
The Fletcher Checksums in ZFS

Alan Somers alans@spectralogic.com

April 12, 2013

Introduction

One of the goals of ZFS, the Zettabyte File System [1], is robust data integrity. It is among the first
filesystems to include error detection codes (EDC) for every block in the filesystem, including indirect
blocks. Every block’s EDC is stored in its parent block, all the way up to the root of the filesystem (the
überblock). That ensures that each block is always verified against a known-good EDC. As the only
orphan block in the filesystem, the überblock must store its own EDC. This makes it somewhat more
vulnerable to corruption; to compensate, multiple copies of the überblock are stored.

As of zpool version 28, ZFS offers 4 choices for the checksum function: off (not recommended),
Fletcher-2 (deprecated), Fletcher-4, or SHA-256. The two Fletcher options are based on the well-known
Fletcher Checksum [2], but differ in the blocksize, checksum length, and checksum number. This paper
will discuss the suitability of Fletcher-2 and Fletcher-4 for ensuring data integrity in ZFS.

Algorithms

ZFS’s Fletcher-2 and Fletcher-4 checksums operate over a block of data ranging from 1 byte to 128KB.
Fletcher-2 produces a 128-bit result consisting of two 64-bit numbers. It is defined by the following
recurrence relations:

ai = ai−1 + fi−1 (mod 264)
bi = bi−1 + ai (mod 264)
a0 = 0
b0 = 0

where {fn−1
i=0 } are the input data, taken in 64-bit words, and the variables ai and bi are 64-bit

accumulators. As series, Fletcher-2 can be expressed as:
an =

∑n
i=1 fn−i (mod 264)

bn =
∑n

i=1 i× fn−i (mod 264)
Fletcher-4 produces a 256-bit result consisting of four 64-bit numbers. The input data are taken in 32-

bit words to prevent overflow of a and b. Because Fletcher-2 overflows a and b by a simple 264 divisor, it
is very easy for errors in the high bits to go undetected. For example, the sequences (0, 0) and (263, 263)
will have the same value for the Fletcher-2 checksum. For that reason, Fletcher-2 is deprecated and
Fletcher-4 is recommended for newly created volumes. The recurrence relations and series expressions
for Fletcher-4 are:

1

ai = ai−1 + fi−1 (mod 264)
bi = bi−1 + ai (mod 264)
ci = ci−1 + bi (mod 264)
di = di−1 + ci (mod 264)
a0 = 0
b0 = 0
c0 = 0
d0 = 0
an =

∑n
i=1 fn−i (mod 264)

bn =
∑n

i=1 i× fn−i (mod 264)

cn =
∑n

i=1
i(i+1)

2 fn−i (mod 264)

dn =
∑n

i=1
i(i+1)(i+2)

6 fn−i (mod 264)

1 Overflow in Fletcher-4

Zpool version 28 supports block sizes of any power of 2 between 512 bytes and 128 KB. File tails will
always be padded out to the next greatest multiple of four bytes. Thus, the checksum could operate over
a sequence of up to n = 32768 words.

The maximum possible value for the checksums will be achieved when the input values are all 232−1.
So we can see that an will never overflow and furthermore an < 247 for all n ≤ 32768. Similarly, bn
will never overflow and bn < 261 for all n ≤ 32768. However, cn does overflow starting at n = 2953; it
can overflow a maximum of 682 times. dn overflows at n = 566; it can overflow a maximum of 5593429
times.

2 Observations

Analysis of Fletcher-4’s properties is considerably simplified by making use of a few observations. Firstly,
each sum an, ..., dn is a linear function of the input, if we treat the input as one long vector. Therefore,
if {fn−1

i=0 } = {gn−1
i=0 }+ {hn−1

i=0 }, then

fletcher4({fn−1
i=0 }) ≡ fletcher4({gn−1

i=0 }) + fletcher4({hn−1
i=0 }) (mod 264) (1)

Secondly, the checksum of a block of zeros is zero:

fi = 0 for all i < n ⇒ fletcher4({fn−1
i=0 }) = 0 (2)

Thirdly, if an input block is prefixed by a run of zeros, then the checksum will be the same whether
or not that run of zeros is summed:

m < n, fi = 0 for all i < m ⇒ fletcher4({fn−1
i=0 }) = fletcher4({fn−1

i=m}) (3)

Finally, if two data blocks are suffixed by runs of zeros, then their checksums will be the same if and
only if their checksums are the same before the trailing zeros are summed:

m < n, fi = gi = 0 for all m < i < n

⇒
(

(fletcher4({fn−1
i=0 }) = fletcher4({gn−1

i=0 }) ⇔ fletcher4({fm
i=0}) = fletcher4({gmi=0})

)

(4)

3 Hamming distance

The Hamming distance of a checksum is the smallest number of bit errors for which there is at least one
undetected case. It is a very important measure of the performance of a checksum used in communication

2

or storage systems where corruption events tend to affect small numbers of bits. A lower limit for the
Hamming distance of Fletcher-4 is easily calculated if we ignore sums that overflow.

If {fn−1
i=0 } is the original data block and {gn−1

i=0 } is the corrupted data block, then we can represent it
as {gn−1

i=0 } = {fn−1
i=0 } + {sn−1

i=0 } where {sn−1
i=0 } are the values to add (or subtract) from the original data

block. The values of {sn−1
i=0 } lie in the interval (−232, 232). Thanks to the linearity of Fletcher-4, we know

that {fn−1
i=0 } and {gn−1

i=0 } will have the same checksums if and only if the checksum of {sn−1
i=0 } is zero.

fletcher4({fn−1
i=0 }) ≡ fletcher4({gn−1

i=0 }) (mod 264) (5)

fletcher4({fn−1
i=0 }) ≡ fletcher4({fn−1

i=0 }) + fletcher4({sn−1
i=0 }) (mod 264) (6)

0 ≡ fletcher4({sn−1
i=0 }) (mod 264) (7)

Let us assume that {fn−1
i=0 } and {gn−1

i=0 } have the same checksum, and that they differ in only two
words. If both words were increased or both were decreased relative to {fn−1

i=0 }, then it’s obvious that
equation (7) cannot be satisfied. Therefore, there must be exactly one positive word and one negative
word in {sn−1

i=0 }. Let j1 be the index of the positive word in and j2 be the index of the negative word.
Then we have

0 = fletcher4({sn−1
i=0 })

0 =

n
∑

i=1

sn−i

0 = sj1 + sj2

−sj1 = sj2

0 =
n
∑

i=1

isn−i

0 = j1sj1 + j2sj2

j1sj2 = j2sj2

j1 = j2

This is a contradiction; the same word cannot be both increased and decreased. Therefore the
Fletcher-4 checksum is immune from all 2-word errors (at least for 128KB blocks where the first two
sums do not overflow). So its Hamming distance is at least 3.

Next let us consider {fn−1
i=0 } and {gn−1

i=0 } that have the same checksum but differ in three words. For
n < 2953, cn will never overflow so we can easily analyze its contribution to the Hamming distance. Let
{sn−1

i=0 } have three nonzero words with word indices j1, j2, and j3.

0 =
n
∑

i=1

sn−i

0 = sj1 + sj2 + sj3

0 =
n
∑

i=1

isn−i

0 = j1sj1 + j2sj2 + j3sj3

0 =

n
∑

i=1

i(i+ 1)

2
sn−i

0 =
j1(j1 + 1)

2
sj1 +

j2(j2 + 1)

2
sj2 +

j3(j3 + 1)

2
sj3

3

k(sj1 + sj2) =

k =
j1sj1 + j2sj2
sj1 + sj2

n
∑

i=1

i(i+ 1)

2
rn−i =

n
∑

i=1

i(i+ 1)

2
sn−i

k(k + 1)

2
rk =

j1(j1 + 1)

2
sj1 +

j2(j2 + 1)

2
sj2

, if sj1 6= sj2or j1 6= j2

(k(k + 1))(sj1 + sj2) = (j1(j1 + 1))sj1 + (j2(j2 + 1))sj2
(

j1sj1 + j2sj2
sj1 + sj2

)(

j1sj1 + j2sj2 + sj1 + sj2
sj1 + sj2

)

(sj1 + sj2) =

(j1sj1 + j2sj2)(j1sj1 + j2sj2 + sj1 + sj2) =
(

(j21 + j1)sj1 + (j22 + j2)sj2
)

(sj1 + sj2)

j21s
2
j1 + 2j1j2sj1sj2 + j22s

2
j2 + j1s

2
j1 + j1sj1sj2 + j2sj1sj2 + j2s

2
j2 = j21s

2
j1 + j21sj1sj2 + j22sj1sj2 + j22s

2
j2

+ j1s
2
j1 + j1sj1sj2 + j2sj1sj2 + j2s

2
j2

2j1j2sj1sj2 = j21sj1sj2 + j22sj1sj2

2j1j2 = j21 + j22

0 = j21 − 2j1j2 + j22

0 = (j1 − j2)
2

j1 = j2

This is a linear system of three equations with three unknowns, sj1 , sj2 , and sj3 , if we treat the indices
j1, j2, and j3 as constant terms. We can solve it by using Gaussian elimination, noting any constant
values that will result in degenerate solutions.





1 1 1
j1 j2 j3

j1(j1+1)
2

j2(j2+1)
2

j3(j3+1)
2









sj1
sj2
sj3



 =





0
0
0









1 1 1 0
j1 j2 j3 0

j1(j1+1)
2

j2(j2+1)
2

j3(j3+1)
2 0









1 1 1 0
0 −j1 + j2 −j1 + j3 0

j1(j1+1)
2

j2(j2+1)
2

j3(j3+1)
2 0









1 1 1 0
0 −j1 + j2 −j1 + j3 0

j1(j1 + 1) j2(j2 + 1) j3(j3 + 1) 0









1 1 1 0
0 −j1 + j2 −j1 + j3 0
0 −j1 − j21 + j2 + j22 −j1 − j21 + j3 + j23 0











1 1 1 0
0 −j1 + j2 −j1 + j3 0

0 0 −j1 − j21 + j3 + j23 +
(j1+j2

1
−j2−j2

2
)(−j1+j3)

−j1+j2
0











1 1 1 0
0 −j1 + j2 −j1 + j3 0
0 0 (j1 − j3)(j2 − j3) 0





4

The only solutions for sj3 are the trivial j1 = j3, j2 = j4, or sj3 = 0. These contradict the problem
statement. Therefore, Fletcher-4 is immune from all 3-word errors for block sizes of less than 2953 words.
For block sizes up to the maximum, observe that cn will still not overflow when only three words are
changed:

n
∑

i=1

i(i+ 1)

2
sn−i <

1

2
× 3× 215 × (215 + 1)× (232 − 1))) = 13835480264525905920 ≈ 3× 262

Therefore the previous section still applies, and Fletcher-4 is immune from all three bit errors at
blocksizes up to the maximum.

When four words have been changed, we must consider the dn checksums to have enough equations
for the Gaussian elimination. However, since the dn checksum can overflow, collisions are still possible.
For example:

word index value prime factorization
1 -805306368 −1× 228 × 3

4097 2013265920 227 × 3× 5
8193 -1342177280 −1× 228 × 5
20481 134217728 227

Therefore, the Hamming distance of Fletcher-4 is 4 words.

Independent Collisions

The last section dealt with Fletcher-4’s resistance to low error rate gaussian noise, which affects a small
number of bits. On modern hard drives, it is also possible (though unlikely) to experience silent data
corruption that affects entire blocks. For example, the hard drive may return the contents of one LBA
when the user requested a read of a different LBA. The Fletcher-4 checksum will almost always detect
this error, since a block’s checksum is stored in its parent indirect block. The only way for this type
of error to go unnoticed by ZFS would be for two different, independent blocks to have the exact same
checksum. In this section, we will attempt to calculate the likelihood of that collision.

First, we approximate the data words as real-valued from the interval [0, 232) instead of as discrete
integers. Assume two blocks, each of length n real-valued words, filled with random, independent data
uniformly distributed. We call these blocks fn−1

i=0 and gn−1
i=0 . Each one is a sequence of samples of the

random variable U(0, 232). The first Fletcher-4 sum, A(fn−1
i=0), is simply a sum of n samples of U(0, 232).

It has an Irwin-Hall distribution, which is approximately Gaussian for any allowed ZFS blocksize. So

A(fn−1
i=0) ∼ N

(

231n,
262

3
n

)

Under our real-valued approximation, the probability that two blocks’ checksums will collide is the
probability that the difference in their sums will be less than one half:

P (collision in an) = P

(

∣

∣A(fn−1
i=0)−A(gn−1

i=0)
∣

∣ <
1

2

)

Since A(fn−1
i=0) is normally distributed, the difference is also normally distributed:

A(fn−1
i=0)−A(gn−1

i=0) ∼ N
(

0,
263

3
n

)

(8)

5

So we can calculate the probability that two blocks’ A checksums collide:

P

(

∣

∣A(fn−1
i=0)−A(gn−1

i=0)
∣

∣ <
1

2

)

= Φ





1
2

√

263

3 n



− Φ





− 1
2

√

263

3 n





=
1

2



erf





1
2

√

263

3 n
√
2



− erf





− 1
2

√

263

3 n
√
2









=
1

2

(

erf

(

1

233

√

3

n

)

− erf

(

− 1

233

√

3

n

))

= 1.25694× 10−12
∣

∣n = 32768

where Φ is the cumulative distribution function of the standard normal distribution.
The B checksum is a sum of n random variables, each of which is distributed uniformly across a

different range. B(fn−1
i=0) ∼ U(0, 232) + 2U(0, 232) + ... + nU(0, 232). If we approximate each r.v. as

U(0, 232) ∼ N (231, 262

3) (an approximation which is supported by simulation), then

B(fn−1
i=0) ∼ nN

(

231,
262

3

)

+ (n− 1)N
(

231,
262

3

)

+ ...+N
(

231,
262

3

)

(9)

= N
(

n
∑

i=1

231i,

n
∑

i=1

262

3
i2

)

(10)

= N
(

n(n+ 1)230,

(

n3

3
+

n2

2
+

n

6

)

262

3

)

(11)

B(fn−1
i=0)−B(gn−1

i=0) ∼ N
(

0,

(

n3

3
+

n2

2
+

n

6

)

263

3

)

(12)

The probability that two blocks’ B checksums collide is then:

P

(

∣

∣B(fn−1
i=0)−B(gn−1

i=0)
∣

∣ <
1

2

)

= Φ





1
2

√

(

n3

3 + n2

2 + n
6

)

263

3



− Φ





− 1
2

√

(

n3

3 + n2

2 + n
6

)

263

3





=
1

2



erf





1
2

√

(

n3

3 + n2

2 + n
6

)

264

3



− erf





− 1
2

√

(

n3

3 + n2

2 + n
6

)

264

3









=
1

2

(

erf

(

1

233

√

3
n3

3 + n2

2 + n
6

)

− erf

(

− 1

233

√

3
n3

3 + n2

2 + n
6

))

= 6.64357× 10−17
∣

∣n = 32768

We can calculate the probability that two blocks’ C checksums collide using the same method that we
did for the B checksums. The only difference is that the C checksum can wrap around the 264 boundary.

6

C(fn−1
i=0) ∼ n(n+ 1)

2
N
(

231,
262

3

)

+
(n− 1)(n)

2
N
(

231,
262

3

)

+ ...+N
(

231,
262

3

)

= N
(

n
∑

i=1

231
i(i+ 1)

2
,

n
∑

i=1

262

3

i2(i+ 1)2

4

)

= N
(

230

(

n
∑

i=1

i2 +

n
∑

i=1

i

)

,
260

3

(

n
∑

i=1

i4 +

n
∑

i=1

2i3 +

n
∑

i=1

i2

))

= N
(

230
(

n3

3
+

n2

2
+

n

6
+

n(n+ 1)

2

)

,
260

3

(

n5

5
+

n4

2
+

n3

3
− n

30
+ 2

(

n4

4
+

n3

2
+

n2

4

)

+
n3

3
+

n2

2
+

n

6

)

)

= N
(

230
(

n3

3
+ n2 +

2n

3

)

,
260

3

(

n5

5
+ n4 +

5n3

3
+ n2 +

2n

15

))

C(fn−1
i=0)− C(gn−1

i=0) ∼ N
(

0,
261

3

(

n5

5
+ n4 +

5n3

3
+ n2 +

2n

15

))

For blocks of n ≤ 2952 where the C checksums never overflow, the probability that two blocks’ C
checksums collide is

σ =

√

261

3

(

n5

5
+ n4 +

5n3

3
+ n2 +

2n

15

)

P

(

∣

∣C(fn−1
i=0)− C(gn−1

i=0)
∣

∣ <
1

2

)

= Φ

(

1

2σ

)

− Φ

(

− 1

2σ

)

=
1

2

(

erf

(

1

2
√
2σ

)

− erf

(

1

2
√
2σ

))

= 2.9719× 10−18
∣

∣n = 2592

For larger blocks we must consider the overflow. When k = 0, it is easy to accurately evaluate the
cumulative distribution function. However, when k 6= 0, the floating-point rounding error is too great.
For those cases we will numerically integrate the probability density function (PDF)instead. Because the
PDF is so flat and the interval so short, we can accurately evaluate it using the rectangle rule with one

7

sample point. Also, we combine the positive and negative integrals since the PDF is an even function.

P

(

∣

∣C(fn−1
i=0)− C(gn−1

i=0)
∣

∣ <
1

2
(mod 264)

)

=

∞
∑

k=−∞

Φ

(

264k + 1
2

σ

)

− Φ

(

264k − 1
2

σ

)

=
1

2

∞
∑

k=−∞

erf

(

264k + 1
2√

2σ

)

− erf

(

264k − 1
2√

2σ

)

=
1

2

(

erf

(

1

2
√
2σ

)

− erf

(

1

2
√
2σ

))

+
−1
∑

k=−∞

∫ 264k+ 1

2

264k− 1

2

1√
2πσ

e−t2/(2σ2)dt

+

∞
∑

k=1

∫ 264k+ 1

2

264k− 1

2

1√
2πσ

e−t2/(2σ2)dt

≈ 1

2

(

erf

(

1

2
√
2σ

)

− erf

(

1

2
√
2σ

))

+2

∞
∑

k=1

1√
2πσ

e−(2
64k)

2
/(2σ2)

= 5.42101× 10−20
∣

∣n = 32768

The calculation for the D checksum is very similar to the C checksum.

D(fn−1
i=0) ∼ n(n+ 1)(n+ 2)

6
N
(

231,
262

3

)

+
(n− 1)(n)(n+ 1)

6
N
(

231,
262

3

)

+ ...+N
(

231,
262

3

)

= N
(

n
∑

i=1

231
i(i+ 1)(i+ 2)

6
,

n
∑

i=1

262

3

i2(i+ 1)2(i+ 1)6

36

)

= N
(

230

3

n
∑

i=1

i3 + 3i2 + 2i,
260

27

n
∑

i=1

i6 + 6i5 + 13i4 + 12i3 + 4i2

)

= N
(

230

3

n4

4
+

n3

2
+

n2

4
+ 3

(

n3

3
+

n2

2
+

n

6

)

+ 2

(

n2

2
+

n

2

)

,

260

27

(

n7

7
+

n6

2
+

n5

2
− n3

6
+

n

42
+ 6

(

n6

6
+

n5

2
+

5n4

12
− n2

12

)

+ 13

(

n5

5
+

n4

2
+

n3

3
− n

30

)

+12

(

n4

4
+

n3

2
+

n2

4

)

+ 4

(

n3

3
+

n2

2
+

n

6

))

)

= N
(

230

3

(

n4

4
+

3n3

2
+

11n2

4
+

3n

2

)

,
260

27

(

n7

7
+

3n6

2
+

61n5

10
+ 12n4 +

23n3

2
+

9n2

2
+

9n

35

))

σ =

√

261

27

(

n7

7
+

3n6

2
+

61n5

10
+ 12n4 +

23n3

2
+

9n2

2
+

9n

35

)

P

(

∣

∣D(fn−1
i=0)−D(gn−1

i=0)
∣

∣ <
1

2
(mod 264)

)

≈ 1

2

(

erf

(

1

2
√
2σ

)

− erf

(

1

2
√
2σ

))

+2

∞
∑

k=1

1√
2πσ

e−(2
64k)

2
/(2σ2)

= 5.42101× 10−20
∣

∣n = 32768

8

So far we have calculated the independent collision probabilities for each of the 4 checksums. But the
checksums are not all independent: numerical simulation shows that A and B are strongly correlated.
Our method will be to numerically fit a multivariate normal distribution to the combination of A and
B, and approximate C and D as being uncorrelated to the other sums. Then we will simply multiply
the collision probabilites for our three independent random variables.

Let ∆AB be the two dimensional random variable formed by the combination of ∆A and ∆B . From
(8) and (12) we know its mean vector and the diagonal of its covariance matrix. The off-diagonal entries
of the covariance matrix must be calculated numerically. Once we have done that, we can calculate the
probability that ∆AB falls in the range ([-.5, .5], [-.5, .5]) by numerically integrating the PDF. As before,
the PDF is sufficiently flat that it can be accurately integrated using the rectangle rule with one sample.

∆AB ∼ N2

((

0
0

)

,

(

σ2
∆A

ρσ∆A
σ∆B

ρσ∆A
σ∆B

σ2
∆B

))

∆AB ∼ N2

(

(

0
0

)

,

(

263

3 n ρσ∆A
σ∆B

ρσ∆A
σ∆B

262

3

(

n3

3 + n2

2 + n
6

)

))

∼ N2

((

0
0

)

,

(

1.0061× 10−23 1.6459× 10−27

1.6459× 10−27 3.5947× 10−31

))

∣

∣

∣

∣

∣

n = 32768

P (|∆A| < 0.5 and |∆B | < 0.5) ≈ 1

2πσ∆A
σ∆B

√

1− ρ2
e0

= 1.671× 10−28

Since ∆C and ∆D are uncorrelated with each other and with ∆AB , we can simply multiply their
collision probabilities together.

P (collision) = P (|∆A| < 0.5 and |∆B | < 0.5)× P (|∆C | < 0.5)× P (|∆D| < 0.5)

≈ 1.671× 10−28 × 5.42101× 10−20 × 5.42101× 10−20
∣

∣n = 32768

= 4.9106× 10−67

References

[1] TODO

[2] J. G. Fletcher. An arithmetic checksum for serial transmissions. IEEE Transactions on Communi-

cations, COM-30(1):247252, Jan. 1982.

9

