
Rethinking /dev and devices in the UNIX kernel

Poul-Henning Kamp

<phk@FreeBSD.org>

The FreeBSD Project

Abstract

An outstanding novelty in UNIX at its introduction was the notion of ‘‘a file is a file is a file and even a device is a

file.’’ Going from ‘‘hardware only changes when the DEC Field engineer is here’’ to ‘‘my toaster has USB’’ has put

serious strain on the rather crude implementation of the ‘‘devices as files’’ concept, an implementation which has

survived practically unchanged for 30 years in most UNIX variants. Starting from a high-level view of devices and

the semantics that have grown around them over the years, this paper takes the audience on a grand tour of the

redesigned FreeBSD device-I/O system, to convey an overview of how it all fits together, and to explain why things

ended up as they did, how to use the new features and in particular how not to.

1. Introduction

There are really only two fundamental ways to concep-

tualise I/O devices in an operating system: The usual

way and the UNIX way.

The usual way is to treat I/O devices as their own class

of things, possibly several classes of things, and pro-

vide APIs tailored to the semantics of the devices. In

practice this means that a program must know what it is

dealing with, it has to interact with disks one way, tapes

another and rodents yet a third way, all of which are

different from how it interacts with a plain disk file.

The UNIX way has never been described better than in

the very first paper published on UNIX by Ritchie and

Thompson [Ritchie74]:

Special files constitute the most unusual feature of

the UNIX filesystem. Each supported I/O device

is associated with at least one such file. Special

files are read and written just like ordinary disk

files, but requests to read or write result in activa-

tion of the associated device. An entry for each

special file resides in directory /dev, although a

link may be made to one of these files just as it

may to an ordinary file. Thus, for example, to

write on a magnetic tape one may write on the file

/dev/mt.

Special files exist for each communication line,

each disk, each tape drive, and for physical main

memory. Of course, the active disks and the mem-

ory special files are protected from indiscriminate

access.

There is a threefold advantage in treating I/O de-

vices this way: file and device I/O are as similar as

possible; file and device names have the same syn-

tax and meaning, so that a program expecting a file

name as a parameter can be passed a device name;

finally, special files are subject to the same protec-

tion mechanism as regular files.

At the time, this was quite a strange concept; it was

totally accepted for instance, that neither the system

administrator nor the users were able to interact with a

disk as a disk. Operating systems simply did not pro-

vide access to disk other than as a filesystem. Most

vendors did not even release a program to initialise a

disk-pack with a filesystem: selling pre-initialised and

‘‘quality tested’’ disk-packs was quite a profitable busi-

ness.

In many cases some kind of API for reading and writ-

ing individual sectors on a disk pack did exist in the

operating system, but more often than not it was not

listed in the public documentation.

1.1. The traditional implementation

The initial implementation used hardcoded inode num-

bers [Ritchie98]. The console device would be inode

number 5, the paper-tape-punch number 6 and so on,

ev en if those inodes were also actual regular files in the

filesystem.

For reasons one can only too vividly imagine, this was

changed and Thompson [Thompson78] describes how

the implementation now used ‘‘major and minor’’

device numbers to index though the devsw array to the

correct device driver.

For all intents and purposes, this is the implementation

which survives in most UNIX-like systems even to this



day. Apart from the access control and timestamp

information which is found in all inodes, the special

inodes in the filesystem contain only one piece of infor-

mation: the major and minor device numbers, often log-

ically OR’ed to one field.

When a program opens a special file, the kernel uses

the major number to find the entry points in the device

driver, and passes the combined major and minor num-

bers as a parameter to the device driver.

2. The challenge

Now, we did not talk much about where the special

inodes came from to begin with. They were created by

hand, using the mknod(2) system call, usually through

the mknod(8) program.

In those days a computer had a very static hardware

configuration1 and it certainly did not change while the

system was up and running, so creating device nodes

by hand was certainly an acceptable solution.

The first sign that this would not hold up as a solution

came with the advent of TCP/IP and the telnet(1) pro-

gram, or more precisely with the telnetd(8) daemon. In

order to support remote login a ‘‘pseudo-tty’’ device

driver was implemented, basically as tty driver which

instead of hardware had another device which would

allow a process to ‘‘act as hardware’’ for the tty. The

telnetd(8) daemon would read and write data on the

‘‘master’’ side of the pseudo-tty and the user would be

running on the ‘‘slave’’ side, which would act just like

any other tty: you could change the erase character if

you wanted to and all the signals and all that stuff

worked.

Obviously with a device requiring no hardware, you

can compile as many instances into the kernel as you

like, as long as you do not use too much memory. As

system after system was connected to the ARPANet,

‘‘increasing number of ptys’’ became a regular task for

system administrators, and part of this task was to cre-

ate more special nodes in the filesystem.

Several UNIX vendors also noticed an issue when they

sold minicomputers in many different configurations:

explaining to system administrators just which special

nodes they would need and how to create them were a

significant documentation hassle. Some opted for the

simple solution and pre-populated /dev with every con-

ceivable device node, resulting in a predictable slow-

down on access to filenames in /dev.

1 Unless your assigned field engineer was present on site.

System V UNIX provided a band-aid solution: a special

boot sequence would take effect if the kernel or the

hardware had changed since last reboot. This boot pro-

cedure would amongst other things create the necessary

special files in the filesystem, based on an intricate sys-

tem of per device driver configuration files.

In the recent years, we have become used to hardware

which changes configuration at any time: people plug

USB, Firewire and PCCard devices into their comput-

ers. These devices can be anything from modems and

disks to GPS receivers and fingerprint authentication

hardware. Suddenly maintaining the correct set of spe-

cial devices in ‘‘/dev’’ became a major headache.

Along the way, UNIX kernels had learned to deal with

multiple filesystem types [Heidemann91a] and a

‘‘device-pseudo-filesystem’’ was a pretty obvious idea.

The device drivers have a pretty good idea which

devices they hav e found in the configuration, so all that

is needed is to present this information as a filesystem

filled with just the right special files. Experience has

shown that this like most other ‘‘pseudo filesystems’’

sound a lot simpler in theory than in practice.

3. Truly understanding devices

Before we continue, we need to fully understand the

‘‘device special file’’ in UNIX.

First we need to realize that a special file has the nature

of a pointer from the filesystem into a different names-

pace; a little understood fact with far reaching conse-

quences.

One implication of this is that several special files can

exist in the filename namespace all pointing to the same

device but each having their own access and timestamp

attributes:

guest# ls -l /dev/fd0 /tmp/fd0

crw-r----- 1 root operator 9, 0 Sep 27 19:21 /dev/fd0

crw-rw-rw- 1 root wheel 9, 0 Sep 27 19:24 /tmp/fd0

Obviously, the administrator needs to be on top of this:

one popular way to exploit an unguarded root prompt is

to create a replica of the special file /dev/kmem in a

location where it will not be noticed. Since /dev/kmem

gives access to the kernel memory, gaining any particu-

lar privilege can be arranged by suitably modifying the

kernel’s data structures through the illicit special file.

When NFS appeared it opened a new avenue for this

attack: People may have root privilege on one machine

but not another. Since device nodes are not interpreted

on the NFS server but rather on the local computer, a

user with root privilege on a NFS client computer can

create a device node to his liking on a filesystem

mounted from an NFS server. This device node can in



turn be used to circumvent the security of other com-

puters which mount that filesystem, including the

server, unless they protect themselves by not trusting

any device entries on untrusted filesystem by mounting

such filesystems with the nodev mount-option.

The fact that the device itself does not actually exist

inside the filesystem which holds the special file makes

it possible to perform boot-strapping stunts in the spirit

of Baron Von Münchausen [raspe1785], where a

filesystem is (re)mounted using one of its own device

vnodes:

guest# mount -o ro /dev/fd0 /mnt

guest# fsck /mnt/dev/fd0

guest# mount -u -o rw /mnt/dev/fd0 /mnt

Other interesting details are chroot(2) and jail(2)

[Kamp2000] which provide filesystem isolation for

process-trees. Whereas chroot(2) was not implemented

as a security tool [Mckusick1999] (although it has been

widely used as such), the jail(2) security facility in

FreeBSD provides a pretty convincing ‘‘virtual

machine’’ where even the root privilege is isolated and

restricted to the designated area of the machine. Obvi-

ously chroot(2) and jail(2) may require access to a

well-defined subset of devices like /dev/null, /dev/zero

and /dev/tty, whereas access to other devices such as

/dev/kmem or any disks could be used to compromise

the integrity of the jail(2) confinement.

For a long time FreeBSD, like almost all UNIX-like

systems had two kinds of devices, ‘‘block’’ and ‘‘char-

acter’’ special files, the difference being that ‘‘block’’

devices would provide caching and alignment for disk

device access. This was one of those minor architec-

tural mistakes which took forever to correct.

The argument that block devices were a mistake is

really very very simple: Many devices other than disks

have multiple modes of access which you select by

choosing which special file to use.

Pick any old timer and he will be able to recite painful

sagas about the crucial difference between the /dev/rmt

and /dev/nrmt devices for tape access.2

Tapes, asynchronous ports, line printer ports and many

other devices have implemented submodes, selectable

by the user at a special filename level, but that has not

earned them their own special file types. Only disks3

have enjoyed the privilege of getting an entire file type

2 Make absolutely sure you know the difference before you

take important data on a multi-file 9-track tape to remote locations.

3 Well, OK: and some 9-track tapes.

dedicated to a a minor device mode.

Caching and alignment modes should have been

enabled by setting some bit in the minor device number

on the disk special file, not by polluting the filesystem

code with another file type.

In FreeBSD block devices were not even implemented

in a fashion which would be of any use, since any write

errors would never be reported to the writing process.

For this reason, and since no applications were found to

be in existence which relied on block devices and since

historical usage was indeed historical [Mckusick2000],

block devices were removed from the FreeBSD system.

This greatly simlified the task of keeping track of

open(2) reference counts for disks and removed much

magic special-case code throughout.

4. Files, sockets, pipes, SVID IPC and
devices

It is an instructive lesson in inconsistency to look at the

various types of ‘‘things’’ a process can access in

UNIX-like systems today.

First there are normal files, which are our reference

yardstick here: they are accessed with open(2), read(2),

write(2), mmap(2), close(2) and various other auxiliary

system calls.

Sockets and pipes are also accessed via file handles but

each has its own namespace. That means you cannot

open(2) a socket,4 but you can read(2) and write(2) to

it. Sockets and pipes vector off at the file descriptor

level and do not get in touch with the vnode based part

of the kernel at all.

Devices land somewhere in the middle between pipes

and sockets on one side and normal files on the other.

They use the filesystem namespace, are implemented

with vnodes, and can be operated on like normal files,

but don’t actually live in the filesystem.

Devices are in fact special-cased all the way through

the vnode system. For one thing devices break the

‘‘one file-one vnode’’ rule, making it necessary to chain

all vnodes for the same device together in order to be

able to find ‘‘the canonical vnode for this device node’’,

but more importantly, many operations have to be

specifically denied on special file vnodes since they do

not make any sense.

4 This is particularly bizarre in the case of UNIX domain sock-

ets which use the filesystem as their namespace and appear in directo-

ry listings.



For true inconsistency, consider the SVID IPC mecha-

nisms - not only do they not operate via file handles,

but they also sport a singularly illconceived 32 bit

numeric namespace and a dedicated set of system calls

for access.

Several people have convincingly argued that this is an

inconsistent mess, and have proposed and implemented

more consistent operating systems like the Plan9 from

Bell Labs [Pike90a] [Pike92a]. Unfortunately reality is

that people are not interested in learning a new operat-

ing system when the one they hav e is pretty darn good,

and consequently research into better and more consis-

tent ways is a pretty frustrating [Pike2000] but by no

means irrelevant topic.

5. Solving the /dev maintenance problem

There are a number of obvious, simple but wrong ways

one could go about solving the ‘‘/dev’’ maintenance

problem.

The very straightforward way is to hack the namei()

kernel function responsible for filename translation and

lookup. It is only a minor matter of programming to

add code to special-case any lookup which ends up in

‘‘/dev’’. But this leads to problems: in the case of

chroot(2) or jail(2), the administrator will want to

present only a subset of the available devices in ‘‘/dev’’,

so some kind of state will have to be kept per

chroot(2)/jail(2) about which devices are visible and

which devices are hidden, but no obvious location for

this information is available in the absence of a mount

data structure.

It also leads to some unpleasant issues because of the

fact that ‘‘/dev/foo’’ is a synthesised directory entry

which may or may not actually be present on the

filesystem which seems to provide ‘‘/dev’’. The vnodes

either have to belong to a filesystem or they must be

special-cased throughout the vnode layer of the kernel.

Finally there is the simple matter of generality: hard-

coding the string "/dev" in the kernel is very general.

A cruder solution is to leave it to a daemon: make a

special device driver, hav e a daemon read messages

from it and create and destroy nodes in ‘‘/dev’’ in

response to these messages.

The main drawback to this idea is that now we hav e

added IPC to the mix introducing new and interesting

race conditions.

Otherwise this solution is a surprisingly effective, but

chroot(2)/jail(2) requirements prevents a simple imple-

mentation and running a daemon per jail would become

an administrative nightmare.

Another pitfall of this approach is that we are not able

to remount the root filesystem read-write at boot until

we have a device node for the root device, but if this

node is missing we cannot create it with a daemon

since the root filesystem (and hence /dev) is read-only.

Adding a read-write memory-filesystem mount /dev to

solve this problem does not improve the architectural

qualities further and certainly the KISS principle has

been violated by now.

The final and in the end only satisfactory solution is to

write a ‘‘DEVFS’’ which mounts on ‘‘/dev’’.

The good news is that it does solve the problem with

chroot(2) and jail(2): just mount a DEVFS instance on

the ‘‘dev’’ directory inside the filesystem subtree where

the chroot or jail lives. Having a mountpoint gives us a

convenient place to keep track of the local state of this

DEVFS mount.

The bad news is that it takes a lot of cleanup and care to

implement a DEVFS into a UNIX kernel.

6. DEVFS architectural decisions

Before implementing a DEVFS, it is necessary to

decide on a range of corner cases in behaviour, and

some of these choices have proved surprisingly hard to

settle for the FreeBSD project.

6.1. The ‘‘persistence’’ issue

When DEVFS in FreeBSD was initially presented at a

BoF at the 1995 USENIX Technical Conference in

New Orleans, a group of people demanded that it pro-

vide ‘‘persistence’’ for administrative changes.

When trying to get a definition of ‘‘persistence’’, peo-

ple can generally agree that if the administrator changes

the access control bits of a device node, they want that

mode to survive across reboots.

Once more tricky examples of the sort of manipulations

one can do on special files are proposed, people rapidly

disagree about what should be supported and what

should not.

For instance, imagine a system with one floppy drive

which appears in DEVFS as ‘‘/dev/fd0’’. Now the

administrator, in order to get some badly written soft-

ware to run, links this to ‘‘/dev/fd1’’:

ln /dev/fd0 /dev/fd1

This works as expected and with persistence in

DEVFS, the link is still there after a reboot. But what

if after a reboot another floppy drive has been con-

nected to the system? This drive would naturally have



the name ‘‘/dev/fd1’’, but this name is now occupied by

the administrators hard link. Should the link be bro-

ken? Should the new floppy drive be called

‘‘/dev/fd2’’? Nobody can agree on anything but the

ugliness of the situation.

Given that we are no longer dependent on DEC Field

engineers to change all four wheels to see which one is

flat, the basic assumption that the machine has a con-

stant hardware configuration is simply no longer true.

The new assumption one should start from when

analysing this issue is that when the system boots, we

cannot know what devices we will find, and we can not

know if the devices we do find are the same ones we

had when the system was last shut down.

And in fact, this is very much the case with laptops

today: if I attach my IOmega Zip drive to my laptop it

appears like a SCSI disk named ‘‘/dev/da0’’, but so

does the RAID-5 array attached to the PCI SCSI con-

troller installed in my laptop’s docking station. If I

change mode to ‘‘a+rw’’ on the Zip drive, do I want

that mode to apply to the RAID-5 as well? Unlikely.

And what if we have persistent information about the

mode of device ‘‘/dev/sio0’’, but we boot and do not

find any sio devices? Do we keep the information in

our device-persistence registry? How long do we keep

it? If I borrow a modem card, set the permissions to

some non-standard value like 0666, and then attach

some other serial device a year from now - do I want

some old permissions changes to come back and haunt

me, just because they both happened to be ‘‘/dev/sio0’’?

Unlikely.

The fact that more people have laptop computers today

than five years ago, and the fact that nobody has been

able to credibly propose where a persistent DEVFS

would actually store the information about these things

in the first place has settled the issue.

Persistence may be the right answer, but to the wrong

question: persistence is not a desirable property for a

DEVFS when the hardware configuration may change

literally at any time.

6.2. Who decides on the names?

In a DEVFS-enabled system, the responsibility for cre-

ating nodes in /dev shifts to the device drivers, and con-

sequently the device drivers get to choose the names of

the device files. In addition an initial value for owner,

group and mode bits are provided by the device driver.

But should it be possible to rename ‘‘/dev/lpt0’’ to

‘‘/dev/myprinter’’? While the obvious affirmative

answer is easy to arrive at, it leaves a lot to be desired

once the implications are unmasked.

Most device drivers know their own name and use it

purposefully in their debug and log messages to iden-

tify themselves. Furthermore, the ‘‘NewBus’’ [New-

Bus] infrastructure facility, which ties hardware to

device drivers, identifies things by name and unit num-

bers.

A very common way to report errors in fact:

#define LPT_NAME "lpt" /* our official name */

[...]

printf(LPT_NAME

": cannot alloc ppbus (%d)!", error);

So despite the user renaming the device node pointing

to the printer to ‘‘myprinter’’, this has absolutely no

effect in the kernel and can be considered a userland

aliasing operation.

The decision was therefore made that it should not be

possible to rename device nodes since it would only

lead to confusion and because the desired effect could

be attained by giving the user the ability to create sym-

links in DEVFS.

6.3. On-demand device creation

Pseudo-devices like pty, tun and bpf, but also some real

devices, may not pre-emptively create entries for all

possible device nodes. It would be a pointless waste of

resources to always create 1000 ptys just in case they

are needed, and in the worst case more than 1800

device nodes would be needed per physical disk to rep-

resent all possible slices and partitions.

For pseudo-devices the task at hand is to make a magic

device node, ‘‘/dev/pty’’, which when opened will mag-

ically transmogrify into the first available pty subde-

vice, maybe ‘‘/dev/pty123’’.

Device submodes, on the other hand, work by having

multiple entries in /dev, each with a different minor

number, as a way to instruct the device driver in aspects

of its operation. The most widespread example is prob-

ably ‘‘/dev/mt0’’ and ‘‘/dev/nmt0’’, where the node

with the extra ‘‘n’’ instructs the tape device driver to

not rewind on close.5

Some UNIX systems have solved the problem for

pseudo-devices by creating magic cloning devices like

‘‘/dev/tcp’’. When a cloning device is opened, it finds a

free instance and through vnode and file descriptor

mangling return this new device to the opening process.

5 This is the answer to the question in footnote number 2.



This scheme has two disadvantages: the complexity of

switching vnodes in midstream is non-trivial, but even

worse is the fact that it does not work for submodes for

a device because it only reacts to one particular /dev

entry.

The solution for both needs is a more flexible on-

demand device creation, implemented in FreeBSD as a

two-level lookup. When a filename is looked up in

DEVFS, a match in the existing device nodes is sought

first and if found, returned. If no match is found,

device drivers are polled in turn to ask if they would be

able to synthesise a device node of the given name.

The device driver gets a chance to modify the name and

create a device with make_dev(). If one of the drivers

succeeds in this, the lookup is started over and the

newly found device node is returned:

pty_clone()

if (name != "pty")

return(NULL); /* no luck */

n = find_next_unit();

dev = make_dev(...,n,"pty%d",n);

name = dev->name;

return(dev);

An interesting mixed use of this mechanism is with the

sound device drivers. Modern sound devices have mul-

tiple channels, presumably to allow the user to listen to

CNN, Napstered MP3 files and Quake sound effects at

the same time. The only problem is that all applica-

tions attempt to open ‘‘/dev/dsp’’ since they hav e no

concept of multiple sound devices. The sound device

drivers use the cloning facility to direct ‘‘/dev/dsp’’ to

the first available sound channel completely transpar-

ently to the process.

There are very few drawbacks to this mechanism, the

major one being that ‘‘ls /dev’’ now errs on the sparse

side instead of the rich when used as a system device

inventory, a practice which has always been of dubious

precision at best.

6.4. Deleting and recreating devices

Deleting device nodes is no problem to implement, but

as likely as not, some people will want a method to get

them back. Since only the device driver know how to

create a given device, recreation cannot be performed

solely on the basis of the parameters provided by a

process in userland.

In order to not complicate the code which updates the

directory structure for a mountpoint to reflect changes

in the DEVFS inode list, a deleted entry is merely

marked with DE_WHITEOUT instead of being

removed entirely. Otherwise a separate list would be

needed for inodes which we had deleted so that they

would not be mistaken for new inodes.

The obvious way to recreate deleted devices is to let

mknod(2) do it by matching the name and disregarding

the major/minor arguments. Recreating the device with

mknod(2) will simply remove the DE_WHITEOUT

flag.

6.5. Jail(2), chroot(2) and DEVFS

The primary requirement from facilities like jail(2) and

chroot(2) is that it must be possible to control the con-

tents of a DEVFS mount point.

Obviously, it would not be desirable for dynamic

devices to pop into existence in the carefully pruned

/dev of jails so it must be possible to mark a DEVFS

mountpoint as ‘‘no new devices’’. And in the same

way, the jailed root should not be able to recreate

device nodes which the real root has removed.

These behaviours will be controlled with mount

options, but these have not yet been implemented

because FreeBSD has run out of bitmap flags for mount

options, and a new unlimited mount option implemen-

tation is still not in place at the time of writing.

One mount option ‘‘jaildevfs’’, will restrict the contents

of the DEVFS mountpoint to the ‘‘normal set’’ of

devices for a jail and automatically hide all future

devices and make it impossible for a jailed root to un-

hide hidden entries while letting an un-jailed root do so.

Mounting or remounting read-only, will prevent all

future devices from appearing and will make it impos-

sible to hide or un-hide entries in the mountpoint. This

is probably only useful for chroots or jails where no tty

access is intended since cloning will not work either.

More mount options may be needed as more experience

is gained.

6.6. Default mode, owner & group

When a device driver creates a device node, and a

DEVFS mount adds it to its directory tree, it needs to

have some values for the access control fields: mode,

owner and group.

Currently, the device driver specifies the initial values

in the make_dev() call, but this is far from optimal. For

one thing, embedding magic UIDs and GIDs in the ker-

nel is simply bad style unless they are numerically zero.

More seriously, they represent compile-time defaults

which in these enlightened days is rather old-fashioned.



7. Cleaning up before we build: struct
specinfo and dev_t

Most of the rest of the paper will be about the various

challenges and issues in the implementation of DEVFS

in FreeBSD. All of this should be applicable to other

systems derived from 4.4BSD-Lite as well.

POSIX has defined a type called ‘‘dev_t’’ which is the

identity of a device. This is mainly for use in the few

system calls which knows about devices: stat(2),

fstat(2) and mknod(2). A dev_t is constructed by logi-

cally OR’ing the major# and minor# for the device.

Since those have been defined as having no overlapping

bits, the major# and minor# can be retrieved from the

dev_t by a simple masking operation.

Although the kernel had a well-defined concept of any

particular device it did not have a data structure to rep-

resent "a device". The device driver has such a struc-

ture, traditionally called ‘‘softc’’ but the high kernel

does not (and should not!) have access to the device

driver’s private data structures.

It is an interesting tale how things got to be this way,6

but for now just record for a fact how the actual rela-

tionship between the data structures was in the 4.4BSD

release (Fig. 1). [44BSDBook]

As for all other files, a vnode references a filesystem

inode, but in addition it points to a ‘‘specinfo’’

file

handle

vnode specinfo

inode
devsw[]

[major#]

device

driver

softc[]

[minor#]

file

handle

vnode specinfo

inode

Fig. 1 - Data structures in 4.4BSD

6 Basically, devices should have been moved up with sockets

and pipes at the file descriptor level when the VFS layering was intro-

duced, rather than have all the special casing throughout the vnode

system.

structure. In the inode we find the dev_t which is used

to reference the device driver.

Access to the device driver happens by extracting the

major# from the dev_t, indexing through the global

devsw[] array to locate the device driver’s entry point.

The device driver will extract the minor# from the

dev_t and use that as the index into the softc array of

private data per device.

The ‘‘specinfo’’ structure is a little sidekick vnodes

grew underway, and is used to find all vnodes which

reference the same device (i.e. they hav e the same

major# and minor#). This linkage is used to determine

which vnode is the ‘‘chosen one’’ for this device, and to

keep track of open(2)/close(2) against this device. The

actual implementation was an inefficient hash imple-

mentation, which depending on the vnode reclamation

rate and /dev directory lookup traffic, may become a

measurable performance liability.

7.1. The new vnode/inode/dev_t layout

In the new layout (Fig. 2) the specinfo structure takes a

central role. There is only one instanace of struct

specinfo per device (i.e. unique major# and minor#

combination) and all vnodes referencing this device

point to this structure directly.

In userland, a dev_t is still the logical OR of the major#

and minor#, but this entity is now called a udev_t in the

kernel. In the kernel a dev_t is now a pointer to a struct

specinfo.

All vnodes referencing a device are linked to a list

hanging directly off the specinfo structure, removing

the need for the hash table and consequently simplify-

ing and speeding up a lot of code dealing with vnode

instantiation, retirement and name-caching.

file

handle

vnode specinfo

inode

file

handle

vnode

inode
device

driver

Fig. 2 - The new FreeBSD data structures.



The entry points to the device driver are stored in the

specinfo structure, removing the need for the devsw[]

array and allowing device drivers to use separate entry-

points for various minor numbers.

This is very convenient for devices which have a ‘‘con-

trol’’ device for management and tuning. The control

device, almost always have entirely separate

open/close/ioctl implementations [MD.C].

In addition to this, two data elements are included in

the specinfo structure but ‘‘owned’’ by the device

driver. Typically the device driver will store a pointer

to the softc structure in one of these, and unit number

or mode information in the other.

This removes the need for drivers to find the softc using

array indexing based on the minor#, and at the same

time has obliviated the need for the compiled-in

‘‘NFOO’’ constants which traditionally determined

how many softc structures and therefore devices the

driver could support.7

There are some trivial technical issues relating to allo-

cating the storage for specinfo early in the boot

sequence and how to find a specinfo from the

udev_t/major#+minor#, but they will not be discussed

here.

7.2. Creating and destroying devices

Ideally, devices should only be created and destroyed

by the device drivers which know what devices are

present. This is accomplished with the make_dev() and

destroy_dev() function calls.

Life is seldom quite that simple. The operating system

might be called on to act as a NFS server for a diskless

workstation, possibly even of a different architecture,

so we still need to be able to represent device nodes

with no device driver backing in the filesystems and

consequently we need to be able to create a specinfo

from the major#+minor# in these inodes when we

encounter them. In practice this is quite trivial, but in a

few places in the code one needs to be aware of the

existence of both ‘‘named’’ and ‘‘anonymous’’ specinfo

structures.

The make_dev() call creates a specinfo structure and

populates it with driver entry points, major#, minor#,

device node name (for instance ‘‘lpt0’’), UID, GID and

access mode bits. The return value is a dev_t (i.e., a

pointer to struct specinfo). If the device driver

7 Not to mention all the drivers which implemented panic(2)

because they forgot to perform bounds checking on the index before

using it on their softc arrays.

determines that the device is no longer present, it calls

destroy_dev(), giving a dev_t as argument and the dev_t

will be cleaned and converted to an anonymous dev_t.

Once created with make_dev() a named dev_t exists

until destroy_dev() is called by the driver. The driver

can rely on this and keep state in the fields in dev_t

which is reserved for driver use.

8. DEVFS

By now we hav e all the relevant information about each

device node collected in struct specinfo but we still

have one problem to solve before we can add the

DEVFS filesystem on top of it.

8.1. The interrupt problem

Some device drivers, notably the CAM/SCSI subsys-

tem in FreeBSD will discover changes in the device

configuration inside an interrupt routine.

This imposes some limitations on what can and should

do be done: first one should minimise the amount of

work done in an interrupt routine for performance rea-

sons; second, to avoid deadlocks, vnodes and mount-

points should not be accessed from an interrupt routine.

Also, in addition to the locking issue, a machine can

have many instances of DEVFS mounted: for a jail(8)

based virtual-machine web-server several hundred

instances is not unheard of, making it far too expensive

to update all of them in an interrupt routine.

The solution to this problem is to do all the filesystem

work on the filesystem side of DEVFS and use atomi-

cally manipulated integer indices (‘‘inode numbers’’) as

the barrier between the two sides.

The functions called from the device drivers,

make_dev(), destroy_dev() &c. only manipulate the

DEVFS inode number of the dev_t in question and do

not even get near any mountpoints or vnodes.

For make_dev() the task is to assign a unique inode

number to the dev_t and store the dev_t in the DEVFS-

global inode-to-dev_t array.

make_dev(...)

store argument values in dev_t

assign unique inode number to dev_t

atomically insert dev_t into inode_array

For destroy_dev() the task is the opposite: clear the

inode number in the dev_t and NULL the pointer in the

devfs-global inode-to-dev_t array.



destroy_dev(...)

clear fields in dev_t

zero dev_t inode number.

atomically clear entry in inode_array

Both functions conclude by atomically incrementing a

global variable devfs_generation to leave an

indication to the filesystem side that something has

changed.

By modifying the global state only with atomic instruc-

tions, locks have been entirely avoided in this part of

the code which means that the make_dev() and

destroy_dev() functions can be called from practically

anywhere in the kernel at any time.

On the filesystem side of DEVFS, the only two vnode

methods which examine or rely on the directory struc-

ture, VOP_LOOKUP and VOP_READDIR, call the

function devfs_populate() to update their mountpoint’s

view of the device hierarchy to match current reality

before doing any work.

devfs_readdir(...)

devfs_populate(...)

...

The devfs_populate() function, compares the current

devfs_generation to the value saved in the

mountpoint last time devfs_populate() completed and if

(actually: while) they differ a linear run is made

through the devfs-global inode-array and the directory

tree of the mountpoint is brought up to date.

The actual code is slightly more complicated than

shown in the pseudo-code here because it has to deal

with subdirectories and hidden entries.

devfs_populate(...)

while (mount->generation != devfs_generation)

for i in all inodes

if inode created)

create directory entry

else if inode destroyed

remove directory entry

Access to the global DEVFS inode table is again imple-

mented with atomic instructions and failsafe retries to

avoid the need for locking.

From a performance point of view this scheme also

means that a particular DEVFS mountpoint is not

updated until it needs to be, and then always by a

process belonging to the jail in question thus minimis-

ing and distributing the CPU load.

9. Device-driver impact

All these changes have had a significant impact on how

device drivers interact with the rest of the kernel

regarding registration of devices.

If we look first at the ‘‘before’’ image in Fig. 3, we

notice first the NFOO define which imposes a firm

upper limit on the number of devices the kernel can

deal with. Also notice that the softc structure for all of

them is allocated at compile time. This is because most

device drivers (and texts on writing device drivers) are

from before the general kernel malloc facility [Mcku-

sick1988] was introduced into the BSD kernel.

#ifndef NFOO

# define NFOO 4

#endif

struct foo_softc {

...

} foo_softc[NFOO];

int nfoo = 0;

foo_open(dev, ...)

{

int unit = minor(dev);

struct foo_softc *sc;

if (unit >= NFOO || unit >= nfoo)

return (ENXIO);

sc = &foo_softc[unit]

...

}

foo_attach(...)

{

struct foo_softc *sc;

static int once;

...

if (nfoo >= NFOO) {

/* Have hardware, can’t handle */

return (-1);

}

sc = &foo_softc[nfoo++];

if (!once) {

cdevsw_add(&cdevsw);

once++;

}

...

}

Fig. 3 - Device-driver, old style.

Also notice how range checking is needed to make sure

that the minor# is inside range. This code gets more

complex if device-numbering is sparse. Code equiva-

lent to that shown in the foo_open() routine would also

be needed in foo_read(), foo_write(), foo_ioctl() &c.

Finally notice how the attach routine needs to remem-

ber to register the cdevsw structure (not shown) when

the first device is found.

Now, compare this to our ‘‘after’’ image in Fig. 4.

NFOO is totally gone and so is the compile time alloca-

tion of space for softc structures.



The foo_open (and foo_close, foo_ioctl &c) functions

can now derive the softc pointer directly from the dev_t

they receive as an argument.

struct foo_softc {

....

};

int nfoo;

foo_open(dev, ...)

{

struct foo_softc *sc = dev->si_drv1;

...

}

foo_attach(...)

{

struct foo_softc *sc;

...

sc = MALLOC(..., M_ZERO);

if (sc == NULL) {

/* Have hardware, can’t handle */

return (-1);

}

sc->dev = make_dev(&cdevsw, nfoo,

UID_ROOT, GID_WHEEL, 0644,

"foo%d", nfoo);

nfoo++;

sc->dev->si_drv1 = sc;

...

}

Fig. 4 - Device-driver, new style.

In foo_attach() we can now attach to all the devices we

can allocate memory for and we register the cdevsw

structure per dev_t rather than globally.

This last trick is what allows us to discard all bounds

checking in the foo_open() &c. routines, because they

can only be called through the cdevsw, and the cdevsw

is only attached to dev_t’s which foo_attach() has cre-

ated. There is no way to end up in foo_open() with a

dev_t not created by foo_attach().

In the two examples here, the difference is only 10 lines

of source code, primarily because only one of the

worker functions of the device driver is shown. In real

device drivers it is not uncommon to save 50 or more

lines of source code which typically is about a percent

or two of the entire driver.

10. Future work

Apart from some minor issues to be cleaned up,

DEVFS is now a reality and future work therefore is

likely concentrate on applying the facilities and func-

tionality of DEVFS to FreeBSD.

10.1. devd

It would be logical to complement DEVFS with a

‘‘device-daemon’’ which could configure and de-con-

figure devices as they come and go. When a disk

appears, mount it. When a network interface appears,

configure it. And in some configurable way allow the

user to customise the action, so that for instance images

will automatically be copied off the flash-based media

from a camera, &c.

In this context it is good to question how we view

dynamic devices. If for instance a printer is removed in

the middle of a print job and another printer arrives a

moment later, should the system automatically continue

the print job on this new printer? When a disk-like

device arrives, should we always mount it? Should we

have a database of known disk-like devices to tell us

where to mount it, what permissions to give the mount-

point? Some computers come in multiple configura-

tions, for instance laptops with and without their dock-

ing station. How do we want to present this to the users

and what behaviour do the users expect?

10.2. Pathname length limitations

In order to simplify memory management in the early

stages of boot, the pathname relative to the mountpoint

is presently stored in a small fixed size buffer inside

struct specinfo. It should be possible to use filenames

as long as the system otherwise permits, so some kind

of extension mechanism is called for.

Since it cannot be guaranteed that memory can be allo-

cated in all the possible scenarios where make_dev()

can be called, it may be necessary to mandate that the

caller allocates the buffer if the content will not fit

inside the default buffer size.

10.3. Initial access parameter selection

As it is now, device drivers propose the initial mode,

owner and group for the device nodes, but it would be

more flexible if it were possible to give the kernel a set

of rules, much like packet filtering rules, which allow

the user to set the wanted policy for new devices. Such

a mechanism could also be used to filter new devices

for mount points in jails and to determine other behav-

iour.

Doing these things from userland results in some awk-

ward race conditions and software bloat for embedded

systems, so a kernel approach may be more suitable.



10.4. Applications of on-demand device
creation

The facility for on-demand creation of devices has

some very interesting possibilities.

One planned use is to enable user-controlled labelling

of disks. Today disks have names like /dev/da0,

/dev/ad4, but since this numbering is topological any

change in the hardware configuration may rename the

disks, causing /etc/fstab and backup procedures to get

out of sync with the hardware.

The current idea is to store on the media of the disk a

user-chosen disk name and allow access through this

name, so that for instance /dev/mydisk0 would be a

symlink to whatever topological name the disk might

have at any giv en time.

To simplify this and to avoid a forest of symlinks, it

will probably be decided to move all the sub-divisions

of a disk into one subdirectory per disk so just a single

symlink can do the job. In practice that means that the

current /dev/ad0s2f will become something like

/dev/ad0/s2f and so on. Obviously, in the same way,

disks could also be accessed by their topological

address, down to the specific path in a SAN environ-

ment.

Another potential use could be for automated offline

data media libraries. It would be quite trivial to make it

possible to access all the media in the library using

/dev/lib/$LABEL which would be a remarkable simpli-

fication compared with most current automated

retrieval facilities.

Another use could be to access devices by parameter

rather than by name. One could imagine sending a

printjob to /dev/printer/color/A2 and behind the scenes

a search would be made for a device with the correct

properties and paper-handling facilities.

11. Conclusion

DEVFS has been successfully implemented in Free-

BSD, including a powerful, simple and flexible solution

supporting pseudo-devices and on-demand device node

creation.

Contrary to the trend, the implementation added func-

tionality with a net decrease in source lines, primarily

because of the improved API seen from device drivers

point of view.

Even if DEVFS is not desired, other 4.4BSD derived

UNIX variants would probably benefit from adopting

the dev_t/specinfo related cleanup.

12. Acknowledgements

I first got started on DEVFS in 1989 because the

abysmal performance of the Olivetti M250 computer

forced me to implement a network-disk-device for

Minix in order to retain my sanity. That initial work

led to a crude but working DEVFS for Minix, so obvi-

ously both Andrew Tannenbaum and Olivetti deserve

credit for inspiration.

Julian Elischer implemented a DEVFS for FreeBSD

around 1994 which never quite made it to maturity and

subsequently was abandoned.

Bruce Evans deserves special credit not only for his

keen eye for detail, and his competent criticism but also

for his enthusiastic resistance to the very concept of

DEVFS.

Many thanks to the people who took time to help me

stamp out ‘‘Danglish’’ through their reviews and com-

ments: Chris Demetriou, Paul Richards, Brian Somers,

Nik Clayton, and Hanne Munkholm. Any remaining

insults to proper use of english language are my own

fault.

13. References

[44BSDBook] Mckusick, Bostic, Karels & Quarter-

man: ‘‘The Design and Implementation of 4.4 BSD

Operating System.’’ Addison Wesley, 1996, ISBN

0-201-54979-4.

[Heidemann91a] John S. Heidemann: ‘‘Stackable lay-

ers: an architecture for filesystem development.’’ Mas-

ter’s thesis, University of California, Los Angeles, July

1991. Available as UCLA technical report

CSD-910056.

[Kamp2000] Poul-Henning Kamp and Robert N. M.

Watson: ‘‘Confining the Omnipotent root.’’ Proceed-

ings of the SANE 2000 Conference. Av ailable in Free-

BSD distributions in /usr/share/papers.

[MD.C] Poul-Henning Kamp et al: FreeBSD memory

disk driver: src/sys/dev/md/md.c

[Mckusick1988] Marshall Kirk Mckusick, Mike J.

Karels: ‘‘Design of a General Purpose Memory Alloca-

tor for the 4.3BSD UNIX-Kernel’’ Proceedings of the

San Francisco USENIX Conference, pp. 295-303, June

1988.

[Mckusick1999] Dr. Marshall Kirk Mckusick: Private

email communication. ‘‘According to the SCCS logs,

the chroot call was added by Bill Joy on March 18,

1982 approximately 1.5 years before 4.2BSD was

released. That was well before we had ftp servers of

any sort (ftp did not show up in the source tree until

January 1983). My best guess as to its purpose was to



allow Bill to chroot into the /4.2BSD build directory

and build a system using only the files, include files, etc

contained in that tree. That was the only use of chroot

that I remember from the early days.’’

[Mckusick2000] Dr. Marshall Kirk Mckusick: Private

communication at BSDcon2000 conference. ‘‘I have

not used block devices since I wrote FFS and that was

many years ago.’’

[NewBus] NewBus is a subsystem which provides most

of the glue between hardware and device drivers.

Despite the importance of this there has never been

published any good overview documentation for it.

The following article by Alexander Langer in

‘‘Dæmonnews’’ is the best reference I can come up

with: http://www.daemonnews.org/200007/newbus-

intro.html

[Pike2000] Rob Pike: ‘‘Systems Software Research is

Irrelevant.’’

http://www.cs.bell−labs.com/who/rob/utah2000.pdf

[Pike90a] Rob Pike, Dave Presotto, Ken Thompson and

Howard Trickey: ‘‘Plan 9 from Bell Labs.’’ Proceed-

ings of the Summer 1990 UKUUG Conference.

[Pike92a] Rob Pike, Dave Presotto, Ken Thompson,

Howard Trickey and Phil Winterbottom: ‘‘The Use of

Name Spaces in Plan 9.’’ Proceedings of the 5th ACM

SIGOPS Workshop.

[Raspe1785] Rudolf Erich Raspe: ‘‘Baron Münch-

hausen’s Narrative of his marvellous Travels and Cam-

paigns in Russia.’’ Kearsley, 1785.

[Ritchie74] D.M. Ritchie and K. Thompson: ‘‘The

UNIX Time-Sharing System’’ Communications of the

ACM, Vol. 17, No. 7, July 1974.

[Ritchie98] Dennis Ritchie: private conversation at

USENIX Annual Technical Conference New Orleans,

1998.

[Thompson78] Ken Thompson: ‘‘UNIX Implementa-

tion’’ The Bell System Technical Journal, vol 57, 1978,

number 6 (part 2) p. 1931ff.


