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ABSTRACT

The 4.3BSD UNIX kernel uses many memory allocation mechanisms, each

designed for the particular needs of the utilizing subsystem. This paper describes a gen-

eral purpose dynamic memory allocator that can be used by all of the kernel subsystems.

The design of this allocator takes advantage of known memory usage patterns in the

UNIX kernel and a hybrid strategy that is time-efficient for small allocations and space-

efficient for large allocations. This allocator replaces the multiple memory allocation

interfaces with a single easy-to-program interface, results in more efficient use of global

memory by eliminating partitioned and specialized memory pools, and is quick enough

that no performance loss is observed relative to the current implementations. The paper

concludes with a discussion of our experience in using the new memory allocator, and

directions for future work.

1. Kernel Memory Allocation in 4.3BSD

The 4.3BSD kernel has at least ten different memory allocators. Some of them handle large blocks,

some of them handle small chained data structures, and others include information to describe I/O opera-

tions. Often the allocations are for small pieces of memory that are only needed for the duration of a single

system call. In a user process such short-term memory would be allocated on the run-time stack. Because

the kernel has a limited run-time stack, it is not feasible to allocate even moderate blocks of memory on it.

Consequently, such memory must be allocated through a more dynamic mechanism. For example, when

the system must translate a pathname, it must allocate a one kilobye buffer to hold the name. Other blocks

of memory must be more persistent than a single system call and really have to be allocated from dynamic

memory. Examples include protocol control blocks that remain throughout the duration of the network

connection.

Demands for dynamic memory allocation in the kernel have increased as more services have been

added. Each time a new type of memory allocation has been required, a specialized memory allocation

scheme has been written to handle it. Often the new memory allocation scheme has been built on top of an

older allocator. For example, the block device subsystem provides a crude form of memory allocation

through the allocation of empty buffers [Thompson78]. The allocation is slow because of the implied

semantics of finding the oldest buffer, pushing its contents to disk if they are dirty, and moving physical

memory into or out of the buffer to create the requested size. To reduce the overhead, a ‘‘new’’ memory

allocator was built in 4.3BSD for name translation that allocates a pool of empty buffers. It keeps them on

†UNIX is a registered trademark of AT&T in the US and other countries.
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a free list so they can be quickly allocated and freed [McKusick85].

This memory allocation method has several drawbacks. First, the new allocator can only handle a

limited range of sizes. Second, it depletes the buffer pool, as it steals memory intended to buffer disk

blocks to other purposes. Finally, it creates yet another interface of which the programmer must be aware.

A generalized memory allocator is needed to reduce the complexity of writing code inside the kernel.

Rather than providing many semi-specialized ways of allocating memory, the kernel should provide a sin-

gle general purpose allocator. With only a single interface, programmers do not need to figure out the most

appropriate way to allocate memory. If a good general purpose allocator is available, it helps avoid the syn-

drome of creating yet another special purpose allocator.

To ease the task of understanding how to use it, the memory allocator should have an interface simi-

lar to the interface of the well-known memory allocator provided for applications programmers through the

C library routines malloc() and free(). Like the C library interface, the allocation routine should take a

parameter specifying the size of memory that is needed. The range of sizes for memory requests should not

be constrained. The free routine should take a pointer to the storage being freed, and should not require

additional information such as the size of the piece of memory being freed.

2. Criteria for a Kernel Memory Allocator

The design specification for a kernel memory allocator is similar to, but not identical to, the design

criteria for a user level memory allocator. The first criterion for a memory allocator is that it make good use

of the physical memory. Good use of memory is measured by the amount of memory needed to hold a set

of allocations at any point in time. Percentage utilization is expressed as:

utilization =

requested

required

Here, ‘‘requested’’ is the sum of the memory that has been requested and not yet freed. ‘‘Required’’ is the

amount of memory that has been allocated for the pool from which the requests are filled. An allocator

requires more memory than requested because of fragmentation and a need to have a ready supply of free

memory for future requests. A perfect memory allocator would have a utilization of 100%. In practice,

having a 50% utilization is considered good [Korn85].

Good memory utilization in the kernel is more important than in user processes. Because user pro-

cesses run in virtual memory, unused parts of their address space can be paged out. Thus pages in the

process address space that are part of the ‘‘required’’ pool that are not being ‘‘requested’’ need not tie up

physical memory. Because the kernel is not paged, all pages in the ‘‘required’’ pool are held by the kernel

and cannot be used for other purposes. To keep the kernel utilization percentage as high as possible, it is

desirable to release unused memory in the ‘‘required’’ pool rather than to hold it as is typically done with

user processes. Because the kernel can directly manipulate its own page maps, releasing unused memory is

fast; a user process must do a system call to release memory.

The most important criterion for a memory allocator is that it be fast. Because memory allocation is

done frequently, a slow memory allocator will degrade the system performance. Speed of allocation is

more critical when executing in the kernel than in user code, because the kernel must allocate many data

structure that user processes can allocate cheaply on their run-time stack. In addition, the kernel represents

the platform on which all user processes run, and if it is slow, it will degrade the performance of every

process that is running.

Another problem with a slow memory allocator is that programmers of frequently-used kernel inter-

faces will feel that they cannot afford to use it as their primary memory allocator. Instead they will build

their own memory allocator on top of the original by maintaining their own pool of memory blocks. Multi-

ple allocators reduce the efficiency with which memory is used. The kernel ends up with many different

free lists of memory instead of a single free list from which all allocation can be drawn. For example, con-

sider the case of two subsystems that need memory. If they hav e their own free lists, the amount of mem-

ory tied up in the two lists will be the sum of the greatest amount of memory that each of the two subsys-

tems has ever used. If they share a free list, the amount of memory tied up in the free list may be as low as

the greatest amount of memory that either subsystem used. As the number of subsystems grows, the
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savings from having a single free list grow.

3. Existing User-level Implementations

There are many different algorithms and implementations of user-level memory allocators. A survey

of those available on UNIX systems appeared in [Korn85]. Nearly all of the memory allocators tested

made good use of memory, though most of them were too slow for use in the kernel. The fastest memory

allocator in the survey by nearly a factor of two was the memory allocator provided on 4.2BSD originally

written by Chris Kingsley at California Institute of Technology. Unfortunately, the 4.2BSD memory alloca-

tor also wasted twice as much memory as its nearest competitor in the survey.

The 4.2BSD user-level memory allocator works by maintaining a set of lists that are ordered by

increasing powers of two. Each list contains a set of memory blocks of its corresponding size. To fulfill a

memory request, the size of the request is rounded up to the next power of two. A piece of memory is then

removed from the list corresponding to the specified power of two and returned to the requester. Thus, a

request for a block of memory of size 53 returns a block from the 64-sized list. A typical memory alloca-

tion requires a roundup calculation followed by a linked list removal. Only if the list is empty is a real

memory allocation done. The free operation is also fast; the block of memory is put back onto the list from

which it came. The correct list is identified by a size indicator stored immediately preceding the memory

block.

4. Considerations Unique to a Kernel Allocator

There are several special conditions that arise when writing a memory allocator for the kernel that do

not apply to a user process memory allocator. First, the maximum memory allocation can be determined at

the time that the machine is booted. This number is never more than the amount of physical memory on the

machine, and is typically much less since a machine with all its memory dedicated to the operating system

is uninteresting to use. Thus, the kernel can statically allocate a set of data structures to manage its dynami-

cally allocated memory. These data structures never need to be expanded to accommodate memory

requests; yet, if properly designed, they need not be large. For a user process, the maximum amount of

memory that may be allocated is a function of the maximum size of its virtual memory. Although it could

allocate static data structures to manage its entire virtual memory, even if they were efficiently encoded they

would potentially be huge. The other alternative is to allocate data structures as they are needed. However,

that adds extra complications such as new failure modes if it cannot allocate space for additional structures

and additional mechanisms to link them all together.

Another special condition of the kernel memory allocator is that it can control its own address space.

Unlike user processes that can only grow and shrink their heap at one end, the kernel can keep an arena of

kernel addresses and allocate pieces from that arena which it then populates with physical memory. The

effect is much the same as a user process that has parts of its address space paged out when they are not in

use, except that the kernel can explicitly control the set of pages allocated to its address space. The result is

that the ‘‘working set’’ of pages in use by the kernel exactly corresponds to the set of pages that it is really

using.

A final special condition that applies to the kernel is that all of the different uses of dynamic memory

are known in advance. Each one of these uses of dynamic memory can be assigned a type. For each type

of dynamic memory that is allocated, the kernel can provide allocation limits. One reason given for having

separate allocators is that no single allocator could starve the rest of the kernel of all its available memory

and thus a single runaway client could not paralyze the system. By putting limits on each type of memory,

the single general purpose memory allocator can provide the same protection against memory starvation.†

Figure 1 shows the memory usage of the kernel over a one day period on a general timesharing

machine at Berkeley. The ‘‘In Use’’, ‘‘Free’’, and ‘‘Mem Use’’ fields are instantaneous values; the

‘‘Requests’’ field is the number of allocations since system startup; the ‘‘High Use’’ field is the maximum

value of the ‘‘Mem Use’’ field since system startup. The figure demonstrates that most allocations are for

small objects. Large allocations occur infrequently, and are typically for long-lived objects such as buffers

†One might seriously ask the question what good it is if ‘‘only’’ one subsystem within the kernel hangs if it is

something like the network on a diskless workstation.
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Memory statistics by bucket size

Size In Use Free Requests

128 329 39 3129219

256 0 0 0

512 4 0 16

1024 17 5 648771

2048 13 0 13

2049−4096 0 0 157

4097−8192 2 0 103

8193−16384 0 0 0

16385−32768 1 0 1

Memory statistics by type

Type In Use Mem Use High Use Requests

mbuf 6 1K 17K 3099066

devbuf 13 53K 53K 13

socket 37 5K 6K 1275

pcb 55 7K 8K 1512

routetbl 229 29K 29K 2424

fragtbl 0 0K 1K 404

zombie 3 1K 1K 24538

namei 0 0K 5K 648754

ioctlops 0 0K 1K 12

superblk 24 34K 34K 24

temp 0 0K 8K 258

Figure 1. One day memory usage on a Berkeley time-sharing machine

to hold the superblock for a mounted file system. Thus, a memory allocator only needs to be fast for small

pieces of memory.

5. Implementation of the Kernel Memory Allocator

In reviewing the available memory allocators, none of their strategies could be used without some

modification. The kernel memory allocator that we ended up with is a hybrid of the fast memory allocator

found in the 4.2BSD C library and a slower but more-memory-efficient first-fit allocator.

Small allocations are done using the 4.2BSD power-of-two list strategy; the typical allocation

requires only a computation of the list to use and the removal of an element if it is available, so it is quite

fast. Macros are provided to avoid the cost of a subroutine call. Only if the request cannot be fulfilled from

a list is a call made to the allocator itself. To ensure that the allocator is always called for large requests,

the lists corresponding to large allocations are always empty. Appendix A shows the data structures and

implementation of the macros.

Similarly, freeing a block of memory can be done with a macro. The macro computes the list on

which to place the request and puts it there. The free routine is called only if the block of memory is con-

sidered to be a large allocation. Including the cost of blocking out interrupts, the allocation and freeing

macros generate respectively only nine and sixteen (simple) VAX instructions.

Because of the inefficiency of power-of-two allocation strategies for large allocations, a different

strategy is used for allocations larger than two kilobytes. The selection of two kilobytes is derived from our

statistics on the utilization of memory within the kernel, that showed that 95 to 98% of allocations are of

size one kilobyte or less. A frequent caller of the memory allocator (the name translation function) always

requests a one kilobyte block. Additionally the allocation method for large blocks is based on allocating
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pieces of memory in multiples of pages. Consequently the actual allocation size for requests of size

2 × pagesize or less are identical.† In 4.3BSD on the VAX, the (software) page size is one kilobyte, so two

kilobytes is the smallest logical cutoff.

Large allocations are first rounded up to be a multiple of the page size. The allocator then uses a

first-fit algorithm to find space in the kernel address arena set aside for dynamic allocations. Thus a request

for a five kilobyte piece of memory will use exactly five pages of memory rather than eight kilobytes as

with the power-of-two allocation strategy. When a large piece of memory is freed, the memory pages are

returned to the free memory pool, and the address space is returned to the kernel address arena where it is

coalesced with adjacent free pieces.

Another technique to improve both the efficiency of memory utilization and the speed of allocation is

to cluster same-sized small allocations on a page. When a list for a power-of-two allocation is empty, a

new page is allocated and divided into pieces of the needed size. This strategy speeds future allocations as

several pieces of memory become available as a result of the call into the allocator.

kernel memory pages

Legend:

cont − continuation of previous page

free − unused page

Usage:

memsize(addr)
char *addr;

{
return(kmemsizes[(addr − kmembase) − PA GESIZE]);

}

1024, 256, 512, 3072, cont,cont, 128, 128, free, cont, 128, 1024, free, cont, cont,kmemsizes[] = {

char *kmembase

Figure 2. Calculation of allocation size

Because the size is not specified when a block of memory is freed, the allocator must keep track of

the sizes of the pieces it has handed out. The 4.2BSD user-level allocator stores the size of each block in a

header just before the allocation. However, this strategy doubles the memory requirement for allocations

that require a power-of-two-sized block. Therefore, instead of storing the size of each piece of memory

with the piece itself, the size information is associated with the memory page. Figure 2 shows how the ker-

nel determines the size of a piece of memory that is being freed, by calculating the page in which it resides,

and looking up the size associated with that page. Eliminating the cost of the overhead per piece improved

utilization far more than expected. The reason is that many allocations in the kernel are for blocks of mem-

ory whose size is exactly a power of two. These requests would be nearly doubled if the user-level strategy

were used. Now they can be accommodated with no wasted memory.

The allocator can be called both from the top half of the kernel, which is willing to wait for memory

to become available, and from the interrupt routines in the bottom half of the kernel that cannot wait for

memory to become available. Clients indicate their willingness (and ability) to wait with a flag to the allo-

cation routine. For clients that are willing to wait, the allocator guarrentees that their request will succeed.

Thus, these clients can need not check the return value from the allocator. If memory is unavailable and the

client cannot wait, the allocator returns a null pointer. These clients must be prepared to cope with this

(hopefully infrequent) condition (usually by giving up and hoping to do better later).

†To understand why this number is 2 × pagesize one observes that the power-of-two algorithm yields sizes of 1,

2, 4, 8, ... pages while the large block algorithm that allocates in multiples of pages yields sizes of 1, 2, 3, 4, ...

pages. Thus for allocations of sizes between one and two pages both algorithms use two pages; it is not until

allocations of sizes between two and three pages that a difference emerges where the power-of-two algorithm

will use four pages while the large block algorithm will use three pages.
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6. Results of the Implementation

The new memory allocator was written about a year ago. Conversion from the old memory alloca-

tors to the new allocator has been going on ever since. Many of the special purpose allocators have been

eliminated. This list includes calloc(), wmemall(), and zmemall(). Many of the special purpose memory

allocators built on top of other allocators have also been eliminated. For example, the allocator that was

built on top of the buffer pool allocator geteblk() to allocate pathname buffers in namei() has been elimi-

nated. Because the typical allocation is so fast, we have found that none of the special purpose pools are

needed. Indeed, the allocation is about the same as the previous cost of allocating buffers from the network

pool (mbufs). Consequently applications that used to allocate network buffers for their own uses have been

switched over to using the general purpose allocator without increasing their running time.

Quantifying the performance of the allocator is difficult because it is hard to measure the amount of

time spent allocating and freeing memory in the kernel. The usual approach is to compile a kernel for pro-

filing and then compare the running time of the routines that implemented the old abstraction versus those

that implement the new one. The old routines are difficult to quantify because individual routines were

used for more than one purpose. For example, the geteblk() routine was used both to allocate one kilobyte

memory blocks and for its intended purpose of providing buffers to the filesystem. Differentiating these

uses is often difficult. To get a measure of the cost of memory allocation before putting in our new alloca-

tor, we summed up the running time of all the routines whose exclusive task was memory allocation. To

this total we added the fraction of the running time of the multi-purpose routines that could clearly be iden-

tified as memory allocation usage. This number showed that approximately three percent of the time spent

in the kernel could be accounted to memory allocation.

The new allocator is difficult to measure because the usual case of the memory allocator is imple-

mented as a macro. Thus, its running time is a small fraction of the running time of the numerous routines

in the kernel that use it. To get a bound on the cost, we changed the macro always to call the memory allo-

cation routine. Running in this mode, the memory allocator accounted for six percent of the time spent in

the kernel. Factoring out the cost of the statistics collection and the subroutine call overhead for the cases

that could normally be handled by the macro, we estimate that the allocator would account for at most four

percent of time in the kernel. These measurements show that the new allocator does not introduce signifi-

cant new run-time costs.

The other major success has been in keeping the size information on a per-page basis. This technique

allows the most frequently requested sizes to be allocated without waste. It also reduces the amount of

bookkeeping information associated with the allocator to four kilobytes of information per megabyte of

memory under management (with a one kilobyte page size).

7. Future Work

Our next project is to convert many of the static kernel tables to be dynamically allocated. Static

tables include the process table, the file table, and the mount table. Making these tables dynamic will have

two benefits. First, it will reduce the amount of memory that must be statically allocated at boot time. Sec-

ond, it will eliminate the arbitrary upper limit imposed by the current static sizing (although a limit will be

retained to constrain runaway clients). Other researchers have already shown the memory savings achieved

by this conversion [Rodriguez88].

Under the current implementation, memory is never moved from one size list to another. With the

4.2BSD memory allocator this causes problems, particularly for large allocations where a process may use

a quarter megabyte piece of memory once, which is then never available for any other size request. In our

hybrid scheme, memory can be shuffled between large requests so that large blocks of memory are never

stranded as they are with the 4.2BSD allocator. Howev er, pages allocated to small requests are allocated

once to a particular size and never changed thereafter. If a burst of requests came in for a particular size,

that size would acquire a large amount of memory that would then not be available for other future

requests.

In practice, we do not find that the free lists become too large. However, we hav e been investigating

ways to handle such problems if they occur in the future. Our current investigations involve a routine that

can run as part of the idle loop that would sort the elements on each of the free lists into order of increasing
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address. Since any giv en page has only one size of elements allocated from it, the effect of the sorting

would be to sort the list into distinct pages. When all the pieces of a page became free, the page itself could

be released back to the free pool so that it could be allocated to another purpose. Although there is no guar-

antee that all the pieces of a page would ever be freed, most allocations are short-lived, lasting only for the

duration of an open file descriptor, an open network connection, or a system call. As new allocations would

be made from the page sorted to the front of the list, return of elements from pages at the back would even-

tually allow pages later in the list to be freed.

Tw o of the traditional UNIX memory allocators remain in the current system. The terminal subsys-

tem uses clists (character lists). That part of the system is expected to undergo major revision within the

next year or so, and it will probably be changed to use mbufs as it is merged into the network system. The

other major allocator that remains is getblk(), the routine that manages the filesystem buffer pool memory

and associated control information. Only the filesystem uses getblk() in the current system; it manages the

constant-sized buffer pool. We plan to merge the filesystem buffer cache into the virtual memory system’s

page cache in the future. This change will allow the size of the buffer pool to be changed according to

memory load, but will require a policy for balancing memory needs with filesystem cache performance.
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1100.. AAppppeennddiixx AA -- IImmpplleemmeennttaattiioonn DDeettaaiillss

/*

* Constants for setting the parameters of the kernel memory allocator.

*

* 2 ** MINBUCKET is the smallest unit of memory that will be

* allocated. It must be at least large enough to hold a pointer.

*

* Units of memory less or equal to MAXALLOCSAVE will permanently

* allocate physical memory; requests for these size pieces of memory

* are quite fast. Allocations greater than MAXALLOCSAVE must

* always allocate and free physical memory; requests for these size

* allocations should be done infrequently as they will be slow.

* Constraints: CLBYTES <= MAXALLOCSAVE <= 2 ** (MINBUCKET + 14)

* and MAXALLOCSIZE must be a power of two.

* /

##ddeeff iinnee MINBUCKET 4 /* 4 => min allocation of 16 bytes * /

MAXALLOCSAVE##ddeeff iinnee MAXALLOCSAVE (2 * CLBYTES)

/*

* Maximum amount of kernel dynamic memory.

* Constraints: must be a multiple of the pagesize.

* /

MAXKMEM##ddeeff iinnee MAXKMEM (1024 * PA GESIZE)

/*

* Arena for all kernel dynamic memory allocation.

* This arena is known to start on a page boundary.

* /

eexxtteerr nn cchhaarr kmembase[MAXKMEM];

/*

* Array of descriptors that describe the contents of each page

* /

ssttrruucctt kmemsizes {{

sshhoorrtt ks
−

indx; /* bucket index, size of small allocations * /

u
−

short ks
−

pagecnt; /* for large allocations, pages allocated * /

}} kmemsizes[MAXKMEM / PA GESIZE];

/*

* Set of buckets for each size of memory block that is retained

* /

ssttrruucctt kmembuckets {{

caddr
−

t kb
−

next; /* list of free blocks * /

}} bucket[MINBUCKET + 16];

Summer USENIX ’88 302 San Francisco, June 20-24



McKusick, Karels Design of a General Purpose Memory ...

/*

* Macro to convert a size to a bucket index. If the size is constant,

* this macro reduces to a compile time constant.

* /

MINALLOCSIZE##ddeeff iinnee MINALLOCSIZE (1 << MINBUCKET)

BUCKETINDX##ddeeff iinnee BUCKETINDX(size) \

(size) <= (MINALLOCSIZE * 128) \

? (size) <= (MINALLOCSIZE * 8) \

? (size) <= (MINALLOCSIZE * 2) \

? (size) <= (MINALLOCSIZE * 1) \

? (MINBUCKET + 0) \

: (MINBUCKET + 1) \

: (size) <= (MINALLOCSIZE * 4) \

? (MINBUCKET + 2) \

: (MINBUCKET + 3) \

: (size) <= (MINALLOCSIZE* 32) \

? (size) <= (MINALLOCSIZE * 16) \

? (MINBUCKET + 4) \

: (MINBUCKET + 5) \

: (size) <= (MINALLOCSIZE * 64) \

? (MINBUCKET + 6) \

: (MINBUCKET + 7) \

: (size) <= (MINALLOCSIZE * 2048) \

/* etc ... * /

/*

* Macro versions for the usual cases of malloc /free

* /

MALLOC##ddeeff iinnee MALLOC(space, cast, size, flags) {{ \

rr eeggiisstteerr ssttrruucctt kmembuckets *kbp = &bucket[BUCKETINDX(size)]; \

lloonngg s = splimp(); \

iiff (kbp−>kb
−

next == NULL) {{ \

(space) = (cast)malloc(size, flags); \

}} eellssee {{ \

(space) = (cast)kbp−>kb
−

next; \

kbp−>kb
−

next = *(caddr
−

t *)(space); \

}} \

splx(s); \

}}

FREE##ddeeff iinnee FREE(addr) {{ \

rr eeggiisstteerr ssttrruucctt kmembuckets *kbp; \

rr eeggiisstteerr ssttrruucctt kmemsizes *ksp = \

&kmemsizes[((addr) − kmembase) / PA GESIZE]; \

lloonngg s = splimp(); \

iiff (1 << ksp−>ks
−

indx > MAXALLOCSAVE) {{ \

free(addr); \

}} eellssee {{ \

kbp = &bucket[ksp−>ks
−

indx]; \

*(caddr
−

t *)(addr) = kbp−>kb
−

next; \

kbp−>kb
−

next = (caddr
−

t)(addr); \

}} \

splx(s); \

}}
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