
Remote Procedure Call Programming Guide

This document assumes a working knowledge of network theory. It is intended for programmers who wish

to write network applications using remote procedure calls (explained below), and who want to understand

the RPC mechanisms usually hidden by the rpcgen(1) protocol compiler. rpcgen is described in detail in

the previous chapter, the rpcgen Programming Guide.

Note: Before attempting to write a network application, or to convert an existing non-network application

to run over the network, you may want to understand the material in this chapter. However, for most appli-

cations, you can circumvent the need to cope with the details presented here by using rpcgen. The Generat-

ing XDR Routines section of that chapter contains the complete source for a working RPC service—a

remote directory listing service which uses rpcgen to generate XDR routines as well as client and server

stubs.

What are remote procedure calls? Simply put, they are the high-level communications paradigm used in

the operating system. RPC presumes the existence of low-level networking mechanisms (such as TCP/IP

and UDP/IP), and upon them it implements a logical client to server communications system designed

specifically for the support of network applications. With RPC, the client makes a procedure call to send a

data packet to the server. When the packet arrives, the server calls a dispatch routine, performs whatever

service is requested, sends back the reply, and the procedure call returns to the client.

1. Layers of RPC

The RPC interface can be seen as being divided into three layers.1

The Highest Layer: The highest layer is totally transparent to the operating system, machine and network

upon which it is run. It’s probably best to think of this level as a way of using RPC, rather than as a part of

RPC proper. Programmers who write RPC routines should (almost) always make this layer available to

others by way of a simple C front end that entirely hides the networking.

To illustrate, at this level a program can simply make a call to rnusers(), a C routine which returns the num-

ber of users on a remote machine. The user is not explicitly aware of using RPC — they simply call a pro-

cedure, just as they would call malloc().

The Middle Layer: The middle layer is really “RPC proper.” Here, the user doesn’t need to consider details

about sockets, the UNIX system, or other low-level implementation mechanisms. They simply make

remote procedure calls to routines on other machines. The selling point here is simplicity. It’s this layer

that allows RPC to pass the “hello world” test — simple things should be simple. The middle-layer rou-

tines are used for most applications.

RPC calls are made with the system routines registerrpc() callrpc() and svc_run(). The first two of these

are the most fundamental: registerrpc() obtains a unique system-wide procedure-identification number, and

callrpc() actually executes a remote procedure call. At the middle level, a call to rnusers() is implemented

by way of these two routines.

The middle layer is unfortunately rarely used in serious programming due to its inflexibility (simplicity). It

does not allow timeout specifications or the choice of transport. It allows no UNIX process control or flexi-

bility in case of errors. It doesn’t support multiple kinds of call authentication. The programmer rarely

needs all these kinds of control, but one or two of them is often necessary.

The Lowest Layer: The lowest layer does allow these details to be controlled by the programmer, and for

that reason it is often necessary. Programs written at this level are also most efficient, but this is rarely a

real issue — since RPC clients and servers rarely generate heavy network loads.

Although this document only discusses the interface to C, remote procedure calls can be made from any

language. Even though this document discusses RPC when it is used to communicate between processes

on different machines, it works just as well for communication between different processes on the same

machine.

1 For a complete specification of the routines in the remote procedure call Library, see the rpc(3N) manual

page.

- 1 -

Page 2 Remote Procedure Call Programming Guide

1.1. The RPC Paradigm

Here is a diagram of the RPC paradigm:

Figure 1-1 Network Communication with the Remote Reocedure Call

client

program

callrpc

function

invoke

service

call

service

service

executes

return

answer

request

completed

return

reply

program

continues

service

daemon

Machine B

Machine A

Remote Procedure Call Programming Guide Page 3

2. Higher Layers of RPC

2.1. Highest Layer

Imagine you’re writing a program that needs to know how many users are logged into a remote machine.

You can do this by calling the RPC library routine rnusers() as illustrated below:

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

int num;

if (argc != 2) {

fprintf(stderr, "usage: rnusers hostname\n");

exit(1);

}

if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rnusers\n");

exit(-1);

}

printf("%d users on %s\n", num, argv[1]);

exit(0);

}

RPC library routines such as rnusers() are in the RPC services library librpcsvc.a Thus, the program above

should be compiled with

% cc program.c -lrpcsvc

rnusers(), like the other RPC library routines, is documented in section 3R of the System Interface Manual

for the Sun Workstation, the same section which documents the standard Sun RPC services. See the

intro(3R) manual page for an explanation of the documentation strategy for these services and their RPC

protocols.

Here are some of the RPC service library routines available to the C programmer:

Table 3-3 RPC Service Library Routines

Routine Description

rnusers Return number of users on remote machine

rusers Return information about users on remote machine

havedisk Determine if remote machine has disk

rstats Get performance data from remote kernel

rwall Write to specified remote machines

yppasswd Update user password in Yellow Pages

Other RPC services — for example ether() mount rquota() and spray — are not available to the C program-

mer as library routines. They do, however, hav e RPC program numbers so they can be invoked with call-

rpc() which will be discussed in the next section. Most of them also have compilable rpcgen(1) protocol

description files. (The rpcgen protocol compiler radically simplifies the process of developing network

applications. See the rpcgen Programming Guide for detailed information about rpcgen and rpcgen proto-

col description files).

Page 4 Remote Procedure Call Programming Guide

2.2. Intermediate Layer

The simplest interface, which explicitly makes RPC calls, uses the functions callrpc() and registerrpc()

Using this method, the number of remote users can be gotten as follows:

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

main(argc, argv)

int argc;

char **argv;

{

unsigned long nusers;

int stat;

if (argc != 2) {

fprintf(stderr, "usage: nusers hostname\n");

exit(-1);

}

if (stat = callrpc(argv[1],

RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,

xdr_void, 0, xdr_u_long, &nusers) != 0) {

clnt_perrno(stat);

exit(1);

}

printf("%d users on %s\n", nusers, argv[1]);

exit(0);

}

Each RPC procedure is uniquely defined by a program number, version number, and procedure number.

The program number specifies a group of related remote procedures, each of which has a different proce-

dure number. Each program also has a version number, so when a minor change is made to a remote ser-

vice (adding a new procedure, for example), a new program number doesn’t hav e to be assigned. When

you want to call a procedure to find the number of remote users, you look up the appropriate program, ver-

sion and procedure numbers in a manual, just as you look up the name of a memory allocator when you

want to allocate memory.

The simplest way of making remote procedure calls is with the RPC library routine callrpc() It has eight

parameters. The first is the name of the remote server machine. The next three parameters are the program,

version, and procedure numbers—together they identify the procedure to be called. The fifth and sixth

parameters are an XDR filter and an argument to be encoded and passed to the remote procedure. The final

two parameters are a filter for decoding the results returned by the remote procedure and a pointer to the

place where the procedure’s results are to be stored. Multiple arguments and results are handled by embed-

ding them in structures. If callrpc() completes successfully, it returns zero; else it returns a nonzero value.

The return codes (of type cast into an integer) are found in <rpc/clnt.h>.

Since data types may be represented differently on different machines, callrpc() needs both the type of the

RPC argument, as well as a pointer to the argument itself (and similarly for the result). For RUSER-

SPROC_NUM, the return value is an unsigned long so callrpc() has xdr_u_long() as its first return parame-

ter, which says that the result is of type unsigned long and &nusers as its second return parameter, which is

a pointer to where the long result will be placed. Since RUSERSPROC_NUM takes no argument, the argu-

ment parameter of callrpc() is xdr_void().

After trying several times to deliver a message, if callrpc() gets no answer, it returns with an error code.

The delivery mechanism is UDP, which stands for User Datagram Protocol. Methods for adjusting the

number of retries or for using a different protocol require you to use the lower layer of the RPC library,

Remote Procedure Call Programming Guide Page 5

discussed later in this document. The remote server procedure corresponding to the above might look like

this:

char *

nuser(indata)

char *indata;

{

unsigned long nusers;

/*

* Code here to compute the number of users

* and place result in variable nusers.

*/

return((char *)&nusers);

}

It takes one argument, which is a pointer to the input of the remote procedure call (ignored in our example),

and it returns a pointer to the result. In the current version of C, character pointers are the generic pointers,

so both the input argument and the return value are cast to char *.

Normally, a server registers all of the RPC calls it plans to handle, and then goes into an infinite loop wait-

ing to service requests. In this example, there is only a single procedure to register, so the main body of the

server would look like this:

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

char *nuser();

main()

{

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,

nuser, xdr_void, xdr_u_long);

svc_run(); /* Never returns */

fprintf(stderr, "Error: svc_run returned!\n");

exit(1);

}

The registerrpc() routine registers a C procedure as corresponding to a given RPC procedure number. The

first three parameters, RUSERPROG, RUSERSVERS, and RUSERSPROC_NUM are the program, version,

and procedure numbers of the remote procedure to be registered; nuser() is the name of the local procedure

that implements the remote procedure; and xdr_void() and xdr_u_long() are the XDR filters for the remote

procedure’s arguments and results, respectively. (Multiple arguments or multiple results are passed as

structures).

Only the UDP transport mechanism can use registerrpc() thus, it is always safe in conjunction with calls

generated by callrpc().

Warning: the UDP transport mechanism can only deal with arguments and results less than 8K bytes

in length.

After registering the local procedure, the server program’s main procedure calls svc_run(), the RPC

library’s remote procedure dispatcher. It is this function that calls the remote procedures in response to

RPC call messages. Note that the dispatcher takes care of decoding remote procedure arguments and

encoding results, using the XDR filters specified when the remote procedure was registered.

Page 6 Remote Procedure Call Programming Guide

2.3. Assigning Program Numbers

Program numbers are assigned in groups of 0x20000000 according to the following chart:

0x0 - 0x1fffffff Defined by Sun

0x20000000 - 0x3fffffff Defined by user

0x40000000 - 0x5fffffff Transient

0x60000000 - 0x7fffffff Reserved

0x80000000 - 0x9fffffff Reserved

0xa0000000 - 0xbfffffff Reserved

0xc0000000 - 0xdfffffff Reserved

0xe0000000 - 0xffffffff Reserved

Sun Microsystems administers the first group of numbers, which should be identical for all Sun customers.

If a customer develops an application that might be of general interest, that application should be given an

assigned number in the first range. The second group of numbers is reserved for specific customer applica-

tions. This range is intended primarily for debugging new programs. The third group is reserved for appli-

cations that generate program numbers dynamically. The final groups are reserved for future use, and

should not be used.

To register a protocol specification, send a request by network mail to rpc@sun or write to:

RPC Administrator

Sun Microsystems

2550 Garcia Ave.

Mountain View, CA 94043

Please include a compilable rpcgen “.x” file describing your protocol. You will be given a unique program

number in return.

The RPC program numbers and protocol specifications of standard Sun RPC services can be found in the

include files in /usr/include/rpcsvc. These services, however, constitute only a small subset of those which

have been registered. The complete list of registered programs, as of the time when this manual was

printed, is:

Table 3-2 RPC Registered Programs

RPC Number Program Description

100000 PMAPPROG portmapper

100001 RSTATPROG remote stats

100002 RUSERSPROG remote users

100003 NFSPROG nfs

100004 YPPROG Yellow Pages

100005 MOUNTPROG mount daemon

100006 DBXPROG remote dbx

100007 YPBINDPROG yp binder

100008 WALLPROG shutdown msg

100009 YPPASSWDPROG yppasswd server

100010 ETHERSTATPROG ether stats

100011 RQUOTAPROG disk quotas

100012 SPRAYPROG spray packets

100013 IBM3270PROG 3270 mapper

100014 IBMRJEPROG RJE mapper

100015 SELNSVCPROG selection service

100016 RDATABASEPROG remote database access

100017 REXECPROG remote execution

100018 ALICEPROG Alice Office Automation

100019 SCHEDPROG scheduling service

Remote Procedure Call Programming Guide Page 7

RPC Number Program Description

100020 LOCKPROG local lock manager

100021 NETLOCKPROG network lock manager

100022 X25PROG x.25 inr protocol

100023 STATMON1PROG status monitor 1

100024 STATMON2PROG status monitor 2

100025 SELNLIBPROG selection library

100026 BOOTPARAMPROG boot parameters service

100027 MAZEPROG mazewars game

100028 YPUPDATEPROG yp update

100029 KEYSERVEPROG key server

100030 SECURECMDPROG secure login

100031 NETFWDIPROG nfs net forwarder init

100032 NETFWDTPROG nfs net forwarder trans

100033 SUNLINKMAP_PROG sunlink MAP

100034 NETMONPROG network monitor

100035 DBASEPROG lightweight database

100036 PWDAUTHPROG password authorization

100037 TFSPROG translucent file svc

100038 NSEPROG nse server

100039 NSE_ACTIVATE_PROG nse activate daemon

150001 PCNFSDPROG pc passwd authorization

200000 PYRAMIDLOCKINGPROG Pyramid-locking

200001 PYRAMIDSYS5 Pyramid-sys5

200002 CADDS_IMAGE CV cadds_image

300001 ADT_RFLOCKPROG ADT file locking

2.4. Passing Arbitrary Data Types

In the previous example, the RPC call passes a single unsigned long RPC can handle arbitrary data struc-

tures, regardless of different machines’ byte orders or structure layout conventions, by always converting

them to a network standard called External Data Representation (XDR) before sending them over the wire.

The process of converting from a particular machine representation to XDR format is called serializing, and

the reverse process is called deserializing. The type field parameters of callrpc() and registerrpc() can be a

built-in procedure like xdr_u_long() in the previous example, or a user supplied one. XDR has these built-

in type routines:

xdr_int() xdr_u_int() xdr_enum()

xdr_long() xdr_u_long() xdr_bool()

xdr_short() xdr_u_short() xdr_wrapstring()

xdr_char() xdr_u_char()

Note that the routine xdr_string() exists, but cannot be used with callrpc() and registerrpc(), which only

pass two parameters to their XDR routines. xdr_wrapstring() has only two parameters, and is thus OK. It

calls xdr_string().

As an example of a user-defined type routine, if you wanted to send the structure

struct simple {

int a;

short b;

} simple;

Page 8 Remote Procedure Call Programming Guide

then you would call callrpc() as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,

xdr_simple, &simple ...);

where xdr_simple() is written as:

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)

XDR *xdrsp;

struct simple *simplep;

{

if (!xdr_int(xdrsp, &simplep->a))

return (0);

if (!xdr_short(xdrsp, &simplep->b))

return (0);

return (1);

}

An XDR routine returns nonzero (true in the sense of C) if it completes successfully, and zero otherwise. A

complete description of XDR is in the XDR Protocol Specification section of this manual, only few imple-

mentation examples are given here.

In addition to the built-in primitives, there are also the prefabricated building blocks:

xdr_array() xdr_bytes() xdr_reference()

xdr_vector() xdr_union() xdr_pointer()

xdr_string() xdr_opaque()

To send a variable array of integers, you might package them up as a structure like this

struct varintarr {

int *data;

int arrlnth;

} arr;

and make an RPC call such as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,

xdr_varintarr, &arr...);

with xdr_varintarr() defined as:

xdr_varintarr(xdrsp, arrp)

XDR *xdrsp;

struct varintarr *arrp;

{

return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth,

MAXLEN, sizeof(int), xdr_int));

}

This routine takes as parameters the XDR handle, a pointer to the array, a pointer to the size of the array,

the maximum allowable array size, the size of each array element, and an XDR routine for handling each

array element.

Remote Procedure Call Programming Guide Page 9

If the size of the array is known in advance, one can use xdr_vector(), which serializes fixed-length arrays.

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)

XDR *xdrsp;

int intarr[];

{

int i;

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),

xdr_int));

}

XDR always converts quantities to 4-byte multiples when serializing. Thus, if either of the examples above

involved characters instead of integers, each character would occupy 32 bits. That is the reason for the

XDR routine xdr_bytes() which is like xdr_array() except that it packs characters; xdr_bytes() has four

parameters, similar to the first four parameters of xdr_array(). For null-terminated strings, there is also the

xdr_string() routine, which is the same as xdr_bytes() without the length parameter. On serializing it gets

the string length from strlen(), and on deserializing it creates a null-terminated string.

Here is a final example that calls the previously written xdr_simple() as well as the built-in functions

xdr_string() and xdr_reference(), which chases pointers:

struct finalexample {

char *string;

struct simple *simplep;

} finalexample;

xdr_finalexample(xdrsp, finalp)

XDR *xdrsp;

struct finalexample *finalp;

{

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (0);

if (!xdr_reference(xdrsp, &finalp->simplep,

sizeof(struct simple), xdr_simple);

return (0);

return (1);

}

Note that we could as easily call xdr_simple() here instead of xdr_reference().

3. Lowest Layer of RPC

In the examples given so far, RPC takes care of many details automatically for you. In this section, we’ll

show you how you can change the defaults by using lower layers of the RPC library. It is assumed that you

are familiar with sockets and the system calls for dealing with them.

There are several occasions when you may need to use lower layers of RPC. First, you may need to use

TCP, since the higher layer uses UDP, which restricts RPC calls to 8K bytes of data. Using TCP permits

calls to send long streams of data. For an example, see the TCP section below. Second, you may want to

allocate and free memory while serializing or deserializing with XDR routines. There is no call at the

higher level to let you free memory explicitly. For more explanation, see the Memory Allocation with XDR

section below. Third, you may need to perform authentication on either the client or server side, by supply-

ing credentials or verifying them. See the explanation in the Authentication section below.

Page 10 Remote Procedure Call Programming Guide

3.1. More on the Server Side

The server for the nusers() program shown below does the same thing as the one using registerrpc() above,

but is written using a lower layer of the RPC package:

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

main()

{

SVCXPRT *transp;

int nuser();

transp = svcudp_create(RPC_ANYSOCK);

if (transp == NULL){

fprintf(stderr, "can’t create an RPC server\n");

exit(1);

}

pmap_unset(RUSERSPROG, RUSERSVERS);

if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

nuser, IPPROTO_UDP)) {

fprintf(stderr, "can’t register RUSER service\n");

exit(1);

}

svc_run(); /* Never returns */

fprintf(stderr, "should never reach this point\n");

}

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

unsigned long nusers;

switch (rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can’t reply to RPC call\n");

return;

case RUSERSPROC_NUM:

/*

* Code here to compute the number of users

* and assign it to the variable nusers

*/

if (!svc_sendreply(transp, xdr_u_long, &nusers))

fprintf(stderr, "can’t reply to RPC call\n");

return;

default:

svcerr_noproc(transp);

return;

}

}

Remote Procedure Call Programming Guide Page 11

First, the server gets a transport handle, which is used for receiving and replying to RPC messages. regis-

terrpc() uses svcudp_create() to get a UDP handle. If you require a more reliable protocol, call svctcp_cre-

ate() instead. If the argument to svcudp_create() is RPC_ANYSOCK the RPC library creates a socket on

which to receive and reply to RPC calls. Otherwise, svcudp_create() expects its argument to be a valid

socket number. If you specify your own socket, it can be bound or unbound. If it is bound to a port by the

user, the port numbers of svcudp_create() and clnttcp_create() (the low-level client routine) must match.

If the user specifies the RPC_ANYSOCK argument, the RPC library routines will open sockets. Otherwise

they will expect the user to do so. The routines svcudp_create() and clntudp_create() will cause the RPC

library routines to bind() their socket if it is not bound already.

A service may choose to register its port number with the local portmapper service. This is done is done by

specifying a non-zero protocol number in svc_register(). Incidently, a client can discover the server’s port

number by consulting the portmapper on their server’s machine. This can be done automatically by speci-

fying a zero port number in clntudp_create() or clnttcp_create().

After creating an SVCXPRT, the next step is to call pmap_unset() so that if the nusers() server crashed ear-

lier, any previous trace of it is erased before restarting. More precisely, pmap_unset() erases the entry for

RUSERSPROG from the port mapper’s tables.

Finally, we associate the program number for nusers() with the procedure nuser(). The final argument to

svc_register() is normally the protocol being used, which, in this case, is IPPROT O_UDP Notice that unlike

registerrpc(), there are no XDR routines involved in the registration process. Also, registration is done on

the program, rather than procedure, level.

The user routine nuser() must call and dispatch the appropriate XDR routines based on the procedure num-

ber. Note that two things are handled by nuser() that registerrpc() handles automatically. The first is that

procedure NULLPROC (currently zero) returns with no results. This can be used as a simple test for detect-

ing if a remote program is running. Second, there is a check for invalid procedure numbers. If one is

detected, svcerr_noproc() is called to handle the error.

The user service routine serializes the results and returns them to the RPC caller via svc_sendreply() Its first

parameter is the SVCXPRT handle, the second is the XDR routine, and the third is a pointer to the data to be

returned. Not illustrated above is how a server handles an RPC program that receives data. As an example,

we can add a procedure RUSERSPROC_BOOL which has an argument nusers(), and returns TRUE or

FALSE depending on whether there are nusers logged on. It would look like this:

case RUSERSPROC_BOOL: {

int bool;

unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {

svcerr_decode(transp);

return;

}

/*

* Code to set nusers = number of users

*/

if (nuserquery == nusers)

bool = TRUE;

else

bool = FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool)) {

fprintf(stderr, "can’t reply to RPC call\n");

return (1);

}

return;

}

Page 12 Remote Procedure Call Programming Guide

The relevant routine is svc_getargs() which takes an SVCXPRT handle, the XDR routine, and a pointer to

where the input is to be placed as arguments.

3.2. Memory Allocation with XDR

XDR routines not only do input and output, they also do memory allocation. This is why the second

parameter of xdr_array() is a pointer to an array, rather than the array itself. If it is NULL, then xdr_array()

allocates space for the array and returns a pointer to it, putting the size of the array in the third argument.

As an example, consider the following XDR routine xdr_chararr1() which deals with a fixed array of bytes

with length SIZE.

xdr_chararr1(xdrsp, chararr)

XDR *xdrsp;

char chararr[];

{

char *p;

int len;

p = chararr;

len = SIZE;

return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

If space has already been allocated in chararr, it can be called from a server like this:

char chararr[SIZE];

svc_getargs(transp, xdr_chararr1, chararr);

If you want XDR to do the allocation, you would have to rewrite this routine in the following way:

xdr_chararr2(xdrsp, chararrp)

XDR *xdrsp;

char **chararrp;

{

int len;

len = SIZE;

return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;

svc_getargs(transp, xdr_chararr2, &arrptr);

/*

* Use the result here

*/

svc_freeargs(transp, xdr_chararr2, &arrptr);

Note that, after being used, the character array can be freed with svc_freeargs() svc_freeargs() will not

attempt to free any memory if the variable indicating it is NULL. For example, in the routine xdr_finalex-

ample(), given earlier, if finalp->string was NULL, then it would not be freed. The same is true for

finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing, and freeing memory. When

an XDR routine is called from callrpc() the serializing part is used. When called from svc_getargs() the

deserializer is used. And when called from svc_freeargs() the memory deallocator is used. When building

Remote Procedure Call Programming Guide Page 13

simple examples like those in this section, a user doesn’t hav e to worry about the three modes. See the

External Data Representation: Sun Technical Notes for examples of more sophisticated XDR routines that

determine which of the three modes they are in and adjust their behavior accordingly.

Page 14 Remote Procedure Call Programming Guide

3.3. The Calling Side

When you use callrpc() you have no control over the RPC delivery mechanism or the socket used to trans-

port the data. To illustrate the layer of RPC that lets you adjust these parameters, consider the following

code to call the nusers service:

#include <stdio.h>

#include <rpc/rpc.h>

#include <utmp.h>

#include <rpcsvc/rusers.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

main(argc, argv)

int argc;

char **argv;

{

struct hostent *hp;

struct timeval pertry_timeout, total_timeout;

struct sockaddr_in server_addr;

int sock = RPC_ANYSOCK;

register CLIENT *client;

enum clnt_stat clnt_stat;

unsigned long nusers;

if (argc != 2) {

fprintf(stderr, "usage: nusers hostname\n");

exit(-1);

}

if ((hp = gethostbyname(argv[1])) == NULL) {

fprintf(stderr, "can’t get addr for %s\n",argv[1]);

exit(-1);

}

pertry_timeout.tv_sec = 3;

pertry_timeout.tv_usec = 0;

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length);

server_addr.sin_family = AF_INET;

server_addr.sin_port = 0;

if ((client = clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock)) == NULL) {

clnt_pcreateerror("clntudp_create");

exit(-1);

}

total_timeout.tv_sec = 20;

total_timeout.tv_usec = 0;

clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,

0, xdr_u_long, &nusers, total_timeout);

if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");

exit(-1);

}

clnt_destroy(client);

close(sock);

exit(0);

}

The low-level version of callrpc() is clnt_call() which takes a CLIENT pointer rather than a host name. The

parameters to clnt_call() are a CLIENT pointer, the procedure number, the XDR routine for serializing the

Remote Procedure Call Programming Guide Page 15

argument, a pointer to the argument, the XDR routine for deserializing the return value, a pointer to where

the return value will be placed, and the time in seconds to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. callrpc() uses UDP, thus it calls

clntudp_create() to get a CLIENT pointer. To get TCP (Transmission Control Protocol), you would use

clnttcp_create().

The parameters to clntudp_create() are the server address, the program number, the version number, a time-

out value (between tries), and a pointer to a socket. The final argument to clnt_call() is the total time to

wait for a response. Thus, the number of tries is the clnt_call() timeout divided by the clntudp_create()

timeout.

Note that the clnt_destroy() call always deallocates the space associated with the CLIENT handle. It closes

the socket associated with the CLIENT handle, however, only if the RPC library opened it. It the socket

was opened by the user, it stays open. This makes it possible, in cases where there are multiple client han-

dles using the same socket, to destroy one handle without closing the socket that other handles are using.

To make a stream connection, the call to clntudp_create() is replaced with a call to clnttcp_create().

clnttcp_create(&server_addr, prognum, versnum, &sock,

inputsize, outputsize);

There is no timeout argument; instead, the receive and send buffer sizes must be specified. When the

clnttcp_create() call is made, a TCP connection is established. All RPC calls using that CLIENT handle

would use this connection. The server side of an RPC call using TCP has svcudp_create() replaced by

svctcp_create().

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

The last two arguments to svctcp_create() are send and receive sizes respectively. If ‘0’ is specified for

either of these, the system chooses a reasonable default.

Page 16 Remote Procedure Call Programming Guide

4. Other RPC Features

This section discusses some other aspects of RPC that are occasionally useful.

4.1. Select on the Server Side

Suppose a process is processing RPC requests while performing some other activity. If the other activity

involves periodically updating a data structure, the process can set an alarm signal before calling svc_run()

But if the other activity involves waiting on a file descriptor, the svc_run() call won’t work. The code for

svc_run() is as follows:

void

svc_run()

{

fd_set readfds;

int dtbsz = getdtablesize();

for (;;) {

readfds = svc_fds;

switch (select(dtbsz, &readfds, NULL,NULL,NULL)) {

case -1:

if (errno == EINTR)

continue;

perror("select");

return;

case 0:

break;

default:

svc_getreqset(&readfds);

}

}

}

You can bypass svc_run() and call svc_getreqset() yourself. All you need to know are the file descriptors of

the socket(s) associated with the programs you are waiting on. Thus you can have your own select() that

waits on both the RPC socket, and your own descriptors. Note that svc_fds() is a bit mask of all the file

descriptors that RPC is using for services. It can change everytime that any RPC library routine is called,

because descriptors are constantly being opened and closed, for example for TCP connections.

4.2. Broadcast RPC

The portmapper is a daemon that converts RPC program numbers into DARPA protocol port numbers; see

the portmap man page. You can’t do broadcast RPC without the portmapper. Here are the main differences

between broadcast RPC and normal RPC calls:

1. Normal RPC expects one answer, whereas broadcast RPC expects many answers (one or more

answer from each responding machine).

2. Broadcast RPC can only be supported by packet-oriented (connectionless) transport protocols like

UPD/IP.

3. The implementation of broadcast RPC treats all unsuccessful responses as garbage by filtering them

out. Thus, if there is a version mismatch between the broadcaster and a remote service, the user of

broadcast RPC never knows.

4. All broadcast messages are sent to the portmap port. Thus, only services that register themselves

with their portmapper are accessible via the broadcast RPC mechanism.

5. Broadcast requests are limited in size to the MTU (Maximum Transfer Unit) of the local network.

For Ethernet, the MTU is 1500 bytes.

Remote Procedure Call Programming Guide Page 17

4.2.1. Broadcast RPC Synopsis

#include <rpc/pmap_clnt.h>

. . .

enum clnt_stat clnt_stat;

. . .

clnt_stat = clnt_broadcast(prognum, versnum, procnum,

inproc, in, outproc, out, eachresult)

u_long prognum; /* program number */

u_long versnum; /* version number */

u_long procnum; /* procedure number */

xdrproc_t inproc; /* xdr routine for args */

caddr_t in; /* pointer to args */

xdrproc_t outproc; /* xdr routine for results */

caddr_t out; /* pointer to results */

bool_t (*eachresult)();/* call with each result gotten */

The procedure eachresult() is called each time a valid result is obtained. It returns a boolean that indicates

whether or not the user wants more responses.

bool_t done;

. . .

done = eachresult(resultsp, raddr)

caddr_t resultsp;

struct sockaddr_in *raddr; /* Addr of responding machine */

If done is TRUE, then broadcasting stops and clnt_broadcast() returns successfully. Otherwise, the routine

waits for another response. The request is rebroadcast after a few seconds of waiting. If no responses come

back, the routine returns with RPC_TIMEDOUT.

4.3. Batching

The RPC architecture is designed so that clients send a call message, and wait for servers to reply that the

call succeeded. This implies that clients do not compute while servers are processing a call. This is ineffi-

cient if the client does not want or need an acknowledgement for every message sent. It is possible for

clients to continue computing while waiting for a response, using RPC batch facilities.

RPC messages can be placed in a “pipeline” of calls to a desired server; this is called batching. Batching

assumes that: 1) each RPC call in the pipeline requires no response from the server, and the server does not

send a response message; and 2) the pipeline of calls is transported on a reliable byte stream transport such

as TCP/IP. Since the server does not respond to every call, the client can generate new calls in parallel with

the server executing previous calls. Furthermore, the TCP/IP implementation can buffer up many call mes-

sages, and send them to the server in one write() system call. This overlapped execution greatly decreases

the interprocess communication overhead of the client and server processes, and the total elapsed time of a

series of calls.

Since the batched calls are buffered, the client should eventually do a nonbatched call in order to flush the

pipeline.

A contrived example of batching follows. Assume a string rendering service (like a window system) has

two similar calls: one renders a string and returns void results, while the other renders a string and remains

silent. The service (using the TCP/IP transport) may look like:

Page 18 Remote Procedure Call Programming Guide

#include <stdio.h>

#include <rpc/rpc.h>

#include <suntool/windows.h>

void windowdispatch();

main()

{

SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

if (transp == NULL){

fprintf(stderr, "can’t create an RPC server\n");

exit(1);

}

pmap_unset(WINDOWPROG, WINDOWVERS);

if (!svc_register(transp, WINDOWPROG, WINDOWVERS,

windowdispatch, IPPROTO_TCP)) {

fprintf(stderr, "can’t register WINDOW service\n");

exit(1);

}

svc_run(); /* Never returns */

fprintf(stderr, "should never reach this point\n");

}

void

windowdispatch(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

char *s = NULL;

switch (rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can’t reply to RPC call\n");

return;

case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");

/*

* Tell caller he screwed up

*/

svcerr_decode(transp);

break;

}

/*

* Code here to render the string s

*/

if (!svc_sendreply(transp, xdr_void, NULL))

fprintf(stderr, "can’t reply to RPC call\n");

break;

case RENDERSTRING_BATCHED:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

Remote Procedure Call Programming Guide Page 19

fprintf(stderr, "can’t decode arguments\n");

/*

* We are silent in the face of protocol errors

*/

break;

}

/*

* Code here to render string s, but send no reply!

*/

break;

default:

svcerr_noproc(transp);

return;

}

/*

* Now free string allocated while decoding arguments

*/

svc_freeargs(transp, xdr_wrapstring, &s);

}

Of course the service could have one procedure that takes the string and a boolean to indicate whether or

not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC calls on a TCP-based trans-

port and the actual calls must have the following attributes: 1) the result’s XDR routine must be zero

NULL), and 2) the RPC call’s timeout must be zero.

Page 20 Remote Procedure Call Programming Guide

Here is an example of a client that uses batching to render a bunch of strings; the batching is flushed when

the client gets a null string (EOF):

#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

#include <suntool/windows.h>

main(argc, argv)

int argc;

char **argv;

{

struct hostent *hp;

struct timeval pertry_timeout, total_timeout;

struct sockaddr_in server_addr;

int sock = RPC_ANYSOCK;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if ((client = clnttcp_create(&server_addr,

WINDOWPROG, WINDOWVERS, &sock, 0, 0)) == NULL) {

perror("clnttcp_create");

exit(-1);

}

total_timeout.tv_sec = 0;

total_timeout.tv_usec = 0;

while (scanf("%s", s) != EOF) {

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,

xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "batched rpc");

exit(-1);

}

}

/* Now flush the pipeline */

total_timeout.tv_sec = 20;

clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,

xdr_void, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");

exit(-1);

}

clnt_destroy(client);

exit(0);

}

Since the server sends no message, the clients cannot be notified of any of the failures that may occur.

Therefore, clients are on their own when it comes to handling errors.

The above example was completed to render all of the (2000) lines in the file /etc/termcap. The rendering

service did nothing but throw the lines away. The example was run in the following four configurations: 1)

machine to itself, regular RPC; 2) machine to itself, batched RPC; 3) machine to another, regular RPC; and

4) machine to another, batched RPC. The results are as follows: 1) 50 seconds; 2) 16 seconds; 3) 52 sec-

onds; 4) 10 seconds. Running fscanf() on /etc/termcap only requires six seconds. These timings show the

advantage of protocols that allow for overlapped execution, though these protocols are often hard to design.

Remote Procedure Call Programming Guide Page 21

4.4. Authentication

In the examples presented so far, the caller never identified itself to the server, and the server never required

an ID from the caller. Clearly, some network services, such as a network filesystem, require stronger secu-

rity than what has been presented so far.

In reality, every RPC call is authenticated by the RPC package on the server, and similarly, the RPC client

package generates and sends authentication parameters. Just as different transports (TCP/IP or UDP/IP)

can be used when creating RPC clients and servers, different forms of authentication can be associated with

RPC clients; the default authentication type used as a default is type none.

The authentication subsystem of the RPC package is open ended. That is, numerous types of authentication

are easy to support.

4.4.1. UNIX Authentication

The Client Side

When a caller creates a new RPC client handle as in:

clnt = clntudp_create(address, prognum, versnum,

wait, sockp)

the appropriate transport instance defaults the associate authentication handle to be

clnt->cl_auth = authnone_create();

The RPC client can choose to use UNIX style authentication by setting clnt−>cl_auth after creating the

RPC client handle:

clnt->cl_auth = authunix_create_default();

This causes each RPC call associated with clnt to carry with it the following authentication credentials

structure:

/*

* UNIX style credentials.

*/

struct authunix_parms {

u_long aup_time; /* credentials creation time */

char *aup_machname; /* host name where client is */

int aup_uid; /* client’s UNIX effective uid */

int aup_gid; /* client’s current group id */

u_int aup_len; /* element length of aup_gids */

int *aup_gids; /* array of groups user is in */

};

These fields are set by authunix_create_default() by invoking the appropriate system calls. Since the RPC

user created this new style of authentication, the user is responsible for destroying it with:

auth_destroy(clnt->cl_auth);

This should be done in all cases, to conserve memory.

The Server Side

Service implementors have a harder time dealing with authentication issues since the RPC package passes

the service dispatch routine a request that has an arbitrary authentication style associated with it. Consider

the fields of a request handle passed to a service dispatch routine:

Page 22 Remote Procedure Call Programming Guide

/*

* An RPC Service request

*/

struct svc_req {

u_long rq_prog; /* service program number */

u_long rq_vers; /* service protocol vers num */

u_long rq_proc; /* desired procedure number */

struct opaque_auth rq_cred; /* raw credentials from wire */

caddr_t rq_clntcred; /* credentials (read only) */

};

The rq_cred is mostly opaque, except for one field of interest: the style or flavor of authentication creden-

tials:

/*

* Authentication info. Mostly opaque to the programmer.

*/

struct opaque_auth {

enum_t oa_flavor; /* style of credentials */

caddr_t oa_base; /* address of more auth stuff */

u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

The RPC package guarantees the following to the service dispatch routine:

1. That the request’s rq_cred is well formed. Thus the service implementor may inspect the request’s

rq_cred.oa_flavor to determine which style of authentication the caller used. The service implemen-

tor may also wish to inspect the other fields of rq_cred if the style is not one of the styles supported

by the RPC package.

2. That the request’s rq_clntcred field is either NULL or points to a well formed structure that corre-

sponds to a supported style of authentication credentials. Remember that only unix style is currently

supported, so (currently) rq_clntcred could be cast to a pointer to an authunix_parms structure. If

rq_clntcred is NULL, the service implementor may wish to inspect the other (opaque) fields of

rq_cred in case the service knows about a new type of authentication that the RPC package does not

know about.

Our remote users service example can be extended so that it computes results for all users except UID 16:

Remote Procedure Call Programming Guide Page 23

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

struct authunix_parms *unix_cred;

int uid;

unsigned long nusers;

/*
* we don’t care about authentication for null proc
*/
if (rqstp->rq_proc == NULLPROC) {

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can’t reply to RPC call\n");

return (1);

}

return;

}

/*
* now get the uid
*/
switch (rqstp->rq_cred.oa_flavor) {

case AUTH_UNIX:

unix_cred =

(struct authunix_parms *)rqstp->rq_clntcred;

uid = unix_cred->aup_uid;

break;

case AUTH_NULL:

default:

svcerr_weakauth(transp);

return;

}

switch (rqstp->rq_proc) {

case RUSERSPROC_NUM:

/*
* make sure caller is allowed to call this proc
*/
if (uid == 16) {

svcerr_systemerr(transp);

return;

}

/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/
if (!svc_sendreply(transp, xdr_u_long, &nusers)) {

fprintf(stderr, "can’t reply to RPC call\n");

return (1);

}

return;

default:

svcerr_noproc(transp);

return;

}

}

A few things should be noted here. First, it is customary not to check the authentication parameters associ-

ated with the NULLPROC (procedure number zero). Second, if the authentication parameter’s type is not

suitable for your service, you should call svcerr_weakauth(). And finally, the service protocol itself should

return status for access denied; in the case of our example, the protocol does not have such a status, so we

Page 24 Remote Procedure Call Programming Guide

call the service primitive svcerr_systemerr() instead.

The last point underscores the relation between the RPC authentication package and the services; RPC

deals only with authentication and not with individual services’ access control. The services themselves

must implement their own access control policies and reflect these policies as return statuses in their proto-

cols.

4.5. DES Authentication

UNIX authentication is quite easy to defeat. Instead of using authunix_create_default(), one can call

authunix_create() and then modify the RPC authentication handle it returns by filling in whatever user ID

and hostname they wish the server to think they hav e. DES authentication is thus recommended for people

who want more security than UNIX authentication offers.

The details of the DES authentication protocol are complicated and are not explained here. See Remote

Procedure Calls: Protocol Specification for the details.

In order for DES authentication to work, the keyserv(8c) daemon must be running on both the server

and client machines. The users on these machines need public keys assigned by the network adminis-

trator in the publickey(5) database. And, they need to have decrypted their secret keys using their login

password. This automatically happens when one logs in using login(1), or can be done manually using key-

login(1). The Network Services chapter explains more how to setup secure networking.

Client Side

If a client wishes to use DES authentication, it must set its authentication handle appropriately. Here is an

example:

cl->cl_auth =

authdes_create(servername, 60, &server_addr, NULL);

The first argument is the network name or “netname” of the owner of the server process. Typically, server

processes are root processes and their netname can be derived using the following call:

char servername[MAXNETNAMELEN];

host2netname(servername, rhostname, NULL);

Here, rhostname is the hostname of the machine the server process is running on. host2netname() fills in

servername to contain this root process’s netname. If the server process was run by a regular user, one

could use the call user2netname() instead. Here is an example for a server process with the same user ID as

the client:

char servername[MAXNETNAMELEN];

user2netname(servername, getuid(), NULL);

The last argument to both of these calls, user2netname() and host2netname(), is the name of the naming

domain where the server is located. The NULL used here means “use the local domain name.”

The second argument to authdes_create() is a lifetime for the credential. Here it is set to sixty seconds.

What that means is that the credential will expire 60 seconds from now. If some mischievous user tries to

reuse the credential, the server RPC subsystem will recognize that it has expired and not grant any requests.

If the same mischievous user tries to reuse the credential within the sixty second lifetime, he will still be

rejected because the server RPC subsystem remembers which credentials it has already seen in the near

past, and will not grant requests to duplicates.

The third argument to authdes_create() is the address of the host to synchronize with. In order for DES

authentication to work, the server and client must agree upon the time. Here we pass the address of the

server itself, so the client and server will both be using the same time: the server’s time. The argument can

be NULL, which means “don’t bother synchronizing.” You should only do this if you are sure the client and

server are already synchronized.

Remote Procedure Call Programming Guide Page 25

The final argument to authdes_create() is the address of a DES encryption key to use for encrypting time-

stamps and data. If this argument is NULL, as it is in this example, a random key will be chosen. The

client may find out the encryption key being used by consulting the ah_key field of the authentication han-

dle.

Server Side

The server side is a lot simpler than the client side. Here is the previous example rewritten to use

AUTH_DES instead of AUTH_UNIX:

#include <sys/time.h>

#include <rpc/auth_des.h>

. . .

. . .

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

struct authdes_cred *des_cred;

int uid;

int gid;

int gidlen;

int gidlist[10];

/*
* we don’t care about authentication for null proc
*/

if (rqstp->rq_proc == NULLPROC) {

/* same as before */

}

/*
* now get the uid
*/
switch (rqstp->rq_cred.oa_flavor) {

case AUTH_DES:

des_cred =

(struct authdes_cred *) rqstp->rq_clntcred;

if (! netname2user(des_cred->adc_fullname.name,

&uid, &gid, &gidlen, gidlist))

{

fprintf(stderr, "unknown user: %s\n",

des_cred->adc_fullname.name);

svcerr_systemerr(transp);

return;

}

break;

case AUTH_NULL:

default:

svcerr_weakauth(transp);

return;

}

/*
* The rest is the same as before
*/

Note the use of the routine netname2user(), the inverse of user2netname(): it takes a network ID and con-

verts to a unix ID. netname2user() also supplies the group IDs which we don’t use in this example, but

which may be useful to other UNIX programs.

Page 26 Remote Procedure Call Programming Guide

4.6. Using Inetd

An RPC server can be started from inetd The only difference from the usual code is that the service creation

routine should be called in the following form:

transp = svcudp_create(0); /* For UDP */

transp = svctcp_create(0,0,0); /* For listener TCP sockets */

transp = svcfd_create(0,0,0); /* For connected TCP sockets */

since inet passes a socket as file descriptor 0. Also, svc_register() should be called as

svc_register(transp, PROGNUM, VERSNUM, service, 0);

with the final flag as 0, since the program would already be registered by inetd Remember that if you want

to exit from the server process and return control to inet you need to explicitly exit, since svc_run() never

returns.

The format of entries in /etc/inetd.conf for RPC services is in one of the following two forms:

p_name/version dgram rpc/udp wait/nowait user server args

p_name/version stream rpc/tcp wait/nowait user server args

where p_name is the symbolic name of the program as it appears in rpc(5), server is the program imple-

menting the server, and program and version are the program and version numbers of the service. For more

information, see inetd.conf(5).

If the same program handles multiple versions, then the version number can be a range, as in this example:

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd

5. More Examples

5.1. Versions

By convention, the first version number of program PROG is PROGVERS_ORIG and the most recent ver-

sion is PROGVERS Suppose there is a new version of the user program that returns an unsigned short

rather than a long. If we name this version RUSERSVERS_SHORT then a server that wants to support both

versions would do a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,

nuser, IPPROTO_TCP)) {

fprintf(stderr, "can’t register RUSER service\n");

exit(1);

}

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,

nuser, IPPROTO_TCP)) {

fprintf(stderr, "can’t register RUSER service\n");

exit(1);

}

Both versions can be handled by the same C procedure:

Remote Procedure Call Programming Guide Page 27

nuser(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

unsigned long nusers;

unsigned short nusers2;

switch (rqstp->rq_proc) {

case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can’t reply to RPC call\n");

return (1);

}

return;

case RUSERSPROC_NUM:

/*
* Code here to compute the number of users
* and assign it to the variable nusers

*/
nusers2 = nusers;

switch (rqstp->rq_vers) {

case RUSERSVERS_ORIG:

if (!svc_sendreply(transp, xdr_u_long,

&nusers)) {

fprintf(stderr,"can’t reply to RPC call\n");

}

break;

case RUSERSVERS_SHORT:

if (!svc_sendreply(transp, xdr_u_short,

&nusers2)) {

fprintf(stderr,"can’t reply to RPC call\n");

}

break;

}

default:

svcerr_noproc(transp);

return;

}

}

Page 28 Remote Procedure Call Programming Guide

5.2. TCP

Here is an example that is essentially rcp. The initiator of the RPC snd call takes its standard input and

sends it to the server rcv which prints it on standard output. The RPC call uses TCP. This also illustrates

an XDR procedure that behaves differently on serialization than on deserialization.

/*
* The xdr routine:
* on decode, read from wire, write onto fp
* on encode, read from fp, write onto wire
*/
#include <stdio.h>

#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)

XDR *xdrs;

FILE *fp;

{

unsigned long size;

char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE)/* nothing to free */

return 1;

while (1) {

if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread(buf, sizeof(char), BUFSIZ,

fp)) == 0 && ferror(fp)) {

fprintf(stderr, "can’t fread\n");

return (1);

}

}

p = buf;

if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))

return 0;

if (size == 0)

return 1;

if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size,

fp) != size) {

fprintf(stderr, "can’t fwrite\n");

return (1);

}

}

}

}

Remote Procedure Call Programming Guide Page 29

/*
* The sender routines
*/
#include <stdio.h>

#include <netdb.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

#include <sys/time.h>

main(argc, argv)

int argc;

char **argv;

{

int xdr_rcp();

int err;

if (argc < 2) {

fprintf(stderr, "usage: %s servername\n", argv[0]);

exit(-1);

}

if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC,

RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0)) {

clnt_perrno(err);

fprintf(stderr, "can’t make RPC call\n");

exit(1);

}

exit(0);

}

callrpctcp(host, prognum, procnum, versnum,

inproc, in, outproc, out)

char *host, *in, *out;

xdrproc_t inproc, outproc;

{

struct sockaddr_in server_addr;

int socket = RPC_ANYSOCK;

enum clnt_stat clnt_stat;

struct hostent *hp;

register CLIENT *client;

struct timeval total_timeout;

if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "can’t get addr for ’%s’\n", host);

return (-1);

}

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length);

server_addr.sin_family = AF_INET;

server_addr.sin_port = 0;

if ((client = clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {

perror("rpctcp_create");

return (-1);

}

total_timeout.tv_sec = 20;

total_timeout.tv_usec = 0;

clnt_stat = clnt_call(client, procnum,

inproc, in, outproc, out, total_timeout);

clnt_destroy(client);

Page 30 Remote Procedure Call Programming Guide

return (int)clnt_stat;

}

/*
* The receiving routines
*/
#include <stdio.h>

#include <rpc/rpc.h>

main()

{

register SVCXPRT *transp;

int rcp_service(), xdr_rcp();

if ((transp = svctcp_create(RPC_ANYSOCK,

BUFSIZ, BUFSIZ)) == NULL) {

fprintf("svctcp_create: error\n");

exit(1);

}

pmap_unset(RCPPROG, RCPVERS);

if (!svc_register(transp,

RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP)) {

fprintf(stderr, "svc_register: error\n");

exit(1);

}

svc_run(); /* never returns */

fprintf(stderr, "svc_run should never return\n");

}

rcp_service(rqstp, transp)

register struct svc_req *rqstp;

register SVCXPRT *transp;

{

switch (rqstp->rq_proc) {

case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0) {

fprintf(stderr, "err: rcp_service");

return (1);

}

return;

case RCPPROC_FP:

if (!svc_getargs(transp, xdr_rcp, stdout)) {

svcerr_decode(transp);

return;

}

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can’t reply\n");

return;

}

return (0);

default:

svcerr_noproc(transp);

return;

}

}

Remote Procedure Call Programming Guide Page 31

5.3. Callback Procedures

Occasionally, it is useful to have a server become a client, and make an RPC call back to the process which

is its client. An example is remote debugging, where the client is a window system program, and the server

is a debugger running on the remote machine. Most of the time, the user clicks a mouse button at the

debugging window, which converts this to a debugger command, and then makes an RPC call to the server

(where the debugger is actually running), telling it to execute that command. However, when the debugger

hits a breakpoint, the roles are reversed, and the debugger wants to make an rpc call to the window pro-

gram, so that it can inform the user that a breakpoint has been reached.

In order to do an RPC callback, you need a program number to make the RPC call on. Since this will be a

dynamically generated program number, it should be in the transient range, 0x40000000 - 0x5fffffff. The

routine gettransient() returns a valid program number in the transient range, and registers it with the

portmapper. It only talks to the portmapper running on the same machine as the gettransient() routine

itself. The call to pmap_set() is a test and set operation, in that it indivisibly tests whether a program num-

ber has already been registered, and if it has not, then reserves it. On return, the sockp argument will con-

tain a socket that can be used as the argument to an svcudp_create() or svctcp_create() call.

Page 32 Remote Procedure Call Programming Guide

#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/socket.h>

gettransient(proto, vers, sockp)

int proto, vers, *sockp;

{

static int prognum = 0x40000000;

int s, len, socktype;

struct sockaddr_in addr;

switch(proto) {

case IPPROTO_UDP:

socktype = SOCK_DGRAM;

break;

case IPPROTO_TCP:

socktype = SOCK_STREAM;

break;

default:

fprintf(stderr, "unknown protocol type\n");

return 0;

}

if (*sockp == RPC_ANYSOCK) {

if ((s = socket(AF_INET, socktype, 0)) < 0) {

perror("socket");

return (0);

}

*sockp = s;

}

else

s = *sockp;

addr.sin_addr.s_addr = 0;

addr.sin_family = AF_INET;

addr.sin_port = 0;

len = sizeof(addr);

/*
* may be already bound, so don’t check for error
*/
bind(s, &addr, len);

if (getsockname(s, &addr, &len)< 0) {

perror("getsockname");

return (0);

}

while (!pmap_set(prognum++, vers, proto,

ntohs(addr.sin_port))) continue;

return (prognum-1);

}

Note: The call to ntohs() is necessary to ensure that the port number in addr.sin_port, which is in network

byte order, is passed in host byte order (as pmap_set() expects). See the byteorder(3N) man page for more

details on the conversion of network addresses from network to host byte order.

Remote Procedure Call Programming Guide Page 33

The following pair of programs illustrate how to use the gettransient() routine. The client makes an RPC

call to the server, passing it a transient program number. Then the client waits around to receive a callback

from the server at that program number. The server registers the program EXAMPLEPROG so that it can

receive the RPC call informing it of the callback program number. Then at some random time (on receiv-

ing an ALRM signal in this example), it sends a callback RPC call, using the program number it received

earlier.

/*
* client
*/
#include <stdio.h>

#include <rpc/rpc.h>

int callback();

char hostname[256];

main()

{

int x, ans, s;

SVCXPRT *xprt;

gethostname(hostname, sizeof(hostname));

s = RPC_ANYSOCK;

x = gettransient(IPPROTO_UDP, 1, &s);

fprintf(stderr, "client gets prognum %d\n", x);

if ((xprt = svcudp_create(s)) == NULL) {

fprintf(stderr, "rpc_server: svcudp_create\n");

exit(1);

}

/* protocol is 0 - gettransient does registering
*/
(void)svc_register(xprt, x, 1, callback, 0);

ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);

if ((enum clnt_stat) ans != RPC_SUCCESS) {

fprintf(stderr, "call: ");

clnt_perrno(ans);

fprintf(stderr, "\n");

}

svc_run();

fprintf(stderr, "Error: svc_run shouldn’t return\n");

}

callback(rqstp, transp)

register struct svc_req *rqstp;

register SVCXPRT *transp;

{

switch (rqstp->rq_proc) {

case 0:

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: exampleprog\n");

return (1);

}

return (0);

case 1:

if (!svc_getargs(transp, xdr_void, 0)) {

svcerr_decode(transp);

return (1);

}

Page 34 Remote Procedure Call Programming Guide

fprintf(stderr, "client got callback\n");

if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: exampleprog");

return (1);

}

}

}

/*
* server
*/
#include <stdio.h>

#include <rpc/rpc.h>

#include <sys/signal.h>

char *getnewprog();

char hostname[256];

int docallback();

int pnum; /* program number for callback routine */

main()

{

gethostname(hostname, sizeof(hostname));

registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);

fprintf(stderr, "server going into svc_run\n");

signal(SIGALRM, docallback);

alarm(10);

svc_run();

fprintf(stderr, "Error: svc_run shouldn’t return\n");

}

char *

getnewprog(pnump)

char *pnump;

{

pnum = *(int *)pnump;

return NULL;

}

docallback()

{

int ans;

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,

xdr_void, 0);

if (ans != 0) {

fprintf(stderr, "server: ");

clnt_perrno(ans);

fprintf(stderr, "\n");

}

}

