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ABSTRACT

The 4.2 Berkeley Software Distribution of UNIX® for the VAX‡ had several prob-

lems that could severely affect the overall performance of the system. These problems

were identified with kernel profiling and system tracing during day to day use. Once

potential problem areas had been identified benchmark programs were devised to high-

light the bottlenecks. These benchmarks verified that the problems existed and provided

a metric against which to validate proposed solutions. This paper examines the perfor-

mance problems encountered and describes modifications that have been made to the sys-

tem since the initial distribution.

The changes to the system have consisted of improvements to the performance of

the existing facilities, as well as enhancements to the current facilities. Performance

improvements in the kernel include cacheing of path name translations, reductions in

clock handling and scheduling overhead, and improved throughput of the network sub-

system. Performance improvements in the libraries and utilities include replacement of

linear searches of system databases with indexed lookup, merging of most network ser-

vices into a single daemon, and conversion of system utilities to use the more efficient

facilities available in 4.2BSD. Enhancements in the kernel include the addition of sub-

nets and gateways, increases in many kernel limits, cleanup of the signal and autoconfigu-

ration implementations, and support for windows and system logging. Functional exten-

sions in the libraries and utilities include the addition of an Internet name server, new sys-

tem management tools, and extensions to dbx to work with Pascal. The paper concludes

with a brief discussion of changes made to the system to enhance security. All of these

enhancements are present in Berkeley UNIX 4.3BSD.
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1. Introduction

The Berkeley Software Distributions of UNIX for the VAX have added many new capabilities that

were previously unavailable under UNIX. The development effort for 4.2BSD concentrated on providing

new facilities, and in getting them to work correctly. Many new data structures were added to the system to

support these new capabilities. In addition, many of the existing data structures and algorithms were put to

new uses or their old functions placed under increased demand. The effect of these changes was that mech-

anisms that were well tuned under 4.1BSD no longer provided adequate performance for 4.2BSD. The

increased user feedback that came with the release of 4.2BSD and a growing body of experience with the

system highlighted the performance shortcomings of 4.2BSD.

This paper details the work that we have done since the release of 4.2BSD to measure the perfor-

mance of the system, detect the bottlenecks, and find solutions to remedy them. Most of our tuning has

been in the context of the real timesharing systems in our environment. Rather than using simulated work-

loads, we have sought to analyze our tuning efforts under realistic conditions. Much of the work has been

done in the machine independent parts of the system, hence these improvements could be applied to other

variants of UNIX with equal success. All of the changes made have been included in 4.3BSD.

Section 2 of the paper describes the tools and techniques available to us for measuring system perfor-

mance. In Section 3 we present the results of using these tools, while Section 4 has the performance

improvements that have been made to the system based on our measurements. Section 5 highlights the

functional enhancements that have been made to Berkeley UNIX 4.2BSD. Section 6 discusses some of the

security problems that have been addressed.

2. Observation techniques

There are many tools available for monitoring the performance of the system. Those that we found

most useful are described below.

2.1. System maintenance tools

Several standard maintenance programs are invaluable in observing the basic actions of the system.

The vmstat(1) program is designed to be an aid to monitoring systemwide activity. Together with the ps (1)

command (as in ‘‘ps av’’), it can be used to investigate systemwide virtual memory activity. By running

vmstat when the system is active you can judge the system activity in several dimensions: job distribution,

virtual memory load, paging and swapping activity, disk and cpu utilization. Ideally, to hav e a balanced

system in activity, there should be few blocked (b) jobs, there should be little paging or swapping activity,

there should be available bandwidth on the disk devices (most single arms peak out at 25-35 tps in prac-

tice), and the user cpu utilization (us) should be high (above 50%).

If the system is busy, then the count of active jobs may be large, and several of these jobs may often

be blocked (b). If the virtual memory is active, then the paging demon will be running (sr will be non-

zero). It is healthy for the paging demon to free pages when the virtual memory gets active; it is triggered

by the amount of free memory dropping below a threshold and increases its pace as free memory goes to

zero.

If you run vmstat when the system is busy (a ‘‘vmstat 5’’ giv es all the numbers computed by the sys-

tem), you can find imbalances by noting abnormal job distributions. If many processes are blocked (b),

then the disk subsystem is overloaded or imbalanced. If you have sev eral non-dma devices or open teletype

lines that are ‘‘ringing’’, or user programs that are doing high-speed non-buffered input/output, then the

system time may go high (60-80% or higher). It is often possible to pin down the cause of high system

time by looking to see if there is excessive context switching (cs), interrupt activity (in) or system call activ-

ity (sy). Long term measurements on one of our large machines show an average of 60 context switches

and interrupts per second and an average of 90 system calls per second.

If the system is heavily loaded, or if you have little memory for your load (1 megabyte is little in our

environment), then the system may be forced to swap. This is likely to be accompanied by a noticeable

reduction in the system responsiveness and long pauses when interactive jobs such as editors swap out.

A second important program is iostat (1). Iostat iteratively reports the number of characters read and

written to terminals, and, for each disk, the number of transfers per second, kilobytes transferred per

DRAFT April 17, 1991 McKusick, et. al.



Performance -2- Observation techniques

second, and the milliseconds per average seek. It also gives the percentage of time the system has spent in

user mode, in user mode running low priority (niced) processes, in system mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and the number of

words transferred are counted; for terminals collectively, the number of input and output characters are

counted. Also, ev ery 100 ms, the state of each disk is examined and a tally is made if the disk is active.

From these numbers and the transfer rates of the devices it is possible to determine average seek times for

each device.

When filesystems are poorly placed on the available disks, figures reported by iostat can be used to

pinpoint bottlenecks. Under heavy system load, disk traffic should be spread out among the drives with

higher traffic expected to the devices where the root, swap, and /tmp filesystems are located. When multi-

ple disk drives are attached to the same controller, the system will attempt to overlap seek operations with

I/O transfers. When seeks are performed, iostat will show non-zero average seek times. Most modern disk

drives should exhibit an average seek time of 25-35 ms.

Terminal traffic reported by iostat should be heavily output oriented unless terminal lines are being

used for data transfer by programs such as uucp. Input and output rates are system specific. Screen editors

such as vi and emacs tend to exhibit output/input ratios of anywhere from 5/1 to 8/1. On one of our largest

systems, 88 terminal lines plus 32 pseudo terminals, we observed an average of 180 characters/second input

and 450 characters/second output over 4 days of operation.

2.2. Kernel profiling

It is simple to build a 4.2BSD kernel that will automatically collect profiling information as it oper-

ates simply by specifying the −p option to config (8) when configuring a kernel. The program counter sam-

pling can be driven by the system clock, or by an alternate real time clock. The latter is highly recom-

mended as use of the system clock results in statistical anomalies in accounting for the time spent in the

kernel clock routine.

Once a profiling system has been booted statistic gathering is handled by kgmon (8). Kgmon allows

profiling to be started and stopped and the internal state of the profiling buffers to be dumped. Kgmon can

also be used to reset the state of the internal buffers to allow multiple experiments to be run without reboot-

ing the machine.

The profiling data is processed with gprof (1) to obtain information regarding the system’s operation.

Profiled systems maintain histograms of the kernel program counter, the number of invocations of each rou-

tine, and a dynamic call graph of the executing system. The postprocessing propagates the time spent in

each routine along the arcs of the call graph. Gprof then generates a listing for each routine in the kernel,

sorted according to the time it uses including the time of its call graph descendents. Below each routine

entry is shown its (direct) call graph children, and how their times are propagated to this routine. A similar

display above the routine shows how this routine’s time and the time of its descendents is propagated to its

(direct) call graph parents.

A profiled system is about 5-10% larger in its text space because of the calls to count the subroutine

invocations. When the system executes, the profiling data is stored in a buffer that is 1.2 times the size of

the text space. All the information is summarized in memory, it is not necessary to have a trace file being

continuously dumped to disk. The overhead for running a profiled system varies; under normal load we see

anywhere from 5-25% of the system time spent in the profiling code. Thus the system is noticeably slower

than an unprofiled system, yet is not so bad that it cannot be used in a production environment. This is

important since it allows us to gather data in a real environment rather than trying to devise synthetic work

loads.

2.3. Kernel tracing

The kernel can be configured to trace certain operations by specifying ‘‘options TRACE’’ in the con-

figuration file. This forces the inclusion of code that records the occurrence of events in trace records in a

circular buffer in kernel memory. Events may be enabled/disabled selectively while the system is operat-

ing. Each trace record contains a time stamp (taken from the VAX hardware time of day clock register), an

ev ent identifier, and additional information that is interpreted according to the event type. Buffer cache
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operations, such as initiating a read, include the disk drive, block number, and transfer size in the trace

record. Virtual memory operations, such as a pagein completing, include the virtual address and process id

in the trace record. The circular buffer is normally configured to hold 256 16-byte trace records.1

Several user programs were written to sample and interpret the tracing information. One program

runs in the background and periodically reads the circular buffer of trace records. The trace information is

compressed, in some instances interpreted to generate additional information, and a summary is written to a

file. In addition, the sampling program can also record information from other kernel data structures, such

as those interpreted by the vmstat program. Data written out to a file is further buffered to minimize I/O

load.

Once a trace log has been created, programs that compress and interpret the data may be run to gen-

erate graphs showing the data and relationships between traced events and system load.

The trace package was used mainly to investigate the operation of the file system buffer cache. The

sampling program maintained a history of read-ahead blocks and used the trace information to calculate,

for example, percentage of read-ahead blocks used.

2.4. Benchmark programs

Benchmark programs were used in two ways. First, a suite of programs was constructed to calculate

the cost of certain basic system operations. Operations such as system call overhead and context switching

time are critically important in evaluating the overall performance of a system. Because of the drastic

changes in the system between 4.1BSD and 4.2BSD, it was important to verify the overhead of these low

level operations had not changed appreciably.

The second use of benchmarks was in exercising suspected bottlenecks. When we suspected a spe-

cific problem with the system, a small benchmark program was written to repeatedly use the facility. While

these benchmarks are not useful as a general tool they can give quick feedback on whether a hypothesized

improvement is really having an effect. It is important to realize that the only real assurance that a change

has a beneficial effect is through long term measurements of general timesharing. We hav e numerous

examples where a benchmark program suggests vast improvements while the change in the long term sys-

tem performance is negligible, and conversely examples in which the benchmark program run more slowly,

but the long term system performance improves significantly.

3. Results of our observations

When 4.2BSD was first installed on several large timesharing systems the degradation in perfor-

mance was significant. Informal measurements showed 4.2BSD providing 80% of the throughput of

4.1BSD (based on load averages observed under a normal timesharing load). Many of the initial problems

found were because of programs that were not part of 4.1BSD. Using the techniques described in the previ-

ous section and standard process profiling several problems were identified. Later work concentrated on

the operation of the kernel itself. In this section we discuss the problems uncovered; in the next section we

describe the changes made to the system.

3.1. User programs

3.1.1. Mail system

The mail system was the first culprit identified as a major contributor to the degradation in system

performance. At Lucasfilm the mail system is heavily used on one machine, a VAX-11/780 with eight

megabytes of memory.3 Message traffic is usually between users on the same machine and ranges from per-

son-to-person telephone messages to per-organization distribution lists. After conversion to 4.2BSD, it was

immediately noticed that mail to distribution lists of 20 or more people caused the system load to jump by

anywhere from 3 to 6 points. The number of processes spawned by the sendmail program and the

1 2 The standard trace facilities distributed with 4.2 differ slightly from those described here. The time stamp

in the distributed system is calculated from the kernel’s time of day variable instead of the VAX hardware regis-

ter, and the buffer cache trace points do not record the transfer size.
2 4 During part of these observations the machine had only four megabytes of memory.
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messages sent from sendmail to the system logging process, syslog, generated significant load both from

their execution and their interference with basic system operation. The number of context switches and

disk transfers often doubled while sendmail operated; the system call rate jumped dramatically. System

accounting information consistently showed sendmail as the top cpu user on the system.

3.1.2. Network servers

The network services provided in 4.2BSD add new capabilities to the system, but are not without

cost. The system uses one daemon process to accept requests for each network service provided. The pres-

ence of many such daemons increases the numbers of active processes and files, and requires a larger con-

figuration to support the same number of users. The overhead of the routing and status updates can con-

sume several percent of the cpu. Remote logins and shells incur more overhead than their local equivalents.

For example, a remote login uses three processes and a pseudo-terminal handler in addition to the local

hardware terminal handler. When using a screen editor, sending and echoing a single character involves

four processes on two machines. The additional processes, context switching, network traffic, and terminal

handler overhead can roughly triple the load presented by one local terminal user.

3.2. System overhead

To measure the costs of various functions in the kernel, a profiling system was run for a 17 hour

period on one of our general timesharing machines. While this is not as reproducible as a synthetic work-

load, it certainly represents a realistic test. This test was run on several occasions over a three month

period. Despite the long period of time that elapsed between the test runs the shape of the profiles, as mea-

sured by the number of times each system call entry point was called, were remarkably similar.

These profiles turned up several bottlenecks that are discussed in the next section. Several of these

were new to 4.2BSD, but most were caused by overloading of mechanisms which worked acceptably well

in previous BSD systems. The general conclusion from our measurements was that the ratio of user to sys-

tem time had increased from 45% system / 55% user in 4.1BSD to 57% system / 43% user in 4.2BSD.

3.2.1. Micro-operation benchmarks

To compare certain basic system operations between 4.1BSD and 4.2BSD a suite of benchmark pro-

grams was constructed and run on a VAX-11/750 with 4.5 megabytes of physical memory and two disks on

a MASSBUS controller. Tests were run with the machine operating in single user mode under both

4.1BSD and 4.2BSD. Paging was localized to the drive where the root file system was located.

The benchmark programs were modeled after the Kashtan benchmarks, [Kashtan80], with identical

sources compiled under each system. The programs and their intended purpose are described briefly before

the presentation of the results. The benchmark scripts were run twice with the results shown as the average

of the two runs. The source code for each program and the shell scripts used during the benchmarks are

included in the Appendix.

The set of tests shown in Table 1 was concerned with system operations other than paging. The

intent of most benchmarks is clear. The result of running signocsw is deducted from the csw benchmark to

calculate the context switch overhead. The exec tests use two different jobs to gauge the cost of overlaying

a larger program with a smaller one and vice versa. The ‘‘null job’’ and ‘‘big job’’ differ solely in the size

of their data segments, 1 kilobyte versus 256 kilobytes. In both cases the text segment of the parent is

larger than that of the child.5 All programs were compiled into the default load format that causes the text

segment to be demand paged out of the file system and shared between processes.

The results of these tests are shown in Table 2. If the 4.1BSD results are scaled to reflect their being

run on a VAX-11/750, they correspond closely to those found in [Joy80].7

In studying the measurements we found that the basic system call and context switch overhead did

not change significantly between 4.1BSD and 4.2BSD. The signocsw results were caused by the changes to

3 6 These tests should also have measured the cost of expanding the text segment; unfortunately time did not

permit running additional tests.
4 8 We assume that a VAX-11/750 runs at 60% of the speed of a VAX-11/780 (not considering floating point

operations).
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Test Description

syscall perform 100,000 getpid system calls

csw perform 10,000 context switches using signals

signocsw send 10,000 signals to yourself

pipeself4 send 10,000 4-byte messages to yourself

pipeself512 send 10,000 512-byte messages to yourself

pipediscard4 send 10,000 4-byte messages to child who discards

pipediscard512 send 10,000 512-byte messages to child who discards

pipeback4 exchange 10,000 4-byte messages with child

pipeback512 exchange 10,000 512-byte messages with child

forks0 fork-exit-wait 1,000 times

forks1k sbrk(1024), fault page, fork-exit-wait 1,000 times

forks100k sbrk(102400), fault pages, fork-exit-wait 1,000 times

vforks0 vfork-exit-wait 1,000 times

vforks1k sbrk(1024), fault page, vfork-exit-wait 1,000 times

vforks100k sbrk(102400), fault pages, vfork-exit-wait 1,000 times

execs0null fork-exec ‘‘null job’’-exit-wait 1,000 times

execs0null (1K env) execs0null above, with 1K environment added

execs1knull sbrk(1024), fault page, fork-exec ‘‘null job’’-exit-wait 1,000 times

execs1knull (1K env) execs1knull above, with 1K environment added

execs100knull sbrk(102400), fault pages, fork-exec ‘‘null job’’-exit-wait 1,000 times

vexecs0null vfork-exec ‘‘null job’’-exit-wait 1,000 times

vexecs1knull sbrk(1024), fault page, vfork-exec ‘‘null job’’-exit-wait 1,000 times

vexecs100knull sbrk(102400), fault pages, vfork-exec ‘‘null job’’-exit-wait 1,000 times

execs0big fork-exec ‘‘big job’’-exit-wait 1,000 times

execs1kbig sbrk(1024), fault page, fork-exec ‘‘big job’’-exit-wait 1,000 times

execs100kbig sbrk(102400), fault pages, fork-exec ‘‘big job’’-exit-wait 1,000 times

vexecs0big vfork-exec ‘‘big job’’-exit-wait 1,000 times

vexecs1kbig sbrk(1024), fault pages, vfork-exec ‘‘big job’’-exit-wait 1,000 times

vexecs100kbig sbrk(102400), fault pages, vfork-exec ‘‘big job’’-exit-wait 1,000 times

Table 1. Kernel Benchmark programs.

the signal interface, resulting in an additional subroutine invocation for each call, not to mention additional

complexity in the system’s implementation.

The times for the use of pipes are significantly higher under 4.2BSD because of their implementation

on top of the interprocess communication facilities. Under 4.1BSD pipes were implemented without the

complexity of the socket data structures and with simpler code. Further, while not obviously a factor here,

4.2BSD pipes have less system buffer space provided them than 4.1BSD pipes.

The exec tests shown in Table 2 were performed with 34 bytes of environment information under

4.1BSD and 40 bytes under 4.2BSD. To figure the cost of passing data through the environment, the

execs0null and execs1knull tests were rerun with 1065 additional bytes of data. The results are show in Ta-

ble 3.

Real User System

4.1 4.2 4.1 4.2 4.1 4.2
Test

execs0null 197.0 229.0 4.1 2.6 167.8 212.3

execs1knull 199.0 230.0 4.2 2.6 170.4 214.9

Table 3. Benchmark results with ‘‘large’’ environment (all times in seconds).

These results show that passing argument data is significantly slower than under 4.1BSD: 121 ms/byte ver-

sus 93 ms/byte. Even using this factor to adjust the basic overhead of an exec system call, this facility is

more costly under 4.2BSD than under 4.1BSD.
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Berkeley Software Distribution UNIX Systems

Elapsed Time User Time System Time

4.1 4.2 4.3 4.1 4.2 4.3 4.1 4.2 4.3
Test

syscall 28.0 29.0 23.0 4.5 5.3 3.5 23.9 23.7 20.4

csw 45.0 60.0 45.0 3.5 4.3 3.3 19.5 25.4 19.0

signocsw 16.5 23.0 16.0 1.9 3.0 1.1 14.6 20.1 15.2

pipeself4 21.5 29.0 26.0 1.1 1.1 0.8 20.1 28.0 25.6

pipeself512 47.5 59.0 55.0 1.2 1.2 1.0 46.1 58.3 54.2

pipediscard4 32.0 42.0 36.0 3.2 3.7 3.0 15.5 18.8 15.6

pipediscard512 61.0 76.0 69.0 3.1 2.1 2.0 29.7 36.4 33.2

pipeback4 57.0 75.0 66.0 2.9 3.2 3.3 25.1 34.2 29.7

pipeback512 110.0 138.0 125.0 3.1 3.4 2.2 52.2 65.7 57.7

forks0 37.5 41.0 22.0 0.5 0.3 0.3 34.5 37.6 21.5

forks1k 40.0 43.0 22.0 0.4 0.3 0.3 36.0 38.8 21.6

forks100k 217.5 223.0 176.0 0.7 0.6 0.4 214.3 218.4 175.2

vforks0 34.5 37.0 22.0 0.5 0.6 0.5 27.3 28.5 17.9

vforks1k 35.0 37.0 22.0 0.6 0.8 0.5 27.2 28.6 17.9

vforks100k 35.0 37.0 22.0 0.6 0.8 0.6 27.6 28.9 17.9

execs0null 97.5 92.0 66.0 3.8 2.4 0.6 68.7 82.5 48.6

execs0null (1K env) 197.0 229.0 75.0 4.1 2.6 0.9 167.8 212.3 62.6

execs1knull 99.0 100.0 66.0 4.1 1.9 0.6 70.5 86.8 48.7

execs1knull (1K env) 199.0 230.0 75.0 4.2 2.6 0.7 170.4 214.9 62.7

execs100knull 283.5 278.0 216.0 4.8 2.8 1.1 251.9 269.3 202.0

vexecs0null 100.0 92.0 66.0 5.1 2.7 1.1 63.7 76.8 45.1

vexecs1knull 100.0 91.0 66.0 5.2 2.8 1.1 63.2 77.1 45.1

vexecs100knull 100.0 92.0 66.0 5.1 3.0 1.1 64.0 77.7 45.6

execs0big 129.0 201.0 101.0 4.0 3.0 1.0 102.6 153.5 92.7

execs1kbig 130.0 202.0 101.0 3.7 3.0 1.0 104.7 155.5 93.0

execs100kbig 318.0 385.0 263.0 4.8 3.1 1.1 286.6 339.1 247.9

vexecs0big 128.0 200.0 101.0 4.6 3.5 1.6 98.5 149.6 90.4

vexecs1kbig 125.0 200.0 101.0 4.7 3.5 1.3 98.9 149.3 88.6

vexecs100kbig 126.0 200.0 101.0 4.2 3.4 1.3 99.5 151.0 89.0

Table 2. Kernel Benchmark results (all times in seconds).

3.2.2. Path name translation

The single most expensive function performed by the kernel is path name translation. This has been

true in almost every UNIX kernel [Mosher80]; we find that our general time sharing systems do about

500,000 name translations per day.

Name translations became more expensive in 4.2BSD for several reasons. The single most expensive

addition was the symbolic link. Symbolic links have the effect of increasing the average number of compo-

nents in path names to be translated. As an insidious example, consider the system manager that decides to

change /tmp to be a symbolic link to /usr/tmp. A name such as /tmp/tmp1234 that previously required two

component translations, now requires four component translations plus the cost of reading the contents of

the symbolic link.

The new directory format also changes the characteristics of name translation. The more complex

format requires more computation to determine where to place new entries in a directory. Conversely the

additional information allows the system to only look at active entries when searching, hence searches of

directories that had once grown large but currently have few active entries are checked quickly. The new

format also stores the length of each name so that costly string comparisons are only done on names that

are the same length as the name being sought.

DRAFT April 17, 1991 McKusick, et. al.



Performance -7- Results of our observations

The net effect of the changes is that the average time to translate a path name in 4.2BSD is 24.2 mil-

liseconds, representing 40% of the time processing system calls, that is 19% of the total cycles in the ker-

nel, or 11% of all cycles executed on the machine. The times are shown in Table 4. We hav e no compara-

ble times for namei under 4.1 though they are certain to be significantly less.

part time % of kernel

self 14.3 ms/call 11.3%

child 9.9 ms/call 7.9%

total 24.2 ms/call 19.2%

Table 4. Call times for namei in 4.2BSD.

3.2.3. Clock processing

Nearly 25% of the time spent in the kernel is spent in the clock processing routines. (This is a clear

indication that to avoid sampling bias when profiling the kernel with our tools we need to drive them from

an independent clock.) These routines are responsible for implementing timeouts, scheduling the proces-

sor, maintaining kernel statistics, and tending various hardware operations such as draining the terminal

input silos. Only minimal work is done in the hardware clock interrupt routine (at high priority), the rest is

performed (at a lower priority) in a software interrupt handler scheduled by the hardware interrupt handler.

In the worst case, with a clock rate of 100 Hz and with every hardware interrupt scheduling a software

interrupt, the processor must field 200 interrupts per second. The overhead of simply trapping and return-

ing is 3% of the machine cycles, figuring out that there is nothing to do requires an additional 2%.

3.2.4. Terminal multiplexors

The terminal multiplexors supported by 4.2BSD have programmable receiver silos that may be used

in two ways. With the silo disabled, each character received causes an interrupt to the processor. Enabling

the receiver silo allows the silo to fill before generating an interrupt, allowing multiple characters to be read

for each interrupt. At low rates of input, received characters will not be processed for some time unless the

silo is emptied periodically. The 4.2BSD kernel uses the input silos of each terminal multiplexor, and emp-

ties each silo on each clock interrupt. This allows high input rates without the cost of per-character inter-

rupts while assuring low latency. Howev er, as character input rates on most machines are usually low

(about 25 characters per second), this can result in excessive overhead. At the current clock rate of 100 Hz,

a machine with 5 terminal multiplexors configured makes 500 calls to the receiver interrupt routines per

second. In addition, to achieve acceptable input latency for flow control, each clock interrupt must sched-

ule a software interrupt to run the silo draining routines.9 12 This implies that the worst case estimate for

clock processing is the basic overhead for clock processing.

3.2.5. Process table management

In 4.2BSD there are numerous places in the kernel where a linear search of the process table is per-

formed:

• in exit to locate and wakeup a process’s parent;

• in wait when searching for ZOMBIE and STOPPED processes;

• in fork when allocating a new process table slot and counting the number of processes already created

by a user;

• in newproc, to verify that a process id assigned to a new process is not currently in use;

• in kill and gsignal to locate all processes to which a signal should be delivered;

• in schedcpu when adjusting the process priorities every second; and

• in sched when locating a process to swap out and/or swap in.

5 10 It is not possible to check the input silos at the time of the actual clock interrupt without modifying the

terminal line disciplines, as the input queues may not be in a consistent state 11.
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These linear searches can incur significant overhead. The rule for calculating the size of the process table

is:

nproc = 20 + 8 * maxusers

that means a 48 user system will have a 404 slot process table. With the addition of network services in

4.2BSD, as many as a dozen server processes may be maintained simply to await incoming requests. These

servers are normally created at boot time which causes them to be allocated slots near the beginning of the

process table. This means that process table searches under 4.2BSD are likely to take significantly longer

than under 4.1BSD. System profiling shows that as much as 20% of the time spent in the kernel on a

loaded system (a VAX-11/780) can be spent in schedcpu and, on average, 5-10% of the kernel time is spent

in schedcpu. The other searches of the proc table are similarly affected. This shows the system can no

longer tolerate using linear searches of the process table.

3.2.6. File system buffer cache

The trace facilities described in section 2.3 were used to gather statistics on the performance of the

buffer cache. We were interested in measuring the effectiveness of the cache and the read-ahead policies.

With the file system block size in 4.2BSD four to eight times that of a 4.1BSD file system, we were con-

cerned that large amounts of read-ahead might be performed without being used. Also, we were interested

in seeing if the rules used to size the buffer cache at boot time were severely affecting the overall cache

operation.

The tracing package was run over a three hour period during a peak mid-afternoon period on a VAX

11/780 with four megabytes of physical memory. This resulted in a buffer cache containing 400 kilobytes

of memory spread among 50 to 200 buffers (the actual number of buffers depends on the size mix of disk

blocks being read at any giv en time). The pertinent configuration information is shown in Table 5.

Controller Drive Device File System

DEC MASSBUS DEC RP06 hp0d /usr

hp0b swap

Emulex SC780 Fujitsu Eagle hp1a /usr/spool/news

hp1b swap

hp1e /usr/src

hp1d /u0 (users)

Fujitsu Eagle hp2a /tmp

hp2b swap

hp2d /u1 (users)

Fujitsu Eagle hp3a /

Table 5. Active file systems during buffer cache tests.

During the test period the load average ranged from 2 to 13 with an average of 5. The system had no

idle time, 43% user time, and 57% system time. The system averaged 90 interrupts per second (excluding

the system clock interrupts), 220 system calls per second, and 50 context switches per second (40 voluntary,

10 involuntary).

The active virtual memory (the sum of the address space sizes of all jobs that have run in the previous

twenty seconds) over the period ranged from 2 to 6 megabytes with an average of 3.5 megabytes. There

was no swapping, though the page daemon was inspecting about 25 pages per second.

On average 250 requests to read disk blocks were initiated per second. These include read requests

for file blocks made by user programs as well as requests initiated by the system. System reads include

requests for indexing information to determine where a file’s next data block resides, file system layout

maps to allocate new data blocks, and requests for directory contents needed to do path name translations.

On average, an 85% cache hit rate was observed for read requests. Thus only 37 disk reads were ini-

tiated per second. In addition, 5 read-ahead requests were made each second filling about 20% of the buffer

pool. Despite the policies to rapidly reuse read-ahead buffers that remain unclaimed, more than 90% of the
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read-ahead buffers were used.

These measurements showed that the buffer cache was working effectively. Independent tests have

also showed that the size of the buffer cache may be reduced significantly on memory-poor system without

severe effects; we have not yet tested this hypothesis [Shannon83].

3.2.7. Network subsystem

The overhead associated with the network facilities found in 4.2BSD is often difficult to gauge with-

out profiling the system. This is because most input processing is performed in modules scheduled with

software interrupts. As a result, the system time spent performing protocol processing is rarely attributed to

the processes that really receive the data. Since the protocols supported by 4.2BSD can involve significant

overhead this was a serious concern. Results from a profiled kernel show an average of 5% of the system

time is spent performing network input and timer processing in our environment (a 3Mb/s Ethernet with

most traffic using TCP). This figure can vary significantly depending on the network hardware used, the

av erage message size, and whether packet reassembly is required at the network layer. On one machine we

profiled over a 17 hour period (our gateway to the ARPANET) 206,000 input messages accounted for 2.4%

of the system time, while another 0.6% of the system time was spent performing protocol timer processing.

This machine was configured with an ACC LH/DH IMP interface and a DMA 3Mb/s Ethernet controller.

The performance of TCP over slower long-haul networks was degraded substantially by two prob-

lems. The first problem was a bug that prevented round-trip timing measurements from being made, thus

increasing retransmissions unnecessarily. The second was a problem with the maximum segment size cho-

sen by TCP, that was well-tuned for Ethernet, but was poorly chosen for the ARPANET, where it causes

packet fragmentation. (The maximum segment size was actually negotiated upwards to a value that

resulted in excessive fragmentation.)

When benchmarked in Ethernet environments the main memory buffer management of the network

subsystem presented some performance anomalies. The overhead of processing small ‘‘mbufs’’ sev erely

affected throughput for a substantial range of message sizes. In spite of the fact that most system ustilities

made use of the throughput optimal 1024 byte size, user processes faced large degradations for some arbi-

trary sizes. This was specially true for TCP/IP transmissions [Cabrera84, Cabrera85].

3.2.8. Virtual memory subsystem

We ran a set of tests intended to exercise the virtual memory system under both 4.1BSD and 4.2BSD.

The tests are described in Table 6. The test programs dynamically allocated a 7.3 Megabyte array (using

sbrk (2)) then referenced pages in the array either: sequentially, in a purely random fashion, or such that the

distance between successive pages accessed was randomly selected from a Gaussian distribution. In the

last case, successive runs were made with increasing standard deviations.

Test Description

seqpage sequentially touch pages, 10 iterations

seqpage-v as above, but first make vadvise (2) call

randpage touch random page 30,000 times

randpage-v as above, but first make vadvise call

gausspage.1 30,000 Gaussian accesses, standard deviation of 1

gausspage.10 as above, standard deviation of 10

gausspage.30 as above, standard deviation of 30

gausspage.40 as above, standard deviation of 40

gausspage.50 as above, standard deviation of 50

gausspage.60 as above, standard deviation of 60

gausspage.80 as above, standard deviation of 80

gausspage.inf as above, standard deviation of 10,000

Table 6. Paging benchmark programs.
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The results in Table 7 show how the additional memory requirements of 4.2BSD can generate more

work for the paging system. Under 4.1BSD, the system used 0.5 of the 4.5 megabytes of physical memory

on the test machine; under 4.2BSD it used nearly 1 megabyte of physical memory.13 This resulted in more

page faults and, hence, more system time. To establish a common ground on which to compare the paging

routines of each system, we check instead the average page fault service times for those test runs that had a

statistically significant number of random page faults. These figures, shown in Table 8, show no significant

difference between the two systems in the area of page fault servicing. We currently have no explanation

for the results of the sequential paging tests.

Real User System Page Faults

4.1 4.2 4.1 4.2 4.1 4.2 4.1 4.2
Test

seqpage 959 1126 16.7 12.8 197.0 213.0 17132 17113

seqpage-v 579 812 3.8 5.3 216.0 237.7 8394 8351

randpage 571 569 6.7 7.6 64.0 77.2 8085 9776

randpage-v 572 562 6.1 7.3 62.2 77.5 8126 9852

gausspage.1 25 24 23.6 23.8 0.8 0.8 8 8

gausspage.10 26 26 22.7 23.0 3.2 3.6 2 2

gausspage.30 34 33 25.0 24.8 8.6 8.9 2 2

gausspage.40 42 81 23.9 25.0 11.5 13.6 3 260

gausspage.50 113 175 24.2 26.2 19.6 26.3 784 1851

gausspage.60 191 234 27.6 26.7 27.4 36.0 2067 3177

gausspage.80 312 329 28.0 27.9 41.5 52.0 3933 5105

gausspage.inf 619 621 82.9 85.6 68.3 81.5 8046 9650

Table 7. Paging benchmark results (all times in seconds).

Page Faults PFST

4.1 4.2 4.1 4.2
Test

randpage 8085 9776 791 789

randpage-v 8126 9852 765 786

gausspage.inf 8046 9650 848 844

Table 8. Page fault service times (all times in microseconds).

4. Performance Improvements

This section outlines the changes made to the system since the 4.2BSD distribution. The changes

reported here were made in response to the problems described in Section 3. The improvements fall into

two major classes; changes to the kernel that are described in this section, and changes to the system

libraries and utilities that are described in the following section.

4.1. Performance Improvements in the Kernel

Our goal has been to optimize system performance for our general timesharing environment. Since

most sites running 4.2BSD have been forced to take advantage of declining memory costs rather than

replace their existing machines with ones that are more powerful, we have chosen to optimize running time

at the expense of memory. This tradeoff may need to be reconsidered for personal workstations that have

smaller memories and higher latency disks. Decreases in the running time of the system may be unnotice-

able because of higher paging rates incurred by a larger kernel. Where possible, we have allowed the size

of caches to be controlled so that systems with limited memory may reduce them as appropriate.

6 14 The 4.1BSD system used for testing was really a 4.1a system configured with networking facilities and

code to support remote file access. The 4.2BSD system also included the remote file access code. Since both

systems would be larger than similarly configured ‘‘vanilla’’ 4.1BSD or 4.2BSD system, we consider out con-

clusions to still be valid.
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4.1.1. Name Cacheing

Our initial profiling studies showed that more than one quarter of the time in the system was spent in

the pathname translation routine, namei, translating path names to inodes
115. An inspection of namei shows

that it consists of two nested loops. The outer loop is traversed once per pathname component. The inner

loop performs a linear search through a directory looking for a particular pathname component.

Our first idea was to reduce the number of iterations around the inner loop of namei by observing that

many programs step through a directory performing an operation on each entry in turn. To improve perfor-

mance for processes doing directory scans, the system keeps track of the directory offset of the last compo-

nent of the most recently translated path name for each process. If the next name the process requests is in

the same directory, the search is started from the offset that the previous name was found (instead of from

the beginning of the directory). Changing directories invalidates the cache, as does modifying the directory.

For programs that step sequentially through a directory with

N files, search time decreases from O(N 2) to O(N ).

The cost of the cache is about 20 lines of code (about 0.2 kilobytes) and 16 bytes per process, with

the cached data stored in a process’s user vector.

As a quick benchmark to verify the maximum effectiveness of the cache we ran ‘‘ls −l’’ on a direc-

tory containing 600 files. Before the per-process cache this command used 22.3 seconds of system time.

After adding the cache the program used the same amount of user time, but the system time dropped to 3.3

seconds.

This change prompted our rerunning a profiled system on a machine containing the new namei. The

results showed that the time in namei dropped by only 2.6 ms/call and still accounted for 36% of the system

call time, 18% of the kernel, or about 10% of all the machine cycles. This amounted to a drop in system

time from 57% to about 55%. The results are shown in Table 9.

part time % of kernel

self 11.0 ms/call 9.2%

child 10.6 ms/call 8.9%

total 21.6 ms/call 18.1%

Table 9. Call times for namei with per-process cache.

The small performance improvement was caused by a low cache hit ratio. Although the cache was

90% effective when hit, it was only usable on about 25% of the names being translated. An additional rea-

son for the small improvement was that although the amount of time spent in namei itself decreased sub-

stantially, more time was spent in the routines that it called since each directory had to be accessed twice;

once to search from the middle to the end, and once to search from the beginning to the middle.

Frequent requests for a small set of names are best handled with a cache of recent name

translations17. This has the effect of eliminating the inner loop of namei. For each path name component,

namei first looks in its cache of recent translations for the needed name. If it exists, the directory search can

be completely eliminated.

The system already maintained a cache of recently accessed inodes, so the initial name cache main-

tained a simple name-inode association that was used to check each component of a path name during name

translations. We considered implementing the cache by tagging each inode with its most recently translated

name, but eventually decided to have a separate data structure that kept names with pointers to the inode ta-

ble. Tagging inodes has two drawbacks; many inodes such as those associated with login ports remain in

the inode table for a long period of time, but are never looked up by name. Other inodes, such as those

7 16 1
Inode is an abbreviation for ‘‘Index node’’. Each file on the system is described by an inode; the inode

maintains access permissions, and an array of pointers to the disk blocks that hold the data associated with the

file.
8 18 The cache is keyed on a name and the inode and device number of the directory that contains it. Associ-

ated with each entry is a pointer to the corresponding entry in the inode table.
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describing directories are looked up frequently by many different names (e.g. ‘‘..’’). By keeping a separate

table of names, the cache can truly reflect the most recently used names. An added benefit is that the table

can be sized independently of the inode table, so that machines with small amounts of memory can reduce

the size of the cache (or even eliminate it) without modifying the inode table structure.

Another issue to be considered is how the name cache should hold references to the inode table. Nor-

mally processes hold ‘‘hard references’’ by incrementing the reference count in the inode they reference.

Since the system reuses only inodes with zero reference counts, a hard reference insures that the inode

pointer will remain valid. However, if the name cache holds hard references, it is limited to some fraction

of the size of the inode table, since some inodes must be left free for new files. It also makes it impossible

for other parts of the kernel to verify sole use of a device or file. These reasons made it impractical to use

hard references without affecting the behavior of the inode caching scheme. Thus, we chose instead to

keep ‘‘soft references’’ protected by a capability − a 32-bit number guaranteed to be unique
2 19. When an

entry is made in the name cache, the capability of its inode is copied to the name cache entry. When an

inode is reused it is issued a new capability. When a name cache hit occurs, the capability of the name

cache entry is compared with the capability of the inode that it references. If the capabilities do not match,

the name cache entry is invalid. Since the name cache holds only soft references, it may be sized indepen-

dent of the size of the inode table. A final benefit of using capabilities is that all cached names for an inode

may be invalidated without searching through the entire cache; instead all you need to do is assign a new

capability to the inode.

The cost of the name cache is about 200 lines of code (about 1.2 kilobytes) and 48 bytes per cache

entry. Depending on the size of the system, about 200 to 1000 entries will normally be configured, using

10-50 kilobytes of physical memory. The name cache is resident in memory at all times.

After adding the system wide name cache we reran ‘‘ls −l’’ on the same directory. The user time

remained the same, however the system time rose slightly to 3.7 seconds. This was not surprising as namei

now had to maintain the cache, but was never able to make any use of it.

Another profiled system was created and measurements were collected over a 17 hour period. These

measurements showed a 13 ms/call decrease in namei, with namei accounting for only 26% of the system

call time, 13% of the time in the kernel, or about 7% of all the machine cycles. System time dropped from

55% to about 49%. The results are shown in Table 10.

part time % of kernel

self 4.2 ms/call 6.2%

child 4.4 ms/call 6.6%

total 8.6 ms/call 12.8%

Table 10. Call times for namei with both caches.

On our general time sharing systems we find that during the twelve hour period from 8AM to 8PM

the system does 500,000 to 1,000,000 name translations. Statistics on the performance of both caches show

that the large performance improvement is caused by the high hit ratio. The name cache has a hit rate of

70%-80%; the directory offset cache gets a hit rate of 5%-15%. The combined hit rate of the two caches

almost always adds up to 85%. With the addition of the two caches, the percentage of system time devoted

to name translation has dropped from 25% to less than 13%. While the system wide cache reduces both the

amount of time in the routines that namei calls as well as namei itself (since fewer directories need to be

accessed or searched), it is interesting to note that the actual percentage of system time spent in namei itself

increases even though the actual time per call decreases. This is because less total time is being spent in the

kernel, hence a smaller absolute time becomes a larger total percentage.

4.1.2. Intelligent Auto Siloing

Most terminal input hardware can run in two modes: it can either generate an interrupt each time a

character is received, or collect characters in a silo that the system then periodically drains. To provide

9 20 2
When all the numbers have been exhausted, all outstanding capabilities are purged and numbering

starts over from scratch. Purging is possible as all capabilities are easily found in kernel memory.
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quick response for interactive input and flow control, a silo must be checked 30 to 50 times per second.

Ascii terminals normally exhibit an input rate of less than 30 characters per second. At this input rate they

are most efficiently handled with interrupt per character mode, since this generates fewer interrupts than

draining the input silos of the terminal multiplexors at each clock interrupt. When input is being generated

by another machine or a malfunctioning terminal connection, however, the input rate is usually more than

50 characters per second. It is more efficient to use a device’s silo input mode, since this generates fewer

interrupts than handling each character as a separate interrupt. Since a given dialup port may switch

between uucp logins and user logins, it is impossible to statically select the most efficient input mode to

use.

We therefore changed the terminal multiplexor handlers to dynamically choose between the use of

the silo and the use of per-character interrupts. At low input rates the handler processes characters on an

interrupt basis, avoiding the overhead of checking each interface on each clock interrupt. During periods of

sustained input, the handler enables the silo and starts a timer to drain input. This timer runs less frequently

than the clock interrupts, and is used only when there is a substantial amount of input. The transition from

using silos to an interrupt per character is damped to minimize the number of transitions with bursty traffic

(such as in network communication). Input characters serve to flush the silo, preventing long latency. By

switching between these two modes of operation dynamically, the overhead of checking the silos is

incurred only when necessary.

In addition to the savings in the terminal handlers, the clock interrupt routine is no longer required to

schedule a software interrupt after each hardware interrupt to drain the silos. The software-interrupt level

portion of the clock routine is only needed when timers expire or the current user process is collecting an

execution profile. Thus, the number of interrupts attributable to clock processing is substantially reduced.

4.1.3. Process Table Management

As systems have grown larger, the size of the process table has grown far past 200 entries. With large

tables, linear searches must be eliminated from any frequently used facility. The kernel process table is

now multi-threaded to allow selective searching of active and zombie processes. A third list threads unused

process table slots. Free slots can be obtained in constant time by taking one from the front of the free list.

The number of processes used by a given user may be computed by scanning only the active list. Since the

4.2BSD release, the kernel maintained linked lists of the descendents of each process. This linkage is now

exploited when dealing with process exit; parents seeking the exit status of children now avoid linear search

of the process table, but examine only their direct descendents. In addition, the previous algorithm for find-

ing all descendents of an exiting process used multiple linear scans of the process table. This has been

changed to follow the links between child process and siblings.

When forking a new process, the system must assign it a unique process identifier. The system previ-

ously scanned the entire process table each time it created a new process to locate an identifier that was not

already in use. Now, to avoid scanning the process table for each new process, the system computes a

range of unused identifiers that can be directly assigned. Only when the set of identifiers is exhausted is

another process table scan required.

4.1.4. Scheduling

Previously the scheduler scanned the entire process table once per second to recompute process prior-

ities. Processes that had run for their entire time slice had their priority lowered. Processes that had not

used their time slice, or that had been sleeping for the past second had their priority raised. On systems

running many processes, the scheduler represented nearly 20% of the system time. To reduce this over-

head, the scheduler has been changed to consider only runnable processes when recomputing priorities. To

insure that processes sleeping for more than a second still get their appropriate priority boost, their priority

is recomputed when they are placed back on the run queue. Since the set of runnable process is typically

only a small fraction of the total number of processes on the system, the cost of invoking the scheduler

drops proportionally.
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4.1.5. Clock Handling

The hardware clock interrupts the processor 100 times per second at high priority. As most of the

clock-based events need not be done at high priority, the system schedules a lower priority software inter-

rupt to do the less time-critical events such as cpu scheduling and timeout processing. Often there are no

such events, and the software interrupt handler finds nothing to do and returns. The high priority event now

checks to see if there are low priority events to process; if there is nothing to do, the software interrupt is

not requested. Often, the high priority interrupt occurs during a period when the machine had been running

at low priority. Rather than posting a software interrupt that would occur as soon as it returns, the hardware

clock interrupt handler simply lowers the processor priority and calls the software clock routines directly.

Between these two optimizations, nearly 80 of the 100 software interrupts per second can be eliminated.

4.1.6. File System

The file system uses a large block size, typically 4096 or 8192 bytes. To allow small files to be

stored efficiently, the large blocks can be broken into smaller fragments, typically multiples of 1024 bytes.

To minimize the number of full-sized blocks that must be broken into fragments, the file system uses a best

fit strategy. Programs that slowly grow files using write of 1024 bytes or less can force the file system to

copy the data to successively larger and larger fragments until it finally grows to a full sized block. The file

system still uses a best fit strategy the first time a fragment is written. However, the first time that the file

system is forced to copy a growing fragment it places it at the beginning of a full sized block. Continued

growth can be accommodated without further copying by using up the rest of the block. If the file ceases to

grow, the rest of the block is still available for holding other fragments.

When creating a new file name, the entire directory in which it will reside must be scanned to insure

that the name does not already exist. For large directories, this scan is time consuming. Because there was

no provision for shortening directories, a directory that is once over-filled will increase the cost of file cre-

ation even after the over-filling is corrected. Thus, for example, a congested uucp connection can leave a

legacy long after it is cleared up. To alleviate the problem, the system now deletes empty blocks that it

finds at the end of a directory while doing a complete scan to create a new name.

4.1.7. Network

The default amount of buffer space allocated for stream sockets (including pipes) has been increased

to 4096 bytes. Stream sockets and pipes now return their buffer sizes in the block size field of the stat

structure. This information allows the standard I/O library to use more optimal buffering. Unix domain

stream sockets also return a dummy device and inode number in the stat structure to increase compatibility

with other pipe implementations. The TCP maximum segment size is calculated according to the destina-

tion and interface in use; non-local connections use a more conservative size for long-haul networks.

On multiply-homed hosts, the local address bound by TCP now always corresponds to the interface

that will be used in transmitting data packets for the connection. Several bugs in the calculation of round

trip timing have been corrected. TCP now switches to an alternate gateway when an existing route fails, or

when an ICMP redirect message is received. ICMP source quench messages are used to throttle the trans-

mission rate of TCP streams by temporarily creating an artificially small send window, and retransmissions

send only a single packet rather than resending all queued data. A send policy has been implemented that

decreases the number of small packets outstanding for network terminal traffic [Nagle84], providing addi-

tional reduction of network congestion. The overhead of packet routing has been decreased by changes in

the routing code and by caching the most recently used route for each datagram socket.

The buffer management strategy implemented by sosend has been changed to make better use of the

increased size of the socket buffers and a better tuned delayed acknowledgement algorithm. Routing has

been modified to include a one element cache of the last route computed. Multiple messages send with the

same destination now require less processing. Performance deteriorates because of load in either the sender

host, receiver host, or ether. Also, any CPU contention degrades substantially the throughput achievable by

user processes [Cabrera85]. We hav e observed empty VAX 11/750s using up to 90% of their cycles trans-

mitting network messages.
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4.1.8. Exec

When exec-ing a new process, the kernel creates the new program’s argument list by copying the

arguments and environment from the parent process’s address space into the system, then back out again

onto the stack of the newly created process. These two copy operations were done one byte at a time, but

are now done a string at a time. This optimization reduced the time to process an argument list by a factor

of ten; the average time to do an exec call decreased by 25%.

4.1.9. Context Switching

The kernel used to post a software event when it wanted to force a process to be rescheduled. Often

the process would be rescheduled for other reasons before exiting the kernel, delaying the event trap. At

some later time the process would again be selected to run and would complete its pending system call,

finally causing the event to take place. The ev ent would cause the scheduler to be invoked a second time

selecting the same process to run. The fix to this problem is to cancel any software reschedule events when

saving a process context. This change doubles the speed with which processes can synchronize using pipes

or signals.

4.1.10. Setjmp/Longjmp

The kernel routine setjmp, that saves the current system context in preparation for a non-local goto

used to save many more registers than necessary under most circumstances. By trimming its operation to

save only the minimum state required, the overhead for system calls decreased by an average of 13%.

4.1.11. Compensating for Lack of Compiler Technology

The current compilers available for C do not do any significant optimization. Good optimizing com-

pilers are unlikely to be built; the C language is not well suited to optimization because of its rampant use

of unbound pointers. Thus, many classical optimizations such as common subexpression analysis and

selection of register variables must be done by hand using ‘‘exterior’’ knowledge of when such optimiza-

tions are safe.

Another optimization usually done by optimizing compilers is inline expansion of small or frequently

used routines. In past Berkeley systems this has been done by using sed to run over the assembly language

and replace calls to small routines with the code for the body of the routine, often a single VAX instruction.

While this optimization eliminated the cost of the subroutine call and return, it did not eliminate the push-

ing and popping of several arguments to the routine. The sed script has been replaced by a more intelligent

expander, inline, that merges the pushes and pops into moves to registers. For example, if the C code

if (scanc(map[i], 1, 47, i - 63))

is compiled into assembly language it generates the code shown in the left hand column of Table 11. The

sed inline expander changes this code to that shown in the middle column. The newer optimizer eliminates

most of the stack operations to generate the code shown in the right hand column.

Another optimization involved reevaluating existing data structures in the context of the current sys-

tem. For example, disk buffer hashing was implemented when the system typically had thirty to fifty buf-

fers. Most systems today have 200 to 1000 buffers. Consequently, most of the hash chains contained ten to

a hundred buffers each! The running time of the low lev el buffer management primitives was dramatically

improved simply by enlarging the size of the hash table.

4.2. Improvements to Libraries and Utilities

Intuitively, changes to the kernel would seem to have the greatest payoff since they affect all pro-

grams that run on the system. However, the kernel has been tuned many times before, so the opportunity

for significant improvement was small. By contrast, many of the libraries and utilities had never been

tuned. For example, we found utilities that spent 90% of their running time doing single character read sys-

tem calls. Changing the utility to use the standard I/O library cut the running time by a factor of five!

Thus, while most of our time has been spent tuning the kernel, more than half of the speedups are because

of improvements in other parts of the system. Some of the more dramatic changes are described in the
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Alternative C Language Code Optimizations

cc sed inline

subl3 $64,_i,−(sp) subl3 $64,_i,−(sp) subl3 $64,_i,r5

pushl $47 pushl $47 movl $47,r4

pushl $1 pushl $1 pushl $1

mull2 $16,_i,r3 mull2 $16,_i,r3 mull2 $16,_i,r3

pushl −56(fp)[r3] pushl −56(fp)[r3] movl −56(fp)[r3],r2

calls $4,_scanc movl (sp)+,r5 movl (sp)+,r3

tstl r0 movl (sp)+,r4 scanc r2,(r3),(r4),r5

jeql L7 movl (sp)+,r3 tstl r0

movl (sp)+,r2 jeql L7

scanc r2,(r3),(r4),r5

tstl r0

jeql L7

Table 11. Alternative inline code expansions.

following subsections.

4.2.1. Hashed Databases

UNIX provides a set of database management routines, dbm, that can be used to speed lookups in

large data files with an external hashed index file. The original version of dbm was designed to work with

only one database at a time. These routines were generalized to handle multiple database files, enabling

them to be used in rewrites of the password and host file lookup routines. The new routines used to access

the password file significantly improve the running time of many important programs such as the mail sub-

system, the C-shell (in doing tilde expansion), ls −l, etc.

4.2.2. Buffered I/O

The new filesystem with its larger block sizes allows better performance, but it is possible to degrade

system performance by performing numerous small transfers rather than using appropriately-sized buffers.

The standard I/O library automatically determines the optimal buffer size for each file. Some C library rou-

tines and commonly-used programs use low-level I/O or their own buffering, however. Sev eral important

utilities that did not use the standard I/O library and were buffering I/O using the old optimal buffer size,

1Kbytes; the programs were changed to buffer I/O according to the optimal file system blocksize. These

include the editor, the assembler, loader, remote file copy, the text formatting programs, and the C compiler.

The standard error output has traditionally been unbuffered to prevent delay in presenting the output

to the user, and to prevent it from being lost if buffers are not flushed. The inordinate expense of sending

single-byte packets through the network led us to impose a buffering scheme on the standard error stream.

Within a single call to fprintf, all output is buffered temporarily. Before the call returns, all output is

flushed and the stream is again marked unbuffered. As before, the normal block or line buffering mecha-

nisms can be used instead of the default behavior.

It is possible for programs with good intentions to unintentionally defeat the standard I/O library’s

choice of I/O buffer size by using the setbuf call to assign an output buffer. Because of portability require-

ments, the default buffer size provided by setbuf is 1024 bytes; this can lead, once again, to added overhead.

One such program with this problem was cat; there are undoubtedly other standard system utilities with

similar problems as the system has changed much since they were originally written.

4.2.3. Mail System

The problems discussed in section 3.1.1 prompted significant work on the entire mail system. The

first problem identified was a bug in the syslog program. The mail delivery program, sendmail logs all mail

transactions through this process with the 4.2BSD interprocess communication facilities. Syslog then

records the information in a log file. Unfortunately, syslog was performing a sync operation after each mes-

sage it received, whether it was logged to a file or not. This wreaked havoc on the effectiveness of the
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buffer cache and explained, to a large extent, why sending mail to large distribution lists generated such a

heavy load on the system (one syslog message was generated for each message recipient causing almost a

continuous sequence of sync operations).

The hashed data base files were installed in all mail programs, resulting in an order of magnitude

speedup on large distribution lists. The code in /bin/mail that notifies the comsat program when mail has

been delivered to a user was changed to cache host table lookups, resulting in a similar speedup on large

distribution lists.

Next, the file locking facilities provided in 4.2BSD, flock (2), were used in place of the old locking

mechanism. The mail system previously used link and unlink in implementing file locking primitives.

Because these operations usually modify the contents of directories they require synchronous disk opera-

tions and cannot take advantage of the name cache maintained by the system. Unlink requires that the

entry be found in the directory so that it can be removed; link requires that the directory be scanned to

insure that the name does not already exist. By contrast the advisory locking facility in 4.2BSD is efficient

because it is all done with in-memory tables. Thus, the mail system was modified to use the file locking

primitives. This yielded another 10% cut in the basic overhead of delivering mail. Extensive profiling and

tuning of sendmail and compiling it without debugging code reduced the overhead by another 20%.

4.2.4. Network Servers

With the introduction of the network facilities in 4.2BSD, a myriad of services became available,

each of which required its own daemon process. Many of these daemons were rarely if ever used, yet they

lay asleep in the process table consuming system resources and generally slowing down response. Rather

than having many servers started at boot time, a single server, inetd was substituted. This process reads a

simple configuration file that specifies the services the system is willing to support and listens for service

requests on each service’s Internet port. When a client requests service the appropriate server is created and

passed a service connection as its standard input. Servers that require the identity of their client may use

the getpeername system call; likewise getsockname may be used to find out a server’s local address without

consulting data base files. This scheme is attractive for several reasons:

• it eliminates as many as a dozen processes, easing system overhead and allowing the file and text tables

to be made smaller,

• servers need not contain the code required to handle connection queueing, simplifying the programs,

and

• installing and replacing servers becomes simpler.

With an increased numbers of networks, both local and external to Berkeley, we found that the over-

head of the routing process was becoming inordinately high. Several changes were made in the routing

daemon to reduce this load. Routes to external networks are no longer exchanged by routers on the internal

machines, only a route to a default gateway. This reduces the amount of network traffic and the time

required to process routing messages. In addition, the routing daemon was profiled and functions responsi-

ble for large amounts of time were optimized. The major changes were a faster hashing scheme, and inline

expansions of the ubiquitous byte-swapping functions.

Under certain circumstances, when output was blocked, attempts by the remote login process to send

output to the user were rejected by the system, although a prior select call had indicated that data could be

sent. This resulted in continuous attempts to write the data until the remote user restarted output. This

problem was initially avoided in the remote login handler, and the original problem in the kernel has since

been corrected.

4.2.5. The C Run-time Library

Several people have found poorly tuned code in frequently used routines in the C library [Lank-

ford84]. In particular the running time of the string routines can be cut in half by rewriting them using the

VAX string instructions. The memory allocation routines have been tuned to waste less memory for mem-

ory allocations with sizes that are a power of two. Certain library routines that did file input in one-charac-

ter reads have been corrected. Other library routines including fread and fwrite have been rewritten for effi-

ciency.
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4.2.6. Csh

The C-shell was converted to run on 4.2BSD by writing a set of routines to simulate the old jobs

library. While this provided a functioning C-shell, it was grossly inefficient, generating up to twenty sys-

tem calls per prompt. The C-shell has been modified to use the new signal facilities directly, cutting the

number of system calls per prompt in half. Additional tuning was done with the help of profiling to cut the

cost of frequently used facilities.

5. Functional Extensions

Some of the facilities introduced in 4.2BSD were not completely implemented. An important part of

the effort that went into 4.3BSD was to clean up and unify both new and old facilities.

5.1. Kernel Extensions

A significant effort went into improving the networking part of the kernel. The work consisted of fix-

ing bugs, tuning the algorithms, and revamping the lowest levels of the system to better handle heteroge-

neous network topologies.

5.1.1. Subnets, Broadcasts and Gateways

To allow sites to expand their network in an autonomous and orderly fashion, subnetworks have been

introduced in 4.3BSD [GADS85]. This facility allows sites to subdivide their local Internet address space

into multiple subnetwork address spaces that are visible only by hosts at that site. To off-site hosts

machines on a site’s subnetworks appear to reside on a single network. The routing daemon has been

reworked to provide routing support in this type of environment.

The default Internet broadcast address is now specified with a host part of all one’s, rather than all

zero’s. The broadcast address may be set at boot time on a per-interface basis.

5.1.2. Interface Addressing

The organization of network interfaces has been reworked to more cleanly support multiple network

protocols. Network interfaces no longer contain a host’s address on that network; instead each interface

contains a pointer to a list of addresses assigned to that interface. This permits a single interface to support,

for example, Internet protocols at the same time as XNS protocols.

The Address Resolution Protocol (ARP) support for 10 megabyte/second Ethernet† has been made

more flexible by allowing hosts to act as a ‘‘clearing house’’ for hosts that do not support ARP. In addition,

system managers have more control over the contents of the ARP translation cache and may interactively

interrogate and modify the cache’s contents.

5.1.3. User Control of Network Buffering

Although the system allocates reasonable default amounts of buffering for most connections, certain

operations such as file system dumps to remote machines benefit from significant increases in buffering

[Walsh84]. The setsockopt system call has been extended to allow such requests. In addition, getsockopt

and setsockopt, are now interfaced to the protocol level allowing protocol-specific options to be manipu-

lated by the user.

5.1.4. Number of File Descriptors

To allow full use of the many descriptor based services available, the previous hard limit of 30 open

files per process has been relaxed. The changes entailed generalizing select to handle arrays of 32-bit

words, removing the dependency on file descriptors from the page table entries, and limiting most of the

linear scans of a process’s file table. The default per-process descriptor limit was raised from 20 to 64,

though there are no longer any hard upper limits on the number of file descriptors.

10 † Ethernet is a trademark of Xerox.
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5.1.5. Kernel Limits

Many internal kernel configuration limits have been increased by suitable modifications to data struc-

tures. The limit on physical memory has been changed from 8 megabyte to 64 megabyte, and the limit of

15 mounted file systems has been changed to 255. The maximum file system size has been increased to 8

gigabyte, number of processes to 65536, and per process size to 64 megabyte of data and 64 megabyte of

stack. Note that these are upper bounds, the default limits for these quantities are tuned for systems with

4-8 megabyte of physical memory.

5.1.6. Memory Management

The global clock page replacement algorithm used to have a single hand that was used both to mark

and to reclaim memory. The first time that it encountered a page it would clear its reference bit. If the ref-

erence bit was still clear on its next pass across the page, it would reclaim the page. The use of a single

hand does not work well with large physical memories as the time to complete a single revolution of the

hand can take up to a minute or more. By the time the hand gets around to the marked pages, the informa-

tion is usually no longer pertinent. During periods of sudden shortages, the page daemon will not be able to

find any reclaimable pages until it has completed a full revolution. To alleviate this problem, the clock

hand has been split into two separate hands. The front hand clears the reference bits, the back hand follows

a constant number of pages behind reclaiming pages that still have cleared reference bits. While the code

has been written to allow the distance between the hands to be varied, we have not found any algorithms

suitable for determining how to dynamically adjust this distance.

The configuration of the virtual memory system used to require a significant understanding of its

operation to do such simple tasks as increasing the maximum process size. This process has been signifi-

cantly improved so that the most common configuration parameters, such as the virtual memory sizes, can

be specified using a single option in the configuration file. Standard configurations support data and stack

segments of 17, 33 and 64 megabytes.

5.1.7. Signals

The 4.2BSD signal implementation would push several words onto the normal run-time stack before

switching to an alternate signal stack. The 4.3BSD implementation has been corrected so that the entire

signal handler’s state is now pushed onto the signal stack. Another limitation in the original signal imple-

mentation was that it used an undocumented system call to return from signals. Users could not write their

own return from exceptions; 4.3BSD formally specifies the sigreturn system call.

Many existing programs depend on interrupted system calls. The restartable system call semantics of

4.2BSD signals caused many of these programs to break. To simplify porting of programs from inferior

versions of UNIX the sigvec system call has been extended so that programmers may specify that system

calls are not to be restarted after particular signals.

5.1.8. System Logging

A system logging facility has been added that sends kernel messages to the syslog daemon for log-

ging in /usr/adm/messages and possibly for printing on the system console. The revised scheme for logging

messages eliminates the time lag in updating the messages file, unifies the format of kernel messages, pro-

vides a finer granularity of control over the messages that get printed on the console, and eliminates the

degradation in response during the printing of low-priority kernel messages. Recoverable system errors and

common resource limitations are logged using this facility. Most system utilities such as init and login,

have been modified to log errors to syslog rather than writing directly on the console.

5.1.9. Windows

The tty structure has been augmented to hold information about the size of an associated window or

terminal. These sizes can be obtained by programs such as editors that want to know the size of the screen

they are manipulating. When these sizes are changed, a new signal, SIGWINCH, is sent the current process

group. The editors have been modified to catch this signal and reshape their view of the world, and the

remote login program and server now cooperate to propagate window sizes and window size changes across
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a network. Other programs and libraries such as curses that need the width or height of the screen have

been modified to use this facility as well.

5.1.10. Configuration of UNIBUS Devices

The UNIBUS configuration routines have been extended to allow auto-configuration of dedicated

UNIBUS memory held by devices. The new routines simplify the configuration of memory-mapped

devices and correct problems occurring on reset of the UNIBUS.

5.1.11. Disk Recovery from Errors

The MASSBUS disk driver’s error recovery routines have been fixed to retry before correcting ECC

errors, support ECC on bad-sector replacements, and correctly attempt retries after earlier corrective actions

in the same transfer. The error messages are more accurate.

5.2. Functional Extensions to Libraries and Utilities

Most of the changes to the utilities and libraries have been to allow them to handle a more general set

of problems, or to handle the same set of problems more quickly.

5.2.1. Name Server

In 4.2BSD the name resolution routines (gethostbyname, getservbyname, etc.) were implemented by

a set of database files maintained on the local machine. Inconsistencies or obsolescence in these files

resulted in inaccessibility of hosts or services. In 4.3BSD these files may be replaced by a network name

server that can insure a consistent view of the name space in a multimachine environment. This name

server operates in accordance with Internet standards for service on the ARPANET [Mockapetris83].

5.2.2. System Management

A new utility, rdist, has been provided to assist system managers in keeping all their machines up to

date with a consistent set of sources and binaries. A master set of sources may reside on a single central

machine, or be distributed at (known) locations throughout the environment. New versions of getty, init,

and login merge the functions of several files into a single place, and allow more flexibility in the startup of

processes such as window managers.

The new utility timed keeps the time on a group of cooperating machines (within a single LAN) syn-

chronized to within 30 milliseconds. It does its corrections using a new system call that changes the rate of

time advance without stopping or reversing the system clock. It normally selects one machine to act as a

master. If the master dies or is partitioned, a new master is elected. Other machines may participate in a

purely slave role.

5.2.3. Routing

Many bugs in the routing daemon have been fixed; it is considerably more robust, and now under-

stands how to properly deal with subnets and point-to-point networks. Its operation has been made more

efficient by tuning with the use of execution profiles, along with inline expansion of common operations

using the kernel’s inline optimizer.

5.2.4. Compilers

The symbolic debugger dbx has had many new features added, and all the known bugs fixed. In addi-

tion dbx has been extended to work with the Pascal compiler. The fortran compiler f77 has had numerous

bugs fixed. The C compiler has been modified so that it can, optionally, generate single precision floating

point instructions when operating on single precision variables.

6. Security Tightening

Since we do not wish to encourage rampant system cracking, we describe only briefly the changes

made to enhance security.
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6.1. Generic Kernel

Several loopholes in the process tracing facility have been corrected. Programs being traced may not

be executed; executing programs may not be traced. Programs may not provide input to terminals to which

they do not have read permission. The handling of process groups has been tightened to eliminate some

problems. When a program attempts to change its process group, the system checks to see if the process

with the pid of the process group was started by the same user. If it exists and was started by a different

user the process group number change is denied.

6.2. Security Problems in Utilities

Setuid utilities no longer use the popen or system library routines. Access to the kernel’s data struc-

tures through the kmem device is now restricted to programs that are set group id ‘‘kmem’’. Thus many

programs that used to run with root privileges no longer need to do so. Access to disk devices is now con-

trolled by an ‘‘operator’’ group id; this permission allows operators to function without being the super-

user. Only users in group wheel can do ‘‘su root’’; this restriction allows administrators to define a super-

user access list. Numerous holes have been closed in the shell to prevent users from gaining privileges

from set user id shell scripts, although use of such scripts is still highly discouraged on systems that are

concerned about security.

7. Conclusions

4.2BSD, while functionally superior to 4.1BSD, lacked much of the performance tuning required of a

good system. We found that the distributed system spent 10-20% more time in the kernel than 4.1BSD.

This added overhead combined with problems with several user programs severely limited the overall per-

formance of the system in a general timesharing environment.

Changes made to the system since the 4.2BSD distribution have eliminated most of the added system

overhead by replacing old algorithms or introducing additional cacheing schemes. The combined caches

added to the name translation process reduce the average cost of translating a pathname to an inode by

more than 50%. These changes reduce the percentage of time spent running in the system by nearly 9%.

The use of silo input on terminal ports only when necessary has allowed the system to avoid a large

amount of software interrupt processing. Observations show that the system is forced to field about 25%

fewer interrupts than before.

The kernel changes, combined with many bug fixes, make the system much more responsive in a

general timesharing environment. The 4.3BSD Berkeley UNIX system now appears capable of supporting

loads at least as large as those supported under 4.1BSD while providing all the new interprocess communi-

cation, networking, and file system facilities.
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AA ppppeennddiixx AA −− BBeenncchhmmaarrkk ssoouurrcceess

The programs shown here run under 4.2 with only routines from the standard libraries. When run

under 4.1 they were augmented with a getpagesize routine and a copy of the random function from

the C library. The vforks and vexecs programs are constructed from the forks and execs programs,

respectively, by substituting calls to fork with calls to vfork.

ssyyssccaallll

/*

* System call overhead benchmark.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr iinntt ncalls;

iiff (argc < 2) {{

printf("usage: %s #syscalls\n", argv[0]);

exit(1);

}}

ncalls = atoi(argv[1]);

wwhhiillee (ncalls−− > 0)

(vv ooiidd) getpid();

}}

ccssww

/*

* Context switching benchmark.

*

* Force system to context switch 2*nsigs

* times by forking and exchanging signals.

* To calculate system overhead for a context

* switch, the signocsw program must be run

* with nsigs. Overhead is then estimated by

* t1 = time csw <n>

* t2 = time signocsw <n>

* overhead = t1 − 2 * t2;

* /

##iinncclluuddee <signal.h>

iinntt sigsub();

iinntt otherpid;

iinntt nsigs;

mainmain(argc, argv)

cchhaarr *argv[];

{{

iinntt pid;

iiff (argc < 2) {{

printf("usage: %s nsignals\n", argv[0]);

exit(1);

}}

nsigs = atoi(argv[1]);

signal(SIGALRM, sigsub);
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otherpid = getpid();

pid = fork();

iiff (pid != 0) {{

otherpid = pid;

kill(otherpid, SIGALRM);

}}

ff oorr (;;)

sigpause(0);

}}

sigsubsigsub()

{{

signal(SIGALRM, sigsub);

kill(otherpid, SIGALRM);

iiff (−−nsigs <= 0)

exit(0);

}}

ssiiggnnooccssww

/*

* Signal without context switch benchmark.

* /

##iinncclluuddee <signal.h>

iinntt pid;

iinntt nsigs;

iinntt sigsub();

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr iinntt i;

iiff (argc < 2) {{

printf("usage: %s nsignals\n", argv[0]);

exit(1);

}}

nsigs = atoi(argv[1]);

signal(SIGALRM, sigsub);

pid = getpid();

ff oorr (i = 0; i < nsigs; i++)

kill(pid, SIGALRM);

}}

sigsubsigsub()

{{

signal(SIGALRM, sigsub);

}}

ppiippeesseellff
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/*

* IPC benchmark,

* write to self using pipes.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

cchhaarr buf[512];

iinntt fd[2], msgsize;

rr eeggiisstteerr iinntt i, iter;

iiff (argc < 3) {{

printf("usage: %s iterations message−size\n", argv[0]);

exit(1);

}}

argc−−, argv++;

iter = atoi(*argv);

argc−−, argv++;

msgsize = atoi(*argv);

iiff (msgsize > ssiizzeeooff (buf) || msgsize <= 0) {{

printf("%s: Bad message size.\n", *argv);

exit(2);

}}

iiff (pipe(fd) < 0) {{

perror("pipe");

exit(3);

}}

ff oorr (i = 0; i < iter; i++) {{

write(fd[1], buf, msgsize);

read(fd[0], buf, msgsize);

}}

}}

ppiippeeddiissccaarrdd

/*

* IPC benchmarkl,

* write and discard using pipes.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

cchhaarr buf[512];

iinntt fd[2], msgsize;

rr eeggiisstteerr iinntt i, iter;

iiff (argc < 3) {{

printf("usage: %s iterations message−size\n", argv[0]);

exit(1);

}}

argc−−, argv++;

iter = atoi(*argv);

argc−−, argv++;
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msgsize = atoi(*argv);

iiff (msgsize > ssiizzeeooff (buf) || msgsize <= 0) {{

printf("%s: Bad message size.\n", *argv);

exit(2);

}}

iiff (pipe(fd) < 0) {{

perror("pipe");

exit(3);

}}

iiff (fork() == 0)

ff oorr (i = 0; i < iter; i++)

read(fd[0], buf, msgsize);

eellssee

ff oorr (i = 0; i < iter; i++)

write(fd[1], buf, msgsize);

}}

ppiippeebbaacckk

/*

* IPC benchmark,

* read and reply using pipes.

*

* Process forks and exchanges messages

* over a pipe in a request−response fashion.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

cchhaarr buf[512];

iinntt fd[2], fd2[2], msgsize;

rr eeggiisstteerr iinntt i, iter;

iiff (argc < 3) {{

printf("usage: %s iterations message−size\n", argv[0]);

exit(1);

}}

argc−−, argv++;

iter = atoi(*argv);

argc−−, argv++;

msgsize = atoi(*argv);

iiff (msgsize > ssiizzeeooff (buf) || msgsize <= 0) {{

printf("%s: Bad message size.\n", *argv);

exit(2);

}}

iiff (pipe(fd) < 0) {{

perror("pipe");

exit(3);

}}

iiff (pipe(fd2) < 0) {{

perror("pipe");

exit(3);

}}

iiff (fork() == 0)
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ff oorr (i = 0; i < iter; i++) {{

read(fd[0], buf, msgsize);

write(fd2[1], buf, msgsize);

}}

eellssee

ff oorr (i = 0; i < iter; i++) {{

write(fd[1], buf, msgsize);

read(fd2[0], buf, msgsize);

}}

}}

ff oorrkkss

/*

* Benchmark program to calculate fork+wait

* overhead (approximately). Process

* forks and exits while parent waits.

* The time to run this program is used

* in calculating exec overhead.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr iinntt nforks, i;

cchhaarr *cp;

iinntt pid, child, status, brksize;

iiff (argc < 2) {{

printf("usage: %s number−of−forks sbrk−size\n", argv[0]);

exit(1);

}}

nforks = atoi(argv[1]);

iiff (nforks < 0) {{

printf("%s: bad number of forks\n", argv[1]);

exit(2);

}}

brksize = atoi(argv[2]);

iiff (brksize < 0) {{

printf("%s: bad size to sbrk\n", argv[2]);

exit(3);

}}

cp = (cchhaarr *)sbrk(brksize);

iiff ((iinntt)cp == −1) {{

perror("sbrk");

exit(4);

}}

ff oorr (i = 0; i < brksize; i += 1024)

cp[i] = i;

wwhhiillee (nforks−− > 0) {{

child = fork();

iiff (child == −1) {{

perror("fork");

exit(−1);

}}
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iiff (child == 0)

−

exit(−1);

wwhhiillee ((pid = wait(&status)) != −1 && pid != child)

;

}}

exit(0);

}}

eexxeeccss

/*

* Benchmark program to calculate exec

* overhead (approximately). Process

* forks and execs "null" test program.

* The time to run the fork program should

* then be deducted from this one to

* estimate the overhead for the exec.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr iinntt nexecs, i;

cchhaarr *cp, *sbrk();

iinntt pid, child, status, brksize;

iiff (argc < 3) {{

printf("usage: %s number−of−execs sbrk−size job−name\n",

argv[0]);

exit(1);

}}

nexecs = atoi(argv[1]);

iiff (nexecs < 0) {{

printf("%s: bad number of execs\n", argv[1]);

exit(2);

}}

brksize = atoi(argv[2]);

iiff (brksize < 0) {{

printf("%s: bad size to sbrk\n", argv[2]);

exit(3);

}}

cp = sbrk(brksize);

iiff ((iinntt)cp == −1) {{

perror("sbrk");

exit(4);

}}

ff oorr (i = 0; i < brksize; i += 1024)

cp[i] = i;

wwhhiillee (nexecs−− > 0) {{

child = fork();

iiff (child == −1) {{

perror("fork");

exit(−1);

}}

iiff (child == 0) {{
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execv(argv[3], argv);

perror("execv");

−

exit(−1);

}}

wwhhiillee ((pid = wait(&status)) != −1 && pid != child)

;

}}

exit(0);

}}

nnuulllljjoobb

/*

* Benchmark "null job" program.

* /

mainmain(argc, argv)

cchhaarr *argv[];

{{

exit(0);

}}

bbiiggjjoobb

/*

* Benchmark "null big job" program.

* /

/* 250 here is intended to approximate vi´s text+data size * /

cchhaarr space[1024 * 250] = "force into data segment";

mainmain(argc, argv)

cchhaarr *argv[];

{{

exit(0);

}}
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sseeqqppaaggee

/*

* Sequential page access benchmark.

* /

##iinncclluuddee <sys /vadvise.h>

cchhaarr *valloc();

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr i, niter;

rr eeggiisstteerr cchhaarr *pf, *lastpage;

iinntt npages = 4096, pagesize, vflag = 0;

cchhaarr *pages, *name;

name = argv[0];

argc−−, argv++;

again:

iiff (argc < 1) {{

usage:

printf("usage: %s [ −v ] [ −p #pages ] niter\n", name);

exit(1);

}}

iiff (strcmp(*argv, "−p") == 0) {{

argc−−, argv++;

iiff (argc < 1)

ggoottoo usage;

npages = atoi(*argv);

iiff (npages <= 0) {{

printf("%s: Bad page count.\n", *argv);

exit(2);

}}

argc−−, argv++;

ggoottoo again;

}}

iiff (strcmp(*argv, "−v") == 0) {{

argc−−, argv++;

vflag++;

ggoottoo again;

}}

niter = atoi(*argv);

pagesize = getpagesize();

pages = valloc(npages * pagesize);

iiff (pages == (cchhaarr *)0) {{

printf("Can´t allocate %d pages (%2.1f megabytes).\n",

npages, (npages * pagesize) / (1024. * 1024.));

exit(3);

}}

lastpage = pages + (npages * pagesize);

iiff (vflag)

vadvise(VA
−

SEQL);

ff oorr (i = 0; i < niter; i++)

ff oorr (pf = pages; pf < lastpage; pf += pagesize)
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*pf = 1;

}}

rraannddppaaggee

/*

* Random page access benchmark.

* /

##iinncclluuddee <sys /vadvise.h>

cchhaarr *valloc();

iinntt rand();

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr iinntt npages = 4096, pagesize, pn, i, niter;

iinntt vflag = 0, debug = 0;

cchhaarr *pages, *name;

name = argv[0];

argc−−, argv++;

again:

iiff (argc < 1) {{

usage:

printf("usage: %s [ −d ] [ −v ] [ −p #pages ] niter\n", name);

exit(1);

}}

iiff (strcmp(*argv, "−p") == 0) {{

argc−−, argv++;

iiff (argc < 1)

ggoottoo usage;

npages = atoi(*argv);

iiff (npages <= 0) {{

printf("%s: Bad page count.\n", *argv);

exit(2);

}}

argc−−, argv++;

ggoottoo again;

}}

iiff (strcmp(*argv, "−v") == 0) {{

argc−−, argv++;

vflag++;

ggoottoo again;

}}

iiff (strcmp(*argv, "−d") == 0) {{

argc−−, argv++;

debug++;

ggoottoo again;

}}

niter = atoi(*argv);

pagesize = getpagesize();

pages = valloc(npages * pagesize);

iiff (pages == (cchhaarr *)0) {{

printf("Can´t allocate %d pages (%2.1f megabytes).\n",
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npages, (npages * pagesize) / (1024. * 1024.));

exit(3);

}}

iiff (vflag)

vadvise(VA
−

ANOM);

ff oorr (i = 0; i < niter; i++) {{

pn = random() % npages;

iiff (debug)

printf("touch page %d\n", pn);

pages[pagesize * pn] = 1;

}}

}}

ggaauussssppaaggee

/*

* Random page access with

* a gaussian distribution.

*

* Allocate a large (zero fill on demand) address

* space and fault the pages in a random gaussian

* order.

* /

ffllooaatt sqrt(), log(), rnd(), cos(), gauss();

cchhaarr *valloc();

iinntt rand();

mainmain(argc, argv)

cchhaarr *argv[];

{{

rr eeggiisstteerr iinntt pn, i, niter, delta;

rr eeggiisstteerr cchhaarr *pages;

ffllooaatt sd = 10.0;

iinntt npages = 4096, pagesize, debug = 0;

cchhaarr *name;

name = argv[0];

argc−−, argv++;

again:

iiff (argc < 1) {{

usage:

printf(

"usage: %s [ −d ] [ −p #pages ] [ −s standard−deviation ] iterations\n", name);

exit(1);

}}

iiff (strcmp(*argv, "−s") == 0) {{

argc−−, argv++;

iiff (argc < 1)

ggoottoo usage;

sscanf(*argv, "%f", &sd);

iiff (sd <= 0) {{

printf("%s: Bad standard deviation.\n", *argv);

exit(2);

}}
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argc−−, argv++;

ggoottoo again;

}}

iiff (strcmp(*argv, "−p") == 0) {{

argc−−, argv++;

iiff (argc < 1)

ggoottoo usage;

npages = atoi(*argv);

iiff (npages <= 0) {{

printf("%s: Bad page count.\n", *argv);

exit(2);

}}

argc−−, argv++;

ggoottoo again;

}}

iiff (strcmp(*argv, "−d") == 0) {{

argc−−, argv++;

debug++;

ggoottoo again;

}}

niter = atoi(*argv);

pagesize = getpagesize();

pages = valloc(npages*pagesize);

iiff (pages == (cchhaarr *)0) {{

printf("Can´t allocate %d pages (%2.1f megabytes).\n",

npages, (npages*pagesize) / (1024. * 1024.));

exit(3);

}}

pn = 0;

ff oorr (i = 0; i < niter; i++) {{

delta = gauss(sd, 0.0);

wwhhiillee (pn + delta < 0 || pn + delta > npages)

delta = gauss(sd, 0.0);

pn += delta;

iiff (debug)

printf("touch page %d\n", pn);

eellssee

pages[pn * pagesize] = 1;

}}

}}

ffllooaatt

gaussgauss(sd, mean)

ffllooaatt sd, mean;

{{

rr eeggiisstteerr ffllooaatt qa, qb;

qa = sqrt(log(rnd()) * −2.0);

qb = 3.14159 * rnd();

rr eettuurr nn (qa * cos(qb) * sd + mean);

}}

ffllooaatt

rndrnd()
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{{

ssttaattiicc iinntt seed = 1;

ssttaattiicc iinntt biggest = 0x7fffffff;

rr eettuurr nn ((ffllooaatt)rand(seed) / (ffllooaatt)biggest);

}}

rruunn ((sshheellll ssccrriipptt))

##! /bin /csh −fx

## Script to run benchmark programs.

##

date

make clean; time make

time syscall 100000

time seqpage −p 7500 10

time seqpage −v −p 7500 10

time randpage −p 7500 30000

time randpage −v −p 7500 30000

time gausspage −p 7500 −s 1 30000

time gausspage −p 7500 −s 10 30000

time gausspage −p 7500 −s 30 30000

time gausspage −p 7500 −s 40 30000

time gausspage −p 7500 −s 50 30000

time gausspage −p 7500 −s 60 30000

time gausspage −p 7500 −s 80 30000

time gausspage −p 7500 −s 10000 30000

time csw 10000

time signocsw 10000

time pipeself 10000 512

time pipeself 10000 4

time udgself 10000 512

time udgself 10000 4

time pipediscard 10000 512

time pipediscard 10000 4

time udgdiscard 10000 512

time udgdiscard 10000 4

time pipeback 10000 512

time pipeback 10000 4

time udgback 10000 512

time udgback 10000 4

size forks

time forks 1000 0

time forks 1000 1024

time forks 1000 102400

size vforks

time vforks 1000 0

time vforks 1000 1024

time vforks 1000 102400

countenv

size nulljob

time execs 1000 0 nulljob

time execs 1000 1024 nulljob

time execs 1000 102400 nulljob

time vexecs 1000 0 nulljob
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time vexecs 1000 1024 nulljob

time vexecs 1000 102400 nulljob

size bigjob

time execs 1000 0 bigjob

time execs 1000 1024 bigjob

time execs 1000 102400 bigjob

time vexecs 1000 0 bigjob

time vexecs 1000 1024 bigjob

time vexecs 1000 102400 bigjob

## fill environment with ˜1024 bytes

setenv a 012345678901234567890123456789012345678901234567890123456780123456789

setenv b 012345678901234567890123456789012345678901234567890123456780123456789

setenv c 012345678901234567890123456789012345678901234567890123456780123456789

setenv d 012345678901234567890123456789012345678901234567890123456780123456789

setenv e 012345678901234567890123456789012345678901234567890123456780123456789

setenv f 012345678901234567890123456789012345678901234567890123456780123456789

setenv g 012345678901234567890123456789012345678901234567890123456780123456789

setenv h 012345678901234567890123456789012345678901234567890123456780123456789

setenv i 012345678901234567890123456789012345678901234567890123456780123456789

setenv j 012345678901234567890123456789012345678901234567890123456780123456789

setenv k 012345678901234567890123456789012345678901234567890123456780123456789

setenv l 012345678901234567890123456789012345678901234567890123456780123456789

setenv m 012345678901234567890123456789012345678901234567890123456780123456789

setenv n 012345678901234567890123456789012345678901234567890123456780123456789

setenv o 012345678901234567890123456789012345678901234567890123456780123456789

countenv

time execs 1000 0 nulljob

time execs 1000 1024 nulljob

time execs 1000 102400 nulljob

time execs 1000 0 bigjob

time execs 1000 1024 bigjob

time execs 1000 102400 bigjob
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