
New Networking Features in FreeBSD 6.0

André Oppermann
andre@FreeBSD.org

The FreeBSD Project

Abstract

FreeBSD 6 has evolved drastically in the
development branch since FreeBSD 5.3 [1] and
especially so in the network area. The paper
gives an in-depth overview of all network stack
related enhancements, changes and new code
with a narrative on their rationale.

1 Internal changes – Stuff under the
hood

Mbuf UMA

UMA (Universal Memory Allocator) is the
FreeBSD kernels primary memory allocator for
fixed sized data structures. It is a SLAB type
allocator, fully SMP aware and maintains per-
CPU caches of frequently used objects. All
network data is stored in Mbufs of 256 bytes and
Mbuf clusters of 2048 bytes which can be
attached to Mbufs and replace their internal data
storage. When a cluster is attached the Mbuf
serves as descriptor for the cluster containing all
associated Mbuf and packet information for the
kernel and protocols. To use UMA for efficient
Mbuf allocation some enhancements have been
made to it. Most important is the packet
secondary zone holding pre-combined
Mbuf+cluster pairs. This allows protocols to
save one memory allocation by directly
obtaining a large data structure instead of
allocating an Mbuf and then attaching a
separately allocated Mbuf cluster. The secondary

zone is special as it is only a cache zone and
does not have its own backing store. All
mbuf+cluster combinations in it come from their
own original Mbuf and cluster zones. Mbuf
UMA provides good SMP scalability and an
accelerated allocation path for frequently used
Mbuf+cluster pairs. For more information see
[2], mbuf(9) and uma(9).

SMP Locking

SMP locking of network related data structures
is the main theme of FreeBSD 6. Locking is
necessary to prevent two CPUs accessing or
manipulating the same data structure at the same
time. Locking gives exclusive access to only one
CPU at a time and makes them aware of each
others work – it prevents CPUs from stomping
on each others feet. Generally it is desirable to
break down locking into fine-grained portions to
avoid lock contention when multiple CPUs want
to access related but independent data structures.
On the other hand too fine-grained locking is
introducing overhead as each locking and
unlocking operation has to be reliably
propagated to all other CPUs in the system. The
first go on fine-grained network locking in
FreeBSD 5 has been greatly enhanced and
refined for excellent SMP scalability. For single
processor machines all performance regressions
due to locking overhead have been eleminated
and FreeBSD 6 reaches the same speed in heavy
duty network streaming as the FreeBSD 4 series.

For more information see [3], mutex(9) and
witness(4).

Socket Buffer Locking

Every active or listening network connection is
represented as a socket structure in the kernel.
The socket structure contains general
bookkeeping on the socket and two socket buffer
for transmitted and received packets. Protocols
(TCP, UDP, IPX, SPX, etc.) extend the socket
structure with their own bookkeeping to track
connections state and other vital information.
Many of these structures are linked forth and
back and among each other. This makes proper
locking complicated. Additionally the socket
data structure may be accessed and manipulated
at any time either from an application writing,
reading or closing the socket or from the kernel
itself when it has received data, retransmits or
error messages for that socket. FreeBSD 6
implements a multi-level locking strategy to
efficiently cope with these constrains. Each
socket structure has a general lock and two
separate send and receive socket buffer locks.
Thus sending and receiving may happen
concurrently. Any operation that changes the
state of the entire socket (ie. connection tear
down) has to obtain the general lock. On the
protocol side (using TCP as example) two more
locks are embedded. One protects the IN and
TCP control blocks which contain IP protocol
and TCP specific information, such as the
addresses of the end points and the state of the
TCP connection. The other lock protects all IN
control blocks as a whole. Locks with such a
global scope are normally frowned upon but here
it is necessary to prevent changes in the control
blocks while searches and lookup’s are
performed on it. A search and lookup happens
every time a packet is received from the
network. While this is not optimal it has shown
to express only modest contention.

Protocol Locking

Since early 2005 the entire network stack is
running without any global and exclusive lock.

All Internet protocols and IPX/SPX have been
individually locked and thus made fully SMP
aware and scalable.

Network Interface Structure Locking

An area of particular concern for proper locking
was the ifnet structure. The ifnet structure
contains all information the kernel knows about
network interfaces. In FreeBSD network
interfaces drivers may be loaded and unloaded
any time as KLDs (Kernel Loadable Modules) or
may arrive or depart as hot-plug interfaces like
PCCARDs in laptops. Allowing these actions to
occur in a SMP-safe way has required significant
work and re-work of the ifnet structure and its
modes of access. For example some fields in the
structure were holding flags manipulated by the
network stack and the driver. Each of them had
to obtain the lock for the full structure to change
its own fields and flags. This lead to contention
and limitations on parallelism for access to the
physical network. Any such unnecessary
contention point has been identified and each
party has got their own field which they can
manipulate independently without stalling the
other. For more information see ifnet(9),
netintro(9), [4] and [5].

2 Netgraph

Netgraph is a concept where a number of small,
single-job modules are stringed together to
process packets through stages. Many modules
may be combined in almost arbitrary ways.
Netgraph may be best explained as an assembly
line with many little functions along a conveyor
belt versus one big opaque machine doing all
work in one step. As part of the network stack
netgraph has received fine grained locking too.
Depending on the function and task of the
module it was either locked as whole or every
instance of it separately. For more information
see netgraph(4), netgraph(3) and ngctl(8).

Module ng_netflow

Ng_netflow is a new module for accounting of
TCP and UDP flows in ISP (Internet Service
Provider) backbones. It accumulates statistics on
all TCP and UDP session going through the
machine and once one has finished (FIN or RST
for TCP) sends a UDP packet in the Netflow 5
format to a statistics collector for further
processing. The node can either run in parallel to
the normal IP forwarding and packet processing,
in this case it gets a copy of every packet, or all
packets are passed through it unmodified. For
more information see ng_netflow(4).

Module ng_ipfw

Ng_ipfw is a new module providing a way for
injecting arbitrary matched packets into netgraph
using ipfw. It works very much like an ipfw
divert rule diverting the packet to netgraph
instead of a divert socket. This allows, for
example, to send by ipfw filtered or rejected
packets to netgraph for further analysis or to
capture certain types of IP packets for further
netgraph manipulations. The packet matching
capabilities of ipfw are very powerful in this
context. For more information see ng_ipfw(4),
ipfw(8) and ipfw(4).

Module ng_nat

Ng_nat is a new module providing netgraph
access to the kernel-level libalias for network
address translation. Libalias used to be a
userland-only application library but was written
with in-kernel use in mind. For ng_nat is got
imported into the kernel. For more information
see ng_nat(4) and libalias(3).

Module ng_tcpmss

Ng_tcpmss is a new module changing the MSS
(Maximum Segment Size) optoin of TCP SYN
packets. Many broadband users are behind DSL
lines with a reduced MTU (Maximum
Transmission Unit) of 1492 bytes. The normal
size for ethernet is 1500 bytes. If a packet does
not fit the MTU of link is has to be fragmented
– it gets split into two packets. This is a CPU

intensive process and to be avoided if possible.
Normally the TCP path MTU discovery
mechanism is supposed to automatically detect
smaller MTUs along the way but over-zealous
firewall administrators often block the ICMP
MTU adjustment messages. As workaround a
router along the path of the packet scans for TCP
SYN packets and manipulates it to reduce the
MSS to fit the lower MTU. For more
information see ng_tcpmss(4).

3 IPv4

DHCP Client

The most visible change is the new DHCP
client. It is a port of the OpenBSD dhclient and
adapted to FreeBSD specific needs. It has many
security features like privilege separation to
prevent spoofed DHCP packets from exploiting
the machine. Additionally it is network interface
link state aware and will re-probe for a new IP
address when the link comes back up. This is
very convenient for laptop users who may
connect to many different networks, be it wired
or wireless LANs many times a day. For more
information see dhclient(8), dhclient.conf(5) and
dhclient.leases(5).

IPFW Firewall

IPFW has received many visible and invisible
modifications. The most prominent visible
changes are IPv6 rule support and ALTQ
tagging of packets. The IPv6 support is further
discussed in the IPv6 section. ALTQ is an
alternative queuing implementation for network
interfaces. Whenever an output interface doesn’t
have enough bandwidth to forward all waiting
packets immediately queuing happens. Excess
packets have to wait until earlier packets are
drained and capacity is available again. Standard
queuing strategy is a tail queue – all new packets
get appended to the tail of the queue until the
queue is full and any further packets get
dropped. In many situations this is undesirable
and for QoS (Quality of Service) it should treat
various types of packets and traffic differently

and with different priorities. ALTQ allows to
define different queuing strategies on network
interfaces to prioritize, for example, TCP ACKs
on slow ADSL uplinks or delay and jitter
sensitive VoIP (Voice over IP) packets. IPFW
can be used as packet classifier for ALTQ
treatment. IPFW has another packet queue
manager called DUMMYNET which can
perform many of ALTQ function too. However
it is more geared towards network simulations in
research setting than to general network
interface queuing. Under the hood of IPFW the
stateful inspection of packet flows has been
converted to use UMA zones for flow-state
structure allocation. For more information see
ipfw(8), ipfw(4), altq(8), altq(9) and
dummynet(4).

IPDIVERT

The IPDIVERT module is used for NAT
(Network address Translation) with IPFW. It is
now a loadable module that can loaded into the
kernel at runtime. Before it always required a
kernel re-compile to make it available. For more
information see divert(4).

IP Options

IP Options are a sore spot in the entire IPv4
specification. IP Options extend the IP header by
a variable size of up to 40 bytes to request and
record certain information from routers along the
packets path. IP Options are seldom used these
days and have essential zero legitimate use other
than Record Route perhaps. IP Options handling
in the kernel is complicated and was handled
through a couple of global variables in the IP
code path. Access to these variables had to be
locked and it prevented multiple CPUs from
working on IP packets in parallel. The global
variables have been moved into mtags attached
to mbufs containing IP packets with IP Options.
This way all CPUs can work on IP packets in
parallel without risk of overwriting information
and the IP Options information always stays
with the packet it belongs to. Even when one
CPU hands off the packet to another CPU.

IPFILTER Firewall

IPFILTER 4.1.8 was imported and provides
proper locking of its data structures to work in
SMP environments. For more information see
ipf(8), ipf(5) and ipf(4).

NFS Network File System

NFS has been extensively tested and received
numerous bug fixes for many edge cases
involving file access as well as some network
buffer improvements.

ICMP

ICMP Source Quench support has been removed
as it is deprecated for a long time now. Source
Quench was intended to signal overloaded links
along a packet path but it would send one Source
Quench message per dropped payload packet
and thus increased the network load rather to
reduce it. It is not and was never used in the
Internet. For more information see [6].

ICMP replies can now be sent from the IP
address of the interface the packet came into the
system. Previously it would always respond
with the IP address of the interface on the return
path. When the machine is used as a router this
could give very misleading error messages and
traceroute output. For more information see
icmp(4).

ARP Address Resolutions Protocol

Many ARP entry manipulation races got fixed.
ARP maps an IPv4 address to a hardware
(MAC) address used on the ethernet wire. It
stores the IP address of each machine on all
directly connected subnets as a host route and
attaches their MAC address. ARP lookup’s and
timeouts can happen at any time and may be
triggered at any time from other machines on the
network. In SMP environments this has led to
priority inversions and a couple of race
conditions where one CPU was changing parts
of an ARP entry when a second CPU tried to do

the same. They clashed and stomped on each
others work leading to incorrect ARP entries and
even crashes sometimes. An extensive rework
and locking has been done to make ARP SMP-
safe.

IP Multicast

IP Multicast had many races too. Most of them
related to changes of IP addresses on network
interfaces and disappearing interfaces due to
unload or unplug events. Proper locking and
ordering of locks has been instituted to make IP
Multicast SMP-safe.

IP Sockets

An IP_MINTTL socket option got added. The
argument to this socket option is a value
between 1 and 255 which specifies the minimum
TTL (Time To Live) a packet must have to be
accepted on this socket. It can be applied to
UDP, TCP and RAW IP sockets. This option is
only really useful when set to 255 preventing
packets from outside the directly connected
networks reaching local listeners on sockets. It
allows userland implementation of 'The
Generalized TTL Security Mechanism (GTSM)'
according to RFC3682. Examples of such use
include the Cisco IOS BGP implementation
command "neighbor ttl-security". For more
information see ip(4) and RFC3682.

The IP_DONTFRAG socket option got added.
When enabled this socket option sets the Don’t
Fragment bit in the IP header. It also prevents
sending of packets larger than the egress
interface MTU with an EMSGSIZE error return
value. Previously packets larger than the
interface MTU got fragmented on the IP layer
and applications didn’t have a direct way of
ensuring that they send packets fitting into the
MTU. It is only implemented for UDP and
RAW IP sockets. On TCP sockets the Don’t
Fragment bit is controlled through the path MTU
discovery option. For more information see
ip(4).

4 TCP Transmission Control Protocol

SACK Selective ACKnowledgements

SACK has received many optimizations and
interoperability bug fixes. For more information
see tcp(4).

T/TCP Transactional TCP

T/TCP support according to RFC1644 has been
removed. The associated socket level changes
however remain intact and functional. FreeBSD
was the only mainstream operating system that
ever implemented T/TCP and its intrusive
changes to the TCP processing made code
maintenance hard. It primary feature was the
shortening of the three-way TCP handshake for
hosts that knew each other. Unfortunately it did
this in a very insecure way that is very prone to
session spoofing and packet injection attacks.
Use of it was only possible in well secured
Intranets. It never enjoyed any widespread use
other than on round trip time sensitive satellite
links. A replacement is planned for FreeBSD 7.

TCP Sockets

The TCP_INFO socket option allows the
retrieval of vital metrics of an active TCP
session such as estimated RTT, negotiated MSS
and current window sizes. It is supposed to be
compatible with a similar Linux socket option
but still experimental.

Security Improvements

The tcpdrop utility allows the administrator to
drop or disconnect any active TCP connection
on the machine. This tool was ported from
OpenBSD. For more information see
tcpdrop(8).

The logic processing of TCP timestamps
(RFC1323) has been improved to prevent
spoofing attempts.

TCP Path MTU Discovery has been improved to
prevent spoofing attacks. It now checks the
entire TCP header that is quoted in the ICMP
Fragmentation Needed message to ensure it
matches to a valid and active TCP connection.
For more information see [5].

Port Randomization led to some problems when
applications with very high connection rates
came close to exhaust the port number range.
The randomization function was calculating
random ports numbers which were most likely
already in use and fell into an almost endless
loop as the odds of finding a free port at random
dropped constantly. If exhaustion is near it now
switches to normal allocation for 45 seconds to
make the remaining ports available with little
overhead. For more information see [6].

UDP

All global variables have been removed to
prevent locking contention and allow for parallel
processing of packets.

5 IPv6

IPFW Firewall

IPFW now supports IPv6 rules and allows all
available actions for IPv6 packets too. The
previously separate ipfw6 packet filter is to be
retired. The primary advantage of this merge is
a single code base and packet flow for IPv4 and
IPv6 without duplication or feature differences.
For more information see ipfw(8) and ipfw(4).

KAME netinet6 Code

Many bugfixes and small improvements have
been ported from the KAME codebase.

6 IPX

IPX/SPX is still in use at a non-negligible
number of sites and some significant effort has
been made to lock SPX data structures and to
make them SMP-safe.

7 Interfaces

CARP Common Address Redundancy Protocol

CARP is a special network interface and
protocol that allows two or more routers to share
the same IP address. Thus for all hosts using that
router any fail-over from one to another one is
transparent and no service interruption occurs.
Routers in a CARP system may do hot-standby
with priorities or load-sharing among them.
CARP has been ported from OpenBSD and is
similar in functionality to VRRP from Cisco.
For more information see carp(4).

Ethernet Bridge if_bridge

If_bridge is a fully fledged ethernet bridge
supporting spanning tree and layer 2 or layer 3
packet filters on bridged packets. If_bridge has
been ported from NetBSD and replaces the
previous bridge implementation of FreeBSD.
Spanning tree is very important in bridged
networks because it prevents loops in the
topology. Ethernet packets do not have a TTL
that is decremented on each hop and all packets
in a looped bridge topology would cycle for an
infinite amount of time in the network bringing
it to a total standstill. For more information see
if_bridge(4).

IEEE 802.11 Wireless LAN

The Wireless LAN subsystem has been
enhanced to support WPA authentication and
encryption in addition to WEP. It may be
operated in client (Station) mode or AP (Access
Point) mode. In both modes it supports the full
WPA authentication and encryption set. The
availability of the AP mode depends on the
wireless LAN chip vendor, obtainable
documentation (w/o NDA) and driver
implementation. All cited features are
implemented in the ath driver for Atheros-based
wireless cards which have the best
documentation available. For more information
see ieee80211(4), wlan(4), wlan_ccmp(4),
wlan_tkip(4), wlan_wep(4), wlan_xauth(4),

[1] FreeBSD 5 Network Enhancements, André
Oppermann, September 2004,
http://people.freebsd.org/~andre/FreeBSD-5.3-
Networking.pdf

[2] Network Buffer Allocation in the FreeBSD
Operating System, Bosko Milekic, May 2004,
http://bmilekic.unixdaemons.com/netbuf_bmil
ekic.pdf

[3] Introduction to Multithreading and
Multiprocessing in the FreeBSD SMPng
Network Stack, Robert N. M. Watson,
November 2005

[4] TCP/IP Illustrated, Vol. 2, Gary R. Wright
and W. Richard Stevens, Addison-Wesley,
ISBN 0-201-63354-X

[5] The Design and Implementation of the
FreeBSD Operating System, Marshall Kirk
McKusick and George V. Neville-Neil 2004,
Addison-Wesley, ISBN 0-201-70245-2

[6] ICMP attacks against TCP, Fernando Gont,
October 2005, IETF Internet Draft
draft-gont-tcpm-icmp-attacks-05.txt

[6] Improving TCP/IP Security Through
Randomization Without Sacrificing
Interoperability, Michael J. Silbersack,
November 2005

wpa_supplicant(8), wpa_supplicant(1),
hostapd(8), hostapd(1) and ath(4).

Interface Polling

The network interface polling implementation
has been re-implemented to work correctly in
SMP environments. Polling is no longer a global
configuration variable but enabled or disabled
individually per interface if the driver supports
it. Most commonly found network drivers
support polling. For more information see
polling(4).

NDIS Compatibility – Project Evil

Binary compatibility with Windows NDIS
miniport drivers. The NDIS compatibility layer
emulates the Windows XP/Vista kernel network
driver interface and allows Windows network
card drivers to be run on FreeBSD. It supports
wired and wireless LAN cards. Many parts have
been rewritten and updated as more Windows
drivers could be tested, better documentation
became available and a more throughout
understanding of the NDIS nits developed. It has
been updated to work in SMP systems. While
NDIS emulation works well it is only a last
resort when all attempts of obtaining network
chip documentation have failed. A FreeBSD
native drivers is always preferred to using
Windows drivers through the NDIS emulation
layer. For more information see ndis(4),
ndis_events(8), ndiscvt(8), ndisgen(8).

Network Driver Locking

Network drivers have to set up and maintain a
couple of internal structures. Examples of the
structures include send and receive DMA rings
and MII information from the PHY. Whenever
packets are sent or received the CPU must have
exclusive access to the these structures to avoid
clashes and confusion. Many drivers had to be
re-worked to make them SMP-safe as originally
multi-access wasn’t a concern. Depending on the
network card the driver got a single lock
covering all aspects of its operation. Sometimes

an even more fine grained approach was taken to
have a lock for each send and receive direction
plus global state manipulations. Separate send
and receive locks provide the best efficiency in
SMP systems as two CPU may simultaneously
receive and transmit packets.

References:

