure we declared above:

/*
* msg_proc.c: implementation of the remote procedure "printmessage"
*/

#include <stdio.h>

#include <rpc/rpc.h> /* always needed */

#include "msg.h" /* need this too: msg.h will be generated by rpcgen */

/*
* Remote verson of "printmessage"
*/
int *

printmessage_1(msg)

char **msg;

{

static int result; /* must be static! */

FILE *f;

f = fopen("/dev/console", "w");

if (f == NULL) {

result = 0;

return (&result);

}

fprintf(f, "%s\n", *msg);

fclose(f);

result = 1;

return (&result);

}

Page 4 rpcgen Programming Guide

Notice here that the declaration of the remote procedure printmessage_1() differs from that of the local pro-

cedure printmessage() in three ways:

1. It takes a pointer to a string instead of a string itself. This is true of all remote procedures: they

always take pointers to their arguments rather than the arguments themselves.

2. It returns a pointer to an integer instead of an integer itself. This is also generally true of remote pro-

cedures: they always return a pointer to their results.

3. It has an “_1” appended to its name. In general, all remote procedures called by rpcgen are named

by the following rule: the name in the program definition (here PRINTMESSAGE) is converted to

all lower-case letters, an underbar (“_”) is appended to it, and finally the version number (here 1) is

appended.

The last thing to do is declare the main client program that will call the remote procedure. Here it is:

rpcgen Programming Guide Page 5

/*

* rprintmsg.c: remote version of "printmsg.c"

*/

#include <stdio.h>

#include <rpc/rpc.h> /* always needed */

#include "msg.h" /* need this too: msg.h will be generated by rpcgen */

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *cl;

int *result;

char *server;

char *message;

if (argc < 3) {

fprintf(stderr, "usage: %s host message\n", argv[0]);

exit(1);

}

/*

* Save values of command line arguments

*/

server = argv[1];

message = argv[2];

/*

* Create client "handle" used for calling MESSAGEPROG on the

* server designated on the command line. We tell the RPC package

* to use the "tcp" protocol when contacting the server.

*/

cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");

if (cl == NULL) {

/*

* Couldn’t establish connection with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/*

* Call the remote procedure "printmessage" on the server

*/

result = printmessage_1(&message, cl);

if (result == NULL) {

/*

* An error occurred while calling the server.

* Print error message and die.

*/

clnt_perror(cl, server);

exit(1);

}

Page 6 rpcgen Programming Guide

/*

* Okay, we successfully called the remote procedure.

*/

if (*result == 0) {

/*

* Server was unable to print our message.

* Print error message and die.

*/

fprintf(stderr, "%s: %s couldn’t print your message\n",

argv[0], server);

exit(1);

}

/*

* The message got printed on the server’s console

*/

printf("Message delivered to %s!\n", server);

}

There are two things to note here:

1. First a client “handle” is created using the RPC library routine clnt_create(). This client handle will

be passed to the stub routines which call the remote procedure.

2. The remote procedure printmessage_1() is called exactly the same way as it is declared in

msg_proc.c except for the inserted client handle as the first argument.

Here’s how to put all of the pieces together:

example% rpcgen msg.x

example% cc rprintmsg.c msg_clnt.c -o rprintmsg

example% cc msg_proc.c msg_svc.c -o msg_server

Tw o programs were compiled here: the client program rprintmsg and the server program msg_server.

Before doing this though, rpcgen was used to fill in the missing pieces.

Here is what rpcgen did with the input file msg.x:

1. It created a header file called msg.h that contained #define’s for MESSAGEPROG, MESSAGEVERS

and PRINTMESSAGE for use in the other modules.

2. It created client “stub” routines in the msg_clnt.c file. In this case there is only one, the printmes-

sage_1() that was referred to from the printmsg client program. The name of the output file for

client stub routines is always formed in this way: if the name of the input file is FOO.x, the client

stubs output file is called FOO_clnt.c.

3. It created the server program which calls printmessage_1() in msg_proc.c. This server program is

named msg_svc.c. The rule for naming the server output file is similar to the previous one: for an

input file called FOO.x, the output server file is named FOO_svc.c.

Now we’re ready to have some fun. First, copy the server to a remote machine and run it. For this exam-

ple, the machine is called “moon”. Server processes are run in the background, because they nev er exit.

moon% msg_server &

Then on our local machine (“sun”) we can print a message on “moon”s console.

sun% printmsg moon "Hello, moon."

The message will get printed to “moon”s console. You can print a message on anybody’s console (includ-

ing your own) with this program if you are able to copy the server to their machine and run it.

rpcgen Programming Guide Page 7

3. Generating XDR Routines

The previous example only demonstrated the automatic generation of client and server RPC code. rpc-

gen may also be used to generate XDR routines, that is, the routines necessary to convert local data

structures into network format and vice-versa. This example presents a complete RPC service—a remote

directory listing service, which uses rpcgen not only to generate stub routines, but also to generate the

XDR routines. Here is the protocol description file:

/*

* dir.x: Remote directory listing protocol

*/

const MAXNAMELEN = 255; /* maximum length of a directory entry */

typedef string nametype<MAXNAMELEN>; /* a directory entry */

typedef struct namenode *namelist; /* a link in the listing */

/*

* A node in the directory listing

*/

struct namenode {

nametype name; /* name of directory entry */

namelist next; /* next entry */

};

/*

* The result of a READDIR operation.

*/

union readdir_res switch (int errno) {

case 0:

namelist list; /* no error: return directory listing */

default:

void; /* error occurred: nothing else to return */

};

/*

* The directory program definition

*/

program DIRPROG {

version DIRVERS {

readdir_res

READDIR(nametype) = 1;

} = 1;

} = 76;

Note: Types (like readdir_res in the example above) can be defined using the “struct”, “union” and

“enum” keywords, but those keywords should not be used in subsequent declarations of variables of those

types. For example, if you define a union “foo”, you should declare using only “foo” and not “union foo”.

In fact, rpcgen compiles RPC unions into C structures and it is an error to declare them using the “union”

keyword.

Running rpcgen on dir.x creates four output files. Three are the same as before: header file, client stub rou-

tines and server skeleton. The fourth are the XDR routines necessary for converting the data types we

declared into XDR format and vice-versa. These are output in the file dir_xdr.c.

Here is the implementation of the READDIR procedure.

Page 8 rpcgen Programming Guide

/*
* dir_proc.c: remote readdir implementation
*/
#include <rpc/rpc.h>

#include <sys/dir.h>

#include "dir.h"

extern int errno;

extern char *malloc();

extern char *strdup();

readdir_res *

readdir_1(dirname)

nametype *dirname;

{

DIR *dirp;

struct direct *d;

namelist nl;

namelist *nlp;

static readdir_res res; /* must be static! */

/*
* Open directory
*/
dirp = opendir(*dirname);

if (dirp == NULL) {

res.errno = errno;

return (&res);

}

/*
* Free pre vious result
*/
xdr_free(xdr_readdir_res, &res);

/*
* Collect directory entries.
* Memory allocated here will be freed by xdr_free
* next time readdir_1 is called
*/
nlp = &res.readdir_res_u.list;

while (d = readdir(dirp)) {

nl = *nlp = (namenode *) malloc(sizeof(namenode));

nl->name = strdup(d->d_name);

nlp = &nl->next;

}

*nlp = NULL;

/*
* Return the result
*/
res.errno = 0;

closedir(dirp);

return (&res);

}

Finally, there is the client side program to call the server:

rpcgen Programming Guide Page 9

/*

* rls.c: Remote directory listing client

*/

#include <stdio.h>

#include <rpc/rpc.h> /* always need this */

#include "dir.h" /* will be generated by rpcgen */

extern int errno;

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *cl;

char *server;

char *dir;

readdir_res *result;

namelist nl;

if (argc != 3) {

fprintf(stderr, "usage: %s host directory\n",

argv[0]);

exit(1);

}

/*

* Remember what our command line arguments refer to

*/

server = argv[1];

dir = argv[2];

/*

* Create client "handle" used for calling MESSAGEPROG on the

* server designated on the command line. We tell the RPC package

* to use the "tcp" protocol when contacting the server.

*/

cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");

if (cl == NULL) {

/*

* Couldn’t establish connection with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/*

* Call the remote procedure readdir on the server

*/

result = readdir_1(&dir, cl);

if (result == NULL) {

/*

* An error occurred while calling the server.

Page 10 rpcgen Programming Guide

* Print error message and die.

*/

clnt_perror(cl, server);

exit(1);

}

/*

* Okay, we successfully called the remote procedure.

*/

if (result->errno != 0) {

/*

* A remote system error occurred.

* Print error message and die.

*/

errno = result->errno;

perror(dir);

exit(1);

}

/*

* Successfully got a directory listing.

* Print it out.

*/

for (nl = result->readdir_res_u.list; nl != NULL;

nl = nl->next) {

printf("%s\n", nl->name);

}

exit(0);

}

Compile everything, and run.

sun% rpcgen dir.x

sun% cc rls.c dir_clnt.c dir_xdr.c -o rls

sun% cc dir_svc.c dir_proc.c dir_xdr.c -o dir_svc

sun% dir_svc &

moon% rls sun /usr/pub

.

..

ascii

eqnchar

greek

kbd

marg8

tabclr

tabs

tabs4

moon%

A final note about rpcgen: The client program and the server procedure can be tested together as a single

program by simply linking them with each other rather than with the client and server stubs. The procedure

calls will be executed as ordinary local procedure calls and the program can be debugged with a local

debugger such as dbx. When the program is working, the client program can be linked to the client stub

produced by rpcgen and the server procedures can be linked to the server stub produced by rpcgen.

rpcgen Programming Guide Page 11

NOTE: If you do this, you may want to comment out calls to RPC library routines, and have client-side rou-

tines call server routines directly.

4. The C-Preprocessor

The C-preprocessor is run on all input files before they are compiled, so all the preprocessor directives are

legal within a “.x” file. Four symbols may be defined, depending upon which output file is getting gener-

ated. The symbols are:

Symbol Usage

RPC_HDR for header-file output

RPC_XDR for XDR routine output

RPC_SVC for server-skeleton output

RPC_CLNT for client stub output

Also, rpcgen does a little preprocessing of its own. Any line that begins with a percent sign is passed

directly into the output file, without any interpretation of the line. Here is a simple example that demon-

strates the preprocessing features.

/*

* time.x: Remote time protocol

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

} = 1;

} = 44;

#ifdef RPC_SVC

%int *

%timeget_1()

%{

% static int thetime;

%

% thetime = time(0);

% return (&thetime);

%}

#endif

The ’%’ feature is not generally recommended, as there is no guarantee that the compiler will stick the out-

put where you intended.

5. rpcgen Programming Notes

5.1. Timeout Changes

RPC sets a default timeout of 25 seconds for RPC calls when clnt_create() is used. This timeout may be

changed using clnt_control() Here is a small code fragment to demonstrate use of clnt_control():

struct timeval tv;

CLIENT *cl;

cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");

if (cl == NULL) {

exit(1);

}

tv.tv_sec = 60; /* change timeout to 1 minute */

Page 12 rpcgen Programming Guide

tv.tv_usec = 0;

clnt_control(cl, CLSET_TIMEOUT, &tv);

5.2. Handling Broadcast on the Server Side

When a procedure is known to be called via broadcast RPC, it is usually wise for the server to not reply

unless it can provide some useful information to the client. This prevents the network from getting flooded

by useless replies.

To prevent the server from replying, a remote procedure can return NULL as its result, and the server code

generated by rpcgen will detect this and not send out a reply.

Here is an example of a procedure that replies only if it thinks it is an NFS server:

void *

reply_if_nfsserver()

{

char notnull; /* just here so we can use its address */

if (access("/etc/exports", F_OK) < 0) {

return (NULL); /* prevent RPC from replying */

}

/*

* return non-null pointer so RPC will send out a reply

*/

return ((void *)¬null);

}

Note that if procedure returns type “void *”, they must return a non-NULL pointer if they want RPC to

reply for them.

5.3. Other Information Passed to Server Procedures

Server procedures will often want to know more about an RPC call than just its arguments. For example,

getting authentication information is important to procedures that want to implement some level of security.

This extra information is actually supplied to the server procedure as a second argument. Here is an exam-

ple to demonstrate its use. What we’ve done here is rewrite the previous printmessage_1() procedure to

only allow root users to print a message to the console.

int *

printmessage_1(msg, rq)

char **msg;

struct svc_req *rq;

{

static in result; /* Must be static */

FILE *f;

struct suthunix_parms *aup;

aup = (struct authunix_parms *)rq->rq_clntcred;

if (aup->aup_uid != 0) {

result = 0;

return (&result);

}

/*

* Same code as before.

*/

}

rpcgen Programming Guide Page 13

6. RPC Language

RPC language is an extension of XDR language. The sole extension is the addition of the program type.

For a complete description of the XDR language syntax, see the External Data Representation Standard:

Protocol Specification chapter. For a description of the RPC extensions to the XDR language, see the

Remote Procedure Calls: Protocol Specification chapter.

However, XDR language is so close to C that if you know C, you know most of it already. We describe

here the syntax of the RPC language, showing a few examples along the way. We also show how the var-

ious RPC and XDR type definitions get compiled into C type definitions in the output header file.

6.1. Definitions

An RPC language file consists of a series of definitions.

definition-list:

definition ";"

definition ";" definition-list

It recognizes five types of definitions.

definition:

enum-definition

struct-definition

union-definition

typedef-definition

const-definition

program-definition

6.2. Structures

An XDR struct is declared almost exactly like its C counterpart. It looks like the following:

struct-definition:

"struct" struct-ident "{"

declaration-list

"}"

declaration-list:

declaration ";"

declaration ";" declaration-list

As an example, here is an XDR structure to a two-dimensional coordinate, and the C structure that it gets

compiled into in the output header file.

struct coord { struct coord {

int x; --> int x;

int y; int y;

}; };

typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the output. This allows one

to use “coord” instead of “struct coord” when declaring items.

6.3. Unions

XDR unions are discriminated unions, and look quite different from C unions. They are more analogous to

Pascal variant records than they are to C unions.

Page 14 rpcgen Programming Guide

union-definition:

"union" union-ident "switch" "(" declaration ")" "{"

case-list

"}"

case-list:

"case" value ":" declaration ";"

"default" ":" declaration ";"

"case" value ":" declaration ";" case-list

Here is an example of a type that might be returned as the result of a “read data” operation. If there is no

error, return a block of data. Otherwise, don’t return anything.

union read_result switch (int errno) {

case 0:

opaque data[1024];

default:

void;

};

It gets compiled into the following:

struct read_result {

int errno;

union {

char data[1024];

} read_result_u;

};

typedef struct read_result read_result;

Notice that the union component of the output struct has the name as the type name, except for the trailing

“_u”.

6.4. Enumerations

XDR enumerations have the same syntax as C enumerations.

enum-definition:

"enum" enum-ident "{"

enum-value-list

"}"

enum-value-list:

enum-value

enum-value "," enum-value-list

enum-value:

enum-value-ident

enum-value-ident "=" value

Here is a short example of an XDR enum, and the C enum that it gets compiled into.

enum colortype { enum colortype {

RED = 0, RED = 0,

GREEN = 1, --> GREEN = 1,

BLUE = 2 BLUE = 2,

}; };

typedef enum colortype colortype;

rpcgen Programming Guide Page 15

6.5. Typedef

XDR typedefs have the same syntax as C typedefs.

typedef-definition:

"typedef" declaration

Here is an example that defines a fname_type used for declaring file name strings that have a maximum

length of 255 characters.

typedef string fname_type<255>; --> typedef char *fname_type;

6.6. Constants

XDR constants symbolic constants that may be used wherever a integer constant is used, for example, in

array size specifications.

const-definition:

"const" const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12.

const DOZEN = 12; --> #define DOZEN 12

6.7. Programs

RPC programs are declared using the following syntax:

program-definition:

"program" program-ident "{"

version-list

"}" "=" value

version-list:

version ";"

version ";" version-list

version:

"version" version-ident "{"

procedure-list

"}" "=" value

procedure-list:

procedure ";"

procedure ";" procedure-list

procedure:

type-ident procedure-ident "(" type-ident ")" "=" value

For example, here is the time protocol, revisited:

Page 16 rpcgen Programming Guide

/*

* time.x: Get or set the time. Time is represented as number of seconds

* since 0:00, January 1, 1970.

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET(void) = 1;

void TIMESET(unsigned) = 2;

} = 1;

} = 44;

This file compiles into #defines in the output header file:

#define TIMEPROG 44

#define TIMEVERS 1

#define TIMEGET 1

#define TIMESET 2

6.8. Declarations

In XDR, there are only four kinds of declarations.

declaration:

simple-declaration

fixed-array-declaration

variable-array-declaration

pointer-declaration

1) Simple declarations are just like simple C declarations.

simple-declaration:

type-ident variable-ident

Example:

colortype color; --> colortype color;

2) Fixed-length Array Declarations are just like C array declarations:

fixed-array-declaration:

type-ident variable-ident "[" value "]"

Example:

colortype palette[8]; --> colortype palette[8];

3) Variable-Length Array Declarations have no explicit syntax in C, so XDR invents its own using angle-

brackets.

variable-array-declaration:

type-ident variable-ident "<" value ">"

type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size may be omitted, indicating that the

array may be of any size.

int heights<12>; /* at most 12 items */

int widths<>; /* any number of items */

Since variable-length arrays have no explicit syntax in C, these declarations are actually compiled into

“struct”s. For example, the “heights” declaration gets compiled into the following struct:

rpcgen Programming Guide Page 17

struct {

u_int heights_len; /* # of items in array */

int *heights_val; /* pointer to array */

} heights;

Note that the number of items in the array is stored in the “_len” component and the pointer to the array is

stored in the “_val” component. The first part of each of these component’s names is the same as the name

of the declared XDR variable.

4) Pointer Declarations are made in XDR exactly as they are in C. You can’t really send pointers over

the network, but you can use XDR pointers for sending recursive data types such as lists and trees. The

type is actually called “optional-data”, not “pointer”, in XDR language.

pointer-declaration:

type-ident "*" variable-ident

Example:

listitem *next; --> listitem *next;

6.9. Special Cases

There are a few exceptions to the rules described above.

Booleans: C has no built-in boolean type. However, the RPC library does a boolean type called bool_t

that is either TRUE or FALSE. Things declared as type bool in XDR language are compiled into bool_t

in the output header file.

Example:

bool married; --> bool_t married;

Strings: C has no built-in string type, but instead uses the null-terminated “char *” convention. In XDR

language, strings are declared using the “string” keyword, and compiled into “char *”s in the output header

file. The maximum size contained in the angle brackets specifies the maximum number of characters

allowed in the strings (not counting the NULL character). The maximum size may be left off, indicating a

string of arbitrary length.

Examples:

string name<32>; --> char *name;

string longname<>; --> char *longname;

Opaque Data: Opaque data is used in RPC and XDR to describe untyped data, that is, just sequences of

arbitrary bytes. It may be declared either as a fixed or variable length array.

Examples:

opaque diskblock[512]; --> char diskblock[512];

opaque filedata<1024>; --> struct {

u_int filedata_len;

char *filedata_val;

} filedata;

Voids: In a void declaration, the variable is not named. The declaration is just “void” and nothing else.

Void declarations can only occur in two places: union definitions and program definitions (as the argument

or result of a remote procedure).

