MIIFPS

MIPS32® 74K™ Processor Core Family
Software User’s Manual

Document Number: M D00519
Revision 01.05
March 30, 2011

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2007-2011 MIPS TechnologiesInc. All rights reserved.

MIPS;Y



Copyright © 2007-2011 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document containsinformation that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPS 1V, MIPSV, MIPSr3, MIPS32, MIPS64, microM1PS32, microM|PS64, MIPS-3D, MIPS16, MIPS16e, M| PS-Based,
MIPSsim, MIPSpro, MIPS Technologies|ogo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4K d,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24K c, 24K f, 24K E, 24K Ec, 24K Ef, 34K, 34K c, 34Kf, 74K, 74K c, 74Kf, 1004K, 1004K c, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered
trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.02, Built with tags: 2B

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05



MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table of Contents

Chapter 1: Introduction to the MIPS32® 74K™ Core Family .........cccceeieiiii, 23
1.1 7TAKT™ €08 FRATUIES.....ii ittt ettt e e e e e e s et e e et e e e e e e s s eeee e e e s 24
R O T o1 {1 = PP TR PPPRPRTRR 24
L0270 INSIIUCTION SEU ...etiiie ettt ettt e ettt e 4kt e e e ettt e ook b e et e e e ek b e e e e e anbn e e e e e abbeeee e 25
1.1.3: Memory Management, Caches, and Scratchpad MemOrY ..........coooiiiiiiiiiiiiiiie e 26
O | 01 (=T = (o = S TP PP PP PP PPPPPRPPPPPPPRN 27
L1152 POWET CONIION ...tttk e etttk e e e ettt e e ek b et e e e ek bt e e e e st e e e e anbe e e e e 27
G B = o U Lo PP U RO PPPRRRPRR 27
O B S © 31 ST U TP O TTPRP 28
1.2: 7AK™ COre BIOCK DIBGIAIM .. ...ttt ettt ettt e e e e e e e e e s bbbttt e e e eeaaeeeeaaannnnbsbreeeaaaaens 28
1.2.1: Instruction FetCh UNIt (IFU) ....oooiii ittt e e e e e e e e e e e e bbb eeaeaaeaeeeaana 30
1.2.2: INSEIUCTION CABCKNE ....ciiiiiiiiiee ittt ettt e e r bt e e e a bt e e e ek e e e e e bt e e e s anre e e e e 30
1.2.3: Instruction Decode/DispatCh UNit (IDU) ........ooiiiiiiiiiiiiiiieiei et e e e e e e e 30
1.2.4: Instruction Execution UNit (IEU) ...ttt e e e et e e e e e e e e e e 31
1.2.5: Multiply Divide URNit (IMDU) .....cooiiiiiiiiti ettt e e e e e e e ettt e e e e e e e e e e e e e e nnnbsbeeeeaeaaeaaeaaanns 31
1.2.6: CorExtend® User Defined INStructioNS (UDIS).......ooeiiiiiiiiiiieae et a e e e 32
1.2.7: LoAd StOre UNIE (LSU) ...eeieieiiiiieeee ittt e e e e e e e e e ettt e et e e e e e e e e e e aaannbbebseeeaaaaaaeaaaanns 32
1.2.8: System Control CoOProCeSSOr (CPO) ... .. i ittt e e e e e et e e e e e e e e e e e e s nbbe b e eeeaaaeaaaaaanns 32
1.2.9: Memory Management UNit (IMMU) ..........uu ittt e e e e e et e e e e e e e e e e e aanns 32
A O D - W O Tod o L= TSP UTPRT 33
1.2.10: SCratChPad RAM ...ttt e e e e e e e e e e bbb e et e et e e e e e e s aa e nnbbebeeeeeaaaaaasaaanns 33
1.2.12: Graduation UNIt (GRU)......cuiiiiiii ittt e e e et e e e e e e e e e e e e e bt e breeeaaaaeaaseaann 33
1.2.13: BUS INterface UNIt (BIU) ......oooiiiiiiiieit ittt e e e e e e e e e e e bbb e e e aaaaeaeeeaanns 34
1.2.14: Coprocessor INterface UNIt (ClU) ... ...uuuiiiiiiiieeae ettt e e e e e e e et eeeaaeaeaaaana 34
1.2.15: POWET MABNAGEIMENT ...ttt e e e e oo e e e e e e e e et et eeeeeeebeba bbb b e e e e e e e e e e e e aeaaaaeaeees 34
A ST = N N R B =Y o 1H o OO OUSOUPPPTPRP 34
Chapter 2: Pipeling Of the 74K ™ COre ...t e e et e e e e e e e ae e e eees 37
2.1: Integer PiPeling DESCIIPTION. ... .eiii ittt e ettt e e e e bt e e e e et bt e e e e bb et e e e e anba e e e e e sbbreeaeaas 37
P R e O B T o111 = RO TU PP 38
2.1.1.1: 1T - InStruction CaChe TAQ ACCESS ....ciiuiiiiieiiiiiie ettt ettt 38

2.1.1.2: ID - InStruction Cache Dat@ ACCESS.........uuuiiiiiiiiiiee ittt ettt e b 39
2.1.1.3: 1S - INSIIUCLION SEIECT ...eeiiniieiii ettt e et e e e e e e 39
2.1.1.4: IR - INSEIUCHON RECOUE ...ttt ettt ettt e et e e nees 39
P B | S [ 013 (U T o T o RSP UT PP PPT 39
2.1.1.6: IX - INStruction Macro EXPANSION .......c.iuuuiiiiiiiiiie ittt 39
2.1.2.7: 1B - INSTIUCLION BUFTEI ...ciiiieieei e 40

2.1.2: Instruction Decode UNit PIPEIINE ..ot 40
2.1.2.1: DD - DiSPACh DECOUE ... ittt ettt e et e e e 40
2.1.2.2: DR - DiSPACh RENAIME ... ittt e e e 40
2.1.2.3: DS - DISPALCN SEIECLE ....ceeiiiiiiieiiiieie ettt et 40

P A S Y I 1 T N | 41

2.1.3: ALU PIPEIINE oottt s 41
2.1.3.1: AF - ALU Pipe Register File REaAM ...........ooiiiiiiiiiii et 41
2.1.3.2: AM - ALU Pipe Operand Bypass Select Mux, This stage has the final operand bypass muxes

for the ALU pipe. The functionality corresponding to this stage resides entirely in the IEU. ............... 41
2.1.3.3: AC - ALU COMPULE ....eteeieieeiee ettt ettt e e e e e e e e ettt et e e e e e e e e e e eeee s 41

4 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



2.1.3.4: AB = ALU BYPASS ....citiiiiiiiiiiiiiie it 41

2. 1.4 MIDU PUPEIINEG ..ottt ettt et e e e e oo e e bbbttt et e e e e e e e e e e bbb ba e e e e eeeas 42
2.1.4.1: MB - Multiplier BOOth RECOUE. ........uuuiiiiiiiieeii et a e e e 42
2.1.4.2: M1- M3 MUILIPHEE AITAY ..ceeiiieiiiiieiitete ettt et e e e e e e e e bbb e eeeaaeas 42
2.1.4.3: M4 - MUIIPIY A ...ttt e e e et e e e et e e e e e sttt e e e e e nbeeeeeeennes 42

2.1.5: AGEN PUPEIINE .ottt e et e e e e ettt e e e e e e e e e e n e e e e e s 42
2.1.5.1: EM - Execute Operand Bypass SEIECE MUX ..........uuuiiiiiiiiieiiiiiiiiiieie e 42
2.1.5.2: EA - Execute and AdAreSS GENEIALE .......cooiiiiiiiiiiiiiiit ettt e e e e e e 42
2.1.5.3: EC - EXeCUte and CACRE ACCESS ......eeiiiiiieeiiiiiiiitiee ettt e e e e e e 43
2.1.5.4: ES - Execute and CacCh@ SECONG .......ccuiiiiiiiiiiiiiiie ettt a e e e e 43
2.1.5.5: EB - Execute and Cache Data BYPaASS .......ccouiiiuiiiiiiiiiiiaaee ettt a e 43

2.1.6: GRU PIPEIING ..ottt oottt et e e e e e e e e et e et et e e e e e e e e e et bba e e e e e eaeas 44
2.1.6.1: WB - WITEDACK. ...ttt et e e e e e e e e e e e e s 44
2.1.6.2: GC - Gradu@ation COMIMIT.......coiiiiiiiiiiiie ittt e e e ettt e e e e e e e e bbb et e e e e e e e e e e e s e s ananbbbaeeeaeeaeas 44

2.2: Programming the 74K GOl ... e e e et e e e e e e e e e e e e e e e e et e e e et e e e e e aete e s b e e e e as 44
R Tl o = V4= T (o L3O P PR ORI 44
2.3. 1 TYPES OF HAZAIUS ...ttt et e e e e ettt e e e e e e e e e e e anb e bn e e e eeeeas 45

2.3.1.1: Execution Hazards, Execution hazards are those created by the execution of one instruction,
and seen by the execution of another instruction. Table 2.2 lists possible execution hazards and
whether they can be resolved via setting of the IHB bit in the CP0O Config7 register.. ............c.c....... 46
2.3.1.2: Instruction Hazards, Instruction hazards are those created by the execution of one instruction,
and seen by the instruction fetch of another instruction. Table 2.3 lists instruction hazards. Because the
fetch unit is decoupled from the execution unit, these hazards are rather large. The use of a hazard

barrier instruction is required for reliable clearing of instruction hazards. ...........cccoooviiiiiiiiiiin. a7

2.3.2: INSIIUCTION LISHING ... e e e e e e e e e e e e et e et et e ettt e e s e e e e e e aeaeeaeaeaeeaeeeeesssessenrnnes 47

DA T2 Il [ 1S3 £ T o T T =1 oo To [TV 48

2.3.3: ElIMINAtiNG HAZAIAS ...ttt e e e e e e e e e e e e aeaeeeeeeeaeeeeaeesrnranes 48
Chapter 3: Floating-Point Unit of the 74Kf™ COre.........ccooee i, 49
3.1 FEALUIES OVEIVIEW ...tttk e ettt e e 4o ek et e 44k b et e o4 oAb et e o4k b bt e e e e ettt e e e e aab b e e e e e abbreeeenas 49
.11 IEEE STANUAIT 754 ...ttt ekttt ekttt 50
3.2: Enabling the Floating-POINt COPrOCESSON .......cciitiiiiiaiiiiie ettt ettt annee e 50
3.3 DALA FOMMALS ...ttt e e e e e oottt e e e e e e e e et e e e e e e e s 51
3.3.1: FloAting-POINT FOMMIALS ... .eeiiiiiiiiii ettt e e ekt e e s e e e s ennne s 51
3.3.1.1: Normalized and Denormalized NUMDEIS..........oiiiiiiiii e 53
3.3.1.2: Reserved Operand Values—Infinity and NaN .........ccccoooiiiiiiiiiiiiice e 53

3.3.1.3: INfINItY QNG BEYONT .....eeiiiiiiiiii ettt et et e e e e 53
3.3.1.4: Signalling Non-NUMDBEr (SNAN) .....cooiiiiiiiiiii e 53
3.3.1.5: Quiet NoN-NUMBEr (QNAN) .....ciiiiiiiei it e e 53

3.3.2: FIXEA-POINT FOIMMALS .....ciitiiie ettt ettt et e ekt e e st e e et e e e s annne s 54
3.4: Floating-Point GENEIal REGISTEIS ........oiiiiiiiiiieiiiiie ettt et e e e e st e e s abnreeees 55
3.4.1: FPRs and Formatted OPerand LAYOUL ............uuieiiiuriieeiiiiiie ettt 55
3.4.2: Formats of Values USed iN FP REJISIEIS ........uiiiiiiiiiii ettt 55
3.4.3: Binary Data Transfers (32-Bit and 64-Bit) ..........coiiuuiiiiiiiiiiieeiiiie et 57
3.5: Floating-Point CONLIOl REGISTEIS. ... ..ueiiiiiiiiei ettt ettt et e e s annneee s 58
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control RegiSter 0)........cccveerriirireeiniinieeenine, 59
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25).........cccccveeviiviieeinninn. 60
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control RegiSter 26) .........ccccveeviiiiieeeiniineeeeiiine, 60
3.5.4: Floating-Point Enables Register (FENR, CP1 Control Register 28) .........cccoccvvieeiiiiiiieeniiiiiee e, 61
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31).......ccccccevvivvveernnnne. 62
3.5.6: Operation Of the FS/FO/FN BitS........icuuiiiiiiiiiiie ittt e s eneeas 64
3.5.6.1: FIUSN TO ZEIO Bl ettt et e e e e e 65

3.5.6.2: FIUSN OVEITIAE Bit......eeiiieiiiiiit ettt ettt ettt e e et e e e 65
MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05 5

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



R ST I V) R (o T N == T (=) A 66

3.5.6.4: Recommended FS/FO/FN SEtlNGS ......ovvviiiiiiiiiiiiiee s e e e a e e 67

3.5.7: FCSR CauSe Bit UPAAte FIOW.......coiiiiiiiiiiiiiiie ittt e e e e e et eeeee s 67
3.5.7.1: Exceptions Triggered DY CTCL ...ttt e e e e e e e 67

3.5.7.2: GENEIIC FIOW ...ttt e ettt et e e e e e e e et b b e e e e e e as 67

3.5.7.3: MUIIPIY-AGT FIOW ...ttt et e e e e e e e bbb e e e e eeeas 67

3.5.7.4: Cause Update FIow for INpUt OPerands ..........cccuuiiiiiiiiieeee et a e e 68

3.5.7.5: Cause Update Flow for Unimplemented Operations .............ooouviviiiiiiiiieenie e 68

3.6 INSIIUCTION OVEIVIEW ...ttt ettt e e e o444 oo e bbbttt ettt e e e oo 4o a R b b bbbttt e e e e e e e e e e e ennbbbbbeeeeeeaeas 68
3.6.1: Data TranSTer INSITUCTIONS .......ueeeiiiiieee ittt e e e e e e bbbt e et e e e e e e e e e a e e eeeeeeeas 68
3.6.1.1: Data Alignment in Loads, Stores, and MOVES .........iiiiiiiiiiiie e 69

3.6.1.2: Addressing Used in Data Transfer INStrUCHIONS ........ooiiiiiiiiiccc e 69

3.6.2: ArTNMELIC INSTIUCTIONS ...ttt e e e e e e e bbbttt et e e e e e e e e e et bbneeeeeeaeas 70
3.6.3: CONVEISION INSITUCTIONS. ... ..ttt ettt et e e e e e e bbbt et e e e e e e e s e e bbb bneeeeeeeeas 71
3.6.4: Formatted Operand-Value MOVE INSIIUCLIONS .........coiiiiiiiiiiiiiii et 71
3.6.5: Conditional BranCh INSITUCTIONS .......cooiiiiiiiiiiiiie ettt e et e e e e e e eeeeeas 72
3.6.6: MiSCEIlANEOUS INSTIUCTIONS ......utiiiiiieeeee ittt e ettt e e e e e e e e e bbbt e e et e e e e e e e s e e bbb aaeeeeeeeeas 73

O A o= o 1[0 L TP U TP TP 73
3.7.1: Precise EXCEPLION IMOTE .......uuiiiiiiiieeeiie ittt e e e e e e ettt et e e e e e e e e e e b b baeeeeeeaeas 73
3.7.2: EXCEPLION CONITIONS ...ttt ettt et e e e e e e e e e bbb et et e e e e e e e s e aanbbbbaeeeeeeeeas 74
3.7.2.1: Invalid Operation EXCEPLION. ......c..uuiiiiiiiiiieee ettt ettt e e e e e e eeaaaeeeaaan 75
3.7.2.2: DIVISION BY ZEI0 EXCEPLION......ci ittt ettt e e e e e e b e e e e e e as 75

3.7.2.3: UNAEITIOW EXCEPLION ....eeeeeieiee ettt bbbttt et e e e e e e e et eeeeeeeas 76

3.7.2.4: OVEITIOW EXCEPLION . ...ttt ettt e ettt et e e e e e e e e b e eeeeeeas 76

3.7.2.5: INEXACT EXCEPLION ...ttt iiiee ettt e e e e e e e e bbbttt et e e e e e e e e e e bbb e eeeeeeas 76
3.7.2.6: Unimplemented Operation EXCEPLION ........coi ittt 76

3.8: Pipeline @and PeIfOIMANCE ........ooiiiiiiiiiieie ettt e e e e e ettt e e e e e e e e e st eeeeeaeeas 77
3.8.1: PIPEINE OVEIVIEW ...ttt ettt e oottt ettt e e e e e a4 e o bbb bt e e et et e e e e e e e e e annnbbbbbeeeeeeeeas 77
3.8.1.1: DR Stage - DiSpatCh RENAME .........uuiiiiiiiiiiiaaii ittt e e eeee s 77

3.8.1.2: C1 - Coprocessor Interface UNit StAge L.........ccocuuiiiiiiiiiiiiaiiiiiee e 77

3.8.1.3: CR Stage - Coprocessor Interface Unit Queue Read.............oocuviiiiiiiiiiiiiiiiiiiieeee e 78

3.8.1.4: Cl Stage - CoproCesSOr L INTEITACE .......cciieiiiiiiiiee e 78

3.8.1.5: FR Stage - Decode, Register Read, and UNPacK...........ccccoviiiiiiiiiiiiiiiiiiieeeeeee e 78

3.8.1.6: M1 Stage - MUIIPIY TIEE oottt e e e e e e e e e e as 78

3.8.1.7: M2 Stage - Multiply COMPIETE ........uiiiiiiiiieee e a e 78

3.8.1.8: Al Stage - AAitioN FirSt STEP ....u.uiiiiiiiiiiieee ettt e e eeaaae e e 78

3.8.1.9: A2 Stage - Addition Second and FiNal STEP .......c.uuuiiiiiiiiiieiii e 78
3.8.1.10: FP Stage - RESUIT PACK ......cccoi et 79
3.8.1.11: FW Stage - ReQISIEr WIILE.......ccc e e e e e e e e e e et e e a e 79

O S Il =V o = L1 o PP PR PP 79
3.8.3: Repeat RAE @NT LALENCY .......ueiiiiiiiieiiiiiiite ettt e e e e e et e et e e e e e e e e e bbb e eeeeaeeas 79
Chapter 4: The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set....... 81
4.1: Additional Register State for the DSP ASE ...t 81
e o | @ =T 11 (= £ SO PP PP T PPPPPPP 81
4.1.2: DSP CONLIOI REGISTET ...ttt ettt e et e e e et e s et e e et e e e e nees 81
4.2: Software Detection of the DSP ASE REVISION 2.ttt e e e e e e e e e enneaees 83
Chapter 5: Memory Management Of the 74K™ COT ......uuuiiiiiiiiiiiiiie e 85
I O i o o[0T 1o o R UOUPPRPTPPPRS 85
L2 Y/ [ To [T @] o 1T - o ) o 87
I VT4 (0= Y/ 1T g To ) VRS Y= T 0 =T £ S 87

L I U L o o] o 1= ST 1 1= ) SO 88

6 MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.2.1.2: MAPPEU SEOMENLES ...eeteiiiiiiieeee ettt ettt e e e e ettt et et e e e e e e e o e s bbbt b ettt et e e e e e e e aaaananbbbbeeeeeeeeas 89

5.2.2: USEI IMOUE. ...ttt ettt oot e ookttt o4 a bttt e e e et e e et e e e s 89
5.2.3: SUPEIVISOI IMIOUE ...ttt oottt et e et e oo 4o oo bbb ettt e e e e e e e e e aanbbbbaeeeeeeeeas 90
5.2.47 KEIMEI MOUE ...ttt ettt e e e et e e et e e a e e e e s s 92
5.2.4.1: Kernel Mode, USer SPACE (KUSEQ) -..vuureeetiiiiaaiiiiiiiititie ettt e ettt e e e e e e e b e e e e e s 94
5.2.4.2: Kernel Mode, Kernel Space 0 (KSEG0)......couiiiiiiiiiiiiiiiie ettt e e e e 94
5.2.4.3: Kernel Mode, Kernel SPace 1 (KSEOL)....ccuuu ittt a e e e e 94
5.2.4.4: Kernel Mode, Kernel/Supervisor Space 2 (KSSEQ/KSEQ2) .......ccccuuuriiiiiiiiiaaiiiiiiiiiiieeeee e 95
5.2.4.5: Kernel Mode, Kernel SPace 3 (KSEO3)....cui ittt a e 95

A T = 18 o 1Y (o To [P PPPPUUPUUSTP 95
5.2.5.1: Debug Mode, RegiSter (ArSEQ) .....ccoeiiiiiiiiieieeie e e e e e e e e e e e e e et e e e as 96
5.2.5.2: Debug Mode, MemMOry (AMSEQ) .....ccciiiiiiiiieieiieeteee e e e e e e e e e e e e e e e e e et e e e e e e e e eas 96

5.3: Translation LOOKASIAE BUFFET .........oiuiiiiiiiiiiiee et s e e e 97
5.3 0 JOINE TLB ...ttt e ekttt e e s 97
5.3.2: INSIIUCTION TLB ....ieiiiie ittt ettt e e e e et e e et e e e s e e e s e s 99
5.4: Virtual-to-Physical Address TranSIatioN.............ooiiiiiiiiieiii e e e e e e e e e e e e e e s 100
5.4.1: Hits, Misses, and MUltiple MatCRES ... .......uuuiiiiiiiiie e 101
5.4.2: IMIEBIMOIY SPACE ... .ottt e oo e e et e ettt ettt ettt s e et e b e e e e e e e e e e e e e e e et et e e e e nnnrnrana 102
L Rl - To =S Y =1 SO 102
5.4.2.2: Replacement AlGOITRIM . ...t ae s 102

5.4.3: TLB INSIIUCTIONS ...ttt ettt e et e e et e e et e e e e e e e e enes 103
5.5 FiXed MapPiNg IMIMU ...ttt e e e e ookttt et e e e e e e e s e s bbbt et e e e e e e e e s e annbbebee e 104
Chapter 6: Exceptions and Interrupts in the 74K™ COre......ccoooiiiiiiiii e 107
(O = (ot =T o1 (o] s @] s o [ o] 1 K O TP PP PP OPUP PRSP 107
(S = (ot o1 (o] I o T 1 Y2 PO PPUP PP TP 108
ORI [ 01 (=T (0] o] £ TP TP PP T TP TP PPPPPPN 109
B.3.11 INTEITUPE IMOUES ...ttt ettt e e et e et e e e e e e e et e e e e nnes 110
6.3.1.1: Interrupt CompPatibDility MOOE..........ueiiiiiiii e 110

6.3.1.2: Vectored INtErrUPt MOUE .......ooiiiiiiie ettt 112

6.3.1.3: External Interrupt Controller MOOE ..........cooiiiiiiiiiiiiie et 115

6.3.2: Generation of Exception Vector Offsets for Vectored INterruptS........cccvvvveviiiirieeiiiiiiee e 117
6.4 GPR ShAOOW REQISTEIS....ceeiiiiiiiiieiitiee etttk bttt e e e ekt e e e ekttt e st e e e e et et e e s annnnee s 118
6.5: EXCEPLION VECION LOCALIONS ......eeiieiiieiee ettt ettt e ettt e sttt e e e s nnnne s 120
6.6: General EXCEPLION PrOCESSING .....ciiuuuriieiiiiiiieeiiiie e ettt ettt e e st e e a kb et e st e e e e s e e e e st e e e e s annnnee s 122
6.7: DebUQ EXCEPLION PrOCESSING ....eiieiiiiiiieiiiiit ettt ettt ettt e ettt e e et e e s e e e e st et e e s anannee s 125
6.8: EXCEPLION DESCHIPTIONS ....ceiiiiiitieieeiiie ettt ettt e e okttt e e ek e et e sttt e e e ettt e e s annnne s 126
B.8.01 RESEE EXCEPLION ...ttt ettt ettt e 4ttt e e et e e e et e e et e e e e 127
6.8.2: Debug SiNgle StEP EXCEPLION ......oiiiiiiiiiieiiteie ettt e e 128
6.8.3: Debug INtEITUPE EXCEPLION ...ciiuiiiiiieiiieit ettt e bbb e e 128
6.8.4: Non-Maskable Interrupt (NMI) EXCEPLION ........viiiiiiiiiii ettt 129
6.8.5: MaChing CheCK EXCEPLION. ...ttt ettt e e e e 129
6.8.6: INTEITUPT EXCEPLION ....eiiiiiiieit ettt et e et e e e e e e et e e e nnes 130
6.8.7: Debug INStruction Break EXCEPLION .........uiiii it 130
6.8.8: Watch Exception — Instruction Fetch or Data ACCESS........cuiiiiiiiiieiiiiiiie et 130
6.8.9: Address Error Exception — Instruction Fetch/Data ACCESS..........oveiiiiiiiieiiiiiiieeeiiiee e 131
6.8.10: TLB Refill Exception — Instruction Fetch or Data ACCESS .........uvveiiiiiiiieiiiiiee e 132
6.8.11: TLB Invalid Exception — Instruction Fetch or Data ACCESS.........ccoiiiiiiieiiiiiiieeiiiie e 132
6.8.12: CACNE ETOr EXCEPLION .....eiiiiieiieiit ettt ettt et e e e e e e et e e e e nees 133
6.8.13: Bus Error Exception — Instruction Fetch or Data ACCESS.........uuviiiiiiiiiieiiiitee e 133
6.8.14: Debug Software Breakpoint EXCEPLION ........uuiiiiiiiiiiiee ittt 134
6.8.15: Execution EXception — SYSIEM Call........ooouuiiiiiiiiiiieie e 134
6.8.16: Execution EXCeption — Bre@kPOiNt.........oii ittt 134
MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05 7

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8.17: Execution Exception — Reserved INStIUCTION .........oiiiiiiiiiiieii et 135

6.8.18: Execution Exception — Coprocessor UNUSADIE .........cc.uuiiiiiiiiiiiaaii e 135
6.8.19: Execution Exception — CorExtend block Unusable ... 136
6.8.20: Execution Exception — DSP ASE State Disabled ... 136
6.8.21: Execution Exception — Floating Point EXCEPLION ........ccuviiiiiiiiiiiee it 136
6.8.22: Execution Exception — Integer OVEITIOW.........cooiiiiiiiiiiiii e 137
6.8.23: EXECULION EXCEPLION — TTAP .. .utiiieiiiiiiiee ittt ettt e e e 137
6.8.24: Debug Data Break EXCEPLION ........ciiiiiiiiiiiieit ettt 137
6.8.25: TLB Modified EXCEPLioN — DAt ACCESS ......eviiiiiiriiieiiiiiiie ettt e sttt 137
6.9: Exception Handling and Servicing FIOWCNAITS ..........coocuuiiiiiiiiiiciic et 138
Chapter 7: CPO Registers 0f the 74K™ COre ....cooooiiii i 145
7.1 CPO REQISTEI SUMMEAIY ...eeieiititieeeieiieee e ettt e ekttt e e ekttt e ook bttt e 4 aa bttt e e 4k ket e o4 ek e et e s nbbe et e e ansbn e e e e s annnne e s 145
7.2: CPO REQISLEr DESCIIPLIONS .....ttiiiieiiieiee ettt ettt ettt et e e ekt e e e e e e e e st e e e e anbba e e e e s annnneeas 150
7.2.1: Index (CPO Register 0, Select 0): INAeX iNtO TLB AITAY ......cviiiiiiiiieeiiiiiiee e 151
7.2.2: Random (CPO Register 1, Select 0): Randomly Generated Index into the TLB Array.................. 152
7.2.3: EntryLo0-1 (CPO Registers 2 and 3, Select 0): Output (physical) side of TLB entry...................... 152
7.2.4: Context (CPO Register 4, Select 0): Mixture of Pre-programmed and BadVAddr Bits which can act as
AN OS Page Table POINTET. ..ottt e e e et e e e aees 154
7.2.5: ContextConfig Register (CPO Register 4, SEIECT 1) .....coiiuiiiiiiiiiiiieeeieie et 155
7.2.6: UserLocal (CPO Register 4, Select 2): Address Causing the Last TLB-related Exception ............ 156
7.2.7: PageMask (CPO Register 5, Select 0): Control for Variable Page Size in TLB Entries ................. 157
7.2.8: Wired (CPO Register 6, Select 0): Controls Number of Fixed ("wired") TLB Entries...................... 158
7.2.9: HWREnNa (CPO Register 7, Select 0): Bitmask Limiting User-mode Access to rdhwr Registers.... 158
7.2.10: BadVAddr (CPO Register 8, Select 0): Address Causing the Last TLB-related Exception .......... 160
7.2.11: Count (CPO Register 9, Select 0): Free-running Counter at Half the Pipeline Speed.................. 160
7.2.12: EntryHi (CPO Register10, Select 0): High-order Portion of TLB ENtry ........cccceeviiiiireeiniiiieeeeee 161
7.2.13: Compare (CPO Register 11, Select 0): Timer Interrupt Control ............ccooviiiiieeiiiiineeiieeee e 162
7.2.14: Status (CPO Register 12, Select 0): Processor Status and Control ............cccccevviivireiiiiiieeenenne 162
7.2.04.1: INEITUPTIDIIEY ..eeeeieee e et e e e e e 162
7.2.14.2: OPEIAtING MOUES ......eiiiiiiiii ettt e et e et e e et e e e e e e e eees 163
7.2.14.3: COProCeSSOr ACCESSIDIIILY ....cceiitiiieeiiiiii e 163
7.2.15: IntCtl (CPO Register 12, Select 1): Setup for Interrupt Vector and Interrupt Priority Features..... 168
7.2.16: SRSCtl (CPO Registerl2, Select 2): Shadow Register Set Selectors........ccoovveiviiiiieeiiiiineeeeen, 169
7.2.17: SRSMap (CPO Register 12, Select 3): Shadow Set Choice for Each Interrupt Level in VI Mode 171
7.2.18: Cause (CPO Register 13, Select 0): Cause of Last General EXception ..........ccccoccvvveiiiiiieeennnnn 172
7.2.19: EPC (CPO Register 14, Select 0): Restart Address from EXCEPLioN ..........ccuvveeriiiiireeiiiiieeeeenn 176
7.2.20: PRId (CPO Register 15, Select 0): Processor Identification and ReViSion ............cccccevviieeeennnne. 177
7.2.21: EBase (CPO Register 15, Select 1): Exception entry point base address and CPU/VPE ID ....... 178
7.2.22: CDMMBase Register (CPO Register 15, SEIECE 2).....ciiuuiiiiiiiiiiiie et 179
7.2.23: Config (CPO Register 16, Select 0): Legacy Configuration RegiSter...........ccoveeiviiiireeiiiieieennnn 180
7.2.24: Configl-2 (CPO Register 16, Select 1-2): MIPS32/64 Configuration Registers ..........ccccoeveeeenee. 181
Y B o] o T RO TP O PP PT P PPPPPPON 181
T.2.24.2: CONFIGZ ettt e et e e et e e e et e e e et e e e 183
7.2.25: Config3 (CPO Register 16, Select 3): Configuration register showing ASES .........ccccccoviiiieennnne. 183
7.2.26: Config6 (CPO REQISIEr 16, SEIECE B) ....eviiiiiiiiieiiiiiiie ettt 184
7.2.27: Config7 (CPO Register 16, Select 7): CPU-specific Configuration.............cccceveeiviiiireiiniiineenee 187
7.2.28: WatchLo0-3 (CPO Register 18, Select 0-3): Watchpoint Address and Qualifiers ........................ 190
7.2.29: WatchHi0-3 (CPO Register 19, Select 0-3): Watchpoint Control/Status............c.cceveeiiiiieeennnne. 190
7.2.30: Debug (CPO Register 23, Select 0): EJTAG Debug Status/Control
NCTe ] (= TP PP PP PPUP PP TPPP 191
7.2.31: Trace Control Register (CPO Register 23, SEIECE 1) ....cuuviiiiiiiiiiieeiiiee et 195
7.2.32: Trace Control2 Register (CPO Register 23, SEIECt 2) .......cooiiiiiiiiiiiiiiee e 197
8 MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2.33: User Trace Datal Register (CPO Register 23, Select 3) and User Trace Data2 Register (CPO

LR[S (T ST =T o A ) SRR 199
7.2.34: TracelBPC Register (CPO Register 23, SEIECT 4) ......coiviiiieiieiiiiiies st 200
7.2.35: TraceDBPC Register (CPO Register 23, SEleCt 5)......covviiiiiiiiiiiiiiiiie i 201
7.2.36: DEPC (CPO Register 24, Select 0): Restart Address from Last EJTAG Debug Exception.......... 202
7.2.37: Trace Control3 Register (CPO Register 24, SeleCt 2) ........oovviiiiieiiiiiiiiiie e 203
7.2.38: PerfCtl0-3 (CPO Register 25, Select 0, 2, 4, 6): Performance Counter Control .....................uvee. 204
7.2.39: PerfCnt0-3 (CPO Register 25, Select 1, 3, 5, 7): Performance Counters................ceevvvvevvvvnvnnnnns 209
7.2.40: ErrCtl (CPO Register 26, Select 0): Software Parity Control and Test Modes for Cache RAM Arrays
209
7.2.41: CacheErr (CPO Register 27, Select 0): Cache Parity Exception Status...........ccccevviiiiiiiiiieeeenenn. 210
7.2.42: ITagLo (CPO Register 28, Select 0): Read/write Interface for Load/Store Tag Cacheops........... 212
7.2.42.1: ITagLo (ErrCtWST = 0, EIfCHSPR = 0) ..oeiiiiiiieeiciiie ettt 212
7.2.42.2: ITagLo-WST (ErrCtIWST = 1, ErrCtUSPR = 0) .eoeiiiiiiiie it 212
7.2.42.3: ITagLo-WST (ErrCtIWST = 0, ErrCtUSPR = 1) iiiiiiiiiiieiiieee e 213
7.2.43: IDataLo (CPO Register 28, Select 1): Read/write Interface for I-cache Special Cacheops.......... 213
7.2.44: DTagLo (CPO Register 28, Select 2): Read/Write Interface for Load/Store Tag Cacheops ........ 214
7.2.44.1: DTaglLo (ErrCtIWST = 0, ErrCtIDYT = 0, ErrCtSPR = 0) .ooeiiiiiiiieeeiiiiee e 214
7.2.44.2: DTagLo-WST(ErrCtIWST =1, ErrCtIDYT = 0, ErrCtISPR = 0) c..eeveeiiiiiiieeiiieee e 214
7.2.44.3: DTagLo-DYT (ErrCtIWST = 0, ErrCtIDYT = 1, ErfCtSPR = 0).evvveeiiiiiieeeeiiieee e 215
7.2.45: DDatalLo (CPO Register 28, Select 3): Low-order Data Read/Write Interface for D-cache........... 216
7.2.46: L23TagLo (CPO Register 28, Select 4): L2 and L3 Cacheop Tag USe .........ccccceeeriiiiiiiiiiiiiinnenenn. 216
7.2.47: L23DatalLo (CPO Register 28, Select 5): Low-order Data Read/Write Interface for L2 or L3 cache..
216
7.2.48: ITagHi (CPO Register 29, Select 0): I-cache Predecode BitS..........ccceeeiiiiiiiiiiiieieiiiiiieeeeeeiiiias 217
7.2.49: IDataHi (CPO Register 29, Select 1): High-order Data Read/write Interface for I-cache Special
(O T =T o] o 1 TP RPN 217
7.2.50: DTagHi (CPO Register 29, Select 2): D-cache Virtual Index (including ASID)...........cceevvvvvvvnnnns 218
7.2.51: L23DataHi (CPO Register 29, Select 5): High-order Data Read/Write Interface for L2 or L3 cache..
218

7.2.52: ErrorEPC (CPO Register 30, Select 0): Restart Location from Reset or Cache Error Exception. 219
7.2.53: DESAVE (CPO Register 31, Select 0): Scratch Read/Write Register for EJTAG Debug Exception

[ =TT 1= PSR 219
Chapter 8: Hardware and Software Initialization of the 74K™ COre ........ccccoee e 221
8.1: Hardware-INnitialiZed ProCESSOr STALE .......iiiieiiiie ettt e e e e e e e e et e e e e e e eraa s 221
8.1.1: COPIOCESSON O STALE ...ttt e e e e e e e et e et e e e e e e s e e e e e as 221

T W I = 3 [ a1 (=1 [= Lo ] o PSR 222

8.1.3: BUS STALE IMACKINES ... .cevtiiieieeiieee ettt ettt e e e ettt e e e e e et e e e e e e s e e e e s eetb e e e eeeessban s 222

8.1.4: Static CONfIGUIALION INPULS ...ttt e et e et e e e 222

T ST ==Y (o] ¢ 1A [0 [ =TT PSR 222

8.2: Software-INitialiZed ProCESSOr StALE........ii it e e e e e e e e e s e et e e e e e eraa s 222
82,01 REGISIET FIlE ..ttt e et e e e e e 222

T 1 T RRTRRRRRRRRN 223

T S O o1 o 1T PSRN 223

8.2.4: COPIOCESSOr O STALE ...ttt e e e e e st et e e e e e e s e a e e as 223
Chapter 9: Caches Of the 74K ™ COIE ....coiiiiiiiiiii ettt e e e e e e e e e e 225
S I I = Tod o =T @0 o 11 = U1 o] o ISP 225

S I [ 1S 1 £ o 1 o] g = Tod o 1SR 225

LS I IV T4 (U = L2 7= 1S3 T o S 226

S I = To o Lo (= o 1 £ 226

LS N - SR 227
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 9

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



L TR T = | = N = Vo o 1= TR 227

LSS T YT (0 T | A 1= =3 o PP PPPRPTRRRPRTPN 228

LS B - RSP 229
9.4 WIEE BaACK BUFTEI ...ttt oottt et e e e e e e e s e s bbbt e e e e e e e e e e e e e ananbbebee e 229
9.4.1: Uncached ACCEIEIALEA STOIES.......coiiiiiiiiitiiee ettt ettt e e e e e e et eeeeee s 230
9.5 CACNE PIrOLOCOIS ...ttt e e oo oottt et e e e e e e e s e s bbbttt e e e e e e e e e s e e annnbbebee e 231
9.5.1: CaChe OrganiZatiOn .............ooviiiiiiiiiiiii e s e e e e e e e e e e e e e e ee ettt et et aaas e et as s e s e eaeaeaeaaaaeaeeeeeeeeeeesrnrnnes 231
9.5.2: Cacheability AMIDULES ........cooiiieeeeee et e e e e e e e e e e aeaeeeeeeeeeeeeeernrnna 231
9.5.3: REPIACEMENT PONICY ...ttt e ettt e e e e e e e et eeaeee s 232

LS TR0 S [ = o od (] o PP PPPPTRRRPUTPN 233
S O O o | [ 11 10T 1o TP PR PUP PR 233
LS Ao V= U O Tod aT=T I = 1] 1] o [ 234
9.7.1: [-cache and D-CaAChE TaQ AITAYS .....uuuuuuuiiiiieieieeeeeeeeeeee et e et eeeeeeaeaa st ae s e s e aaaaaaeaaeaeeereereesnerernrnnas 234
9.7.2: [-CACNE DALA AITAY .. .cceeiiiieeee et e e et e e e e e e e e e e e e et et e et e e aeee e et ae e et e eaeaeeeaaeaeaeeeeeeeseennrnrnnes 234
O.7.3: [-CACNE WS AITAY ...t e e e e et e e e e e e e e e e e e et et et eeaeee e et e e e et aeeeaeaeaaeaeaeeeseseseensenrnnes 234
O.7.4: D-CACNE DAl@ AITAY ......cciiiiiiieeeeeeeet st e e et e e e e e e e e e e et et e et et et aeee et assesaeeeaeaeaaeaeaaeeeeseseessrnrnnes 234
O.7.5: D-CACRE WS AITAY .. .ciiiiiiiiiiieeee e s e e e et e e e e e e e e e e et e e ettt e ae ettt ae e e saaeeaeaeaaeaeaeeeeeseseennsnrnnes 235

LS B ST B R or= Lo o Lo B 1T YN = PP PPPPTRRSPRTPRN 235
I C I \V (=T 0 (o] A @de] a1 =T [od T TS 1 S 235
Chapter 10: Power Management in the 74K™ COre ... 237
10.1: Register-Controlled POWEr ManNagEMENT ..........iiiiiiiiiiieeiiiii ettt e et e e e e s ee e 237
10.2: Instruction-Controlled POWer ManagemENt ..........coiuuiiiiiiiiiiie ettt e s ee e 238
Chapter 11: EJTAG Debug Support in the 74K™ COre ......ooooiiiiiiiiiiieeeeeeeeee e 239
R B = o 0T @ 1 0] B LT 1 (= PR 240
11.2: Hardware BreaKPOiNtS .. ....oii e sttt e e e e e e s s e e et e e e e e e s e e st e e e e aeeeeeeaannnnnr e e neeeeees 244
11.2.1: Features of INStruction BreakPOiNt ............uieiiiieeeeie i e e e e e e e e e s s er e e e e e e e s e s e snnnennneeeeeeees 244
11.2.2: Features of Data BreaKpOint ..........iio i e e e e e e e e s reaeeeee s 245
11.2.3: Instruction Breakpoint REQISIErS OVEIVIEW ........cccciiiiiiiiiiiiieieeee e e e e s ee et ee e e e e e e e e e s e snnsannneaneeeees 245
11.2.4: Data Breakpoint REQISIErS OVEIVIEW .......uuueiiiieeeeieiiiiiiiiiiieereeseeeeeesassnsaetreeeeeeeeeesesassnnsennneereeeees 245
11.2.5: Conditions for Matching BreakpOintsS ...........eeeieeeeieiiiiiiiiiieereese e e e e s s sssiee e e e eee e e s e s e snnsannneeeeeeees 246
11.2.5.1: Conditions for Matching Instruction Breakpoints ............cocccuvriiiiiieieeeeeeiiisiiiiieereeee e e e 246
11.2.5.2: Conditions for Matching Data Breakpoints ............ceceeeeeiiiiiiiiiiiireeee e e essiinieeereeae e e e 246

11.2.6: Debug Exceptions from BreakpOiNtS..........ueiriieeereeiiiiiiiiiieerrese e e e e e s ssssteeeereeaeeeesesssnnnsannneeneeeees 248
11.2.6.1: Debug Exception by Instruction Breakpoint..........ccccceeeeiiiiciiiiiiiiieeee e e e e e e e 248
11.2.6.2: Debug Exception by Data Breakpoint..........c..uuuiiiiiiieieee e e e e e e sessiiiraeeereeee e e e 248

11.2.7: Breakpoint used as TrgQErPOINt.......c..uiiiiiiiiiei et e e e e e e e e e e e e e e e s e s e s snnnrnrreeneeaees 250
11.2.8: Instruction Breakpoint REGISIEIS ......cc.uuiiiiiiiiieieee e ees et e e e e e e s s s e e e e e e e e s e s e s nnnnrareeeneeaees 250
11.2.8.1: Instruction Breakpoint Status (IBS) REQISIEN ......uvviviiieei e a e 250
11.2.8.2: Instruction Breakpoint Address n (IBAN) REQISLEr .........cooiciiiiiiiiieieee e e e e e 251
11.2.8.3: Instruction Breakpoint Address Mask n (IBMN) ReQISter .........uuuuiiiieeeeiiiiiiiiiiiieiieeeee e 251
11.2.8.4: Instruction Breakpoint ASID n (IBASIDN) REGISIEN ........coiiiiiiiieiiieie e e e e e e e e 252
11.2.8.5: Instruction Breakpoint Control n (IBCN) REQISIEN ......cceeiiiiiiiiieiieeee e e 252

11.2.9: Data BreakpOint REJISIEIS ....civiiiii ittt et e e e e e e s e e e e e e e e e e e e s ennnnsennenaneeeees 254
11.2.9.1: Data Breakpoint Status (DBS) REQISIE .......uuuuiiiiiiiieee ittt e e e r e e e e e e e 254
11.2.9.2: Data Breakpoint Address n (DBAN) REQISIEN .....uvviiiiieeiiiiiiiiiiieie et e e e e e e e e 255
11.2.9.3: Data Breakpoint Address Mask n (DBMN) REJISIEN .........cccuviviriiieieee e iiiiiiiieeeneeee e e e 255
11.2.9.4: Data Breakpoint ASID n (DBASIDN) REQISIEN ...vvvviiiieeee ittt e e e e e e 256
11.2.9.5: Data Breakpoint Control N (DBCN) REQISIEr ....uuuuiiiiieeee it eee e e r e e e e e e 256
11.2.9.6: Data Breakpoint Value n (DBVN) REQISIEN ......uuuuiiiiiiieeiiiiiiiiiieie e e e e e e e 258
11.2.9.7: Data Breakpoint Value High n (DBVHN) REQISIEN ......cccoiiiiiiiiiieieee e e 258

B O =YY Ao ot YT o o A (1A IR 259
10 MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.3.1: EJTAG Internal and EXternal INTEIfaCES. ........cvvuu i e e e 259

11.3.2: TeSt ACCESS POIT OPEIALION ...cceeiiiiiiiiti ittt ettt e e e ettt e e e e e e e e e s et eeeeeeaeeas 260
11.3.2.1: TeSt-LOQIC-RESEL SEALE ... ..uuuiieiiii i i e e e e e e e e e e e e e e e e eeaeeenaereannes 261
11.3.2.2: RUN-TESHIAIE STALE......coi ittt ettt e e e et r e e e e e e e e e e 261
11.3.2.3: S€EleCt_DR_SCAN SEALE ... .uuuuiieiiiiiiie e e e e e e e e e e e e e aeaeaeeeeeaesenanrnannes 261
11.3.2.4: SeleCt_IR_SCAN SEALE ...uuuvuiiiiiiiiiii ittt s e e e e e e e e e e e e e e e e eeeeeeeeaaeanrnrnna 261
11.3.2.5: CAPLUIE_DR STALE ..ottt e e e e e e e e e e e e e e eeeeeeennnnnnnnnes 262
11.3.2.6: SNIft_DR STALE ....eeiiiiiiee ettt e ettt e et e e e e e e s e bbbt e e e e e e e e e e e e 262
11.3.2.7: EXITL_ DR SEALE ...eeiiiiiieeiiii ittt ettt e e e ettt et e e e e e e e e e s e ab b bbb e e e e e e e e e e e e ana 262
11.3.2.8: PAUSE_DR SEAle . .iitiiiiiiiiiiiiii et e et e e e e et e e e e e et e e e e anraas 262
11.3.2.9: EXIT2_ DR SEALE ....eiiiiiieiiii ittt ettt e e e ettt et e e e e e e e e bbb e e e e e e e e e e e e ana 262
11.3.2.20: UPate DR STALE ...cceeiiiiiiiiieee ettt ettt et e e e e e et r et e e e e e e e e 262
11.3.2.170: CAPLUIE_TR STALE ....eeeietiieititiii et e e e e e e e e e e e e e aeeeeeeeennnernnnees 262
11.3.2.22: SHIFE_TR STALE ..eeeiiiiieeiie ittt e e e e ettt e e e e e e e e e s e bbbt b e e e e e e e e e e e e ann 263
11.3.2.030 EXIEL_ TR SEALE....eeiieiieeiiii ittt ettt ettt e e e e e e e e e s e bbb e e e e e e e e e e e e annns 263
11.3.2.24: PAUSE IR STALE ...oiiiiieiiiiiii ettt ettt e et e e e e e e s ettt r e e e e e e e e e e 263
11.3.2.25: EXIT2_TR SEALE....ceiiiiieeiiii ittt ettt ettt e et e e e e e e s e bbb e e e e e e e e e e e anas 263
11.3.2.26: UPAAE TR STALE ....cieeeiiiiiiitieee ettt ettt e et e e e e e e s bbbt e e e e e e e e e e e aanas 263

11.3.3: Test AcCeSS POrt (TAP) INSLIUCLIONS .......vvviiiiiiiiiieis e ee et e e e e e e e e e e e aeaeees 263
11.3.3.1: BYPASS INSIIUCTION . ...cc ittt ettt et e e e e e e e e bbb e e e e e e e e e e e e aanas 264
11.3.3.2: IDCODE INSIIUCTION .ttt e ettt e et e e e e e e s e bbbt e e e e e e e e e e e e e annns 264
11.3.3.3: IMPCODE INSIIUCTION ...ttt ettt e e e e e e e e s bbb e e e e e e e e e e e e aanas 264
11.3.3.4: ADDRESS INSITUCHION ...ttt ettt et e e e e e e bbb e e e e e e e e e e e e annas 264
11.3.3.5: DATA INSIFUCTION ..eiiiiiieiiiiiit ettt ettt e ettt e et e e e e e e s e bbbt e e e e e e e e e e e e e annns 264
11.3.3.6: CONTROL INSTIUCTION ...ttt ettt e e e e e e e e e s e bbb e e e e e e e e e e e e e annas 265
L1.3.3.7: ALL INSTIUCTION ...ttt ee ettt ettt e e e e a4 ettt et e e e e e e e e e s e bbb bbb e e et e e e e e e e e e annns 265
11.3.3.8: EJTAGBOOT INSITUCTION ...ttt ettt e e e e et e e e e e e e e e e e e annas 265
11.3.3.9: NORMALBOOT INSIIUCTION ....tttiiieitieeeeeiaeiitiiie ettt e e e e e e e e e e e e e e e e e e e e anns 265
11.3.3.20: FASTDATA INSIIUCTION ...ttt ettt e e e e e e et e e e e e e e e e e e aanas 265
11.3.3.11: TCBCONTROLA INSIFUCTION ...tiiitiiieeiiei ittt ettt e e e e et e e e e e e e e 266
11.3.3.12: TCBCONTROLB INSIFUCTION ....etiitiiieeiiei ittt e e e e e e e e e e e e 266
11.3.3.13: TCBCONTROLC INSIIUCTION ....ctttitiiieeeieiiititie ettt e e e e e e e s e e e e e e e e e e e e anns 266
11.3.3.14: TCBCONTROLE INSIFUCTION ....ettiitiiieeeieiiittte ettt e e e e e e e e 266
11.3.3.15: TCBDATA INSIIUCTION ...ttt ettt et e e e e e e e et e et e e e e e e e e e aanas 266
11.3.3.16: PCSAMPLE INSIIUCTION .....iiiiiiiiiiit e ettt e e e e e e bbb e e e e e e e e e e e aanas 266
11.3.3.07: FDC INSTIUCTION ...ctttteeeei ettt ettt e e e e e e e ekttt ettt et e e e e e e e e bbb bt e e e e e e aeeeeaaannns 266

R S e Y i I o =T £ (= SO UU 266

0 I 1 1S3 (W o 1o g =0 £ = OSSR 266

11.4.2: Data REQISIEIS OVEIVIEW .....cccciiiiiiiiieeeeeee ittt e s s e e e e e e e e e e e e e e e et et et eeeeeaete b et s e e e e e e e aaeaaeaaeaeaeees 267
11.4.2.0: BYPASS REQISTEL ...eeiiiieeiiiiiiitte ettt ettt et e e e e e e e s e bbbt be e e e e e e e e e e e e ana 267
11.4.2.2: Device Identification (ID) REQISIEI ........cccoiiiiiiii e e e e e e e 267
11.4.2.3: IMplementation REGISTEN ... ......u ittt e e e e e e e e e e anes 268
11.4.2.4: EJTAG CONrOI REQISTEI ...vutiiiiiieieie ettt e e e e e e e e e e e e e e e e e aeeeaeeesenanrnannes 269

11.4.3: Processor ACCESS AQAIrESS REQISIEN ......uuuiriiiiiiiiiiis et e e e e ettt e e e e e e e e e aaaeaeees 275
11.4.3.1: Processor ACCESS Data ReQISIEr .........cccciiiiiiiie e a e e e e e e 275

11.4.4: Fastdata Register (TAP INStruction FASTDATA) ...iiiiiii e e e e e e 276

L11.5: TAP PrOCESSON ACCESSES ...cevetituttitiiia e aa et e e e e e e e e e e et et ettt eeeee e bebebe e e e oo oo e e e e e e e e e e eeee et eeeeeeeeebbbbbnb e es 277

11.5.1: Fetch/Load and Store From/To the EJTAG Probe Through dmseg.........cccceveeeeiiiiiiiiiiieeeeeeeeeee, 278

G e O Y= 10 ] o] 10T PP P PP TPTPPPPP 279
11.6.1: PC Sampling iN WAL STALE ......ccoiiiiiiiiiiiie ettt e e e e e e e et eeeeeae s 280

A e T L= o TU o T 1 =V ] = ST 280
11.7.1: CommON DEVICE MEMOIY IMBP ... .ottt ettt e e ettt e e e e e e e e e e et b e e eeeaeeas 280

11.7.2: Fast Debug Channel INTEITUPL........oo it e e e e eeeae s 280
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 11

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.7.3: TAK™COrEe FDC BUFTEIS. ...ttt ettt 281

A S S =TT o I 1 (o o [ TP TR P POTOPPPPPPPR 283
L11.7.5: FDC TAP REQISTEI ...ttt ettt e e e e e e e ettt e e e e e e e e e e et bnbeeeaeeaeeas 283
11.7.6: Fast Debug Channel REQISIEIS ........ooviiiiiiiiiiiee sttt e e e e e e e e e e e aeaeees 284
11.7.6.1: FDC Access Control and Status (FDACSR) Register (Offset 0X0)..........ccccevvvvvviviviiiiiinnnnns 284
11.7.6.2: FDC Configuration (FDCFG) Register (OffSet OX8) .........uurvuuiiiiiiieiiieee e 285
11.7.6.3: FDC Status (FDSTAT) Register (OffSet OXL10) ....eeerieeeiiiiiiiiiiiiiiiie e e e 286
11.7.6.4: FDC Receive (FDRX) Register (OffSet OX18) .......ccevvvirirmiiiiiiiiiiiieieieieeeeeeeeeeeeeseeeeeeesesaninnanns 287
11.7.6.5: FDC Transmit n (FDTXn) Registers (Offset 0X20 + 0X8*N) .....cceeeveiiieieeeeeiiieieieeeeeeeiiiias 287
R O Y S GO I = (o PP PP TPPPPP 288
11.8.1: PrOCESSON MOOES ...ttt ettt ettt ettt e e oo e a4 e bbbt ettt e e e e e e e e e e e bbb e b e e e aeaaeeas 289
11.8.2: Software Versus Hardware CONIOL............eeiiiii ittt e e e e 289
11.8.3: TracCe INFOIMIELION ...ttt e e e e e e e bbbttt e e e e e e e e e e e bbb e e e eeeeeeas 289
11.8.4: Load/Store Address and Data Trace INfOrmation...............ceeeiiiiiiiiiiiiiiiiiiie e 290
11.8.5: Programmable Processor Trace Mode OPLIONS........cc.uuuuiiiiiiiiieeaie ittt 291
11.8.6: Programmable Trace INformation OPLIONS ........ccoiiiiiiiiiiiiiiiie e 291
11.8.6.1: USEI DALA TIECE ...eeeiieiiiiiitiiiiiii et e ettt ettt e e e e e e e e e e e e eeeeeeeeeenennnrnnnnes 291
11.8.7: Enable Trace to Probe ONn-Chip MEMIOIY........cooii it 292
R S I = T I o To T SRR 292
11.8.9: Cycle-by-Cycle INfOrMAatiON .........cooiiiiieeiee et e e e e e e e e e e e aeaeees 292
11.8.10: Instruction and Data Cache MiISS TIaCiNg ......uuuieieieiei e eee e a e e e e e e e aeaees 292
11.8.11: Performance COUNLET TIaCING........vvueiiieiiiiitiiiiiee e s s e s e e e e e e e e e e e ae e e et e e e e eee et s s e e e e e s aaeaaaeaeaeaeees 293
11.8.12: Filtered Data TraCe MOUOE .........cooiiiiiiiiiiieie ettt e e e e e e e e e s eeaaaaeeas 294
S 0 T = L O I = Vo o 1 3 SRR 294
11.8.24: TMOAS HaANAIING ...ttt e e e e e e e sttt e e e e e e e e e e e bbb e reeeeeeaeeas 295
11.8.15: Memory-mapped Access to ON-Chip Trace RAM .........uuiiiiiiiiiiii e 297
11.8.16: Core-Specific Event INeffiCieNCY TraCing ........coouiiiiiiiiiiiiiiie et 299
11.8.17: Trace MeESSAQE FOIMIAL ... ..t iiiiiiiii ettt e e e e et e e e e e e b r e e e e es b e e eeeaentnnns 299
11.8.18: TraCe WOIA FOIMMIAL......ueiiiiiiiiie ettt ettt e e e e e ettt e e e e e e e e e e e bbb e e e e e e aeeas 299
11.9: PDtrace™ Registers (SOftware CONIIOI)........cccoiiiiiiiieeee e e e 300
11.10: Trace Control Block (TCB) Registers (Hardware CONntrol).........cccceeieieiiiiiieiiiiiiiieeee e 300
11.10.1: TCBCONTROLA REUISIE ...cciieeiiiiiiiiit ittt ettt e e e e e e e e s e bbb eeaaeeeas 301
11.10.2: TCBCONTROLB REQISIE....ciiiiiiiiiiiitt ettt e e e e e e e e e et eeeeeee s 304
11.70.3: TCBDATA REQISTEN ....ttttieiititee ettt e ettt ettt e e e e e e e o bbbttt e e e e e e e e e e e aanabbnneeeaeeaeeas 308
11.10.4: TCBCONTROLC REQISIEI ...ciiiiiiiiiiiiitete ettt e e e e ettt e e e e e e e e e s e b n e e e aeeaeeas 309
11.10.5: TCBCONTROLE REQISIE....ciiiiiiiiiiiittite ettt ettt e e e e e e e et e e e e e eeeas 310
11.10.6: TCBCONFIG ReEQIStEr (REG D). oottt ettt e e e e e e e e e e s eibb e e eeeeeeas 311
11.10.7: TCBTW REQISIEN (REO 4) ... iiiiiiiiieieeeeee st s et e e e e e e e e e e e e e et et e et e e e e e e e e e e e e e e aaaaeaeees 312
11.10.8: TCBRDP REQISIEr (REO 5) ...cciiiiiiiiieieiieeier e s e e e e e e e e e et e et e e e e e e e e e e e aeaaaeaeees 313
11.10.9: TCBWRP REQISLEI (REU B) ...ceeieiiiiiiieeeiiieititiee s e st e e e e e e e e e e e e e e e e e et e e ettt s e s e e e e e e e e aaaaaaeaeees 313
11.10.10: TCBSTP REQISIEI (REQ 7). etieeeiiiiaiiiitttt ettt ettt e e e e e ettt e e e e e e e e e e e b ebreeeeeeeeas 314
11.10.11: TCBTRIGX REQIStEr (REQG L16-23) .. ..ettiieiiiiiieeeaeeieiiiiiete ettt e ettt e e e e e e e e s eeeeeaee s 314
11.10.12; ReQISter RESEE SEALE .....ccc i e e e e e e e e ettt s e e e e e e e e e e aaaaeaeees 317
0 I Y = o T o T YL s T I = Lo = SOOI 317
11.11.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints...........ccccceviviiiiivinieeneenenn. 317
11.11.2: TUrNiNg ON PDIFACE™ TTACE .....cceeieieeeeeiiiiiiiiiiee e s s e s e e e e e e e e e e e e e e e et e e e e e ae et s e e e e e e aaaaaaaeaaaeaeees 318
11.11.3: Turning Off PDIFGCE™ TTACE ......ceeeeeiiiiiiiiiiiiiiiee e s s e e e e e e e e e e e e e e e et et e e et a e e e s e e e e e aeaaaaaeaeees 319
11.11.4: TCB Trace ENADING.......ccooo ittt e e e e e e e e e e e e aeaeees 320
11.121.5: Tracing @ RESEt EXCEPLION ...cciiiiiiiiiite ettt et e e e e e e e s eeeeeee s 320
R 4 = T o To 1= o o oSO 320
11.12.7: Trigger UNILS OVEIVIEW. ... .cccciiiiiiiiiieieeeeeiet e s e e e e e e e e e e e e e e e e e e et e e e e eeeae et e b e s e s e e e e aaeaaeaaaaeaeees 320
0 A I T T = S Yo U T o= o | PR 321
0 B S I T T = g @ a1 o U SR 322

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



0 e I T T = o1 o T o SRR 322

11.12.5: SIMUIENEOUS THIQOEIS ... eeeeieeiee e e e e e e e e e e e e e e e e et et e e e e ee e e e ta b et s e e e e e e e aaeaaeaaeaeaeees 322
11.12.5.1: Prioritized Trigger ACHONS .....uu it e e s e e e e e e e e e e e e e e e eeeeeeeeeeeanrnnnnes 322

11.12.5.2: OR’€d THQQEN ACLONS ...uuuiuiitiiieieie it et e e e e e e ettt e s e e e e e e e e e e e e aeaeaaaeeeeeeesenansnennes 323

11.13: MIPS Trace Cycle-by-CycCle BENAVION ..........ccooiiiiiiee st 323
11.13.1: FIFO Logic in PDtrace and TCB MOAUIES ..........iiiiiiiii i a e 323
11.13.2: Handling of FIFO Overflow in the PDtrace Module..............coooiiiiiiiiiiiiicccs e 323
11.13.3: Handling of FIFO OVErflow iN the TCBh.......uuuuiiiiiis it e e e e e e e e e e 324
11.13.3.1: Probe Width and Clock-ratio SettinNgS...........oooviiiiiiiiiiiieie e 324

11.13.4: Adding Cycle Accurate Information t0 the Trace............ccooeviiiiiiiiiii e 325

11.14: TCB ON-ChiP TrACE IMEIMOIY .....eeeeitiiieeeeei ittt ettt et e e e e e e e e e s bbbt et e e et e e e e e e e e e e annbbbbeeeeeaeeeas 325
11.14.1: ON-Chip Trace MEMIOIY SIZE.....ccoiiiiiiitiiiieie ettt ettt e e e e e e e e e eeeeaeeas 325
11.04.2: TraCe-FrOM IMOGE ......eiiiiiiiiiiiie ettt et e e e e e e e e bbbttt e e e e e e e e e e et e n e e e e aaeeeas 325
L11.04.3: TrACE-TO IMOUE. ...ttt ettt ettt e e e e e e s e bbb bbbttt e e e e e e e e e s e anbb b e beeeaeeeeeas 326
Chapter 12: INStruCtion SEL OVEIVIEW ....ccoooe i 327
12.1: CPU INSIIUCHION FOMMIALS ...ttt e e e e ettt et e e e e e e e e e s bbb be et e e e eaeeeeeaaannnbtsaeeeeaaaaens 327
12.2: Load and STOre INSEIUCTIONS.......uuuiiiiieiie ettt e e e e ettt ettt e e e e e e e e e s e be et e eaeeaeaeeesaannnnbesneeeeaaaaens 328
12.2.1: Scheduling @ Load DeEIAY SIOt........uiiiiiiiiiii ettt 328

12.2.2: DEfiNING ACCESS TYPES. .. ceiiiitiiiee ittt ettt ettt ettt ettt e ookt e e e e bbb et e e e st e e e s sbn e e e s annneeeas 328

12.3: ComPULALIONAL INSIFUCTIONS ....ceiiiiiiiiieei ittt e e ekt e e et b e e e st e e e e s abaeeeeeaa 329
12.3.1: Cycle Timing for Multiply and Divide INSIrUCHIONS...........ouiiiiiiiiieiiiiiiit e 330

12.4: Jump and BranCh INSTIUCTIONS ........eiiiiiiiiiee ittt e et e e e s e e e e e b e e e 330
12.4.1: Overview Of JUMP INSIFUCTIONS ....oiuviiiiiei ittt ettt et e e a e s 330

12.4.2: Overview Of Branch INSTIUCLIONS .......c..uuiiiiiiiiiiae et e e e e e e e e s e e eaeeeeeas 331

12.5: CONIOI INSITUCTIONS.....eee et ettt ettt e e e e e e e e e ottt et e e e e e e e s e e e nebebe et e aeeaeeeeesannnnstsneeeeaaaaens 331
12.6: COPIOCESSON INSIIUCTIONS ....eteteei it e ettt ettt e bt e e ekttt e oo sttt e e e ah b et e e e ek bttt e e e aabb et e e e abbe e e e e e anbaeeeeeaa 331
Chapter 13: 74K™ Processor Core INSTrUCTIONS .......cuuiiiiiiiieiiiiii it 333
13.1: Understanding the INStruction DESCHPIONS ......uvuiiiiiieiieeei i i e e e e e e s e s s e e e e e e e e e e e s eeeeeeees 333

R 2 N QL @ o oo Lo [= N 1V - o PR 333
13.3: Floating Point Unit Instruction FOrmat ENCOTINGS ....vvvveeeiiiiiiiiiiiiiieie e e s e e e e e e e e e aneeneeaee s 338
13.4: MIPS32™ Instruction Set fOr the 74K™ COTE ......coiuiiiiieiiiiiee ettt e e 339
(O O PRSPPI 347
PSR PRPP 355

e PRSP 357

T PR PRRR 361

I SRR 363
I 2] PRSP 367
LI 2 PRSPPI 369
L PRSPPI 371

LI 2T PRSPPI 373
Chapter 14: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set ........... 375
I 1 £ (W o 1o = =t o0 Yo L] o OO U 375
O 1 ] 1 W o 1o £ 1 T S 377
APPENAIX A REFEIENCES .uuiiiiiiiiiiiiiiiitiiieeiietireetaeeeeee aeeeeeeaaeeeestsessessteessassssssssessssssssssssssasssssssssresssnnssees 381
ApPpPeNdixX B: REVISION HISTOTMY ..ot e e e e e e e e e s 383
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 13

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



List of Figures

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:

Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 7.1:
Figure 7.2:
Figure 7.3:

14

TAK™ COre BIOCK DIAQIAM ..ooiiieieiiiiiiiiiieee e s s e e e e e e e e e e e ettt e ettt s e e e s e e e e e e e e eaeaeaaeeeeeeaeeeessnnrnrnnes 29
Address Translation DUring @ CAChE ACCESS .......uuuuuviiiiiiiiiieie i e et e e e as 33
TAKT™ COre PIPEIINE ..ottt ettt e e e e e e e e ettt e e e e e e e e e s e s nenaeeees 38
[ U =] (oo S D = To | = o USRS 50
Single-Precision Floating-Point FOrmMat (S) ........ccooiiiiiiiiii e 52
Double-Precision Floating-Point FOrmMat (D) ........oiiiiiiiiiiiiiiececeeece s e e e e e e e e e e aa e 52
Word FiXed-Point FOIMAL (W) ...t e e e e e e e e e e e e e e e e et e e e e e e e e eaas 54
Longword FiXxed-Point FOrMAL (L) ......covviieiiiiiiieiie ettt e s e s e e e e e e e e e e e aaaeaaeaaees 54
Single Floating-Point or Word Fixed-Point Operand in an FPR ... 55
Double Floating-Point or Longword Fixed-Point Operand in an FPR ... 55
Effect of FPU Operations on the Format of Values Held in FPRS ...t 56
FPU Word Load and MOVE-t0 OPEIALIONS ..........uuuiiiiiiiiiaeeaaiiiiiiitit ettt e e e ettt e e e e e e e aeeeeeeas 57

FPU Doubleword Load and Move-t0 OPEIraAtIONS ..........cuiiiiiiiiiiiiiiiiiieieete e e et e e e e e 57
FIR FOIMIAL ettt e oo e e e e e et e ettt ettt e e e et b e b et e e e e e e e e e e e e e e e eeeees 59
FCCR FOMMBLE et e e e e e e et e et ettt ettt e et et e b et e e e e e e e e e e e e e e e e aeeeees 60
FEXR FOMMAL .ot e oo e oo e et ettt ettt et ettt et e e e e e e e e e eeeeeees 61
FENR FOIMMIEL .ot e e et e et e ettt et et et et e et et e e e e e e e e e e e e e e e eeeees 61
FCSR FOIMIAL e e oo e e et et ettt et et e e et e et e e e e e e e e e e e e e e e aeeeees 62
FS/FO/FN Bits Influence on Multiply and Addition ReSUILS .............evviiiiiiiiiiiiiee e 65
Flushing to Nearest when Rounding Mode is Round to Nearest .............ccccveveiiiiiiiiieiiieeeeeeeeeeeeeeeeeeens 66

FPU PIPEIINE .ottt oo e e oo bbbttt et e e e e e e e e e e b bbb et e e e e e e e e e e e e e nnbnbee e 77

Arithmetic Pipelineg BYPass PathS ..ottt 79
MIPS32® DSP ASE Control Register (DSPControl) FOrmat.............ooovvvviiiiiiiiiiiiiie i eeeeeeeeeeeeeeeeeeeenens 81
Address Translation For Cache Access With TLB MMU ........uuuiiiiiiiiiiiiiiie e 86
Address Translation For Cache Access With FIM MMU ... 86
74K™ Processor Core Virtual MemOrY Map ......oooouiiiiiiiiiiee et e e e e 88
User Mode Virtual AQArESS SPACE .....ccuiiiiiiiiiiiiiitie ettt e e e et e e e e e e e e e st eeeeeeas 89
Supervisor Mode Virtual ADAreSS SPACE ......cooiiiiiiiiiiiiii it et e e e e e 91
Kernel Mode Virtual AQAIrESS SPACE ....coooiiiiiiiiiiiiee ettt e e e e e e eeeeas 93
Debug Mode Virtual ADArESS SPACE ......ceeiiiiiiiiiiiie ettt a e e e e e e et aeeeeeeas 95
JTLB ENtry (Tag @nd DALA) ....uuvvurueiiiiiieie i e i e e e e e e e ettt s e s e e e e e e e e e e aeaaeaeeaeeeeeeeeaeserennnnnnnnas 97
Overview of Virtual-to-Physical Address Translation .................ouuuuiiiiiiiiiiiiieie e 100

: 32-bit Virtual Address TranSIation ...........cooeiiiiiiiiii e e e e e e e e e eeeaees 101
: TLB Address Translation Flow in the 74K™ ProCeSSOr COIE ....ccccivvuuiiieeeiiiiiiee e eeeeiie e ee e eeeanns 103
: FM Memory Map (ERL=0) in the 74K™ ProCeSSOr COIME ........uitiiiiiiiiiiiiiiiiiiiiieeea e e s aaeiiereeeeeeaee s 105
: FM Memory Map (ERL=1) in the 74K™ ProCeSSOr COIE ........cutiiiiiiiiiiiiiiiiiiieieaaaaeaesaaaiiiireeeeeeaee s 106

Interrupt Generation for Vectored INterrupt MOAE ..........oooiiiiiiiiiiiicie e 114
Interrupt Generation for External Interrupt Controller Interrupt Mode ...........cceeveeiiiiiiiiiiniiiiiee, 116
DebugVectorAddr RegISter FOIMAL ..........ooviiiiiiiiiieci et a e e e e e e e e e aaaaees 126
General Exception HANAIEr (HW) .....eeiiieiiiieeee ettt e e e e e 139
General Exception Servicing GUIAElNES (SW) ... 140
TLB Miss Exception Handler (HW) ...ttt e e e e e e 141
TLB Exception Servicing GUIAElINES (SW) ....oiiiiiiiiiiiiee ettt e e 142
Reset and NMI Exception Handling and Servicing GUIAEIINES ..........coviiiiiiiiiiiiiiiiiiiiieiee e 143
Register Format Color Coding of ACCESS Field TYPES ....ccooiiiiiiiiiiiiiieee e 151
[aTo Loy =To 1S (=l o] 0 = S 151
RaNdOM ReEQISIEr FOIMMIAL.........cccei i e e e e e e e e e et et et et e e e et e e a e e s e e e e aaeaeaeaeaeees 152

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Figure 7.4: EntryLo0, EntryLOL ReQISIEr FOMMAL .......ovviiiiiiiiiiiieii e e et e e e e e e e e e e e e e aeaees 153
Figure 7-5: Context REQISIEr FOIMMIAL..........ccooiiiiiiiie e e e e e e e e e e e et e et e e e e et e b a e e e e e e e eaaaaaaaeaeees 154
Figure 7.6: ContextConfig ReISIEr FOIMMAL .........ooviiiiiiiiiiei e e e n e e e e e e e e aaaaeaeees 155
Figure 7.7: IUserLocal RegISIEr FOIMIAL..........coiiiiiiiieeeeee e s e e e e e e e e e e et et e et a s e e e e e e e aaeaeaaeaeees 156
Figure 7.8: PageMask RegISter FOIMAL .............ooiiiiiiiiiiiiii et a e e e n e e e e e e aaaaeaeees 157
Figure 7.9: Wired ReQISTEr FOIMAL .........cccoiiiiiiiiiee e s e e e e e e e e e e et et e e s e e e e e e e eaaeaaaaeaeees 158
Figure 7.10: HWRENA REQISIEr FOIMAL ..........ciiiiiiiieeeeee et e e et e s e e e e e e e e e e e aaaaeaeees 159
Figure 7.11: BadVAdAr REQISIEr FOIMAL...........iiiiiiiiieieiee et e e e e e e e et e e a s e e e e e e e aaeaaaaaeeees 160
Figure 7.12: CoUNt REQISIEr FOIMIAL..........ccei it e e e e e e e e e e e e e e et e et e e e e e e e e et s e e e e e e e eaaaaaeaeaeees 161
Figure 7.13: EntryHi RegISIEr FOIMAL ......ccoiiiiiiiiiieeeeeee s e e e e e et e s e e e e e e e e aaeaeaaeaeees 161
Figure 7.14: Compare ReQISIEr FOMMIAL ........uuuiiiiiiiiiei ettt e e e e e r e et e e e e e e s s aannbbeeeees 162
Figure 7.15: Status RegiSIEr FOIMMIAL........cccoi i e e e e e e e e et ettt s e e e e e e e e aaeaaaaeaeees 164
Figure 7.16: INtCt REQISTEI FOIMAL..........ccee i e e e e e e e e e e e e e et e et e et s e e e e e e e eaaeaaaaeaeees 168
Figure 7.17: SRSCtI REQISIEr FOIMAL .......ccoiiiiii i e e e e e e e e e e ettt e s s e e e e e e e aeeaaaaeaeees 170
Figure 7.18: SRSMapP ReEQISIEI FOIMIAL. ... ..uuiiiiiiiiiiie et e e e e r e et e e e e e e s e naebbeeeees 172
Figure 7.19: Cause ReQISEr FOIMAL ..........ccoiiiiiiiiieeeee e e e e e e e e e e e et et e et e s e e e e e e e e aaeaaaaeaeees 172
Figure 7.20: EPC REQISIEI FOMMAL .......cccci i e e e e e e e e e e e e e et e e e e e et e s e e e e e e e e aeaaaaaeaeees 177
Figure 7.21: PRI ReQISIEr FOMMAL ......cccoii i s e e s e e e e e e e e e e e e et e e e e e e e ae e et e s e e e e e e e e aaeaaaaeaeees 177
Figure 7.22: EBase ReQISIEr FOMMIAL..........ccooiiiiiiiiieieeeeee s s e s e e e e e e e e e e e e et e et e e e e et e et e e e e e e e e e eaeeaaaaeaeees 178
Figure 7.23: CDMMBASE REQISIEN ......ccii i e e eeeieee e s e e et e e e e e e e e e e e e e ettt ettt e e et e s e e e e e e e eaaaaaeaeaeees 179
Figure 7.24: Config REQISIEr FOIMAL..........ccooiiiiii e e e e e e ettt a e e e e e e e e aaaaaaaeaeees 180
Figure 7.25: Configl ReQIStEr FOIMAL.........cccoiiiiiiiie e e e e e e e e et et e e e e e e e e e aeeaaaaeaeees 181
Figure 7.26: Config2 ReQIStEr FOIMAL...........coiiiiiiiie e e e e e e e e et e e e et a e e e e e e e e aeaaeaaeaeees 183
Figure 7.27: Config3 REQIStEr FOIMAL.........cccoiiiiiiiieeeeeee e e e e e e e ettt a s e e e e e e e aaaaaaaeaeees 184
Figure 7.28: Configh ReQIStEr FOIMAL..........ccoiiiiiiiie e e e e e e e e e e et et e et a e e e e e e e aaeaaaaeaeees 184
Figure 7.29: Config7 ReQIStEr FOIMAL..........ccoiiiiiiiie et e e e e e e e et et e s e e e e e e e e aaeaeaaeaeees 187
Figure 7.30: WatChLO ReQISIEr FOIMMIAL.........coiiiiiieieeeeeeee e et e e e e e e e et et e e e e e e e e e e aaaaaaaeaeees 190
Figure 7.31: WatChHi ReQISIEr FOIMMIAL..........ccoiiiiiiiiieeeiee e e e e e e e e e e e e et et e e et s e e e e e e e e aaeaaaaeaeees 191
Figure 7.32: Debug ReQISIEr FOMMIAL..........ccooi it e e e e e e e e e et et e e e e e e e e et s e e e e e e aeaaeaaaaeaeees 192
Figure 7.33: TraceControl REgISIEr FOIMAL ........oovviiiiiiiiiiei s e e e e e e e e e e e e aaeaeaeees 195
Figure 7.34: TraceControl2 RegISIEr FOIMMAL .......covviiiiiiiiiiiiie et s e e e e e e e e e aaaaaeaeees 197
Figure 7.35: User Trace Datal / User Trace Data2 Register FOrmat ..............ooovviiiiiiiiiiiiiiiiiiii i eeaeee 200
Figure 7.36: TracelBPC RegQISter FOMMAL ...........ooiiiiiiiiiiiiiiise s e e e e e e e e e e e e et et e e e e s s e e e e e e e aaaaaaaeaeees 200
Figure 7.37: TraceDBPC ReQISIEr FOIMMIAL .......cciiiiiiiiiiiiiiiet e e e e e e e e e e e e et et e e e e e e e e e e aaeaaaaeaeees 201
Figure 7.38: DEPC ReQISIEr FOMMAL ........cccoiiiiiiiiieie e e e e e e e e e e e e et e e e e e e e e e e e e e s e e e e e e e e aaeaeaaeaeees 202
Figure 7.39: TraceControl3 RegISIEr FOIMMAL .......ooovviiiiiiiiie e e e e e e e e e e e e aaaaeaeees 203
Figure 7.40: PerfCtl0-3 ReQISIEr FOIMMIAL...........iiiiiieeeeeeee s e e e e e e e e e e e et e et e e e e e e e e e aaeaaaaeaeees 204
Figure 7.41: Performance Counter COUNE REQISIEI.........uuuiuuiiiriiiiee s e et e e e e e e e e e e aeaeees 209
Figure 7.42: CacheErr RegISIEr FOIMMIAL..........ciiiiiiieieeeee e e e e e e e e e e e e e et e et e e e e e e s e e e e e e e aaeaaaaeaeees 210
Figure 7.43: ITagLo Register Format (ErrCtIWST = 0, ErfCtISPR = 0)...cccoiiiiiiiiieeeei e 212
Figure 7.44: ITagLo Register Format (ErrCtIWST = 1, ErfCtISPR = 0)...ccooiiiiiiiiiieeeis e 212
Figure 7.45: ITagLo Register Format (ErrCtIWST = 0, ErfCtISPR = 1) 213
Figure 7.46: IDatalo ReQISIEr FOIMMIAL...........coiiiiiiiieeeeeeee e e e e e e e e e e e e e e e e e e e e e e e e et e e a e e e e e e e e aeeaaaaeaeees 213
Figure 7.47: DTagLo Register Format (ErrCtIWST = 0, ErrCtIDYT = 0, ErrfCtISPR = 0) ..vvvvviiiiiiiiiiieeeeeeeeeeeeee 214
Figure 7.48: DTagLo Register Format (ErrCtIWST = 1, ErrCtIDYT = 0, ErrfCtISPR = 0) w.vvvvvviiiiiiiiiiieieeeeeeeeeee 215
Figure 7.49: Field Descriptions for DTagLO-DYT REQISTEI .........uuiiiiiiiiiiiiiiiee et 215
Figure 7.50: DTagLo-SPT (ErrCtIWST = 0, ErrCtIDYT = 0, ErfCtISPR = 1) .euviiiiiiiiiiiiiiiieeeee e 215
Figure 7.51: DTagLo Register Format (ErrCtIWST = 0, ErrCtIDYT = 0, ErfCtISPR = 1) .vvvviiiiiiiiiiiieeeeeeeeeeee 216
Figure 7.52: DDatal.o ReQISIEr FOIMMIAL.........cooiiiiieie e e e e e e e e e et et e s e e e e e e e e aaaaeaaeaeees 216
Figure 7.53: L23TagLo RegQISIEr FOMMIAL...........oiiiiieieeeieeie e e e e e e e e e e e et et e s e e e e e e e e aaeaeaaeaeees 216
Figure 7.54: L23Datalo ReQIStEr FOMMAL............ooiiiiiiiiiiiiiei e s e e e e e e e e et e e e s e e e e e e e e aaaaaaaeaeees 217
Figure 7.55: ITagHi ReQISIEr FOMMIAL..........ccooiiiiiiiieeee e e e e e e e e e e e e et et e e e e et a e e e e e e e eaeeaaaaeaeees 217
Figure 7.56: IDataHi ReQISTEr FOIMAL .........ccooiiiiiiiie e e e e e e e et e e s e e e e e e e e aaeaaeaeaeees 217
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 15

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Figure 7.57: DTagHI ReQISIEr FOIMMIAL........ccoiiiiiii e r e e e e e e e e e e e e e e e a s e e e e e e e e aeeaaaaaaeees 218
Figure 7.58: L23DataHi ReQISter FOIMAL ............coiiiiiiiiiiii et e et e e e e e e e e e aaaaeaeees 218
Figure 7.59: ErrOrEPC REQISIEr FOIMAL.........cciiiiiiieieeiiee e e e e e e e e e e et e et e e e e e e e e e e aaeaaeaeaeees 219
Figure 7.60: DeSave RegIStEr FOIMMAL ..........coiiiiiiiieieeeee e e e e e e e e et e et e e s s e e e e e e e e aaaaaaaeaeees 219
Figure 9.1: Instruction Cache OrganiZation ..............eevuueuuiiiuiiie i e e e e e e e et et e e a e e e e e e e aaaaaaaeaeees 226
Figure 9.2: Data Cache OrganiZation ...............oiiiiiiiiiiii e e e e e e e e e e e et et e e e et et e e s s e e e e e e eaaeaaaaeaeees 228
Figure 11.1: Debug Control ReQISIEr FOMMAL...........cevviiiiiiiiiiiees e s s e e e e e e e e e e e et e e s e e e e e aaeaaaaeaeees 240
Figure 11.2: IBS REQISIEI FOIMAL ......ccii it e e e e e e e e e e e et et e e e e e ee et e et s et e e e e e e e e eaaeaaaaeaeees 250
Figure 11.3: IBAN REQISIEr FOIMAL ......ccii i e e e e e e e e e e e e e e e et e et e e e e e e et a et a s e e e e e e e e aaeaaaaeaeees 251
Figure 11.4: IBMN ReQISEI FOIMAL.........ccci i s e e e e e e e e e et et e et e e e e e et a e e e e e e e e aeeaaaaeaeees 252
Figure 11.5: IBASIDN REQISIEr FOIMAL ......ccoiiiiiiiiiieieeeeee s e e e e e e e e e e e e e e s e s e e e e e e e e aaeaaaaeaeees 252
Figure 11.6: IBCN ReQISIEr FOMMAL ........cccii i e e e e e e e e e e e e e e et e et e e e et e e et e s e e e e e e e eaaeaaaaeaeees 253
Figure 11.7: DBS REeQISIEI FOMMAL .......cccoii i e e e e e e e e e e e e e e et e e e e e e et e e a e e e e e e e eaeeaaaaeaeees 254
Figure 11.8: DBAN REQISTEI FOMMAL .......ccceiiiiiiiiiieie e e e e e e e e e e e e et et e e e e e e et a s e e e e e e e e aaaaaaaeaeees 255
Figure 11.9: DBMN ReQISIEr FOMMAL .......ccoeiiiiiiiiiiieeeeeee s e e e e e e e e e e e e e e e e e e e e e e e et e e e e e e e e e e e aaeaaaaeaeees 255
Figure 11.10: DBASIDN REQISIEr FOIMAL .......coiiiiiiiiieeiiiei e s e e e e e e e e e e e e e e e e e e e s e s e e e e e e e e aaaaaeaeaeees 256
Figure 11.11: DBCN ReEQISIEr FOIMIAL ......ccceiiiiiiiiieee e e s e e e e e e e e e e e e e e e e e e e e e e e e e et e et a bt e e s e e e e e e aeaaeaaaaeaeees 256
Figure 11.12: DBVN REQISEr FOIMAL ......cccoiiiiiiiiie e e e s e e e e e e e e et e e e e et s e s e e e e e e e eaeeaaaaeaeees 258
Figure 11.13: DBVHN ReQISTEr FOIMAL .....ccooiiiiiiiiieieeeee st e e e e e ettt e e s e e e e e e e aaeaaaaaaeees 258
Figure 11.14: TAP Controller State DIAgram ........c.veeeviiiiiiiiiiiee s e e e e e e e e et et e et s e e e e e e e e aaeaaaaeaeees 261
Figure 11.15: Concatenation of the EJTAG Address, Data and Control RegISters...........ccvvvveiiiiiiiiiiiieeeeeeeeeeeee, 265
Figure 11.16: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected........................ 265
Figure 11.17: Device ldentification RegISter FOIMAL ...........uuuiiiiiiiiii i a e e e e e e e e 267
Figure 11.18: Implementation REQISTEr FOIMIAL ........ooiiiiiiiiie e e e 268
Figure 11.19: EJTAG Control RegISter FOMMAL ..........vvviiiiiiiiiiiiiie e i s et e e e e e aeaeeaaaaaaeees 270
Figure 11.20: Endian FOrmats for PAD REQISIEI.......ceviiiiiiiiiiiiieee ettt a e n e e e e e e aeaaaaeees 276
Figure 11.21: Fastdata RegiSter FOIMAL ............ooiiiiiiiiiiii s e e et n e e e e e e e aaaaaaaaaeees 276
Figure 11.22: TAP Register PCSampPle FOMMIAL........cooiiiiiiiiiie ettt e et e e e 279
Figure 11.23: Fast Debug Channel Buffer OrganiZation ...........cccooooiiioiiie e e e e e e 282
Figure 11.24: FDC TAP REQISIEr FOIMAL..........iiiiiiiiieieee e e e e e e e et et e et e e e e e e e e e e e aaeaaaaeaeees 283
Figure 11.25: FDC Access Control and Status Register FOrmat ... 284
Figure 11.26: FDC Configuration RegiSter FOMIAL ...........uuuuiiiiiiiii e e e eee e a e e e e e e e e aaaaeaees 285
Figure 11.27: FDC Status RegISter FOMMAL............oooiiiiiiiiiiicis s sttt s e e e e e e e e eaaaaeaeees 286
Figure 11.28: FDC RecCeive RegIStEr FOIMAL..........ooieiiiiiiiiiiiiii e sttt s e e e e e e e e e e aaeaeaeees 287
Figure 11.29: FDC Transmit REQIStEr FOIMAL...........oeviiiiiiiiiiiiie et a e e e e e e e e aaaaeaeees 287
Figure 11.30: MIPS® Trace Functional BIOCKS in the 74K™ COre .......cccoiiiiiiiiieieeeee e 289
Figure 11.31: A TMOAS TracCe RECOIU .......ccciiiiiiiiieieeeee et e e e e e e e e e e et e e et e e e a e s e e e e e e e e aaeaaaaeaeees 296
Figure 11.32: TCBCONTROLA ReQISIEr FOMMAL .....ceviiiiiiiiiiiiiieiie e e i s e e e ettt s e e e e e e e e aeaaaaeaeees 301
Figure 11.33: TCBCONTROLB ReQIStEr FOIMAL .......ovviiiiiiiiiiiiiiieie i s e e e ettt e e a e e e e e e aeaaaaeaeees 304
Figure 11.34: TCBDATA REQISIEr FOIMMAL ....ccciiiiiiiieeiiiiiei s e e e e e e e e e e et s e e e e e e e e e e aaaaaaaeaeees 308
Figure 11.35: TCBCONTROLC REQISIEr FOIMMAL ....eeeveiiiiiiiiiiiiieii e e s e ettt a e e e e e e e e aaaaeaeees 309
Figure 11.36: TCBCONTROLE ReQISter FOIMAL .......ovviiiiiiiiiiiiiiie i s i e e e e e n e a e e e e e e aeaaaaeaeees 310
Figure 11.37: TCBCONFIG ReQISIEr FOMMIAL .......coviiiiiiiiiiiiiiiiiiss s e e s e e e e e e e e e e e e ettt e e e e e e e e e aaeaaaaeaeees 311
Figure 11.38: TCBTW REQISIEr FOIMMAL .....ccciiiiiiiiieieeeeee s e e e e e e e e e e e e et et e e e e e e e e e e e e e aaeaaaaeaeees 313
Figure 11.39: TCBRDP REQISIEr FOIMMAL .....ccciiiiiiiiiieiiieiete s e s e e e e e e e e e et et e e s e e e e e e e e aaeaaeaeaeees 313
Figure 11.40: TCBWRP RegISter FOMMAL .........coiiiiiiiiieiiiiieii s e e e e e e e e e e e e e e e et s e e e e e e e e aaeaaaaeaeees 314
Figure 11.41: TCBSTP REQISIEr FOMMAL .....cccoiiiiieieieeeeeee s s e e e e e e e e e e e e et e et e e e e s e e e e e e e e aaeaaeaeaeees 314
Figure 11.42: TCBTRIGX ReQISIEr FOIMAL .......coiiiiiiiieiiiiiiiee s s s e e e e e e e e s e e e e e e e e aaeaaeaeaeees 315
Figure 11.43: TCB Trigger ProCeSSING OVEIVIEW. ..........uuuuuruuuuriiiaiaiaiaiaaeaeaeaeaeteterteeaeaeaasrsraras e aaaaaeaaaaaaseeeees 321
Figure 12.1: INStrUCION FOIMALS .....ciiiii i e e e e e e e e e e e e et et e et e e e e et e et e s e e e e e e e eaeeaaaaeaeees 328
Figure 13.1: Usage of Address Fields to Select IndeX and Way ...........cooooiiiiiiiiiiiiieie s 347

16

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Listo

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:

f Tables

7AK™ Core Pipeline Stages DESCHIPLONS. ... ...uuiiiiiiiiiieeeee ittt e e e e e e e e aeeeeeeas 38
EXECULION HAZAIUS ...ttt ettt et oo e e e oo bbbttt et e e e e e e e e b bbbt et e e e eaeeeaaaanns 46
Ta IS B o uTo] g o F= V2= T OO PP PURT RPN a7
(o V4= 1o I [ E (U ot o T N1 i o 47
Parameters of FIoating-PoiNt DAta TYPES ......uueeiiiiieeaeiiiiiteiie ettt e e e e e e e e eeeaeaeeeaaas 51
Value of Single or Double Floating-Point Data Type ENCOdiNg............uuuiiiiiiiiiiiiiiiiiiiiiieeee e 52
Value Supplied When a New Quiet NaN IS Created ...........ccuuiiaiiiiiiiiiiiiieii et 54
COoprocesSOr 1 REGISIET SUMIMIBIY ....ccuiiiaiiiiiiiiitiiie ettt e e e e ettt e et e e e e e e s e b bbb et et e e eeeeeaeaaannnbeebeeeeeeas 58
T (o AN (e e (0] 01T 1= TP OPPPPPPRPPPRP 58
FIR Bit FI@lId DESCIIPIIONS. ...ttt ettt ettt e e e e e e ottt e e e e e e e e e e s bbb e e e e e e e eaeaeeaan 59
FCCR Bit FIEld DESCIIPLIONS .....eeeiieieeeiiiiiitiit ettt ettt e e e e e e e s bbbt et e e e e e e e e e s nbbbbe e e e eeeaeaeeaaaan 60
FEXR Bit FIEIA DESCIIPIIONS......eeeetteieeeiieiitet ettt ettt e e e e e e ettt et e e e e e e e e e s bbb b et e e eeaeaeeeaaan 61

Table 3.9: FENR Bit Field DESCIIPIIONS. .....ciei ittt ettt e e e e e e ettt e e e e e e s e s e bbb b e e e e et e e aeeeesaaannnnees 61
Table 3.10: FCSR Bit Field DeSCIIPIIONS. .....coii ittt ettt e e e ettt e e e e e e s e s e bbb b e b e e e e e e e e e e e s aaannnenes 62
Table 3.11: Cause, Enables, and Flags DefinitiONS .............ooviiiiiiiiiiiice e 63
Table 3.12: Rounding MOde DefiNItIONS .........iiiii i e e e e e e e e e e et e e e e e e e e eeas 64
Table 3.13: Handling Denormalized Floating-point NUMDEIS ...........uiiiiiiiiiiii e 64
Table 3.14: Zero FIushing fOr TiNY RESUILS ......ciii it e e e e e e as 65
Table 3.15: Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting...................... 65
Table 3.16: Handling of Tiny Intermediate Result Based on the FO and FS Bit SettingS............cvviviiiiiiiieeeneeeennn. 65
Table 3.17: Handling of Tiny Final Result Based on FN and FS Bit Settings ...........cccoooviiiiiiiiiiiccceee e 66
Table 3.18: Recommended FS/FO/FN SELNGS .....cccoiiiiiiiiieeeeeee et e e e e e e e e e eeas 67
Table 3.19: FPU Data Transfer INSIIUCHIONS. ..........ueiiiiiiiieee ettt e e e e e e e et e et e e e e e e e s e e annneees 69
Table 3.20: FPU Loads and Stores Using Register+Offset ADdress Mode ...........coooiiiiiiiiiiiieeeieec e 69
Table 3.21: FPU Loads and Stores Using Register+Register Address Mode ..............oooovvviiiiiiiiiiiiiiiiiciieee e 69
Table 3.22: FPU Move TO and From INSITUCHIONS ........euiiiiiiiiiiiiiiiee ettt e et e e e e e e e e s eiannees 69
Table 3.23: FPU IEEE Arithmetic OPEIatiONS .........uuuieiiiiiiieaiiiiitiit ettt e e e e e e e e e e e e e e e e e e e e e e s e s anneaees 70
Table 3.24: FPU-Approximate Arithmetic OPEIatiONS .........cooiiiiiiiiiiiieiie et e e e e e e e s aaneees 70
Table 3.25: FPU Multiply-Accumulate Arithmetic OPEratioNS ............eiieiiiiiiiiiiiiiiiei it 71
Table 3.26: FPU Conversion Operations Using the FCSR Rounding MOde.............ceiiiiiiiiiiiiiiiiiieeieeee e 71
Table 3.27: FPU Conversion Operations Using a Directed Rounding MOGE ............eeeiiiiiiiiiiiiiiiiiiiieeiiee e 71
Table 3.28: FPU Formatted Operand MOVE INSIIUCION .......ooiiiiiiiiiiiiiiie ettt e e e 72
Table 3.29: FPU Conditional Move on True/FalSe INSITUCIONS. .........uiiiiiiiaiiiiiiii et 72
Table 3.30: FPU Conditional Move on Zero/NOoN-Zero INSIIUCLIONS .........coiiiiiiiiiiiiiieieeeee e 72
Table 3.31: FPU Conditional BranCh INSITUCHIONS ........cuiiiiiiiiiiiiiiie ettt e e e e e e eanaees 73
Table 3.32: Deprecated FPU Conditional Branch Likely INStrUCHIONS ..........ooiiiiiiiiiiiiiee e 73
Table 3.33: CPU Conditional Move on FPU True/False INStrUCHIONS .........ooiiiiiiiiiiiiiii et 73
Table 3.34: Result for EXCEPtioNS NOT TIAPPE ... ..vutieiiiieieeeie ittt ettt ettt e e e e e e e bbb e e e e e e e e e e e s e e aannnees 74
Table 3.35: 74Kf Core FPU Latency and Repeat RAte ........c.ooiiiiiiiiiiiiiiie et 79
Table 4.1: MIPS® DSP ASE Control Register (DSPControl) Field DeSCHPONS ........ccoiiiiiiiiiiiiiiiiiiiiieeee e 82
Table 4.2: DSPCONIOl QUGG BILS ..vvuviiiiiiiiieie oot e e e e e e e e e e e e e e e e e e e et e eeaeaeseae s aeaeeas 83
Table 5.1: USEIr MOUE SEUMENLS ......vviiiiiiiiiiiiis et e ettt e e e e e et ettt ettt s s e e e s e e e e e e e aeaeaeeeeeeeseaesssesensnsan e aeaeeas 90
Table 5.2: SUPEIVISOr MOUE SEOMENTS.....oiiii ittt ettt e e e e e e e e e e s ek bbb bttt e et e e e e ae s s e abbbbsbeeeeeaaaeeeaaaanns 92
Table 5.3: KErNel MOUE SEOMIENES ......uuuiiiiiiiiie e ie et e e e e ettt s e e e e e e e e e e e e e e eeaeeeeeaeaeassesesens s aeeeeas 94
Table 5.4: Physical Address and Cache Attributes for dseg, dmseg, and drseg ............oovvvvvvvvreiiiiiiiiiiiiieee e 96
1= o] SRS R O o U I A oot TSI (o T o [ £=T=T o 96
Table 5.6: CPU ACCESS 10 OIMSEQ ...evvviiiiiuiiiiiiieieie i e et e e e e ee e e et et et e ettt a s e e e s e e e aeaeaeeeaeeeeeeeaeaesssesensnssnn e aeaeeas 96
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 17

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



= o] (ST A I = B = To T =1 0 V2 = [0 £ 98

Table 5.8: TLB Data ENrY FIEIUS ......oveiiiiiiieee e e e e e e e e e e e e e e e e e e e e et e e e e ae s ee s ae e as 98
Table 5.9: Machine CheCK EXCEPLION ......cuiiiiiiiiiiiiie ettt e ettt e e e e e e e e e s e bbb e b e e e e e e e e e e e e e anas 102
Table 5.10: TLB INSIUCTIONS ......viiiiiiiiiete ettt ettt e et e e ek et e e et e e e ettt e s aab e e e s e s 103
Table 5.11: Cache CONEIreNCY ALLIDULES ......uueii i e e e e e e e e e e e e e e e e e e e e e e e as 104
Table 5.12: Cacheability of Segments with Fixed Mapping Translation..............cccuuiiiiiiiiiii e 104
Table 6.1: Priority Of EXCEPLIONS ......uiiiiiiiiiiie ettt e e e e e e o e bbbttt e e e e e e e e e e e nbbbasbeeeeeeaeeeaaaann 108
Table 6.2: INTEITUPE IMOAES ...ttt et e e e oo o4 ek bbbttt e e e e e e e e e s b bbb e e b e e e e e e aeeeaaennnas 110
Table 6.3: Relative Interrupt Priority for Vectored INterrupt MOe...........cooooiiiiiiiiiiiiiieee e 113
Table 6.4: Exception Vector Offsets for Vectored INTEITUPLS.......cc.uuiiieiiiieieeeee et 118
Table 6.5: Exception Vector Base Addresses, SI_USeEXCeptionBase = 0........ccccuuviriiiiiiiiieiiniiiiiiiiiieeee e 120
Table 6.6: Exception Vector Base Addresses, SI_USEEXCeptionBase = 1.........cccuuiiiiiiiiiieiiiniiiiiiiiieeee e 120
Table 6.8: EXCEPLION VECIOIS ... ..ttt ettt et e e e oo o4 ek bbbttt et e e e e e e e e e bbb bb e b e e e eeaaeeeaaeana 121
Table 6.7: EXCEPLION VECIOr OFFSELS .....eiiiiiiiiiiiiiitt ettt e e e ettt e e e e e e e e e e e bbb bbb beeeeeaaaeeaaaann 121
Table 6.9: Value Stored in EPC, ErrorEPC, or DEPC 0N EXCEPHION ......ciiiiiiiiiiiiiiiiiiiiee et 123
Table 6.10: Debug EXCEPLioN VECIOr AQUIMESSES ......utiiiiiiiiiiee ittt e e e e e e e e e e s bbb e e e e e e e e e e e e aaas 126
Table 6.11: DebugVectorAddr Register Field DeSCHPLIONS. ........cc.uuuiiiiiiiiiee et 126
Table 6.12: Register States an INterrupt EXCEPLION .......ooiii i e e 130
Table 6.13: Register States 0N WatCh EXCEPLION.........uiiiiiiiiiiiiiiiie ettt e e e e e e e e 131
Table 6.14: CPO Register States on Address EXCEPLION EITO.........uuuiiiiiiiiiiiiiiiiiiie et 132
Table 6.15: CP0 Register States on TLB Refill EXCEPLION .....coiiiiiiiiiiiiiiiiieeee e 132
Table 6.16: CP0O Register States on TLB Invalid EXCEPLION........ccuuuiiiiiiiiiieeii it 133
Table 6.17: CPO Register States on Cache Error EXCEPLION ......c..uuuiiiiiiiiiieeiii ittt 133
Table 6.18: Register States on Coprocessor Unusable EXCEPLION ..........cuiiiiiiiiiiiiiiiiiieie e 135
Table 6.19: Register States on Floating Point EXCEPLION..........ooiuuiiiiiiiiiiie et 136
Table 6.20: Register States on TLB Modified EXCEPLION. ........oiiiiiiiiiiiiiiiie et 138
Table 7.1: CPO Registers in AIPhabetiCal OrUer ............iiiiiiiiiiii e e e e 145
Table 7.2: CPO Registers in NUMEICAI OFUET ... ...cccii i e s e e e e e e e e e e e e e e e e e e e e e e as 146
Table 7.3: CPO Registers Grouped DY FUNCLION ........uuiiiiiiiiiiiiie ettt a e e e e e e 149
Table 7.4: CPO RegiSter FIeld R/WW ACCESS TYPES. ... uueiiiiiaeaaaaiaaiiiiite ettt e e e e ettt e e ae e e e e e s s bbbas e eeeaaaeeeaaaaan 150
Table 7.6: Field Descriptions for RANAOM REQISIEN ........ciiiiiiiiiiiiitee et e e e 152
Table 7.5: Field Descriptions fOr INAEX REGISTET .......uuiiiiiiiiiieei ittt e e e e e e e e e e 152
Table 7.7: Field Descriptions for ENtryLO0-1 REQISIEN .....ccciiiiiiiiiiiiiiiii ittt e e e e e e e 153
Table 7.8: Cache Coherency Attributes encoding of C field of EntryLo0-1 and KO field of Config Register......... 153
Table 7.9: Context Register Field DeSCIIPLIONS .........uu ittt e e e e e e e e e e e e e e e e e e 154
Table 7.11: Recommended ContexXtConfig ValUES............ooiiiiiiiiiiee st s 156
Table 7.12: UserLocal Register Field DEeSCIIPLION ........ ittt e e e e e e e s e e e e e e e e e e 156
Table 7.10: ContextConfig Register Field DESCHPLONS .......cooiiiiiiiiiiiiii e e e 156
Table 7.13: Field Descriptions for PAgeMask REJISIE .......ccoiiiiiiiiiiiiie e 157
Table 7.14: Field Descriptions fOr Wired REQISTET ..........uiiiiiiaiiiiiiiie ettt e e e e e e e e e e 158
Table 7.15: Field Descriptions for HWRENG REQISIEN .......coiiiiiiiiiiiiee et 159
Table 7.16: BadVAddr Register Field DESCHIPLION. ........uiiiii ittt e e e e e e e e e 160
Table 7.17: Count Register Field DESCHIPIION .........uuiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e e e 161
Table 7.18: Field Descriptions for ENtryHI REGISTEN .........uiii ittt e e 161
Table 7.19: Compare Register Field DeSCIIPLION .......uuiiiiiiiiieii ittt e e e e e e e e e e e 162
Table 7.20: Field Descriptions for StAtUS REQISIE .........iiiii it e e e e e e e 164
Table 7.21: Field Descriptions for INTCH REQISTET ..........uiiiiiiai it e e e e e e 168
Table 7.22: Field Descriptions for SRSCH REQISTEN .......ceiiiiiiiiiiiiiie ettt e e e 170
Table 7.23: Sources for SRSCtlcgg 0n an EXception or INTerrupt..........cccoiiiiiiiiiiiiiicii e 171
Table 7.24: Field Descriptions for SRSMap REQISTEN.......coii ittt e e e 172
Table 7.25: Field Descriptions fOr CAUSE REQISTEN .........uiiii ittt e e e e e e e e e e e 173
Table 7.26: Exception Code values in ExcCode Field of Cause RegISter .........cccuvviiiiiiiiiiiiiiiiiiiieeeee e 175
Table 7.27: EPC Register Field DESCIIPLION. ... ettt ettt e ettt e e e e e e e e e e bbb e b e e e e e e e e e e e e e aaas 177
18 MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 7.28: Field Descriptions for PRIA REQISTET .........uuiiiiiiiiiiiiiiite ettt e e e e e e e e 177
Table 7.29: Field Descriptions for EBASE REQISIEN ........iiiiiiiiiiiiiiiie ettt e e 178
Table 7.30: CDMMBase Register Field DESCHPIONS.........uui ittt e e e e e e e e e 179
Table 7.31: Field Descriptions for CONfig REGISTEN.........coiii ittt e e e e 180
Table 7.32: Field Descriptions for CONfigLl REGISTET........cuii ittt e e e e e e e 182
Table 7.33: Field Descriptions for CONfig2 REQISTET.........uiiiiiiiiteiie et e e e e e 183
Table 7.34: Field Descriptions for CONfig3 REGISTET.........uii ittt e e e e e 184
Table 7.35: Field Descriptions for CONfigh REGISTET.........ciiiiiiiiiieiie it e e 185
Table 7.36: Field Descriptions for CONfig7 REQISTEN.........cui it e e e e 187
Table 7.37: Field Descriptions for WatChLO0-3 REQISIEN.......ccoiiiiiiiiiiiiiieei et 190
Table 7.38: Field Descriptions for WatChHIO-3 REQISTEN .......cooiiiiiiiiiiieiee e 191
Table 7.39: Field Descriptions for DEDUG REGISIE ........iiiiiiiiiiiiiie et 192
Table 7.40: TraceControl Register Field DESCIIPLIONS ........cooiiiiiiiiiiiii it e e e e 195
Table 7.41: TraceControl2 Register Field DESCHPLIONS ........ooiiiiiiiiiiiiiii et e e e e e e 198
Table 7.42: UserTraceDatal / UserTraceData2 Register Field DeSCriptions ............ueeeviiiiiiiiiiiiiiiiiiiiieieeee e 200
Table 7.43: TracelBPC Register Field DESCIPIONS. ......u ittt e e e e e e e e e e e e e e 200
Table 7.44: TraceDBPC Register Field DeSCIIPLIONS .......uiiiiiiiiiiiiiii ettt e e e e e e e e e e 201
Table 7.45: BreakPoint Control Modes: IBPC and DBPC.........cooiiiiiiiiiiiieee ettt 202
Table 7.46: DEPC ReQISIEr FOMMALS. ... ..uuuuiiiiiiiiie i e e e e e e e e e et e e s e e e e e e e e e e e e e e aeaeeeeeeeaeaesaaeaann e aas 202
Table 7.47: TraceControl3 Register Field DESCHPLIONS .......cooiiiiiiiiiiiii ettt e e e e e 203
Table 7.48: Field Descriptions for PerfCtl0-3 REQISTEI ........coiiiiiiiiiiiiie ettt e e 204
Table 7.49: Performance Counter EVENtS anNd COUES ........cooiiiiiiiiiiiiiiiieei ettt e e e e e e e 204
Table 7.50: Performance Counter Count Register Field DeSCIPLIONS ........cooiiiiiiiiiiiiiiiicee e 209
Table 7.51: Field Descriptions for ErfCtl REQISIEN .........uiiiiiiieiiiiiiiie ettt a e e e e e 209
Table 7.52: Field Descriptions for CAChEEIT REQISTEI .........coiiiiiiiiiiiiie ettt e e 210
Table 7.53: Field Descriptions for ITAgLO REQISIE ........uiiiiiiiiiiiiite ettt e e e e e e 212
Table 7.55: Field Descriptions for ITAgLO-SPR REQISTEN .......coiiiiiiiiiiie et 213
Table 7.56: IDatalLo Register Field DESCIPLION .........uuiiiiiiiiiae ittt a e e e e e e e e e e e e e e e e e e 213
Table 7.54: Field Descriptions for ITagLO-WST REQISIEI......ccoi ittt 213
Table 7.57: Field Descriptions for DTAgLO REGISTEN .......cuiiiiiiiiiiiiitee ittt e e e e e e 214
Table 7.58: Field Descriptions for DTagLO-WST REQISIET ......coiiiuiiiiiiiiieiie ettt a e e 215
Table 7.59: Field Descriptions for DTagLO-DYT REQISEI ......cciiiiiiiiiiiiiieiie ettt 215
Table 7.60: Field Descriptions for DTagLO-SPT REQISIE ......cciiiiiiiiiiiiiiiee et e e 216
Table 7.61: DDatalo Register Field DeSCIIPLION ... ...uu i ittt e e e e e e e e e e e e e e e e 216
Table 7.62: L23Datalo Register Field DESCIPLION ........iiiiiiiaiiiiiiie ettt e e e r e e e e e e e 217
Table 7.63: Field Descriptions for ITAgHI REQISIEN .........iiiiiiiiii e 217
Table 7.65: Field Descriptions for DTagHI REQISIET ........cuiii ittt e e 218
Table 7.66: L23DataHi Register Field DeSCIPLION ........uiiiiiiieiiiiiiiee ettt e e e e e e e e e e 218
Table 7.64: IDataHi Register Field DESCHIPLION ..........uuiiiiiiiiiee ittt e e e e e e e e e e e e e e e e e 218
Table 7.67: ErrorEPC Register Field DESCIIPLION.........uiiiiiiiieiiiiiiiite ettt e e e e e e e e e e 219
Table 7.68: DeSave Register Field DEeSCIPLION .. ....uutiiiiiiiieeee ittt e e e e e e e e e e e e e e e e e e e aans 219
Table 9.1: INStruction CaChE ALIIDULES .......oiiiiii ettt e e e e e e e e s bbb e e e e e e e e e e e e e aaas 225
Table 9.2: Data CaChe AMIDULES ......... ettt e ettt e e e e e e e e e s s bbb b e e b e e e e e e e e e e e e e ana 227
Table 9.3: Potential Virtual AlASING BILS .......uuiiiiiiii et e e e e e e e e e e e e e e e e e e e s 228
Table 9.4: Way Selection ENCOUING, 4 WAYS .....coiiiiiii e s e e e e e e e e e e e e e e e e e e e e e e e e ae e ae s b as 233
Table 11.1: Debug Control Register Field DeSCIPLONS ........coiiiiiiiiiiiii ittt e e e e e 240
Table 11.2: Overview of Status Register for InStruction BreakpoiNtS..........coooiiiiiiiiiiiiiiiee e 245
Table 11.3: Overview of Registers for Each Instruction Breakpoint.............ooouiiiiiiiiiiiiiee e 245
Table 11.4: Overview of Status Register for Data BreakpOintS.............ueiiiiiaiiiiiiiiiiieiie e 245
Table 11.5: Overview of Registers for Each Data Breakpoint.............eeeiiiiiiiiiiiiiiiiecece e 246
Table 11.6: Rules for Update of BS Bits on Data Breakpoint EXCEPLIONS .........ccccuuviiiiiiiiiieeeees e 249
Table 11.7: Addresses for Instruction Breakpoint REGISIEIS ...........uuiiiiiiiiiieee it 250
Table 11.8: IBS Register Field DESCIPLIONS ...ttt ettt e et e e e e e e e e e s e bbb e e e e e e e e e e e aaanas 251
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 19

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 11.9:

Table 11.10:
Table 11.11:
Table 11.12:
Table 11.13:
Table 11.14:
Table 11.15:
Table 11.16:
Table 11.17:
Table 11.18:
Table 11.19:
Table 11.21:
Table 11.20:
Table 11.22:
Table 11.24:
Table 11.23:
Table 11.25:
Table 11.26:
Table 11.27:
Table 11.28:
Table 11.29:
Table 11.30:
Table 11.31:
Table 11.32:
Table 11.33:
Table 11.35:
Table 11.34:
Table 11.36:
Table 11.37:
Table 11.38:
Table 11.39:
Table 11.40:
Table 11.41:
Table 11.42:
Table 11.43:
Table 11.45:
Table 11.44:
Table 11.46:
Table 11.47:
Table 11.48:
Table 11.49:
Table 11.50:
Table 11.51:
Table 11.52:

Table 12.1:
Table 13.1:
Table 13.2:
Table 13.3:
Table 13.4:
Table 13.5:
Table 13.6:
Table 13.7:
Table 13.8:

20

IBAN Register Field DESCIIPLIONS ...ttt e ettt ettt e e e e e e e e s bbb e e e e e e e e e e e e aans 251
IBMN Register Field DeSCIIPLIONS......coii ittt e e e e e e et eeeeeaeeas 252
IBASIDN Register Field DESCIIPLIONS .......uiiiiiiiii ettt e e e e e e e e e as 252
BCn Register Field DEeSCIPLIONS .....coiiiiiiiiiiii ettt e e et e e e e e e e e e e s st eeeeeeeeeas 253
Addresses for Data Breakpoint REGISIEIS ......coiii ittt e e 254
DBS Register Field DESCIIPIONS .....coiiiiiiiiiieeie ettt e e e et e e e e e e e e s st eeeeaeeeas 254
DBAN Register Field DESCIIPLIONS. ..ottt e e e e e e e et eeeeeeeeas 255
DBMn Register Field DeSCIIPLIONS . ..ottt e e e e e e e e eeeeeae s 255
DBASIDN Register Field DeSCIIPUIONS ... ...ttt ettt e e e e e e e eeeeeae s 256
DBCn Register Field DESCIIPLIONS. ......c...uiiiiiieiieeee ettt e e e e e ereeeeeeas 256
DBVN Register Field DESCIIPLIONS......ciiiiiiiiieeie ettt e e e e e e e et eeeaeeeeas 258
EJTAG INLEITACE PINS .oeiiiiiiiiie ettt e et e e e e e e e 259
DBVHN Register Field DEeSCHPLIONS .........uuiiiiiiiiiiee ettt e e e e e e e e e eeeeaeeeas 259
Implemented EJTAG INSIIUCLIONS ..ottt ettt e e e e e e e eeeeeee s 263
Implementation RegiSter DESCIIPLIONS ........uuiiiiiiiiee ittt e e e eaaeeas 268
Device Identification Register Field DeSCHPLONS ........ccouuiiiiiiiiieiee et 268
EJTAG Control RegiSter DESCIIPIIONS .......uutiiiiiiiieeeaie ittt e et a e e e e e e e eeeeeeeas 270
Fastdata Register Field DeSCHIPIION ..........uuiiiiiiiiieeeee ettt e e e 276
Operation Of the FASTDATA ACCESS ....ociiiiiiiiittt ettt ettt e et e e e e e e e ettt e e e e e e e s e aanabeeeees 277
FDC TAP Register Field DeSCIIPUIONS ... ...uuutiiiiiiiaeeaie ittt e e e e e e e e e e eas 283
FDC REQISIEN MAPPING. ... ttttteeeteetee e e ettt e e e e e e e e e bbbttt e e e e e e e e s e bbbttt et e e e e e e e e e e e nnbbbbnseeeaeeeeeas 284
FDC Access Control and Status Register Field DeSCHPONS ........coooiiiiiiiiiiiiiiiiieeeeee e 284
FDC Configuration Register Field DeSCIHPLIONS .......oooiiiiiiiiiiiiii et 285
FDC Status Register Field DeSCIPLIONS. ......uu ittt ettt e e e ae s 286
FDC Receive Register Field DESCHPHONS ........uuiiiiaaiaiiiiiie ettt e e 287
FDTXN AAAIESS DECOUE ......ooiiieiiiiiiie ettt ettt e e e e e e 288
FDC Transmit Register Field DESCHPIONS .......cuiiii ittt 288
TMOAS Trace Record Field DESCHPLONS ......c.oiiiiiiiiiiiieiee ettt e e e e e 296
Mapping TCB REQISTErS iN AISEQ ....ccoiiiiiiiiiiiee ittt e et e e e e e e e eeeaeeeeas 298
A List of Coprocessor 0 TraCe REQISTEIS ......coiiiiiiiiiiiiiie ittt e e e e e e e e e 300
TCB EJTAG REQISIEIS ...ttt e et e e e e e e e e e e e e et e et e e et e ae e et e e s e e e e e aaaeaeaaaeaeeeeeeeseenernrnnes 300
Registers Selected by TCBCONTROLB .......ccccoiiiiiiiiiceeeeeee e e e e e e e e e e e e e e e e e e e aeeeerernaane 301
TCBCONTROLA Register Field DeSCHPLIONS ......cccuiiiiiiiiiieee ettt e e e e e 302
TCBCONTROLB Register Field DeSCHPLIONS ..ottt a e e e e 305
Clock Ratio encoding of the CR fIeld ...........uuviiiiiiiiiiii e 308
TCBCONTROLC Register Field DeSCIPLIONS.......ccuutiiiiieiieeee ettt a e e e e 309
TCBDATA Register Field DESCIIPLIONS ......cuiiiiiiiiiiiiiiitie ettt e e e e e e e e e 309
TCBCONTROLE Register Field DeSCHPLIONS .......cc.uiiiiiiiiiieeee ettt e e e e e e 310
TCBCONFIG Register Field DESCHPLIONS .......coiiiiiiiiitieet ettt e e e e e e e e 311
TCBTW Register Field DEeSCIIPLIONS .......eiiiiiiaeiieiiiiiiite ettt e e e e e et e e e e e e e e e e aaas 313
TCBRDP Register Field DEeSCHIPLIONS .......uiiiiaiiiiiiiiiiitie ettt e e e e e e e e e e e e e aaes 313
TCBWRP Register Field DeSCIPLIONS. .. ...ttt e e e e e e e e 314
TCBSTP Register Field DEeSCIPLIONS ......etiiiiiaeieiiiiitiite ettt e et e e e e et e e e e e e e e e e aans 314
TCBTRIGX Register Field DEeSCIIPLIONS. .....cuii ittt e e e e e e e e 315

Byte Access Within @ DOUBIEWOIT ..o s 329

Symbols Used in the Instruction ENcoding TabIeS.......cccoooiiiiiiiiiiii e 333

MIPS32 Encoding of the Opcode FIeld .............oeeiiiiiiiiii e 334

MIPS32 SPECIAL Opcode Encoding of FuNction Field ..............iiiiiiiieeeeeee 334

MIPS32 REGIMM ENcoding Of rt FIEld.........cooiiiiiiieeeee e 334

MIPS32 SPECIAL2 Encoding of FUNCLION FIeld..............vuuuiiiiiiiii e 335

MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture ... 335

MIPS32 MOVCI ENCOAING Of tF Bt ..ciiutiieiiiiieiii et 335

MIPS32 SRL Encoding of Shift/ROIALE ............ooiviiiiiiiiiire e s 335

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 13.9:

Table 13.10:
Table 13.11:
Table 13.12:
Table 13.13:
Table 13.14:
Table 13.15:
Table 13.16:
Table 13.17:
Table 13.18:
Table 13.19:
Table 13.20:
Table 13.21:
Table 13.22:
Table 13.23:
Table 13.24:
Table 13.25:
Table 13.26:
Table 13.27:

MIPS32 SRLV Encoding Of Shift/ROtAtE ............ooiiiiiiiiiiee e s 335
MIPS32 BSHFLENCOAING Of S& FIEIA ......oiiiiiiie s e e e e e e e ee e nannes 336
MIPS32 COPO ENcoding Of 1S FIEIA.......coieiiiiie et e e e e e e e e e e e e e e e naanrnees 336
MIPS32COPO0 Encoding of Function Field When rS=CO ............uuviiiiiiiie e 336
MIPS32 COPL1 ENcoding Of IS FIEIA.......coiiiiiiieie et e e e e e e e e e e e e e e eeeneananees 336
MIPS32 COP1 Encoding of Function Field When rS=S............uiiiiiiii e 337
MIPS32 COP1 Encoding of Function Field WHhen rS=D ............uuuiiiiiiiiiii e 337
MIPS32 COP1 Encoding of Function Field When rS=W OF L..........ciiiiiiiiiiiiieeeeeeeeeeeceeeeeeeeeeeiai 337
MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF.................c.ccccvvivivvinririrninnns 337
COP1X Encoding of FUNCHON FIEIA ......coeveeiiiiiiieee e e e e e e e e e 338
MIPS32 COP2 ENcoding Of IS FIEIA.......ccieiiieiei e e e e e e e e e e e e e e e e eeeneaaraees 338
Floating Point Unit Instruction Format ENCOAINGS .........oovvviiiiiiiiiiiiiiieisie e s e e e e e e e e e e e e e eeeaenannnnes 338
TAK™ COre INSIIUCTION SO ...ttt e e e e e e e e e bbb e et e e e e e e e e annnnbeee e 339
Usage Of EffECHVE AQUIESS ... .ot e e e e e e e e ettt e et r e as 347
Encoding of Bits[17:16] of CACHE INSTIUCTION ......cooiiiiiiiiiiiiiiie et 348
Encoding of Bits [20:18] of the CACHE Instruction, ErrCt[WST, DYT, SPR] Cleared.................... 348

Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set, ErrCtI[DYT, SPR] Cleared... 351
Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtI[DYT, WST] Cleared... 352
Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[DYT] Set, ErrCtl[SPR, WST] Cleared... 352

Table 13.28: Values of hint Field for PREF INSITUCHON .........oiiiiiiiiiiiiii et 357
Table 13.29: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field...........cccccooiiiiiiiiiin, 364
Table 14.1: Symbols Used in the Instruction ENncoding Tables..............uiiiiiiiiiiiii e 375
Table 14.2: MIPS16e Encoding Of the OpCOde FIeld .........ooiiiiiiiiiie e 376
Table 14.3: MIPS16e JAL(X) Encoding of the X FIeld...........oooririiiiieee e 376
Table 14.4: MIPS16e SHIFT Encoding of the f FIeld ...........ooiiririieee e 376
Table 14.5: MIPS16e RRI-A Encoding of the f Field...........oooiiririiie e 376
Table 14.6: MIPS16e I8 Encoding of the fUNCE FIeld............oooriiiiiriee e 376
Table 14.7: MIPS16e RRR Encoding of the f FIeld............ooi i 377
Table 14.8: MIPS16e RR Encoding of the FUNCE Field ..........ooooriimiiiiee e 377
Table 14.9: MIPS16e I8 Encoding of the s Field when fuNCt=SVRS ... 377
Table 14.10: MIPS16e RR Encoding of the ry Field when funCt=J(AL)R(C) .........cceeeeeeriiiiiiiee e 377
Table 14.11: MIPS16e RR Encoding of the ry Field when funCt=CNVT ... 377
Table 14.12: MIPS16€e Load and StOre INSIUCTIONS .......cuiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e 378
Table 14.13: MIPS16e Save and ReStOre INSIIUCLIONS ........ooiiiiiiiiiiiiii et e e e e e e e 378
Table 14.14: MIPS16e ALU ImMMmediate INSIIUCTIONS ......coiiiiiiiiiiiiiiee ettt e e e e e e e e e e 378
Table 14.15: MIPS16e Arithmetic Two or Three Operand Register INSIrUCIONS ...........coivieiiiiiiiiiiiiiiiiiieeeeeeeeee 378
Table 14.16: MIPS16€ Special INSIIUCTIONS ..ottt ettt e e e e e e e e e s bbb e e e e e e e e e e e e e anas 379
Table 14.17: MIPS16e Multiply and Divide INSIIUCHIONS.........coiiiiiiiiiiiii it 379
Table 14.18: MIPS16e Jump and BranCh INSITUCHIONS .........ooiiiiiiiiiiii et e e 379
Table 14.19: MIPS16€ Shift INSITUCTIONS ......coiiiiiiiie ittt ettt e e e e e e e e s bbb r e e e e e e e e e e e e aaas 380
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 21

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



22

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 1

Introduction to the MIPS32® 74K™ Core Family

The 74K™ core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS® RISC processor core
family intended for use in custom system-on-silicon applications. The coreis designed for semiconductor manufac-
turing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and
peripheral swith a high-performance RISC processor. A 74K coreisfully synthesizable to allow maximum flexibility;
it is highly portable across processes and can easily be integrated into full system-on-silicon designs. This alows
developers to focus their attention on end-user specific characteristics of their product.

The 74K coreisideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 74K family has two members: the MIPS32® 74Kc™ core and the MIPS32® 74Kf™core:
» The74Kc 32-bit RISC coreis optimized for high-performance applications.
»  The 74Kf core adds an IEEE-754 compliant floating point unit.

The core implements the MIPS32 Release 2 Instruction Set Architecture (1SA). It also implements the following
Application-Specific Extensions (ASEs):

* The MIPS® DSP Application-Specific Extension (ASE) is optimized for signal-processing applications.
* TheMIPS16e™ Application-Specific Extension (ASE) is optimized for code compression.

The 74K core achievesits high performance through the implementation of advanced superscalar and out-of-order
dispatch techniques in a deeply pipelined implementation of the MIPS32® architecture. The superscalar dispatch
allows the core to dispatch two instructions per cycle to two pipelines: a 15-stage AGEN pipeline that executes all
load/store and control transfer instructions, and a 14-stage AL U pipeline that executes all the rest of the instructions
(arithmetic, logic, and general computations). The out-of-order approach allows each pipeline to operate indepen-
dently and select from apool of instructions for dispatch; and to ensure the availability of two instructions for dis-
patch, twice that number of instructions are fetched every cycle from an instruction cache. The 74K core also
implements sophisticated branch prediction techniques that minimize the cost of a mispredicted branch in such a
deeply pipelined core.

Onthe 74K core, instruction caches are configurable as 0, 16, 32, or 64 KB, and data caches are configurable as 0, 16,
32, or 64 KB in size. Each cacheis organized as a 4-way set-associative data structure. The 74K core supports
prefetching of sequential cache lines on instruction cache misses. The extent of prefetching can be configured via
software to prefetch between 0 and 2 additional lines. The data cache features non-blocking load misses and can han-
dle up to 9 outstanding load missesin up to 4 unique cache lines. On a cache miss, the processor can continue execut-
ing instructions while the load data is being fetched until a dependent instruction is reached. Both caches are virtually
indexed and physically tagged. The MMU of the 74K core may contain a4-entry instruction TLB (ITLB) and adual-
entry joint TLB (JTLB), with variable page sizes. The JTLB can be configured to have 16, 32, 48, or 64 dual entries.
Optionally, the TLB can be replaced with a simplified fixed mapping (FM) translation mechanism for applications
that do not require the full capabilities of a TLB.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 23

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Introduction to the MIPS32® 74K™ Core Family

The Multiply Divide Unit (MDU) isfully pipelined and supports a maximum issue rate of one 32x32 multiply (MUL/
MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock.

The basic Enhanced JTAG (EJTAG,) features provide CPU run control with stop, single-stepping, and re-start, as well
as software breakpoints using the SDBBP instruction. Support for connection to an external EJTAG prabe through the
Test Access Port (TAP) and the Fast Debug Channel mechanism for efficient data transfer are also included. Instruc-
tion and data virtual address hardware breakpoints can be optionally included. In addition, optional PDtrace™ hard-
ware provides the ability to trace program flow, load/store addresses, and |oad/store data. Several run-time options
exist for the level of information which is traced, including tracing only when in specific processor modes (e.g., User
Mode or Kernel Mode).

The businterface implements the Open Core Protocol (OCP) using 64-bit read and write data busesThe businterface
may operate at the same rate or at alower clock rate than the core itself.

1.1 74K™ Core Features

24

1.1.1 Pipeline

e  Superscalar, dual-issue core supports two integer execution pipes
» 15-stage AGEN pipe: supports load/store, control transfer. and conditional move instructions
» l4-stage ALU pipe: supports all other arithmetic, logic, and computation instructions
*  Out-of-order integer instruction dispatch
» Selectsone of eight instructionsin each pipe
*  Multiply Divide Unit
»  Offshoot of the ALU Pipe
*  Maximum issue rate of one 32x32 multiply per clock
» Early-individe control. Minimum 11, maximum 50-cycle clock latency on divide
*  Dual- Issue Floating Point Unit supports two pipes (74Kf only)
» Arithmetic pipe
e To/From or Datatransfer pipe
*  Floating point instruction dispatch is maintained in-order
»  Dynamic branch/return prediction
* Mgjority predictor featuring three tables of 256 entries, each with global history

»  8-entry return prediction stack

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



1.1 74K™ Core Features

1.1.2 Instruction Set

» MIPS32 Compatible Instruction Set

Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
Targeted multiply instruction (MUL)

Zero and one detect instructions (CLZ, CLO)

Wait instruction (WAIT)

Conditional move instructions (MOVZ, MOVN)

Prefetch instruction (PREF)

» MIPS32® Enhanced Architecture (Release 2) Features

Vectored interrupts and support for an external interrupt controller
Programmable exception vector base

Atomic interrupt enable/disable

GPR shadow sets: 1 to 4 sets are supported

Bit field manipulation instructions

* MIPSDSPASERev 2

Fractional data types (Q15, Q31)
Saturating arithmetic
SIMD instructions operated on 2x16b or 4x8b simultaneously

3 additional pairs of accumulator registers

* MIPS16e™ Application-Specific Extension

16-bit encodings of 32-bit instructions to improve code density

Specia PC-relative instructions for efficient loading of addresses and constants
Data type conversion instructions (ZEB, SEB, ZEH, SEH)

Compact jumps (JRC, JALRC)

Stack frame set-up and tear-down macro instructions (SAVE and RESTORE)

e Floating Point Instruction support (74Kf)

|EEE-754 compliant floating point unit

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 25

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Introduction to the MIPS32® 74K™ Core Family

*  Compliant with MIPS 64-bit FPU standards
»  Supports single and double precision datatypes
*  CorExtend® User-Defined Instruction capability
»  Support for the CorExtend feature allows users to define and add instructions to the core
» 3,5, or multi-cycle latencies supported
»  Source operands from register, immediate field, or local state
» Dedtination to aregister or local state
» Interface to multiply-divide unit, allowing sharing of accumulator registers

1.1.3 Memory Management, Caches, and Scratchpad Memory

e Standard Memory Management Unit
e 16, 32, 48, or 64 dual-entry MI1PS32-style JTLB with variable page sizes
e Jd-entryinstruction TLB
e Optiona Memory Management Unit
e Simple Fixed Mapping Trandation (FM)
e Address spaces mapped using register bits

e Caches

Individually configurable instruction and data caches

* Ingtruction cache sizes of 0, 16, 32, or 64 KB

+ Datacachesizesof 0, 16, 32, or 64 KB

» Datacache access widths can be configured to be 64b or 128b

* 4-way set associative

e 256-bit (32-byte) cacheline size

»  Configurableinstruction cache line prefetch, to fetch between 0 to 2 additional cache lines on amiss
*  Non-blocking data cache

» Upto 4 datacache line misses or 9 unique load misses

» Datacache supports write-back with write-allocation and write-through without write-allocation
» Virtually indexed, physically tagged

26 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



1.1 74K™ Core Features

»  Cachelinelocking support

»  Configurable support for parity

»  Support for front-side external L2 cache

»  Configurable support for elimination of aliasesin 32 and 64KB data caches
* Independent Instruction and Data Scratch Pad RAMs

* Addressrange of 4K - 1IMB supported

*  64-bit OCP interfaces for external access

1.1.4 Interfaces

* OCPInterface
+  32baddress and 64b data
e Corelbusratiosof 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, and 10 are supported
e Supports bursts of 4x64b
» 4d-entry write buffer that handles eviction data, write-through, uncached, and uncached accel erated store data
» Simple Byte Enable mode allows easy bridging to other bus standards
»  Extensions for management of front-side L2 cache
e Critical datafirst and sub-block ordering support

e |EEE standard JTAG interface

1.1.5 Power Control

*  No minimum frequency

»  Power-down mode (triggered by WAIT instruction)
e Support for software-controlled clock divider

»  Support for extensive use of fine-grain clock gating

1.1.6 Debug

» EJTAG Debug Support via JTAG interface
»  CPU control with start, stop, and single stepping

»  Software breakpoints viathe SDBBP instruction

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 27

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Introduction to the MIPS32® 74K™ Core Family

Optional hardware breakpoints on virtual addresses: 4 instruction and 2 data breakpoints

»  Test Access Port (TAP) facilitates high-speed download of application code

Fast Debug Channel with configurable FIFO depth for efficient data transfer to and from probe

Optional MIPS PDtrace™ hardware to enable real-time tracing of executed code
1.1.7 Other

» R4000 Style Privileged Resource Architecture

e Count/Compare registers for real-time timer interrupts

e Instruction and data watch registers for software breakpoints
» Relocatable Bootstrap Exception Vector support

e Support for hardware selectable exception base in a multi-core environment
1.2 74K™ Core Block Diagram

The 74K core contains a number of blocks, shown in Figure 1.1. The major blocks are:
* Instruction Fetch Unit (IFU)

* Instruction Cache (I-cache)

* Instruction Decode and Dispatch Unit (IDU)

* Instruction Execution Unit (IEU)

*  Multiply/Divide Unit (MDU)

*  CorExtend® User Defined Instructions (UDI)

e System Control Coprocessor (CP0)

*  Memory Management Unit (MMU)

» Load Store Unit (LSU)

» DataCache (D-cache)

e Graduation unit (GRU)

» BusInterface Unit (BIU)

»  Coprocessor Interface unit (CIU) (only in 74Kf)

*  Floating Point Unit (FPU) (only in 74Kf)

28 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



e Power Management

»  Enhanced JTAG (EJTAG) Controller

ISPRAM ¢

1.2 74K™ Core Block Diagram

Figure 1.1 74K™ Core Block Diagram

OCP Interface

On-Chip Bus(es)

A

Y

Instruction
Scratchpad

DMA OCP IIF

CorExtend I/F -

~| rRAM (ISPRAM)

4 KB-1MB

Bus Interface Unit (BIU)

4-entry write buffer, 6-8 out-
standing reads

A *

Y

I-cache
0-64 KB <
4-way set associative

Y

Instruction Fetch Unit

A

(IFU)

A

Memory Management
Unit (MMU)
16-64 entry JTLB or FMT

Y

Instruction
Decode/Dispatch
Unit (IDU)

Y —+

D-cache 0-64 KB
4-way set associative

A 4

A
_ _l Ny _

r

A

| ALU PIPE 1 1 AGEN PIPE 1
| | 1 !
i I
: Integer Execution Unit : : Load,l\lso?_[fog(?,:g(l'su) I
| (IEV) | I 4outstanding misses :
|
! Multiply/Divide Unit | e e 1
| (MDU) |
| |
T >i CorExtend |
| |
b e - 4 Data Scratchpad |
f RAM (DSPRAM) |
4KB-1MB
Y Y

Coprocessor

A

Interface Unit (CIU)

Graduation Unit (GRU)

System Coprocessor

A

Y
Coprocessor 1 (CP1/FPU)

EJTAG

Power Management

Trace

A A

Yy

TAP

| Fixed/Required

Optional

The functional blocks shown in Figure 1.1 are described in the following subsections.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

DSPRAM
DMA OCP IlF

Off/On-chip
Trace I/F

Off-chip
Debug I/F

29



Introduction to the MIPS32® 74K™ Core Family

30

1.2.1 Instruction Fetch Unit (IFU)

The Instruction Fetch Unit (IFU) is responsible for fetching instructions from the instruction cache/memory and pro-
viding them to the IDU. The IFU can fetch up to 4 instructions at atime from an aligned fetch address. The IFU hasa
4-entry microTLB which is used to trand ate the virtual fetch address into the physical fetch address. This trandated
physical addressis used to compare against tags in the instruction cache to determine a hit.

The IFU uses mgjority branch prediction based on gshare predictors. There are three, 256-entry Branch History
Tablesthat are indexed by different combinations of the instruction PC and Global History. The mgority of these
three predictions are used to determine the predicted direction of a conditional branch. The IFU also has an 8-entry
Return Prediction Stack to predict subroutine return addresses.

Thereis a12-entry Instruction Buffer to decouple the instruction fetch from execution. Up to 4 instructions at atime
can be written into this buffer, but a maximum of 2 instructions at atime can be read from this buffer by the IDU.

The 74K core includes supports for the MIPS16e ASE. This ASE improves code density through the use of 16-bit
encoding of many MIPS32 instructions plus some MIPS16e-specific instructions. The IFU contains the logic for the
handling of MIPS16e instructions.

1.2.2 Instruction Cache

The instruction cache is an on-chip memory block of 0/16/32/64 KB, with 4-way associativity. Theinstruction cache
isvirtually indexed and physically tagged, allowing the virtual-to-physical address translation to occur in parallel
with the cache access, rather than having to wait for the physical address trandation.

A tag entry holds 21 bits of physical address, avalid bit, alock bit, and an optional parity bit. There are 7 precode bits
per instruction pair, making atotal of 28 bits per tag entry. The data array line consists of 256 bits (8 MIPS32 instruc-
tions) of data. Each instruction doubleword (64 bits) has 8 bits of byte parity. The IFU interface consists of 128 bits (4
MIPS32 instructions) with 16 bits of parity. The LRU replacement bits (6 bits) are shared among the 4 ways of the
data and tag array and are stored in a separate array.

The core supports instruction cache locking. Cache locking allows critical code to be locked into the cache on a* per-
lineg” basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is always
available on al instruction cache entries.

The instruction cache also supports cache line prefetching on miss. This feature can be configured by software to
prefetch anywhere between 0 and 2 lines. The control for this prefetch resides in the Coprocessor Register field
Config7prer Refer to Appendix 7, “Config7 (CPO Register 16, Select 7): CPU-specific Configuration” on page 187
for details on programming this feature. The default setting will fetch one additional cache line. This can be modified
by the user of the core. Increasing the number of cache lines prefetched to 2 will typically provide increased perfor-
mance for applications with a high I-cache miss rate. Decreasing the number of cache lines prefetched to 0 may be
appropriate for applications with very low |-cache miss rates, or when there is a desire to reduce memory bandwidth
for power or other reasons.

1.2.3 Instruction Decode/Dispatch Unit (IDU)

This unit is responsible for receiving instructions from the |FU and dispatching them out-of-order to the execution
units when their operands and required resources are available. Up to two instructions per cycle can be received in-
order from the IFU. Asthe IDU dispatchesinstructions specul atively and out-of-order, results from these instructions
are stored in temporary storage buffers referred to as completion buffers. The IDU assigns the completion buffer 1D,
aswell as aseparate instruction D for each instruction. The instruction is aso renamed by looking up in a Rename

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



1.2 74K™ Core Block Diagram

Map, and the source registers are replaced (if necessary) by completion buffer IDs of producer instructions, so that
operands may be bypassed as soon as possible.

Renamed instructions are assigned to one of two pipes (ALU or AGEN) and written into the Decode and Dispatch
Queue (DDQ) for that pipe. The oldest instruction that has al the operands ready and meets all resource requirements
is dispatched independently to the corresponding pipe. Instructions may be dispatched out-of-order relative to pro-
gram order. Dispatched instructions do not stall in the pipe and write the results into the completion buffer.

The IDU also keeps track of the progress of the instruction through the pipe, updating the availability of operandsin
the Rename Map and in al dependent instructionsin the DDQ.

The IDU also writes the instruction ID, completion buffer 1D, and related information into structures in the Gradua-
tion Unit (GRU). The GRU reads instructions and corresponding results from the compl etion buffer, graduates the
instructions, and updates the architectural state of the machine.

1.2.4 Instruction Execution Unit (IEU)

The Instruction Execution Unit implementsthe entire ALU pipe and parts of the AGEN pipe (parts of the AGEN pipe
alsoreside in the LSU). The IEU provides data inputs to the multiply/divide unit (MDU) and CorExtend units and
receives outputs from them. The LSU, MDU, and CorExtend Unit are described in subsequent sections.

The architecturally-defined General Purpose Registers (GPRs) reside in the IEU. In addition to these, the IEU also
contains the compl etion buffers (CBs) used to store computed results. Thereis a dedicated completion buffer per
pipeline. Each pipe of the IEU has input bypass muxes to select data from the GPRs, CBs, or from the pipeline when
data forwarding is required. The IEU also contains the output muxes that generate final output data. In addition, the
|EU has certain pipe-specific execution units described bel ow.

ALU Pipe

The ALU pipe contains the ALU for performing arithmetic and logical operations, the Shifter, and the Leading Zero/
One detector. The ALU pipe implements a subset of the DSP ASE instructions.

AGEN Pipe

The AGEN pipe contains the adder required for address computation in case of load/store and control transfer instruc-
tions. It also contains all the branch resolution logic.

The IEU also provides data inputs to the multiply/divide unit (MDU) and CorExtend units and receives outputs from
them.

1.2.5 Multiply Divide Unit (MDU)

The multiply/divide unit implements the multiply and divide operations. This unit also executes multiply class
instructions in the DSP ASE.

The MDU consists of a pipelined 32£32 multiplier, result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexors and control logic. The MDU supports execution of one multiply or multiply-
accumulate operation every clock cycle. Divide operations are implemented with asimple 1 bit per clock radix 2 iter-
ative SRT algorithm.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 31

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Introduction to the MIPS32® 74K™ Core Family

32

1.2.6 CorExtend® User Defined Instructions (UDIs)

This module contains support for CorExtend user-defined instructions. These instructions are defined at build-time
for the 74K core. This feature makes 15 instructions in the opcode map available for user-defined customer use, and
the latency of each instruction can be selected to be 3, 5, or >5 cycles. A CorExtend instruction can operate on any
one or two general purpose registers or immediate data contained within the instruction, and can write the result of
each instruction back to a general purpose register or alocal register. Further details regarding CorExtend can be
found in the Cor Extend® Instruction Integrator’s Guide for MIPS32 74K™ Cores[9].

Refer to Table 13.5 for a specification of the opcode map available for user-defined instructions.

1.2.7 Load Store Unit (LSU)

The Load Store Unit, asthe nameimplies, is primarily responsible for the implementation of L oad/Store instructions.
In addition to the Load/Store instructions, it aso implements the Prefetch, CACHE, and some other special instruc-
tions. The LSU contains all the control logic for the data cache. In addition it contains several holding structures for
address and datainformation. These are primarily a4-cache-line Fill Store Buffer (FSB) to service cache line misses,
a9-entry Load Data Queue (LDQ) to support 9 load misses, a 14-entry Load Store Queue (L SQ), and a 10-entry Load
Store Graduation Buffer (LSGB) to hold information for Loads and Store instructionsin flight.

1.2.8 System Control Coprocessor (CP0)

In the MIPS architecture, CPO isresponsible for virtual -to-physical address translation, cache protocols, the exception
control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), power man-
agement, and the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and
the presence of build-time options are available by accessing the CPO registers. Refer to Chapter 7, “ CPO Registers of
the 74K™ Core” for more information on the CPO registers. Refer to Chapter 11, “EJTAG Debug Support in the
74K™ Core” for more information on EJTAG debug registers.

1.2.9 Memory Management Unit (MMU)

The 74K core contains an MMU that interfaces between the execution unit and the cache controllers. Although the
74K core implements a 32-hit architecture, the Memory Management Unit (MMU) is modeled after the MMU found
in the 64-bit R4000 family, as defined by the MI1PS32 architecture.

By default, the 74K core implementsits MMU based on a Trand ation Lookaside Buffer (TLB). The TLB consists of
two trandation buffers: a configurable 16/32/48/64 dual -ported, dual-entry fully associative Joint TLB (JTLB) and a
4-entry fully associative Instruction TLB (ITLB).

The ITLB (Instruction micro TLB), which contains a subset of the JTLB, is managed by the hardware and is not visi-
ble to software. When trand ating an instruction fetch address, the ITLB is accessed first. If thereis no matching entry,
the JTLB is used to translate the address and refill the ITLB. If the entry is not found in the JTLB, then an exception

istaken.

In order to translate an address for a data access, the MMU looksin the JTLB directly, asthereisno Datamicro TLB
present in the 74K core. The JTLB is dual-ported so as to avoid contention between instruction and data accesses.

The core optionally implements an FM T-based MMU instead of a TLB-based MMU. The FMT replacesthe ITLB
and JTLB blocksin Figure 1.2. The FMT performs asimple trandlation to obtain the physical address from the virtual
address. Refer to Chapter 5, “Memory Management of the 74K™ Core” for more information on the FMT.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



1.2 74K™ Core Block Diagram

Figure 1.2 shows how the address translation mechanism interacts with cache accesses.

Figure 1.2 Address Trandation During a Cache Access

Virtual Address - lng;%ﬁtéon
Tag RAM
Instruction +
Address > ITLB »| Comparator
Calculator
A Instruction
IVA v Entry Hit/Miss
Data
Hit/Miss
Data Entry
Address DVA: JTLB » Comparator
Calculator
Virtual Address - (:Daagﬁe
Tag RAM

1.2.10 Data Cache

The data cache is an on-chip memory array of 0/16/32/64 KBytes. The cacheis virtually indexed and physically
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag holds
20 hits of the physical address, avalid bit, alock bit, and optionally a parity bit. For each entry thereis also a corre-
sponding 20- bit virtual tag. The virtual tag is used to determine the way selected on a cache access. As aresult of
this, data selection does not have to wait for the JTLB trandation to compl ete.

The data entry is configurable to hold 64 or 128 bits of data per way, with optional parity per byte. The 128-bit option
allows faster refill and evictions of the data cache and is recommended where data cache bandwidth is critical. In the
64-bit configuration, there are 4 data entries per tag entry, and in the 128-bit configuration there are 2 data entries for
each tag entry. The tag and data entries exist for each way of the cache. A separate array holds the dirty and LRU bits
(6b), dirty bits (4b), and optional dirty parity bits (4b) for all 4 ways. A data cache locking mechanismis available
that is similar to the mechanism in the instruction cache.

The physical data cache memory must be byte-writable to support sub-word store operations. The LRU/dirty bit array
must be bit-writable.

1.2.11 Scratchpad RAM

The 74K core allows blocks of scratchpad RAM to be attached to the load/store and instruction units. These allow
low-latency access to a fixed block of memory.

1.2.12 Graduation Unit (GRU)

The Graduation Unit is responsible for graduating instructionsin-order, even though they might have been dispatched
and have completed their result computation out-of-order. It does so by reading data and associated control informa-
tion from the completion buffers in program order and committing them into architectural state in that same program
order. It then releases any completion buffers and resources used by these instructions. The GRU is also responsible

for evaluating the exception conditions reported by execution units and taking the appropriate exception.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 33

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Introduction to the MIPS32® 74K™ Core Family

34

1.2.13 Bus Interface Unit (BIU)

The Bus Interface Unit controls the external interface signals. Additionally, it contains the implementation of a col-
lapsing write buffer. This buffer is used to merge write-through transactions and to gather multiple writes from dirty
line evictions and uncached accelerated stores. The write buffer consists of 4, 32-byte entries.

1.2.14 Coprocessor Interface Unit (CIU)

The coprocessor interface unit is responsible for maintaining an in-order interface between the integer core and the
Floating Point Unit (FPU). The FPU is described in further detail in Chapter 3, “Floating-Point Unit of the 74Kf™
Core’.

1.2.15 Power Management

The core offers anumber of power-management features, including low-power design, active power management,
and power-down modes of operation. The coreis a static design that supports a WAIT instruction designed to signal
therest of the device that execution and clocking should be halted, hence reducing system power consumption during
idle periods. The core provides two mechanisms for system-level, low-power support:

» Register-controlled power management

» Instruction-controlled power management

In register-controlled power management mode, the core provides three bits in the CPO Status register for software
control of the power-management function, and allows interrupts to be serviced even when the coreisin power-down
mode. In instruction-controlled power-down mode, execution of the WAIT instruction is used to invoke low-power

mode.

Refer to Chapter 10, “Power Management in the 74K™ Core” for more information on power management.

1.2.16 EJTAG Debug

All cores provide basic EJTAG support with debug mode, run control, single-step, and software breakpoint instruc-
tion (SDBBP) as part of the core. These features allow basic software debugging of user and kernel code. A TAP con-
troller is aso included, enabling communication between an EJTAG probe and the CPU through a dedicated port.
This provides the capability of debugging without debug code in the application, and for download of application
code to the system.

An optiona EJTAG featureis hardware breakpoints. A 74K core may have four instruction breakpoints and two data
breakpoints, or no breakpoints. The hardware instruction breakpoints can be configured to generate a debug exception
when an instruction is executed anywhere in the virtual address space. Bit mask and Address Space Identifier (ASID)
values may apply in the address compare. These breakpoints are not limited to code in RAM, like the software
instruction breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on a data
transaction. The data transaction may be qualified with both virtual address, data value, size, and load/store transac-
tion type. Bit mask and ASID values may apply in the address compare, and byte mask may apply in the value com-
pare.

An optional MIPS Trace feature has been added to aid software debugging. The trace logic implements PDtrace ver-
sion 6, which allows tracing of the PC, load/store address, |oad/store data, and performance counter data, and also
provides information about processor pipeline inefficiencies. The trace information can be stored to either an on-chip
trace memory or an off-chip trace probe. The optional on-chip trace memory can be configured in various sizes.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



1.2 74K™ Core Block Diagram

These trace features provide a powerful software debugging mechanism. Refer to Chapter 11, “EJTAG Debug
Support inthe 74K™ Core” for more information on the EJTAG and tracing features.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 35

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Introduction to the MIPS32® 74K™ Core Family

36 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 2

Pipeline of the 74K™ Core

The 74K processor coreis asuperscalar processor capable of issuing two integer instructions every clock cycle. The
integer dual issueis achieved through two pipelinesreferred to asthe ALU and AGEN pipelines. The 15-stage AGEN
pipeline implements the memory transfer and control transfer class of instructions, and the 14-stage ALU pipeline
implements all the rest of the instructions involving arithmetic, logic, and computation. The pipelines allows the pro-
cessor to achieve high frequency while minimizing device complexity, reducing both cost and power consumption.

This chapter contains the following sections:
e Section 2.1 “Integer Pipeline Description”
e Section 2.2 “Programming the 74K Core”

*  Section 2.3 “Hazards’
2.1 Integer Pipeline Description

The two primarily integer pipelines, the AGEN and ALU pipelines, are supported by a common front and back end.
The common front end comprises of instruction fetch, decode, and dispatch, and represents the first eight stages of
the pipeline, except in MIPS16e mode, where three more stages are present. The common back end comprises of
instruction graduation and consumes the last two stages. The intermediate stages represent the instruction execution
specific portions of the ALU and AGEN pipelines.

The two magjor pipelines are further made up of multiple mini-pipelines. The front end stages form the IFU and IDU
pipelines. The backend forms the GRU pipeline.The functionality representing the IFU, IDU, and GRU pipelines
reside in the units with the same name. The instruction execution specific functionality of the ALU and AGEN pipe-
line residesin the IEU and the LSU.

In addition to the above mentioned pipelines, there are afew other pipelinesthat exist in the 74K processor core. The
Multiply Divide Unit (MDU) attachesto the ALU pipeline and is an offshoot of the ALU pipeline. The Floating Point
Unit (FPU) attaches to the common front end and has a separate pipeline that is described later. Thereis also a sepa-
rate post-graduation memory pipeline that comesinto existence only for load/store instructions. This pipeline resides
entirely in the Load Store Unit.

Figure 2.1 shows the stages of the 74K processor core pipeline. The pipeline stages shown in the figure are described
in Table 2.1 and in the following subsections.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 37

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Pipeline of the 74K™ Core

Figure 2.1 74K™ Core Pipeline

MDU
A
/- ™
ALU — MB | ML | M2 | M3 | M4
K_H
AF [ AM — ALU
IFU IDU A
A A
- ' ™ GRU
»| AC | AB A
IT |ID|IS| 1B |DD|DR| DS |DM
AGEN AGEN —»{ WB | GC
IFU Y W A ~
Added Stages [ A
for MIPS 16e™ EM p~| EA | EC | ES | EB
IR | IK | IX
mode
Clu FPU
A A
N ™~
Cl1|CR| Cl}sl FR| ML | M2 | Al | A2 | FP | FW
Table 2.1 74K™ Core Pipeline Stages Descriptions
Stage Description Stage Description
IT I-cache Tag read; ITLB Lookup; BHT Lookup AF ALU register Fileread
ID I-cache Dataread; Tag Compare AM ALU operand Mux select
IS Way Select; Target Calculation Start AC ALU Compute
1B Write Fetch Buffer; Target Calculation Done AB ALU Results Bypass
IR MIPS16 Recode (MB,M[1-4]) | Booth recode, multiply stages 1-4
IK MIPS16 Branch Decode and vaidate EM Execute operands Mux select
IX MIPS16 macro expansion EA Address Generation; JTLB Access Start; Branch operand
select
DD Instruction Decode and Register Rename (read EC D-cache Read; JTLB access continue; Branch Compare
RMap)
DR Write RMap; Write DDQs; Issue to CP1/CP2 ES PTag Compare start; Vhint selects Data; Branch Redirect
DS Select 1 instruction from DDQO and 1 from DDQ1 EB Load Align; Load data bypass; Ptag validate data select
Branch/Jump link data pipe forward.
DM Finish instruction selection and update DDQ WB Completion buffer write; Exceptions determined
entries.
C1 Adjust InOrder instruction queue write pointer GC Graduation Complete
CR Read instruction from InOrder instruction queue
Cl InOrder instruction dispatch to Coprocessorl

2.1.1 IFU Pipeline

2.1.1.1 IT - Instruction Cache Tag Access

The Instruction Fetch Unit (IFU) determines the address to be accessed in the cycle prior to IT. The I-cache tags, the
branch history table (BHT), and the Return Prediction Stack (RPS) are accessed in this stage. The tag data contains some
precode hits for each instruction pair indicating instruction type, etc. The I-cacheisvirtually indexed and the initial

38 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




2.1 Integer Pipeline Description

lookup proceeds without any physical address bits. In parallel, the ITLB is accessed in this cycle in order to obtain the
virtual to physical address translation.

In addition to this Instruction fetch, related Watch exception conditions and EJTAG breakpoint matches are also
determined.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.2 ID - Instruction Cache Data Access

In this stage, the I-cache arrays are accessed and 128 bits of instruction are read out for each cache way. While the I-
cache datais being fetched, the tag outputs are compared against the physical address obtained from the ITLB lookup
and the Refill Buffer tags, and one of the 4 associative ways or Refill Buffer entriesis determined. The Refill Buffers
represent the |-cache misses currently being serviced.

I Tag parity error detection is also performed in this stage.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.3 IS - Instruction Select

Inthiscycle, datafrom the I-cache or Refill Buffer is selected based on results of the tag compare in the previous cycle.

In case the instruction fetched from the I-cache is a Branch type instruction that is predicted taken, the computation of
the target address is also started in this cycle.

The functionality corresponding to this stage resides entirely in the IFU.
2.1.1.4 IR - Instruction Recode

This stage comesinto existence in the main pipeline only for MIPS16e instructions. MIPS16 instructions are recoded in
this stage into MIPS32 equivalent instructions.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.5 IK - Instruction

This stage also comes into existence in the main pipeline only for MIPS16e instructions. In this stage the instructions
are decoded for control transfer instruction information and validated. The candidate branch/jump instruction is
determined out of the 4 possible instructionsin this stage.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.6 IX - Instruction Macro Expansion

This stage al so comesinto existencein the main pipeline only for MIPS16einstructions. If aMI1PS16e macro instruction
is detected, it is expanded into multiple MIPS32 instructions in this stage. This stage is bypassed if there are no macro

instructions.

The functionality corresponding to this stage resides entirely in the IFU.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 39

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Pipeline of the 74K™ Core

40

2.1.1.7 IB - Instruction Buffer

The MI1PS16e and MI1PS32 pipelines converge at this stage. Up to 4 instructions from either the IS or I X stages
are written into the Fetch Buffers. A maximum of 2 instructions can be read from any Fetch Buffer. The write of
the Fetch Buffer can be bypassed in the same cycle.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.2 Instruction Decode Unit Pipeline

2.1.2.1 DD - Dispatch Decode

In this stage the IDU receives up to 2 instructions and decodes them. In parallel with the decode operation the
Rename Map islooked up to determine whether the source operands are in the Register File, Completion Buffer/
pipeline, or Unavailable (pending long latency operation).

Lookups are donein this stage only if there are enough Compl etion Buffer resources available. Each instruction
that crosses this stage receives a Completion Buffer ID (CBID) and Instruction ID. The CBID determines the
location in AGCB or ALCB where the execution unit can write the results. The Instruction ID is asequential 1D
that uniquely determines the age of the instruction in the pipe between the DD stage and Graduation.

A branch and its delay slot are always presented together by the IFU into the IDU.

This stage is a so the synchronization point for several hazard preventing serializing operations such as EHB,
branch mispredict redirect resolution, etc.

The functionality corresponding to this stage resides entirely in the IDU.

2.1.2.2 DR - Dispatch Rename

Theinstructions from the DD stage will arrive in the DR stage and any dependencies on older instructions and
intra-dependencies among the two incoming instructions are resolved. The RenameMap is updated with the new
destination CBID (if applicable) for both instructions.

Theinstructions are written into one of the two out-of-order dispatch queues, DDQO and DDQL1. The two queues
are 6 entries deep. Each queue is associated with an execution pipe. The queues are divided as follows:

* DDQL1 (AGEN Pipe): Supports Memory Transfer (Load/Store), Control Transfer, and Conditional Move
Instructions.

* DDQO (ALU Pipe): Supports all other instructions.

Coprocessor 1 instructions are handed off to the Coprocessor I nterface Unit (CIU) inthis stage. If necessary, some
instructions (such as Coprocessor 1 loads and Coprocessor 1 branches, etc.) are written into DDQ1 as well the
ClU.

The functionality corresponding to this stage resides entirely in the IDU.

2.1.2.3 DS - Dispatch Select

Inthisstagethe IDU selects 1 instruction out of each DDQ to send down the corresponding execution pipe. It reads
acounter associated with each source register to determine the availability for dispatch. Each register (CBID) has
its own count down counters that is triggered by its producer that has been dispatched earlier. These counters are
used only if the register value is to be bypassed from within the pipeline/Completion Buffer. Older available

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



2.1 Integer Pipeline Description

instructions are given higher priority for selection. An instruction issues out-of-order only when preceding instructions
are held up by source register or resource dependencies.

The functionality corresponding to this stage resides entirely in the IDU.

2.1.2.4 DM - DDQ Mux

The result vector from the selection in the previous stage is used to completely read out the selected DDQ entry. The
destination CBID of the selected instruction is broadcast to the DDQ and to the RenameMap so that they can start their
count down timers. Theinitia value of the timersis determined in DD stage based on the instruction/execution pipe
properties.

In addition for instructions destined for the AGEN Pipe, the access of the Register File and Completion Buffersis started
in this stage.

The functionality corresponding to this stage resides largely in the IDU and to a small extent in the IEU.

2.1.3 ALU Pipeline

2.1.3.1 AF - ALU Pipe Register File Read

Inthis stage the Register File or Completion Buffer read is performed for the source operands of theinstructions selected
inthe DM stage. This functionality requires 2 read ports on the Register File and Completion Buffer, corresponding to
two sources for the instruction in ALU pipe. Only 1 instruction can be in the AF stagein the ALU pipe at any time.

The functionality corresponding to this stage resides entirely in the IEU.

2.1.3.2 AM - ALU Pipe Operand Bypass Select Mux, This stage has the final operand bypass muxes
for the ALU pipe. The functionality corresponding to this stage resides entirely in the IEU.

2.1.3.3 AC - ALU Compute

The 74K core’'s ALU is pipelined. Some ALU instructions complete the operation and bypass the resultsin this cycle.
These instructions are referred to as single-cycle ops and they include all logical instructions (AND, ANDI, OR, ORI,
XOR, XORI, LUI), some shift instructions (SLL sa<=8, SRL 31<=sa<=25), and some arithmetic instructions (ADD
rt=0, ADDU rt=0, SLT, SLTI, SLTU, SLTIU, SEH, SEB, ZEH, ZEB). In addition, add instructions (ADD, ADDU,
ADDI, ADDIU) complete the operation and bypassresultsto the ALU pipein thiscycle. Add instructions cannot bypass
results to the AGEN pipein this cycle, but will bypass to the AGEN pipe in the subsequent cycle. All other ALU
instructions take 2 cycles to execute and bypass the results to both pipes.This stage corresponds to the first stage of
execution for those instructions. The Multiply and Divide class of instructions start their execution in a separate MDU
pipe, and the first stage of that pipeis aligned with this stage.

The functionality corresponding to this stage resides entirely in the IEU.
2.1.3.4 AB - ALU Bypass

Thisisthe second stage of the ALU pipeline. Instructions whose latency exceeds a single cycle perform their second
cycle of computation in this cycle.

All ALU operations can bypass their results from this stage to the muxesin AM, EM, and EA stages. All exception
information is gathered in this stage to be written into the completion buffer.

The functionality corresponding to this stage resides entirely in the IEU.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 41

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Pipeline of the 74K™ Core

2.1.4 MDU Pipeline

2.1.4.1 MB - Multiplier Booth Recode.

The MDU performs Booth recoding on the input operand in this stage.

2.1.4.2 M1- M3 Multiplier Array

These stages represent the actual core of the multiplier array.

2.1.4.3 M4 - Multiply Add

This stage is used to perform the add or subtract operation in the case of complex multiply-add or multiply-subtract
type of instructions.

2.1.5 AGEN Pipeline

2.1.5.1 EM - Execute Operand Bypass Select Mux

In the presence of shadow set registers, this stage accommodates the final selectors of register data from the different
GPRs. In addition, this stage accommaodates the bypass muxes for the L oad/Store class instructions in the AGEN Pipe.

The functionality corresponding to this stage resides entirely in the IEU

2.1.5.2 EA - Execute and Address Generate

Load/Store Instructions

The effective address calculation for Load/Store classinstructionsis computed in this cycle. The JTLB accessis also
started in this cycle for Load/Store type instructions. The JTLB is accessed in parallel using source operands and a
fast compare algorithm. This enables the JTLB accessto start one cycle earlier than would otherwise be possible. It
also makes it possible for the 74K core to accessthe JTLB inline and avoid aDTLB.

The functionality corresponding to this adder resides entirely in the IEU. The JTLB residesin the MMU.

Control Transfer Instructions

In the case of Control Transfer instructions, the effective redirect address computation is started in this cycle. The
bypass muxes for source register operands for this class of instructions are also present in this stage. It isto be noted
that there are two sets of bypass muxesin the AGEN Pipe. Thefirst set isin the EM stage and is used for Load/Store
instructions. The second set in the EA stage is used for Control Transfer instructions. While it would have been possi-
ble for Control transfer instructions to use the bypass muxes from EM and execute the branch in EA, performance
simulation has shown that it would significantly reduces overall performance, as it increases the producer/consumer
latency between most integer instructions and branches.

The functionality corresponding to Control Transfer Instructions for this stage resides entirely in the IEU.

42 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



2.1 Integer Pipeline Description

2.1.5.3 EC - Execute and Cache Access
Load/Store Instructions

The Data Cache is accessed using the effective address calculated in the preceding EA stage. The local buffersin the
Load Store Unit (LSU) are also compared against this effective address. The JTLB access is continued in this cycle.
The Data cache tags are al so accessed in this cycle. The Dtag entry will contain a physical tag and virtual tag.

The functionality corresponding to D-cache and Dtag resides entirely in the LSU. The JTLB residesin the MMU.

Control Transfer Instructions

Conditional Branch and jump instructions are resolved in this cycle. The branch comparison is done and compared
against the predicted path. The branch instructions compute the alternate address and redirect the IFU if needed.
Since branch instructions can be issued out-of-order the branch execution unit keeps track of the age of the last redi-
rected branch. If the new resolution results in a mispredict the age of the new branch instruction is compared against
the age of the last redirected branch that has not yet graduated. Only if the new branch is older than the previous
branch the IFU will be redirected again. Register indirect jumps which have been predicted with the Return Stack are
also compared against the real register valuein this cycle. If there is a mispredict the correct target is sent to the |FU.

The functionality corresponding to Control Transfer Instructions for this stage resides entirely in the IEU.

2.1.5.4 ES - Execute and Cache Second
Load/Store Instructions

The JTLB accessis completed in this cycle. The virtual tag is compared against the effective address in this cycle.
The tag compare for the various internal LSU buffersis also completed in this cycle. Alignment of the D-cache data
from al four waysisalso donein parallel in this cycle. If a store to load bypass situation is detected by virtue of a
load effective address matching one of the local buffersin the LSU (LSQ or FSB), those buffers are read in this stage.

The functionality corresponding to D-cache, DTag, L SQ and other buffers resides entirely in the LSU. The JTLB
residesin the MMU.

Control Transfer Instructions

Theresult of al the branch decisionsis prioritized and communicated to the IFU in this cycle. In addition to the
branch unit redirects, there can be redirects from the graduating instructions. These redirects are prioritized over the
branch redirects, and the final redirect is sent over to the IFU in this cycle. This redirect causes the IFU to kill its cur-
rent fetch stream and all instructionsin the IFU. A new fetch will be started with the newly received target address.

The functionality corresponding to Control Transfer Instructions for this stage resides entirely in the IEU.
2.1.5.5 EB - Execute and Cache Data Bypass
Load/Store Instructions

The D-cache datais sel ected based on the virtual tag comparison. Thefinal Hit/Miss determination is done by the end
of this cycle based on the physical tag comparison with the JTLB output. Alignment of datain case of datareturn
from LSU buffersis donein this cycle. In case of ahit, the selection of data from the appropriate source is al'so com-
pleted in this cycle. The datareturn to the ALU bypass muxesin EM and EA isdonein this cycle.

The functionality corresponding to the D-cache, DTag, L SQ, and other buffers resides entirely inthe LSU. The JTLB
residesin the MMU.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 43

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Pipeline of the 74K™ Core

All exception detection and prioritization within the LSU is completed in this cycle for the AGEN Pipe.

Control Transfer Instructions

In the case of branch and link or jump and link instructions, the link register update information is carried forward in
the pipe to be written into the completion buffer. This datais eventually written into the Register File when the
branch/jump instruction graduates. This datais written into the AGEN completion buffer and it uses the same write
port as Load/Store instructions.

The functionality corresponding to this stage for Control Transfer Instructions resides entirely in the IEU.

2.1.6 GRU Pipeline

2.1.6.1 WB - Writeback

The AGEN Pipewrites the AGEN completion buffer (AGCB) in thisstage. The ALU pipe and the MDU pipe write into
the ALU completion buffer (ALCB) in this stage. All units will also have written their exception information at this
stage. The highest priority pipeline exception status will be available for each instruction at this point in the completion
buffer structure. In addition, the oldest 2 entriesthat have completed execution areidentified as candidatesfor graduation
in the subsequent stage.

The buffers and their controls reside across multiple units (LSU, IEU, GRU), depending on the functionality.

2.1.6.2 GC - Graduation Commit

This stage is the final stage of the graduation pipeline. In this stage, the two oldest ready instructions that have been
identified in the previous stage are graduated. Thisimpliesthat the result data corresponding to these two instructionsis
committed to the architecturally visible GPR if no flush and redirect due to exceptions or other special casesisrequired.
If aredirect isrequired, the graduation/exception logic in the GRU will send the appropriate redirect information to the
IFU in this stage.

A select class of privileged instructions such as MTCO, TLB operations, and CACHE instructions are actually executed
at graduation. These instructions are sent to the different units for execution in this stage.

The functionality corresponding to this stage resides entirely in the GRU.

2.2 Programming the 74K Core

For guidelines on programming the 74K core and a better understanding of the impact of the pipeline on the software
programmer, refer to the document titled Programming the MIPS32® 1074K™ Coherent Processing System Family
(MDO00Q750).

2.3 Hazards

44

In general, the 74K core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previousinstruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS™ Architecture, hazards (primarily CPO hazards) were relegated to implementation-
dependent cycle-based solutions, primarily based on the SSNOP instruction. The 74K core implements an out-of-
order dispatch technique that is incompatible with this concept of allocating cycles through fixed instruction spacing.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



2.3 Hazards

Release 2 defines new instructions which act as explicit barriers that eliminate hazards The new instructions have
been added in such away that they are backward-compatible with existing MIPS processors.

The 74K core family requires that the programmer implement the hazard barrier instructions as defined in Release 2
of the architecture. This does not typically impact an application programmer and is relevant primarily to privileged
software. The following sections describe the types of hazards that are addressed. The hazard descriptions in the sub-
seguent sections are here to help the user in identifying hazardsin his code.

2.3.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards. execution hazards and instruction hazards. Both are
defined below.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 45

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Pipeline of the 74K™ Core

2.3.1.1 Execution Hazards, Execution hazards are those created by the execution of one instruction,
and seen by the execution of another instruction. Table 2.2 lists possible execution hazards and

46

whether they can be resolved via setting of the IHB bit in the CPO Config7 register..

Table 2.2 Execution Hazards

Does Config7.IHB=1
Producer - Consumer Hazard On resolve this Hazard?
TLBWR, TLBWI —  Load/store using new TLB entry TLB entry No
MTCO —  Load/store affected by new state WatchHi No
WatchLo
MTCO —  MFCO Any CPO register No
MTCO — EI/DI Status Yes
MTCO — RDHWR $3 Count No
MTCO —  Coprocessor instruction execution depends on Statuscy No
the new value of Statuscy
MTCO — ERET EPC Yes
DEPC
ErrorEPC
MTCO — ERET Status Yes
El, DI — Interrupted instruction Status|g No
MTCO —  Interrupted instruction Status No
MTCO —  User-defined instruction Statusgr, No
StatusEXL
MTCO —  Interrupted Instruction Status)y No
(Causep)
TLBR — MFCO EntryHi, Yes
EntryLoO,
EntryLol,
PageMask
TLBP — MFCO Index Yes
MTCO — TLBR Index (not No
EntryHi)
MTCO —  TLBWI EntryHi No
TLBWR
MTCO d TLBP EntryHiAs|D No
Load/store affected by new state
MTCO —  TLBWI Index No
MTCO — TLBWR Random (not No
Index)
MTCO - MFCO Context Yes
ContextConfig ContextConfig
WRPGPR

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




Table 2.2 Execution Hazards (Continued)

2.3 Hazards

Does Config7.IHB=1
Producer - Consumer Hazard On resolve this Hazard?
MTCO — Instruction not seeing a Timer Interrupt Compare update No
that clears Timer
Interrupt
MTCO — Instruction affected by change Any other CPO No
register
CACHE - MFCO TagHi, TagLo, Yes
DataHi, DatalLo

2.3.1.2 Instruction Hazards, Instruction hazards are those created by the execution of one instruc-
tion, and seen by the instruction fetch of another instruction. Table 2.3 lists instruction hazards.

Because the fetch unit is decoupled from the execution unit, these hazards are rather large. The use
of a hazard barrier instruction is required for reliable clearing of instruction hazards.

Table 2.3 Instruction Hazards

Producer - Consumer Hazard On
TLBWR, TLBWI  — Instruction fetch using new TLB entry TLB entry
MTCO —  Instruction fetch seeing the new value including: Status

« changeto ERL followed by an instruction
fetch from the useg segment and
 changeto ERL or EXL followed by a Watch
exception
MTCO —  Instruction fetch seeing the new value EntryHiasip
MTCO —  Instruction fetch seeing the new value WatchHi
WatchLo
MTCO (writeto —  JR, JALR seeing the new value of IHB of IHB bit of
Config7) Config7 Config7
Instructionstream  —  Instruction fetch seeing the new instruction Cache entries
write via CACHE stream
Ingtructionstream  —  Instruction fetch seeing the new instruction Cacheentries
write via store stream

2.3.2 Instruction Listing

Table 2.4 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture Refer-
ence Manual Volume II: The MIPS32® Instruction Set (MD00084) for a more detailed description of these instruc-

tions.

Table 2.4 Hazard Instruction Listing

Mnemonic Function
EHB Clear execution hazard
ERET Clears both execution and instruction hazards
JALR.HB Clears both execution and instruction hazards
JR.HB Clears both execution and instruction hazards

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

a7



Pipeline of the 74K™ Core

48

Table 2.4 Hazard Instruction Listing (Continued)

Mnemonic Function

SYNCI Synchronize caches after instruction stream write

2.3.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using anew encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on pro-
cessors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.3.3 Eliminating Hazards

In order to eliminate hazards, use one of the instructions listed in Table 2.4 between the producer and consumer of the
hazard. Execution hazards can be removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards
can be removed by using the JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 3

Floating-Point Unit of the 74Kf™ Core

This chapter describes the MIPS64® F oating-Point Unit (FPU) included in the 74Kf core. This chapter contains the
following sections:

Section 3.1 “Features Overview”

Section 3.2 “Enabling the Floating-Point Coprocessor”
Section 3.3 “Data Formats”

Section 3.4 “Floating-Point General Registers’
Section 3.5 “Floating-Point Control Registers”
Section 3.6 “Instruction Overview”

Section 3.7 “Exceptions’

Section 3.8 “Pipeline and Performance”

3.1 Features Overview

The FPU isprovided via Coprocessor 1. Together with its dedicated system software, the FPU fully complieswith the
ANSI/IEEE Standard 754-1985, |EEE Sandard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of |EEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below.

Full 64-bit operation isimplemented in both the register file and functional units.

A 32-hit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

Like the main processor core, Coprocessor 1 is programmed and operated using a L oad/Store instruction set. The
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer
does not have to worry about inserting delay dlots after |oads and between dependent instructions.

Additional arithmetic operations not specified by |EEE Standard 754 (for example, reciprocal and reciprocal
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE
accuracy specification, where the result is numerically identical to an equivalent computation using multiply,
add, subtract, or negate instructions.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 49

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

Figure 3.1 depicts a block diagram of the FPU.

Figure 3.1 FPU Block Diagram

Register File

T

Load/ !
Store

|
|
| ,
I
: | Coprocessor
| I Interface
| |
| |
| |
| |

Control l——~—

Processor
Core

The MIPS architecture is designed such that a combination of hardware and software can be used to implement the
architecture. The 74K core FPU can operate on numbers within a specific range (in general, the IEEE normalized
numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in general, the
| EEE denormalized numbers). Supported number ranges for different instructions are described later in this chapter.
A fast Flush To Zero mode is provided to optimize performance for cases where |EEE denormalized operands and
results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR register; use of
this mode is recommended for best performance.

3.1.1 IEEE Standard 754

The |EEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, isreferred to in this chapter as
“|EEE Standard 754" . |EEE Standard 754 defines the following:

*  Floating-point data types

» Thebasic arithmetic, comparison, and conversion operations

* A computational model

|EEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, seethe IEEE web pageat http: //stdsbbs.ieee.org/.
3.2 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled through the CU1 bit in the CPO Status register. When Coprocessor 1 is not enabled, any
attempt to execute a floating-point instruction causes a Coprocessor Unusable exception.

50 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.3 Data Formats

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

* Thesingle- and double-precision floating-point data types are those specified by |EEE Standard 754.

*  Thefixed-point types are signed integers provided by the CPU architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

* a32-bit single-precision floating point (type S, shown in Figure 3.2)

* a64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

* Twoinfinities, +eo and —eo
e Signaling non-numbers (SNaNs)

e Quiet non-numbers (QNaNs)

« Numbers of the form: (-1)° 25 by.by by..b, 1, where:

— s=0or1l

— E=anyinteger between E_min and E_max, inclusive

— by =0o0r 1 (thehigh bit, by, isto the left of the binary point)

— pisthe signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes

arelisted in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double
Bits of mantissa precision, p 24 53
Maximum exponent, E_max +127 +1023
Minimum exponent, E_min -126 -1022
Exponent bias +127 +1023
Bitsin exponent field, e 8 11
Representation of by integer bit hidden hidden
Bitsin fraction field, f 23 52
Total format width in bits 32 64
Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

51



Floating-Point Unit of the 74Kf™ Core

52

63 62

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single

Double

Magnitude of smallest normalized representable number 1.1754943508e-38

2.2250738585e-308

Layouts of these three fields are shown in Figures 3.2 and 3.3 below. Thefields are:

 1-bitsign, s
* Biased exponent, e= E + bias

*  Binary fraction, f=.by D>..b5 1 (the bo bit i hidden; it is not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

31 30 23 22 0
S| Exponent Fraction
1 8 23

Figure 3.3 Double-Precision Floating-Point Format (D)

52 51

Exponent Fraction

11 52

Values are encoded in the specified format using the unbiased exponent, fraction, and sign valueslisted in Table 3.2.

The high-order bit of the Fraction field, identified as by, is also important for NaNs.

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased Typical Single Typical Double
E f|s|bPt] Valuev Type of Value Bit Pattern® Bit Pattern?
E max+1 |[#0 SNaN Signaling NaN Ox7EEEEEEE Ox7fEfEfff fEEFEFEF
0 QNaN Quiet NaN Ox7fbEffff OxTEf7ffff fEEFEfEff
Emax+l | 0| 1 — oo Minusinfinity 0x££800000 0x£££00000 00000000
0 + oo Plus infinity 0x7£800000 0x7££00000 00000000
E_max 1 - (25(1f) |Negative normalized num- | 0x80800000 0x80100000 00000000
to ber through through
E min OxfETEEEEE Oxffefffff fEffFfff
0 + (25)(Lf) |Positive normalized number | 000800000 0x00100000 00000000
through through
O0x7E7EEEEE O0x7fefffff fEffffff
E mn-1 |#0| 1 - (2B-Mim)o.f) | Negative denormalized 0x807f£fff Ox800fffff FEFFFEff
number
0 + (2B q.f) | Positive denormalized num- | 0x007£££££ OxO0ffffff fEEFFfff
ber
Emn-1 |01 -0 Negative zero 0x80000000 0x80000000 00000000
0 +0 positive zero 0x00000000 0x00000000 00000000

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




3.3 Data Formats

1. The “Typical” nature of the bit patterns for the NaN and denormalized val ues reflects the fact that the sign might have
either value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one
value in a class of potential values that represent these special values.

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which liesto the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent isin the range E_min to E_max, inclusive, the number
isnormalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min — 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal | EEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap |EEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+e), minus infinity (—e), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents anumber with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed « is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

Once created as a default result, - can become an operand in a subsequent operation. The infinities are interpreted
such that - < (every finite number) < +e. Arithmetic with « isthe limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on « isregarded as exact, and exception
conditions do not arise. The out-of-range indication represented by « is propagated through subsequent computations.
For some cases, thereis no meaningful limiting casein real arithmetic for operands of o. These casesraisethe Invalid
Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful valuesto put in
uninitialized variables. An SNaN is never produced as aresult value.

|EEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOV.fmt, MOV T.fmt, MOVFEfmt, MOVN.fmt, MOV Z.fmt) non-arithmetic; they do not signal |EEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 53

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result isto be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is

one! of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), anew QNaN valueis created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. Thevalues listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 754
when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture
that detects or makes use of these “integer QNaN” values.

Table 3.3 Value Supplied When a New Quiet NaN is Created

Format New QNaN value
Single floating point 0x7fbf ffff
Double floating point 0x7£f7 £fff £fff fEff
Word fixed point 0x7fff ffff
Longword fixed point O0x7fff ffff ffff ffff

3.3.2 Fixed-Point Formats

63

The FPU provides two fixed-point data types:

*  a32-bit Word fixed point (type W), shown in Figure 3.4

* a64-bit Longword fixed point (typeL), shown in Figure 3.5

The fixed-point values are held in 2's complement format, which is used for signed integers in the CPU. Unsigned
fixed-point data types are not provided by the architecture; application software can synthesize computations for

unsigned integers from the existing instructions and data types.

Figure 3.4 Word Fixed-Point Format (W)
31 0

Integer
32

Figure 3.5 Longword Fixed-Point Format (L)

Integer

64

1

54

In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.4 Floating-Point General Registers

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRS). The FPU isa 64b
FPU, but a 32b register mode for backwards compatibility is aso supported. The FR bit in the CPO Status register
determines which mode is selected:

*  Whenthe FR bitisal, the 64b register model is selected, which defines 32 64-hit registers with all formats sup-
ported in aregister.

*  WhentheFR bitisa0, the 32b register model is selected, which defines 32 32-bit registers with D-format values
stored in even-odd pairs of registers; thus the register file can also be viewed as having 16 64-bit registers.

These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU oper-
and values.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand val ues specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and Sformats) use only half the space in an FPR.

Figures 3.6 and 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR
63 32 31 0

Reg 0 Undefined/Unused Data Word

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR
63 0

Reg 0 Data Doubleword/L ongword

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in afloating-point operand register (FPR) has aformat, or type, and it can
be used only by instructions that operate on that format. The format of avalue is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is aways set when avalueis written to the register as follows:

*  When adatatransfer instruction writes binary datainto an FPR (aload), the FPR receives abinary value that is
uninterpreted.

* A computational or FP register move instruction that produces aresult of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted valueis used as a source operand by an instruction that requires avalue of format
fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changesto avalue
of format fmt. The binary contents cannot be reinterpreted in a different format.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 55

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs, the value in the register becomes unknown, and the result of theinstructionisalso
avauethat is unknown. Using an FPR containing an unknown val ue as a source operand produces aresult that has an

unknown value.

The format of the value in the FPR isunchanged when it isread by adatatransfer instruction (astore). A datatransfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the

encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

Figure 3.8 Effect of FPU Operations on the Format of Values Held in FPRs

Load Store

Value
uninterpreted
(binary
encoding)

Rslt unknown
Rsit A

Src B (interpret

Src A (interpret)

Src ARsltA
Store

Value in
Format
B

Value in
Format
A

Rslt unknown

Rslt unknown

SrcASrcB
Store

Load

A, B: Example formats

Load: Destination of LWC1, LDC1, MTC1 instructions.

Store: Source operand of SWC1, SDC1, MFC1 instructions.

Src fmt: Source operand of computational instruction expecting format “fmt.”
Rslt fmt: Result of computational instruction producing value of format “fmt.”

56 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.4 Floating-Point General Registers

3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

The datatransfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 3.9 and Figure 3.10,
respectively.

The store and move-from instructions operate in reverse, reading data from the location that the corresponding load or
move-to instruction had written.

Figure 3.9 FPU Word Load and Move-to Operations

FRBIT=1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 I Reg 0 Initial value 1 I
Reg 1 Initial value 2 I Reg 2 Initial value 2 I
l LwCcl £0, O(xr0) / MTC1l £0,rO l
63 0 63 0
Reg 0 Undefined/Unused | Data word (0) I Reg 0 Undefined/Unused | Data word (0) '
Reg 1 Initial value 2 I Reg 2 Initial value 2 I
LwCcl f1, 4(xr0) / MTCl f1,r4 j
63 0 63 0
Reg 0 Undefined/Unused Data word (0) I Reg 0 Data word (4) | Data word (0) I
Reg 1 Undefined/Unused Data word (4) Reg 2 Initial value 2 I

Figure 3.10 FPU Doubleword Load and Move-to Operations

FRBIT =1 FRBIT=0
63 0 63 0
Reg0 Initial value 1 Reg 0 Initial value 1
Reg 1 Initial value 2 Reg 2 Initial value 2
I T
l LDC1 £0, 0(x0) 1
63 0 63 0
Reg 0 Data doubleword (0) Reg 0 Data doubleword (0)
Reg 1 Initial value 2 Reg 2 Initial value 2
- ——
l LDC1 f1, 8(x0)
63 0
Reg 0 Data doubleword (0)
(Illegal when FR BIT = 0)
Reg 1 Data doubleword (8)

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

57



Floating-Point Unit of the 74Kf™ Core

3.5 Floating-Point Control Registers

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wide:
FIR, FCCR, FEXR, FENR, FCSR. Three of these registers, FCCR, FEXR, and FENR, select subsets of the float-
ing-point Control/Status register, the FCSR. These registers are also denoted Coprocessor 1 (CP1) control registers.

CP1 control registers are summarized in Table 3.4 and are described individually in the following subsections of this
chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.4 Coprocessor 1 Register Summary

Register Number | Register Name Function
0 FIR Floating-Point Implementation register. Contains information that identifies
the FPU.
25 FCCR Floating-Point Condition Codes register.
26 FEXR Floating-Point Exceptions register.
28 FENR Floating-Point Enables register.
31 FCSR Floating-Point Control and Status register.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W All bitsin thisfield are readable and writable by software and potentially by hardware.

Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visible by hardware

reads.

If the reset state of thisfield is“Undefined,” either software or hardware must initialize the value before the first read
returns a predictable value. This definition should not be confused with the formal definition of UNDEFINED behav-

10r.

R Thisfield is either static or is updated only by hardware. | A field to which the value written by software isignored
If the Reset State of thisfield iseither “0” or “Preset”, by hardware. Software may write any value to thisfield
hardware initializes this field to zero or to the appropriate | without affecting hardware behavior. Software reads of
state, respectively, on powerup. thisfield return the last value updated by hardware.

If the Reset State of thisfield is“Undefined”, hardware If the Reset State of thisfield is “Undefined,” software

updates this field only under those conditions specified in | reads of thisfield result in an UNPREDICTABLE value

the description of thefield. except after a hardware update done under the conditions
specified in the description of the field.

0 Hardware does not update thisfield. Hardware can assume | The value software writes to this field must be zero. Soft-

azerovalue.

ware writes of non-zero valuesto thisfield might result in
UNDEFINED behavior of the hardware. Software reads of
thisfield return zero aslong as all previous software writes
are zero.

If the Reset State of thisfield is“Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.

58

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




3.5 Floating-Point Control Registers

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the FIR; Table 3.6 describes the FIR hit fields.

31

Figure 3.11 FIR Format

25 24 23 22 21 20 19 18 17 16 15

FC| 0 |F64|L |W|3D|PS|D|S Processor|D

Revision

Table 3.6 FIR Bit Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

FC

24

Indicates that full convert ranges are implemented:

 0: Full convert ranges not implemented

* 1: Full convert ranges implemented

Thisbit isalways 1 to indicate that full convert ranges are
implemented. This means that all nhumbers can be converted to
another type by the FPU (If FSbit in FCSR is not set Unimple-
mented Operation exception can still happen on denormal oper-
ands though).

1

F64

22

Indicates that thisis a 64-bit FPU:

e 0: Not a64-bit FPU

» 1: A 64-bit FPU.

This bit isalways 1 to indicate that thisis a 64-bit FPU.

21

Indicates that the long fixed point (L) datatype and instructions
are implemented:

 0: Long type not implemented

» 1. Long implemented

This bit isalways 1 to indicate that long fixed point data types
are implemented.

20

Indicates that the word fixed point (W) data type and instruc-
tions are implemented:

« 0: Word type not implemented

» 1. Word implemented

This bit isalways 1 to indicate that word fixed point data types
are implemented.

3D

19

Indicates that the MIPS-3D ASE isimplemented:

* 0: MIPS-3D not implemented

* 1. MIPS-3D implemented

This bit isaways 0 to indicate that MIPS-3D is not imple-
mented.

PS

18

Indicates that the paired-single (PS) floating-point data type
and instructions are implemented:

 0: PSfloating-point not implemented

* 1: PSfloating-point implemented

This bit isaways 0 to indicate that paired-single floating-point
data types are not implemented.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




Floating-Point Unit of the 74Kf™ Core

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State

D 17 Indicates that the double-precision (D) floating-point data type R 1
and instructions are implemented:
« 0: D floating-point not implemented
* 1. D floating-point implemented
This bit isaways 1 to indicate that double-precision floating-
point data types are implemented.

S 16 Indicates that the single-precision (S) floating-point data type R 1
and instructions are implemented:
 0: Sfloating-point not implemented
* 1: Sfloating-point implemented
This bit isalways 1 to indicate that single-precision floating-
point data types are implemented.

Processor ID 15:8 | dentifies the floating-point processor. This value matches the R 0x97
corresponding field of the CPO PRId register.
Revision 7:0 Specifies the revision number of the FPU. Thisfield allows R Hardwired

software to distinguish between different revisions of the same
floating-point processor type. This value matches the corre-
sponding field of the CPO PRId register.

0 31:25, 23 | These bits must be written as zeros; they return zeros on reads. 0 0

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, al eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR hit fields.

Figure 3.12 FCCR Format
31 8 7 0

0 FCC

Table 3.7 FCCR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
FCC 7:0 Floating-point condition code. Refer to the description of this R/W Undefined
field in Section 3.5.5 “Floating-Point Control and Status
Register (FCSR, CP1 Control Register 31)".
0 31:8 These bits must be written as zeros; they return zeros on reads. 0 0

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flagsfields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR hit fields.

60 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.5 Floating-Point Control Registers

Figure 3.13 FEXR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 Cause 0 Flags 0
E|V|Z|O|U]|I V|Z|O|U|I
Table 3.8 FEXR Bit Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
Cause 17:12 Cause hits. Refer to the description of thisfield in R/W Undefined
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".
Flags 6:2 Flag bits. Refer to the description of thisfield in RIW Undefined
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.
0 31:18, 11.7, | These bits must be written as zeros; they return zeros on 0 0
1.0 reads.

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The FHoating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields

that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 Enables 0 g RM
V|iZ|O|fU
Table 3.9 FENR Bit Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
Enables 11:7 Enable bits. Refer to the description of thisfield in R/W Undefined
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".
FS 2 Flush to Zero bit. Refer to the description of thisfield in R/W Undefined
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".
RM 1.0 Rounding mode. Refer to the description of thisfield in R/W Undefined
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".
0 31:12, 6:3 | These bits must be written as zeros; they return zeros on 0 0
reads.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

61



Floating-Point Unit of the 74Kf™ Core

62

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

» selectsthe default rounding mode for FPU arithmetic operations

» selectively enables traps of FPU exception conditions

e controls some denormalized number handling options

*  reports any |EEE exceptions that arose during the most recently executed instruction

» reports any |EEE exceptions that cumulatively arose in completed instructions

» indicatesthe condition code result of FP compare instructions

Accessto the FCSRis not privileged; it can be read or written by any program that has access to the FPU (viathe
coprocessor enables in the Status register). Figure 3.15 shows the format of the FCSR; Table 3.10 describes the

FCSR bit fields.

Figure 3.15 FCSR Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

F

FCC 0 Cause Enables Flags RM

=
O|N

C
C
0 E(V|Z|O|U|I|V|Z|O|U|Il]|V]|Z|O|U]|I

Table 3.10 FCSR Bit Field Descriptions

Fields
Read /

Name Bit Description Write Reset State

FCC 31:25, 23 | Foating-point condition codes. These bits record the R/W Undefined
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to useis specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS |SAs, the FCC hits are separated into
two non-contiguous fields.

FS 24 Flush to Zero (FS). Refer to 3.5.6 “Operation of the FS/ R/W Undefined
FO/FN Bits’ for more details on this bit.

FO 22 Flush Override (FO). Refer to Section 3.5.6, "Operation of R/W Undefined
the FS/FO/FN Bits" for more details on this bit.

FN 21 Flush to Nearest (FN). Refer to Section 3.5.6, "Operation R/W Undefined
of the FS/FO/FN Bits" for more details on this bit.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.5 Floating-Point Control Registers

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Name Bit

Description

Read /
Write

Reset State

Cause 17:12

Cause hits. These hits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A hit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, it is cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.

Refer to Table 3.11 for the meaning of each cause bit.

RIW

Undefined

Enables 117

Enable bits. These bits control whether or not atrap is
taken when an | EEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving avalue to the
FCSR or one of its dternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-1EEE Unimplemented
Operation exceptions as always enabl ed.

Refer to Table 3.11 for the meaning of each enable bit.

Undefined

Flags 6:2

Flag bits. Thisfield shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.

When an FPU arithmetic operation raises an | EEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Floating-
Point Exception (the enable bit was on) do not update the
Flagsfield.

Hardware never resets this field; software must explicitly
reset thisfield.

Refer to Table 3.11 for the meaning of each flag bit.

Undefined

RM 1.0

Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).

Refer to Table 3.12 for the encoding of thisfield.

Undefined

0 20:18

These bits must be written as zeros; they return zeros on
reads.

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name

Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

Invalid Operations

Divide by Zero

Overflow

ClOIN|<

Underflow

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

63



Floating-Point Unit of the 74Kf™ Core

64

Table 3.11 Cause, Enables, and Flags Definitions (Continued)

Bit Name Bit Meaning

| Inexact

Table 3.12 Rounding Mode Definitions

RM Field Encoding Meaning

0 RN - Round to Nearest

Rounds the result to the nearest representable value. When two representable
values are equally near, the result is rounded to the value whose | east-signifi-
cant bit is zero (even).

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the
result.

2 RP - Round Towards Plus Infinity

Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

3.5.6 Operation of the FS/FO/FN Bits

TheFS, FO, and FN bitsin the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.

nonzero result between +25-M M), whereby the FPU can handle these cases right away instead of relying on the much
dower software handler. The trade-off isaloss of IEEE compliance and accuracy (except for use of the FO hit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result
that a software handler would give. The benefit is a significantly improved performance and precision.

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

Table 3.13 Handling Denormalized Floating-point Numbers

FSand FN bit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,
RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG*

FO bit: MADD, MSUB, NMADD, and NMSUB

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions
when FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same
result as an equivalent sequence of arithmetic FPU operations.

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbersin oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.5 Floating-Point Control Registers

Figure 3.16 FS/FO/FN Bits Influence on Multiply and Addition Results

Operand values

Intermediate Multiply-Add result Final result
FS applies

FS/FO applies FS/FN applies

) L L

> Multiply BEEN Addition .

| \ \

3.5.6.1 Flush To Zero Bit

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either

zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settings. Table
3.14 lists the flushing behavior for tiny results..

Table 3.14 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result
RN (RM=0) -0 +0
RZ(RM=1) -0 +0
RP (RM=2) -0 +MinNorm
RM (RM=3) -MinNorm +0

The flushing of resultsis based on an intermediate result computed by rounding the mantissa using an unbounded

exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading
zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown in Table 3.15.

Table 3.15 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

0 An Unimplemented Operation exception is taken.

Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny
results are forced to zero or MinNorm.

3.5.6.2 Flush Override Bit

When the Flush Override (FO) bit is set, atiny intermediate result of any multiply-add type instruction is not flushed
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accuracy.
FO only appliesto the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown in Table 3.16.

Table 3.16 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values
0 0 An Unimplemented Operation exception is taken.
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 65

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

Table 3.16 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings (Continued)

FO Bit FS Bit Handling of Tiny Result Values
0 1 The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (see Table 3.34) instead of causing an Unimplemented Opera-
tion exception.
1 Don't care | Theintermediate result iskept in an internal format, which can be perceived as hav-
ing the usual mantissa precision but with unlimited exponent precision and without
forcing to a specific value or taking an exception.

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), atiny final result is
flushed to zero or MinNorm. If atiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it
isflushed to MinNorm (see Figure 3.17). The flushed result has the same sign as the result prior to flushing. Note that

66

the FN bit takes precedence over the FS bit.

Figure 3.17 Flushing to Nearest when Rounding Mode is Round to Nearest

For all rounding modes other than Round to Nearest (RN), setting the FN bit causes final resultsto be flushed to zero

-MinNorm/2 MinNorm/2

B — —

-MinNorm
|

0

-

MinNorm

| |
| |
| |
| |
1 I 1 I >
| |
| |

or MinNorm asif the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown in Table 3.17.

Table 3.17 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit

FS Bit

Handling of Tiny Result Values

0

An Unimplemented Operation exception is taken.

Final result isforced to the value that would have been delivered for an untrapped
underflow (see Table 3.34) rather than causing an Unimplemented Operation
exception.

Don't care

Final result is rounded to either zero or 25-M" (MinNorm), whichever is closest
when in Round to Nearest (RN) rounding mode. For other rounding modes, afinal
result isgiven asif FSwas set to 1.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




3.5 Floating-Point Control Registers

3.5.6.4 Recommended FS/FO/FN Settings

Table 3.18 summarizes the recommended FS/FO/FN settings.

Table 3.18 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks
0 0 0 |EEE-compliant mode. Low performance on denormal operands and tiny
results.
1 0 0 Regular embedded applications. High performance on denormal operands

and tiny results.

1 1 1 Highest accuracy and performance configuration.

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD opera
tion sequence.

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow
Computations are performed in two steps:
1. Compute rounded mantissa with unbound exponent range.

2. Flushto default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits|, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thuswhen E, V, or Z is set in Step #1, no other cause bits can be set. However, note that | and V' both can be
set if adenormal operand was flushed (FS=1). I, U, and O can be set alone or in pairs (1U or 10). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized |EEE format.

Step #2 can set | if adefault result is generated.

3.5.7.3 Multiply-Add Flow
For multiply-add type instructions, the computation is extended with two more steps:
1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flushto default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny resultsif
FO=1).

3. Compute rounded mantissa with unbounded exponent range for the add.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 67

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

4. Flushto default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 and Step #3 can set a cause bit as described for Step #1 in 3.5.7.2 “Generic Flow”.
Step #2 and Step #4 can set | if adefault result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit | when FS = 1. For example, SNaN+DeNorm set
| (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E
to be set, any |, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

68

The functional groups into which the FPU instructions are divided are described in the following subsections:
» Section 3.6.1 “Data Transfer Instructions”

»  Section 3.6.2 “Arithmetic Instructions”

*  Section 3.6.3 “Conversion Instructions”

e Section 3.6.4 “Formatted Operand-Vaue Move Instructions’

»  Section 3.6.5 “Conditional Branch Instructions”

»  Section 3.6.6 “Miscellaneous Instructions”

Theinstructions are described in detail in Chapter 13, “ 74K™ Processor Core Instructions’, including descriptions of
supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets. coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has aload/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Datais transferred between registers and the rest of the

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.6 Instruction Overview
system with dedicated load, store, and move instructions. The transferred datais treated as unformatted binary data;
no format conversions are performed, and therefore no |EEE floating-point exceptions can occur.

Table 3.19 lists the supported transfer operations.

Table 3.19 FPU Data Transfer Instructions

Transfer Direction Data Transferred
FPU general register > Memory Word/doubleword |oad/store
FPU general register < CPU general register | Word move
FPU control register > CPU generd register | Word move

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor |oads and stores operate on naturally aligned dataitems. An attempt to load or store to an address that
isnot naturally aligned for the dataitem causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of aword or doubleword isthe smallest byte address in the object. For abig-endian machine, thisis
the most-significant byte; for alittle-endian machine, thisis the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.20 through 3.22 list the FPU data transfer instructions.

Table 3.20 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction
LDC1 Load Doubleword to Floating Point
LwWC1 Load Word to Floating Point
SDC1 Store Doubleword to Floating Point
SWC1 Store Word to Floating Point

Table 3.21 FPU Loads and Stores Using Register+Register Address Mode

Mnemonic Instruction
LDXC1 Load Doubleword Indexed to Floating Point
LUXC1 Load Doubleword Indexed Unaligned to Floating Point
LWXC1 Load Word Indexed to Floating Point
SDXC1 Store Doubleword Indexed to Floating Point
SUXC1 Store Doubleword Indexed Unaligned to Floating Point
SWXC1 Store Word Indexed to Floating Point

Table 3.22 FPU Move To and From Instructions

Mnemonic Instruction
CFC1 Move Control Word From Floating Point
CTC1 Move Control Word To Floating Point
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 69

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

Table 3.22 FPU Move To and From Instructions (Continued)

Mnemonic Instruction
MFC1 Move Word From Floating Point
MTC1 Move Word To Floating Point

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet |EEE Standard 754 for accuracy—aresult isidentical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bitsin
the CP1 FCSR register can override this behavior as described in Section 3.5.6, "Operation of the FS/FO/FN Bits".

Table 3.23 lists the FPU |EEE compliant arithmetic operations.

Table 3.23 FPU IEEE Arithmetic Operations

Mnemonic Instruction
ABS.fmt Floating-Point Absolute Value
ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIV.fmt Floating-Point Divide
MUL.fmt Floating-Point Multiply
NEG.fmt Floating-Point Negate
SQRT.fmt Floating-Point Square Root
SUB.fmt Floating-Point Subtract

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the | EEE specification:

»  Theresult of RECIP differs from the exact reciprocal by no more than one ULP.
e Theresult of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.24 lists the FPU-approximate arithmetic operations.

Table 3.24 FPU-Approximate Arithmetic Operations

Mnemonic Instruction
RECIPfmt Floating-Point Reciprocal Approximation
RSQRT.fmt Floating-Point Reciprocal Square Root Approximation

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to athird operand, and produce aresult. These instructions are listed in Table 3.25.
The product is rounded according to the current rounding mode prior to the accumulation. This model meetsthe IEEE

70 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.6 Instruction Overview

accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,
or negate instructions.

Table 3.25 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction
MADD.fmt Floating-Point Multiply Add
MSUB.fmt Floating-Point Multiply Subtract
NMADD.fmt Floating-Point Negative Multiply Add
NMSUB.fmt Floating-Point Negative Multiply Subtract

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from anumber of operand formatsto a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.
The FSand FN bitsin the CP1 FCSR register can override this behavior as described in Section 3.5.6, "Operation of
the FS/FO/FN Bits'.

Table 3.26 and Table 3.27 list the FPU conversion instructions according to their rounding mode.

Table 3.26 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction
CVT.D.fmt Floating-Point Convert to Double Floating Point
CVT.L.fmt Floating-Point Convert to Long Fixed Point
CVT.Sfmt Floating-Point Convert to Single Floating Point
CVT.W.fmt Floating-Point Convert to Word Fixed Point

Table 3.27 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction
CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point
CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point
FLOOR.L.fmt Floating-Point Floor to Long Fixed Point
FLOOR.W.fmt Floating-Point Floor to Word Fixed Point
ROUND.L.fmt Floating-Point Round to Long Fixed Point
ROUND.W.fmt Floating-Point Round to Word Fixed Point
TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point
TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 71

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

72

* Unconditional move

» Conditional move that tests an FPU true/false condition code

»  Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in away that might be unexpected. They always force the value in the destina-
tion register to become avalue of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32 Architecture Refer-

ence Manual, Volume I1.)

Table 3.28 through Table 3.30 list the formatted operand-val ue move instructions.

Table 3.28 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV.fmt Floating-Point Move

Table 3.29 FPU Conditional Move on True/False Instructions

Mnemonic Instruction
MOV Efmt Floating-Point Move Conditional on FP False
MOVT.fmt Floating-Point Move Conditional on FP True

Table 3.30 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction
MOV N.fmt Floating-Point Move Conditional on Nonzero
MOVZ.fmt Floating-Point Move Conditional on Zero

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond.fmt).

All branches have an architectural delay of one instruction. When abranch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle aninstructionin
the delay slot when the branch is not taken and execution falls through:

*  Branchinstructions execute the instruction in the delay slot.

» Branchlikely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions areincluded, software is strongly encouraged to avoid the use of
the Branch Likely instructions, asthey will be removed from a futurerevision of the MIPS Architecture.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.7 Exceptions

The M1PS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 arein dis-
continuous fieldsin the FCSR.

Table 3.31 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.32 lists the deprecated
conditional branch likely instructions.

Table 3.31 FPU Conditional Branch Instructions

Mnemonic Instruction
BC1F Branch on FP False
BCI1T Branch on FP True

Table 3.32 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction
BC1FL Branch on FP False Likely
BC1TL Branch on FP True Likely

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.33 lists these conditional move instructions.

Table 3.33 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction
MOVN Move Conditional on FP False
MOVZ Move Conditional on FP True

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. Theflag bitsimplement | EEE exception status flags, and the cause and enabl e bits control exception trapping.
Each field has a bit for each of the five |EEE exception conditions. The Cause field has an additional exception hit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception typeis enabled through the
Enablesfield of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

3.7.1 Precise Exception Mode

In precise exception mode, atrap occurs before the instruction that causes the trap or any following instruction can
complete and writeitsresults. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit isset to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to O.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 73

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving avalue into the FCSR. Thereis no enable
bit for Unimplemented Operations; this exception always generates a trap.

In atrap handler, exception conditions that arise during any trapped fl oating-point operations are reported in the
Cause field. Before returning from afloating-point interrupt or exception, or before setting cause bits with amove to
the FCSR, software first must clear the enabled cause bits by executing amove to the FCSR to prevent the trap from
being erroneoudly retaken.

If afloating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.34). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flags field is a cumulative report of |EEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding |EEE exception is raised, otherwise
the bits are unchanged. Thereis no flag bit for the MI1PS Unimplemented Operation exception. The flag bits are never
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by |EEE Standard 754:

e Section 3.7.2.1 “Invalid Operation Exception”

*  Section 3.7.2.2 “Division By Zero Exception”

*  Section 3.7.2.3 “Underflow Exception”

*  Section 3.7.2.4 “Overflow Exception”

e Section 3.7.2.5 “Inexact Exception”

3.7.2.6 “Unimplemented Operation Exception” aso describes a M1 PS-specific exception condition, Unimplemented
Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an |EEE arith-
metic operation can cause only one exception condition; the only case in which two exceptions can occur at the same
time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an | EEE exception condition can either cause atrap or not cause atrap. |EEE Standard
754 specifiestheresult to be delivered in case no trap istaken. The FPU supplies these results whenever the exception

condition does not result in atrap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.34 summarizes the default results.

Table 3.34 Result for Exceptions Not Trapped

Bit Description Default Action
\% Invalid Operation | Suppliesaquiet NaN.
z Divide by zero Supplies a properly signed infinity.
74 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.7 Exceptions

Table 3.34 Result for Exceptions Not Trapped (Continued)

Bit

Description

Default Action

Underflow

Depends on the rounding mode as shown bel ow:

* 0(RN) and 1 (RZ): Supplies azero with the sign of the exact result.

» 2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative
underflow values, supplies a positive zero.

» 3 (RM): For positive underflow values, supplies a negative zero. For negative under-
flow values, supplies a negative 25-™" (MinNorm).

Note that this behavior is only valid if the FCSR gy bit is cleared.

Inexact

Supplies arounded result. If caused by an overflow without the overflow trap enabled,
supplies the overflowed result. If caused by an underflow without the underflow trap
enabled, supplies the underflowed resuilt.

Overflow

Depends on the rounding mode, as shown below:

* 0 (RN): Supplies an infinity with the sign of the exact result.

* 1(RZ): Supplies the format’s largest finite number with the sign of the exact result.

» 2 (RP): For positive overflow values, supplies positive infinity. For negative overflow
values, supplies the format's most negative finite number.

» 3 (RM): For positive overflow values, supplies the format’s largest finite number. For
negative overflow values, supplies minusinfinity.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

One or both operands are asignaling NaN (except for the non-arithmetic MOV.fmt, MOV T.fmt, MOV F.fmt,

MOV N.fmt, and MOV Z.fmt instructions).

Addition or subtraction: magnitude subtraction of infinities, such as (+oo) + (—oo) 0Or (—0) - (—o).

Multiplication: 0 x <, with any signs.

Division: 0/0 or /e, with any signs.

Square root: An operand of lessthan 0 (-0 isavalid operand value).

Conversion of afloating-point number to afixed-point format when either an overflow or an operand value of

infinity or NaN precludes a faithful representation in that format.

Some comparison operations in which one or both of the operandsis a QNaN value.

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is afinite nonzero
number. When no precise trap occurs, the result isacorrectly signed infinity. Divisions (0/0 and «/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of («/0) is acorrectly
signed infinity.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

75



Floating-Point Unit of the 74Kf™ Core

76

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

» Tininess: The creation of atiny, nonzero result between +2E_MN \which, becauseit isti ny, might cause some other
exception later such as overflow on division. |EEE Standard 754 allows choices in detecting tininess events. The
MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed as though

the exponent range were unbounded would lie strictly between +E_min

» Lossof accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. |EEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

*  When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have
been detected. The delivered result might be zero, denormalized, or ",

*  When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininessis
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of arounded floating-point result (if the exponent rangeis
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception
An Inexact exception is signaled when one of the following occurs:
e Therounded result of an operation is not exact.
»  Therounded result of an operation overflows without an overflow trap.

*  When adenormal operand is flushed to zero.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is aMIPS-defined exception that provides software emulation support. This
exception is not | EEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture.
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

Thereis no enable bit for this condition; it aways causes atrap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.8 Pipeline and Performance

» when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers
and where such are not handed by the FS/FO/FN bits.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU supports limited
dual-issue. It can accept one “to/from” instruction and one arithmetic instruction every cycle. A “to/from” instruction
isadatatransfer instruction and covers the following instructions: MFC1, MFHC1, MTC1, MTHCL1, CFC1, CTC1,
LWC1, LWXC1, LUXC1, LDC1, LDXC1, SWC1, SWXCL1, SDC1 and SDXCL. The arithmetic group refersto al
other floating point instructions.

The FPU pipeline runsin parallel with the 74K integer pipeline. The FPU can be built to run at different frequencies
compared to the integer core. The supported ratios of integer core clock to FPU clk are: 2:1, 3:2 and 1:1.

The FPU pipeis optimized for single-precision instructions, such that the basic multiply, ADD/SUB, and MADD/
MSUB instructions can be performed with single-cycle throughput and low latency. Executing double-precision mul-
tiply and MADD/M SUB instructions requires a second pass through the M1 stage to generate all 64 bits of the prod-
uct. Executing long latency instructions, such as DIV and RSQRT, extends the M1 stage. Figure 3.18 shows the FPU
pipeline.

Figure 3.18 FPU Pipeline

74K integer DR o1 2 CR al
Dispatch

FPU instruction in general - FR M1 M2 At A2 FP FW
FPU double multiplication (for example, MUL, MADD) | FR M1 M1 M2 Al A2 FP FW

Second

Pass
FPU long instructions (for example, DIV, RSQRT) | FR M1 : M1 : : : : : M2 Al A2 FP FW

Mulltiplecyclels —

3.8.1.1 DR Stage - Dispatch Rename

The DR stage is described in detail in Chapter 2, “Pipeline of the 74K™ Core”. This stage is common to both the
integer and floating point pipeline. The two pipelines fork off separately after this stage.

3.8.1.2 C1 - Coprocessor Interface Unit Stage 1

In this stage, the Coprocessor Interface Unit (ClU) receives two instructions from the IDU. It does some preliminary
decoding and determines if there is space available in itsinternal queues for the received instructions.

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 77

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

3.8.1.3 CR Stage - Coprocessor Interface Unit Queue Read

The CIU internal instruction queues are read in this stage and up to two instructions are selected for dispatch to the
FPU.

3.8.1.4 Cl Stage - Coprocessor 1 Interface

This pipeline stage represents the interface stage, where instructions are sent to the FPU

3.8.1.5 FR Stage - Decode, Register Read, and Unpack
This pipelineis the second interface stage, where the instruction start is sent to the FPU.
The FR stage also has the following additional functionality:
*  Thedispatched instruction is decoded for register accesses.
» Dataisread from the register file.

*  Theoperands are unpacked into an internal format.

3.8.1.6 M1 Stage - Multiply Tree
The M1 stage has the following functionality:

* A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

* Thelong instructions, such as divide and square root, iterate for several cyclesin this stage.
*  Sum of exponentsis calculated.

» |If an exception can be predicted, then it is sent out in this pipeline stage.

3.8.1.7 M2 Stage - Multiply Complete
The M2 stage has the following functionality:
* Multiplication is complete when the carry-save encoded product is compressed into binary.
* Rounding is performed.

»  Exponent difference for addition path is calcul ated.

3.8.1.8 Al Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.9 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

78 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



3.8 Pipeline and Performance

3.8.1.10 FP Stage - Result Pack
The FP stage has the following functionality:
*  Theresult coming from the datapath is packed into | EEE 754 Standard format for the FPR register file.
*  Overflow and underflow exceptional conditions are resolved.

3.8.1.11 FW Stage - Register Write

Theresult iswritten to the FPR register file.
3.8.2 Bypassing

The FPU pipelineimplements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into the
register file and read back before they can be used, but can be forwarded directly to an instruction already in the pipe.
Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CPO Status register is0, due
to the paired even-odd 32-hit registers that provide 64-bit registers.

Figure 3.19 Arithmetic Pipeline Bypass Paths

FR M1 M2 Al FW

A2 FP
\ A2 bypass /
\ FP bypass
\ FW bypass

3.8.3 Repeat Rate and Latency

Table 3.35 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point opera
tions are listed in terms of FPU clocks.

Table 3.35 74Kf Core FPU Latency and Repeat Rate

Latency Repeat Rate
Opcode? (cycles) (cycles)

ABS/[SD], NEG.[S,D], ADD.[S,D], SUB.[S,D], MUL.S, MADD.S, MSUB.S, 4 1
NMADD.S, NMSUB.S

MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2
RECIPS 13 10
RECIPD 25 21
RSQRT.S 17 14
RSQRT.D 35 31
DIV.S, SQRT.S 17 14
DIV.D, SQRT.D 32 29

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 79

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Floating-Point Unit of the 74Kf™ Core

Table 3.35 74Kf Core FPU Latency and Repeat Rate (Continued)

Latency Repeat Rate
Opcode1 (cycles) (cycles)
C.cond.[S,D] to MOVFEfmt and MOV T.fmt instruction/ MOVT, MOVN, BC1 1/2 1
instruction
CVTD.S CVT.[SD].[W,L] 4 1
CVT.SD 6 1
CVT.[W,L].[SD], 5 1
CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]
MOV.[S,D], MOVFE[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[SD] 4 1
LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1
MTC1, MFC1 2 1
1. Format: S = Single, D = Double, W = Word, L = Longword.
80 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 4

The MIPS® DSP Application-Specific Extension to the
MIPS32® Instruction Set

The 74K core includes support for the MIPS DSP Application-Specific Extension (ASE) Revision 2 that provides
enhanced performance capabilitiesfor awide range of signal-processing applications, with computational support for
fractional datatypes, SIMD, saturation, and other operations that are commonly used in these applications.

Refer to MIPS32® Architecture For Programmers, Volume IV-e for a general description of the DSP ASE and
detailed descriptions of the DSP instructions. Additional programming information is contained in Programming the

MIPS 74K Family Cores for DSP and in the DSP chapter of Programming the MIPS32® 74K™ Coherent Processing
System Family.

4.1 Additional Register State for the DSP ASE

The DSP A SE defines three additional accumulator registers and one additional control/status register, as described

below. These registers require the operating system to recognize the presence of the DSP ASE and to include these
additional registersin the context save and restore operations.

4.1.1 HI-LO Registers

The DSP ASE includes three HI/L O accumulator register pairs (acl, ac2, and ac3) in addition to the HI/LO register
pair (ac0) in the standard MIPS32 architecture. These registers improve the parallelization of independent accumula-
tion routines—for example, filter operations, convolutions, etc. DSP instructions that target the accumul ators use two
instruction bits to specify the destination accumulator, with the zero value referring to the original accumulator.

4.1.2 DSP Control Register

The DSPControl register contains control and status information used by DSP instructions. Figure 4.1 illustrates the
bitsin thisregister, and Table 4.1 describes their usage.

Figure 4.1 MIPS32® DSP ASE Control Register (DSPControl) Format

31 28 27 24 23 16 15 14 13 12 76 5 0
0 ccond ouflag |0 |EFI| c| scount |O| pos
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 81

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set

Table 4.1 MIPS® DSP ASE Control Register (DSPControl) Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

0 31:28 Reserved. Used in the M1PS64 architecture but not used 0 0 Required
in the MIPS32 architecture. Must be written as zero;
returns zero on read.

ccond 27:24 Condition code bits set by compare instructions. The R/W 0 Required
compare instruction sets the right-most bits as required
by the number of elementsin the vector compare. Bits
not set by the instruction remain unchanged.

ouflag 23:16 Thisfield iswritten by hardware when certain instruc- R/W 0 Required
tions overflow or underflow and may have been satu-
rated. See Table 4.2 for afull list of which bits are set by
what instructions.

EFI 14 Extract Fail Indicator. Thishit is set to 1 when an EXTP, R/W 0 Required
EXTPV, EXTPDP, or EXTPDP instruction fails. These
instructions fail when there are insufficient bitsto
extract, that is, when the value of posin DSPControl is
less than the value of size specified in the instruction.
This bit is not sticky, so each invocation of one of the
four instructions will reset the bit depending on whether
or not the instruction failed.

c 13 Carry bit. Thishit is set and used by special add instruc- R/W 0 Required
tions that implement a 64-bit add across two GPRs. The
ADDSC instruction sets the bit and the ADDWC
instruction uses this bit.

scount 12:7 Thisfield isfor use by the INSV instruction. The value R/W 0 Required
of thisfield is used to specify the size of the bit field to
be inserted.

pos 5:0 Thisfield is used by the variable insert instructions R/W 0 Required
INSV to specify theinsert position.

It is also used to indicate the extract position for the
EXTPR, EXTPV, EXTPDP, and EXTPDPV instructions.
The decrement pos (DP) variants of these instructionson
completion will have decremented the value of pos (by
the size amount).

The MTHLIP instruction will increment the pos value by
32 after copying the value of LO to HI.

0 15:13 Must be written as zero; returns zero on read. 0 0 Reserved

82 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



4.2 Software Detection of the DSP ASE Revision 2

The bits of the overflow flag ouflag field in the DSPControl register are set by a number of instructions, as described
in Table 4.2. These hits are sticky and can be reset only by an explicit write to these bits in the register (using the
WRDSP instruction).

Table 4.2 DSPControl ouflag Bits

Bit Number Description

16 This bit is set when the destination is accumulator (HI-LO pair) zero, and an operation overflow
or underflow occurs. Theseinstructions are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA,
DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA, MAQ_S, MAQ_SA and MULSAQ_S.

17 Same instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Same instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Same instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that set this bit on an overflow/underflow: ABSQ_S, ADDQ, ADDQ_S, ADDU,
ADDU_S, ADDWC, SUBQ, SUBQ_S, SUBU and SUBU_S.

21 Instructions that set this bit on an overflow/underflow: MUL, MUL_S, MULEQ_S, MULEU_S,
MULQ_RS, and MULQ_S.

22 Instructions that set this bit on an overflow/underflow: PRECRQ_RS, SHLL, SHLL_S, SHLLV,
and SHLLV_S.

23 Instructions that set this bit on an overflow/underflow: EXTR, EXTR_S, EXTR_RS, EXTRV,
and EXTRV_RS.

4.2 Software Detection of the DSP ASE Revision 2

The presence of the MIPS DSP ASE in the 74K coreisindicated by two static bits in the Config3 register: the DSPP
(DSP Present) bit indicates the presence of the DSP ASE, and the DSP2P (DSP Rev2 Present) hit indicates the pres-
ence of the MIPS DSP ASE Rev2. Because all members of the 74K core family support both ASEs, these bits are
alwayssetto 1.

The MX (DSP ASE Enable) read/write bit in the CPO Status register must be set to enable access to the extrainstruc-
tions defined by the DSP ASE, aswell asto the MTLO/HI, MFLO/HI instructions that access accumulators acl, ac2,
and ac3. Executing a DSP ASE instruction or the MTLO/HI, MFLO/HI instructions with this bit set to zero causes a
DSP State Disabled Exception (exception code 26 in the CPO Cause register). This exception can be used by system
software to do lazy context-switching.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 83

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set

84 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 5

Memory Management of the 74K™ Core

The 74K processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit and
the cache controller. The core contains either a Translation Lookaside Buffer (TLB) or a simpler Fixed Mapping
(FM)-style MMU, specified as a build-time option when the core is implemented.

This chapter contains the following sections:

*  Section 5.1 “Introduction”

e Section 5.2 “Modes of Operation”

*  Section 5.3 “Translation Lookaside Buffer”

e Section 5.4 “Virtual-to-Physical Address Trandlation”

e Section 5.5 “Fixed Mapping MMU”
5.1 Introduction

The MMU ina74K processor core tranglates a virtual addressto a physical address before the request is sent to the
cache controllersfor tag comparison or to the bus interface unit for an external memory reference. Virtual-to-physical
address translation is especially useful for operating systems that must manage physical memory to accommodate
multiple tasks active in the same memory, and possibly in the same virtual address space (though, of course, in differ-
ent locations in physical memory). The MMU also enforces the protection of memory areas and defines the cache
protocols.

By default, the MMU is TLB-based. The TLB consists of two address-translation buffers: a dual-ported 16/32/48/64
dual-entry fully associative Joint TLB (JTLB) and a 4-entry instruction micro TLB (ITLB). When an instruction
addressistrandated, the ITLB isaccessed first, and if the trandlation is not found, the JTLB is accessed. If thereisa
missin the JTLB, an exception is taken. When a data reference is translated, the JTLB is accessed directly. If the
addressis not present in the JTLB, an exception istaken. The JTLB is dual-ported to prevent contention between
instruction and data accesses.

Optionally, the MMU can implement a Fixed Mapping (FM) mechanism, based on a simple agorithm that trandates
virtual addresses into physical addresses. These trandations are different for various regions of the virtual address
space.

Figure 5.1 shows how the MMU with TLB interacts with cache accesses, and Figure 5.2 shows the equivalent for the
FM MMU.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 85

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

Figure 5.1 Address Translation For Cache Access with TLB MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

Comparator

L
I—P

Comparator

Instruction
Cache Tag (IPA)
RAM Instruction
Physical Address
(IPA)
> ITLB
IVA Entry
A 4
JTLB
Data
Physical Address
(DPA)
Data Cache
RAM
Tag (DPA)

Instruction Hit/
Miss

Data Hit/Miss

Figure 5.2 Address Translation For Cache Access with FM MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

Instruction
Cache Tag (IPA)
RAM Instruction
Physical Address
(IPA)
> EM MMU Comparator
Instruction Hit/
Miss
Data
Physical Address Data Hit/Miss
(DPA) |—>
FM MMU
> Comparator
Data Cache Tag (DPA)
RAM

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.2 Modes of Operation

5.2 Modes of Operation

The MMU'’s virtual-to-physical address translation is determined by the mode in which the processor is operating. A
74K processor core operates in one of four modes:

*  User mode

*  Supervisor mode
*  Kernel mode

»  Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode istypically
used for handling exceptions and privileged operating system functions, including CPO management and 1/0 device
accesses. Debug mode is used for software debugging and usually occurs within a software development tool.

5.2.1 Virtual Memory Segments

The MIPS32 architecture supports a4 GByte virtual address space that is partitioned into a number of segments, each
characterized by a set of attributes defined by hardware and software. The virtual memory segments are different

depending on the mode of operation. Figure 5.3 shows the segmentation for the 4 GByte (232 bytes) virtual memory
space, addressed by a 32-bit virtual address, for each of the four modes.

User mode accesses are limited to a subset of the virtual address space (0x0000_0000 to Ox7FFF_FFFF) and can be
inhibited from accessing CPO functions. In User mode, virtual addresses 0x8000_0000 to OxFFFF_FFFF areinvalid
and cause an exception if accessed. Supervisor mode adds access to sseg (0xC000_0000 to OxDFFF_FFFF). ksegO,
ksegl, and kseg3 will still cause exceptions if they are accessed. In Kernel mode, software has access to the entire
address space, aswell asall CPO registers.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CPO registers as Kernel mode. In addition, while in Debug mode, the core has access to the debug
segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can be turned on
or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 87

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

88

Virtual Address

OXFFFF_FFFF- "~ """ " """ "7°==°=°°°°

OXFF3F_FFFF

0xFF20_0000

.............

OxXFF1F_FFFF
0xE000_0000

.............

OxDFFF_FFFF

0xC000_0000

0x9FFF_FFFF

0x8000_0000

O0x7FFF_FFFF

0x0000_0000

Segments can be mapped or unmapped, as described in the following subsections.

Figure 5.3 74K™ Processor Core Virtual Memory Map

User Mode

useg

5.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB or the FM to translate virtual to physical addresses. Especially after
reset, it isimportant to have unmapped memory segments, because the TLB is not yet programmed to perform the
trangdation.

Unmapped segments have a fixed simple translation from virtual to physical address. Thisis much like the tranda

Kernel Mode Debug Mode
kseg3
kseg3 dseg
kseg3

ksseg/kseg2 ksseg/kseg2
kseg1 kseg1
kseg0 kseg0
kuseg kuseg

tions the FM provides for the core, but we will still make the distinction.

Except for ksegO, unmapped segments are always uncached. The cacheability of ksegO is set in the KO field of the
CPO Config register (see Section 7.2.23 “Config (CPO Register 16, Select 0): Legacy Configuration Register”).

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Supervisor Mode

sseg

suseg

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




5.2 Modes of Operation

5.2.1.2 Mapped Segments
A mapped segment uses the TLB or the FM to translate from virtual to physical addresses.

For the core with TLB, the translation of mapped segments is handled on a per-page basis. Included in thistranglation
isinformation defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the core with the FM MMU, the mapped segments have a fixed tranglation from virtual to physical address. The
cacheability of the segment is defined in the K23 and KU fields of the CPO register Config (see Section

7.2.23 “Config (CPO Register 16, Select 0): Legacy Configuration Register”). Write protection of segments is not
possible during FM trandlation.

5.2.2 User Mode

In user mode, asingle 2 GByte (231 bytes) uniform virtual address space, called the user segment (useg), is available.
Figure 5.4 shows the location of user mode virtual address space.

Figure 5.4 User Mode Virtual Address Space

32 hits

0XFFFF_FFFF

Address Error
0x8000_0000
0x7FFF_FFFF

2GB Mapped

useg

0x0000_0000

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. Accessesto all other addresses
cause an address error exception.

The processor operates in User mode when the Status register contains the following bit values:

*+ KSU=0b10
e EXL=0
* ERL=0

In addition to the above values, the DM bit in the Debug register must be 0.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 89

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

90

Table 5.1 lists the characteristics of the User mode segment.

Table 5.1 User Mode Segments

Status Register

. Bit Value
Address-Bit Segment
Value EXL ERL KSU Name Address Range Segment Size
32-bit 0 0 0b10 useg 0x0000_0000 --> 2 GByte
A(BL) =0 OX7FFF_FFFF (23! bytes)

All valid user mode virtual addresses have their most-significant bit cleared to O, indicating that user mode can only

access the lower half of the virtual memory map. All attempts to reference an address with the most-significant bit set
while in user mode causes an address error exception.

All referencesto useg are mapped through the TLB or FM. For coreswith aTLB, the virtual addressis extended with
the contents of the 8-bit ASID field to form a unique virtual address before trandation. Also, bit settings within the

TLB entry for the page determine the cacheability of areference. For FM MMU cores, the cacheability is set viathe
KU field of the CPO Config register.

5.2.3 Supervisor Mode

In supervisor mode, two uniform virtual address spaces are available: a2 GByte (

231 pytes) virtual address space

called the supervisor user segment (suseg), and a 512 MByte virtual address space called the supervisor segment
(sseg). The supervisor-mode virtual address space is shown in Figure 5.5.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.2 Modes of Operation

Figure 5.5 Supervisor Mode Virtual Address Space

OXFFFF_FFFF
Address Error
kseg3
0xE000_0000
OXDFFF_FFFF
Supervisor virtual address space
Mapped, 512MB sseg
0xC000_0000
OxBFFF_FFFF
Address Error kseg
0xA000_0000
O0x9FFF_FFFF
Address Error kseg0
0x8000_0000
0x7FFF_FFFF
Mapped, 2048MB suseg
0x0000_0000

The supervisor user segment begins at address 0x0000_0000 and ends at address Ox7FFF_FFFF. The supervisor seg-
ment begins at 0xC000_0000 and ends at OxDFFF_FFFF. Accessesto all other addresses in Supervisor mode cause
an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

e UM=0andsm=1

e EXL=0

e ERL=0

In addition to the above values, the DM bit in the Debug register must be 0.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 91

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

92

Table 5.2 lists the characteristics of the Supervisor mode segments.

Table 5.2 Supervisor Mode Segments

Status Register
) Bit Value
Address-Bit Segment
Value EXL ERL UM SM Name Address Range Segment Size
32-bit 0 0 0 1 suseg 0x0000_0000 --> 2 GByte
A(BL) =0 OX7FFF_FFFF (2% bytes)
32-hit 0 0 0 1 sseg 0xC000_0000 -> 512MB
A(31:29) = 110, OXDFFF_FFFF (22 bytes)

The system maps all references to suseg and sseg through the TLB or FM. For cores with a TLB, the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address before trandation. Also, bit set-
tingswithin the TLB entry for the page determine the cacheability of areference. For FM MMU cores, the cacheabil-
ity of suseg and sseg is set viathe KU and K23 fields of the CPO Config register respectively.

5.2.4 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

e KSU=0b00
e ERL=1
e EXL=1

When anon-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

In Kernel mode, aprogram has access to the entire virtual address space. Kernel mode virtual address spaceis divided
into regions differentiated by the high-order bits of the virtual address, as shown in Figure 5.6. The characteristics of
kernel-mode segments are listed in Table 5.3.

The core enters Kernel mode both at reset and when an exception is recognized.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Figure 5.6 Kernel Mode Virtual Address Space

O0xXFFFF_FFFF

0xE000_0000
0xDFFF_FFFF

0xC000_0000

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0xBFFF_FFFF

0xA000_0000
0x9FFF_FFFF

0x8000_0000
0x7FFF_FFFF

0x0000_0000

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Unmapped, 512MB

Mapped, 2048MB

kseg3

ksseg/kseg2

kseg1

kseg0

kuseg

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.2 Modes of Operation

93



Memory Management of the 74K™ Core

94

Table 5.3 Kernel Mode Segments

Status Register
Is One of These
. Values
Address-Bit Segment Segment
Values KSU | EXL | ERL Name Address Range Size
A(31) =0 (KSU =00, kuseg 0x0000_0000 2 GBytes (23! bytes)
or through
EXL=1 Ox7FFF_FFFF
A(31:29) = 100 or kseg0 0x8000_0000 29
( ) 7) ERL = 1) seg ot 512 MBytes (22° bytes)
and OX9FFF_FFFF
DM =0
A(31:29) =101, ksegl 0xA000_0000 512 MBytes (22 bytes)
through
OXBFFF_FFFF
A(31:29) = 110, ksseg/kseg2 0xC000_0000 512 MBytes (2%° bytes)
through
OXDFFF_FFFF
A(31:29) =111, kseg3 0xEO000_0000 512 MBytes (22° bytes)
through
OxFFFF_FFFF

5.2.4.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address
space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - Ox7FFF_FFFF. For cores with TLBs, the virtual address is extended with the contents of the 8-hit
ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a231-byte unmapped and uncached address
space. Whilein this setting, the kuseg virtual address maps directly to the same physical address, and does not include
the ASID field.

5.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 100,, 32-bit ksegO virtual address

spaceis selected; it isthe 229—byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
Ox9FFF_FFFF. References to ksegO are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The KO field of the Config register controls cacheability.

5.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1015, ksegl virtual address

spaceis selected. ksegl is the 22%-byte (512-MByte) kernel virtual space located at addresses OxA000_0000 -
OxBFFF_FFFF. Referencesto ksegl are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped 1/O device registers) are accessed directly.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.2 Modes of Operation

5.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg?2)

In Kernel mode, when KSU= 00,, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 110,, 32-bit kseg2 virtual address space is selected.

With the FM MMU, this 22%-byte (512-MByte) kernel virtual spaceislocated at physical addresses 0xC000_0000 -
OxDFFF_FFFF. Otherwise, this space is mapped through the TLB.

5.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 111, the kseg3 virtual address

space is selected. With the FM MMU, this 22%-byte (512-MByte) kernel virtual spaceislocated at physical addresses
O0xEO000_0000 - OXFFFF_FFFF. Otherwise, this space is mapped through the TLB.

5.2.5 Debug Mode

Except for kseg3, debug-mode address spaceisidentical to kernel-mode address space with respect to mapped and
unmapped areas. In kseg3, a debug segment (dseg) coexists in the virtual address range OxFF20_0000 to
OxFF3F_FFFF. Thelayout is shownin Figure 5.7.

Figure 5.7 Debug Mode Virtual Address Space

OxFFFF_FFFF
0xFF40_0000

0xFF20_0000

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode

0x0000_0000

dseg is subdivided into the dmseg segment at OxFF20_0000 to OxFF2F_FFFF, which is used when the debug probe
services the memory segment, and the drseg segment at OxFF30_0000 to OXxFF3F_FFFF, which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes of the segments are shown in Table 5.4.

Accesses to memory that would normally cause an exception in kernel mode cause the core to re-enter debug mode
via a debug-mode exception. Thisincludes accesses usually causing a TLB exception, with the result that such
accesses are not handled by the usual memory-management routines.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 95
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

96

The unmapped kseg0 and ksegl segments from kernel-mode address space are available in debug mode, which allows
the debug handler to be executed from uncached, unmapped memory.

Table 5.4 Physical Address and Cache Attributes for dseg, dmseg, and drseg

Segment | Sub-Segment Virtual Cache
Name Name Address Generates Physical Address Attribute
dseg dmseg OxFF20_0000 |dmseg mapsto addresses 0x0_0000 - | Uncached
through OxF_FFFF in EJTAG probe memory
OxFF2F_FFFF | space.
drseg maps to the breakpoint registers
drseg OxFF30_0000
through 0x0_0000 - OXF_FFFF
OXxFF3F_FFFF

The behavior of CPU access to the drseg address range at OxFF30_0000 to OxFF3F_FFFF is determined as shown in

Table5.5

5.2.5.1 Debug Mode, Register (drseg)

Table 5.5 CPU Access to drseg

LSNM Bit in Debug
Transaction Register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don't care drseg, see comments below
Load / Store 0

Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped reg-
isters exist in drseg. The value returned in response to aread of any unimplemented memory-mapped register is
unpredictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR,

refer to Chapter 11, “EJTAG Debug Support in the 74K ™ Core”.

The allowed access sizeislimited for the drseg. Only word-size transactions are allowed. Operation of the processor

is undefined for other transaction sizes.

The conditions for CPU accesses to the dmseg address range (OxFF20_0000 to OxFF2F_FFFF) are shown in Table

5.6.

5.2.5.2 Debug Mode, Memory (dmseqg)

Table 5.6 CPU Access to dmseg

ProbEn Bit in LSNM Bit in
Transaction DCR Register Debug Register Access
Load / Store Don't care 1 Kernel mode address space (kseg3)
Fetch 1 Don't care dmseg
Load / Store 1 0 dmseg
Fetch 0 Don't care See comments below
Load / Store 0 0 See comments below

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.3 Translation Lookaside Buffer

An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such arefer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never
be areference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the
debug software sampling the ProbEn bit as 1, and the probe clearing it to O.

5.3 Translation Lookaside Buffer

The TLB memory-management scheme used in the 74K c processor core includes two address-trandation units:
e 16, 32, 48, or 64 dual-entry fully associative Joint TLB (JTLB)

»  4-entry fully associative Instruction micro TLB (ITLB)
5.3.1 Joint TLB

The 74K core implements a 16-64 dual-entry, fully associative Joint TLB that maps 32-128 virtual pagesto their cor-
responding physical addresses. The purpose of the TLB isto trandlate virtual addresses and their corresponding ASID
into a physical memory address. The trandation is performed by comparing the upper bits of the virtual address
(along with the ASID bits) against each of the entriesin the tag portion of the JTLB structure. Because this structure
is used to trang ate both instruction and data virtual addresses, it isreferred to asa“joint” TLB.

The JTLB isorganized as 16-64 pairs of even and odd entries containing descriptions of pagesthat range in size from
4-KBytesto 256M Bytes into the 4-GByte physical address space.

The JTLB isorganized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds to two
physical dataentries, an even page entry and an odd page entry. The highest order virtual address bit not participating
in the tag comparison is used to determine which of the two data entries is used. Since page size can vary on a page-
pair basis, the determination of which address bits participate in the comparison and which bit is used to make the
even-odd selection must be done dynamically during the TLB lookup.

Figure 5.8 shows the contents of one of the dual-entries in the JTLB. The bit ranges shown in the figure serve to clar-
ify which address bits are (or may be) affected during the translation process.

Figure 5.8 JTLB Entry (Tag and Data)

PageMask[28:13]
Tag Entry -
VPN2[31:13] G ASID[7:0]
17 I 8

PFNO[31:12] CO[2:0] E
Data Entries

PFN1[31:12] C1[2:0] Vi

20 3 1 1
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 97

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

98

Table 5.7 and Table 5.8 explain each of the fieldsin a JTLB entry.

Table 5.7 TLB Tag Entry Fields

Field Name Description
PageMask[28:13] Page Mask Value. The Page Mask defines the page size by masking the appropriate
VPNZ2 hits from being involved in a comparison. It is also used to determine which
address it is used to make the even-odd page (PFNO-PFN1) determination. Seethetable
below.

PageMask Page Size Even/Odd Bank Select Bit
00_0000_0000_0000_00 4KB VAddr[12]
00_0000_0000_0000_11 16KB VAddr[14]
00_0000_0000_0011_11 64KB VAddr[16]
00_0000_0000_1111 11 256KB VAddr[18]
00_0000_0011 1111 11 1MB VAddr[20]
00_0000_1111 1111 11 4MB VAddr[22]

00 0011 1111 1111 11 16MB VAddr[24]
00 1111 1111 1111 11 64MB VAddr[26]
11 1111 1111 1111 11 256MB VAddr[28]
The PageMask column above shows all the legal values for PageM ask. Because each
pair of bits can only have the same value, the physical entry in the JTLB will only save a
compressed version of the PageMask using only 8 bits. Thisis however transparent to
software, which will always work with a 16 bit field
VPN2[31:13] Virtual Page Number divided by 2. Thisfield contains the upper bits of the virtual page
number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:29 are
alwaysincluded in the TLB lookup comparison. Bits 28:13 are included depending on
the page size, defined by PageMask
G Global Bit. When set, indicates that this entry is global to all processes and/or threads
and thus disablesinclusion of the ASID in the comparison.
ASID[7:0] Address Space | dentifier. |dentifies which process or thread this TLB entry is associated
with.
Table 5.8 TLB Data Entry Fields
Field Name Description
PFNO[31:12], Physical Frame Number. Defines the upper bits of the physical address.
PFN1[31:12]

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




5.3 Translation Lookaside Buffer

Table 5.8 TLB Data Entry Fields (Continued)

Field Name Description
Co[2:0], Cacheability. Contains an encoded value of the cacheability attributes and determines
C1[2:.0] whether the page should be placed in the cache or not. The field is encoded as follows:
C[2:0] Coherency Attribute
0 Cacheable, noncoherent, write-through, no write-allocate
1 Reserved
2 Uncached
3 Cacheable, noncoherent, write-back, write-allocate
4 Reserved
5 Reserved
6 Reserved
7 Uncached Accelerated
DO, “Dirty” or Write-enable Bit. Indicates that the page has been written and/or iswritable. If
D1 this bit is set, stores to the page are permitted. If the bit is cleared, storesto the page
cause a TLB Modified exception.
V0, Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping are valid. If
V1 thishit is set, accesses to the page are permitted. If the bit is cleared, accessesto the page
causeaTLB Invalid exception.

In order to fill an entry in the JTLB, software executesa TLBWI or TLBWR instruction (see Section 5.4.3 “TLB
Instructions”). Prior to invoking one of theseinstructions, several CPO registers must be updated with the information
to bewrittento a TLB entry:

» PageMask is set in the CPO PageMask register.

* VPN2, and ASID are set in the CPO EntryHi register.

* PFNO, CO, DO, VO, and G bits are set in the CPO EntryLo0 register.

 PFN1, C1, D1, V1, and G bhits are set in the CPO EntryLol register.

Note that the global bit “G” is part of both EntryLo0 and EntryLol. The resulting “G” bit in the JTLB entry is the log-
ical AND between the two fieldsin EntryLoO and EntryLol. Please refer to Chapter 7, “CPO Registers of the 74K™
Core” for further details.

The address spaceidentifier (ASID) helpsto reduce the frequency of TLB flushing on a context switch. The existence

of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID valueis stored in
the EntryHi register and is compared to the ASID value of each entry.

5.3.2 Instruction TLB

TheITLB isa4-entry, fully-associative TLB dedicated to performing translations for the instruction stream. The
ITLB only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 99

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

ThelTLB ismanaged by hardware and is transparent to software. If afetch address cannot be translated by the ITLB,
the JTLB is accessed trying to trandlate it in the following clock cycles. If successful, the trandation information is
copied into the ITLB and bypassed to the tag comparators. Thisresultsin an ITLB miss penalty of at least 2 cycles.
Depending on the JTLB implementation or if it is busy with other operations, it may take additional cycles.

5.4 Virtual-to-Physical Address Translation

Converting avirtual addressto aphysical address begins by comparing the virtual address from the processor with the
virtual addressesin the TLB. There is amatch when the VPN of the addressisthe same asthe VPN field of the entry,
and either:

» TheGloba (G) hit of both the even and odd pages of the TLB entry are set, or

 TheASID field of the virtual addressisthe same asthe ASID field of the TLB entry

Thismatchisreferred to asa TLB hit. If thereis no match, a TLB miss exception is taken by the processor, and soft-
wareisalowed to refill the TLB from a page table of virtual/physical addressesin memory.

Figure 5.9 shows the trandation of avirtual addressinto aphysical address. In thisfigure, the virtual addressis
extended with an 8-bit ASID, which reduces the frequency of TLB flushes during a context switch. This 8-bit ASID
contains the number assigned to that process and is stored in the CPO EntryHi register.

Figure 5.9 Overview of Virtual-to-Physical Address Translation

Virtual Address
1.Virtual address (VA) represented by the virtual page

number (VPN) is compared with tag in TLB. G ASID VPN | Offset I

2. If there is a match, the page frame number ASID
(PFNO or PFN1) representing the upper bits of the
physical address (PA) is output from the TLB the
TLB.

TLB
Entry

3. The Offset, which does not pass through the TLB, is
then concatenated with the PFN. PFN | Offset I

Physical Address

If thereisavirtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and concat-
enated with the Offset to form the physical address. The Offset represents an address within the page frame space. As
shown in Figure 5.9, the Offset does not pass through the TLB.

100 MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.4 Virtual-to-Physical Address Translation

Figure 5.10 shows a flow diagram of the address translation process for two page sizes. The top portion of the figure
shows avirtual addressfor a4 KByte page size. The width of the Offset is defined by the page size. The remaining 20
bits of the address represent the virtual page number (VPN). The bottom portion of Figure 5.10 shows the virtual
address for a 16 MByte page size. The remaining 8 bits of the address represent the VPN.

Figure 5.10 32-bit Virtual Address Translation

Virtual address with 1M (220) 4-KByte pages
39 32 31 20 bits = 1M pages 12 11 0

ASID | VPN Offset

A J
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory.

Bit 31 of the virtual address

selects user and kernel address 32-bit Physical Address
spaces. 31 L
| PFNO/ | Offset I
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory.
A A
\Yell M
.
39 32 31 24 23 0
ASID VPN Offset

8 bits = 256 pages
Virtual Address with 256 (28)16-MByte pages

5.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two datafields. If amatch isfound, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The
granularity of JTLB mappingsis defined in terms of TLB pages. The JTLB supports pages of different sizes ranging
from 4 KB to 256 MB in powers of 4. If amatch isfound, but the entry isinvalid (the V bit inthe datafield is0), a
TLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in
memory. Figure 5.11 shows the trand ation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into arandom entry. The
Random register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrap-
ping to the maximum onceits value is equal to the Wired register. Thus, TLB entries below the Wired value cannot be
replaced by a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for alivelock
situation, the Random register includes a 10-bit LFSR that introduces a pseudo-random perturbation into the decre-
ment.

The core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. On the
TLB write operation, the VPN2 field to be written is compared with all other entriesin the TLB. If amatch occurs,
the entry in the TLB isvalid, and the entry being written is valid, the core takes a machine-check exception, sets the
TS hbit in the CPO Status register, and aborts the write operation. For further details on exceptions, please refer to
Chapter 6, “Exceptions and Interrupts in the 74K™ Core”. Thereisahidden bit in each TLB entry that is cleared on
aReset. Thishit is set oncethe TLB entry iswritten and is included in the match detection. Therefore, uninitialized
TLB entrieswill not cause a TLB shutdown.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 101

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

102

Compared with previous cores from MIPS Technologies, the 74K core uses a more relaxed check for multiple
matches in order to avoid machine check exceptions while flushing or initializing the TLB. On awrite, all matching
entries are disabled to prevent them from matching on future compares. A machine check isonly signaled if the entry
being written hasits valid bit set, the matching entry in the TLB hasitsvalid bit set, and the matching entry is not the
entry being written. The cases for the signalling of the machine check exception are enumerated in Table 5.9.

Table 5.9 Machine Check Exception

Existing Matching Entry equals Machine
Match Written Entry Existing Page Valid Bit | Written Page Valid Bit Check
No X X X No
Yes Yes X X No
Yes No 0 0 No
Yes No 0 1 No
Yes No 1 0 No
Yes No 1 1 Yes

5.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
regions, the 74K core provides two mechanisms.

5.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KBytes to 256
MBYytes, in multiples of 4. The PageMask register isloaded with the desired page size, which is then entered into the
TLB when anew entry iswritten. Thus, operating systems can provide special-purpose maps. For example, atypical
frame buffer can be memory-mapped with only one TLB entry.

The 74K core implements the following page sizes:
4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, and 256M
Software can determine which page sizes are supported by writing all onesto the PageMask register, then reading the

value back. For additional information, see Section 7.2.7 “PageMask (CPO Register 5, Select 0): Control for Variable
Page Sizein TLB Entries’.

5.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. TLB refill is often done using
the TLBWR instruction to randomly replace one of the existing entries. The processor provides a mechanism
whereby a programmable number of mappings can be locked into the TLB viathe CPO Wired register, thus avoiding
random replacement. Refer to Section 7.2.8 “Wired (CPO Register 6, Select 0): Controls Number of Fixed ("wired")
TLB Entries’ for further details. For entriesthat are |eft available for random replacement, the core includes two
algorithmsfor selecting the entry. One involves a counter that decrements almost every cycle (with some pseudo-ran-
dom perturbation to minimize the likelihood of livelock conditions). A second scheme keeps atable of the TLB
entries that have been most recently used and tries to avoid selecting one of them. Selection of the algorithm is done
viathe CPO Configbyyrup bit.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.4 Virtual-to-Physical Address Translation

Figure 5.11 TLB Address Translation Flow in the 74K™ Processor Core

For valid address space, Virtual Address (Input)

see the section describing
Modes of operation in this

chapter.
Address No User No
Error Address?

Exception Yes

kseg0/kseg1
Address

Unmapped \Y'
Address

\
No >
Yes
Y Y
o Noncacheable TLB TLB Refil
s Invalid ”

Access
Main
Memory
Physical Address (Output)

5.4.3 TLB Instructions

Table 5.10 lists the TLB-related instructions. Refer to Chapter 13, “ 74K ™ Processor Core Instructions” for more
information on these instructions.

Table 5.10 TLB Instructions

Op Code Description of Instruction
TLBP Trandation Lookaside Buffer Probe
TLBR Trandation Lookaside Buffer Read
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 103

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

Table 5.10 TLB Instructions (Continued)

Op Code Description of Instruction
TLBWI Trandation Lookaside Buffer Write Index
TLBWR Trandlation Lookaside Buffer Write Random

5.5 Fixed Mapping MMU

The 74K core optionally implements a simple Fixed Mapping (FM) memory management unit that is smaller than the
afull trandation lookaside buffer (TLB) and more easily synthesized. Likea TLB, the FM performs virtual-to-physi-
cal address trandation and provides attributes for the different memory segments. Those memory segmentswhich are
unmapped in a TLB implementation (kseg0 and ksegl) are trandated identically by the FM MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in the Config regis-
ter. Table 5.11 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) fields of the Config reg-
ister.

Table 5.11 Cache Coherency Attributes

Config Register Fields
K23, KU, and KO Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write-allocate
1 Reserved
2 Uncached
3 Cacheable, noncoherent, write-back, write-allocate
4 Reserved
5 Reserved
6 Reserved
7 Uncached Accelerated

With the FM MMU, no trandlation exceptions can be taken, although address errors are till possible.

Table 5.12 Cacheability of Segments with Fixed Mapping Translation

Virtual Address
Segment Range Cacheability
useg/kuseg 0x0000_0000- Controlled by the KU field (bits 27:25) of the Config register. Refer to
OX7FFF_FFFF Table 5.11 for the encoding.
kseg0 0x8000_0000- Controlled by the KO field (bits 2:0) of the Config register. See Table
OX9FFF_FFFF 5.11 for the encoding.
ksegl 0xA000_0000- Always uncacheable
OxBFFF_FFFF
kseg2 0xC000_0000- Controlled by the K23 field (bits 30:28) of the Config register. Refer to
OXDFFF_FFFF Table 5.11 for the encoding.
kseg3 OxEO000_0000- Controlled by K23 field (bits 30:28) of the Config register. Refer to
OxFFFF_FFFF Table 5.11 for the encoding.
104 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



5.5 Fixed Mapping MMU

The FM performs asimple translation to map virtual addresses to physical addresses. This mapping is shown in
Figure5.12.

When the ERL bit in the Status register is set, useg and kuseg are unmapped and uncached, just asthey are when
thereisaTLB. The mapping when ERL = 1isshown in Figure 5.13. The ERL hit isusually not asserted by software,
but is asserted by hardware after a Reset, NMI, or Cache Error. See Section 6.8 “Exception Descriptions’ for further
information on exceptions.

Figure 5.12 FM Memory Map (ERL=0) in the 74K™ Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 0xE000_0000
|
kseg2 kseg2
0xC000_0000 0xC000_0000
|
kseg1

0xA000_0000

kseg0
0x8000_0000

useg/kuseg

useg/kuseg 0x4000_0000
reserved

0x2000_0000

kseg0O/kseg1
0x0000_0000 0x0000_0000

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 105

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Memory Management of the 74K™ Core

106

Figure 5.13 FM Memory Map (ERL=1) in the 74K™ Processor Core

Virtual Address

Physical Address

kseg3 kseg3
0xE000_0000 0xE000_0000
-
kseg2 kseg2
0xC000_0000 0xC000_0000
-
kseg1
0xA000_0000 reserved
kseg0
0x8000_0000 0x8000_0000
useg/kuseg
useg/kuseg
0x2000_0000
ksegO/kseg1
0x0000_0000 0x0000_0000

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 6

Exceptions and Interrupts in the 74K™ Core

The 74K processor core receives exceptions from a number of sources, including arithmetic overflows, missesin the
trang ation lookaside buffer (TLB), 1/O interrupts, and system calls. When the CPU detects an exception, the normal
seguence of instruction execution is suspended and the processor enters kernel mode, disables interrupts, loads the
Exception Program Counter (EPC) register with the location where execution can restart after the exception has been
serviced, and forces execution of a software exception handler located at a specific address.

The software exception handler saves the context of the processor, including the contents of the program counter, the
current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to identify the
instruction that caused the exception. For precise exceptions, the restart location in the EPC register is the address of
the instruction that caused the exception or, if theinstruction was executing in a branch delay slot (asindicated by the
BD bit in the Cause register), the address of the branch instruction immediately preceding the delay slot. Imprecise
exceptions, on the other hand, are those for which no return address can be identified. Bus error exceptions and CP2
exceptions are examples of imprecise exceptions.

This chapter contains the following sections:

e Section 6.1 “Exception Conditions’

e Section 6.2 “Exception Priority”

e Section 6.3 “Interrupts’

e Section 6.4 “GPR Shadow Registers’

e Section 6.5 “Exception Vector Locations’

e Section 6.6 “General Exception Processing”

e Section 6.7 “Debug Exception Processing”

e Section 6.8 “Exception Descriptions’

e Section 6.9 “Exception Handling and Servicing Flowcharts”
6.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline
are cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 107

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

When the exception condition is detected on an instruction fetch, the core aborts that instruction and al instructions
that follow. When this instruction reaches the WB stage, the exception flag causes it to write various CPO registers
with the exception state, change the current program counter (PC) to the appropriate exception vector address, and
clear the exception bits of earlier pipeline stages.

For most types of exceptions, thisimplementation allows all preceding instructions to complete execution and pre-
vents all subsequent instructions from completing. Thus, the valuein the EPC (or ErrorEPC for errors or DEPC for
debug exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in the order of execu-
tion—an instruction taking an exception may itself be killed by an instruction further down the pipeline that takes an
exception in alater cycle.

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after following
instructions have completed.

6.2 Exception Priority

108

Table 6.1 contains alist and a brief description of all exception conditions, The exceptions are listed in the order of
their relative priority, from highest priority (Reset) to lowest priority (Load/store bus error). When several exceptions
occur simultaneously, the exception with the highest priority istaken.

Table 6.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or
by setting the EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store. Imprecise.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

TLBL Fetch TLB miss.
Fetch TLB hit to page with V=0.

I-cache Error Parity error on |-cache access.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SY SCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction modifying local state when CorExtend is not
enabled.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 6.1 Priority of Exceptions (Continued)

6.3 Interrupts

Exception Description
DSPDis DSP ASE State Disabled.
RI Execution of a Reserved Instruction.
FPE Floating Point exception.
Ov Execution of an arithmetic instruction that overflowed.
Tr Execution of atrap (when trap condition istrue).
DDBL / DDBS EJTAG Data Address Break (address only).
WATCH A reference to an address in one of the watch registers (data).
AdEL Load address alignment error.
Load reference to protected address.
AdES Store address alignment error.
Store to protected address.
TLBL Load TLB miss.
Load TLB hit to page with V=0
TLBS Store TLB miss.
Store TLB hit to page with VV=0.
TLB Mod Store to TLB page with D=0.
D-cache Error Cache parity error. Imprecise.
DBE Load or store bus error. Imprecise.

6.3 Interrupts

In the MIPS32® Release 1 architecture, support for exceptions included two software interrupts, six hardware inter-
rupts, and a special -purpose timer interrupt. The timer interrupt was provided externa to the core and was typically
combined with hardware interrupt 5 in a system-dependent manner. Interrupts were handled either through the gen-
eral exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauselV. Software
was required to prioritize interrupts as a function of the Cause),, bitsin the interrupt handler prologue.

Release 2 of the Architecture, implemented by the 74K core, adds a number of upward-compatible extensionsto the
Release 1 interrupt architecture, including support for vectored interrupts and the implementation of a new interrupt
mode that permits the use of an external interrupt controller.

Additionally, internal performance counters have been added to the 74K core. These counters can be configured to
count various events within the core. When the MSB of the counter is set, it can trigger a performance counter inter-
rupt. Thisinterrupt, like the timer interrupt, is an output from the core that can be brought back into the core’sinter-
rupt pinsin a system-dependent manner.

The Fast Debug Channel feature in EJTAG provides alow overhead means for sending data between core software
and the EJTAG probe. It includes a pair of FIFOs for transmit and receive data. Software can define FIFO thresholds
for generating an interrupt. The fast debug channel interrupt is also routed similarly to the timer and performance
counter interrupts. The interrupt status is made available on an output pin and can be brought back into the core's
interrupt pins.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 109

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

110

6.3.1 Interrupt Modes

The 74K core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

Interrupt Compatibility mode, in which the behavior of the 74K isidentical to the behavior of an implementation
of Release 1 of the Architecture.

Vectored Interrupt (V1) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of thismodeis
denoted by the Vint bit in the Config3 register. Although this modeis architecturally optional, it is always present
on the 74K core, so the Vint bit will alwaysread asal.

External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support
for an external interrupt controller that handles prioritization and vectoring of interrupts. Aswith VI mode, this

mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On
the 74K core, the VEIC hit is set externally by the static input, SI_EICPresent, to allow system logic to indicate

the presence of an external interrupt controller.

Following reset, the 74K processor defaults to Compatibility mode, which is fully compatible with all implementa-
tions of Release 1 of the Architecture.

Table 6.2 shows the current interrupt mode of the processor as afunction of the Coprocessor O register fields that can

affect the mode.
Table 6.2 Interrupt Modes

= O
o > % < ]
m o) > > >
2] 2] = ™ ™
3 5 O o D
g S| E| £| %
n 8 8 Interrupt Mode
1 |[x X X X | Compatibility
x |0 X X X | Compatibility
X |x =0 X X | Compatibility
0 |1 #0 1 0 | Vectored Interrupt
0 |1 20 X 1 |[External Interrupt Controller
0 |1 #0 0 0 | Cannot occur because IntCtl \,5 cannot be non-zero if neither Vectored Inter-

rupt nor Externa Interrupt Controller mode is implemented.
“X" denotesdon’t care

6.3.1.1 Interrupt Compatibility Mode

Thisisthe default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if Causey, = 0) or vector offset 0x200 (if
Cause j, = 1). Thismodeisin effect when any of the following conditions are true:

Causey, =0

StatusBEV =1

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.3 Interrupts

* IntCtlyg = 0, which isthe case if vectored interrupts are not implemented or have been disabled.

Hereisatypical software handler for compatibility mode:

/*
* Assumptions:
* - Causery = 1 (if it were zero, the interrupt exception would have to
* be isolated from the general exception vector before arriving
* here)
* - GPRs k0 and k1l are available (no shadow register switches invoked in
* compatibility mode)
* - The software priority is IP7..IP0 (HWS5..HWO, SWl..SWO0)
*
* Location: Offset 0x200 from exception base
*/
IVexception:
mfcO k0O, CO_Cause /* Read Cause register for IP bits */
mfcO k1, CO_Status /* and Status register for IM bits */
andi k0, kO, M_CauseIM /* Keep only IP bits from Cause */
and k0, kO, k1 /* and mask with IM bits */
beg k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, kO /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */
s11 k0, kO, VS /* Shift to emulate software IntCtlyg */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, kO, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop
/*

* Bach interrupt processing routine processes a specific interrupt, analogous

to those reached in VI or EIC interrupt mode. Since each processing routine

is dedicated to a particular interrupt line, it has the context to know

which line was asserted. Each processing routine may need to look further

to determine the actual source of the interrupt if multiple interrupt requests
are ORed together on a single IP line. Once that task is performed, the
interrupt may be processed in one of two ways:

* %k %k %

*

*

* - Completely at interrupt level (e.g., a simple UART interrupt). The

* SimpleInterrupt routine below is an example of this type.

* - By saving sufficient state and re-enabling other interrupts. In this

* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single

* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/
SimpleInterrupt:

/*

* Process the device interrupt here and clear the interupt request
* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor 0 state is such that an ERET
* will simply return to the interrupted code.
*/

eret /* Return to interrupted code */

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 111

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

112

NestedException:

/*

* Nested exceptions typically require saving the EPC and Status registers,
* saving any GPRs that may be modified by the nested exception routine, disabling

the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code
* below cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.

/* Save GPRs here,
k0,
kO,
kO,
k0,
k1,

mfcO
s
mfcO
sw
11

and
ins

mtcO

kO,
kO,

kO,

and setup software context */

CO_EPC /* Get restart address */
EPCSave /* Save in memory */
CO0_Status /* Get Status value */
StatusSave /* Save in memory */

~IMbitsToClear /* Get IM bits to clear for this interrupt */

k0, k1

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

/* Clear bits in copy of Status */

zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

CO0_Status

/* Clear KSU, ERL, EXL bits in k0 */
/* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

* Process interrupt here, including clearing device interrupt.

In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of
* this example.

/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/

di
1w

1
mtcO
mtcO

kO,
k1,
kO,
k1,

/* Disable interrupts - may not be required */

StatusSave /* Get saved Status (including EXL set) */
EPCSave /* and EPC */

CO_Status /* Restore the original value */

CO_EPC /* and EPC */

/* Restore GPRs and software state */

eret

6.3.1.2 Vectored Interrupt Mode

/* Dismiss the interrupt */

In Vectored Interrupt (V1) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be
used to direct each interrupt to a dedicated handler routine. This mode also allows each interrupt to be mapped to a
GPR shadow register set for use by the interrupt handler. VI mode isin effect when all the following conditions are

true:

Confi93v|m =1

Config3yg,c =0

IntCtIVS #0

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



e Causey=1

b StatUSBEV =0

6.3 Interrupts

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer,

performance counter, and fast debug channel interrupts are combined in a system-dependent way (external to the

core) with the hardware interrupts (the interrupt with which they are combined isindicated by the IntCtlp1ypciiprDC
fields) to provide the appropriate relative priority of the those interrupts with that of the hardware interrupts. The pro-
cessor interrupt logic ANDs each of the Causep bits with the corresponding Status), bits. If any of these valuesis 1,
and if interrupts are enabled (Statusg = 1, Statusgy, = 0, and Statusgg, = 0), an interrupt is signaled and a priority

encoder scans the values in the order shown in Table 6.3.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Vector Number
Relative Interrupt Interrupt Interrupt Request Generated by
Priority Type Source Calculated From Priority Encoder
Highest Priority Hardware HW5 IP7 and IM7 7
HW4 IP6 and IM6 6
HW3 IP5 and IM5 5
HW2 IP4 and IM4 4
HW1 IP3and IM3 3
HWO IP2 and IM2 2
Software SW1 IP1land IM1 1
Lowest Priority SWO0 IPO and IMO 0

The priority order places arelative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an

encoded vector number that is used in the calculation of the handler for that interrupt, as described below. Thisis

shown pictorially in Figure 6.1.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

113



Exceptions and Interrupts in the 74K™ Core

114

Figure 6.1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate
B> IntCtl prpgy
|ntCt||pT|
An
HW5 T R T Interrupt
equest Request
HW4 o [ ®LIP6 B IM6[—B WSFD—>
HW3 5 [ ®IP5 —=| IM5— 8 |inClys
HW?2 § = P4 —P ||\/|44>u8J }
HW1 b IP3 |M3—>_§ Vector 5 | Exception
HWO 3 P2 3> IM2|—p{ 2 |Number B | Vector Offset
|
IPL [ IM1|— & —
IPO [ IMO|—» k)
f— °
Causer,
Calisery | SRSMap |
Causerpc Shadow Set

Number

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following the
IVexception labe shown for the compatibility mode handler above. Instead, the hardware performsthe prioritiza-
tion, dispatching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored
interrupt handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Sim-
plelnterrupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look asfollows:

NestedException:

/*

*

* ok % ok ok

Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling

the appropriate IM bits in Status to prevent an interrupt loop, putting

the processor in kernel mode, and re-enabling interrupts. The sample code

below cannot cover all nuances of this processing and is intended only

to demonstrate the concepts.

/* Use the current GPR shadow set, and setup software context */

mfcO k0O, CO_EPC /* Get restart address */

s k0, EPCSave /* Save in memory */

mfcO k0, CO_Status /* Get Status value */

sw k0O, StatusSave /* Save in memory */

mfcO k0O, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

sw k0, SRSCtlSave

1i kl, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/* this must include at least the IM bit */

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



and

/*
/*
k0, kO, k1

6.3 Interrupts

for the current interrupt, and may include */
others */
/* Clear bits in copy of Status */

/* If switching shadow sets, write new value to SRSCtlpgg here */

ins

mtcO

/*

k0, zero, S_StatusEXL,

k0, CO_Status

* If switching shadow sets,

* address to EPC,
* shadow sets,

*/

/* Process interrupt here,

/*

(W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */

/* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

clear only KSU above, write target
and do execute an eret to clear EXL, switch
and jump to routine

including clearing device interrupt */

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/

di
1w

1
mtcO
1w
mtcO
mtcO
ehb
eret

/*
k0O, StatusSave /*
k1, EPCSave /*
k0, CO_Status /*
k0, SRSCtlSave /*
k1, CO_EPC /*
k0, CO_SRSCtl /*

/*

/*

6.3.1.3 External Interrupt Controller Mode

Disable interrupts - may not be required */

Get saved Status (including EXL set) */
and EPC */

Restore the original value */

Get saved SRSCtl */

and EPC */

Restore shadow sets */

Clear hazard */

Dismiss the interrupt */

External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured to provide
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, fast debug channel, and performance counter interrupts, and directly supplying
to the processor the vector number of the highest priority interrupt.

EIC interrupt mode isin effect if al of the following conditions are true:

*  Config3ygc=1

* Causey=1

IntCtIVS #0

b StatUSBEV =0

In EIC mode, the processor sends the state of the software interrupt requests (Cause|p; |po) and the timer, perfor-
mance counter, and fast debug channel interrupt requests (Causetpciepcy) L the external interrupt controller, which
prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be
ahardwired logic block, or it can be configurable by control and status registers. This allows the interrupt controller
to be more specific or more general as afunction of the system environment and needs.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 115

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

116

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-
ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), isa6-bit
encoded value in the range 0..63, inclusive. The values 1..63 represent the lowest (1) to highest (63) RIPL for the
interrupt to be serviced. A value of 0 indicates that no interrupt requests are pending. The interrupt controller inputs
this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC mode.

Status,p, (which overlays Status)y; o) iSinterpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (avalue of zero indicatesthat no interrupt is currently being serviced). When the interrupt control-
ler requests service for an interrupt, the processor compares RIPL with Statusp; to determineif the requested inter-
rupt has a higher priority than the current IPL. If RIPL is strictly greater than Status,p|, and interrupts are enabled
(Statusg = 1, Statusgy, = 0, and Statusgg, = 0), an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into Causegp. (which overlays Cause p; p,) and signals the externa
interrupt controller to notify it that the request is being serviced. The interrupt exception uses the value of Causegp.
asthe vector number. Because Causegp isonly loaded by the processor when an interrupt exceptionissignaled, itis
available to software during interrupt processing.

In EIC mode, the external interrupt controller isa so responsible for supplying the GPR shadow register set number to
use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the vec-
tored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the cor-
rect GPR shadow set number when an interrupt is requested. When the processor 1oads an interrupt request into

Causegyp|, it also loads the GPR shadow set number into SRSCtlg css, Which is copied to SRSCtl-gs when the inter-

rupt is serviced.
The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

Figure 6.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Any
———— Causey Interrupt
Request
—— Causepg Status Request
Statusipy L = RP e |
Statuspg

— (e

Interrupt
o | Interrupt Service Exception
T | Started
—P g Ll Coad |ntct|\/s ﬁ
O Fields =
& | Requested o Vector 8 | Exception
g —> & IPL F Number % Vector Offset
5 E - -
I ! o
g8 —® £ © i
> +—
I R A S Shadow Set
5 % % | (I Number
5= 3
14
)

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.3 Interrupts

A typical software handler for EIC mode bypasses the entire sequence of code following the ITvexception label
shown for the compatibility-mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility-mode examples, an EIC interrupt handler may
take advantage of adedicated GPR shadow set to avoid saving any registers. Assuch, the SimpleInterrupt code
shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causeryp, 0 Status,p_to prevent lower priority interrupts from interrupting the handler. Here is an example of such
aroutine:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
* getting up the appropriate GPR shadow set for the routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
* to demonstrate the concepts.

/* Use the current GPR shadow set, and setup software context */

mfcO k1, CO_Cause /* Read Cause to get RIPL value */

mfcO k0O, CO_EPC /* Get restart address */

srl k1, k1, S_CauseRIPL /* Right justify RIPL field */

sw k0, EPCSave /* Save in memory */

mfcO k0, CO_Status /* Get Status value */

sw k0O, StatusSave /* Save in memory */

ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave

/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtcO k0, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */

* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine

*/

/* Process interrupt here, including clearing device interrupt */

/*
* The interrupt completion code is identical to that shown for VI mode above.
*/

6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtly, g to create the interrupt offset, which is added to 0x200 to create the

exception vector offset. For VI mode, the vector number isin the range 0..7, inclusive. For EIC interrupt mode, the
vector number isin therange 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtly, 5 field specifiesthe

spacing between vector locations. If thisvalueis zero (the default reset state), the vector spacing is zero and the pro-

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 117
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

cessor reverts to Interrupt Compatibility mode. A non-zero value enables vectored interrupts. Table 6.4 shows the
exception vector offset for a representative subset of the vector numbers and values of the IntCtly, g field.

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtlyg Field
Vector Number 0b00001 0b00010 | 0Ob00100 | 0b01000 | Ob10000
0 0x0200 0x0200 0x0200 0x0200 0x0200
1 0x0220 0x0240 0x0280 0x0300 0x0400
2 0x0240 0x0280 0x0300 0x0400 0x0600
3 0x0260 0x02C0 0x0380 0x0500 0x0800
4 0x0280 0x0300 0x0400 0x0600 0x0A00
5 0x02A0 0x0340 0x0480 0x0700 0x0C00
6 0x02C0 0x0380 0x0500 0x0800 OxOEQ00
7 0x02EO 0x03C0 0x0580 0x0900 0x1000
.
61 0x09A0 0x1140 0x2080 0x3F00 0x7C00
62 0x09C0 0x1180 0x2100 0x4000 O0x7EOO
63 Ox09EO 0x11C0 0x2180 0x4100 0x8000

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset <« 0x200 + (vectorNumber X (IntCtlyg || 0000000))

6.4 GPR Shadow Registers

118

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high-priority inter-
rupts and exceptions, and to provide specified processor modes with the same capability. Thisis done by introducing
multiple copies of the GPRs, called shadow sets, and by allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are designated as shadow set zero.

The number of GPR shadow sets is a build-time option on the 74K core. Although Release 2 of the Architecture
defines amaximum of 16 shadow sets, the core allows one (the normal GPRs), two, or four shadow sets. The highest
number actually implemented is indicated by the SRSCtl, s field. If thisfield is zero, only the normal GPRs are

implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode viaan
interrupt or exception. Once a shadow set is bound to akernel mode entry condition, reference to GPRs operate
exactly as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged soft-
ware may need to reference all GPRsin the register file, even specific shadow registers that are not visible in the cur-
rent mode. The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtlI register
provides the number of the current shadow register set, and the PSS field of the SRSCtI register provides the number
of the previous shadow register set (the set that was current before the last exception or interrupt occurred).

If the processor is operating in VI mode, binding of a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific shadow

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.4 GPR Shadow Registers

set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl register.
When an exception or interrupt occurs, the value of SRSCtl-gs is copied to SRSCtlpgg, and SRSCtl-gg is Set to the

value taken from the appropriate source. On an ERET, the value of SRSCtlpss is copied back into SRSCtl-gg to

restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fieldsin the
SRSCtl register on an interrupt or exception are as follows:

1. Nofieldinthe SRSCtl register is updated if any of the following conditions are true (in this case, steps 2 and 3
are skipped):

*  Theexception isonethat sets Statusgg, : Reset or NMI.
e The exception causes entry into EJTAG Debug Mode
e Statusggy =1
e Statusgy =1
2. SRSCtlcgg iscopied to SRSCtlpsg
3. SRSCtlcgg is updated from one of the following sources:

* Theappropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Cause)y = 1,
Config3ygc = 0, and Config3y,,; = 1. These are the conditions for a vectored interrupt.

» TheEICSS field of the SRSCtI register if the exception is an interrupt, Cause), = 1, and Config3yg,c = 1.
These are the conditions for a vectored EIC interrupt.

* TheESS field of the SRSCtI register in any other case. Thisisthe condition for a non-interrupt exception, or
anon-vectored interrupt.

Similarly, therules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. Nofieldinthe SRSCtl register is updated if any of the following conditions are true (in this case, step 2 is
SKipped):

* A DERET isexecuted
* AnERET is executed with Statusgg, =1
2. SRSCtlpgs iscopied to SRSCtlcgs.

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialized (Statusggy = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlpgs, loading EPC with a
target address, and doing an ERET.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 119

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

6.5 Exception Vector Locations

The Reset, Soft Reset, NMI, and EJTAG Debug exceptions are vectored to a specific location, as shown in Table 6.5
and Table 6.6. Addresses for all other exceptions are a combination of a vector offset and a vector base address. In
Release 1 of the architecture, the vector base addresswas fixed. In Release 2, software is allowed to specify the vector
base address via the EBase register for exceptions that occur when Statusgg,, equals 0. Another degree of flexibility
in the selection of the vector base address, for use when Statusggy, equals 1, is provided viaa set of input pins,
SI_UseExceptionBase and SI_ExceptionBase[29:12]. Table 6.5 shows the vector base address when
SI_UseExceptionBase equals 0, as a function of the exception and whether the BEV bit is set in the Status register.
Table 6.6 shows the vector base addresses when SI_UseExceptionBase = 1. As can be seen in Table 6.6, when
SI_UseExceptionBase equals 1, the exception vectors for cases where Statusggy, = 0 are not affected.

Table 6.7 shows the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 6.4 (on page 118) shows the offset from the base address in the case where Statusggy, = 0 and Cause), = 1.
Table 6.8 combines these two tablesinto one that contains all possible vector addresses as a function of the state that
can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtly,g = O.

Table 6.5 Exception Vector Base Addresses, SI_UseExceptionBase =0

StatUSBEV

Exception 0 1

Reset, NMI

0xBFC0.0000

EJTAG Debug (with ProbEn =0, in
the EJTAG_Control_register and
DCR.RDVec=0)

0xBFC0.0480

EJTAG Debug (with ProbEn =0, in
the EJTAG_Control_register and
DCR.RDVec=1)

0x DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn =1in
the EJTAG_Control_register)

0xFF20.0200

Cache Error EBases; 30| 1| 0xBFC0.0300
EBaseyg 1o || 0x000
Note that EBases; 3g have the fixed value
0bl10
Other EBases; 1o || 0x000 0xBFC0.0200
Note that EBases; 3o have the fixed value
0bl10

‘|l denotes hit string concatenation

Table 6.6 Exception Vector Base Addresses, SI_UseExceptionBase = 1

StatUSBEV
Exception 0 1
Reset, NMI 0b10 || SI_ExceptionBase [29:12] || 0x000
EJTAG Debug (with ProbEn =0 DebugVectorAddr[31:7] || 2b0000000
in the EJTAG_Control_register and
DCR.RDVec=0)

120

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.5 Exception Vector Locations

Table 6.6 Exception Vector Base Addresses, SI_UseExceptionBase = 1 (Continued)

StatUSBEV
Exception 0 1
EJTAG Debug (with ProbEn =0 0b10 | |SI_ExceptionBase[29:12] || 0x480
in the EJTAG_Control_register and
DCR.RDVec=1)
EJTAG Debug (with ProbEn =1 0xFF20.0200
in the EJTAG_Control_register)
Cache Error EBases; 30| 1|
EBa5928__12 ” 0x000 0bl01 | |
Note that EBases; 3o havethe SI_ExceptionBase [28:12] | |
fixed value 0b10 03300
Other EBasez; 1o || 0x000 0b10 ||
Notethat EBases; 5o havethe | SI_ExceptionBase [29:12] ||
fixed value 0b10 0x200
‘|I' denotes bit string concatenation

Table 6.7 Exception Vector Offsets

Exception Vector Offset
TLB Ré€fill, EXL =0 0x000
General Exception 0x180
Interrupt, Cause), = 1 0x200 (In Release 2 implementa-

tions, thisisthe base of the vectored
interrupt table when Statusggy = 0)

Reset, NMI None (uses reset base address)

Table 6.8 Exception Vectors

()
(2]
o
= &
Sla|x]=>]8
"5’_ o Ll [5) s
o |0 0 »n |a
o |2 |2 |3
52 (E (S |2
Bl |6 P
2 w Vector
Exception | ' (IntCtlys =0)
Reset, NMI O x| x| x|x 0xBFC0.0000
Reset, NMI 1| x| x| Xx|X 0b10 || SI_ExceptionBase[29:12] || 0x000
EJTAGDebug| O [ x | x | x | O 0xBFC0.0480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)
EJTAGDebug| 1 [ x | x | x | O 0b10 || SI_ExceptionBase[29:12] || 0x480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 121

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

Table 6.8 Exception Vectors (Continued)

()

(%2}

©

= i

slalx]=>]|8

"a m 1] [ s

o | 7 w | o

o |2 |2 |3

51228 |R

S |5 B =

3 i Vector
Exception (7)' (IntCtlys = 0)
EJTAGDebug| x | x | x | x [ 1 0xFF20.0200
TLB Refill 0o|lo0|1]x]x OxEBase[31:12] || 0x180
TLB Refill 0|10 x]|x 0xBFC0.0200
TLB Refill 1110 x]|x 0b10 || SI_ExceptionBase[29:12] || 0x200
TLB Réfill O] 1(1fx]|x 0xBFC0.0380
TLB Refill 11121 |x]|x 0bl0 || SI_ExceptionBase[29:12] || 0x380
Cache Error 0| 0| x| x|Xx 0xEBase[31:30] || Obl || EBase[28:12] || 0x100
Cache Error O] 1| x|x]|Xx 0xBFC0.0300
Cache Error 111 x| x]|x 0b101 || SI_ExceptionBase[28:12] || 0x300
Interrupt x| 0| 0] O0]Xx OxEBase[31:12] || 0x180
Interrupt x| 0| 0] 1]x OxEBase[31:12] || 0x200
Interrupt Ol1|0]0]|x 0xBFC0.0380
Interrupt 111]0|0]|x 0b10 || SI_ExceptionBase[29:12] || 0x380
Interrupt O] 1(0f1]|x 0xBFC0.0400
Interrupt 1(1]|0]1]x 0b10 || SI_ExceptionBase[29:12] || 0x400
All others 0| 0| x| x|x OxEBase[31:12] || 0x180
All others O] 1| x| x]|x 0xBFC0.0380
All others 1] 1] x| x]|x 0b10 || SI_ExceptionBase[29:12] || 0x380
‘X’ denotes don’t care,
‘|I' denotes bit string concatenation

6.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

» |f the EXL bit in the Status register is zero, the EPC register isloaded with the PC at which execution will be
restarted, and the BD bit is set appropriately in the Cause register (see Table 7.25). The value loaded into the
EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the instructionis
in the delay slot of abranch or jump which has delay slots. Table 6.9 shows the value stored in each of the CPO
PC registers, including EPC. For implementations of Release 2 of the Architectureif Statusggy = 0, the CSS
field in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

122 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.6 General Exception Processing

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

Table 6.9 Value Stored in EPC, ErrorEPC, or DEPC on Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC
No No Address of the instruction
No Yes Address of the branch or jump instruction (PC-4)
Yes No Upper 31 bits of the address of the instruction, combined

with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the ISA Mode hit

» TheCE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field isloaded, but not defined, for any exception type other than a coprocessor unusable exception.

e TheEXL hit isset in the Status register.
»  The processor begins executing at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD hit in the Cause register unlessit wishesto
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. Thisis noted in the descrip-
tion of each exception type below.

Operation:

/* If Statusgy; is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Causepp nor SRSCtl are modified */
if Statusgy;, = 1 then
vectorOffset <« 0x180
else
/* For implementations that include the MIPSl6e ASE, calculate potential */
/* PC adjustment for exceptions in the delay slot */
if Configley = 0 then
restartPC « PC
branchAdjust « 4 /* Possible adjustment for delay slot */
else
restartPC « PC_, | ISAMode
if (ISAMode = 0) or ExtendedMIPSlé6Instruction
branchAdjust « 4 /* Possible adjustment for 32-bit MIPS delay slot */
else
branchAdjust « 2 /* Possible adjustment for MIPS16 delay slot */
endif
endif
if InstructionInBranchDelaySlot then
EPC « restartPC - branchAdjust/* PC of branch/jump */
Causepp « 1
else
EPC <« restartPC /* PC of instruction */
Causepp < 0

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 123

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

124

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet < SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then
vectorOffset « 0x000
elseif (ExceptionType = Interrupt) then
if (Causery = 0) then
vectorOffset « 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset « 0x200
else
if Config3ygiec = 1 then
VecNum < Causegypr,
NewShadowSet < SRSCtlgicgg
else
VecNum <« VIntPriorityEncoder ()
NewShadowSet <« SRSMapiprX4+3..1p1.%4
endif
vectorOffset < 0x200 + (VecNum X (IntCtlyg || 0b00000))
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Cause;y = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */

/* Release 2 of the architecture */

if ((ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) and
(Statusggr, = 0)) then
SRSCtlpgg ¢ SRSCtlcgg
SRSCtlpgg ¢ NewShadowSet

endif

endif /* if Statusgy, = 1 then */

Causecy ¢ FaultingCoprocessorNumber
Causegyccoge ¢ ExceptionType
Statusgyp, < 1

if Configley = 1 then
ISAMode « O
endif

/* Calculate the vector base address */
if Statusggy = 1 then
vectorBase « O0xBFC0.0200
else
if ArchitectureRevision = 2 then
/* The fixed value of EBases3; 39 forces the base to be in kseg0 or ksegl */
vectorBase < EBases; 15 || 0x000
else
vectorBase « 0x8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC < vectorBase ;g || (vectorBase,g o + vectorOffsetyq )
/* No carry between bits 29 and 30 */

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.7 Debug Exception Processing

6.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

* TheDEPC register isloaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register isthe current PC if the
instruction is not in the delay slot of abranch, or the PC-4 of the branch if the instruction isin the delay ot of a
branch.

* TheDSS, DBp, DDBL, DDBS, DIB, and DINT hits (D* bits[5:0]) in the Debug register are updated appropriately,
depending on the debug exception type.

* Halt and Doze bitsin the Debug register are updated appropriately.
e  TheDM bit in the Debug register isset to 1.
» The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unlessit wishesto identify the address of the instruction that actually caused the debug exception.

A unique debug exception isindicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits[5:0]) in the
Debug register.

No other CPO registers or fields are changed due to the debug exception, and thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC « PC-4
Debugppp < 1
else
DEPC <« PC
Debugpgp < O
endif
Debugps pits at at [5:0] < DebugExceptionType
Debugy,1t ¢ HaltStatusAtDebugException
Debugp,,. ¢ DozeStatusAtDebugException
Debugpy < 1
if EJTAGControlRegisterp,oprrap = 1 then
PC « OxFF20_0200
else
if DebugControlRegistergpye. = 1 then
if CacheErr then
PC < 2#101 || DebugVectorAddr,g -, || 2#0000000
else
PC ¢« 2#10 | DebugVectorAddr,q -, || 2#0000000
else
if SI_UseExceptionBase
if CacheErr then

PC « 2#101 || SI_ExceptionBase[28:12] || 0x000
else
PC « 2#10 || SI_ExceptionBase[29:12] || 0x000
else
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 125

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

PC « O0xBFCO0_0480
endif

The location of the debug exception vector is determined by the ProbTrap bit in the EJTAG Control register (ECR) and
the RDVec hit in the Debug Control register (DCR), as shown in Table 6.10.

Table 6.10 Debug Exception Vector Addresses

ProbTrap bit in ECR RDVec bit in
Register DCR Register Debug Exception Vector Address
0 0 OxBFCO 0480
0 1 DebugVectorAddrz; 7 || 0000000
1 0 0xFF20 0200 in dmseg
1 1

The value in the optional drseg register DebugVectorAddr (offset 0x00020) is used as the debug exception vector
when the ECR ProbTrap bit is 0 and when enabled through the optional RDVec control bit in the Debug Control
Register (DCR). Bit 0 of DebugVectorAddr determines the ISA mode used to execute the handler. Figure 6.3 shows
the format of the DebugVectorAddr register; Table 6.11 describes the DebugVectorAddr register fields.

Figure 6.3 DebugVectorAddr Register Format

31 30 29 7 6 0
| 1 | 0 | DebugVectorOffset 0 ||M|

Table 6.11 DebugVectorAddr Register Field Descriptions

Fields
Name Bit(s) Description Read / Write | Reset State
1 31 Ignored on write; returns one on read. R 1
DebugVectorOffset 29:7 Programmable Debug Exception Vector Offset R/W Preset to
0x7F8009
IM 0 ISA mode to be used for exception handler R 0
0 30,6:1 Ignored on write; returns zero on read. R 0

Bits 31..30 of the DebugVectorAddr register are fixed with the value Ob10, and the addition of the base address and the
exception offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination
of these two restrictions forces the final exception addressto be in the ksegO or ksegl unmapped virtual address seg-
ments. For cache error exceptions, bit 29 isforced to a1 in the ultimate exception base address, so that this exception
always runs in the ksegl unmapped, uncached virtual address segment.

When MIPS16 isimplemented, the power-up state of IM is zero. If the implementation does not include MI1PS16, the
IM field is read-only, should be written with zero and will return O on aread.

If the TAP is not implemented, the debug exception vector location is as if ProbTrap=0.

6.8 Exception Descriptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 6.1.

126 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8 Exception Descriptions

6.8.1 Reset Exception

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When
a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, estab-
lishing critical state, and generally placing the processor in a state in which it can execute instructions from uncached,
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

e TheRandom register isinitialized to the number of TLB entries- 1.

e TheWired register isinitialized to zero.

»  The Config register isinitialized with its boot state.

« TheRP, BEY, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.
 Thel, R, and W fields of the WatchLo register areinitialized to 0.

e TheErrorEPC register isloaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of abranch. Otherwise, the ErrorEPC register isloaded with PC. Note that this value may or
may not be predictable.

» PCisloaded with 0XBFCO_0000.

Cause Register ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Random ¢« TLBEntries - 1

Wired « 0

Config « ConfigurationState

Statusgp < 0

Statusgpy < 1

Statuspg < 0

Statusgg < 0

Statusyyr < O

Statusggp < 1

WatchLo; <~ 0

WatchLog < 0

WatchLoy < 0O

if InstructionInBranchDelaySlot then
ErrorEPC ¢« PC - 4

else
ErrorEPC « PC

endif

PC « O0xBFC0_0000

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 127

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

128

6.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non-jump/
branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in the
delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register, and
are dways disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC register will not point to the
instruction which has just been single stepped, but rather the following instruction. The DBD hit in the Debug register
is never set for adebug single step exception, since the jump/branch and the instruction in the delay slot is executed in
one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with DEPC pointing to the SDBBP instruc-
tion.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector

6.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD hit is set based on whether the interrupted instruction was execut-
ing in the delay dlot of a branch.

Debug Register Debug Status Bit Set
DINT

Additional State Saved
None

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8 Exception Descriptions

Entry Vector Used
Debug exception vector

6.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NM1 exception will be taken each timeit is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory;,
and other processor states are consistent and all registers are preserved, with the following exceptions:

 TheBEY, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.

» TheErrorEPC register isloaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of abranch. Otherwise, the ErrorEPC register isloaded with PC.

* PCisloaded with 0xBFCO_0000.

Cause Register ExcCode Value:
None

Additional State Saved:

None

Entry Vector Used:
Reset (OxBFCO_0000)

Operation:

Statuspgpy < 1
Statuspg < 0
Statusgg < O
Statusyyr <« 1
Statusggp < 1
if InstructionInBranchDelaySlot then
ErrorEPC ¢« PC - 4
else
ErrorEPC « PC
endif
PC « O0xBFC0_0000

6.8.5 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
causes a machine check exception:

*  Thedetection of multiple matching entriesin the TLB. The core detects this condition on a TLB write and pre-
vents the write from being completed. The TS bit in the Status register is set to indicate this condition. Thishitis
only a status flag and does not affect the operation of the device. Software clears this bit at the appropriate time.
This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be completed.

Cause Register ExcCode Value:
M Check

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 129

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

130

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.6 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requestsis
enabled by the Status register and the interrupt input is asserted. See 6.3 “Interrupts’ on page 109 for more details
about the processing of interrupts.

Register ExcCode Value:
Int

Additional State Saved:

Table 6.12 Register States an Interrupt Exception

Register State Value

CauselP Indicates the interrupts that are pending.

Entry Vector Used:

See 6.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts’ on page 117 for the entry vector used,
depending on the interrupt mode the processor is operating in.

6.8.7 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

6.8.8 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero and the DM hit of the Debug register isaso
zevo. If any of those bitsis aone at the time that a watch exception would normally be taken, then the WP bit in the
Cause register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the
Cause register to determine if the EPC register points at the instruction that caused the watch exception, or if the
exception actually occurred while in kernel mode.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8 Exception Descriptions

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

Additional State Saved:

Table 6.13 Register States on Watch Exception

Register State Value

Causeyp Indicates that the watch exception was deferred until after
Statusgyy , Statusgg, , and Debugpy, were zero. This bit
directly causes awatch exception, so software must clear

this bit as part of the exception handler to prevent awatch
exception loop at the end of the current handler execution.

WatchHi | g w Set for the watch channel that matched, and indicates
which type of match there was.

Entry Vector Used:
General exception vector (offset 0x180)

6.8.9 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

e Fetchaninstruction, load aword, or store aword that is not aligned on aword boundary
e Load or store ahafword that is not aligned on a halfword boundary
» Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on aword boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exceptionistaken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by aload or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was aload or an instruction fetch

ADES: Reference was a store

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 131

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

Additional State Saved:

Table 6.14 CPO Register States on Address Exception Error

Register State Value

BadVAddr Failing address
Contextypnz UNPREDICTABLE

EntryHiypno UNPREDICTABLE

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

6.8.10 TLB Refill Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches areferenceto a
mapped address space and the EXL bit is 0 in the Status register. Note that thisis distinct from the case in which an
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:
TLBL: Reference was aload or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 6.15 CPO Register States on TLB Refill Exception

Register State Value
BadVAddr Failing address.

Context The BadVPN2 field contains VA3,.13 of thefailing
address.

EntryHi The VPN2 field contains VA 3.3 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE
Entry Vector Used:

TLB refill vector (offset 0x000) if Statusgy, = 0 at the time of exception;

General exception vector (offset 0x180) if Statusgy, = 1 at the time of exception
6.8.11 TLB Invalid Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

* No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

132 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8 Exception Descriptions

* A TLB entry matches areference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:
TLBL: Reference was aload or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 6.16 CPO Register States on TLB Invalid Exception

Register State Value
BadVAddr Failing address

Context The BadVPNZ2 field contains VA3;.13 Of the failing
address.

EntryHi The VPNZ2 field contains VA3, .13 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE
Entry Vector Used:

General exception vector (offset 0x180)

6.8.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception
is not maskable. Because the error was in a cache, the exception vector isto an unmapped, uncached address. This
exception can be imprecise and the ErrorEPC may not point to the instruction that saw the errorL 2 cache errors are
considered to be imprecise. An L2 cache error on adata load operation can potentially corrupt the target GPR.

Cause Register ExcCode Value
N/A

Additional State Saved

Table 6.17 CPO Register States on Cache Error Exception

Register State Value
CacheErr Error state
ErrorEPC Restart PC
Entry Vector Used

Cache error vector (offset 0x100)
6.8.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminatesin an error. The bus error exception can occur on either an instruc-

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 133

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

tion fetch or a dataread. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on
an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Instruction errors are precise, will Data bus errors can be imprecise. These errors are taken when the ERR codeiis
returned on the OC_SResp input.

Cause Register ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on adatareference

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

6.8.15 Execution Exception — System Call

The system call exception isone of the execution exceptions. All of these exceptions have the same priority. A system
call exception occurs when a SY SCALL instruction is executed.

Cause Register ExcCode Value:
Sys

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.16 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

134 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8 Exception Descriptions

Cause Register ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when areserved or undefined major opcode or function field is executed.
Thisincludes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:
RI

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

» acorresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

» CPOinstructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:
CpuU

Additional State Saved:

Table 6.18 Register States on Coprocessor Unusable Exception

Register State Value
Causecg Unit number of the coprocessor being referenced
Entry Vector Used:

General exception vector (offset 0x180)

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 135

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

136

6.8.19 Execution Exception — CorExtend block Unusable

The CorExtend block unusable exception is one of the execution exceptions. All of these exceptions have the same
priority. A CEU exception occurs when an attempt is made to execute a CorExtend instruction when the CEE bitin
the Status register is not set. It is dependent on the implementation of the CorExtend block, but this exception should
be taken on any CorExtend instruction that modifies local state within the CorExtend block and can optionally be
taken on other CorExtend instructions.

Cause Register ExcCode Value:

CEU

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.20 Execution Exception — DSP ASE State Disabled

The DSP ASE State Disabled exception an execution exception. It occurs when an attempt is made to execute aDSP
ASE instruction when the MX bit in the Status register is not set. This allows an OSto do “lazy” context switching.

Cause Register ExcCode Value:
DSPDis

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.21 Execution Exception — Floating Point Exception

A floating point exception isinitiated by the floating point coprocessor.

Cause Register ExcCode Value:
FPE

Additional State Saved:

Table 6.19 Register States on Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.8 Exception Descriptions

6.8.22 Execution Exception — Integer Overflow

Theinteger overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2's complement overflow.

Cause Register ExcCode Value:
Ov

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

6.8.23 Execution Exception — Trap

Thetrap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap exception
occurs when atrap instruction resultsin a TRUE value.

Cause Register ExcCode Value:
Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.24 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception has
not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the debug
handler.

Debug Register Debug Status Bit Set:
DDBL for aload instruction or DDBS for a store instruction

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

6.8.25 TLB Modified Exception — Data Access

During adata access, a TLB modified exception occurs on a store reference to a mapped addressiif the following con-
ditionistrue:

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 137

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

e Thematching TLB entry isvalid, but not dirty.

Cause Register ExcCode Value:
Mod

Additional State Saved:

Table 6.20 Register States on TLB Modified Exception

Register State Value
BadVAddr Failing address

Context The BadVPNZ2 field contains VA3, .13 of the failing
address.

EntryHi The VPNZ2 field contains VA 3;.13 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE
Entry Vector Used:

General exception vector (offset 0x180)
6.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

e General exceptions

e TLB missexceptions

e Resat and NMI exceptions

e Debug exceptions

Generally speaking, exceptions are handled by hardware and then serviced by software. Note that unexpected debug
exceptions to the debug exception vector at 0OXBFCO_0200 may be viewed as areserved instruction since uncontrolled
execution of an SDBBP instruction caused the exception. The DERET instruction must be used at return from the

debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET instruction
returns to the address in the DEPC register.

138 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.9 Exception Handling and Servicing Flowcharts

Figure 6.4 General Exception Handler (HW)

Exceptions other than Reset, NMI, or first-level TLB miss. Note: Interrupts can be masked by IE or
IMs, and Watch is masked if EXL = 1.

Comments
EnHi and Context are set only for TLB- Invalid,
EntryHi <« VPN2, ASID Modified, & Refill exceptions. BadVA is set only
Context « VPN2 for TLB- Invalid, Modified, Refill- and VCED/I
Set Cause EXCCode,CE exceptions. Note: not set if it is a Bus Error
BadVA « VA

Check if exception within another
exception

Yes .
Instr. in Br.Dly.

Slot?

EPC « (PC- 4) EPC «PC
Cause.BD « 1 Cause.BD « 0

EXL 1 -

=0 (normal) =1 (bootstrap)

Processor forced to Kernel Mode
& interrupts disabled

PC « 0xBFC0_0200 + 180

PC « 0x8000_0000 + 180
(unmapped, uncached)

(unmapped, cached)

I - I
Vl‘

To General Exception Servicing Guidelines

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

139



Exceptions and Interrupts in the 74K™ Core

Figure 6.5 General Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions

not possible
MFCO - * EXL=1 so Watch and Interrupt exceptions disabled
Context, EPC, Status, Cause < * OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions possible.

MTCO -
Set Status bits:

UMe-0, EXLe0, [Ec1 (Optional - only to enable Interrupts while keeping Kernel Mode)

Check Cause value & Jump to appropriate * After EXL=0, all exceptions allowed (except
Service Code interrupt if masked by |E)
L l
Service Code :
|

MTCO -
EPC,STATUS
¢ * ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
ERET branch delay slot
*PC« EPC;EXL«0
*LLbit <~ 0
140 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



6.9 Exception Handling and Servicing Flowcharts

Figure 6.6 TLB Miss Exception Handler (HW)

/

EntryHi « VPN2, ASID
Context < VPN2
Set Cause EXCCode,CE
BadVA « VA

No
Instr. in Br.Dly.

Slot? Check if exception within another

exception
=0
EPC « (PC-4) EPC « PC
Cause.BD « 1 Cause.BD « 0
[

\
Vec. Off. = 0x000

\
Vec. Off. = 0x180

Points to General Exception

A

Processor forced to Kernel Mode &
EXL 1 interrupts disabled

=0 (normal) =1 (bootstrap)

Y

PC « 0x8000_0000 + Vec.Off.(unmapped. PC « 0xBFC0_0200 + Vec.Off. (unmapped.
cached) uncached)

_ [
>

To TLB Exception Servicing Guidelines

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

141
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Exceptions and Interrupts in the 74K™ Core

Figure 6.7 TLB Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible

* EXL=1 so Watch, Interrupt exceptions disabled

* OS/System to avoid all other exceptions

MFCO-CONTEXT <
* Only Reset, Soft Reset, NMI exceptions possible.

* Load the mapping of the virtual address in Context Reg. Move it

to EntryLo and write into the TLB

* There could be a TLB miss again during the mapping of the data

or instruction address. The processor will jump to the general

exception vector since the EXL is 1. (Option to complete the first

< level refill in the general exception handler or ERET to the original
instruction and take the exception again)

|
|
|
|
|
|
|
| Service Code
|
|
|
|
|
|
|
|

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
ERET < branch delay slot

*PC« EPC;EXL«0
*LLbit <0

142 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Figure 6.8 Reset and NMI Exception Handling and Servicing Guidelines

NMI Exception

atus:
BEV « 1
TS« 0
SR«0
NMI « 1
ERL « 1

6.9 Exception Handling and Servicing Flowcharts

Reset Exception

Wired < 0

Status:

WatchLo:

Random «— TLBENTRIES - 1

Config < Reset state

RP «0
BEV « 1
TS« 0
SR«0
NMI <0
ERL « 1

LRW«0

Reset, Soft Reset & NMI Exception Handling (HW)

Y
A

ErrorEPC « PC

PC « 0xBFC0_0000

£
]
=
[
wn
= _
==
=%} 23 r-———=—=>"=-—==—==-=- \
gg | !
28 | NMiSeniceCode
=a | |
5° \
(2] L e e
‘.q_;‘ J
wn
[5) Y
o ERET

(Optional)

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

143



Exceptions and Interrupts in the 74K™ Core

144 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 7

CPO Registers of the 74K™ Core

7.1

The System Control Coprocessor (CP0) provides the register interface to the 74K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CPO register has a
unique number that identifiesit, referred to asits register number. CPO register numbersare denoted by n . s, wheren
isthe register number (between 0-31) and s isthe "select” field (0-7). If the select field is omitted, it is zero. A select
field of x denotes all eight potential select numbers.

This chapter contains the following sections:

e Section 7.1 “CPO Register Summary”

e Section 7.2 “CPO Register Descriptions’

The CPO EJTAG registers are described in Chapter 11, “EJTAG Debug Support in the 74K™ Core."

CPO Register Summary

The CPO registers are described in three tables. Table 7.1 lists the registersin a phabetic order, Table 7.2 lists the reg-
istersin numerical order, and Table 7.3 groups the registers according to their function. The CPO registers are
described individually in Section 7.2, "CPO Register Descriptions.”

Table 7.1 CPO Registers in Alphabetical Order

Name Number Name Number Name Number Name Number
BadVAddr 8.0 DDatalLo 28.3 IDatalo 28.1 SRSMap 12.3
CacheErr 27.0 Debug 23.0 Index 0.0 Status 12.0
Cause 13.0 DEPC 24.0 IntCtl 121 TraceControl 231
CDMMBase 15.2 DESAVE 310 ITagHi 29.0 TraceControl2 23.2
DTagHi 29.2 ITagLo 28.0 TraceControl3 24.2
Compare 11.0 DTagLo 28.2 L23DataHi |29.5 TracelPBC 234
Config 16.0 EBase 15.1 L23DatalLo [28.5 TraceDPBC 235
Configl-2 16.1-2 EntryHi 10.0 L23TagLo |28.4 UserLocal 4.2
Config3 16.3 EntryLo0-1 |2.0 PageMask |5.0 UserTraceDatal | 23.3
3.0

Config6 16.6 EPC 14.0 PerfCnt0-3 |25.1 UserTraceData2 | 24.3

253

255

25.7

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 145

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

146

Table 7.1 CPO Registers in Alphabetical Order (Continued)

Name Number Name Number Name Number Name Number
Config7 16.7 ErrCtl 26.0 PerfCtl0-3 |25.0 WatchHi0-3 19.0-3
25.2
25.4
25.6
Context 4.0 ErrorEPC 30.0 PRId 15.0 WatchLo0-3 18.0-3
ContextConfig |[4.1 HWREna 7.0 Random 1.0 Wired 6.0
Count 9.0 IDataHi 29.1 SRSCtl 12.2
Table 7.2 CPO Registers in Numerical Order
Number Register Description Page
0.0 Index Index into the TLB array 7.2.1,p.151
1.0 Random Randomly generated index into the TLB array 7.2.2,p.152
20 EntryLoO-1 Output (physical) side of TLB entry (even-/odd-numbered virtual 7.2.3,p.152
30 pages)
4.0 Context Mixture of pre-programmed and BadVVAddr bitswhich canactasan | 7.2.4, p.154
OS page table pointer.
41 ContextConfig Defines the bits of the Context register into which the high order bits | 7.2.5, p.155
of the virtual address causing a TLB exception will be written.
4.2 UserLocal Kernel-writable but user-readable software-defined thread |ID 7.2.6, p.156
5.0 PageMask Control for variable page sizein TLB entries 7.2.7, p.157
6.0 Wired Controls the number of fixed ("wired") TLB entries 7.2.8,p.158
7.0 HWREna Bitmask limiting user-mode access to rdhwr registers 7.2.9,p.158
8.0 BadVAddr Address causing the last TLB-related exception 7.2.10, p.160
9.0 Count Free-running counter at half pipeline speed 7.11, p.160
10.0 EntryHi High-order portion of the TLB entry 7.2.12,p.161
11.0 Compare Timer interrupt control 7.2.13, p.162
12.0 Status Processor status and control 7.2.14, p.162
121 IntCtl Setup for interrupt vector and interrupt priority features. 7.2.15, p.168
12.2 SRSCHl Shadow register set selectors 7.2.16, p.169
12.3 SRSMap Shadow set choice for each interrupt level in VI mode 7.217,p.171
130 Cause Cause of last general exception 7.2.18,p.172
14.0 EPC Restart address from exception 7.2.19, p.176
15.0 PRId Processor identification and revision 7.2.20, p.177
151 EBase Exception entry point base address and CPU/VPE ID 7.2.21,p.178
15.2 CDMMBase 36-bit physical base address for the Common Device Memory Map 7.2.22,p.179
facility
16.0 Config Legacy configuration register 7.2.23,p.180

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.1 CPO Register Summary

Table 7.2 CPO Registers in Numerical Order (Continued)

Number Register Description Page
16.1-2 Configl-2 MIPS32/64 configuration registers (caches etc) 7.2.24,p.181
16.3 Config3 Configuration register showing ASES etc 7.2.25,p.183
16.6 Config6 Additional information about the presence of optional extensionstothe | 7.2.26, p.184
base MIPS32 architecture

16.7 Config7 CPU-specific configuration 7.2.27,p.187
18.0-3 WatchLo0-3 Watchpoint address and qualifiers 7.2.28, p.190
19.0-3 WatchHi0-3 Watchpoint control/status 7.2.29, p.190
230 Debug EJTAG Debug status/control register 7.2.30, p.191
231 TraceControl EJTAG Trace Control register 7.2.31, p.195
232 TraceControl2 EJTAG Trace Control 2 register 7.2.32,p.197
233 UserTraceDatal | EJTAG User Trace Datal register 7.2.33, p.199
234 TracelBPC EJTAG Trace Instruction breakpoint control register 7.2.34, p.200
235 TraceDBPC EJTAG Trace Data breakpoint control register 7.2.35, p.201
24.0 DEPC Restart address from last EJTAG debug exception 7.2.36, p.202
24.2 TraceControl3 EJTAG Trace Control 3 register 7.2.37, p.203
24.3 UserTraceData2 | EJTAG User Trace Data2 register 7.2.33, p.199
25.0 PerfCtl0-3 Performance counter control 7.2.38, p.204
25.2

254

25.6

251 PerfCnt0-3 Performance counters 7.2.39, p.209
253

255

25.7

26.0 ErrCtl Software parity control and test modes for cache RAM arrays 7.2.40, p.209
27.0 CacheErr Cache parity exception status 7.241, p.210
28.0 ITagLo Read/write interface for |-cache tag cacheops 7.242,p.212
281 IDatalo Low-order data read/write interface for I-cache special cacheops 7.2.43,p.213
28.2 DTagLo Read/write interface for load/store tag cacheops 7.2.44,p.214
28.3 DDatalo Low-order data read/write interface for D-cache 7.2.45, p.216
284 L23TaglLo Level 2/3 cache Tag information 7.2.46, p.216
285 L23DatalLo Low-order data read/write interface for Level 2/3 cache 7.2.47,p.216
29.0 ITagHi I-cache predecode bits 7.2.48, p.217
291 IDataHi High-order data read/write interface for 1-cache specia cacheops 7.2.49, p.217
29.2 DTagHi D-cache virtual index (including ASID) 7.2.50, p.218
295 L23DataHi High-order data read/write interface for Level 2/3 cache 7.2.51, p.218
30.0 ErrorEPC Restart location from areset or a cache error exception 7.2.52,p.219
31.0 DESAVE Scratch read/write register for EJTAG debug exception handler 7.2.53, p.219

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

147



CPO Registers of the 74K™ Core

148 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.1 CPO Register Summary

Table 7.3 CPO Registers Grouped by Function

Basic modes  Status 12.0 BadVAddr 8.0 DEPC 240
OS/userland  UserLocal 42 Context 4.0 DESAVE 31.0
thread ID EJTAG Debug
Cause 13.0 ContextConf 4.1 Debug 230
Exception 19
Control EPC 14.0 TLB EntryHi 10.0 TraceControl 23.1
Management
Compare 11.0 EntryLo0-1 2.0 TraceControl2 23.2
Timer 30
Count 9.0 Index 0.0 TraceControl3 24.2
Config 16.0 PageMask 5.0 PDtrace  racelPBC 23.4
Configl-2 16.1-2 Random 1.0 TracelDBC 235
Config3 16.3 Wired 6.0 UserTraceDatal 233
Config6 16.6 DDatalLo 28.3 UserTraceData2 243
Config7 16.7 DTagHi 29.2 PerfCnt0-3 251
253
255
25.7
CPU EBase 151 DTagLo 28.2 PerfCtl0-3 25.0
Configuration - 252
Profiling 5.4
25.6
CDMMBase 15.2 ErrCtl 28.2 PerfCnt0-3 251
253
255
Cache 257
Management -
IntCtl 12.1 ErrorEPC 26.0 ~ WatchHi0-3 19.0-3
) Debug/Analysis
PRId 15.0 IDataHi 29.1 WatchLo0-3 18.0-3
SRSCil 12.2 IDatalo 28.1 Control rdhwr HWRE 20
Access na :
SRSMap 12.3 ITagHi 29.0 Parity/ECC
control CacheErr 27.0
ITagLo 28.0
L23DataHi  29.5
L23TagLo 284

Note that after a CPO register has been updated, there is a hazard period of zero or more instructions from the update
instruction (mtc0) until the update has taken effect in the core. There is no automatic handling of hazard by the hard-
warein the 74K core. Release 2 requires that an ehb (Execution Hazard Barrier) instruction be placed between these
two instructions when they address the same CPO register. For more information about the MIPS32® Release 2

Architecture guidelines on hazard barriers, refer to Section 2.3, "Hazards."

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

149




CPO Registers of the 74K™ Core

7.2 CPO Register Descriptions

This section contains descriptions of each CPO register. The registers are listed in numerical order, first by register
number, then by select field number.

R/W Access Types

For each register described below, field descriptions include the read/write access properties of the field and the reset
state of the field. The read/write access properties are described in Table 7.4.

Table 7.4 CPO Register Field R/W Access Types

Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and potentially by hardware.
Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visible by hardware
reads.
If the reset state of thisfield is“Undefined”, either software or hardware must initialize the value before the first
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED
behavior.
SO Software Only. A field that is read and written by software but has no hardware effect. An example isthe
DESAVE register.

R A field that is either static or is updated only by hard- | A field to which the value written by softwareis
ware. ignored by hardware. Software may write any value to
If the Reset State of thisfield iseither “0” or “Preset”, | thisfield without affecting hardware behavior. Software
hardware initializes thisfield to zero or to the appropri- | reads of thisfield return the last value updated by hard-
ate state, respectively, on powerup. ware.
If the Reset State of thisfield is“Undefined”, hardware | If the Reset State of thisfield is“Undefined,” software
updates thisfield only under those conditions specified | reads of thisfield result in an UNPREDICTABLE
in the description of the field. value except after a hardware update done under the

conditions specified in the description of the field.

w A field that can be written by software but which cannot be read by software.
Software reads of thisfield will return an UNDEFINED value.

WO Hardware can write 1's or 0'sto thisfield. Software writes will only cause the bit to be cleared.
Software can never set this bit. An exampleisthe NMI
bit field in the Status register.

wicC Hardware can write 1's or 0'sto thisfield. Software should write “1” to thisbit to clear it. An

exampleisthel, R, and W bit fieldsin the WatchHi0-3
register.

0 A field that hardware does not update, and for which A field to which the value written by software must be

hardware can assume a zero value. zero. Software writes of non-zero values to thisfield

may resultin UNDEFINED behavior of the hardware.
Software reads of thisfield return zero aslong as al
previous software writes are zero.
If the Reset State of thisfield is“Undefined”, software
must write this field with zero before it is guaranteed to
read as zero.

U A field that is not read or written by hardware. Software writes to thisfield will be ignored. Software
reads of thisfield will return an UNDEFINED value.

150

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2 CPO Register Descriptions

Color Coding of Register Descriptions

The color codes used in the register descriptions to indicate the access types are summarized in Figure 7.1. A field
with two access types (for example, R/WO0) is uncolored,

Figure 7.1 Register Format Color Coding of Access Field Types
31 5 0

WRITE HAS UNUSUAL
EFFECT (W, WO, W1C)

Power-up State of CP0 Registers

The traditions of the MIPS architecture regard it as software’sjob to initialize CPO registers. Asarule, only fields
where awrong setting could prevent the CPU from booting are specified to be brought to a particular state by reset;
other fields—perhaps other fields in the same register—are undefined. This manual documents where afield has a
forced-from-reset value; conversely, when no reset-time value is documented, that means the register comes up in an
undefined state.

To ensure robust programs, you should initialize all CPO register fields, except those in which arandom valueis
known to be harmless.

A Note on Unused Fields in CPO Registers

Unused fields in registers are marked either with the digit 0, an " X", or occasionally a"U". A field marked zero is
expected to read zero; afield marked "U" is expected to read back whatever you last wroteto it; and if thefield is
marked "X", the value is unpredictable.

But again, for robustness, you should write unused fields either to avalue you previously read from the same field or
(if no such value is available) to zero.

7.2.1 Index (CPO Register 0, Select 0): Index into TLB array

Index is used asthe TLB index when reading or writing the TLB with t 1bx/t 1bw respectively. Itisasosetby a
TLB probe (t1bp) instruction to return the location of an address match in the TLB.

The operation of the processor is UNDEFINED if avalue greater than or equal to the number of TLB entriesiswrit-
ten to the Index register.

Thisregister isonly valid when the TLB isimplemented; it isreserved if the FM isimplemented.

Figure 7.2 Index Register Format

31 30 6 5 0
P 0 Index
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 151

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.5 Field Descriptions for Index Register

Read/
Name Bit(s) Description Write Reset State
P 31 | Probe Failure. Thisbit is automatically set when a t 1bp search of the RIW Undefined
TLB failsto find a matching entry.
Index 5:0 |Anindexintothe TLB used for t1bwi and t1br. It'sset by t1bp R/W Undefined
when it finds a matching entry.

7.2.2 Random (CPO Register 1, Select 0): Randomly Generated Index into the TLB

Array

The Random register is aread-only register whose value is used to index the TLB during a t 1bwr instruction. It pro-
vides a quick way of replacing a TLB entry at random. Random is a free counter cycling through the range of valid
TLB indexes. The Random register is decremented by one almost every clock, wrapping after the value in the Wired
register is reached. Asaresult, it will not take values less than the value programmed in Wired.

To reduce the possihility of alive lock condition, an LFSR register is used which prevents the decrement pseudo-ran-

domly.
The processor initializes the Random register to the upper bound on a Reset exception and when the Wired register is
written.
Figure 7.3 Random Register Format
31 6 5 0
0 Random
Table 7.6 Field Descriptions for Random Register
Read/
Name Bit(s) Description Write Reset State
0 31:6 | Must bewritten as zero; returns zero on reads. 0 0
Random 5:0 |Thisfield cycles"randomly" through the potential indices of the TLB, so R #TLB Entries—
itslength varieswith the TLB size (the diagram shows amax TLB size of 1

64 entries). It's usually a down counter, and starts off at the largest plau-

sible index.

7.2.3 EntryLo0-1 (CPO Registers 2 and 3, Select 0): Output (physical) side of TLB

entry

These registers hold and represent the contents of the physical (output) side of a TLB entry — each entry maps a pair
of pages and EntryLoO and EntryLo1l are for even-/odd-numbered virtual pages respectively. They’re read during a

t1bwr or tblw instruction, and written by a t 1br, and are not used for anything else.

152

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




31

26

7.2 CPO Register Descriptions

Figure 7.4 EntryLoO, EntryLol Register Format
25

PFN

Table 7.7 Field Descriptions for EntryLo0-1 Register

Name

Bit(s)

Description

Read/
Write

Reset State

PFN

25.6

The "physical frame number" — traditional OS name for the high-order
hits of the physical address. 20 bits of PFN together with 12 bits of in-
page address make up a 32-bit physical address. The MIPS32® Architec-
ture permits the PFN to be as large as 24 bits, but the 74K core has a 32-
bit physical address bus.

RIW

Undefined

5:3

Coherency attribute of the page. See Table 7.8.

RIW

Undefined

The "dirty" flag. Indicates that the page has been written, and/or iswrit-
able. If thisbit isaone, then stores to the page are permitted. If thisbit is
azero, then stores to the page cause a TLB Modified exception.
Software can use this bit to track pages that have been written to; when
you first map a page, you leave this bit clear, and then the first write
causes an exception which you note somewhere in the OS' memory man-
agement tables (and, of course, remember to set the bit).

RIW

Undefined

The“valid” flag. Indicates that the TLB entry, and thus the virtual page
mapping are valid. If thisbit is a one, then accesses to the page are per-
mitted. If this bit is a zero, then accesses to the page cause a TLB Invalid
exception.

This bit can be used to make just one of a pair of pages valid.

R/W

Undefined

The “global” bit. On a TLB write, the logical AND of the G bitsin both
the EntryLoO and EntryLo1 registers becomethe G bit in the TLB entry.
If the TLB entry G hit isa one, then the ASID comparisons are ignored
during TLB matches. On aread from a TLB entry, the G bits of both
EntryLoO and EntryLo1 reflect the state of the TLB G bit.

R/W

Undefined

Table 7.8 Cache Coherency Attributes encoding of C field of EntryLo0-1 and KO field of Config Register

C[5:3]
KO0[2:0] Cache Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Reserved
2 uncached
3 Cacheable, noncoherent, write-back, write allocate
4 Reserved
5 Reserved
6 Reserved
7 Uncached Accelerated

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

153



CPO Registers of the 74K™ Core

7.2.4 Context (CPO Register 4, Select 0): Mixture of Pre-programmed and BadVAddr
Bits which can act as an OS Page Table Pointer.

The Context register is aread/write register containing a pointer to an entry in the page table entry (PTE) array. This

array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TL B with the missing trand ation from the PTE array. The Context register duplicates some of the
information provided in the BadVAddr register.

The BadVPN2 field of the Context register is not defined after an address error exception, and this field may be modi-
fied by hardware during the address error exception sequence.

If Config3cTxTc =1, the pointer implemented by the Context register can point to any power-of-two-sized PTE struc-
ture within memory. This alowsthe TLB refill handler to use the pointer without additional shifting and masking
steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair of 32-bit PTEs within asin-
gle-level page table scheme, or to afirst level page directory entry in atwo-level lookup scheme.

A TLB exception (Refill, Invalid, or Modified) causes bits VA31:32-x+y t0 be written to a variable range of bits“ (X-
1):Y” of the Context register, where this range corresponds to the contiguous range of set bits in the ContextConfig
register. Bits 31:X are R/W to software, and are unaffected by the exception. Bits Y-1:0 will alwaysread as 0. If X =
23and Y =4, i.e. bits 22:4 are set in ContextConfig, the behavior isidentical to the standard MIPS32 Context register
(bits 22:4 are filled with VA 31:13). Although the fields have been made variable in size and interpretation, the MIPS32
nomenclature isretained. Bits 31:X arereferred to asthe PTEBase field, and bits X-1:Y arereferred to as BadVPN2.
When Config3ctxtc =0, X =23,Y =4,

The value of the Context register is UNPREDICTABL E following a modification of the contents of the
ContextConfig register.

Figure 7-5 shows the format of the Context Register; Table 7.9 describes the Context register fields.

Figure 7-5 Context Register Format
31 X X1 Y Y1 0

PTEBase BadVPN2 0

Table 7.9 Context Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
PTEBase | Variable, 31:X where | Thisfield isfor use by the operating system R/W Undefined
Xin{31..0}. and is normally written with avalue that
May be null. alows the operating system to use the
If Config3cTxTc =0, | Context Register as a pointer to an array of
X =23 data structures in memory corresponding to
the address region that contains the virtual
address which caused the exception.
154 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.9 Context Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State

BadVPN2 | Variable, (X-1):Y Thisfield iswritten by hardwareona TLB R Undefined
where exception. It contains bits VA31:32-x+Yy of the
Xin{32.1} and virtual address that caused the exception.

Y in{31..0}.

May be null.

If Config3cTxTC =0,
X=23Y=4

0 Variable, (Y-1):0 Must be written as zero; returns zero on read. 0 0
where

Y in{3L:1}.

May be null.

If Config3cTxTC =0,
Y=4

7.2.5 ContextConfig Register (CPO Register 4, Select 1)

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected of the Context register are R/W to software and serve as the PTEBase field. Bits below the selected field of
the Context register will read as zeroes.

Thefield to contain the virtual addressindex is defined by a single block of contiguous non-zero bits within the
ContextConfig register’'s Virtuallndex field. Any zero bits to the right of the least significant one bit cause the corre-
sponding Context register bits to read as zero. Any zero bits to the left of the most significant one bit cause the corre-
sponding Context register bitsto be R/W to software and unaffected by TLB exceptions.

A value of al onesin the ContextConfig register means that the full 32 bits of the faulting virtual address will be cop-
ied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.

The ContextConfig register is optional and its existence is denoted by the Config3crxrc or Config3sy register fields.

Figure 7.6 shows the formats of the ContextConfig Register; Table 7.10 describes the ContextConfig register fields.

Figure 7.6 ContextConfig Register Format
31 0

Virtual Index

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 155

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.10 ContextConfig Register Field Descriptions

Fields

Name Bits

Description

Virtuallndex 31.0

A mask of 0to 32 contiguous 1 bitsin thisfield causes

the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing
aTLB exception.
Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field.

Itis permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
Set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing al zeroes and all onesto the register, and reading back the resulting values. Table 7.11 describes some useful

ContextConfig values.

Table 7.11 Recommended ContextConfig Values

Page Table
Value Organization Page Size PTE Size Compliance
0x00000000007ffffO Single Level 4K 64 bits/page REQUIRED
0x00000000003ffff8 Single Level 4K 32 hits/page RECOMMENDED
0x00000000007ffff8 Single Level 2K 32 bits’page | RECOMMENDED
0x0000000000fffff8 Single Level 1K 32 hits/page RECOMMENDED

7.2.6 UserLocal (CPO Register 4, Select 2): Address Causing the Last TLB-related

Exception

UserLocal is aread-write 32-bit register that is not intepreted by the hardware and conditionally readable by soft-
ware. Thisregister issuitable for a kernel-maintained thread 1D whose value can be read by user-level code with
rdhwr 29, aslongas HWRENAy_ isset.

The presence of the UserLocal register isindicated by Config3y_ri=1.

31

Figure 7.7 IUserLocal Register Format

UserLoca

Table 7.12 UserLocal Register Field Description

Read / Reset
Write State

RIW 0x007ffffO

Fields
Read /
Name Bits Description Write Reset State
UserLocal 310 Software information that is not interpreted by hardware. R/W Undefined

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2.7 PageMask (CPO Register 5, Select 0): Control for Variable Page Size in TLB

Entries

7.2 CPO Register Descriptions

Every TLB entry has an independent virtual-address mask that allows it to ignore some address bits when deciding to

match. By selectively ignoring lower page addresses, the entry can be made to match all the addresses in a"page”
larger than 4KB.

Software can determine which page sizes are supported by writing all onesto the PageMask register, then reading the
value back. If apair of bits reads back as ones, the processor implements that page size. The operation of the proces-
sor isUNDEFINED if software loads the Mask field with avalue other than one of those listed in Table 7.13, even if
the hardware returns a different value on read. Hardware may depend on this requirement in implementing hardware

structures.
Figure 7.8 PageMask Register Format
31 29 28 13 12
0 Mask 0
Table 7.13 Field Descriptions for PageMask Register
Read/
Name Bit(s) Description Write Reset State
0 31:29, |Ignored on write; returns zero on read. R 0
12:0
Mask 28:13 | Actsasakind of backward mask, in that a1 bit means "don’t compare R/W Undefined

this address bit when matching this address*. However, only arestricted
range of PageMask values are lega (i.e., with "1"sfilling the
PageMaskmask field from low bits upward, two at atime):

PageMask Size of Each Output
Value Page
0x0000.0000 4 Kbytes
0x0000.6000 16 Kbytes
0x0001.E000 64 Kbytes
0x0007.E000 256 Kbytes
0x001F.E000 1 Mbyte
0x007F.E000 4 Mbytes
0x01FF.E000 16 Mbytes
0x07FF.E000 64 Mbytes
0x1FFF.E000 256 Mbytes

Note that the uTLBs handle only 4K byte and 1Mbyte page sizes; other
page sizes are down-converted to 4Kbyte or 1Mbyte asthey are refer-
enced. For other page sizes, this may cause an unexpectedly high rate of
uTLB misses, which could lead to a noticeable performance | oss.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

157



CPO Registers of the 74K™ Core

158

7.2.8 Wired (CPO Register 6, Select 0): Controls Number of Fixed ("wired") TLB
Entries

The Wired register is aread/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 7.14. The width of the Wired field is calculated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

The Wired register isreset to zero by aReset exception. Writing the Wired register causesthe Random register to reset
to its upper bound.

The operation of the processor is undefined if avalue greater than or equal to the number of TLB entriesiswritten to
the Wired register.

Thisregister isonly valid with a TLB. It is reserved when the FM is implemented.
Wired can be set to a non-zero value to prevent the random replacement of that many TLB pages. It does this by pre-
venting the Random register from taking values between 0 and the value of wired minus one: in turn that’s done by

arranging that the Random downcounter bounces back to its maximum value when it was previously egqual to Wired.

Figure 7.9 Wired Register Format

31 6 5 0
0 Wired
Table 7.14 Field Descriptions for Wired Register
Read/
Name Bit(s) Description Write Reset State
Wired 5:0 | The oddly-named Wired controls Random’s behavior. R/W 0

Random isimplemented as afull CPU clock-rate downcounter. It won't
decrement below the current value of Wired (when it gets there it
bounces off and starts again at the highest legal index). So in practice,
when used inside the TLB refill exception handler, Random deliversa
random index into the TLB somewhere between the value of Wired and
thetop. Wired can therefore be set to reserve some TLB entries from ran-
dom replacement — a good place for an OS to keep trandlations which
must never cause a TL B translation-not-present exception.

7.2.9 HWREnNa (CPO Register 7, Select 0): Bitmask Limiting User-mode Access to
rdhwr Registers

The HWREna register contains a bit mask that determines which hardware registers are accessible via the rahwr
instruction when that instruction is executed in user mode.

The low-order four bits[3:0] control access to the four registers required by the MIPS32® architecture standard. The
two high-order bits[31:30] are available for implementation-dependent use.

Using the HWREna register, privileged software may select which of the hardware registers are accessible viathe
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

direct accessto the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If abit reads back as a one, the processor implements that hardware register.

Figure 7.10 HWREnNa Register Format
31 30 29 28 4 3 2 1 0

Impl | UL 0 CCRes | CC| SYNCI_Step | CPUNum

Table 7.15 Field Descriptions for HWREna Register

Read/
Name Bit(s) Description Write Reset State

Impl 31:30 | These bits control access to implementation-dependent hardware regis- R 0
ters. These registers are not currently implemented in any 74K family
processor. Attempts to access these bits results in a Reserved Instruction
Exception.

UL 29 | User Loca Register. Thisregister providesread accessto the coprocessor | R/W 0
0 UserLocal register. Set this bit to 1 to permit user programs to obtain
the value of the UserLocal CPO register using rdhwr 29.

CCRes 3 Resolution of the CC register. This value denotes the number of cycles R/W 0
between update of the register. For example:

CCRes Value Meaning

1 CC register increments every cycle

2 CC register increments every second cycle

3 CC register increments every third cycle

etc.

Set thisbit to 1 so auser-mode rdhwr 3 can read the CCRes value. The
CCRes register will read avalue of 2 when the Count register runs at
half the pipeline speed (asit dways doesin 74K family CPUs).

CcC 2 High-resolution Cycle Counter. This register provides read accesstothe | R/W 0
coprocessor 0 Count Register. Set this bit to 1 so a user-mode
rdhwr 2 canread out the value of the Count register.

SYNCI_Step 1 Address step size to be used with the SYNCI instruction. Seethat instruc- | R/W 0
tion’s description for the use of thisvalue. In the typical implementation,
this value should be zero if there are no cachesin the system that must be
synchronized (either because there are no caches, or because the instruc-
tion cache tracks writesto the data cache). In other cases, the return value
should be the smallest line size of the caches that must be synchronized.
For the 74K corename-lowercase, the SYNCI_Step valueis 32 since the
line sizeis 32 bytes.

Set this bit to 1 so auser-mode rdhwr 1 can read the cache line size
(actually, the smaller of the L1 I-cache line size and D-cache line size).
That line size determines the step between successive uses of the synci
instruction, which does the cache manipulation necessary to ensure that
the CPU can correctly execute instructions which you just wrote.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 159
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

160

Table 7.15 Field Descriptions for HWREna Register

Read/
Name Bit(s) Description Write Reset State
CPUNum 0 This register provides read access to the coprocessor 0 EBasecpunum R/W 0
field. Set thishit 1 so auser-mode rdhwr 0 reads out the CPU ID
number.

7.2.10 BadVAddr (CPO Register 8, Select 0): Address Causing the Last TLB-related
Exception

The BadVAddr register is aread-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions: Address error (AdEL or AJES), TLB/XTLB Refill, TLB Invalid (TLBL, TLBS) and TLB Modi-
fied.

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
errors.

There is more information about this register in the notes to the Causegxccode field.

Figure 7.11 BadVAddr Register Format

BadVAddr

Table 7.16 BadVAddr Register Field Description

Fields
Read /
Name Bits Description Write Reset State
Bad- 31:0 Bad virtual address. R Undefined
VAddr

7.2.11 Count (CPO Register 9, Select 0): Free-running Counter at Half the Pipeline
Speed

The Count register acts asatimer, incrementing at a constant rate, whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline. When enabled by clearing the DC bit in the Cause register, the
counter increments every other clock. By writing the Countpy bit in the Debug register, it is possible to control
whether the Count register continues incrementing while the processor isin debug mode.

Count may stop in only two circumstances. First, some implementations may stop Count in the low-power mode, for
example, through thewait instruction, but only if the Causepc flag is set to 1. Secondly, you can arrange to stop
Count in debug mode by setting Debugcountom.

Count will carry on counting from whatever value isloaded into it. However, OS timers are usually implemented by

leaving Count free-running and writing Compare as necessary.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



31

7.2 CPO Register Descriptions

Figure 7.12 Count Register Format

Count

Table 7.17 Count Register Field Description

Fields
Read /
Name Bits Description Write Reset State
Count 310 Interval counter. R/W Undefined

7.2.12 EntryHi (CPO Register10, Select 0): High-order Portion of TLB Entry

31

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VAz1..13 of the virtual addressto be written
into the VPN2 field of the EntryHi register. A TLBR instruction writes the EntryHi register with the corresponding
fields from the selected TLB entry. The ASID field is written by software with the current address space identifier
value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. Thisis especialy important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence. Software writes of the EntryHi register (via MTCO0) do not
cause the implicit write of address-related fields in the BadVAddr, Context registers.

Thisregister isonly valid with the TLB. It isreserved if the FM isimplemented.

Figure 7.13 EntryHi Register Format
13 12 8 7 0

VPN2 0 ASID

Table 7.18 Field Descriptions for EntryHi Register

Read/
Name Bit(s) Description Write Reset State

VPN2 31:13 | EntryHiypn2 isthe virtual address to be matched ona t1bp. Itisalso R/W Undefined
the virtual address to be written into the TLB on atlbw and the desti-
nation of the virtual addresson atlbr.

On aTLB-related exception, the field VPN2 is automagically set to the
virtual address we were trying to translate when we got the exception. If
— asismost often the case — the outcome of the exception handler isto
find and install atrandation to that address, VPN2 (and generally the
whole of EntryHi) will turn out to already have theright valuesin it.

It iswritten by software before a t 1bp or t 1bw and written by hard-
warein all other cases.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 161

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.18 Field Descriptions for EntryHi Register

Read/
Name Bit(s) Description Write Reset State
ASID 7:0 | Thisfield doesdouble-duty. It isused to stage datato and fromthe TLB, | R/W 0

but in normal running software it’s also the source of the current "ASID"
value, used to extend the virtual address to make sure you only get trans-
lations for the current process.

7.2.13 Compare (CPO Register 11, Select 0): Timer Interrupt Control

The Compare register acts in conjunction with the Count register to implement atimer and timer interrupt function—
when the value of the Count register equals the value of the Compare register, the SI_TimerInt output pin is asserted.
SI_TimerInt remains asserted until the Compare register iswritten.

The SI_TimerInt output can be fed back into the core on one of the interrupt pins to generate an interrupt. Tradition-
ally, this has been done by multiplexing it with hardware interrupt 5 in order to set interrupt bit IP(7) in the Cause
register.

For diagnostic purposes, the Compare register is aread/write register. In normal use, however, the Compare register
iswrite-only. As a side effect, writing a value to this register clears the timer interrupt.

Figure 7.14 Compare Register Format
31 0

Compare

Table 7.19 Compare Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
Compare 31.0 Interval count compare value. R/W Undefined

7.2.14 Status (CPO Register 12, Select 0): Processor Status and Control

The Status register is aread/write register that contains the operating mode, interrupt enabling, and diagnostic states
of the processor. Fieldsin this register combine to create operating modes for the processor. Refer to Section

5.2 “Modes of Operation” for adiscussion of operating modes, and to Section 6.3 “Interrupts’ for a discussion of
interrupt modes. A brief summary is provided below.

7.2.14.1 Interruptibility
Interrupts are enabled when:
Statusg == 1, Statusgx. == 0, Statusgr. == 0, and Debugpy == 0.

When these conditions are met, individual interrupts can be disabled/enabled using the Statusiy7-o mask bits.

162 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

7.2.14.2 Operating Modes
User Mode
The CPU isin user mode when:
Statusgx,. == 0, Statusgr. == 0, Debugpm == 0, and Statusym,sm == 2.
In user mode, the CPU has access only to the mapped kuseg address region.

Refer to Section 5.2.2 “User Mode”.
Supervisor Mode
The CPU isin supervisor mode when:
Statusgx,. == 0, Statusgr. == 0, Debugpy == 0, and Statusym,sm == 1.
In supervisor mode, the CPU has access to the top half of the kseg2 region (sometimes known as kseg3), but no
access to CPO registers or most kernel memory. Supervisor mode is not compatible with the "fixed mapping” MMU
option. This modeis not used by any MIPS OS code.
Refer to Section 5.2.3 “Supervisor Mode”.
Kernel Mode
In kernel mode, the CPU has unrestricted access to all memory spaces (including, importantly, the "unmapped"
regions kseg0 and ksegl), and to all the privileged (CPO) registers documented in this chapter, but it is unable to
access some debug resources.
The CPU isin kernel mode when Debugpy is 0 and any of the following conditions are true:
Statusgx == 1, Statusgr. == 1, or Statusym,sm == 0.
The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are fal se,
usually asthe result of an eret instruction.
Refer to Section 5.2.4 “Kernel Mode”.
Debug Mode
The processor is operating in Debug Mode when the DM bit in the CPO Debug register is set to 1. In debug mode, the
processor has full accessto all resourcesthat are available in Kernel Mode operation, in addition to those provided by
EJTAG.
Refer to Section 5.2.5 “Debug Mode”.
7.2.14.3 Coprocessor Accessibility

The Status register CU hits control coprocessor accessibility. If any coprocessor is unusable, then an instruction that
accesses it generates an exception.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 163

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

164

Figure 7.15 shows the format of the Status Register; Table 7.20 describes the Status register fields.

Figure 7.15 Status Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 10

’CUS‘CU2‘CU1‘CUO‘RP‘FR’RE‘MX‘R‘BEV‘TS’SR‘NMI’O‘CEE’O‘ IM7-0 ‘ R ‘UM‘SM‘ERL‘EXL‘IE‘

Table 7.20 Field Descriptions for Status Register

Read/

Name Bit(s) Description Write Reset State

CuU3 31 | Coprocessor 3 Usable. Because no 74K family core has a coprocessor 3, R 0

Statuscys is hardwired zero..

Cu2 30 | Coprocessor 2 Usable. Controls access to coprocessor 2: R 0

Encoding

Meaning

0

Access not allowed

1

Access alowed

Zero.

CU2 isreserved for acustomer’s coprocessor. Currently the 74K family
of cores does not support Coprocessor 2, so thisbit isread-only and reads

Cul 29

Coprocessor 1 Usable. Controls access to coprocessor 1:

Encoding

Meaning

0

Access not allowed

1

Access alowed

CU1 ismost often used for afloating-point unit. When no coprocessor 1
is present, this bit is read-only and reads zero.

RIW

Undefined

Cuo 28

Coprocessor 0 Usable. Controls access to coprocessor O :

Encoding

Meaning

0

Access not allowed

1

Access allowed

R/W

Undefined

Coprocessor 0 is aways usable when the processor is running in Kernel
or Debug Mode, regardless of the state of the CUg hit.

Setting Statuscyp to 1 hasthe peculiar effect of allowing privileged
instructions to execute in user mode, though thisis not something a
secure OSislikely to allow.

MX 24

MIPS Extension. Enables access to DSP ASE resources:

Encoding

Meaning

0

Access not allowed

1

Access allowed

R/W

An attempt to execute any DSP ASE instruction before this bit has been
set to 1 will cause a DSP State Disabled exception. The state of thishitis
reflected in Config3pspp .

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.20 Field Descriptions for Status Register (Continued)

Read/
Name Bit(s) Description Write Reset State

CEE 17 | CorExtend Enable. Enable/disable CorExtend User Defined Instructions | R/W Undefined
(UDIs):

Encoding Meaning

0 Disable CorExtend block
1 Enable CorExtend block

This signal’s usage by a CorExtend block is implementation-dependent.
The presence of the CorExtend extension isindicated in Configup,
which is set when the core is configured. This bit isreserved if CorEx-
tend is not present

RP 27 | Reduced Power. Enable/disable reduced power mode: R/W 0

Encoding Meaning

0 Disable reduced power mode
1 Enable reduced power mode

The state of the RP bit isvisible on the core’s external interface signal
SI_RP. The 74K core uses clocks that are generated outside the core, and
this could be used in your design to slow the input clock(s).

FR 26 | Floating Register. This bit is used to control the floating-point register R/W 0
mode for 64-bit floating point units:

Encoding Meaning

0 Floating point registers can contain any 32-bit
datatype. 64-bit data types are stored in even-odd
pairs of registers

1 Floating point registers can contain any datatype

This bit must be ignored on write and read as zero under the following
conditions

» No floating point unit is implemented

 64-bit floating point unit is not implemented

If your processor has afloating point unit, set 0 for MIPS | compatibility
mode, which means you have only 16 real FP registers, with 16 odd FP
register numbers reserved for access to the high-order bits of double-pre-
cision values.

RE 25 | Reverse Endian. Enables Reverse endianness for instructions that execute R 0
in User mode. This featureis not supported in the 74K core and reads 0.

R 23 Reserved. Returns zeros on reads. R 0

BEV 22 | Boot Exception Vector. Controls the location of exception vectors: R/W 1

Encoding Meaning

0 Normal
1 Bootstrap

When set to 1, all exception entry points are relocated to near the reset
start address. Refer to Section 6.5 “Exception Vector Locations’.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 165

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.20 Field Descriptions for Status Register (Continued)

Read/
Name Bit(s) Description Write Reset State

TS 21 | TLB Shutdown. Set if software attemptsto create aduplicate TLB entry | R/W 0
(which will also produce a"machine check" exception). Can be written
back to zero, but never written to 1. The name of thefield originated asa
"TLB Shutdown"—historical MIPS CPUs quietly stopped translating
addresses when they detected TLB abuse.

SR 20 | Soft Reset. The 74K core'sinterface only supportsafull external reset, so R 0
this bit always reads zero.

NMI 19 | Indicates that the entry through the reset exception vector wasduetoan | R/WO | 1for NMI, O oth-
NMI: erwise

Encoding Meaning

0  |NotNMI (Resel)
1 [NMI

Software can only write a0 to thisbit to clear it and cannot forceaOto 1
transition.

IM7-0 15:8 | Interrupt Mask. Bitwise interrupt enables for the eight interrupt condi- R/W Undefined
tions. The state of these bitsisvisiblein Cause|p7-g, except in EIC
Mode, which is activated when Config3yg|c reads 1, you set Cause)y,
and write anon-zero "vector spacing” in IntCtlys.

In EIC mode, IM7-2 isrecycled to become a 6-bit Status|p (Interrupt
Priority Level) field. Aninterrupt is only triggered when the interrupt
controller presents an interrupt code which is numerically higher than the
current value of Statusipy.

Statusv1-o aways act as bitwise masks for the two software interrupt
bits programmablein Causelpi-o.

R 7:5 | Reserved. Returns zeros on reads. R 0

UM 4 These hits denote the processor’s operating mode. See Section R/W Undefined
SM 5.2 “Modes of Operation”. RIW Undefined

UM | SM Mode

0 | O [Kend
0 1 |Supervisor
1| 0 |User

Note that the processor can also bein Kernel modeif ERL or EXL is set,
regardless of the state of these bits.

166 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.20 Field Descriptions for Status Register (Continued)

Read/
Name Bit(s) Description Write Reset State
ERL 2 Error Level; Set by the processor when a Reset, Soft Reset, NMI, or R/W 1
Cache Error exception is taken.
Encoding Meaning
0 Normal level
1 Error level
When ERL isset:
» The processor is running in kernel mode
* Interrupts are disabled
» The ERET instruction will use the return address held in ErrorEPC
instead of EPC
« Thelower 22° bytes of kuseg are treated as an unmapped and uncached
region. See Chapter 5, “Memory Management of the 74K™ Core”.
This alows main memory to be accessed for cache errors. The opera-
tion of the processor is UNDEFINED if the ERL hit is set while the
processor is executing instructions from kuseg.
EXL 1 Exception Level; Set by the processor when any exception other than R/W Undefined
Reset, Soft Reset, Cache Error, or NMI exception is taken.
Encoding Meaning
0 Normal level
1 Exception level
When EXL isset:
» The processor isrunning in Kernel Mode
» Hardware and software interrupts are disabled.
» TLB Refill exceptions use the general exception vector instead of the
TLB Réfill vector.
» EPC, Causep and SRSCtl are not be updated if another exception is
taken.
When an exception occurs and EXL is set, anested TLB Refill exception
is sent to the general exception handler (rather than to its dedicated han-
dler) and the valuesin EPC, Causepp and SRSCtl are not overwritten.
The result is that when you return from the second exception, you skip
straight back to the code that was executing before the first exception
occurred.
IE 0 Interrupt Enable, Acts as the master enable for software and hardware R/W Undefined
interrupts:
Encoding Meaning
0 Interrupts are disabled
1 Interrupts are enabled
This bit can be written using the di/ei instructions.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

167



CPO Registers of the 74K™ Core

7.2.15 IntCtl (CPO Register 12, Select 1): Setup for Interrupt Vector and Interrupt Pri-
ority Features

The IntCtl register controls the interrupt capabilities of the 74K core, including vectored interrupts and support for an
external interrupt controller.

Figure 7.16 IntCtl Register Format
31 29 28 26 25 23 22 10 9 5 4 0

IPTI IPPCI IPFEDCI 0 VS 0

Table 7.21 Field Descriptions for IntCtl Register

Read/
Name Bit(s) Description Write Reset State
IPTI 31:29 | For Interrupt Compatibility and Vectored Interrupt modes, thisfield R Externally Set

specifies the |P number to which the Timer Interrupt request is merged,
and allows software to determine whether to consider CauserT) for a
potential interrupt.

Encoding| IP bit |Hardware Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HWA4
7 7 HW5

The value of thisbit is set by the static input, SI_IPTI[2:0]. Thisalows
external logic to communicate the specific SI_Int hardware interrupt pin
to which the SI_Timerint signal is attached.

The value of thisfield is not meaningful if External Interrupt Controller
Mode is enabled. The external interrupt controller is expected to provide
thisinformation for that interrupt mode.

IPPCI 28:26 | For Interrupt Compatibility and Vectored Interrupt modes, this field spec- R Externally Set
ifiesthe IP number to which the Performance Counter Interrupt request is
merged, and allows software to determine whether to consider Causepc)
for apotential interrupt.

Encoding| [P bit Hardware Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HWA4
7 7 HW5

The value of thisbit is set by the static input SI_IPPCI[2:0]. Thisallows
external logic to communicate the specific SI_Int hardware interrupt pin
towhich the SI_PClint signa is attached.

The value of thisfield is not meaningful if External Interrupt Controller
Mode is enabled. The external interrupt controller is expected to provide
thisinformation for that interrupt mode.

168 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 7.21 Field Descriptions for IntCtl Register

7.2 CPO Register Descriptions

Name

Bit(s)

Description

Read/
Write

Reset State

IPFDCI

25:23

For Interrupt Compatibility and Vectored Interrupt modes, thisfield
specifies the | P number to which the Fast Debug Channel Interrupt
request is merged, and allows software to determine whether to consider
Causeppc) for apotential interrupt.

Encoding| IP bit Hardware Interrupt Source

2 2 HWO
HW1
HW2
HW3
HW4
HW5
The value of thisbit is set by the static input, SI_IPFDCI[2:0]. This
alows external logic to communicate the specific SI_Int hardware inter-
rupt pin to which the SI_FDClInt signal is attached.

The value of thisfield is not meaningful if External Interrupt Controller

Mode is enabled. The external interrupt controller is expected to provide
thisinformation for that interrupt mode.

N oo b~ W
N oo bW

Externally Set

VS

9.5

If vectored interrupts are implemented (as denoted by Config3ynt or
Config3ve|c), thisfield specifies the spacing between vectored inter-
rupts.

Spacing Between Spacing Between
Encoding Vectors (hex) Vectors (decimal)
16#00 16#000 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512

All other values are reserved. The operation of the processor is UNDE-
FINED if areserved value is written to thisfield.

Vector Spacing. |swritable to give you software control of the vector
spacing; if the valuein VS is V'S, you will get a spacing of 32 x 2(VS™D
bytes.

Only valuesof 1, 2, 4, 8 and 16 are permitted, for spacings of 32, 64, 128,
256, and 512 bytes respectively.

RIW

7.2.16 SRSCtl (CPO Registerl2, Select 2): Shadow Register Set Selectors

The SRSCtl register controls the operation of GPR shadow sets in the processor. Refer to Section 6.4 “GPR Shadow
Registers’.

The presence and number of shadow setsis configurable by the SoC designer. If your CPU has shadow register sets,
SRSCtlyss will be non-zero. If no shadow sets are implemented, aread of thisregister returns all zeroes.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

169



CPO Registers of the 74K™ Core

170

31 30 29

Figure 7.17 SRSCtl Register Format

25 22 21 18 17 16 15 12 11 10 9

0

HSS

0 EICSS 0 ESS 0 PSS

CSS

Table 7.22 Field Descriptions for SRSCtl Register

Name

Bit(s)

Description

Read/
Write

Reset State

HSS

29:26

Highest Shadow Set. Thisfield contains the highest shadow set number
that isimplemented by this processor (i.e., the number of available regis-
ter setsminus 1). A value of zero in thisfield indicates that only the regu-
lar GPRs are implemented.

Possible values of thisfield for the 74K processor are:

Thevaluein thisfield also represents the highest value that can be written
tothe ESS, EICSS, PSS, and CSS fidlds of thisregister, or to any of
the fields of the SRSMap register. The operation of the processor is
UNDEFINED if avaluelarger than the one in thisfield is written to any
of those other fields

Preset

EICSS

21:18

External Interrupt Controller Shadow Set. If Config3ygic is1 (EIC inter-
rupt mode is enabled), thisfield isloaded from the external interrupt con-
troller for each interrupt request and is used in place of the SRSMap
register to select the current shadow set for the interrupt. See Section
6.3.1.3 “External Interrupt Controller Mode” for adiscussion of EIC
interrupt mode. If Config3yec isO, thisfield returns zero on reads.

Undefined

ESS

15:12

Exception Shadow Set. Thisfield specifies the shadow set to use on entry
to Kernel Mode caused by any exception other than a vectored interrupt.
The operation of the processor is UNDEFINED if software writes a
value in thisfield that is greater than the value in the HSS field.

R/W

PSS

9:6

Previous Shadow Set. If GPR shadow registers are implemented, with the
exclusions noted in the next paragraph, thisfield is copied from the CSS
field when an exception or interrupt occurs. An exet instruction copies
this value back into the CSS field if Statusggy = 0.

Thisfield is not updated on any exception which sets Statusgry to 1
(i.e, Reset, Soft Reset, NMI, cache error), an entry into EJTAG Debug
mode, or any exception or interrupt that occurs with Statusgx =1 or
Statusggy = 1, or Statusgr, = 1.

The operation of the processor is UNDEFINED if software writesa

valueinto thisfield that is greater than the value in the HSS field.

R/W

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2 CPO Register Descriptions

Table 7.22 Field Descriptions for SRSCtl Register (Continued)

Read/
Name Bit(s) Description Write Reset State
CSSs 3:0 | Current Shadow Set. If GPR shadow registers are implemented, thisfield R 0

is the number of the current GPR set. With the exclusions noted in the
next paragraph, thisfield is updated with a new value on any interrupt or
exception, and restored from the PSS field on an eret. Table 7.23
describes the various sources from which the CSS field is updated on an
exception or interrupt.

Thisfield is not updated on any exception which sets StatusERL to 1
(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG Debug
mode, or any exception or interrupt that occurs with Statusgx =1, or
Statusggv = 1. Neither isit updated on an eret with Statusgr =1 or
Statusgey = 1. Thisfield is not updated on an exception that occurs
while Statusgr| = 1.

The value of CSS can be changed directly by software only by writing
the PSS field and executing an eret instruction.

Table 7.23 Sources for SRSCtlcss on an Exception or Interrupt

Exception Type Condition SRSCtlcss Source Comment
Exception All SRSCtlgss
Non-Vectored Interrupt Causey =0 SRSCtlgss Treat as exception
Vectored I nterrupt Causey =1and SRSMapyvecTnUM Source isinternal map register.
Config3yveic =0 and (for VECTNUM see Table 6.4).
Config3Vint=1
Vectored EIC Interrupt Causey =1and SRSCtlg|css Source is external interrupt
Config3ygic =1 controller.

7.2.17 SRSMap (CPO Register 12, Select 3): Shadow Set Choice for Each Interrupt

Level in VI Mode

The SRSMap register specifies the mapping of avector number to a shadow register set number for use when servic-
ing an interrupt in Vectored Interrupt (V1) mode (Config3yint = 1, Config3yeic = 0, and Causey = 1). Thevaluesin
thisregister are not used for non-interrupt exceptions or non-vectored interrupts (Causey = 0 or IntCtlys = 0); in these
cases, the shadow set number isthe value in SRSCtlgss.

If SRSCtlnss iszero (indicating that no shadow sets are implemented), the result of a software read or write of this
register is UNPREDICTABLE.

The operation of the processor is UNDEFINED if avalueiswritten to any field in this register that is greater than the
value of SRSCtlyss.

The same shadow set number can be used for multiple interrupt vectors, creating a many-to-one mapping from avec-
tor to asingle shadow register set number. In Interrupt Compatibility mode, one shadow set can be used for all excep-
tion handlers, including interrupt handlers, by setting SRSCtlgss to anon-zero value.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 171

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

172

In EIC interrupt mode, this register has no effect, and the shadow set number to be used is determined by an input bus
from the external interrupt controller.

Figure 7.18 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
SSv7 SSv6 SSv5 Ssv4 SSv3 SSv2 SSv1 SSvO0
Table 7.24 Field Descriptions for SRSMap Register

Read/
Name | Bit(s) Description Write Reset State
SSV7 | 31:28 | Shadow register set number for Vector Number 7 R/W 0
SSV6 | 27:24 | Shadow register set number for Vector Number 6 R/W 0
SSV5 | 23:20 | Shadow register set number for Vector Number 5 R/W 0
SSV4 | 19:16 | Shadow register set number for Vector Number 4 R/W 0
SSV3 | 15:12 | Shadow register set number for Vector Number 3 R/W 0
SSV2 11:8 | Shadow register set number for Vector Number 2 R/W 0
SSvi1 7:4 | Shadow register set number for Vector Number 1 R/W 0
SSVO 3:0 | Shadow register set number for Vector Number O R/W 0

7.2.18 Cause (CPO Register 13, Select 0): Cause of Last General Exception

The Cause register describes the cause of the most recent exception and controls software interrupt requests and the
vector through which interrupts are dispatched. With the exception of the IP1..0, DC, IV, and WP fields, all fieldsin
the Cause register are read-only. IP7..2 are interpreted as the Requested Interrupt Priority Level (RIPL) in External
Interrupt Controller (EIC) interrupt mode.

Figure 7.19 Cause Register Format

31 23

BD

30 29 28

TI| CE

27

DC

26

PCI 0

25 24 22 21

FDCI 0

20 16 15

vV | WP 1P7-2 IP1-0 |0 ExcCode | O

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.25 Field Descriptions for Cause Register

Name

Bit(s)

Description

Read/
Write

Reset State

BD

31

Indicates whether the last exception taken occurred in a branch delay
slot:

Encoding Meaning

0 Not in delay slot
1 In delay slot

The processor updates BD only if the EXL bit in the Status register was
zero when the exception occurred.

If the exception occurred in abranch delay slot, EPC is set to restart exe-
cution at the branch, which is usually the correct thing to do. You need to
consult Causepp only when you need to look at the instruction which
caused the exception (perhaps to emulate it).

R

Undefined

TI

30

Timer Interrupt. Denotes whether atimer interrupt is pending (analogous
to the IP bits for other interrupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

The state of this bit is available on the external Core interface as the
SI_TimerInt signdl.

See also the descriptions of the Count and Compare registers.

Undefined

CE

29:28

Coprocessor unit number referenced when a Coprocessor Unusable
exception istaken. Thisfield isloaded by hardware on every exception,
but is UNPREDICTABLE for al exceptions except Coprocessor Unus-
able.

Undefined

DC

27

Disable Count register. In some power-sensitive applications, the Count
register is not used but may still be the source of some noticeable power
dissipation. This bit allows the Count register to be stopped in such situ-
ations, for example, during low-power operation following await
instruction.

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

R/W

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

173



CPO Registers of the 74K™ Core

Table 7.25 Field Descriptions for Cause Register (Continued)

Read/
Name Bit(s) Description Write Reset State

PCI 26 | Performance Counter Interrupt. Indicates whether a performance counter R Undefined
interrupt is pending (analogous to the IP bits for other interrupt types):

Encoding Meaning

0 No performance counter interrupt is
pending

1 Performance counter interrupt is
pending

See also the description of the PerfCnt registers.

\Y 23 | Indicates whether an interrupt exception uses the general exceptionvec- | R/W Undefined
tor or a special interrupt vector:

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

When the IV bit in the Cause register is 1 and the BEV bit in the Status
register is O, the special interrupt vector represents the base of the vector
interrupt table.

WP 22 Indicates that a watch exception was deferred because Statusgx| or R/W Undefined
StatusgrL was a one at the time the watch exception was detected. This
bit both indicates that the watch exception was deferred, and causes the

exception to beinitiated when Statusgx | and Statusgry are both zero.

As such, software must clear this bit as part of the watch exception han-

dler to prevent awatch exception loop.

Software should not write a 1 to this bit when its value isa 0, thereby
causing a0-to-1 transition. If such atransition is caused by software, itis
UNPREDICTABL E whether hardware ignores the write, accepts the
write with no side effects, or accepts the write and initiates awatch
exception once Statusgx . and Statusgry are both zero.

FDCI 21 | Fast Debug Channd Interrupt: Thisbit denotes whether an FDC interrupt R Undefined
is pending (analogous to the IP bits for other interrupt types):

Encoding Meaning

0 No FDC interrupt is pending
1 FDC interrupt is pending

The state of the FDCI bit is available on the external core interface asthe
SI_FDCInt signal.

174 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.25 Field Descriptions for Cause Register (Continued)

Read/
Name Bit(s) Description Write Reset State
IP7-2 15:10 | Indicates an interrupt is pending: R Undefined
Bit Name Meaning
15 IP7  |Hardware interrupt 5
14 IP6 |Hardware interrupt 4
13 IP5 |Hardware interrupt 3
12 IP4  |Hardware interrupt 2
11 IP3 |Hardware interrupt 1
10 IP2 |Hardware interrupt O
If EIC interrupt mode is not enabled (Config3ye|c = 0), timer interrupts
are combined in a system-dependent way with any hardware interrupt. If
EIC interrupt mode is enabled (Config3ve|c = 1), these bitstake on a
different meaning and are interpreted as the RIPL field, described below.
See Section 6.3 “Interrupts’ for ageneral description of interrupt pro-
cessing.
IP1-0 9:8 | Controlsthe request for software interrupts: R/W Undefined
Bit Name Meaning
9 IP1  |Request software interrupt 1
8 IPO  |Request software interrupt O
These hits are exported to an external interrupt controller for prioritiza-
tionin EIC interrupt mode with other interrupt sources. The state of these
bitsis available on the external core interface as the SI_SWInt[1:0] bus.
ExcCode 6:2 | Encodes the cause of the last exception as described in Table 7.26. R Undefined
Table 7.26 Exception Code values in ExcCode Field of Cause Register
Value Code What just happened?
0 Int Interrupt
1 Mod Store, but page marked asread-only inthe TLB
2 TLBL Load or fetch, but page marked asinvalid inthe TLB
3 TLBS Store, but page marked asinvalid in the TLB
4 AdEL Address error on load/fetch or store respectively. Addressis either wrongly aigned, or a privi-
5 AdES lege violation.
6 IBE Bus error signaled on instruction fetch
7 DBE Bus error signaled on load/store (imprecise)
8 Sys System call, i.e. syscall instruction executed.
9 Bp Breakpoint, i.e. break instruction executed.
10 RI Instruction code not recognized (or not legal)
11 CpU Instruction code was for a co-processor which is not enabled in Statuscys-o.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

175



CPO Registers of the 74K™ Core

Table 7.26 Exception Code values in ExcCode Field of Cause Register

Value Code What just happened?
12 ov Overflow from atrapping variant of integer arithmetic instructions.
13 Tr Condition met on one of the conditional trap instructions teq etc.
14 - Reserved
15 FPE Floating point unit exception — more detailsin the FPU control/status registers.
16-17 - Auvailable for implementation-dependent use.
19-22 - Reserved
23 WATCH | Instruction or data reference matched a watchpoint.
24 MCheck | "Machine check"
25 Thread | Thread-related exception, only for CPUs supporting the MIPSMT ASE. In that case the cause
is further detailed in VPEControlgxcpr.
26 DSP Tried to run an instruction from the MIPS DSP ASE, but it's either not enabled or not avail-
able. In particular, Statusyx is zero).
27-29 - Reserved
30 CacheErr | Parity/ECC error somewherein the core, on either instruction fetch, load or cache refill. In fact

you never seethisvalue in Causegxccode; but some of the codes in thistable including this
one can be visible in the "debug mode" of the EJTAG debug unit — see and in particular the
notes on the Debug register.

31 - Reserved

7.2.19 EPC (CPO Register 14, Select 0): Restart Address from Exception

Following an exception other than a debug or error or debug exception, the Exception Program Counter (EPC) con-
tains the address at which processing resumes after the exception has been serviced. (The corresponding debug and
error exception use DEPC and ErrorEPC respectively.)

Unlessthe EXL bit in the Status register is set (indicating, among other things, that interrupts are disabled), the pro-
cessor writes the EPC register when an exception occurs.

»  For synchronous (precise) exceptions, EPC contains either:
» thevirtua address of the instruction that was the direct cause of the exception, or

» thevirtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction isin abranch delay slot, and the Branch Delay bit in the Cause register is set.

»  For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the eret instruction.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



31

Figure 7.20 EPC Register Format

7.2 CPO Register Descriptions

EPC

Table 7.27 EPC Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
EPC 31.0 Exception Program Counter. R/W Undefined

7.2.20 PRId (CPO Register 15, Select 0): Processor Identification and Revision

The Processor |dentification (PRId) register is a 32 bit read-only register that contains information identifying the

manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 7.21 PRId Register Format

31 24 23 16 15 8 7 0
CoOpt ColD Imp Rev
Table 7.28 Field Descriptions for PRId Register
Read/
Name Bit(s) Description Write Reset State
CoOpt 31:24 | Company Option. Whatever is specified by the SoC builder who synthe- R Preset
sizes the core— refer to your SoC manual. It should be a number
between 0 and 127— higher values are reserved by MIPS Technologies.
ColD 23:16 | Company ID. Identifies the company that designed or manufactured the R 1
processor. In the 74K, thisfield contains a value of 1 to indicate MIPS
Technologies, Inc.
Imp 15:8 | Processor ID. Identifies the type of processor. This field allows software R 0x97
to distinguish between the various types of processors from MIPS Tech-
nologies. The value of thisfield is 0x97 for the 74K core.
Rev 7:0 | Therevision number of the core design. R Preset

Bit(s) Name Meaning

75 Major | This number isincreased on major
Revision |revisions of the processor core

4:2 Minor | This number isincreased on each

Revision |incremental revision of the processor
and reset on each new major revision
1.0 Patch  |If apatch is made to modify an older

Level |revision of the processor, thisfield will
be incremented

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

177



CPO Registers of the 74K™ Core

178

7.2.21 EBase (CPO Register 15, Select 1): Exception entry point base address and
CPU/VPE ID

The EBase register isaread/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and aread-only CPU number value that may be used by software to distinguish different processorsin a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when Statusggy is 0. The exception vector base address comes from the fixed defaults (see Section

6.5 “Exception Vector Locations’) when Statusggy is 1, or for any EJTAG Debug exception. The reset state of bits
31:12 of the EBase register initialize the exception base register to 16#8000. 0000, providing backward compati-
bility with Release 1 implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or ksegl unmapped virtual address segments. Bit 29 of exception base address will be forced to 1 on Cache Error
exceptions so the exception handler will be executed from the uncached ksegl segment.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectorsto be placed at
any 4K Bbyte page boundary.

Figure 7.22 EBase Register Format

31 30 29 12 11 10 9 0

0 VA 0 CPUNum

Table 7.29 Field Descriptions for EBase Register

Read/
Name Bit(s) Description Write Reset State
VA 29:12 | The base address for the exception vectors, adjustable to a resolution of R/W 0x0000.0

4K bytes. See the exception entry points table for how that moves all the
exception entry points.

The top two bits of this register must be 10 to make sure the exception
vector ends up in kseg0, conventionally used for OS code.

By setting EBase in any CPU to a unique value, that CPU can have its
own unique exception handlers.

Write thisfield only when Statusggy is set so that any exception will be
handled through the ROM entry points (otherwise you would be chang-
ing the exception address under your own feet, and the results of that are
undefined).

CPUNum 9:0 | Thisfield contains an identifier that will be unique among the CPUsin a R Externally Set

multi-processor system. The valuein thisfield is set by the
SI_CPUNum[9:0] static input pinsto the core.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

7.2.22 CDMMBase Register (CPO Register 15, Select 2)

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. Thisregis-
ter only existsif Config3cpmm is Set to one.

Figure 7.23 shows the format of the CDMMBase register, and Table 7.30 describes the register fields.

Figure 7.23 CDMMBase Register

11 10 9 8 0
|EN| cl | CDMMSize

31 28 27
0 CDMM_UPPER_ADDR

Table 7.30 CDMMBase Register Field Descriptions

Fields
Read /

Write

Reset
State

Name Bits Description

CDMM_UPPER_ Undefined

ADDR
EN 10

27:11 Bits 31:15 of the base physical address of the common R/W

device memory-mapped registers.

Enables the CDMM region. RIW 0
If thisbit is cleared, memory requests to this address
region go to regular system memory. If thisbit is set,
memory requests to this region go to the CDMM logic

Encoding Meaning

0 CDMM region is disabled.
1 CDMM region is enabled.

Cl 9 If set to 1, thisindicates that the first 64-byte Device Reg- R 0
ister Block of the CDMM s reserved for additional regis-
terswhich manage CDMM region behavior and arenot 1O
deviceregisters.

Thisfeature is not implemented and this field will read as

0.

Thisfield represents the number of 64-byte Device Regis- R 2
ter Blocks instantiated in the core.

CDMMSize 8.0

Encoding Meaning

0

1DRB

1

2DRBs

2

3 DRBs

511

512 DRBs

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

179



CPO Registers of the 74K™ Core

180

7.2.23 Config (CPO Register 16, Select 0): Legacy Configuration Register

The main role of the (several) configuration registersis to be aread-only repository of information about the core's
resources, encoded so as to be useful to operating system initialization code.

But this original Config register acquired some writable fields. Typically, these select the sort of options you'd write
once in initialization software and then never touch again.

Figure 7.24 Config Register Format
3130 28 27 25 24 23 22 21 20 19 18 17 16 15 141312 109 76 4 3 2 O

M| K23 KU [ISP|DSP|UDI|SB|0(WC(MM|0|BM|BE| AT | AR | MT | 0 |VI| KO

Table 7.31 Field Descriptions for Config Register

Read/
Name Bit(s) Description Write Reset State
M 31 |Readslif Configlisavailable. R 1

K23 30:28 | If your CPU uses fixed mapping instead of having a TLB, you set the FMT: FMT:2
cacheability attributes of chunks of the memory map by writing these R/W TLB:O

fields. They're encoded like EntryLoO-1c. TLB: R
KU 27:05 If you have a TLB, these fields are unused (but please write only zero to EMT: EMT:2
them). RIW TLB:0

Configkez isfor program addresses 0xC000.0000-0xFFFF.FFFF TLB: R
(the "kseg2" and "kseg3" areas), while Configky isfor program
addresses 0x0000.0000-0x7FFF . FFFF (the "kuseg" area)
From reset, both are "uncached" (code 2).

ISP 24 | Reads1if I-side scratchpad (ISPRAM) isfitted. R Preset
DSP 23 | Reads1if D-side scratchpad (SPRAM) isfitted. R Preset
(Don't confuse this with the MIPS DSP ASE, whose presence isindi-
cated by Config3pspp.)
uDI 22 | Reads1if your core implements user-defined " CorExtend" instructions. R Preset
SB 21 | Read-only "SimpleBE" bus mode indicator, which reflects the core input R Externally Set

signa SI_SimpleBE.

If set, means that this core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte,
aligned half-word, and aligned word.

If zero, it may generate partial-word transfers with an arbitrary set of
bytes enabled (which some memory controllers may not like).

wC 19 | Write Control. Enable write control of cache size and R/W 0
specia function bits in the Configl register.
0: Write control disabled
1: Write control enabled

MM 18 | Writable: set 1 if you want writes resulting from separate store instruc- R/W 1
tionsin write-through mode merged into asingle (possibly burst) transac-
tion at the interface. This doesn’t affect cache writebacks (which are
aways whole blocks together) or uncached writes (which are never
merged).

BM 16 | Read-only. Reads O when bus uses sequential burst order and reads 1 R Externally Set
when it uses sub-block burst order; set by the core input signal
Sl_SBIlock signal to match your system controller.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.31 Field Descriptions for Config Register (Continued)

Read/
Name Bit(s) Description Write Reset State
BE 15 | Reads1 for big-endian, O for little-endian, as selected by the core input R Externally Set
SI_Endian.
AT 14:13 | Reads O for MIPS32. R 0
0|MIPS32
1|MIPS64 instruction set but MIPS32 address map
2|MIPS64 instruction set with full address map
AR 12:10 | Reads 2 to reflect Release 2 of the MIPS32 architecture. Zero isfor the R 1
original release.
MT 97 [MMU type: R Preset
O|None
1|MI1PS32/64 compliant TLB
2|"BAT" type
3|MIPS-standard fixed mapping
All MIPS Technologies cores are type 1 or 3, as selected by your SoC
builder.
VI 3 Reads 0 to indicate L1 I-cache is physically tagged. It would read 1 if the R 0
L1 I-cache were virtual (both indexed and tagged using virtual address).
KO 2:0 | KsegO coherency attribute of the page. See Table 7.8 for thefield encod- | R/W 2
ing.

7.2.24 Configl-2 (CPO Register 16, Select 1-2): MIPS32/64 Configuration Registers

These two registers tell you the size of the TLB, and the size and organization of L1, L2, and L3 caches (azero "line
size" isused to indicate a cache which isn’t there).

Config2 aso hasfields which tell you about the presence of some extensionsto the base MI1PS32 architecture that are
implemented on this core.

7.2.24.1 Configl

Thisregister displays the size and configuration of the TLB and primary caches, and the availability of some optional

CPU features.
Figure 7.25 Configl Register Format
31 30 25 24 22 21 19 18 16 15 13 12 109 7 6 5 4 3 2 1 0
M MMUSize IS IL 1A DS DL DA |C2|MD |PC|WR|CA |EP|FP
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 181

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.32 Field Descriptions for Configl Register

Name Bit(s) Description Read/ Write | Reset State
M 31 | Continuation bit, set to 1 to indicate that Config2 isimplemented. R 1
MMUSize | 30:25 |Thesizeof the TLB array (the array has MMUSize +1 entries). R Preset
IS 24:22 | Fieldsfor the L1 I-cache. All caches have the same triplet of fields, which R Preset
report: R/W when
config. WCis
S| Number of sets per way. Calculate as: 64 x 25 st
IL 21:19 L |Linesize. Zero means no cache at all, otherwise calculate as: R 4
2x2- R/W when
A | Associativity/number of ways. Calculateas A + 1 config WC is
Set
A 18:16 R 3
Soif (IS, IL, 1A) is(2,4,3), you have 256 sets/way, 32 bytes per line, and 4-
way set associativity, which is a 32Kbyte cache.
74K family cores always have 32-byte cache lines. The L1 caches are 4-way
set associative and are 16K B, 32KB, or 64KB. L1 I-cache of OKB is supported.
DS 15:13 | For L1 D-cache: same encoding as Configlis,iL,iA. R Preset
The cacheline size isfixed at 32 bytes when a D-cache is present. Thisfield R/W when
reads 0 when a D-cache is not present. L 1-D-cache of OKB, 16KB, 32Kb, and | configWCis
64K B are supported. set
DL 12:10 R Preset
R/W when
configWC is
set
DA 9.7 R
Cc2 6 the absence of a coprocessor 2 (that would be a customer-designed coproces- R
sor).
MD 5 Otoindicate that the MDMX ASE is not implemented in the floating point unit R 0
of the 74K core
PC Thereis at least one performance counter implemented, see PerfCnt0-3. R 1
WR Reads 1 because the 74K core always has watchpoint registers, see R 1
WatchLo0-3/WatchHiO-3.
CA 2 Reads 1 because the M1 PS16e compressed-code instruction set is available (as R 1
it ison most MIPS Technologies cores).
EP 1 Reads 1 because an EJTAG debug unit is always provided on MIPS Technolo- R 1
giescores.
FP 0 A floating point unit is attached. R Preset

182

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2 CPO Register Descriptions

7.2.24.2 Config2

Figure 7.26 Config2 Register Format
31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

Table 7.33 Field Descriptions for Config2 Register

Name | Bit(s) Description Read/ Write | Reset State
M 31 | Continuation bit, 1 if Config3 isimplemented. R 1
TU 30:28 | Reserved for extra control/status bits for an L3 cache, if fitted. R 0
TS 27:24 | If Config2T isnon-zero, your CPU has an L3 (tertiary) cache. Its size and R 0
TL 23:20 shape are en_codeq as Configl;s,|.,1a described above. However, no 74K R 0
family coreis equipped for an L3 cache.
TA 19:16 R 0
SuU 15:13 | Reserved for more secondary cache control/status bits, when required. Not R 0

used on the 74K family cores.

L2B 12 L2 Bypass/L2 Bypassed. In systemswhich include an L2 cache, writing a R/W 0
1 to thishit, will set the L2_Bypass output from the core. Setting the
L2_Bypass output, directs the L2 cache to go into bypass mode, L2
responds by assertion its L2_Bypassed output pin. The value of

L2 Bypassed is returned when L2B isread. When this bit is set through a
write operation, a subsequent read of this bit will not indicate a 1, until the
L2 has asserted the signal L2_Bypassed indicating that it has been
bypassed.

SS 11:8 | If Config2s| isnon-zero, your CPU has an external L2 (secondary) cache. R Preset

Its size and shape are encoded as in Configls,,ia above. R/W when

config WC s
set

SL 74 R Preset
R/W when
config. WCis
set

SA 3.0 R Preset
R/W when
configWC is
set

7.2.25 Config3 (CPO Register 16, Select 3): Configuration register showing ASEs

Config3 providesinformation about the presence of optional extensionsto the base M1PS32 architecture in addition to
those specified in Config2.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 183

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Figure 7.27 Config3 Register Format
31 30 14 13 12 11 10 9 87 6 5 4 3 2 1 0

M 0 ULRI | 0 | DSP2P | DSPP | CTXTC | O | VEIC | VInt | SP|CDMM | MT | SM | TL

Table 7.34 Field Descriptions for Config3 Register

Read/
Name Bit(s) Description Write Reset State
M 31 Continuation hit, zero because there is no Config4. R 0
ULRI 13 Reads 1 to indicate that the UserLocal Register isimplemented 1
DSP2P 11 Reads 1 to indicate that Revision 2 of the MIPS DSP ASE isimplemented R 1
DSPP 10 Reads 1 to indicate that the MIPS DSP ASE extension is implemented. R 1
CTXTC 9 Reads 1 to indicate the ContextConfig register is. The width of the R 1
BadVPN2 field in the Context register depends on the contents of this reg-
ister.
VEIC 6 Read-only bit from the coreinput signal SI_EICPresent, which should be R Externally Set
set in the SoC to alert software to the availability of an EIC-compatible
interrupt controller.
Vint 5 Reads 1 to indicate the CPU can handle vectored interrupts. R 1
SP 4 Reads 0 to indicate the CPU does not support small (1Kbyte) pages. R 0
CDMM 3 Reads 1 to indicate the Common Device Memory Map is implemented. R 1
MT 2 Reads 0 to indicate the CPU does not include the MIPS MT (multithread- R 0
ing) ASE.
SM 1 Reads 0 to indicate the CPU does not include the instructions of the Smart- R 0
MIPS ASE.
TL 0 Readsl to indicate instruction trace is supported. R 0

7.2.26 Config6 (CPO Register 16, Select 6)

Config3 providesinformation about the presence of optional extensionsto the base MIPS32 architecturein addition to
those specified in Config2 and Config3.

Figure 7.28 Config6 Register Format

31 15 14 13 12 10 9 8 7 2 1 0
0 SPCD|SYND| [IFUPerfCtl | NMRUP|NMRUD 0 JRCP | JRCD
184 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 7.35 Field Descriptions for Config6 Register

7.2 CPO Register Descriptions

Name

Bit(s)

Description

Read/
Write

Reset State

SPCD

14

Sleep state Performance Counter Disable. When this bit is set, the perfor-

mance counter core clocks are prevented from shutting down.

The primary use of this bit is to keep performance counters alive when the

coreisin sleep mode.

Encoding

Meaning

0

Performance counter operation is enabled
in Sleep state.

Performance counter operation is disabled
in Sleep state.

0

SYND

13

Synonym tag update Disable. This bit controls the tag update behavior for
loads with a Virtual Address miss but a Physical Address hit during a D-

cache |ook-up.

Encoding Meaning
0 Synonym load misses will opportunisti-
cally update the tag so that subsequent
loadswill hit (virtual address hit) at lookup.
1 Synonym load misses at lookup will not
update the tag with new information.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

185



CPO Registers of the 74K™ Core

Table 7.35 Field Descriptions for Config6 Register (Continued)

Read/
Name Bit(s) Description Write Reset State
IFUPerfCtl 12:10 |IFU Performance Control. Thisfield encodes |FU eventsthat provide debug R/W 0

and performance information for the IFU pipeline.

Encoding Meaning
000 IDU isaccepting instructions, but IFU is not
providing any.
001 A control transfer instruction such asa
branch or jump causes lost IDU bandwidth.
010 A stalled instruction such as an unpredicted

jump must wait for an address and thus
causes lost IDU bandwidth.

011 Cache prediction was correct.
100 Cache prediction was incorrect.
101 Cache did not predict dueto invalid JR

cache entry, or the instruction tag miscom-
pared with tag in JR cache.

110 Unimplemented.
111 Condition branch was taken.

Lost IDU bandwidth occurs when the IDU is accepting instructions, but
instructions are not being provided by the IFU. The count of these events
can be seen via Performance Counters O or 3, and the event number 11. In
order to view the IFU Perf Ctl events, the Performance Counter Control
needs to be programmed accordingly Table 7.49, "Performance Counter
Events and Codes" for general information on event number 11.

NMRUP 9 NMRU Present. Rather than afully random replacement on TLBWR, a R 1
table of the most recently used JTLB entries is maintained, whose entries
are not replaced whenever possible.

Encoding Meaning
0 Most Recently Used JTLB replacement
scheme not present.
1 Most Recently Used JTLB replacement
scheme present.
NMRUD 8 NMRU Disable. Disable bit for NMRU JTLB replacement scheme. R/W 0
Encoding Meaning
0 TLBWR instruction uses NMRU scheme.
1 TLBWR instruction uses random replace-
ment.
186 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.35 Field Descriptions for Config6 Register (Continued)

Read/
Name Bit(s) Description Write Reset State
JRCP 1 JR Cache Present. JR cache learns the target address of "Jump Register" R 1
type instructions and subsequently predicts that target address.
Encoding Meaning

0 JR cacheis not implemented.

1 JR cacheisimplemented.
JRCD 0 JR Cache Prediction Disable. Disables JR target address prediction.. R/W 0

Encoding Meaning
0 JR cache target address predictionis
enabled.
1 JR cache target address prediction is not
enabled.

31

7.2.27 Config7 (CPO Register 16, Select 7): CPU-specific Configuration

Thisregister controls machine-specific features of the 74K core. A few of them are for hardware interface adaptation,
but most are for chip or system test only. They default into a"safe" value, and most software—even bootstrap soft-
ware—can and should ignore these registers.

30 29 28

27 26

Figure 7.29 Config7 Register Format

25 24 23 22 21 20 19 18 17 16 1513 12 11 10 9

8 7 6 5

4 3 2 1

0

wil

FPFS | IHB |FPRI

SEHB

CP210

IAGN |IALU|DGHR|SG|SUI[ 0 |HCI|FPRO|AR| O

PREF | IAR

IVA

ES|0|CP110 |0

uLB

BP | RPS | BHT

SL

Table 7.36 Field Descriptions for Config7 Register

Name

Bit(s)

Description

Read/
Write

Reset State

Wil

31

Wait |E Ignore. When this bit is set, an interrupt will unblock await
instruction, even if Status)g is preventing the interrupt from being taken.
If WII reads O, the 74K core remains in the wait condition forever if
entered with interrupts disabled. If set to 1, it allows OS code to avoid
tricky race conditions.

1

FPFS

30

Fast Prepare for Store. When thishit isset, pref 31 will behave as
specified, i.e., the prefetch instruction will only validate the data tag but
not write 0's into the data cache.

By default, thisbit will beOand pref 31 will behavelikepref 30.
Thismeansthat pref 31 will validate the datatag and write 0's into

the data cache array for the specified line,

R/W

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

187




CPO Registers of the 74K™ Core

Table 7.36 Field Descriptions for Config7 Register (Continued)

Read/
Name Bit(s) Description Write Reset State

IHB 29 | If IHB=1, the following behavior will be true: R/W 0

* When the core sees any explicit/implicit mtcO(cache, 11,
mtcO, tlbop, eret, deret, sync-in-debug-mode, di,
ei) followed by any implicitmfc0 (ehb, mfc0, eret,
deret, di, ei), the pipelinewill behave asif an ehb isintroduced
implicitly prior to executing them£fc0. This ensures al state modifi-
cation by mtcO is completely seen by m£cO0.

 Anyjalr r31,jr r31instructionseenby thecorewhen CPOis
usable (i.e CUO=1 or Kernel or Debug mode as defined in the PRA)
will automagically treat thoseinstructionsas jalr.hb and
jr.hb.

If IHB=0, the following behavior will be true:

» Programmer is responsible for resolving hazards and put ehb or .hb
where appropriate. Prior cores may have used some number of nops
or ssnops to ensure that the effect of a CPO modifying instruction is
seen by a CPO read instruction. 74K cannot guarantee such behavior
with asmall number of nops/ssnops.

Per Release2, the programmer is expected to put in an explicit ehb or

-.hb whereneeded. If thereisreason to believe that the programmer has

not done this, then this bit can be enabled to get correct operation.

SEHB 27 | "Slow EHB": experimental mode to accelerate CPO sequences using R/W 0
ehb

If thisbit is set, ehb will block issue of instructions from the instruction
buffer until all older instructions have graduated and the pipe is empty.
By default, ehb will block issue of instructions from the instruction
buffer only if there are pending explicit CPO-modifying instructionsin
the pipe.

CP2I0 26 |core R/W 0
Reserved for future use.

CP1IO 6 By default data sent from the core to a coprocessor block may besentin | R/W 0
an order reflecting the internal pipeline execution sequence. Set thisbit to
arrange that datawill be sent only in instruction order to the FPU

IAGN 25 | Selective control of out-of-order behavior: issue ALU-side or load/store- | R/W
IALU 24 side instructions (respectively) in program order. W

DGHR 23 | Disablesthe use of any global history in the branch predictor. R/W

SG 22 | Set1toalow only oneinstruction to graduate per cycle. Thishasanega-| R/W
tive impact on performance and should only be used for test purposes.

Sul 21 | Strict Uncached Instruction (SUI) policy control. R/W 0
Run uncached instruction strictly in order and (as far as possible) unpipe-
lined. Thiswill be quite slow (the policy itself will introduce a 15-cycle
bubble between each instruction), but you'll hardly notice, because run-
ning uncached is already so slow. Only the branch-delay-slot instruction
of abranch is fetched without this bubble.

The advantage is that the CPU will not wander off speculatively fetching
unwanted instructions from a (perhaps slow) boot memory.

o|o| o| o

188 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.36 Field Descriptions for Config7 Register (Continued)

Name

Bit(s)

Description

Read/
Write

Reset State

HCI

18

Hardware Cache Initialization: 1 indicates that a cache does not require
initialization by software. This bit will most likely only be set on simula-
tion-only cache models and not on real hardware.

R

Based on Hard-
ware Present

FPR1,
FPRO

28,17

Read-only fields. Indicates frequency of the core relative to FPU.
e 2'b00: coreFPU = 1:1

e 2'b01: core FPU = 2:1

e 2'b10: core:FPU = 3:2

¢ 2'b1l: Reserved

Based on Hard-
ware Present

AR

16

Read-only field, indicating that the D-cache is configured to avoid cache
aliases.

All the remaining fields are read/write, and control various functions.
Only one of them islikely to find real system use:

Based on Hard-
ware Present

PREF

12:11

These two bits control the extent of prefetching of Instructionsinto the

Instruction Cache as indicated.

» 2'b00: Prefetch O cache lines on an I-cache missin addition to fetching
the missing cache line. i.e. Disable I-cache prefetching.

e 2'b01: Prefetch 1 cache line (sequential next line) on an I-cache miss
in addition to fetching the missing cache line.

e 2'b10: Reserved

« 2'bl1: Prefetch 2 cache lines (sequential next 2 lines) on an I-cache
missin addition to fetching the missing cache line.

RIW

01

IAR

10

Instruction Alias Removed.

Indicates that this processor has hardware support to remove instruction
cachealiasing. This hardwareis only present when the coreis configured
with aTLB and cache size of 32KB and larger. The hardwareis disabled
viathe IVA bit.

Based on Hard-
ware Present.

IVA

Instruction Virtual Aliasing disabled.

Setting this bit will disable the HW alias removal on the I-cache. If this
bit is cleared, CACHE Hit Invalidate and SYNCI instructions will ook

up all possible aliased locations and invalidate the given cache linein al
of them. Thisbit is Read-only if IAR=0.

R/W or

ES

Externalize sync.

If thisbit is set, and if the downstream device is capable of accepting
SYNCs (indicated by the pin SI_SyncTxEn), the sync instruction will
cause a SY NC-specific transaction to go out on the external bus. If this
bitis cleared or if SI_SyncTxEn is deasserted, no transaction will go
out, but all SYNC handling internal to the core will neverthel ess be per-
formed.

The sync instruction will be signalled on the core’s OCP interface as an
"ordering barrier" transaction. The transaction is an extension to the OCP
standards, and system controllers which don’t support it will typically
under-decode it as aread from the boot ROM area. But that’s going to be
quite slow, so set this bit only if your system understands the synchroniz-
ing transaction.

When this bit is read, the value returned depends on the state of the
SI_SyncTxEn pin. If SI_SyncTxEn is0, avaue of 0 isreturned. If
Sl_SyncTxEnis1, thevauereturned isthelast value that was written to
this bit.

R/W

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

189



CPO Registers of the 74K™ Core

Table 7.36 Field Descriptions for Config7 Register (Continued)

Read/
Name Bit(s) Description Write Reset State
ULB 4 Set to 1 to make al uncached loads blocking (a program usually only R/W 0
blocks when it uses the data which isloaded). You should only do this
when nothing else works.
BP 3 When set, no branch prediction is done, and all branches and jump stall R/W 0
as above.
RPS 2 When set, the return address branch predictor isdisabled, sojr $31is| R/W 0
treated just like any other jump register. Instruction fetch stalls after the
branch delay dlot, until the jump instruction reachesthe "EC" stagein the
pipeline and can provide the right address.
BHT 1 When set, the branch history table is disabled and all branches are pre- R/W 0
dicted taken. Thisbit isdon’t careif Config7pp is set.
SL 0 When set, disables non-blocking loads. Normally the 74K corewill keep | R/W 0
running after aload instruction, even if it missesin the D-cache, until the
datais used. With this disable bit set, the CPU will stall on any load D-
cache miss.

7.2.28 WatchLo0-3 (CPO Register 18, Select 0-3): Watchpoint Address and Qualifiers

Used in conjunction with WatchHi0-3 respectively, each of these registers carries the virtual address and what-to-

match fields for a CPO watchpoint. WatchLoO-1 are used for instruction side accesses and WatchLo2-3 are used for

data side accesses.
Figure 7.30 WatchLo Register Format
31 3 2 1 0
VAddr I |R|W
Table 7.37 Field Descriptions for WatchLo0-3 Register
Read/
Name Bit(s) Description Write Reset State
VAddr 31:3 | The address to match on, with aresolution of a doubleword. R/W Undefined
| 2 Accesses to match: |-fetches, Reads (loads), Writes (stores). WatchLoO- | R/W 0
R 1 1r and WatchLo0O-1yy are fixed to zero, while WatchLo2-3; will be RIW 0
zero.
0 R/W 0

7.2.29 WatchHi0-3 (CPO Register 19, Select 0-3): Watchpoint Control/Status

These registers provide the interface to a debug facility that causes an exception if an instruction or data access
matches the address specified in the registers. Watch exceptions are not taken if the CPU is aready in exception
mode (that isif Statusgx or Statusgry is aready set).

Watch events which trigger in exception mode are remembered, and result in a"deferred” exception, taken as soon as

the CPU leaves exception mode.

190

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




WatchHi0-1 are used for instruction side accesses and WatchHi2-3 are used for data side accesses.

7.2 CPO Register Descriptions

This CPO watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHi0-3 hold a bundle of control fields.

Figure 7.31 WatchHi Register Format

31 30 29 24 23 16 15 12 11 3 2 1
M| G 0 ASID 0 Mask I | R
Table 7.38 Field Descriptions for WatchHiO-3 Register
Read/
Name Bit(s) Description Write Reset State
M 31 | The WatchHi0-3 bit is set whenever there is one more watchpoint R X
register pair to find; your software should useit (starting with
WatchHiO) to figure out how many watchpoints there are. Thisfield is
set for WatchHiO-2 and cleared on WatchHii3.
G 30 | WatchHi0-3asip matches addresses from a particular address space R/W Undefined
ASID 2316 (the "AS! D" islikethat in TLB entries) — excc_ept that you can set RIW Undefined
WatchHiO-3¢ ("global") to match the address in any address space.
Mask 11:3 | Implements address ranges. Set bitsin WatchHi0-3ask to mark corre- | R/W Undefined
sponding WatchLo0-3yadqr address bits to be ignored when deciding
whether thisis a match.
I 2 Read your WatchHi0-3 after awatch exception, and these fields tell W1C Undefined
you what type of access (if any) matched. -
R . . .
Write a1 to any of these bitsin order to clear it (and therefore prevent wic Undefined
0 | the exception from immediately happening again). This behaviour is wicC Undefined
unusual among CPO registers, but it is quite convenient: to clear a
watchpoint of all the exception causes you've seen, just read the value
of WatchHi0-3 and write it back again. WatchHiO-1r and WatchHiO-
1w should always read 0 and WatchHi2-3, should always read O

7.2.30 Debug (CPO Register 23, Select 0): EJTAG Debug Status/Control

Register

Very little can be accessed outside of debug mode. In non-debug mode, Debug may not be written at al, and only the
DM bit and the EJTAGuver field return valid data.

The read-only information bits are updated every time the debug exception is taken, or when anormal exception is

taken when aready in debug mode (a"nested exception™). Not all fields are valid in both circumstances: Halt and
Doze are not defined after a nested exception, and the nested-exception-type field DExcCode is undefined from a
debug exception.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

191



CPO Registers of the 74K™ Core

Figure 7.32 Debug Register Format
3130 29 28 27 26 25 24 23 22 21 20

’ DBD ‘ DM‘ NoDCR ‘ LSNM ’ Doze ‘ Halt‘ CountDM ‘ IBUSEP ‘ MCheckP ‘ CacheEP ‘ DBUSEP ‘ IEXI ‘

19 18 17 15 14 10 9 8 76 5 4 3 2 1 0

’ DDBSImpr ‘ DDBLImpr ‘ EJTAGver ‘ DExcCode ‘ NoSSt ‘ SSt’ 0 ‘ DINT ‘DIB‘ DDBS ‘ DDBL ‘ DBp ‘ DSS ‘

Table 7.39 Field Descriptions for Debug Register

Read/
Name Bit(s) Description Write Reset State

DBD 31 |Indicatesif the last debug exception or exception in debug mode R Undefined
occurred in abranch delay slot:

Encoding Description
0 Not in delay slot
1 In delay slot

When set to 1, DEPC points to the branch instruction, which is usually
the correct place to restart.

DM 30 |Indicatesif the processor is operating in debug mode: R 0

Encoding Description

0 Processor is operating in non-debug mode

1 Processor is operating in debug mode

In debug mode, this bit is set on any debug exception and is cleared by
deret.

NoDCR 29 |Indicatesif the dseg memory segment and a memory-mapped DCR reg- R 0
ister is present:

Encoding Description

0 dseg is present
1 No dseg present

LSNM 28 | Controls access of load/store between dseg and main memory: R/W 0

Encoding Description

0 Load/stores in dseg address range goes to dseg

1 L oad/stores in dseg address range goes to main
memory

Set thisto 1 if you want debug-mode accesses to dseg addressesto be
sent to system memory. This makes most of the EJTAG unit’s control
systems unavailable, so will probably only be done around a particular
|oad/store.

192 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.39 Field Descriptions for Debug Register (Continued)

Name

Bit(s)

Description

Read/

Write Reset State

Doze

27

Indicates that the processor was in any kind of low power mode when a
debug exception occurred:

Encoding Description

0 Processor not in low power mode when debug
exception occurred

1 Processor in low power mode when debug excep-
tion occurred

Before the debug exception, CPU was in some kind of reduced power
mode.

R Undefined

Halt

26

Indicates that the internal system bus clock was stopped when the debug
exception occurred:.

Encoding Description

0 Internal system bus clock running
1 Internal system bus clock stopped

Before the debug exception, the CPU was stopped — probably asleep
following await instruction.

R Undefined

CountDM

25

Controls or indicates the Count register behavior in debug mode:

Encoding Description
0 Count register stopped in debug mode

1 Count register is running in debug mode

RIW 1

IBUSEP

24

MCheckP

23

CacheEP

22

DBuUsEP

21

These "pending exception” flags remember exception events caused by
instructions run in debug mode, but which have not yet occurred because
they areimprecise and Debug)ex is set. Note that you can writea 1 to
any of these at any time, so they survive writes to the whole Debug reg-
ister; but awrite of zero to afield isignored.

They remain set until Debugex is cleared explicitly, or implicitly by a
deret. If thederet clearsthe bit, the exception is taken and the
pending bit cleared.

IBusEP remembers abus error on an instruction fetch. Thisexceptionis
precise on the 74K core, so it can’t occur, and the field is always zero.
MCheckP machine check condition (usually anillegal TLB update). As
above, the machine check is always precise on the 74K core, so thisis
aways zero.

CacheEP remembers a cache parity error.

DBuUsEP remembers a bus error on a data access.

R/W
RIW
RIW
R/W

el NeolNol Nl

IEXI

20

Set to 1 to defer imprecise exceptions. By default, this bit is set on entry
to debug mode and cleared on exit. The deferred exception will return
when and if this bit is cleared, and until then you can observe the occur-
rence of the imprecise exception in a“pending exception” flag
(Debug|susEPMCheckPCacheERDBUSEP)-

R/W 0

DDBSImpr

19

Imprecise store breakpoint. DEPC probably points to an instruction
some time later in the sequence than the store which triggered the break-
point. The debugger or user (or both) have to cope as best they can.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

193

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.39 Field Descriptions for Debug Register (Continued)

Read/
Name Bit(s) Description Write Reset State
DDBLImpr 18 | Impreciseload breakpoint. See description above of imprecise store R 0
breakpoint.
EJTAGver | 17:15 | These read-only bits encode the revision of the EJTAG specification to R 3
which this implementation conforms. On the 74K core, the valueis 3 for
version 3.1. Thelegal values are:
0 [Version 2.0 and earlier
1 |Version 2.5
2 |Version 2.6
3 |Version 3.1
DExcCode | 14:10 | Indicatesthe cause of the latest exception in debug mode. Following ini- R Undefined
tial entry to debug mode, thisfield is undefined. The subsequent value
will be one of those defined in Causegxccode-
NoSSt 9 Indicates whether the single-step feature controllable by the SSt hit is R 0
available in thisimplementation. This read-only bit is always zero on
MIPS Technologies' cores because single-step isimplemented.
SSt 8 Controlsif debug single step exception is enabled. R/W 0
R 7..6 | Reserved. Must be written as zeros; returns zeros on reads. R 0
DINT 5 Indicates that a debug interrupt exception (from EJTAG pin) occurred. R Undefined
Cleared on exception in debug mode.
Encoding Description
0 No debug interrupt exception
1 Debug interrupt exception
DIB 4 Instruction breakpoint. R Undefined
DDBS 3 Indicates that a debug data break exception occurred on a store. Cleared R Undefined
on exception in debug mode.
Encoding Description
0 No debug data exception on a store
1 Debug instruction exception on a store
DDBL 2 Indicates that a debug data break exception occurred on aload. Cleared R Undefined
on exception in debug mode.
Encoding Description
0 No debug data exception on aload
1 Debug instruction exception on aload
194 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.39 Field Descriptions for Debug Register (Continued)

Read/
Name Bit(s) Description Write Reset State

DBp 1 Indicates that a debug software breakpoint exception occurred. Cleared R Undefined
on exception in debug mode.

Encoding Description

0 No debug software breakpoint exception
1 Debug software breakpoint exception

DSS 0 Indicates that a debug single-step exception occurred. Cleared on excep- R Undefined
tion in debug mode.

Encoding Description

0 No debug single-step exception
1 Debug single-step exception

7.2.31 Trace Control Register (CPO Register 23, Select 1)

The TraceControl register configuration is shown below.
Figure 7.33 TraceControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TSUT| O |Inefff TB|IO|D| E|K| S| U ASID_M ASID G|TFCRTLSM|TIM|On

Table 7.40 TraceControl Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

TS 31 Thetrace select bit is used to select between the hardware and the R/W 0
software trace control bits. A value of zero selects the external hard-
ware trace block signals, and a value of one selects the trace control
bitsin the TraceControl register.

uT 30 This bit is deprecated since there are now two explicit trace regis- 0 Undefined
ters, UserTraceDatal and UserTraceData2. Previously this bit
indicated the type of user-triggered trace record. A value of zero
implies a user type 1, and a value of one implies a user type 2.

R 29 Reserved for future use; Must be written as zero; returns zero on 0 0
read.

Ineff 28 When set to 1, core-specific inefficiency tracing is enabled, and R/W 0
core-specific trace information isincluded in the trace stream. The
inefficiency code replaces an “NI” and isinterpreted in the trace

stream with an expanded InsComp (I nstruction Completion Indica-
tor). The InsComp is expanded from 3b to 4b for all trace formats.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 195
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.40 TraceControl Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
TB 27 Trace All Branch. When set to 1, thistells the processor to trace the R/W Undefined

PC valuefor all branches taken, not just the ones whose branch tar-
get addressis statically unpredictable.

10 26 Inhibit Overflow. Thissignal is used to indicate to the core trace R/W Undefined
logic that slow but complete tracing is desired. Hence, the core trac-
ing logic must not allow a FIFO overflow and discard trace data.
Thisis achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are ever |ost.

D 25 When set to one, this enablestracing in Debug Mode. For traceto be R/W Undefined
enabled in Debug mode, the On hit must also be one, and either the
G bit must be one, or the current process ASID must match the
ASID field in this register.

When set to zero, traceis disabled in Debug Mode, regardless of the
setting other bits.

E 24 When set to one, enables tracing in Exception Mode. For traceto be R/W Undefined
enabled in Exception mode, the On bit must be one, and either the G
bit must be one, or the current process ASID must match the ASID
field in this register.

When set to zero, trace is disabled in Exception Mode, regardless of
the setting of other bits.

K 23 When set to one, enablestracing in Kernel Mode. For trace to be R/W Undefined
enabled in Kernel mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.

When set to zero, trace is disabled in Kernel Mode, regardless of the
setting other hits.

S 22 When set to one, this enables tracing in Supervisor Mode.For trace R/W Undefined
to be enabled in Supervisor mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID fidd in this register.

When set to zero, traceis disabled in Supervisor Mode, regardless of
other bits.

If the processor does not implement Supervisor Mode, this bit is
ignored on write and returns zero on read.

U 21 When set to one, enablestracing in User Mode. For trace to be R/W Undefined
enabled in User mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in thisregister.

When set to zero, trace is disabled in User Mode, regardless of the
setting of other bits.

ASID_M 20:13 | Thisisamask value applied to the ASID comparison (done when R/W Undefined
the G bit iszero). A “1” in any bit in thisfield inhibits the corre-
sponding ASID bhit from participating in the match. As such, avalue
of zero in thisfield compares all bits of ASID. Note that the ability
to mask the ASID valueis not available in the hardware signal bit; it
is only available via the software control register.

If the processor does not implement the standard TL B-based MMU,
thisfield isignored on writes and returns zero on reads.

196 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.40 TraceControl Register Field Descriptions (Continued)

Fields

Read /
Name Bits Description Write Reset State
ASID 12,5 The ASID field to match when the G bit is zero. When the G hit is R/W Undefined

one, thisfield isignored.
If the processor does not implement the standard TLB-based MMU,
thisfield isignored on writes and returns zero on reads.

G 4 When set, thisimplies that tracing is to be enabled for all processes, R/W Undefined
provided that other enabling functions (like U, S, etc.,) are also true.
If the processor does not implement the standard TLB-based MMU,
thisfield isignored on writes and returns 1 on reads. This causes all
match equations to work correctly in the absence of an ASID.

TFCR 3 When set, indicates to the PDtrace interface that the optional Fcr bit R/W Undefined
must be traced in the appropriate trace formats. If PC tracing is dis-
abled, the full PC of the function call (or return) instruction must
also be traced. Note that function call/return information is only
traced if tracing is actually enabled for the current mode.

TLSM 2 When set, this indicates to the PDtrace interface that information R/W Undefined
about data cache misses should be traced. If PC, |oad/store address,
and datatracing are disabled (see the TraceControl2Mode field), the
full PC and load/store address are traced for data cache misses. If
load/store data tracing is enabled, the L Sm bit must be traced in the
appropriate trace format. Note that data cache missinformation is
only traced if tracing is actually enabled for the current mode.

TIM 1 When set, thisindicates to the PDtrace interface that the optiona Im R/W Undefined
bit must be traced in the appropriate trace formats. If PC tracing is
disabled, the full PC of the instruction that missed in the |-cache
must be traced. Note that instruction cache missinformation is only
traced if tracing is actually enabled in the current mode.

On 0 Thisisthe master trace enable switch in software control. When R/W 0
zero, tracing is aways disabled. When set to one, tracing is enabled
whenever the other enabling functions are a so true.

7.2.32 Trace Control2 Register (CPO Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fieldsin the
TraceControl2 register are read-only, but have areset state of “Undefined”. Thisis because these values are |oaded
from the Trace Control Block (TCB) (see Section 11.10 “Trace Control Block (TCB) Registers (Hardware
Control)”). As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these
values.

Thisregister is only implemented if the MIPS Trace capability is present.

Figure 7.34 TraceControl2 Register Format

31 30 29 28 21 20 19 12 11 7 6 5 4 3 2 1 o0
SyPExt | CPUIdV CPUId TCV TCNum Mode ValidModes | TBI | TBU SyP
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 197

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.41 TraceControl2 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
SyPExt 31:30 | Extension to the SyP (sync period) field for implementations that R/W 0

need higher numbers of cycles between synchronization events.
The value of SyP is extended by assuming that these two bits are
juxtaposed to the left of the three bits of SyP (SypExtsyp). When
only SyP was used to specify the synchronization period, the value
was 2x, where x was computed from SyP by adding 5 to the actual
value represented by the bits. A similar formulais applied to the 5
bits just obtained by the juxtaposition of SyPExt and SyP. Sync

period values greater than 231 are UNPREDICTABLE. That isall

values greater than 11010 (26+5=31) are UNPREDICTABLE. With
SyPExt bits, async period range of 25 to 231 cycles can be obtained.
CPUIdV 29 When set, this bit specifies the VPE defined in CPUId must be RIW 0

traced. Otherwise, instructions from all VPEs are traced when other
conditions for tracing are valid. Thisbitisignoredif TCV is

asserted.
CPUId 28:21 | Thisfield specifiesthe number of the VPE to trace when CPUIdV is R/W 0
Set.
TCV 20 When set, the TCNum field specifies the number of the TC that R/W 0

must be traced. Otherwise, instructionsfrom all TCs are traced when
other conditions for tracing are valid.

TCNum 19:12 | Specifiesthe TC to trace when TCV is set. The right-most bits only RIW 0
are used.
Mode 11:7 When tracing is turned on, this signal specifies what information is R/W Undefined

to be traced by the core. It uses 5 bits, where each bit turns on trac-
ing of a specific tracing mode when that bit valueisa 1. If the corre-
sponding bit is 0, then the Trace Value shown in column two is not
traced by the processor. The table shows what trace value is turned

on:
Bit Trace the Following
PC
8 Load address
9 Store address
10 Load data
11 Store data
ValidModes 6:5 Thisfield specifies the subset of tracing that is supported by the pro- R Preset
Cessor.
Encoding Meaning
00 PC tracing only
01 PC and load and store address tracing only
10 PC, load and store address, and load and store data
11 Reserved
198 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.41 TraceControl2 Register Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State

TBI 4 This bit indicates how many trace buffers are implemented by the R Undefined
TCB, asfollows:

Encoding Meaning

0 Only onetrace buffer isimplemented, and the TBU
bit of this register indicates which trace buffer is
implemented

1 Both on-chip and off-chip trace buffers are imple-
mented by the TCB and the TBU hit of thisregister
indicates to which trace buffer the traces is cur-
rently written.

TBU 3 This bit denotes to which trace buffer the trace is currently being R Undefined
written and is used to select the appropriate interpretation of the
TraceControl2syp field.

Encoding Meaning

0 Trace dataiis being sent to an on-chip trace buffer
1 Trace Datais being sent to an off-chip trace buffer
Thisbit isloaded from TCBCONTROLBofc.

SyP 2:0 The period (in cycles) to which the internal synchronization counter R Undefined
isreset when tracing is started, or when the synchronization counter
has overflowed.

SyP Sync Period
000 25
001 26
010 o7
011 28
100 29
101 210
110 ol1
11 212

Thisfield isloaded from TCBCONTROLAgyp

7.2.33 User Trace Datal Register (CPO Register 23, Select 3) and User Trace Data2
Register (CPO Register 24, Select 3)

A software write to any bitsin the UserTraceDatal register or UserTraceData?2 register will trigger atrace record to
be written with atype indicator TU1 or TU2 respectively.

These register are only implemented if the MIPS Trace capability is present.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 199

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Figure 7.35 User Trace Datal / User Trace Data2 Register Format
31 0

Data

Table 7.42 UserTraceDatal / UserTraceData2 Register Field Descriptions

Fields

Read /
Name Bits Description Write Reset State
Data 310 Software readable/writable data. When written, this triggers a user R/W 0

format trace record out of the PDtrace interface that transmits the
Datafield to trace memory.

7.2.34 TracelBPC Register (CPO Register 23, Select 4)

The TracelBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as atrigger source and optionally also as a Debug exception
breakpoint.

Thisregister is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 7.36 TracelBPC Register Format
31 30 29 28 27 12 11 9 8 6 5 3 2 0

0 PCT|IE 0 IBPC3 IBPC2 IBPC1 IBPCo

Table 7.43 TracelBPC Register Field Descriptions

Fields Read |/

Name Bits Description Write Reset State

0 31:30, |Reserved for future implementations. R 0
2712

PCT 29 Used to specify whether a performance counter trigger signal is gen- R/W 0
erated when an EJTAG instruction breakpoint match occurs:

Encoding Meaning

0 Disables performance counter trigger signal from
instruction breakpoints

1 Enables performance trigger signals from instruc-
tion breakpoints

IE 28 Used to specify whether or not the trigger signal from EJTAG R/W 0
instruction breakpoint should trigger tracing functions:

Encoding Meaning

0 Disables trigger signals from instruction break-
points
1 Enables trigger signals from instruction break-
points

200 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.43 TracelBPC Register Field Descriptions (Continued)

Fields

7.45 shows the possible interpretations. Each set of 3 bits represents
the encoding for the instruction breakpoint nin the EJTAG imple-
mentation, if it exists. If the breakpoint does not exist, then the bits
arereserved, read as zero, and writes are ignored.

Read /
Name Bits Description Write Reset State
IBPCn 3n+2:3n | The three bits are decoded to enable different tracing modes. Table R/W 0

7.2.35 TraceDBPC Register (CPO Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as atrigger source and optionally also as a Debug exception breakpoint.

Thisregister is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

31 30 29

28 27

Figure 7.37 TraceDBPC Register Format

DE

DBPC; | DBPCp

Table 7.44 TraceDBPC Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

31:30,
276

Reserved for future implementations.

0/1

PCT

29

Used to specify whether a performance counter trigger signal is gen-
erated when an EJTAG data breakpoint match occurs:

Encoding Meaning

0 Disables performance counter trigger signal from
data breakpoints

1 Enables performance trigger signals from data
breakpoints

RIW

DE

28

Used to specify whether the trigger signal from EJTAG data break-
point should trigger tracing functions:

Encoding Meaning

0 Disables trigger signals from data breakpoints
1 Enables trigger signals from data breakpoints

RIW

DBPCn

3n+2:3n

The three bits are decoded to enable different tracing modes. Table
7.45 shows the possible interpretations. Each set of 3 bits represents
the encoding for the data breakpoint n in the EJTAG implementa-
tion, if it exists. If the breakpoint does not exist then the bits are
reserved, read as zero and writes are ignored.

R/W

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

201



CPO Registers of the 74K™ Core

202

Table 7.45 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is

already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is

already turned on, then thereis no effect.

010 None Reserved for future implementations.

100 Identical to trigger condition If tracing is currently on, dump the full values of all the implemented
000, and in addition, dump the | performance countersinto the trace stream, and turn tracing off. If trac-
full performance counter values |ing is already off, then there is no effect.
into the trace stream

101 Identical to trigger condition Unconditionally start tracing if tracing was turned off. If tracing is
001, and in addition, also dump | already turned on, then there is no effect. In both cases, dump the full
the full performance counter val- | values of al the implemented performance counters into the trace
ues into the trace stream stream.

110 Not used Reserved for future implementations.

7.2.36 DEPC (CPO Register 24, Select 0): Restart Address from Last EJTAG Debug

Exception

Pointsto the instruction to restart when you run an deret to leave debug mode. When Debugpgp is Set, it means that

the "real" return addressisin abranch delay slot, and DEPC points to the preceding branch.

Figure 7.38 DEPC Register Format

31 0
DEPC
Table 7.46 DEPC Register Formats
Field
Read /
Name Bit(s) Description Write Reset
DEPC 31.0 The DEPC register is updated with the virtual address of the R/W Undefined

inthe DEPC.

instruction that caused the debug exception. If theinstructionisin
the branch delay dlot, then the virtual address of the immediately
preceding branch or jump instruction is placed in this register.

Execution of the DERET instruction causes ajump to the address

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2 CPO Register Descriptions

7.2.37 Trace Control3 Register (CPO Register 24, Select 2)

The TraceControl3 register provides additional control and status information. Note that some fieldsin the
TraceControl3 register are read-only, but have areset state of “Undefined”. Thisis because these values are |oaded
from the Trace Control Block (TCB) (see Section 11.10 “Trace Control Block (TCB) Registers (Hardware
Control)"). As such, these fields in the TraceControl3 register will not have valid values until the TCB asserts these
values.

Thisregister is only implemented if the MIPS Trace capability is present.

Figure 7.39 TraceControl3 Register Format
31 14 13 12 11 10 9 8 7 2 1 0

0 PeCOvf | PeCFCR | PeCBP |PeCSync|PeCE|PeC| O TRPAD | FDT

Table 7.47 TraceControl3 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 31:14 | Reserved for future implementations. R 0
PeCOVf 13 Trace performance counters when one of the performance counters R/W 0
overflowsits count value. Enabled when set to 1.
PeCFCR 12 Trace performance counters on function call/return or on an excep- R/W 0
tion handler entry. Enabled when set to 1.
PeCBP 11 Trace performance counters on hardware breakpoint match trigger. R/W 0
Enabled when set to 1.
PeCSync 10 Trace performance counters on synchronization counter expiration. R/W 0
Enabled when set to 1.
PeCE 9 Performance counter tracing enable. When set to O, the tracing out of R/W 0
performance counter values as specified is disabled. To enable, this
bit must be set to 1. This bit is used under software control. When
trace is controlled by an external probe, this enabling is done via
TraceControl3pecE.
PeC 8 Specifies whether or not Performance Control Tracing isimple- R/W 0
mented. Thisis an optional feature that may be omitted by imple-
mentation choice. Implemented when set to 1.
TrIDLE 2 Trace Unit Idle. Thisbit indicates if the trace hardware is currently R/W 0
idle (not processing any data). This can be useful when switching
control of trace from hardware to software and vice versa. The bit is
read-only and updated by the trace hardware.
TRPAD 1 Trace RAM Access Disable. Disables program software access to R/W 0
the on-chip trace RAM using load/store instructions. Thisbit is
|loaded from TCBCONTROLBTRpPAD.
FDT 0 Filtered Data Trace Mode Enable. When the bit is 0, thismode is R/W 0
disabled. When set to 1, this mode is enabled.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 203

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

204

7.2.38 PerfCtl0-3 (CPO Register 25, Select 0, 2, 4, 6): Performance Counter Control

Coresinthe 74K family provide four performance counters that provide the capability to count events or cycles for
use in performance analysis. Each performance counter consists of apair of registers: a 32-bit control register
(PerfCtl) and a 32-bit counter register (PerfCnt) .

Performance counters can be configured to count implementation-dependent events or cycles under a specified set of
conditions that are determined by the performance counter’s control register. The counter register increments once
for each enabled event; when the most-significant bit of the counter register is a one (the counter overflows), and the
counter is enabled, the performance counter optionally requests an interrupt.

The IE flag in the performance counter control register isused to enable an interrupt to be signalled when bit 31 of the
corresponding counter overflows. The OR of all the performance counter register interrupts becomes the core output
SI_PCI, which istypically fed back into an interrupt input, conventionally identified by IntCtlippc). However, systems
using more sophisticated interrupt controllers may feed the performance counter interrupt into the interrupt controller
(refer to Section 6.3.1.3, "External Interrupt Controller Mode™).

Figure 7.40 PerfCtl0-3 Register Format
31 30 16 15 1412 11 5 4 3 2 1 0

M 0 PCTD| O Event IE|U|S| K| EXL

Table 7.48 Field Descriptions for PerfCtl0-3 Register

Read/
Name Bit(s) Description Write Reset State
M 31 | Settolif thereisanother PerfCtl register after thisone. Thisfield is set R X
for PerfCtl0-2 and cleared on PerfCtl3.
PCTD 15 | Performance Counter Trace Disable. Setting this bit will prevent thetrac-| R/W Undefined
ing of data from this performance counter when performance counter
trace mode in PDTrace is enabled.
Event 11:5 | Determines which event to count. Available events are listed in Table R/W Undefined
7.49, " Performance Counter Events and Codes'.
IE 4 Set to cause an interrupt when the counter overflowsinto bit 31. Thiscan | R/W 0

either be used to implement an extended count or (by presetting the
counter appropriately) to notify software after a certain number of events
have occurred.

3 Count eventsin User mode, Supervisor mode, Kernel mode, and Excep- | R/W Undefined

5 tion m_ode (i.e., when StatusEXL is set) respectively. Set multiple bitsto RIW Undefined

count in all cases.

K 1 R/W Undefined
0

EXL R/W Undefined

Table 7.49 Performance Counter Events and Codes

Event
No Counter0/2 Counter1/3
0 Cycles
1 Instructions graduated

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.49 Performance Counter Events and Codes (Continued)

Event

No Counter0/2 Counter1/3

2 jr $31 (return) instructionswhose target ispre- | jxr $31 (return) predicted but guessed wrong
dicted

3 | Cycleswhereno instruction isfetched becauseit has | §r $31 (return) instructions fetched and not pre-
no “next address” candidate. Thisincludes stalls due | dicted using RPS
toregister indirect jumpssuchasjr, stalsfollow-
ingawait or eret and stallsduesto excep-
tions from instruction fetch

4 ITLB accesses. ITLB misses, which result in aJTLB access.

5 Reserved JTLB instruction access misses (will lead to an

exception)

6 Instruction Cache accesses. 74K cores have a128-hit | Instruction cache misses. Includes misses resulting
connection to the I-cache and fetch 4 instructions from fetch-ahead and speculation.
every access. This counts every such access, includ-
ing accesses for instructions which are eventually
discarded. For example, following abranch whichis
incorrectly predicted, the 74K core will continue to
fetch instructions, which will eventually get thrown
away.

7 Cycleswhere no instruction is fetched because we | Reserved
missed in the |-cache.

8 Cycleswhere no instruction is fetched becausewe | PDTrace back stalls
are waiting for an I-fetch from uncached memory.

9 Number of times the instruction fetch pipelineis Valid fetch slots killed due to taken branches/jumps
flushed and replayed because the IFU buffersarefull | or stalling instructions
and unable to accept any instructions.

10 | Reserved Reserved

11 Table 7.35, "Field Descriptions for Configb

Register"

12 |- Reserved

13 | Cycleswhere no instructions are brought into the Cycles where no instructions are brought into the
IDU because the ALU instruction candidate pool is | IDU because the AGEN instruction candidate pool is
full. full.

14 | Cycleswhere no instructions can be added to the Cycles where no instructions can be added to the
issue pool because we have run out of ALU comple- |issue pool because we have run out of AGEN com-
tion buffers (CB’s). pletion buffers (CB’s).

15 | Cycleswhere no instructions can be added to the Cycles where no instructions can be added to the
issue pool, because we have used all the FIFO entries | issue pool, because we havefilled the “in order”
in the CLDQ, which keep track of data coming back | FIFO used for coprocessor 1 instructions (101Q).
from the FPU.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

205



CPO Registers of the 74K™ Core

206

Table 7.49 Performance Counter Events and Codes (Continued)

Event

No Counter0/2 Counter1/3

16 | Cycleswith no ALU-pipeissue: no instructions Cycleswith no AGEN-pipeissue: no instructions
available. available.

17 | Cycleswith no ALU-pipeissue: we haveinstruc- Cycles with no AGEN-pipe issue: we have instruc-
tions, but operands not ready. tions, but operands not ready.

18 | Cycleswith no ALU-pipeissue: we have instruc- Cycles with no AGEN-pipe issue: we have instruc-
tions, but some resource is unavailable. This tions, but some resource is unavailable. This
includes: includes:

» Operands are not ready (same as event 17) « Operands not ready (same as event 17)
» diwvinprogressinhibits MDU instructions » Non-issued stores blocking ready to issue loadsis-
» CorExtend resource limitation. sued cacheops blocking ready to issue loads

19 | ALU-pipe bubbleissued. Thisresulting empty pipe | AGEN-pipe bubbleissued. Thisresulting empty pipe
stage guarantees that some resource will be unused | stage guarantees that some resource will be unused
for a cycle, sometime soon. Used, for example, to for acycle, sometime soon. Used, for example, to
guarantee an opportunity to writemfecl datainto a | alow access to the data cache for refill or eviction.
CB.

20 | Cycleswhen only oneinstruction isissued. Cycles when two instructions are issued (one ALU,

one AGEN).

21 | Cycleswheninstructions areissued out of order into | Cycleswhen instructions are issued out of order into
the ALU pipe. i.e. instruction issued is not the oldest | the AGEN pipe. i.e. instruction issued is not the old-
in the pool. est in the pool.

22 | Graduated AR/JALR.HB D-cache line refill (not LD/ST misses)

23 | Cacheableloads - Countsall accessesto the D-cache | All D-cache accesses (loads, stores, prefetch,
caused by load instructions. This count includes cacheop etc.). This count includes instructions that
instructions that do not graduate. do not graduate.

24 | D-cache writebacks D-cache misses. This count is per instruction at grad-
uation and includes load, store, prefetch, synci
and address based cacheops.

25 | JTLB d-side (data side as opposed to instruction JTLB trangdlation fails on d-side (data side as

side) accesses opposed to instruction side) accesses. This count
includes instructions that do not graduate.

26 | Load/storeinstruction redirects, which happen when | The 74K core's D-cache has an auxiliary virtual tag,
the load/store follows too closely on a possibly used to pick theright line early. When (occasionally)
matching cacheop. the physical tag match and virtual tag match do not

line up, it istreated as a cache miss - in processing
the “miss’ the virtual tag is corrected for future
accesses. This event counts those bogus misses.

27 .

28 | L2 cache writebacks L2 cache accesses

29 | L2 cache misses L2 cache miss cycles

30 |CyclesFill Store Buffer(FSB) arefull and causea | CyclesFill Store Buffer(FSB) > 1/2 full
pipe stall

31 |[CyclesLoad Data Queue (LDQ) arefull and cause a | Cycles Load Data Queue(LDQ) > 1/2 full

pipe stall

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2 CPO Register Descriptions

Table 7.49 Performance Counter Events and Codes (Continued)

Event
No Counter0/2 Counter1/3
32 | Cycles Writeback Buffer(WBB) are full and cause a | Cycles Writeback Buffer(WBB) > 1/2 full
pipe stall
33 |Reserved Reserved
34 | Reserved Reserved
35 [ Replaysfollowing optimistic issue of instruction Floating Point Load instructions graduated.
dependent on load which missed. Counted only when
the dependent instruction graduates.
36 | jr (not $31) instructions graduated. jr $31 mispredicted at graduation
37 | Integer Branch instructions graduated Floating Point Branch instructions graduated
38 | Branch likely instructions graduated Mispredicted Branch likely instructions graduated
39 [ Conditiona branches graduated Mispredicted Conditional branches graduated
40 | Integer instructions graduated (includesnop , Floating Point instructions graduated (but not count-
ssnop, ehb aswel asall arithmetic, logic, ing Floating Point |oad/store)
shift and extract type operations).
41 | Loads graduated (includes Floating Point) Stores graduated (includes Floating Point). Of sc
instructions, only successful ones are counted.
42 |j/jal graduated MIPSL16e instructions graduated
43 | no-opsgraduated - included (s11, nop, integer multiply/divides graduated
ssnop, ehb).
44 | DSP instructions graduated ALU-DSP instructions graduated, result was satu-
rated
45 [ DSP branch instructions graduated MDU-DSP instructions graduated, result was satu-
rated.
46 | Uncached loads graduated. Uncached stores graduated.
47 | Reserved Reserved
48 | Reserved Reserved
49 | EJTAG instruction triggers EJTAG datatriggers
50 | CP1 branches mispredicted. Reserved
51 | sc instructions graduated. sc instructions failed.
52 |prefetch instructions graduatedat the top of prefetch instructionswhich did nothing,
LSGB. because they hit in the cache.
53 | Cycleswhere no instructions graduated L oad misses graduated. Includes Floating Point
Loads.
54 | Cycles where one instruction graduated Cycles where two instructions graduated
55 [ GFifo blocked cycles Floating point stores graduated

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

207



CPO Registers of the 74K™ Core

208

Table 7.49 Performance Counter Events and Codes (Continued)

Event
No Counter0/2 Counter1/3
56 | GFifo blocked dueto TLB or Cacheop Number of cycles no instructions graduated from the
time the pipe was flushed because of areplay until
the first new instruction graduates. Thisis an indica-
tor graduation bandwidth loss due to replay. Often
timesthisreplay is aresult of event 25 and therefore
an indicator of bandwidth lost due to cache miss.
57 | Slot 0 mispredicted branch instruction graduation Cycleswaiting for delayslot to graduate on a mispre-
cycles without the delayslo dicted branch
58 | Exceptionstaken Replays initiated from graduation
59 [ Implementation-specific CorExtend event. Theinte- | Reserved
grator of this core may connect the core pin
UDI_perfcnt_event to an event to be counted. This
isintended for use with the CorExtend interface.
60 |Reserved Reserved
61 |Reserved Reserved
62 Implementation-specific DSPRAM event. The inte-
grator of this core may connect the pin
SP_prf_c13_e62_xx to the event to be counted
63 |L2single-bit errors detected Reserved
64 | SI_Event[Q] - Implementation-specific system event. | SI_Event[1] - Implementation-specific system event.
The integrator of this core may connect the core pin | The integrator of this core may connect the core pin
SI_PCEvent[0] to an event to be counted SI_PCEvent[1] to an event to be counted
65 | SI_Event[2] - Implementation-specific system event. | SI_Event[3] - Implementation-specific system event.
The integrator of this core may connect the core pin | The integrator of this core may connect the core pin
SI_PCEvent[2] to an event to be counted SI_PCEvent[3] to an event to be counted
66 | SI_Event[4] - Implementation-specific system event. | SI_Event[5] - Implementation-specific system event.
The integrator of this core may connect the core pin | The integrator of this core may connect the core pin
SI_PCEvent[4] to an event to be counted SI_PCEvent[5] to an event to be counted
67 | SI_Event[6] - Implementation-specific system event. | SI_Event[7] - Implementation-specific system event.
The integrator of this core may connect the core pin | The integrator of this core may connect the core pin
SI_PCEvent[6] to an event to be counted SI_PCEvent[7] to an event to be counted
68 | All OCP requests accepted All OCP cacheable requests accepted
69 | OCP read requests accepted OCP cacheable read requests accepted
70 | OCP write requests accepted OCP cacheable write requests accepted
71 |Reserved OCP write data sent
72 | Reserved OCP read data received
73 | Reserved Reserved
74 | CyclesFill Store Buffer(FSB) < 1/4 fulll Cycles Fill Store Buffer(FSB) 1/4 to 1/2 full
75 | CyclesLoad Data Queue (LDQ) < 1/4 full Cycles Load Data Queue (LDQ) 1/4 to /2 full
76 | Cycles Writeback Buffer(WBB) < 1/4 full Cycles Writeback Buffer(WBB) 1/4 to 1/2 full
77-127 | Reserved Reserved

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




7.2 CPO Register Descriptions

7.2.39 PerfCnt0-3 (CPO Register 25, Select 1, 3, 5, 7): Performance Counters

General purpose event counters, which operate as directed by PerfCtl0-3.

Figure 7.41 Performance Counter Count Register
31 0

Counter

Table 7.50 Performance Counter Count Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Counter 31.0 Counter R/W Undefined
31 0

Counter

7.2.40 ErrCtl (CPO Register 26, Select 0): Software Parity Control and Test Modes for
Cache RAM Arrays

Most of the fields of thisregister are for test software only. The MIPS32 Architecture defines this register asimple-
mentation-dependent, but most CPUs put the parity-enable control in the top bit. So running OS software is well
advised to set this register to 0x8000 . 0000 to enable cache parity checking, or to zero to disable parity checking.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 43 0
PE|PO|WST| SPR |PCO|ITC|LBE| WABE |L2P, L2EccEnable|PCD |DYT |SE| FE 0 Pl PD
Table 7.51 Field Descriptions for ErrCtl Register
Read/
Name Bit(s) Description Write Reset State
PE 31 | 1toenablecache parity checking. Hard-wired to zero if parity isn't R/W 0
implemented.
PO 30 | Parity Overwrite. Set 1 to set the parity bit regardless of parity computa- | R/W 0
tion, which is only for diagnostic/test purposes.
After setting this bit you can use cache IndexStoreTag to set
the cache data parity to the value currently in PI (for I-cache) or PD (for
D-cache), while the tag parity is forcefully set from ITagLop/DTagLop.
WST 29 | Writeto 1 for test mode for cache IndexLoadTag/ RIW 0
cache IndexStoreTag instructions, which then read/write the
cache’s internal way-selection RAM instead of the cache tags.
SPR 28 | Scratchpad RAM. When set, index-type cache instructions work on the R/W 0
scratchpad/DSPRAM/ISPRAM, if fitted.
PCO 27 | Precode override. Used for diagnostic/test of the I-cache. When thisbitis | R/W 0
set, then the precode values in the I TagHi register are used instead of the
hardware generated precode values. This appliesto index store data
cacheop operation.
ITC 26 | Reserved RIW Undefined
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 209

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.51 Field Descriptions for ErrCtl Register (Continued)

Name

Bit(s)

Read/
Description Write Reset State

LBE

25

WABE

24

Indicates whether abus error (the last one, if there’s been morethan one) | R/WO Undefined
was triggered by aload or awrite-allocate respectively. A write-allocate -

is where a cacheable write has missed in the cache, and the cache has RIWO Undefined
read the line from memory.

Where both aload and write-all ocate are waiting on the same cache-line
refill, both could be set. These bits are "sticky", remaining set until
explicitly written zero.

L2PL2Ecc
Enable

23

L2 Present, L2EccEnable: Indicates whether ECC is enabled on the R/IW 0
L2Cache if present.

e 0: L2Presetnt & L2EccEnable=0
e 1. L2Present & L2EccEnable=1

DYT

21

Set 1 to arrange that cache |oad/store data operations work on the R/W 0
"dirty array" — the dlice of cache memory which holds the "dirty"/
"stored-into" bits.

PCD

22

Precode Disable. When set, cache IndexStoreTag instructions | R/W 0
do not update the corresponding precode field and precode parity in the
instruction cache tag array.

SE

20

Indicates that a second cache error was detected before the first error was R 0
processed. Thisis an unrecoverable error. This bit is set when a cache
error is detected while the FE bit is set. Thisbit is cleared on reset or
when acache error is detected with FE cleared.

FE

19

Indicates that this isthe first cache error and therefore potentially recov- | R/W 0
erable. Error handling software should clear this bit when the error has
been processed. Thishit is cleared on reset. Refer to SE bit description
for implications of this bit. Note that software can only write a0 to this
bit. A write value of 1 will not have any effect.

Pl

11:4

PD

3.0

Parity bits being read/written to caches (I- and D-cache respectively), R/W
when PO is set. RIW

7.2.41 CacheErr (CPO Register 27, Select 0): Cache Parity Exception Status

Read-only register used to analyze the details of a parity error.

Figure 7.42 CacheErr Register Format

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 0
ER | EC | ED | ET |ES|EE | EB | EF | SP | EW Way DR Index
Table 7.52 Field Descriptions for CacheErr Register
Read/
Name Bit(s) Description Write Reset State
ER 31 | Thisbitreads1 if the error was on a L1 data cache access and reads O R Undefined
otherwise. For errors caused by L1 I-fetch or L2 or higher level cache
accesses, this bit will read 0.
EC 30 |ReadsOif L1 cacheerrorsand 1 for higher-level caches. R Undefined

210

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.52 Field Descriptions for CacheErr Register (Continued)

Name

Bit(s)

Description

Read/
Write

Reset State

ED

29

ET

28

Set for errorsin datafield and tag field respectively.

R

Undefined

Undefined

ES

27

Error source. Not Supported.

Py

Undefined

EE

26

Error externa: Not supported.

Py)

Undefined

EB/EM

25

e If EC equals O indicating an error in the L1 cache, this bit is EB, indi-
cating Error in Both caches. If data and instruction-fetch error are
reported on the same instruction, it is unrecoverable. If so, the rest of
the register reports on the instruction-fetch error.

» If EC equals 1 indicating an error in the L2 or higher cache, thisbit is
EM, indicating Error in Multiple locations.

Py

Undefined

EF

24

Unrecoverable (fatal) error (other than the EB type above). Some parity
errors can be fixed by invalidating the cache line and relying on good
data from memory. But if thisbit is set, al islost... It's one of the follow-
ing:

7.52.1 Dirty parity error in dirty victim

7.52.1 Line being displaced from cache ("victim") has atag parity error,
so we don't know whether to write it back, or whether the writeback
location (which needs a correct tag) would be correct.

7.52.2 Thevictim'stag indicates it has been written by the CPU since it
was obtained from memory (thelineis"dirty" and needs awrite-back),
but it has a data parity error.

7.52.3 Writeback store miss and CacheErrgyy error.

7.52.4 At least one more cache error happened concurrently with or after
this one, but before we reached the relative safety of the cache error
exception handler.

7.52.5 If EC equals 0, and a second L2 error occurs when an earlier L2
error is pending.

Undefined

SP

23

Error affecting a scratchpad RAM access.

Undefined

EW

22

Parity error on way-selection RAM array.

Undefined

Way

21:19

» If EC equalsO, bit 19 isunused. Bits 21:20 indicate the way-number of
the cache entry where the error occurred. It isnot valid if a Scratchpad
RAM error is detected (SP=1).

« If EC equals ], indicating an L2 or higher-level cache error, bits 21:19
indicate the way-number of the cache entry where the error occurred.

Undefined

DR

18

A 1 bit indicates that the reported error affected the cache-line "dirty"
bits. Thisbit is only meaningful in case of an L1 data cache access.

Undefined

Index

16:.0

The cache index or Scratchpad RAM index of the double word entry
where the error occurred. The way of the faulty cache iswritten by hard-
ware in the Way field. The CacheErr bits [16:0] represents the Address
index bits[19:3].

The index-type cache instruction will need an "index" with the way
bits glued on top of this cache-entry field; you know how to put that
together, because the shape of the cache is defined in the Config1-2 reg-
isters.

Undefined

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

211



CPO Registers of the 74K™ Core

7.2.42 ITagLo (CPO Register 28, Select 0): Read/write Interface for Load/Store Tag
Cacheops

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

Theinterpretation of this register changes depending on the setting s of ErrCtlywst and ErrCtlspg.
e Default cacheinterface mode (ErrCtlyst = 0, ErrCtlspr = 0)

» Diagnostic "way select test mode" (ErrCtlyst = 1, ErrCtlspr = 0)

»  For scratchpad memory setup (ErrCtlyst = 0, ErrCtlspr = 1)

See the diagrams below for a description.

7.2.42.1 ITagLo (ErrCtlywst =0, ErrCtlspr = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache |load-tag/
store-tag operations—routinely used in cache initialization.

Figure 7.43 ITagLo Register Format (ErrCtlysTt = 0, ErrCtlspr = 0)

31 12 11 10 9 8 7 6 5 4 10
PTagLo U 0 (V]|O|L 0 P
Table 7.53 Field Descriptions for ITagLo Register
Read/
Name Bit(s) Description Write Reset State
PTagLo 31:12 | The cache address tag, which is aphysical address because the 74K R/W Undefined
core's caches are physically tagged. It holds bits 31:12 of the physical
address, i.e., the low-order 12 bits of the address are implied by the posi-
tion of the data in the cache.
\% 7 Set to 1if this cache entry isvalid (set to zero to initialize the cache). R/W Undefined
L 5 Set to 1 to lock this cache entry, preventing it from being replaced by R/W Undefined
another line when a cache miss occurs. Used when you have data so crit-
ical that it must be in the cache; however, it's quite costly, reducing the
efficiency of the cache for memory data competing for space at this
index.
P 0 Parity bit over the cache tag entries (excluding the D hit). R/W Undefined

7.2.42.2 ITagLo-WST (ErrCtIWST =1, ErrCtISPR = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access the data in these fields either by cache load-tag or store-tag operations when ErrCtlyyst iS Set.

Figure 7.44 1TagLo Register Format (ErrCtlyst = 1, ErrCtlspr = 0)

31 16 15 0 9 8 7 6 5 4 10
U LRU 0 ujo|u 0 U
212 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Table 7.54 Field Descriptions for ITagLo-WST Register

Read/
Name Bit(s) Description Write Reset State
LRU 15:10 | When you read or write the tag in way-select test mode (that is, with R/W Undefined
ErrCtlysT set), thisfield reads or writes the LRU ("least recently used")
state bits, held in the way-select RAM.
7.2.42.3 ITagLo-WST (ErrCtlwsT =0, ErrCtlspr = 1)
In this mode, the ITagLo register becomes the interface to the instruction scratchpad RAM.
Figure 7.45 ITagLo Register Format (ErrCtlyst = 0, ErrCtlspr = 1)
tag 31 19 16 15 12 10 9 8 7 6 5 4 1
0 BasePA u 0 |E|O|U 0
1 U Size U 0 |ufo|u 0

Table 7.55 Field Descriptions for ITagLo-SPR Register

size of the scratchpad array. Thisfield is the number of 4KB sectionsit
contains.

Read/
Name Bit(s) Description Write Reset State
BasePA | 31:12 | When reading pseudo-tag O of a scratchpad RAM, thisfield will contain | R/W Undefined
bits [31:12] of the base address of the scratchpad region
E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indicate R/W Undefined
whether the scratchpad is enabled
Size 19:12 | When reading pseudo-tag 1 of a scratchpad RAM, thisfield indicatesthe | R/W Undefined

7.2.43 IDataLo (CPO Register 28, Select 1): Read/write Interface for I-cache Special

Cacheops

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers

(IDataHi, IDataLo) are needed, because the 74K core loads |-cache data at |east 64 bits at atime.

Figure 7.46 IDatalLo Register Format

31

DATA

Table 7.56 IDatalLo Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 310 Low-order data read from the cache data array. R/W Undefined

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

213



CPO Registers of the 74K™ Core

7.2.44 DTagLo (CPO Register 28, Select 2): Read/Write Interface for Load/Store Tag

Cacheops

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag

operations.

Theinterpretation of this register changes depending on the settings of ErrCtlyst and ErrCtlspr,

e  Default cacheinterface mode (ErrCtlyst = 0, ErrCtlpyt = 0, ErrCtlspr = 0)

» Diagnostic "way select test mode" (ErrCtlyst = 1, ErrCtlpyt = 0, ErrCtlspr = 0)

» Diagnostic "dirty array test mode" (ErrCtlyst = 0, ErrCtlpyt = 1, ErrCtlspr = 0)

e For scratchpad memory setup (ErrCtlwst = 0, ErrCtlpyt = 0, ErrCtlspr = 1)

7.2.44.1 DTaglLo (ErrCtlyst =0, ErrCtlpyT = 0, ErrCtlspr = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache |load-tag/

store-tag operations—routinely used in cache initialization.

Figure 7.47 DTagLo Register Format (ErrCtlywsTt = 0, ErrCtlpyt = 0, ErrCtlspr = 0)

31 12 11 10 9 8 7 6 5 4 10
PTagLo U 0 (V|Oo|L 0 P
Table 7.57 Field Descriptions for DTagLo Register
Read/
Name Bit(s) Description Write Reset State
PTagLo 31:12 | The cache address tag — a physical address because the 74K core's R/W Undefined
caches are physically tagged. It holds bits 31-12 of the physical address
— thelow 12 hits of the address are implied by the position of the datain
the cache.
\% 7 1if thiscache entry isvalid (set zero to initialize the cache). R/W Undefined
L 5 1to lock this cache entry, preventing it from being replaced by another R/W Undefined
line when there’s a cache miss. Done when you have data so critical that
it must be in the cache: it’s quite costly, reducing the efficiency of the
cache for memory data competing for space at thisindex.
P 0 Parity bit over the cache tag entries (excluding the D hit). R/W Undefined

7.2.44.2 DTagLo-WST(ErrCtlywsTt = 1, ErrCtlpyt = 0, ErrCtlspr = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access either by cache load-tag/store-tag operations when ErrCtlyst is Set: then you get the datain these

fields.

214

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




31

7.2 CPO Register Descriptions

Figure 7.48 DTagLo Register Format (ErrCtlyst = 1, ErrCtlpyT =0, ErrCtlspr = 0)

24 23 20 19 16 15

10 9 7 6 5 4 10
U LP L LRU 0O |U|O U
Table 7.58 Field Descriptions for DTagLo-WST Register
Read/
Name Bit(s) Description Write Reset State
LP 23:20 | Cache-line locking control bits, held in the way select RAM. R/W Undefined
L 19:16 R/W Undefined
LRU 15:10 | When you read or write the tag in way select test mode (that is, with R/W Undefined
ErrCtlwsT set) thisfield reads or writes the LRU ("least recently used")
state hits, held in the way select RAM.

7.2.44.3 DTagLo-DYT (ErrCtlwst =0, ErrCtlpyt = 1, ErrCtlspr = 0)

The dirty RAM is another slice of the cache memory (distinct from the tag and data arrays). Test software can access
either by cache |load-tag/store-tag operations when ErrCtlpyt is set: then you get the datain these fields.

Figure 7.49 Field Descriptions for DTagLo-DYT Register

31 24 23 20 19 16 15 12 11 10 9 8 7 6 5 4 10
U DP D A 0 |[Uloju 0 u
r
Table 7.59 Field Descriptions for DTagLo-DYT Register
Read/
Name Bit(s) Description Write Reset State
DP 23:20 | Cacheline "dirty" bits (and parity across them). R/W Undefined
D 19:16 R/W Undefined
A 11:10 | Cacheline"dlias" bits. R/W Undefined

Figure 7.50 DTagLo-SPT (ErrCtlyst =0, ErrCtlpyT = 0, ErrCtlspr = 1)

If your CPU has scratchpad RAM, you will need to initialize and manage it using cache load/store operations while
ErrCtlspr is set. The tag |oad/store operations are used to read and write control registers: and then you see these

fields.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

215



CPO Registers of the 74K™ Core

Figure 7.51 DTagLo Register Format (ErrCtlysTt = 0, ErrCtlpyT =0, ErrCtlspr = 1)

12 11 10 9 8 7 6 5 4 1 0

PTAG U 0O |[E|O|U 0 U

31

Table 7.60 Field Descriptions for DTagLo-SPT Register

Read/
Name Bit(s) Description Write Reset State
PTAG 31:12 | Scratchpad control. Sets base address. R/W Undefined
E 7 Scratchpad control enable. R/W Undefined

7.2.45 DDatalLo (CPO Register 28, Select 3): Low-order Data Read/Write Interface for
D-cache

On 74K family cores, test software can read or write cache data using a cache index load tag/index store data
instruction. Which word of the cache lineis transferred depends on the low address fed to the cache instruction.

Figure 7.52 DDatalLo Register Format

31

DATA

Table 7.61 DDatalLo Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 Low-order data read from the cache data array. R/W Undefined

7.2.46 L23TagLo (CPO Register 28, Select 4): L2 and L3 Cacheop Tag Use

Thisregister in the 74K core isimplemented to support access to external L2 cachetags viacache instructions. The
definition of the fields of this 32 bit register are defined by the SoC designer. Refer to the section on L2 Transactions

in the document ““MIPS32® 74K ™ Processor Core Family Integrator’s Guide, MD00499" for further information
on using this register.

Figure 7.53 L23TagLo Register Format

31

DATA

7.2.47 L23DatalLo (CPO Register 28, Select 5): Low-order Data Read/Write Interface for
L2 or L3 cache

On 74K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache lineis transferred depends on the low address fed to the cache instruction.

216 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

Figure 7.54 L23DatalLo Register Format

31 0

DATA

Table 7.62 L23DataLo Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 310 Low-order data read from the cache data array. R/W Undefined

7.2.48 ITagHi (CPO Register 29, Select 0): I-cache Predecode Bits

This register represents the I-cache Predecode bits and isintended for diagnostic use only
Figure 7.55 ITagHi Register Format

31 25 24 18 17 11 10 4 3 2 1 0

PREC 67 PREC 45 PREC 23 PREC 01 P_67|P_45P_23P_01

Table 7.63 Field Descriptions for ITagHi Register

Read/

Name Bit(s) Description Write Reset State
PREC_67 | 31:25 | 74K family cores do some decoding of instructions when they’reloaded | R/W Undefined
PREC 45 | 2418 into the I-cache, whlch.hel ps speed instruction dllspatch. When you use RIW Undefined

cache tag load/store instructions, you see that information here. :
PREC_23 | 17:11 | Theindividual PREC fields hold precode information for pairs of adja- | R/W Undefined
PREC 01 | 10:4 |centingtructionsin thel-cacheline, and the P fields hold parity over RIW Undefined
— them.

P_67 3 R/W Undefined

P_45 2 R/W Undefined

P_23 1 R/W Undefined

P_01 0 R/W Undefined

7.2.49 IDataHi (CPO Register 29, Select 1): High-order Data Read/write Interface for I-
cache Special Cacheops

Staging registers for specia cache which load or store data from or to the cache line. Two registers (IDataHi,
IDataLo) are needed because the 74K core loads I-cache data at |east 64-bits at atime.

Figure 7.56 IDataHi Register Format

31 0

DATA

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 217

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

Table 7.64 IDataHi Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 High-order dataread from the cache data array. R/W Undefined

7.2.50 DTagHi (CPO Register 29, Select 2): D-cache Virtual Index (including ASID)

More cache tag bits for the 74K core's dual-tagged L1 D-cache. For diagnostics only.

Figure 7.57 DTagHi Register Format
31 12 11 10 9 8 7 0

VTAG U 0 (G ASID

Table 7.65 Field Descriptions for DTagHi Register

Read/
Name Bit(s) Description Write Reset State
VTAG 31:12 | 74K family cores have adual-tagged D-cache, combining avirtual tag for | R/W Undefined
fast lookup with a physical tag to avoid aliases. "
v 1 Bit[11] always gets virtual address[11] of the tag when index load tag RIW Undefined
G 8 | cacheinstruction is executed. RIW Undefined
ASID 70 These fields stqrethe information rqui red to match avirtua .addr.esz the [T rw Undefined
virtual addressitself, the ASID (tracking the "address space identifier"
maintained in EntryHiasip) and aglobal ("G") bit which can be set to
make it not necessary to match the ASID.

7.2.51 L23DataHi (CPO Register 29, Select 5): High-order Data Read/Write Interface for
L2 or L3 cache

On 74K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache lineis transferred depends on the low address fed to the cache instruction.

Figure 7.58 L23DataHi Register Format

31 0

DATA

Table 7.66 L23DataHi Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 High-order dataread from the cache data array. R/W Undefined
218 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



7.2 CPO Register Descriptions

7.2.52 ErrorEPC (CPO Register 30, Select 0): Restart Location from Reset or Cache
Error Exception

Thisfull 32-bit register isfilled with the restart address on a cache error exception or any kind of CPU reset — in fact,
any exception which sets Statusgr. and leaves the CPU in "error mode”.

Figure 7.59 ErrorEPC Register Format

31 0

ErrorEPC

Table 7.67 ErrorEPC Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
ErrorEPC 31.0 Error Exception Program Counter. R/W Undefined

7.2.53 DESAVE (CPO Register 31, Select 0): Scratch Read/Write Register for EJTAG
Debug Exception Handler

Software-only register, with no hardware effect. Provided because the debug exception handler can’t use the ko-1 GP
registers, used by ordinary exception handlers to bootstrap themselves: but a debug handler can save aGPR into
DESAVE, and then use that GPR register in code which saves everything else.

Figure 7.60 DeSave Register Format
31 0

DESAVE

Table 7.68 DeSave Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DESAVE 310 Debug exception save contents. SO Undefined
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 219

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



CPO Registers of the 74K™ Core

220 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 8

Hardware and Software Initialization of the 74K™ Core

A 74K processor core contains only aminimal amount of hardware initialization and relies on software to fully ini-
tialize the device.

This chapter contains the following sections:
* Section 8.1 “Hardware-Initialized Processor State”

e Section 8.2 “Software-Initialized Processor State’

8.1 Hardware-Initialized Processor State

A 74K processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal sub-
set of the processor stateis cleared. Thisis enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. Unlike previous MIPS processors, thereisno
distinction between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft
reset.

8.1.1 Coprocessor 0 State
Much of the hardware initialization occursin Coprocessor 0:
* Random - cleared to maximum value on Reset (TLB/MMU only)
*  Wired - cleared to 0 on Reset (TLB/MMU only)

*  Statusggy - Set to 1 on Reset

»  Statustg - cleared to 0 on Reset

*  Statusyy - Cleared to 0 on Reset

e Statusgg, - Setto 1 on Reset

*  Statusgp - cleared to 0 on Reset

* CDMMBasegy - cleared to 0 on Reset
*  WaichlLo gy - Cleared to 0 on Reset

»  Config fields related to static inputs - set to input value by Reset

*  Configkg - set to 010 (uncached) on Reset

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 221

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Hardware and Software Initialization of the 74K™ Core

*  Configgy - set to 010 (uncached) on Reset (FMT/MMU only)
*  Configkas - set to 010 (uncached) on Reset (FMT/MMU only)

*  Debugpy - cleared to 0 on Reset (unless ETTAGBOQOT option is used to boot into Debug Mode, as described in
Chapter 11, “EJTAG Debug Support in the 74K™ Core’”.

*  Debug, gy - Cleared to 0 on Reset

* Debugg,sgp - cleared to 0 on Reset
*  Debugpgysep - Cleared to O on Reset
* Debuggy - cleared to 0 on Reset

*  Debuggg; - cleared to O on Reset
8.1.2 TLB Initialization

Each TLB entry hasa“hidden” state bit, which is set by Reset and is cleared when the TLB entry iswritten. This bit
disables matches and prevents“ TLB Shutdown” conditions from being generated by the power-up valuesin the TLB
array (when two or more TLB entries match a single address). This bit is not visible to software.

8.1.3 Bus State Machines

All pending bus transactions are aborted and the state machinesin the bus interface unit are reset when a Reset excep-
tion istaken.

8.1.4 Static Configuration Inputs

All static configuration inputs (for example, those defining the bus mode and cache size) should only be changed dur-
ing Reset.

8.1.5 Fetch Address

Upon Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA 0x1FC00000).
Thisaddressisin ksegl, which is unmapped and uncached, so that the TLB and caches do not require hardware ini-
tidization.

8.2 Software-Initialized Processor State
Software is required to initialize parts of the device, as described bel ow.
8.2.1 Register File

Theregister file powers up in an unknown state with the exception of r0, which isalways 0. Initializing the rest of the
register fileis not required for proper operation. Good code will generally not read aregister before writing to it, but
the boot code can initialize the register file for added safety.

222 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



8.2 Software-Initialized Processor State

8.2.2 TLB

Because of the hidden bit indicating initialization, the core does not initialize the TLB upon Reset. Thisisan imple-
mentation-specific feature of the 74K core and cannot be relied upon if writing generic code for M1PS32/64 proces-
SOrs.

8.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function).
This can be along process, especially because the instruction cache initialization must run in an uncached address
region.

8.2.4 Coprocessor 0 State

Miscellaneous COPO states need to be initialized before exiting the boot code. There are various exceptions which are
blocked by ERL=1 or EXL=1, and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

*  Cause: WP (Watch Pending), and SWO0 and SW1 (Software Interrupts) should be cleared.

»  Config: KO should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing ksegO.

*  Config: (FM MMU only) KU and K23 should be set to the desired CCA for useg/kugeg and kseg2/3 respectively
prior to accessing those regions.

*  Count: Should be set to a known value if timer tnterrupts are used.

*  Compare: Should be set to aknown value if timer tnterrupts are used. Note that the write to Compare will aso
clear any pending timer interrupts, so Count should be set before Compare to avoid any unexpected interrupts.

*  Status: Desired state of the device should be set.
»  Other COPO state: Other registers should be written before they are read. Some registers are not explicitly write-

able, and are only updated as a by-product of instruction execution or ataken exception. Uninitialized bits should
be masked off after reading these registers.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 223

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Hardware and Software Initialization of the 74K™ Core

224 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 9

Caches of the 74K™ Core

This chapter describes the caches present in a 74K processor core. It contains the following sections:

e Section 9.1 “Cache Configurations’

*  Section 9.2 “Instruction Cache”

*  Section 9.3 “Data Cache”

*  Section 9.4 “Write Back Buffer”

»  Section 9.5 “Cache Protocols’

*  Section 9.6 “CACHE Instruction”

e Section 9.7 “Software Cache Testing”

e Section 9.8 “Memory Coherence |ssues’

9.1 Cache Configurations

A 74K processor core has separate instruction and data caches, which allows instruction and data references to pro-
ceed simultaneously. Each of the cachesis 4-way set associative and can be configured at build timeto be 0, 16, 32, or
64KB. Both caches use a 32B line size and support locking on a per line basis. Parity protection of the cache arrays

isan optional feature.

9.2 Instruction Cache

Table 9.1 shows the key characteristics of the instruction cache. Figure 9.1 shows the format of an entry in the three
arrays comprising the instruction cache: data, tag, and way-select.

Table 9.1 Instruction Cache Attributes

Attribute With Parity Without Parity
Size 0, 16, 32, 64KB
Line Size 32B
Number of Cache Sets 128, 256, 512
Associativity 4 way
Replacement LRU
Cache Locking per line
Data Array
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 225

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Caches of the 74K™ Core

Data (per way)':

Way-Select:

Table 9.1 Instruction Cache Attributes (Continued)

Attribute With Parity Without Parity
Read Unit 144bx 4 128b x 4
Write Unit 144b 128b
Tag Array

Read Unit 55b x 4 50b x 4
Write Unit 55b 50b

Way-Select Array
Read Unit 6b
Write Unit 1-6b

Figure 9.1 Instruction Cache Organization

5 1 1 20 7 7 7 7
Tag (per way): Parity | Valid | Lock PA[31:12] Precode 67 | Precode 45 | Precode 23 | Precode 01
16 64 64 16 64 64

Parity | dword3 | dword2 | Parity | dwordl | dwordO

6

LRU

1. Parity bits in data array will be interleaved with precode and data bytes.

9.2.1 Virtual Aliasing

Theinstruction cache on the 74K processor coreis virtually indexed and physically tagged. The lower bits of the vir-
tual address are used to access the cache arrays and the physical addressis used in the tags. Because the way size can
be larger than the minimum TLB page size, there is apotential for virtual aiasing. This means that one physical
address can exist in multiple indices within the cache, if it is accessed with different virtual addresses. Virtual aliasing
comes into effect only for cache sizes that are larger than 16KB. The 16KB cache size does not suffer from virtual
aliasing, because the way size equals the minimum page size.

This reduces the cache efficiency somewhat, but is generally not a problem unless the instruction stream is being writ-
ten to. When instructions are written, software must ensure that the store data is written out to memory and the old
dataisinvalidated in the instruction cache (viathe CACHE or SY NCI instruction). Because one physical address can
exist in multiple locations, the cache should be invalidated using all of the virtual addresses used to access that physi-
cal address. The hardware implementation takes care of this automatically when Config7.IVA bit is cleared. In the
absence of the hardware feature, aternatively, all of the relevant cache indices or the entire cache can be invalidated.

9.2.2 Precode bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bitsindicate the type and location of branch or jump instructions within a
64b fetch bundle. These precode bits are not used when executing M1PS16e code.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



9.3 Data Cache

9.2.3 Parity

Parity protection of the instruction cache arrays can optionally beincluded. The data array has 16 parity bits—one for
each byte of the 128b data. The tag array has 5 parity bits for each tag—one for each of the 4 precode fields and one
for the physical tag, lock, and valid bits. The LRU array does not have any parity.

9.3 Data Cache

The data cache is similar to the instruction cache, with afew key differences. The data cache does not contain any
precode information. To handle store bytes, the data array is byte-accessible, and the optional data parity is 1 bit per
byte. The way-select array for the data cache holds the lock bits (and optional lock parity bits) for each cacheline, in
addition to the LRU information. The lock bitsindicate the cache lines that have been locked using the CACHE
instruction. There is a separate dirty array to hold the dirty bits of cachelines. Table 9.2 shows the key characteristics
of the data cache. Figure 9.2 shows the format of an entry in the arrays comprising the data cache: tag, data, way-

select, and dirty.
Table 9.2 Data Cache Attributes
Attribute With Parity Without Parity
Size 0, 16, 32, 64KB
Line Size 32B
Number of Cache Sets 128,256,512
Associativity 4 way
Replacement LRU
Cache Locking per line

Data Array

Read Unit 72bx 4 64bx 4

Write Unit 9% 8b
Tag Array

Read Unit 53bx 4 52bx 4

Write Unit 53b 52b

Way-Select Array

Read Unit 14b | 10b

Write Unit 1-14b
Dirty Array

Read Unit 10b | 6b

Write Unit 1-10b

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 227

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Caches of the 74K™ Core

228

Figure 9.2 Data Cache Organization

1 21 1 8 21 1
Tag (per way):

Parity | PA[31:11] |Global | ASID | VA[31:11] | Valid

1 8 9x30 1 8
Data (per way):
Parity | Data3l Parity | Data0

4 4 6
Way-Select: Lock Parity Lock LRU

2 4 4
Dirty - : :

Reserved Dirty Parity Dirty

9.3.1 Virtual Aliasing

Since the caches are virtually indexed and physically tagged, a phenomenon known as virtual aliasing can occur for
some cache sizes. Virtual aliasing occursif the virtual bits used to index a cache array are not consistent with the
overlapping physical bits, after the virtual address has been translated to a physical address. Virtua aliasing can only
occursin address regions which are mapped through a TL B-based memory management unit.

In TLB-mapped address regions, virtual aliasing may occur if the cache size per way is greater than the page size. For
example, consider a 32K B cache organized as 4-way set associative. The size per way isthen 8 KB, so virtual address
bits [12:0] are used to index the array. If the addressisin atrandated region with a page size of 4 KB, then address
bits [11:0] are untranslated but address bits [31:12] will be mapped and for these bits the virtual and physical
addresses may be different. In this example, bit [12] could pose a potential problem due to virtual aiasing. Imagine
two virtual addresses, VAO and VA1, whose only difference is the value of bit [12], which map to the same physical
address. These two virtual addresses would be indexed to two different lines by the cache, even though they were
intended to represent the same physical address. Then if a program does aload using VAO and a store using VA1, or
vice-versa, the cache may not return the expected data.

Table 9.3 shows the overlapped virtual/physical address bits which could potentially be involved in virtual aliasing,
given the possible minimum page sizes and cache way sizes supported by a 74K core. Because there are no direct
writes to the I-cache in the MIPS architecture, aliasing is usually an issue only for the D-cache. A specia hardware
mechanism is available to prevent the possibility of virtual aliasing in 32KB and 64K B data caches. In cores not con-
figured with this mechanism, virtual aliasing must be handled by software. The software solution must ensure that the
mapping of virtual address bits which overlap with physical address bits be handled consistently. The simplest
approach isto ensure that the overlapping bits are unity-mapped (VA equals PA).

Table 9.3 Potential Virtual Aliasing Bits

Overlapped address
Minimum Page Size bits with possible
(KB) Cache Way Size (KB) aliasing
4 8 [12]
16 [13:12]

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



9.4 Write Back Buffer

Table 9.3 Potential Virtual Aliasing Bits (Continued)

Overlapped address
Minimum Page Size bits with possible
(KB) Cache Way Size (KB) aliasing
8 16 [13]

A related issue can occur in virtually indexed, physically tagged cachesif the number of physical bits stored in the tag
array does not fully overlap the physically translated bits for the smallest page size. For a 74K core, there are always
at least 20 address bits stored in the cache tag, representing bits [31:12] of the physical address. Since the minimum
page size is 4K B with bits[31:12] physically translated by the TL B, the cache tag size does overlap the trand ated bits
and thisissue will not occur.

9.3.2 Parity

Parity protection of the data cache arrays can optionally be included. The dataarray requires a parity bit for each byte,
corresponding to the minimum write quantum for astore. The tag array has a single parity bit for each tag. The way-
select array has separate parity bitsto cover each lock bit, but the LRU bits are not covered by parity. The dirty array
also has a parity bit for each dirty bit.

9.4 Write Back Buffer

The BIU includes a Write Back Buffer (WBB) that holds writes going to memory. This includes evictions from the
data cache, as well as write-through stores, uncached stores, and uncached accelerated stores. The WBB consists of 4
entries, each of which is capable of holding 32B of data. The WBB aso holds L2 CACHE instructions that are to be
sent out on the bus.

The WBB will attempt to gather uncached accelerated (UCA) stores to allow full line burst writes. UCA behavior is
described in Section 9.4.1 “Uncached Accelerated Stores’. Write through stores can also be gathered inaWBB entry
if ConfigMM= 1.

WBB entries are ‘flushed’ under a variety of conditions. When a buffer is flushed, the write command is queued in
the BIU and the WBB entry will not accept any more activity until the data has been written to the bus and the buffer
isfreed up. UCA flush conditions are described in the next section. Flush conditions for other types are shown here:
» Uncached (non-accelerated) stores flush immediately

» L2 CACHE instruction commands are also flushed immediately

» Entriesfor D$ evictions are flushed when all 4 dwords (32B) of data have been gathered

*  Write-through entries are flushed under the following conditions:

* A full 32B line has been gathered

* A read request matches the address of the WT line. The write command will be ordered ahead of the read
command. There is no direct bypass of the WBB data to the read—the read gets the data from memory.

* A WT request to adifferent 32B lineis seen. Only 1 WT merge can be active at any time.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 229

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Caches of the 74K™ Core

9.4.1 Uncached Accelerated Stores

Uncached Accelerated gathering is supported for word and doubleword stores only.

Gathering of uncached accelerated stores will start on cache-line aligned addresses, i.e. 32 byte aligned addresses.
Uncached accelerated word or doubleword stores that do not to meet the conditions required to start gathering will be
treated like regular uncached stores.

When an uncached accelerated store meets the requirements needed to start gathering, a gather buffer is reserved for
this store. All subsegquent uncached accelerated word or doubleword stores to the same cache line will write sequen-
tialy into this buffer, regardless of the word address associated with these stores. The uncached accelerated buffer is
tagged with the address of thefirst store.

An uncached accelerated buffer is written to memory (flushed) if:

1. Thelast word in the entry being gathered is written (implicit flush).

2. A PREF Nudge which match the address associated with the gather buffer (explicit flush).

3. A SYNC instruction is executed (Explicit flush).

4. Bits<31:5> of the address of a Load instruction match the address associated with the gather buffer (implicit
flush).

5. Uncached Accelerated store to a different 32B line (implicit flush).
6. An exception occurs (implicit flush).

When an uncached accel erated buffer is flushed, the address sent out on the system interface is the address associated
with the gather buffer.

Caveats.

» Any uncached stores and any uncached loads to unrelated addresses that occur between uncached accelerated
stores that are part of a gather sequence will go out-of-order. They will not enforce ordering.

»  Theonly constraint imposed on the gathering is that doubleword stores are only allowed to write to doubleword-
aligned locations in the buffer. For example, if uncached accel erated gathering starts with a Store Word (SW), it
may not be followed by a Store Double (SDC1).

» Uncached accelerated stores of the following types are not intended to be used by software and may generate
unpredictable results:

1. Hafword Stores
2. Unaligned Stores
3. Store conditionals
» Inorder for software to execute correctly on implementations without uncached accel erated stores, software

should always generate accesses starting on a cache-line aligned address, proceed to generate correctly incre-
mented sequential addresses, and observe the restrictions for uncached accelerated stores.

230 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



9.5 Cache Protocols

9.5 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data caches.
This section also discusses issues relating to virtual aliasing.

9.5.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data, and way-select. In addition, the data cache has
adirty array. The caches are virtually indexed, since avirtual addressis used to select the appropriate line within each
of the three arrays. The caches are physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache.
The way-select array holds information to choose the way to befilled, as well as dirty bitsin the case of the data
cache.

Figure 9.1 (instruction cache) and Figure 9.2 (data cache) show the format of each linein the tag, data, and way-select
arrays.

A tag entry consists of the upper bits of the physical address (bits [31:12] for instruction cache, bitg[31:11] for data
cache), one valid bit for the line, and alock bit. A data entry contains the four, 64-bit doublewordsin theline, for a
total of 32 bytes. All four wordsin the line are present or not in the data array together, hence the single valid bit
stored with the tag. Once avalid lineisresident in the cache, byte, halfword, triple-byte or full word stores can update
all or aportion of thewordsin that line. The tag and data entries are repeated for each of the 4 linesin the set.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information appliesto all the ways and there is one way-select entry for all the waysin the set. The array
with way-select entries for the data cache also holds dirty bitsfor thelines. Onedirty bit isrequired per line, as shown
in Figure 9.2. The instruction cache only supports reads, hence only LRU entries are stored in the instruction way-
select array.

9.5.2 Cacheability Attributes

A 74K core supports the following cacheability attributes:

» Uncached: Addressesin amemory areaindicated as uncached are not read from the cache. Storesto such
addresses are written directly to main memory, without changing cache contents.

»  Writeback With Write Allocation: Loads and instruction fetchesfirst search the cache, reading main memory only
if the desired data does not reside in the cache. On data store operations, the cache isfirst searched to seeif the
target addressisin the cache. If it is, the cache contents are updated, but main memory is not written. If the cache
lookup misses on a store, main memory is read to bring the line into the cache and merge it with the new store
data. Hence, the allocation policy on a cache missis read- or write-allocate. Data stores will update the appropri-
ate dirty bit in the way-select array to indicate that the line contains modified data. When aline with dirty datais
displaced from the cache, it is written back to memory.

»  Write-through With No Write Allocation: L oads and instruction fetches first search the cache, reading main mem-
ory only if the desired data does not reside in the cache. On data store operations, the cache isfirst searched to
seeif the target addressis cache resident. If it is resident, the cache contents are updated, and main memory is
also written. If the cache lookup misses on a store, only main memory iswritten. Hence, the allocation policy on
acache missisread-allocate only.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 231

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Caches of the 74K™ Core

232

*  Uncached Accelerated: Uncached stores are gathered together for more efficient bus utilization. See Section
9.4.1 “Uncached Accelerated Stores’ for more details

Some segments of memory employ afixed caching policy; for example, ksegl is aways uncacheable. Other segments
of memory alow the caching policy to be selected by software. Generally, the cache policy for these programmable
regionsis defined by a cacheability attribute field associated with that region of memory. See Chapter 5, “Memory
Management of the 74K™ Core” for further details.

9.5.3 Replacement Policy

The replacement policy refersto how away is chosen to hold an incoming cache line on a miss which will result in a
cachefill. Thereplacement policy isleast-recently used (LRU), but excluding any locked ways. The LRU hit(s) in the
way-select array encode the order in which ways on that line have been accessed.

On acache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

» Onacachehit, the associated way is updated to be the most recently used. The order of the other waysrelative to
each another is unchanged.

» Onacacherefill, thefilled way is updated to be the most recently used.

e On CACHE ingtructions, the update of the LRU bits depends on the type of operation to be performed:

Index (Writeback) Invalidate: Least-recently used.
Index Load Tag: No update.

Index Store Tag, WST=0: Most-recently used if valid bit isset in TagLo CPO register. L east-recently used if
valid bit is cleared in TagLo CPO register.

Index Store Tag, WST=1: Update the field with the contents of the TagLo CPO register (refer to Table 7.58
for the valid values of thisfield).

Index Store Data: No update.

Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

Fill: Most-recently used.

Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.
Hit Writeback: No update.

Fetch and L ock: For instruction cache, no update. For data cache, most-recently used.

If al ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
ways, the LRU bits are used to identify the way which has been used |east-recently, and that way is selected for
replacement.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



9.6 CACHE Instruction

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

9.5.4 Line Locking

The 74K core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the cache
at agiven index are locked by either Fetch and Lock or Index Store Tag CACHE instructions, subsequent cache
misses at that cache index will displace one of the locked lines.

»  Thecore does not support the locking of all 4 ways of either cache at aparticular index. If all 4 ways of the cache
at agiven index are locked, subsequent cache misses at that cache index will displace one of the locked lines.

9.6 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag
arrays, including the locking of individual cache lines. These instructions are described in detail in Chapter 13,
“74K™ Processor Core Instructions”.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the Way Select (WS)
RAM by setting the WST bit in the ErrCtl register. (The ErrCtl register is described in Section 7.2.40 “ErrCtl (CPO
Register 26, Select 0): Software Parity Control and Test Modes for Cache RAM Arrays’.) Similarly, the SPR bitin
the ErrCtl register will cause Index Load Tag and Index Store Tag instructions to read the pseudo-tags associated with
the scratchpad RAM array. Note that when the WST and SPR hits are zero, the CACHE index instructions access the
cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. Thisisonly an issue,
however, if the WS RAM iswritten after the initialization (invalidation) of the Tag array. Valid WS field encodings
for way selection order is shown in Table 9.4.

Table 9.4 Way Selection Encoding, 4 Ways

Selection Order?! WSI[5:0] Selection Order WS[5:0]
0123 000000 2013 100010
0132 000001 2031 110010
0213 000010 2103 100110
0231 010010 2130 101110
0312 010001 2301 111010
0321 010011 2310 111110
1023 000100 3012 011001
1032 000101 3021 011011
1203 100100 3102 011101
1230 101100 3120 111101
1302 001101 3201 111011
1320 101101 3210 111111

1. The order isindicated by listing the |east-recently used way to the left and the most-
recently used way to the right, etc.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 233

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Caches of the 74K™ Core

9.7 Software Cache Testing

234

Typicaly, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with
interrupts disabled in order to maintain the cache contents. There are multiple methods for testing these arraysin soft-
ware, some of which are described in the following subsections.

9.7.1 I-cache and D-cache Tag Arrays

These arrays can be tested viathe Index Load Tag and Index Store Tag varieties of the CACHE instruction. Index
Store Tag will write the contents of the ITagLo and ITagHi registersinto the selected tag entry. Index Load Tag will
read the selected tag entry into the ITagLo and ITagHi registers.

If parity isimplemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl
register. Thiswill override the parity calculation and use the parity bitsin ITagLo and ItagHi as the parity values.

9.7.2 I-cache Data Array

Thisarray can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The Index Store Data instruction can optionally update the corresponding precode field in the tag array. The precode
bitsin the array are updated if the PCD bit in the ErrCtl register is zero when we execute the Index Store Data instruc-
tion. The precode value is generated by the hardware automatically if the PCO bit in the ErrCtl register is zero. Other-
wise, the corresponding precode value (PREC_01/PREC 23/PREC 45/PREC_67) from the ITagHi register isused in
updating the tag array.

The parity bitsin the array can be tested by setting the PO bit in the ErrCtl register. Thiswill usethe PI field in ErrCtl
instead of calculating the parity on awrite.

Therest of the data bits are read/written to/from the IDatalo and IDataHi registers.

9.7.3 lI-cache WS Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

9.7.4 D-cache Data Array

Thisarray can betested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to set
theinitial state of the tagsto valid with aknown physical address (PA). Write the array using SW instructions to the
PAs that are resident in the cache. The value can then be read using LW instructions and compared to the expected
data.

The parity bits can beimplicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are
read/written to/from the PD field in ErrCtl. Unlike the |-cache, the DataHi register is not used, and only 32b of datais
read/written per operation.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



9.8 Memory Coherence Issues

9.7.5 D-cache WS Array
Thelock and LRU hits can be tested using the same mechanism as the I-cache WS array.
9.7.6 D-cache DirtyArray

Thetesting of thisarray isaso done through Index Load Tag and Index Store Tag CACHE instructions. By setting the
DYT hit in the ErrCtl register, these operations will read and write the dirty array instead of the tag array.

9.8 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system design.
Since a cache holds a copy of memory data, it is possible for another memory master to modify a memory location,
thus making other copies of that location stale. A detailed discussion of memory coherence is beyond the scope of
this document, but following are a few related comments.

A 74K processor contains no direct hardware support for managing coherency with respect to its caches, so it must be
handled viathe system design or software. The data cache supports either write-back or write-through protocols.

In write-through mode, all data writes will eventually be sent to memory. However, because of the presence of write
buffers, there could be adelay in the actual write to memory. So if another memory master updates cacheable memory
that could also bein the core’s caches, those locations may need to be flushed from the cache. The only way to
accomplish thisinvalidation is by use of the CACHE instruction.

In write-back mode, data writes only go to the cache and not to memory (until explicitly evicted). So the processor
cache may contain the only copy of datain the system, until that data is written to main memory. Dirty lines are only
written to memory when displaced from the cache asanew lineisfilled, or if they are explicitly forced by certain fla-
vors of the CACHE or PREF instructions.

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the core’s
write buffers.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 235
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Caches of the 74K™ Core

236 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 10

Power Management in the 74K™ Core

A 74K processor core offers a number of power management features, including low-power design, active power
management, and power-down modes of operation. The core is a static design that supports a WAIT instruction
designed to signal the rest of the device that execution and clocking should be halted, reducing system power con-
sumption during idle periods.

The core provides two mechanisms for system-level low-power support, which are discussed in the following sec-
tions:

e Section 10.1 “Register-Controlled Power Management”

e Section 10.2 “Instruction-Controlled Power Management”
10.1 Register-Controlled Power Management

The RP (Reduced Power) bit in the CPO Status register enables a standard software mechanism for placing the system
into alow-power state. The state of the RP bit is available externally on the SI_RP output signal. Three additional
pins— SI_EXL, SI_ERL, and EJ_DebugM—support the power-management functions by allowing the user to change
the power state if an exception or error occurs while the core isin alow-power state.

Setting the RP bit of the CPO Status register causes the core to assert the SI_RP signal. The external agent can then
decide to reduce the clock frequency and place the core into power-down maode.

If an interrupt occurs while the device isin power-down mode, that interrupt may need to be serviced, depending on
the needs of the application. The interrupt causes an exception, which in turn causes the EXL bit to be set. Setting the
EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an interrupt
has occurred. When SI_EXL is asserted, the external agent can choose to either speed-up the clocks and service the
interrupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. The external agent can then choose to either speed up the clocks and service the error
or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor isin debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of thisis desired, the external agent can speed up the clocks.

The core provides four power-down signals that are part of the system interface. Three of the pins change state as the
corresponding bitsin the CPO Status register are set or cleared, and the fourth pin indicates that the processor isin
debug mode:

* TheSI_RP signal represents the state of the RP bit (27) in the CPO Status register.

» TheSI_EXL signa represents the state of the EXL hit (1) in the CPO Status register.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 237

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Power Management in the 74K™ Core

» TheSI_ERL signal represents the state of the ERL bit (2) in the CPO Status register.

* TheEJ_DebugM signal indicates that the processor has entered debug mode.
10.2 Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is through execution of the WAIT instruction. The WAIT
instruction brings the processor into alow-power state, where the internal clocks are suspended and the pipelineis
frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset, and EJ_DINT) con-
tinue to run. The clocks are not shut down until all bus and coprocessor transactions have completed. When the CPU
isin instruction-controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition
causes the CPU to exit this mode and resume normal operation. While the core isin this low-power mode, the
SI_SLEEP signal is asserted to indicate to external agents the state of the chip.

238 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 11

EJTAG Debug Support in the 74K™ Core

The EJTAG debug logic in the 74K processor core is compliant with MIPS® EJTAG Specification Version 4.12 and
includes:

1. Standard core debug features

2.

3.

4.

Optional hardware breakpoints

Standard Test Access Port (TAP) for a dedicated connection to a debug host

Optional MIPS trace capability for program counter/data address/data val ue trace to on-chip memory or to trace

probe

This chapter contains the following sections:

Section 11.1

Section 11.2

Section 11.3

Section 11.4

Section 11.5

Section 11.6

Section 11.7

Section 11.8

Section 11.9

Section 11.10

Section 11.11

Section 11.12

Section 11.13

Section 11.14

“Debug Control Register”

“Hardware Breakpoints’

“Test Access Port (TAP)”

“EJTAG TAP Registers’

“TAP Processor Accesses’

“PC Sampling”

“Fast Debug Channel”

“MIPS® Trace”

“PDtrace™ Registers (Software Control)”
“Trace Control Block (TCB) Registers (Hardware Control)”
“Enabling MIPS Trace”

“TCB Trigger Logic”
“MIPS Trace Cycle-by-Cycle Behavior”

“TCB On-Chip Trace Memory”

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

239



EJTAG Debug Support in the 74K™ Core

11.1 Debug Control Register

The Debug Control register (DCR) controls and providesinformation about debug issues, and is always provided with
the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bitsindicate if hardware breakpoints are included in the implementation, and debug software
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which worksin addition to the
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, and a
pending NMI isindicated through the NMIP bit.

The SRE bit allowsimplementation dependent masking of some sources for reset. The 74K core does not distinguish
between soft and hard reset, but typically only soft reset sources in the system would be maskable, and hard sources
such as the reset switch would not be. The soft reset masking should only be applied to a soft reset source if that
source can be efficiently masked in the system, thus resulting in no reset at al. If that is not possible, then that soft
reset source should not be masked, since a partial soft reset may cause the system to fail or hang. Thereis no auto-
matic indication of whether the SRE is effective, so the user must consult system documentation.

The PE hit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expectsto service dmseg accesses. The reset valuein the table below
takes effect on any CPU reset.

Figure 11.1 Debug Control Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PCno PCno FDC

Res ENM | Res TCID PCIM ASID DASQ |DASe| DAS Res Impl DB IB

‘5 14 3 12 11 10 9 8 6 5 4 3 2 1 0

IVM |DVM | O RDVec | CBT PCS PCR PCSE|INTE| NMIE | NMIP | SRE PE

Table 11.1 Debug Control Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31:30 | Reserved R 0
ENM 29 Endianess in which the processor is running in kernel and Debug R Preset
Mode:
Encoding Meaning
0 Little endian
1 Big endian
Res 28 Reserved R 0
240 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 11.1 Debug Control Register Field Descriptions (Continued)

11.1 Debug Control Register

Fields

Name

Bit(s)

Description

Read /
Write

Reset State

PCnoTCID

27

Controls whether PC Sampling includes or omits the TC identity
field when the MT ASE isimplemented:

Encoding

Meaning

0

TCfield included in PCSAMPLE scan

1

TC field omitted from PCSAMPLE scan

Read,
Optional
write

Preset

PCIM

26

Configures PC Sampling to capture all executed addresses or only
those that miss in the instruction cache:

Encoding

Meaning

0

All PCs are captured

1

Only PCsthat missin the instruction
cache are captured

Read,
Optional
write

Undefined

PCnoASID

25

Controls whether the PCSAMPLE scan chain includes or omits the
ASID field:

Encoding Meaning

0

ASID included in PCSAMPLE scan

1

ASID omitted from PCSAMPLE scan

Undefined

DASQ

24

Qualifies Data Address Sampling using a data breakpoint:

Encoding Meaning

0

All data addresses are sampled

1

Sample matches of data breakpoint O

DASe

23

Enables Data Address Sampling:

Encoding Meaning

0

Data Address sampling disabled

1

Data Address sampling enabled

DAS

22

Indicates if the Data Address Sampling feature isimplement

ed:

Encoding Meaning

0

No Data Address sampling imple-
mented

Data Address sampling implemented

Preset

Res

21:19

Reserved

FDCImpl

18

Indicates if the fast debug channel isimplemented:

Encoding Meaning

0

No fast debug channel implemented

1

Fast debug channel implemented

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

241



EJTAG Debug Support in the 74K™ Core

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

DB 17 Indicates if data hardware breakpoint isimplemented: R Preset

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

1B 16 Indicates if instruction hardware breakpoint isimplemented: R Preset

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Res 13:11 | Reserved

VM 15 Indicatesif inverted data value match on data hardware breakpoints
isimplemented:

Encoding Meaning
0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

DVM 14 Indicates if a data value store on a data value breakpoint match is R 0
implemented:

Encoding Meaning

0 No data value store on adata value
breakpoint match implemented

1 Data value store on a data val ue break-
point match implemented

RDVec 11 Enables relocation of the debug exception vector. The valuein the R/W 0
DebugVectorAddr register is used for EJTAG exceptions when Prob-
Trap=0 and RDVec=1.

CBT 10 Indicates if complex breakpoint block isimplemented: R Preset

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

242 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.1 Debug Control Register

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read /

Write Reset State

PCS

9

Indicates if the PC Sampling feature isimplemented.:

Encoding
0 No PC Sampling implemented
1 PC Sampling implemented

Meaning

R Preset

PCR

8.6

PC Sampling Rate: Values from 0'to 7 map to 2° to 212 cycles
respectively. That is, a PC sampleiswritten out every 32, 64, 128,
256, 512, 1024, 2048, or 4096 cycles. The external probe or software
is allowed to set this value to the desired sample rate

R/W 7

PCSE

Indicates if PC Sampling is enabled:

Encoding
0 PC Sampling not enabled
1 PC Sampling enabled

Thisbit is set to 0 following Reset. It must be set by software to
enable PC sampling.

Meaning

RIW 0

INTE

Interrupt Enablein Normal Mode. This bit provides the hardware
and software interrupt enable for non-debug mode, in addition to
other masking mechanismsin conjunction with other disable mecha-
nisms:

Encoding

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

Meaning

RIW 1

NMIE

Non-Maskable Interrupt (NMI) enable for Non-Debug Mode:

Encoding

0 NMI disabled
1 NMI enabled

Meaning

RIW 1

NMIP

Indication for pending NMI:

Encoding

0 No NMI pending
1 NMI pending

Meaning

MIPS32® 74K™

Processor Core Family Software User’'s Manual, Revision 01.05

243

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

SRE 1 Soft Reset Enable R/W 1
This bit allows the system to mask soft resets. The core does not
internally mask resets. Rather the state of this bit appears on the
EJ_SRSstE external output signal, allowing the system to mask soft
resetsif desired.

Encoding Meaning

0 Soft reset masked for soft reset sources
dependent on implementation

1 Soft reset isfully enabled
Bit isread-only (R) and reads as zero if not implemented.

PE 0 Probe Enable R Same value as
This hit reflects the value of the ProbEn hit in the EJTAG Control ProbEnin ECR
register: (see Table 11.25)

Encoding Meaning

0 No access should occur to the dmseg
segment
1 Probe services accesses to the dmseg
segment

Bit isread-only (R) and reads as zero if not implemented.

11.2 Hardware Breakpoints

244

Hardware breakpoints provide for the comparison by hardware of executed instructions and data | oad/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area,. Data breakpoints can be set to
cause a debug exception on a specific data transaction. I nstruction and data hardware breakpoints are alike in many
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 74K core: instruction breakpoints and data
breakpoints.

A core may be configured with the following breakpoint options:
e No breakpoints

e Four instruction and two data breakpoints

11.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus between
the CPU and the instruction cache. Instruction breaks can aso be made on the ASID value used by the TL B-based
MMU. Finally, amask can be applied to the virtual address to set breakpoints on arange of instructions.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.2 Hardware Breakpoints

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a

debug exception and/or atrigger is generated. An internal bit in the instruction breakpoint registersis set to indicate

that the match occurred.

11.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to
the Instruction breakpoint. Data breakpoints can be set on aload, a store or both. Data breakpoints can also be set
based on the value of the |oad/store operation. Finally, masks can be applied to both the virtual address and the
load/store value.

Data breakpoints compare the transaction type (TY PE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BY TELANE) and data value (DATA), with the registers for each data break-
point including masking or qualification on the transaction properties. When a data breakpoint matches, a debug
exception and/or atrigger is generated, and an internal bit in the data breakpoint registersis set to indicate that the
match occurred. The match is precisein that the debug exception or trigger occurs on the instruction that caused the
breakpoint to match.

11.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown in Table 11.2.

Table 11.2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number isindicated by n.
The registers for each breakpoint are shown in Table 11.3.

Table 11.3 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description
IBAN Instruction Breakpoint Address n
IBMn Instruction Breakpoint Address Mask n
IBASIDn Instruction Breakpoint ASID n
IBCn Instruction Breakpoint Control n

11.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shownin Table 11.4.

Table 11.4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description
DBS Data Breakpoint Status
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 245

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

246

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number isindicated by n. The
registers for each breakpoint are shown in Table 11.5.

Table 11.5 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description
DBAN Data Breakpoint Addressn
DBMn Data Breakpoint Address Mask n
DBASIDn Data Breskpoint ASID n
DBCn Data Breakpoint Control n
DBVn Data Breakpoint Value n

11.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or adata trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or atrigger indication. The BE and/or TE
bitsin the IBCn or DBCn registers are used to enable the breakpoaints.

Debug software should not configure breakpoints to compare on an ASID value unlessa TLB is present in the imple-
mentation.

11.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level,
and match also can include an optional compare of ASID. The registers for each instruction breakpoint have the val-
ues and mask used in the compare, and the equation that determines the match is shown below in C-like notation.

IB_match =
( ! |BCnASIDuse || ( ASID == |BAS|DnASID ) ) &&
( <all 1's> == ( IBMnigym | ~ ( PC ~ IBANTpax ) &&
( (IBMNnigam | ~(ISAMode ~ IBAniga))) )

The match indication for instruction breakpointsis always precise, i.e. indicated on the instruction causing the
IB_match to be true.

11.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to aload/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit |oad/store source or
destination address.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.2 Hardware Breakpoints

A breakpoint match depends on the transaction type (TY PE) as load or store, the address, and optionally the data
value of atransaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation isthe DB_match.

DB_match =
( ( ( TYPE == load ) && ! DBCnyorg ) ||
( ( TYPE == store ) && ! DBCnyosg ) ) &&
DB_addr_match && ( DB_no_value_compare || DB_value_match )

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the ASID
value, and the accessed bytes (BY TELANE) where BY TELANEJ[Q] is 1 only if the byte at bits[7:0] on the busis
accessed, and BY TELANE[1] is1 only if the byte at bits[15:8] is accessed, etc. The DB_addr_match is shown

below.
DB_addr_match =
( ! DBCnastpuse || ( ASID == DBASIDNnasip ) ) &&
( <all 1’s> == ( DBMnpgy | ~ ( ADDR ~ DBANpga ) ) ) &&
( <all 0’s> != ( ~ BAI & BYTELANE ) )

The size of DBCnga and BY TELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword float-
ing point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BY TELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =
( <all 1’s> == ( DBCngry | DBCngar | ~ BYTELANE ) )

The size of DBCng M, DBCnga] and BY TELANE is 8 hits.

In case a data value compareisrequired, DB_no_value compareisfase, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The endianessis not considered in these
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for
setup of the breakpoint corresponding with endianess.

DB_value_match =

( ( DATA[7:0] == DBVnpgy(7:07 ) || !BYTELANE[O] || DBCngrmio; || DBCngarfo; ) &&

( ( DATA[15:8] == DBVnppy[is:s; ) || !BYTELANE[1] || DBCngrmii; || DBCngar(i; ) &&
( ( DATA[23:16] == DBVnppy(23:167 ) || !BYTELANE[2] || DBCngrmi2] || DBCnpari2; )&&
( ( DATA[31:24] == DBVnpgy(31:247 ) || IBYTELANE [3] || DBCngrm(3] || DBChngar(3] ) &&
( ( DATA[39:32] == DBVnpgy(39:32] ) || IBYTELANE [4] || DBCngrm(4] || DBCngar(4] )&&
( ( DATA[47:40] == DBVnppy(a7:407 ) || !BYTELANE([5] || DBCngrmis; || DBCngar(s; )&&
( ( DATA[55:48] == DBVnpgy(s5:48] ) || IBYTELANE[6] || DBCngru(s] || DBCngati6] ) &&
( ( DATA[63:56] == DBVnppyi63:56] ) || IBYTELANE [ 7] || DBCngrm(7] || DBCngaz(71 ))

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always imprecise.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 247

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

11.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition istrue, as
described below.

11.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occursif the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register point
to the instruction that caused the IB_match equation to be true.

Theinstruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions receiv-
ing adebug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

11.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match condi-
tion istrue. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug exception.
A matching data breakpoint generates either a precise or imprecise debug exception

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates amatch. In this
case the DEPC register and DBD bit in the Debug register pointsto the instruction that caused the DB_match equation
to be true.

Theinstruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

» A storetransaction is not allowed to complete the store to the memory system.

» A load transaction with no data value compare, i.e. wherethe DB_no_value_compare istrue for the match, is not
allowed to complete the load.

Theresult of thisisthat the load or store instruction causing the debug data break exception appears as not executed.

248 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



If both data breakpoints without and with data value compare would match the same transaction and generate a debug

11.2 Hardware Breakpoints

exception, then the rules shown in Table 11.6 apply with respect to updating the BS[n] bits.

Table 11.6 Rules for Update of BS Bits on Data Breakpoint Exceptions

Update of BS Bits for Matching Data
Breakpoints that Match Breakpoints
Without Value Without Value
Instruction Compare With Value Compare Compare With Value Compare
Load/Store One or more None BS hits set for all (No matching break-
points)
Load One or more One or more BS hits set for all Unchanged BS bitssince
load of data value does
not occur so match of the
breakpoint cannot be
determined
Load None One or more (No matching break- BS bits set for al
points)
Store One or more One or more BS bits set for all BS bits set for al
Store None One or more (No matching break- BS bits set for al
points)

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
isre-executed. Debug software is responsible for disabling breakpoints when returning to the instruction; otherwise
the debug data break exception will reoccur.

Debug Data Break Load/Store Exception as an Imprecise Debug Exception

An Debug Data Break L oad/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match.
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the
Debug register point to an instruction later in the execution flow rather than at the load/store instruction that caused
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break L oad/Store Imprecise exception always updates the destina
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DDBSImpr bit do not point to that
instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break L oad/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding
DDBSImpr bits and DDBLImpr/DDBSImpr in the Debug register to be set, but no debug exception is generated for suc-
ceeding matches because the processor is aready in Debug Mode. Similarly, if adebug exception had already
occurred at the time of the first match (for example, due to a precise debug exception), then all matches cause the cor-
responding BS bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is
already in Debug Mode.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 249

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

The SYNC instruction, followed by appropriate spacing must be executed before the DDBSImpr bits and
DDBSImpr/DDBSImpr bits are accessed for read or write. This delay ensures that these bits are fully updated.

Any DDBSImpr bit set prior to the match and debug exception are kept set, because only debug software can clear the
DDBSImpr hits.

11.2.7 Breakpoint used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate
adebug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register controlsif an
instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com-
pared for instructions executed in non-debug mode.

The BS[n] bitinthe IBS or DBS register is set when the respective IB_match or DB_match bit istrue.

11.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 11.7.

Table 11.7 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status

0x1100 + n* 0x100 IBAn Instruction Breskpoint Address n

0x1108 + n* 0x100 IBMn Instruction Breakpoint Address Mask n
0x1110 + n* 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n* 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number inrange 0 to 3

An example of some of the registers; IBAO is at offset 0x1100 and IBC2 is at offset 0x1318.

11.2.8.1 Instruction Breakpoint Status (IBS) Register
Compliance L evel: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

The ASID appliesto all the instruction breakpoints.

Figure 11.2 IBS Register Format

31

30

29 28 27

24 23

Res

ASIDsup

Res

BCN

Res

BS

250

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




11.2 Hardware Breakpoints

Table 11.8 IBS Register Field Descriptions

Fields L
Description Read /
Name Bit(s) Write Reset State
Res 31 Must be written as zero; returns zero on read. R 0
ASIDsup 30 Indicates that ASID compare is supported in instruction break- R Fixed MMU -0
points. TLB-1
Encoding Meaning
0 No ASID compare.
1 ASID compare (IBASIDn register
implemented).
Res 29:28 Must be written as zero; returns zero on read. R
BCN 27:24 Number of instruction breakpoints implemented. R 4
Res 234 Must be written as zero; returns zero on read. R

11.2.8.2 Instruction Breakpoint Address n (IBAn) Register
Compliance L evel: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint

n.
Figure 11.3 IBAn Register Format
31 1 0
IBA ISA
Table 11.9 IBAn Register Field Descriptions
Fields
Read /
Name Bit(s) Description Write Reset State
IBA 311 Instruction breakpoint address for condition. R/W Undefined
ISA 0 Instruction breakpoint ISA mode for condition R/W Undefined

11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 251

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Figure 11.4 IBMn Register Format
31 1 0

IBM ISAM

Table 11.10 IBMn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
IBM 311 Instruction breakpoint address mask for condition: R/W Undefined
Encoding Meaning
0 Corresponding address bit not masked.
1 Corresponding address bit masked.
ISAM 0 Instruction breakpoint |SA mode mask for condition: R/W Undefined
Encoding Meaning
0 ISA mode considered for match condi-
tion
1 ISA mode masked

11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
Compliance L evel: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For coreswith an FM MMU, this register is reserved and reads as O.

Figure 11.5 IBASIDn Register Format
31 8 7 0

Res ASID

Table 11.11 IBASIDn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7.0 Instruction breakpoint ASID value for a compare. RIW Undefined
11.2.8.5 Instruction Breakpoint Control n (IBCn) Register
Compliance L evel: Implemented only for implemented instruction breakpoints.
252 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

Figure 11.6 IBCn Register Format

11.2 Hardware Breakpoints

31 24 23 2 21 2 1 0
Res AsiDuse| R Res TE|Res| BE
Table 11.12 BCn Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
Res 31:24 | Must be written as zero; returns zero on read. R 0
ASIDuse 23 Use ASID vaue in compare for instruction breakpoint n: R/W Undefined
Encoding Meaning
0 Don't use ASID value in compare
1 Use ASID value in compare
Res 22 Must be written as zero; returns zero on read. R 0
Res 21:3 | Must be written as zero; returns zero on read. R 0
TE 2 Use instruction breakpoint n as triggerpoint: R/W 0
Encoding Meaning
0 Don't use it as triggerpoint
1 Useit astriggerpoint
Res 1 Must be written as zero; returns zero on read. R
BE 0 Use instruction breakpoint n as breakpoint: R/W
Encoding Meaning
0 Don't useit as breakpoint
1 Useit as breakpoint

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

253



EJTAG Debug Support in the 74K™ Core

11.2.9 Data Breakpoint Registers

Theregistersfor data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers arein drseg, and the addresses are shown in Table 11.13.

Table 11.13 Addresses for Data Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n
0x2110 + 0x100* n DBASIDn Data Breakpoint ASID n
0x2118 + 0x100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Value n
0x2124 + 0x100*n DBVHN Data Breakpoint Value High n
nis breakpoint number asO or 1

An example of some of the registers; DBMO is at offset 0x2108 and DBV1 is at offset 0x2220.

11.2.9.1 Data Breakpoint Status (DBS) Register
Compliance L evel: Implemented if data breakpoints are implemented.

The Data Breakpoint Status (DBS) register contains implementation and status information about the data break-
points.

The ASIDsup field indicates whether ASID compares are supported.

Figure 11.7 DBS Register Format
31 30 29 28 27 24 23 2 1 0

Res|ASIDsup| Res BCN Res BS

Table 11.14 DBS Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31 Must be written as zero; returns zero on read. R 0
ASIDsup 30 Indicates that ASID compares are supported in data breakpoints. R TLBMMU -1
- - FM MMU - 0
Encoding Meaning
0 Not supported
1 Supported
Res 29:28 | Must be written as zero; returns zero on read. R 0
BCN 27:24 | Number of data breakpoints implemented. R
Res 23:2 Must be written as zero; returns zero on read. R 0
254 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 11.14 DBS Register Field Descriptions

11.2 Hardware Breakpoints

is set to 1 when the condition for the corresponding breakpoint has
matched.

Fields
Read /
Name Bit(s) Description Write Reset State
BS 1.0 Break status for breakpoint nisat BS[n], with n from 0 to 1. The bit R/WO Undefined

11.2.9.2 Data Breakpoint Address n (DBAnN) Register

Compliance L evel: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAN) register has the address used in the condition for data breakpoint n.

31

Figure 11.8 DBAN Register Format

DBA

Table 11.15 DBAnN Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBA 310 Data breakpoint address for condition. R/W Undefined

11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance L evel: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for

data breakpoint n.
Figure 11.9 DBMn Register Format
31 0
DBM
Table 11.16 DBMn Register Field Descriptions
Fields
Read /

Name Bit(s) Description Write Reset State
DBM 31:0 Data breakpoint address mask for condition: R/W Undefined

Encoding Meaning

0 Corresponding address hit not masked
1 Corresponding address bit masked

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

255



EJTAG Debug Support in the 74K™ Core

11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
Compliance L evel: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with the FM MMU, thisregister is reserved and reads as 0.

Figure 11.10 DBASIDn Register Format
31 8 7 0
Res ASID

Table 11.17 DBASIDn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined

11.2.9.5 Data Breakpoint Control n (DBCn) Register
Compliance L evel: Implemented only for implemented data breakpoints.
The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

Figure 11.11 DBCn Register Format
31 24 23 22 21 14 13 12 11 4 3 2 1 0

Res ASiDuse| € BAI NoSB | NoLB BLM Res| TE|Res| BE

Table 11.18 DBCn Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Res 31:24 | Must be written as zero; returns zero on reads. R 0
ASIDuse 23 Use ASID value in compare for data breakpoint n: R/W Undefined
Encoding Meaning
0 Don't use ASID value in compare
1 Use ASID valuein compare
256 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.2 Hardware Breakpoints

Table 11.18 DBCn Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset State

Res 22

Must be written as zero; returns zero on reads

R

0

BAI 21:14

Byte access ignore controls ignore of access to a specific byte.
BAI[O] ignores access to byte at bits [7:0] of the data bus, BAI[1]
ignores access to byte at bits [15:8], etc.

Encoding Meaning

0 Condition depends on accessto corre-
sponding byte

1 Access for corresponding byteis
ignored

R/W

Undefined

NoSB 13

Controlsif condition for data breakpoint is not fulfilled on a store
transaction:

Encoding Meaning

0 Condition may be fulfilled on store
transaction

1 Condition is never fulfilled on store
transaction

Undefined

NoLB 12

Controlsif condition for data breakpoint is not fulfilled on aload
transaction:

Encoding Meaning

0 Condition may be fulfilled on load
transaction

1 Condition is never fulfilled on load
transaction

R/W

Undefined

BLM 11:4

Byte lane mask for value compare on data breakpoint. BLM[O]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:

Encoding Meaning

0 Compare corresponding byte lane
1 Mask corresponding byte lane

Undefined

Res 3

Must be written as zero; returns zero on reads.

TE

Use data breakpoint n as triggerpoint:

Encoding Meaning

0 Don't use it as triggerpoint
1 Useit astriggerpoint

R/W

Res 1

Must be written as zero; returns zero on reads.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

257



EJTAG Debug Support in the 74K™ Core

Table 11.18 DBCn Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
BE 0 Use data breakpoint n as breakpoint: R/W 0

Encoding Meaning

0 Don't use it as breakpoint

1 Useit as breakpoint

11.2.9.6 Data Breakpoint Value n (DBVn) Register
Compliance L evel: Implemented only for implemented data breakpoints.
The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.
Figure 11.12 DBVn Register Format

31 0

DBV

Table 11.19 DBVn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBV 31.0 Data breakpoint value for condition. R/W Undefined

11.2.9.7 Data Breakpoint Value High n (DBVHnN) Register
Compliance L evel: Implemented only for implemented data breakpoints.
The Data Breakpoint Value High n (DBVHN) register has the value used in the condition for data breakpoint n.
Figure 11.13 DBVHn Register Format

31 0

DBVH

258 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.3 Test Access Port (TAP)

Table 11.20 DBVHnN Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBVH 31:0 Data breakpoint value high for condition. This register provides the R/W Undefined

high order bits [63:32] for data value on double-word floating point
loads and stores.

11.3 Test Access Port (TAP)

The following main features are supported by the TAP module;

e 5-pinindustry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with |EEE Std. 1149.1.

e Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

»  The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. Thisis
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

e Support for both ROM based debugger and debugging both through TAP.

11.3.1 EJTAG Internal and External Interfaces
The external interface of the EJITAG module consists of the 5 signals defined by the IEEE standard.

Table 11.21 EJTAG Interface Pins

Pin Type Description

TCK | Test Clock Input

Input clock used to shift datainto or out of the Instruction or data registers. The TCK clock is
independent of the processor clock, so the EJTAG probe can drive TCK independently of the
processor clock frequency.

The core signal for thisiscalled EJ_TCK

T™MS | Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.
The core signal for thisiscalled EJ_TMS

TDI I Test Data I nput

Serial input data (TDI) is shifted into the Instruction register or data registers on therising
edge of the TCK clock, depending on the TAP controller state.
The core signal for thisiscalled EJ_TDI

TDO (0] Test Data Output

Serial output datais shifted from the Instruction or dataregister to the TDO pin on thefalling
edge of the TCK clock. When no datais shifted out, the TDO is 3-stated.

The core signal for thisis called EJ_TDO with output enable controlled by EJ_TDOzstate.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 259

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.21 EJTAG Interface Pins (Continued)

Pin Type Description

TRST_N | Test Reset Input (Optional pin)

The TRST_N pinisan active-low signal for asynchronous reset of the TAP controller and
instruction in the TAP module, independent of the processor logic. The processor is not reset
by the assertion of TRST_N.

The core signal for thisiscalled EJ_TRST_N

Thissignal is optional, but power-on reset must apply alow pulse on this signal at power-on
and then leaveit high, in case the signal is not available asapin on the chip. If available on the
chip, then it must be low on the board when the EJTAG debug features are unused by the
probe.

11.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs deter-
mine whether an instruction register scan or data register scan is performed. The TAP consists of asmall controller,
driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 11.14. The TAP
uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the falling
edge of TCK.

At power-up, the TAP isforced into the Test-Logic-Reset state by alow value on TRST_N. The TAP instruction regis-
ter isthereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test accessis required, a protocol is applied viathe TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or adata register scan can be issued to transition the TAP through the appropriate states shown in Figure 11.14.

The states of the data and instruction register scan blocks are mirror images of each other, adding symmetry to the
protocol sequences. Thefirst action that occurs when either block is entered is a capture operation. For the dataregis-
ters, the Capture-DR state is used to capture (or parallel 1oad) the datainto the selected serial data path. In the Instruc-
tion register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exitl states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of datathrough either the
Data or Instruction Register while arequired operation, such asrefilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel 1oad) with the new data that has been shifted into the selected scan path.

260 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.3 Test Access Port (TAP)

Figure 11.14 TAP Controller State Diagram

Test-Logic-Reset

Select_DR_Scan
0

Select_IR_Scan

0

11.3.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BY PASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state aslong as
TMS isHIGH.

11.3.2.2 Run-Test/ldle State

The controller enters the Run-Test/I dle state between scan operations. The controller remains in this state aslong as
TMS isheld LOW. Theinstruction register and all test data registersretain their previous state. The instruction cannot
change when the TAP controller isin this state.

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select DR state.

11.3.2.3 Select_DR_Scan State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS issampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state.
A HIGH on TMS causes the controller to transition to the Select IR state. The instruction cannot change while the
TAP controller isin this state.

11.3.2.4 Select_IR_Scan State

Thisisatemporary controller statein which al test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture IR state. A

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 261

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller isin this state.

11.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value isthen shifted out in the Shift DR. If TMS issampled LOW at the rising edge of TCK, the controller transitions
to the Shift. DR state. A HIGH on TMS causes the controller to transition to the Exitl DR state. The instruction can-
not change while the TAP controller isin this state.

11.3.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as aresult of the current instruction shifts data one
stage toward its seria output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remainsin the Shift DR state. A HIGH on TMS causes the controller to transition to the Exitl DR state. The
instruction cannot change while the TAP controller isin this state.

11.3.2.7 Exitl_DR State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ousstate. If TMS issampled LOW at therising edge of TCK, the controller transitionsto the Pause DR state. A HIGH
on TMS causes the controller to transition to the Update DR state which terminates the scanning process. The
instruction cannot change while the TAP controller isin this state.

11.3.2.8 Pause_ DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
seria path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on therising edge of TCK, the controller remainsin the Pause DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller isin
this state.

11.3.2.9 Exit2_DR State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller isin this state.

11.3.2.10 Update_DR State

When the TAP controller isin this state the value shifted in during the Shift_ DR state takes effect on the rising edge of
the TCK for the register indicated by the Instruction register.

If TMS issampled LOW at the rising edge of TCK, the controller transitionsto the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR_Scan state. The instruction cannot change while the TAP
controller isin this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

11.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (00001,) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

262 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.3 Test Access Port (TAP)

If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exitl IR state. The instruction cannot change while the TAP controller isin
this state.

11.3.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remainsin the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exitl IR state.

11.3.2.13 Exitl_IR State

Thisisatemporary controller state in which all registersretain their previous state. If TMS issampled LOW at theris-
ing edge of TCK, the controller transitions to the Pause IR state. A HIGH on TMS causes the controller to transition
to the Update_|R state which terminates the scanning process. The instruction cannot change while the TAP control-
ler isin this state and the instruction register retains its previous state.

11.3.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
seria path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remainsin the
Pause IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller isin this state.

11.3.2.15 Exit2_IR State

Thisisatemporary controller state in which the instruction register retainsits previous state. If TMS issampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A
HIGH on TMS causes the controller to transition to the Update |R state which terminates the scanning process. The
instruction cannot change while the TAP controller isin this state.

11.3.2.16 Update_IR State
Theinstruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR _Scan state.

11.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller isin the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BY PASS instruction.

Table 11.22 Implemented EJTAG Instructions

Value Instruction Function
0x01 IDCODE Select Chip Identification data register
0x03 IMPCODE Select Implementation register
0x08 ADDRESS Select Address register
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 263

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.22 Implemented EJTAG Instructions (Continued)

Value Instruction Function

0x09 DATA Select Dataregister

Ox0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to O as reset value

Ox0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selectsthe TCBTCONTROLA register in the Trace Control Block
0x11 TCBCONTROLB Selectsthe TCBTCONTROLB register in the Trace Control Block
0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selectsthe TCBTCONTROLC register in the Trace Control Block
0x14 PCSAMPLE Selectsthe PCSAMPLE register

0x16 TCBCONTROLE Selectsthe TCBTCONTROLE register in the Trace Control Block
0x17 FDC Select Fast Debug Channel

Ox1F BYPASS Bypass mode

11.3.3.1 BYPASS Instruction

Therequired BY PASSinstruction allows the processor to remain in afunctional mode and selects the Bypass register
to be connected between TDI and TDO. The BY PASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of thisinstruction is defined to be all ones by the
IEEE 1149.1 standard. Any unused instruction is defaulted to the BY PASS instruction.

11.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device I dentification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-hit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, accessto the Identification Register isimmediately available, viaa
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

11.3.3.3 IMPCODE Instruction

Thisinstruction selects the Implementation register for output, which is always 32 bits.

11.3.3.4 ADDRESS Instruction

Thisinstruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 hits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

11.3.3.5 DATA Instruction

Thisinstruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shifts 32
bits of TDI datainto the Data register and shifts out the captured data viathe TDO pin.

264 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.3 Test Access Port (TAP)

11.3.3.6 CONTROL Instruction

Thisinstruction isused to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG Probe
shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bitsvia TDO.

11.3.3.7 ALL Instruction

Thisinstruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
between TDI and TDO. It can be used in particular if switching instructions in the instruction register takes too many
TCK cycles. Thefirst bit shifted out is bit 0.

Figure 11.15 Concatenation of the EJTAG Address, Data and Control Registers

TDI —;| Address 0 }_‘

_;| Data 0 }_‘

| EJTAG Control ol TDO

11.3.3.8 EJTAGBOOT Instruction

When the EJTAGBOQT instruction is given and the Update-IR state is |eft, then the reset values of the ProbTrap,
ProbEn and EjtagBrk bitsin the EJTAG Control register are set to 1 after areset.

ThisEJTAGBOOQOT indication is effective until aNORMALBOQT instruction isgiven, TRST_N isasserted or arising
edge of TCK occurs when the TAP controller isin Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after areset, without fetching or executing any instructions
from the normal memory area. This can be used for download of code to a system which has no code in ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

11.3.3.9 NORMALBOOT Instruction

When the NORMALBOQT instruction is given and the Update-IR state isleft, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bitsin the EJTAG Control register are set to O after reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

11.3.3.10 FASTDATA Instruction
This selects the Data and the Fastdata registers at once, as shown in Figure 11.16.

Figure 11.16 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

TDI — | Data d—p| Fastdata |y TDO

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 265

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

11.3.3.11 TCBCONTROLA Instruction

Thisinstruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. Thisregister is
only implemented if the Trace unit is present. If no TRU is present, thisinstruction will select the Bypass register.

11.3.3.12 TCBCONTROLB Instruction

Thisinstruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. Thisregister is
only implemented if the Trace unit is present. If no TRU is present, then thisinstruction will select the Bypass regis-
ter.

11.3.3.13 TCBCONTROLC Instruction

Thisinstruction is used to select the TCBCONTROLC register to be connected between TDI and TDO. Thisregister is
only implemented if the Trace unit is present. If no TRU is present, then thisinstruction will select the Bypass regis-
ter.

11.3.3.14 TCBCONTROLE Instruction

Thisinstruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. Thisregister is
only implemented if the Trace unit is present. If no TRU is present, then thisinstruction will select the Bypass regis-
ter.

11.3.3.15 TCBDATA Instruction

Thisinstruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only
implemented if the Trace unit is present. If no TRU is present, then this instruction will select the Bypass register. It
should be noted that the TCBDATA register is only an access register to other TCB registers. The width of the
TCBDATA register is dependent on the specific TCB register.

11.3.3.16 PCSAMPLE Instruction

Thisinstruction is used to select the PCSAMPLE register to be connected between TDI and TDO. Thisregister is
always implemented.

11.3.3.17 FDC Instruction

Thisinstruction is used to select the Fast Debug Channel register to be connected between TDI and TDO. Thisregister
is aways implemented.

11.4 EJTAG TAP Registers

266

The EJTAG TAP Module has one Instruction register and a number of Dataregisters, all of which are accessible
through the TAP:;

11.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an I nstruction register scan protocol. During an Instruction
register scan operation, the TAP controller selects the output of the Instruction register to drive the TDO pin. The shift
register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruction
register scan operations, the TAP controls the register to capture status information and shift data from TDI to TDO.
Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the TDO
occurs on the falling edge of TCK. In the Test-L ogic-Reset and Capture-IR state, the instruction shift register is set to

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.4 EJTAG TAP Registers

00001,, asfor the IDCODE instruction. Thisforces the device into the functional mode and selectsthe Device ID reg-
ister. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register scan
operation. A list of theimplemented instructions are listed in Table 11.22.

11.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During adata register scan operation, the addressed scan register receives TAP control signals
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-
put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write
bits.

The description above appliesin general to the following EJTAG data registers:
* Bypass

*  Device Identification

* Implementation

* EJTAG Control (ECR)

*  Processor Access Address

* Processor Access Data

U FastData

11.4.2.1 Bypass Register

The Bypass register consists of asingle scan register bit. When selected, the Bypass register provides asingle bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in thetest. The Bypass register is selected when the Instruction register isloaded with a pattern of all onesto
satisfy the IEEE 1149.1 Bypass instruction requirement.

11.4.2.2 Device Identification (ID) Register

The Device Identification register is defined by |EEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 11.23 shows the bit assignments defined for the read-only ID regis-
ter; inputs to the core determine the value of these bits. These bits can be scanned out of the ID register after being
selected. The register is selected when the Instruction register is loaded with the IDCODE instruction.

Figure 11.17 Device Identification Register Format
31 28 27 12 11 1 0

Version PartNumber ManuflD R

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 267

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.23 Device Identification Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State

Version 31:28 |Version (4 hits) R EJ_Version[3:0]
This field identifies the version number of the processor
derivative.

PartNumber 27:12 | Part Number (16 hits) R EJ_PartNumber[15:0]

Thisfield identifies the part number of the processor
derivative.

ManuflD 11:1 Manufacturer Identity (11 bits) R EJ_ManuflD[10:0]
Accordingly to |EEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A.

R 0 Reserved R 1

11.4.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register isoaded with the IMPCODE

instruction.
Figure 11.18 Implementation Register Format
31 29 28 25 24 23 21 20 17 16 15 14 13 11 10 1 0
EJTAGver Res DINTsup| ASIDsize Res MIPS16| 0 [NoDMA| Type Typelnfo Res
Table 11.24 Implementation Register Descriptions
Fields
Read /

Name Bit(s) Description Write Reset State

EJTAGver 31:29 |EJTAG Version4.14 R 3

Res 28:25 | Reserved R 0
DINTsup 24 DINT Signal Supported from Probe R EJ_DINTsup

Thisbit indicates if the DINT signal from the probe is supported:
Encoding Meaning
0 DINT signal from the probeis not sup-
ported
1 Probe can use DINT signal to make
debug interrupt.
ASIDsize 23:21 | Sizeof ASID field in implementation: R TLB MMU- 2
FM MMU- 0
Encoding Meaning
0 No ASID in implementation
1 8-bit ASID
1,3 Reserved
268 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.4 EJTAG TAP Registers

Table 11.24 Implementation Register Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
Res 20:17 | Reserved R 0
MIPS16 16 Indicates whether MIPS16 isimplemented: R 1
Encoding Meaning
0 No MIPS16 support
1 MIPS16 implemented
Res 15 Reserved R 0
NoDMA 14 No EJTAG DMA Support R 1
Type 13:11 | Indicates what type of entity is associated with this TAP R Preset
and whether the Typelnfo field exists.
Encoding Meaning
0 Typelnfo field not implemented.
Legacy value - probably attached to a
CPU.
1 This TAP is attached to a CPU and the
Typelnfo field reflects
EBasecpunum.
2 This TAPisattached to a Trace-Master
and the Typelnfo field is not used.
Others |Reserved
Tied to b’ 01 for this core.
Typelnfo 10:1 Identifier information specific to the type of entity associated R Preset
with this TAP. The attached entity is specified by the
Type field.
Attached
Entity Meaning
CPU Reflects EBasecpunum of the associ-
ated CPU.
others |Reserved
Res 0 Reserved R 0

11.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by executing the
CONTROL instruction. Bitsin the EJTAG Control register can be set/cleared by shifting in data; statusis read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc bit is either O or
written to 0). Thisisin order to ensure proper handling of processor accesses.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 269

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets by
e.g., TRST_N. TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value
when the TCK applies. Thefirst 5 TCK clocks after CPU resets may result in reset of the bits, due to synchronization

between clock domains.

Figure 11.19 EJTAG Control Register Format
31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc| Psz Res Res |Doze|Halt|PerRst| PRNW | PrAcc|Res| PrRst| ProbEn | ProbTrap | Res| EjtagBrk Res DM | Res

Table 11.25 EJTAG Control Register Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Rocc 31 Reset Occurred R/W 1
The bit indicatesif a CPU reset has occurred:
Encoding Meaning
0 No reset occurred since bit last
cleared.
1 Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value aslong as reset is applied.

This bit must be cleared by the probe, to acknowledge that the inci-
dent was detected.

The EJTAG Control register is not updated in the Update-DR state
unless Rocc is 0, or written to 0. Thisisin order to ensure proper
handling of processor access.

270 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.4 EJTAG TAP Registers

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read /
Write

Reset State

Psz[1:0]

30:29

Processor Access Transfer Size

These bits are used in combination with the lower two address bits
of the Address register to determine the size of a processor access
transaction. The bits are only valid when processor accessis pend-

ing.

PAA[1:0] | Psz[1:0] Transfer Size

00 00 Byte (LE, byte O; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)
00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)
10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)
00 10 Word (LE, BE; bytes 3, 2, 1, 0)
00
01

11 Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2,1)

11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,
0)
All others Reserved

Note: LE=little endian, BE=big endian, the byte# refers to the byte
number in a 32-bit register, where byte 3 = bits 31:24; byte 2 = bits
23:16; byte 1 = hits 15:8; byte O=bits 7:0, independently of the endi-
aness.

R

Undefined

Res

28:24

Reserved

Res

23

Reserved

Doze

22

Doze state
The Doze bit indicates any kind of low-power mode. The valueis
sampled in the Capture-DR state of the TAP controller:

Encoding Meaning

0 CPU not in low-power mode.

1 CPU isin low-power mode.

Doze includes the Reduced Power (RP) and WAIT power-reduction
modes.

Halt

21

Halt state
The Halt bit indicates if the internal system bus clock is running or
stopped. The value is sampled in the Capture-DR state of the TAP
controller:

Encoding Meaning

0 Internal system clock is running
1 Internal system clock is stopped

MIPS32® 74K™

Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

271



EJTAG Debug Support in the 74K™ Core

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

PerRst 20 Peripheral Reset R/W 0
Whenthebitisset to 1, it isonly guaranteed that the peripheral reset
has occurred in the system when the read value of thisbit isalso 1.
Thisisto ensure that the setting from the TCK clock domain takes
effect in the CPU clock domain and in peripherals.

When the bit is written to O, then the bit must also be read as 0
before it is guaranteed that the indication is also cleared in the CPU
clock domain.

This bit controlsthe EJ_PerRst signal on the core.

PRnW 19 Processor Access Read and Write R Undefined
Thisbit indicatesif the pending processor accessisfor aread or
write transaction, and the bit is only valid while PrAcc is set.

Encoding Meaning

0 Read transaction
1 Write transaction

PrAcc 18 Processor Access (PA) R/WO 0
Read value of this bit indicatesif a Processor Access (PA) to the
EJTAG memory is pending:

Encoding Meaning

0 No pending processor access

1 Pending processor access

The probe's software must clear this bit to 0 to indicate the end of
the PA. Write of 1 isignored.

A pending Processor Accessis cleared when Rocc is set, but
another PA may occur just after the reset if a debug exception
occurs.

Finishing a Processor Accessis not accepted while the Rocc hitis
set. Thisisto avoid that a Processor Access occurring after the reset
is finished due to indication of a Processor Access that occurred
before the reset.

The FASTDATA access can clear this bit.

Res 17 Reserved R 0

PrRst 16 Processor Reset (Implementation dependent behavior) R/W 0
When the bit is set to 1, then it is only guaranteed that this setting
has taken effect in the system when the read value of this bit is also
1. Thisisto ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.

When the bit is written to 0, then the bit must also beread as0
beforeit isguaranteed that theindication is cleared in the CPU clock
domain also.

This bit controlsthe EJ_PrRst signal. If the signal is used in the
system, then it must be ensured that both the processor and all
devicesrequired for areset are properly reset. Otherwise the system
may fail or hang. The bit resetsitself, since the EJTAG Control reg-
ister isreset by areset.

272 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.4 EJTAG TAP Registers

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Encoding Meaning
0 The probe does not handle EJTAG
memory transactions

1 The probe does handle EJTAG mem-
ory transactions

Itisan error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the pro-
cessor isUNDEFINED in this case.

The ProbEn bit isreflected as aread-only bit in the ProbEn bit, bit
0, inthe Debug Control Register (DCR).

The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; however,
it isensured that change of the ProbEn prior to setting the EjtagBrk
bit will have effect for the debug handler executed due to the debug
exception.

The reset value of the bit depends on whether the ETTAGBOOT
indication is given or not:

Encoding Meaning

0 Processor isin non-debug mode (No
EJTAGBOOT indication given)

1 Processor isin debug mode (EJTAG-
BOQT indication given)

Read /
Name Bit(s) Description Write Reset State
ProbEn 15 Probe Enable R/W Oorl
This bit indicates to the CPU if the EJTAG memory is handled by from
the probe so processor accesses are answered: EJTAGBOOT

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

273



EJTAG Debug Support in the 74K™ Core

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

ProbTrap 14 Probe Trap R/W Oorl
This bit controls the location of the debug exception vector: from
EJTAGBOOT

Encoding Meaning

0 In normal memory OxBFCO0.0480

1 In EJTAG memory at 0xFF20.0200 in
dmseg

Valid setting of the ProbTrap bit depends on the setting of the
ProbEn hit, as described for the ProbEn hit.

The ProbTrap should not be set to 1, for debug exception vector in
EJTAG memory, unless the ProbEn bit is also set to 1 to indicate
that the EJTAG memory may be accessed.

The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; however,
it is ensured that change of the ProbTrap bit prior to setting the
EjtagBrk bit will have effect for the EjtagBrk.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

Encoding Meaning

0 Processor isin non-debug mode (No
EJTAGBOOT indication given)

1 Processor isin debug mode (EJTAG-
BOOT indication given)

Res 13 Reserved R 0

EjtagBrk 12 EJTAG Break R/W1 Oorl
Setting thisbit to 1 causes a debug exception to the processor, unless from

the CPU was in debug mode or another debug exception occurred. EJTAGBOOT
When the debug exception occurs, the processor core clock is
restarted if the CPU wasin low-power mode. This bit is cleared by
hardware when the debug exception is taken.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

Encoding Meaning

0 Processor isin non-debug mode (No
EJTAGBOOT indication given)

1 Processor isin debug mode (EJTAG-
BOQT indication given)

Res 11:4 Reserved R 0

274 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.4 EJTAG TAP Registers

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
DM 3 Debug Mode R 0
This bit indicates the debug or non-debug mode:
Encoding Meaning
0 Processor is in non-debug mode
1 Processor isin debug mode
The bit is sampled in the Capture-DR state of the TAP controller.
Res 2:0 Reserved R 0

11.4.3 Processor Access Address Register

The Processor Access Address (PAA) register isused to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

11.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Dataregister is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
thisregister isonly valid when a processor access writeis pending. The register is used to provide the data value for a
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bitswide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then O (zero) must be
shifted in for the unused bytes.

The organization of bytesin the PAD register depends on the endianess of the core, as shown in Figure 11.20. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 275

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Figure 11.20 Endian Formats for PAD Register

MSB LsB
bit 31 24 23 16 15 87 0
BIG-ENDIAN [ano=4 || s || 6 || 7 | An2e
Lamoso || 1 || 2 || 8 | an2eo
Most-significant byte is at lowest address.
Word is addressed by byte address of most-significant byte.
MSB LsB
bit 31 24 23 16 15 87 0
ireeoany LA |6 [ s [ 4 | Am2
Lanoss || 2 | 1+ | o | An2eo

Least-significant byte is at lowest address.
Word is addressed by byte address of least-significant byte.

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

11.4.4 Fastdata Register (TAP Instruction FASTDATA)

Thewidth of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register iswritten and read, i.e., abit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

Figure 11.21 Fastdata Register Format

0

Table 11.26 Fastdata Register Field Description

Fields
Read / Power-up
Name Bits Description Write State
SPrAcc 0 Shifting in azero value requests completion of the Fastdata access. R/W Undefined

The PrAcc bit in the EJTAG Control register is overwritten with
zero when the access succeeds. (The access succeedsif PrAcc is
one, and the operation addressisin the legal dmseg Fastdata area.)
When successful, aoneis shifted out. Shifting out a zero indicates
a Fastdata access failure.

Shifting in a one does not complete the Fastdata access, and the
PrAcc bit isunchanged. Shifting out aone indicates that the access
would have been successful if allowed to complete, and a zero
indi cates the access would not have successfully completed.

The FASTDATA accessis used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “ Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The

276 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.5 TAP Processor Accesses

Data plus Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fast-
data area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1, indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in azero SPrAcc value (to request access completion) and shifting out SPrAcc to
seeif the attempt will be successful (i.e., there was an access pending and alegal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg's Fastdata area, while uploads will
shift out the data being stored to dmseg’'s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed:

*  PrAcc must be1l, i.e., there must be a pending processor access.

*  The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to OxFF20.000F).

Table 11.27 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

Table 11.27 Operation of the FASTDATA Access

Address PrAcc in LSB Action in
Probe Match the Control (SPrAcc) the Data PrAcc LSB Shifted Data
Operation Check Register Shifted In Register Changes to Out Shifted Out
Download Fails X X none unchanged 0 invalid
using FAST- . .
DATA Passes 1 1 none unchanged 1 invalid
1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data
0 X none unchanged 0 invalid
Upload using Fails X X none unchanged 0 invalid
FASTDATA
Passes 1 1 none unchanged 1 invalid
1 0 read data 0 (SPrAcc) 1 valid data
0 X none unchanged 0 invalid

There are no restrictions on the contents of the Dataregister. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the ECR register is not used for the FASTDATA operation.

11.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like aslave unit connected to the on-chip bus. The core can then execute code taken from
the EJTAG Probe and it can access data (viaaload or store) which islocated on the EJTAG Probe. Thisoccursin a
serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 277

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

278

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from OxFF20.0000 to OxFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CPO Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by areset.

11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. Theinterna hardware latchesthe requested address into the PA Address register (in case of the Debug exception:
0xFF20.0200).

2. Theinterna hardware sets the following bitsin the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. TheEJTAG Probe selectsthe EJTAG Control register, shifts out this control register’s data and tests the PrAcc sta
tus bit (Processor Access): when the PrAcc bit is 1, the requested address is available and can be shifted out.

4. The EJTAG Probe checks the PRnW hit to determine the required access.
5. The EJTAG Probe selects the PA Address register and shifts out the requested address.
6. The EJTAG Probe selects the PA Data register and shiftsin the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shiftsaPrAcc = 0 bit into thisregister to indicate to the
processor that theinstruction is available.

8. Theinstruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whol e sequence again.

Using the same protocol, the processor can also execute aload instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute aload instruction (e.g. aLW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: OxFF20.0000 to OxFF2F.FFFF, the ProbEn bit must be set and the processor hasto
be in debug mode (DM=1). The sequence of actionsisfound below:

1. Theinternal hardware latches the requested address into the PA Address register.

2. Theinterna hardware latches the data to be written into the PA Data register.

3. Theinterna hardware sets the following bitsin the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)

PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.6 PC Sampling

4. TheEJTAG Probe selectsthe EJTAG Control register, shifts out this control register’s data and tests the PrAcc sta
tus bit (Processor Access): when the PrAcc bit isfound 1, it means that the requested address is avail able and can
be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.
6. The EJTAG Probe selects the PA Address register and shifts out the requested address.
7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selectsthe EJTAG Control register and shiftsaPrAcc = 0 bit into thisregister to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.
10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.
11.6 PC Sampling

The PC sampling feature enables periodic sampling of the PC value. This information can be used for statistical pro-
filing akinto gprof and isaso very useful for detecting hot-spots in the code. PC sampling cannot be turned on or
off, that is, the PC valueis continually sampled.

The presence or absence of the PC Sampling featureis specified in Debug Controlpcs (bit 9). The sampled PC values
arewritten into a TAP register. The old value in the TAP register is overwritten by a new value, even if this register
has not been read out by the debug probe. The samplerate is specified in a manner similar to the PDtrace synchroni-
zation period, with three bits. These bitsin the Debug Control register are 8:6 and called PCSR (PC SampleRate).

These three bits take the value 2° to 212 similar to SyncPeriod. Note that the processor samples PC even when it is
adeep (inaWAIT state). This permits an analysis of the amount of time spent by a processor in WAIT state which
may be used for example to revert to alow-power mode during the non-execution phase of areal-time application.

The sampled values includes a New data bit, the PC, the ASID of the sampled PC, and the Thread Context ID if the
processor implementsthe MIPS MT ASE. Figure 11.22 shows the format of the sampled values in the TAP register
PCsample. The new data bit is used by the probe to determine if the PCsample register data just read out is new or
already been read and must be discarded.

Figure 11.22 TAP Register PCsample Format

48 41 40 33 32 1 0

TC (for MIPSMT
processors only)

ASID PC New

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it isin Debug mode.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 279

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

11.6.1 PC Sampling in Wait State

When the processor isin aWAIT state (to save power, for example), an external agent might want to know how long
it staysinthe WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, whenin a
WAIT state, the processor must simply switch the New bit to 1 every timeit is set to O by the probe hardware. Hence,
the external agent or probe reading the PC value will detect aWAIT instruction for aslong as the processor remainsin
the WAIT state. When the processor leaves the WAIT state, counting is resumed as before.

11.7 Fast Debug Channel

280

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the Core and an
external device using the EJTAG TAP pins. The external device would typically be an EJTAG probe and that isthe
term used here, but it could be something else. FDC utilizes two First In First Out (FIFO) structures to buffer data
between theCore and probe. The probe uses the FDC TAP instruction to access these FIFOs, while the Core itself
accesses them using memory accesses. To transfer data out of the Core, the Core writes one or more pieces of datato
the transmit FIFO. At thistime, the Core can resume doing other work. An external probe would examine the status
of the transmit FIFO periodically. If thereis datato be read, the probe starts to receive data from the FIFO, one entry
at atime. When al datafrom the FIFO has been drained, the probe goes back to waiting for more data. The Core can
either choose to be informed of the empty transmit FIFO via an interrupt, or it can choose to periodically check the
status. Receiving dataworksin asimilar manner - the probe writesto the receive FIFO. At that time, the Coreiseither
interrupted, or finds out via polling a status bit. The Core can then do load accesses to the receive FIFO and receive
data being sent to it by the probe. The TAP transfer is bidirectional - a single shift can be pulling transmit data and
putting receive data at the sametime.

The primary advantage of FDC over normal processor accesses or fastdata accessesisthat it does not require the Core
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the Core
overhead and makes the data transfer far less intrusive to the code executing on the Core.

Refer to the EJTAG Specification [11] for the general details on FDC. The remainder of this section describes imple-
mentation specific behavior and register values.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of OXFD.

11.7.1 Common Device Memory Map

Software on the Core accesses FDC through memory mapped registers. These memory mapped registers are located
within the Common Device Memory Map (CDMM). The CDMM is aregion of physical address space that is
reserved for mapping 10 device configuration registers within a M1PS processor. The base address and enabling of
thisregion is controlled by the CDMMBase CPO register, see Section 7.2.22 “CDMMBase Register (CPO Register
15, Select 2)".

Refer to Volume 111 of the Architecture Reference Manuals [14] for full detailson CDMM.

11.7.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being available
in the outgoing FIFO. Thisinterrupt is handled similarly to the timer or performance counter interrupts. The
Causerpc) bit indicates that the interrupt is pending. The interrupt is also sent to the core output SI_FDCI whereitis
combined with one of the SI_Int pins. For non-EIC mode, the SI_IPFDCI input indicates which interrupt pin is has

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.7 Fast Debug Channel

been combined with and thisinformation is reflected in the IntCtliprpc field. Note that thisinterrupt isaregular inter-
rupt and not a debug interrupt.

The FDC Configuration Register (see Section 11.7.6.2 “FDC Configuration (FDCFG) Register (Offset 0x8)")
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt
thresholds are specified independently, but they are ORed together to form asingle interrupt .

The following interrupt thresholds are supported:

e Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if
incoming datais available or if there is space for outgoing data.

e Minimum Core Overhead: This setting minimizes the Core overhead by not generating an interrupt until the
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

e Minimum latency: To have the Core take data as soon asit is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There isa complimentary TxFIFO not full setting although that may not be quite
as useful.

e Maximum bandwidth: When configured for minimum Core overhead, bandwidth between the probe and Core
can be wasted if the Core does not service the interrupt before the next transfer occurs. To reduce the chances of
this happening, the interrupt threshold can be set to aimost full or amost empty to generate an interrupt earlier.
This setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit
interrupts are generated when there are 0 or 1 used TxFIFO entries (see note in following section about this con-
dition)

11.7.3 74K™Core FDC Buffers

Figure 11.23 shows the general organization of the transmit and receive buffers on the 74K Core.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 281
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

282

Figure 11.23 Fast Debug Channel Buffer Organization

Store Address Store Datato FDTXn Load from FDSTAT Load from FDRX

Add

_____ T T T™FAF0 ! T T T T T T T T T RaEF0 T
| |
Chan | Data | : Chan | Data |
O | | O I
O | | O |
O | | O |
Chan | Data : | Chan | Data |
I I
SI_Clkin
N R o __L_____ o
| | | EJ_TCK
| | |
| Chan | Data | |
____________ o r
Capture-DR
EJ_TDI
_>| Status | Chan | Data
¢ Shift Register

One particular thing to note is the asynchronous crossings between the EJ TCK and SI_Clkln clock domains. This
crossing is handled with a handshake interface that safely transfers data between the domains. Two data registers are
included in this interface, onein the source domain and one in the destination domain. The control logic actively
manages these registers so that they can be used as FIFO entries. The fact that one FIFO entry isinthe EJ TCK clock
domain is normally transparent, but it can create some unexpected behavior:

TXFIFO availability: Dataisfirst written into the SI_Clk FIFO entries, then it will move into the EJ_TCK FIFO
entry. But, it takes several EJ_TCK cycles to compl ete the handshake and move the data. EJ_TCK is generally
much slower than SI_Clkin and may even be stopped (although that would be uncommon when this featureisin
use). This can result in there not being space for new data, even though there are only N-1 data values queued up.
To prevent the loss of data, the FDSTAT 1« bit is set when all of the SI_Clkin FIFO entries are full. Software writ-
ing to the FIFO should always check the FDSTAT 1« bit prior to attempting a write and should not make any
assumptions about being able to arbitrarily use al entries. i.e., software seeing the FDSTAT e bit set should not
assume that it can write FDCFGrycn: data words without checking for full.

TXFIFO Almost Empty Interrupt: Astransmit data moves from SI_Clkin to EJ_TCK, both of the flops will tem-
porarily look full. This makesit difficult to determine when just 1 FIFO entry isin use. To enable asimpler con-
dition, the aimost empty TxInterrupt condition is set when all of the SI_Clkin FIFO entries are empty. When this

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.7 Fast Debug Channel

condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when thereis only
onevalid entry if itisan SI_ClIkin entry

*  TheRxFIFO hassimilar characteristics but these are even less visible to software since SI_Clkin must be running
to access the FDC registers.

11.7.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The
FDC block monitors the TAP interface signals with afree-running clock. When new receive datais available or trans-

mit data can be sent, the gated clock will be enabled for afew cycles to transfer the data and then allowed to stop

again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the

core up.

11.7.5 FDC TAP Register

The FDC TAP instruction performs a 38 bit bidirectional transfer of the FDC TAP register. The register format is

shown in Figure 11.24 and the fields are described in Figure 11.28

Figure 11.24 FDC TAP Register Format

37 36 35 32 31
In ProbeData| Dataln
Accept Valid
ChannellID Data
out Receive | DataOut
Buffer Full| Valid
Table 11.28 FDC TAP Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
Probe Data 37 Indicates to core that the probe is accepting the data that W Undefined
Accept was scanned out.
Dataln Valid 36 Indicates to core that the probe is sending new data to the W Undefined
receive FIFO.
Receive 37 Indicates to probe that the receive buffer isfull and the R 0x0
Buffer Full core will not accept the data being scanned in. Analogous
to ProbeDataA ccept, but opposite polarity
Data Out 36 Indicates to probe that the core is sending new data from R 0
Valid the transmit FIFO
ChanndlID 35:32 Channel number associated with the databeing scanned in R/W Undefined

or out. Thisfield can be used to indicate the type of data
that is being sent and allow independent communication
channels

Scanning in avalue with ChannelID=0xd and DataIn
Valid = 0 will generate areceive interrupt. This can be
used when the probe has completed sending data to the
core.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

283



EJTAG Debug Support in the 74K™ Core

Table 11.28 FDC TAP Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
Data 31.0 Data value being scanned in or out R/W Undefined

11.7.6 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU accessto FDC isvialoads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets
areshownin Table 11.29

Table 11.29 FDC Register Mapping

Offset in CDMM Register
Device Block Mnemonic Register Name and Description
0x0 FDACSR FDC Access Control and Status Register
0x8 FDCFG FDC Configuration Register
0x10 FDSTAT FDC Status Register
0x18 FDRX FDC Receive Register
0x20 + 0x8* n FDTXn FDC Transmit Register n (0 < n< 15)

11.7.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

Thisisthe general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself isonly acces-
sible in kernel mode. Figure 11.25 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 11.30 describes the register fields.

Figure 11.25 FDC Access Control and Status Register Format

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0
0 DevID | 0 | DevSize |DevRev| 0 |UW|Ur|SN|Sr|

Table 11.30 FDC Access Control and Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
DevIiD 31:24 Thisfield specifies the type of device. R Oxfd
DevSize 21:16 Thisfield specifies the number of extra 64-byte blocks R 0x2
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.
DevRev 15:12 Thisfield specifies the revision number of the device. The R 0x0
value 0x0 indicates that thisistheinitial version of FDC.
284 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.7 Fast Debug Channel

Table 11.30 FDC Access Control and Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Uw

3

This bit indicates if user-mode write access to this device
isenabled. A value of 1 indicatesthat accessisenabled. A
value of O indicates that accessis disabled. An attempt to
write to the device while in user mode with access dis-
abled isignored.

RIW

0

Ur

Thishit indicatesif user-mode read accessto thisdeviceis
enabled. A value of 1 indicates that accessisenabled. A
value of 0 indicates that accessis disabled. An attempt to
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

RIW

This bit indicates if supervisor-mode write access to this
device isenabled. A value of 1 indicates that accessis
enabled. A value of O indicates that accessis disabled. An
attempt to write to the device while in supervisor mode
with access disabled isignored.

RIW

This bit indicates if supervisor-mode read access to this
device isenabled. A value of 1 indicates that accessis
enabled. A value of 0 indicates that accessis disabled. An
attempt to read from the device while in supervisor mode
with access disabled will return 0 and not change any
state..

RIW

11:4

Reserved for future use. Ignored on write; returns zero on
read.

11.7.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha
nism. Figure 11.26 has the format of the FDC Configuration register, and Table 11.31 describes the register fields.

Figure 11.26 FDC Configuration Register Format

31 20 19 18 17 16 15 8 7
0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize
Table 11.31 FDC Configuration Register Field Descriptions
Fields

Read / Reset

Name Bits Description Write State

0 31:20 Reserved for future use. Read as zeros, must be written as R 0
Zeros.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




EJTAG Debug Support in the 74K™ Core

Table 11.31 FDC Configuration Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the R/W 0
state of the TXFIFO needed to generate an interrupt.

Encoding Meaning

0 Transmit Interrupt Disabled
1 Empty
2 Not Full
3

Almost Empty - zero or one entry in
use* (see 11.7.2 for specifics)

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the R/W 0
state of the RxFIFO needed to generate an interrupt.

Encoding Meaning
0 Receive Interrupt Disabled
1 Full
2 Not empty
3 Almost Full - zero or one entry free

TxFIFOSize 15:8 Thisfield holds the total number of entriesin the transmit R Preset
FIFO.

RxFIFOSize 7.0 Thisfield holds the total number of entriesin the receive R Preset
FIFO.

11.7.6.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 11.27 has the format of
the FDC Status register, and Table 11.32 describes the register fields.

Figure 11.27 FDC Status Register Format

31 24 23 16 15 8 7 4 3 2 1 0
Tx_Count Rx_Count 0 | RxChan | RXE | RXF |TxE| TxF|

Table 11.32 FDC Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0
Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0
286 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.7 Fast Debug Channel

Table 11.32 FDC Status Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State
0 15:8 Reserved for future use. Must be written as zeros and read R 0
as zeros.
RxChan 74 Thisfield indicates the channel number used by the top R Undefined
item in thereceive FIFO. Thisfield isonly valid if RXE=0.
RxE 3 If RXE is set, the receive FIFO is empty. If RXE is not set, R 1
the FIFO is not empty.
RxF 2 If RxF is set, thereceive FIFO isfull. If RxF isnot set, the R 0
FIFO isnot full.
TXE 1 If TXE is set, the transmit FIFO isempty. If TXE isnot set, R 1
the FIFO is not empty.
TxF 0 If TxFisset, thetransmit FIFO isfull. If TXF isnot set, the R 0
FIFO isnot full.

11.7.6.4 FDC Receive (FDRX) Register (Offset 0x18)

Thisregister exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and
removes it from the FIFO itself. The result of awrite to thisregisteris UNDEFINED. The result of aread when the
FIFO isempty is also UNDEFINED so software must check the FDSTATrxe flag prior to reading. Figure 11.28 has
the format of the FDC Receive register, and Table 11.33 describes the register fields.

Figure 11.28 FDC Receive Register Format

31 0
RxData

Table 11.33 FDC Receive Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
RxData 31:0 Thisregister holds the top entry in the receive FIFO R Undefined

11.7.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers al access the bottom entry in the transmit FIFO. The different addresses are used to generate a
4b channel identifier that is attached to the data value. This allows software to track different event types without
needing to reserve a portion of the 32b data asatag. A write to one of these registers resultsin awrite to the transmit
FIFO of the data value and channel 1D corresponding to the register being written. Reads from these registers are
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software
running on the core must check the FDSTATT4¢ flag to ensure that there is space for the write. Figure 11.29 has the
format of the FDC Transmit register, and Table 11.34 describes the register fields.

Figure 11.29 FDC Transmit Register Format

31 0
TxData

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 287

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.34 FDC Transmit Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
TxData 310 This register holds the bottom entry in the transmit FIFO W, Undefined
Undefined
valueon
read
Table 11.35 FDTXn Address Decode
Addr Chan Addr Chan Addr Chan Addr Chan
0x20 0x0 0x40 0x4 0x60 0x8 0x80 0xc
0x28 0x1 0x48 0x5 0x68 0x9 0x88 Ooxd
0x30 0x2 0x50 0x6 0x70 Oxa 0x90 Oxe
0x38 0x3 0x58 ox7 0x78 Oxb 0x98 Oxf

11.8 MIPS® Trace

288

The optional MIPS Trace block provides the user with an informative method of tracing program flow, load/store
addresses and data, performance counters, and core-specific inefficiencies. The level of information which is traced,
for example, tracing only when in specific processor modes (e.g., User Mode or Kernel Mode) is controlled by
run-time options.

When MIPS Trace isimplemented, the CP0 Config3t, bit is set by hardware when the core is configured.

The pipeline-specific architecture of MIPS Trace is specified in the PDtrace™ Interface and Trace Control Block
Secification [12].

There aretwo primary functional blocks: the PDtrace capture block and the blocks that implement the functionality of
the Trace Control Block (TCB). The PDtrace capture block extracts the trace information from the end of the proces-
sor pipeline from the in-order graduation stage and stores the information in an internal FIFO called the Unified
FIFO. The capture block then presents the data from the Unified FIFO to the PDtrace compression block.

The functionality of the TCB is specified in

The compression block and the TCB Registers implement the Trace Control Block (TCB). Though thereis not an
explicit module called TCB, the functionality of the TCB, as specified in [12], has been completely implemented and
integrated into the PDtrace unit. Thus, it is no longer a customer option to implement a custom TCB.

Note that the generic pin interface, as defined in the retired document PDtrace™ Interface Specification, that was
used to “communicate” between the capture and the TCB functionality is deprecated. The interfaceis replaced by an
internal interface that is called the capture-to-compression interface. Thisinterface is embedded inside the 74K core,
and will not be discussed in detail here. Suffice it to say that the internal interface embodies all the functionality
described in [12]. While working closely together, the two parts of MIPS Trace are controlled separately by software.
Figure 11.30 shows an overview of the MIPS Trace modules within the core.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.8 MIPS® Trace

Figure 11.30 MIPS® Trace Functional Blocks in the 74K™ Core

1
l CPO control bus . Control path ‘ EJTAG TAP access | I F;rrﬁge
- RS I
Capture-to-compression |
Internal Interface
Pipeline-specific PDtrace™ : Pipeline-independant I
block ! Trace Contol Block (TCB) functionality |
. Trace
Back-stall to . ] -
pipeline . [ —_— Probe
- ! Trace On-chip Trace I‘
Extracted Pipeline Tracg < ' > compression and I\/Iemory (optionall | .
information extraction allignment | .
| | 74K boundary
P oo o oo ol I (m74k7top)
|

To some extent, the two modules provide similar trace control features, but the access to these featuresis quite differ-
ent. The PDtrace software controls can only be reached through access to CPO registers. The PDtrace hardware con-
trols can only be reached through EJTAG TAP access. The selection of one of these controls determines what is
traced from the core pipeline and the information presented in the internal capture-to-compression interface.

Before describing the MIPS Trace implemented in the 74K core, some common terminology and basic features are
explained. The remaining sections of this chapter will then provide a more thorough explanation.

11.8.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes.
The terminology is then used elsewhere in the document.

DebugMode ¢« (Debugpy = 1)

ExceptionMode < (not DebugMode) and ((Statusgx; = 1) or (Statusgrp = 1))
KernelMode ¢« (not (DebugMode or ExceptionMode)) and (Statusksy = 2#00)
SupervisorMode ¢« (not (DebugMode or ExceptionMode)) and (Statuskxsy = 2#01)
UserMode <« (not (DebugMode or ExceptionMode)) and (Statuskxsy = 2#10)

11.8.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms * software control” and “ hardware control” are used to refer to
the method used to control for the trace. Software control iswhen the CPO register TraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCBRegs is used to select
the trace modes. The TraceControlts bit determines whether software or hardware control is active. Even in Software
control mode, trace logic will need to toggle TCK atleast once beforeit isturned on. It is assumed that the EJTAG
probewill be connected while using trace, and the probe’s reset sequence would toggle TCK. Note that to extract trace
data from the trace compression block, TCBCONTROLBgy should be set to 1. even in “ software control” mode.

11.8.3 Trace Information

The main object of trace isto show the exact program flow from a specific program execution or just a small window
of the execution. In MIPS Trace thisis done by providing the minimal cycle-by-cycleinformation necessary for trace
regeneration software to reproduce the trace. The following is a summary of the type of information traced:

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 289

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

»  Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag.
The PC isimplicitly pointing to the next instruction.

e Loadinstructions are indicated with aload-flag.

e Storeinstructions are indicated with astoreﬂagl.
»  Taken branches are indicated with a branch-taken-flag on the target instruction.

* New PCinformation for a branch is only traced if the branch target is unpredictable from the static program
image.

*  When branch targets are unpredictable, only the delta value from the current PC istraced, if itisdynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC valueis
traced.

*  When acompleting instruction is executed in adifferent processor mode from the previous one, the new pro-
cessor mode is traced.

» Thefirst instruction is always traced as a branch target, with processor mode and full PC.

»  Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and
full PC. The sync instruction is not aload and not a store.

All the instruction flags above are combined into one, 3-bit value, called the “instruction completion” to minimize the
bit information to trace. The possible processor modes are explained in Section 11.8.1 “Processor Modes’.

Thetarget addressis statically predictable for al branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software must know the static program image in memory, in order to reproduce the dynamic flow
with the above information. But thisis usually not a problem. Only the virtual value of the PC is used. Physical mem-
ory location will typically differ.

It is possible to turn on PC delta/full information for al branches, but this should not normally be necessary. Asa
safety check for trace regeneration software, a periodic synchronization with afull PC is sent. The period of this syn-
chronization is cycle-based and programmable.

11.8.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace:

»  When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load addressistraced to
compress the information which must be sent.

290

An SC (Store Conditional) instruction is flagged as a store instruction, even if the load-locked bit prevented the actual store.
Thus the SC does not have special handling and istreated as any other store; it is up to the reconstruction software to deter-
mineif the SC succeeded or failed.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.8 MIPS® Trace

*  When store-addresstracing is on, the full store address of thefirst storeinstruction istraced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

*  When load-datatracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

*  When store-datatracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full addressif load/store address tracing is enabled.

11.8.5 Programmable Processor Trace Mode Options

To enable tracing, aglobal Trace On signal must be set. When traceis on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 11.8.1 “Processor Modes”. In addition to this, trace can be
turned on globally for all processes, or only for specific processes, by tracing only specific masked values of the
ASID found in EntryHiasip.

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn
them al on. Another trigger point can disable this override.

11.8.6 Programmable Trace Information Options

The processor mode changes are always traced:

*  Onthefirst instruction

*  Onany synchronization instruction

*  When the mode changes, and either the previous or the current processor mode is selected for trace
The amount of extrainformation traced is programmable to include:

* PCinformation only

» PC and cross product of load/store address/data

» |If the optional performance counter trace is enabled, when the specific events defined in Section
11.8.11 “Performance Counter Tracing” occur, up to four performance counter registers are traced.

If the full internal state of the processor is known prior to trace start, PC and load data are the only information
needed to recreate all register values on an instruction-by-instruction basis.

11.8.6.1 User Data Trace

Two specia CPO registers, UserTraceDatal and UserTraceData2, can generate a data trace. When either of these reg-
istersiswritten, and the global Trace On is set, the 32-bit data written is put in the trace as special User Datainforma-
tion. Since writing these registersis performed via an MTCO operation, only one register is updated in any given
cycle. Thusin the same cycle, only one of the UserTraceData registersis traced. However, in back to back cycles, the
tracing of the two registers can aternate and is handled correctly.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 291

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Note: The User Datais sent even if the processor is operating in an un-traced processor mode.

11.8.7 Enable Trace to Probe On-chip Memory

When trace is On, based on the optionslisted in Section 11.8.5 “Programmable Processor Trace Mode Options”’, the
traceinformation is continuously sent to the Trace Compression and TCB Control Block. However, the TCB must be
enabled to transmit the trace information to the Trace probe or to on-chip trace memory by setting the
TCBCONTROLBEgy bit. This bit can be set in three ways.

*  Set/clear the TCBCONTROLBEN bit viaan EJTAG TAP operation.

* InitializeaTCB trigger to set/clear the TCBCONTROLBEgy bit.

e Usethedrseg mapping of TCBCONTROLB to clear TCBCONTROLBgy viaaload to drseg space. See
Section 11.8.15 “Memory-mapped Access to On-Chip Trace RAM” for specia accessrules.

11.8.8 TCB Trigger

The TCB can optionally include O to 8 triggers. A TCB trigger can be programmed to fire from any combination of:

*  Probe Trigger Input to the TCB
e Chip-level Trigger Input to the TCB
*  Processor entry into DebugMode
When atrigger fires, it can be programmed to have any combination of actions:
»  Create Probe Trigger Output from TCB
»  Create Chip-level Trigger Output from TCB
» St clear, or start countdown to clear the TCBCONTROLBEN bit (start/end/about trigger)
e Put aninformation byte into the trace stream, that is, a TF6 is inserted into the trace stream

11.8.9 Cycle-by-Cycle Information

The PDtrace capture block collects all of the trace information listed in Section 11.8.3 “Trace Information” and
Section 11.8.4 “Load/Store Address and Data Trace Information”. The trace is then compressed and aligned to fit in
64-bit trace words, with no loss of information. It is possible to exclude/include the exact cycle-by-cycle relationship
between each instruction. If excluded, the number of bits required in the trace information from the TCB is reduced,
and each trace word will only contain information from completing instructions.

11.8.10 Instruction and Data Cache Miss Tracing

It is possible to embed information about Instruction and/or Data cache misses into the trace information, with some
limitations, as described below.

For the instruction cache miss indicator:

292 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.8 MIPS® Trace

»  Theinstruction cache missindicator is based on whether the instruction is pulled from the cache or thefill buffer.
On acache miss, the fetch is restarted when the data comes back from the BIU and the instructions will come
from the Fill Buffer (FB). The missflag isonly set for the first fetch that hits out of the FB to avoid marking
every fetch from the line amiss. However, two instructions can be fetched per cycle and both will be marked asa
miss, though if branching to the middle of adword, only 1 misswill be seen.

»  ThelFU can prefetch a speculative path which might not be immediately executed. These speculative fetches are
filled into the cache; subseguently, when the code accesses the same address, it is possible that the instruction
will hit in the cache even if that instruction was being executed for thefirst time.

For the data cache miss indicator:

» PDtrace instruction capture is done at the end of the GRU (graduation) pipe. However, at this point the cache
missinfo is not accurate. Hit indication is accurate, but the missindication is not. The miss could change to a hit
after it enters the LSU graduation buffer. Thus, this missindicator isinstead sent with the data value.

*  For loads, this allows an accurate miss indication as the miss state must be resolved before we have the data.

»  For stores, the missindicator is aso sent with the data value. The store data value is captured when the store
instruction exist the LSU graduation buffer.

11.8.11 Performance Counter Tracing

The optional feature of including performance counter values in the trace stream allows performance counter events
to be correlated with the specific instruction execution path. TraceControl3pec indicates if this optional feature is
implemented, and the feature is enabled via TraceControl3pece and TCBCONTROLEpecE.

Performance counters are traced out based on four specific events. When an enabled event occurs, up to four perfor-
mance counters are traced and afifth value istraced by the core. Thefifth valueisthe cycle count register. Tracing the
cycle count register is unique to the core.

Control over which particular performance counter is traced is specified by bit PCTD in each Performance Counter
Control register. If set to zero (default setting), tracing is enabled for this performance counter, and if set to one, trac-
ing is disabled for this performance counter. The cycle counter istraced out if at |east one of the performance counter
control PCTD hitsis set, and at least one of the enabled performance counter tracing events occurs. In the case where
more than one event occurs in the same cycle, the performance counter values are traced only once for that cycle.

1. Synchronization counter expiration will trigger tracing of the performance counter values. Thisis controlled by
TraceControl3pecsync and TCBCONTROLEpecsync-

2. Hardware trace breakpoint will trigger tracing of the performance counter values. Thisis contingent on several
control hit settings. The TE bit in the breakpoint control register should be set. This allows atrigger signal to be
sent to the Trace Unit. When set, TraceControl3pecsp / TCBCONTROLEpecap act as the enable for performance
counter tracing. Additionally the generation of a performance counter trigger is controlled by setting active both
TracelBPCpct and TracelBPCg, and, or setting active hi both TraceDBPCpct and TraceDBPC e . Furthermore,
the BreakPointControl field for the specific hardware breakpoint in TracelBPC or TraceDBPC must be encoded as
3'b100 or 3'b101 to allow performance counter values into the trace stream.

3. Function call, function return, or the occurrence of an exception will trigger tracing of the performance counter
values. Thisis controlled by TraceControl3pecrcr / TCBCONTROLEpecFCR-

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 293

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

294

4. Anoverflow of an active performance counter will trigger tracing of the performance counter values. Thisis con-
trolled by TraceControl3pecovf / TCBCONTROLEpecovt.

The Performance counter datawill always use a TF3 with the PCV bit set to one. If the traced datais not Performance
counter data, and performance counter tracing is enabled, then the PCV hit will be zero.

11.8.12 Filtered Data Trace Mode

Thismode is used to support tracing of eventsin application code on a Linux system. Thistype of instrumented code
tracing is primarily used for performance analysis, athough it can also be used for event logging and debug. Filtered
data tracing mode provides a mechanism to do low-overhead event tracing from user application code, since the
UserTraceData registers require akernel call from user mode.

In this mode, data load and store addresses are compared to the hardware data breakpoint address. If the addresses
match, the data value and address associated with that match are traced out.

This mode works even when data address and/or value tracing is turned on. However, the general usage model is
when both PC and Data trace are turned off sinceit may not always be possible to identify data that was traced dueto
amatch vs. the regular data stream. This mode is used to shadow one or more static (fixed-address) variables. When
there is a store to the variable, the store value is captured into the trace. Since there are generally two or more data
triggers/watchpoints, the trace will need to uniquely identify the shadowed variable by also tracing out the associated
address.

Filtered Data Trace mode is controlled by TraceControl2gpt / TCBCONTROLBEDT.

11.8.13 PC Tracing Off

PC tracing turned off is simply to disable PC tracing which is controlled by TraceControl2poge.pc /
TCBCONTROLCwode.pc. Turning off this bit has more implications than simply not tracing the PC. There is some
special behavior which is contingent on the setting of other mode bits.

1. PCtracing off, TLSM=1 (TraceControlt sy / TCBCONTROLAT sm), Address tracing=0, Data tracing=0. For data
cache misses, trace out full PC and full address and the associated instruction completions. Instruction comple-
tion information not associated with a data cache miss will not appear in trace memory.

2. PCtracing off, TLSM=1, One or both of these modes is enabled { Addresstracing, Datatracing} : PC is not traced
out, but only what is enabled—for example if addresstracing is enabled, the full addressistraced out. Instruction
completion information not associated with atraced address or atraced data will not appear in trace memory.

3. PCtracing off, TIM=1 (TraceControlty / TCBCONTROLATm\), of TFCR=1 (TraceControltrcr /
TCBCONTROLArkcR): If aninstruction cache miss or function call/return occurs, the full PC istraced along with
the corresponding instruction completion information.

4. PCtracing off, TLSM=0, TIM=0, TFCR=0: All trace messages related to instructions are disabled. TF6 with
no-trace counts can still be generated if Cycle Accurate modeis enabled. TF2 should never be generated.

In addition, when PC tracing is turned off, PC-sync messages are globally disabled, except if Performance Monitor-
ing is enabled. The reconstruction software would need a PC-sync in the case of TLSM=1 if the PCs traced out were
delta PCs. However, given that the full PC is traced, there is no need for the PC-Sync message.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.8 MIPS® Trace

When Performance Monitoring is enabled and PC tracing is off then PC-sync messages are traced. The sync mes-
sages provide periodic sampling and along with the Performance Counter data, some conditionslike average | PC over
fixed intervals, or cache missratio can be inferred from the trace.

With PC tracing disabled, there is asignificant decrease in the instruction completion information that is traced. Only
if the PC, address, or data have been traced out will the corresponding instruction completion also be traced; other-
wise, the instruction completion is dropped.

11.8.14 TMOAS Handling

The MIPSPDtrace™ Soecification requiresa TMOAS transaction to be inserted into the trace stream. TMOAS trans-
actions are used to record processor mode change, start or end of the tracing activity, overflow of the internal buffers
in the PDtrace unit, and periodic synchronization. The following is a summary of the cases where a TMOAS transac-
tion is generated:

e Start of Tracing, When tracing isfirst started, or when it is re-started after a break, some basic information is
needed to allow external software to identify the trace start point in the static program image, and to make some
reasonable conclusions about the processor mode. At the start of the tracing, a TMOAS record is sent out at the
same time as the first completed instruction. This trace record type shows the processor mode and the ASID
value of the currently executing processor. This record is followed by atrace of the full PC value for the first
instruction traced.

e Trace Synchronization, The synchronization tracing function is triggered when the internal synchronization
counter overflows, based on the synchronization period bits as set in TraceControl2syp andTCBCONTROLAgyp.
Aswith the start of tracing, when the synchronization period is reached, a TMOAS record is sent, followed by a
full PC value. Note that the TMOASS associated with synchronization is sent only when the IPC instruction has
been identified, in order to prevent other TType records between the TMOAS and the full PC trace for the syn-
chronization.

» TraceOverflow and Restart. The trace unit’sinternal FIFO or buffers are used to hold address and data values
waiting to be compressed, formatted, and traced out of the processor. It is possible to have a program sequence
that overflows one or more of these FIFOs. In this situation, the core is essentially losing trace data and thus the
output is no longer atrue representation of the program execution sequence. In this situation, the abandon tracing
in the current cycle, discard al entriesin the FIFO, and restart tracing from the next completed instruction in the
following cycle. In this situation, a TMOAS record is first sent after the overflow.

» Tracing During Processor Mode Changes. During normal execution, the processor will change its operation
mode frequently. For example, when executing user-level code, an interrupt may cause the processor to jump to
kernel mode to service the interrupt. When the interrupt has been serviced, the processor will return to user
mode. A mode change isindicated in the tracing logic by tracing out a TMOAS for TType. In the situation that
the mode change affects tracing—for example, the tracing system has been set up to trace only in user mode and
not in kernel mode—then the interrupt service routine should not be traced. Upon jumping to kernel mode, the
core tracing logic will add a TMOAS as the last record. When jumping from a non-tracing mode to atracing
mode, the first record output is TMOAS to indicate the mode change. Thisis followed by afull PC value of the
first instruction in the tracing mode. Thiswill enable the external trace reconstruction software to re-synchronize
itself and track program execution in the desired mode.

Figure 11.31 and Table 11.36 describe the bit fields for a TMOAS record. A TMOAS record is usually associated
with an instruction, except for the case of atrace end TMOAS, wherea TMOAS is sent out because the processor
enters a non-tracing mode. In this case, the TMOAS is not associated with any instruction because the processor is
not tracing, and some of thefieldsin the TMOAS record can be invalid data, for example, the ISAM field can be inde-
terministic. This should not present an issue for the software, because this TMOAS is only used as an indication that
the trace has ended.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 295

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

31 30

Figure 11.31 A TMOAS Trace Record
23 22 21 20 19 16 15 14 13 12 11 10 8 7 0

TCid DKill| Vv |PIKill PendL SYNC|EPL| O | ISAM| POM ASID

296

Table 11.36 TMOAS Trace Record Field Descriptions

Fields

Name Bits Description

TCid 30:23 Id of the TC that corresponds to the DKill signal assertion described below.
Only required if the processor implements MT; otherwise reserved.

DKill 22 When alTC datainstruction iskilled for agiven TC, thisisindicated by
asserting a TMOAS record with thisbit set and a TCid value. When thisbit is
not set to one, it indicates that no Datakill information isvalid in this
TMOAS record.

Only required if the processor implements MT; otherwise reserved.

\% 21 This bit determines whether or not only the DKill bits are valid in this
TMOAS record, or the entire TMOAS record isvalid. That is, if V is 0, then
all defined TMOAS bitsarevalid, and if V is 1, then only bits 30:22 are
valid.

Only required if the processor implements M T; otherwise ignored.

PIKill 20 This bit indicates that the instruction just previously traced was actually

killed after it was traced. This scenario is possible in some situations where

for example, an exception is taken after the ER stage of the ALU pipe. There

are at least two cases to consider:

« If an exception happens after ER when tracing a LW/SW accessing ITC
memory in acoreimplementing MT.

e Ifinan MT core, aTC is halted while executing Wait, Yield, or an instruc-
tion accessing I TC memory.

Only required if the processor implements M T; otherwise ignored.

PendL 19:16 Thisfield isvalid only when SYNC is 1. When SYNC is 1, thisfield indi-
cates the number of outstanding loads and stores at the IPC cycle. If the num-
ber of load/stores is zero, then all datatransmissions’ TDs thereafter are
ignored until the next load/store instruction, at which point counting is
restarted. Such TD transmissions are from store instructions which could not
complete before the IPC signal was sent.

Note that a sync occurs with an InsComp value of IPC (indicating that the
instruction completed this cycle was a PC SYNC). Depending on whether or
not thereisdatainternally buffered and waiting to be sent, the accompanying
TMOAS may not be sent until several cycleslater. In the meantime, any data
sent in between the IPC and the TMOAS record may be ignored (at trace
start or after an overflow) since this belongs to load and store instructions
that happened before the sync. Now, if there are any load or store instructions
between the IPC and the TMOAS, then the data for thiswill only be seen
after the TMOAS is transmitted, since they would get buffered behind the
TMOAS.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.8 MIPS® Trace

Fields
Name Bits Description
SYNC 15 When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.
EPL 14 When 1, the PendL field isto be interpreted as (PendL + 16). When 0, the
PendL field isinterpreted by itself. Thisisintroduced in PDtrace rev. 6.00
ISAM 12:11 Indicates |SA mode:
Value In Architecture Mode
00 MIPS32
01 MIPS64
10 MIPS16e from MIPS32 mode
11 MIPS16e from MIPS64 mode
POM 10:8 Indicates processor mode:
Value Description
000 Kernel Mode (EXL =0, ERL =0)
001 Exception Mode (EXL =1, ERL =0)
010 Exception Mode (EXL = don't care, ERL = 1)
011 Debug Mode
100 Supervisor Mode
101 User Mode
110 Reserved
111 Reserved
ASID 7:0 The ASID of the current process. If the processor does not implement the
standard TLB-based MMU, thisfield is always traced as a zero because the
EntryHi register, and hence the ASID, is not defined.
R 31,13 Reserved for future use.

11.8.15 Memory-mapped Access to On-Chip Trace RAM

The main access mode to the on-chip trace memory is provided by the TAP Probe using the EJTAG Tap access port to
the Trace unit. The on-chip trace memory can also be accessed directly by software using load and store instructions.
Accessis provided by mapping the TCB registers to drseg address space, which allows them to be accessed by soft-
ware in debug mode. Because the TCB registers that are accessed indirectly via TCBData by the TAP Probe are
mapped directly to drseg, the TCBData register does not need to be mapped.

The mapped drseg registers are shown in Table 11.37. These mappings are “active” only when an external probeis
either not present or not enabled (i.e., the ProbEN bit in the EJTAG Control Register or ECR is set to zero). If the map-
pings are active, writes to the TCB registers via drseg are enabled (so long as these writes are otherwise permitted). If
the mappings are inactive, writes to the TCB registers viadrseg are ignored. Note that a hardware probe could set the
ProbEN bit to zero and still access the TCBControl registers. Writing the TCB registers via the probe and drseg
simultaneously will result in unpredictable behavior. Software should not rely on reads from the TCB registersvia
drseg to return reliable data when the mappings are inactive. If the mappings are active on reset (i.e., ProbEN=0), soft-
wareisresponsible for initializing all control register fields, except for TCBCONTROLA@,, and TCBCONTROLBEp.;
those control bits are set to zero on acorereset if the drseg mappings are active.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 297
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.37 Mapping TCB Registers in drseg

Offset in drseg

Register Name

Description

0x3000

TCBControlA

The TCBControl A register. See Section 11.10.1 “TCBCONTROLA Register” for more
details about register contents.

0x3008

TCBControlB

The TCBControlB register. See Section 11.10.2 “TCBCONTROLB Register” for more
details about register contents.

0x3010

TCBControlC

The TCBControlC register. See Section 11.10.4 “TCBCONTROLC Register” for more
details about register contents.

0x3020

TCBControlE

The TCBControl E register. See Section 11.10.5 “TCBCONTROLE Register” for more details
about register contents.

0x3028

TCBConfig

The TCBConfig register. See Section 11.10.6 “TCBCONFIG Register (Reg 0)” for more
details about register contents.

0x3100

TCBTW

Trace Word read register. This register holds the Trace Word just read from on-line trace mem-
ory. See Section 11.10.7 “TCBTW Register (Reg 4)” for more details about register contents.

0x3108

TCBRDP

Trace Word Read pointer. It pointsto the location in the on-line trace memory where the next
Trace Word will beread. A TW read hasthe side-effect of post-incrementing this register value
to point to the next TW location. (A maximum value wraps the address around to the begin-
ning of the trace memory). See Section 11.10.8 “TCBRDP Register (Reg 5)” for more details
about register contents.

0x3110

TCBWRP

Trace Word Write pointer. It points to the location in the on-line trace memory where the next
new Trace Word will be written. See Section 11.10.9 “TCBWRP Register (Reg 6)” for more
details about register contents.

0x3118

TCBSTP

Trace Word Start Pointer. It pointsto the location of the oldest TW in the on-chip trace mem-
ory. See Section 11.10.10 “TCBSTP Register (Reg 7)” for more details about register con-
tents.

0x3120

BKUPRDP

Thisisnot aTCB register, but is needed on areset to save the TCBRDP value before that reg-
ister isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace mem-

ory from or to the appropriate trace memory location.

0x3128

BKUPWRP

Thisisnot a TCB register, but needed on areset to save the TCBWRP value before that regis-
ter isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last known good value of TCBWRP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3130

BKUPSTP

Thisisnot a TCB register, but is needed on areset to save the TCBSTP value before that reg-
ister isreset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last known good value of TCBSTP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3200-0x3238

TCBTrigX

The TCBTrigX set of registers. The number of implemented registersis determined by the
valuein TCBCONFIGTRIG. See Section 11.10.11 “TCBTRIGx Register (Reg 16-23)" for
more details about register contents.

On-chip trace memory can be read by doing aload instruction to TCBTW. Accessing the TCBTW has the side effect
of automatically incrementing the value of TCBRDP to the next trace word. The trace memory cannot be written to
viathis mechanism. Software can also do direct |oads and stores to TCBRDP and TCBWRP at the beginning of the

298

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




11.8 MIPS® Trace

trace memory dump function. Note that writing to these registers in the middle of the trace logic writing into this
memory can result in UNPREDICTABLE results and junked values in the trace memory.

Whether or not software has access to on-chip trace memory is controlled by TCBCONTROLBTrpap. Thisisacontrol
disable bit. The bit in TCBCONTROLB is mirrored in TraceControl3. To access the on-chip memory control registers,
namely the memory pointers, the TCBTW, and both of the backup pointer bits,TRPAD and ProbEN, must be zero. To
access the other registers, it is sufficient to set the ProbEN bit to zero. Regardless of the setting of ProbEN and
TRPAD, all theregisterslisted in Table 11.37 can be read out by software.

Tracing is stopped when the system crashes and an exception handler isinvoked. The last known valid values of
TCBRDP, TCBWRP, and TCBSTP are saved in the backup registers shown in the table. Software should not rely on
TCBRDP, TCBWRP, and TCBSTP holding their last known good values across areset, and should use the backup reg-
istersfor this purpose.

11.8.16 Core-Specific Event Inefficiency Tracing

It is possible the trace can relay some hints as to the reason for loss of execution performance. Thisis done by
enabling the core-specific inefficiency tracing via TraceControlpitzg / TCBCONTROLApitzg. The inefficiency is deter-
mined at the same point that the PC, address, data, etc. is captured from the core pipeline. That is, the inefficiency is
determined in the last pipestage of the graduation. An inefficiency code applies only when thereis no instruction
graduating. In other words, the inefficiency replacesan “NI”.

When inefficiency tracing is enabled, the instruction completion indicator in all trace formats that have an instruction
completion field will increase from three bits to four bits. Reconstruction software will ook for the extra bit, and
when the msb of the instruction completion is set to 1' b1, which indicates that the inefficiency codeisvalid. If the
msb of the instruction completion is set to 1' b0, then a valid instruction has graduated and there is no inefficiency.

The inefficiency events defined are the following:

1. Load/store cache missisthe reason for the “NI”.

2. Branch/return misprediction is the reason for the “NI”.

3. Replay of aload consumer, or abranch likely, or a cacheop is the reason for the “NI”.

4. Graduation stall, due to the backpressure of the Load Store Graduation Buffer (LSGB) full or some other stall
from the core is the reason for the “NI”.

11.8.17 Trace Message Format

The TCB collects trace information every cycle from the PDtrace interface. Thisinformation is collected into six dif-
ferent Trace Formats (TF1 to TF6). All Trace Formats have at least one non-zero bit, which prevents the reconstruc-
tion software from incorrectly detecting an end of trace.

11.8.18 Trace Word Format

After the PDtrace data has been encoded in Trace Formats, the trace information must be streamed to either on-chip
trace memory or to the trace probe. Each of the major Trace Formats are of different size, which complicates their
efficient storage in an on-chip memory of fixed width and their transmission through a fixed-width trace probe inter-
face to off-chip memory. To minimize memory overhead and/or bandwidth-loss, the Trace Formats are collected into
Trace Words of fixed width.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 299

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW contains all zeros. A TW which contains one
or more valid TFsis guaranteed to have a non-zero value in one of the four least-significant bits[3:0]. During opera-
tion of the TCB, each TW is built from the TFs generated each clock cycle. When all 64 bits are used, the TW isfull
and can be sent to either on-chip trace memory or to the trace praobe.

11.9 PDtrace™ Registers (Software Control)

The CPO registers associated with PDtrace are listed in Table 11.38 and described in Chapter 7, “ CPO Registers of the

74K™ Core”.
Table 11.38 A List of Coprocessor 0 Trace Registers
Register
Number Sel Register Name Reference
23 1 TraceControl Section 7.2.31 “Trace Control Register (CPO Register 23, Select 1)”
23 2 TraceControl2 Section 7.2.32 “Trace Control2 Register (CPO Register 23, Select
2)"
24 2 TraceControl3 Section 7.2.37 “Trace Control3 Register (CPO Register 24, Select
2)"
23 3 UserTraceDatal Section 7.2.33 “User Trace Datal Register (CPO Register 23, Select

3) and User Trace Data2 Register (CPO Register 24, Select 3)”

24 3 UserTraceData? Section 7.2.33 “User Trace Datal Register (CPO Register 23, Select
3) and User Trace Data2 Register (CPO Register 24, Select 3)”

23 4 TracelBPC Section 7.2.34 “Tracel BPC Register (CPO Register 23, Select 4)”

23 5 TraceDBPC Section 7.2.35 “TraceDBPC Register (CPO Register 23, Select

5)” Section 7.2.34 “Tracel BPC Register (CPO Register 23, Select 4)”

11.10 Trace Control Block (TCB) Registers (Hardware Control)

The registers used to control TCB operations are described in Table 11.39 and Table 11.40. These registers are
accessed viathe EJTAG TAP interface.

Table 11.39 TCB EJTAG Registers

EJTAG
Register

Name Description Implemented

0x10

TCBCONTROLA | Control register in the TCB mainly used for controlling the trace input sig- Yes
nals to the core on the PDtrace interface. See Section
11.10.1 “TCBCONTROLA Register”.

Ox11

TCBCONTROLB | Control register in the TCB that is mainly used to specify what to do with Yes
the trace information. The REG [25:21] field in this register specifies the
number of the TCB internal register accessed by the TCBDATA register. A
list of al the registers that can be accessed by the TCBDATA register is
shown in Table 11.40. See Section 11.10.2 “TCBCONTROLB Register”.

0x12

TCBDATA Thisis used to access registers specified by the REG field in the Yes
TCBCONTROLB register. See Section 11.10.3 “TCBDATA Register”.

300

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.10 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.39 TCB EJTAG Registers

EJTAG
Register Name Description Implemented
0x13 TCBCONTROLC | Control Register in the TCB used to control and hold tracing information. Yes
See Section 11.10.4 “TCBCONTROLC Register”.
0x16 TCBCONTROLE | Control Register in the TCB used to control tracing for the performance Yes
counter tracing feature. See Section 11.10.5 “TCBCONTROLE
Register”.
Table 11.40 Registers Selected by TCBCONTROLB
TCBCONTROLBREG
Field Name Reference Implemented
0 TCBCONFIG | Section 11.10.6 “TCBCONFIG Register (Reg 0)” Yes
4 TCBTW Section 11.10.7 “TCBTW Register (Reg 4)” Yes
: “ : . if on-chip memory exists.
5 TCBRDP Section 11.10.8 “TCBRDP Register (Reg 5) Otherwise No
6 TCBWRP Section 11.10.9 “TCBWRP Register (Reg 6)”
7 TCBSTP Section 11.10.10 “TCBSTP Register (Reg 7)”
16-23 TCBTRIGX Section 11.10.11 “TCBTRIGX Register (Reg 16-23)” Only the number indicated
by TCBCONFIGTRIG are
implemented.

11.10.1 TCBCONTROLA Register

The TCB isresponsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
core'stracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register iswritten by an EJTAG TAP controller instruction, TCBCONTROLA (0x10).
The format of the TCBCONTROLA register is shown below, and the fields are described in Table 11.41.

Figure 11.32 TCBCONTROLA Register Format

31 30 29 27 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0
SyPExt | Impl | 0| VModes | ADW | SyP [TB|IO|D|E|S|K|U ASID G| TFCR | TLSM | TIM | On
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 301

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.41 TCBCONTROLA Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

SyPExt 31:30 | Extension to the SyP (sync period) field for implementations that R/W 0
need higher numbers of cycles between synchronization events.
The value of SyP is extended by assuming that these two bits are
juxtaposed to the | eft of the three bits of SyP (SypExt.SyP). When
only SyP was used to specify the synchronization period, the value

was 2%, where x was computed from SyP by adding 5 to the actual
value represented by the bits. A similar formulais applied to the 5
bits obtained by the juxtaposition of SyPExt and SyP. Sync period
values greater than 231 are UNPREDICTABLE. That is all values
greater than 11010 (26+5=31) are UNPREDICTABLE. With

SyPExt bits, async period range of 2° to 23! cycles can be obtained.

Impl 29 Reserved for implementation-specific use. R

Ineff 28 Core-specific inefficiency tracing is enabled. If enabled core-specific R/W
trace information isincluded in the trace stream. The inefficiency
code replaces an “NI” and isinterpreted in the trace stream with an
expanded InsComp. The InsComp is expanded from 3b to 4b for all
trace formats.

Impl 27 Reserved for implementation-specific use. R 0

0 26 Reserved. Must be written as zero; returns zero on read. R 0

VModes 25:24 | Thisfield specifies the type of tracing that is supported by the pro- R 10
Cessor:

Encoding Meaning

00 PC tracing only

01 PC and Load and store address tracing only

10 PC, load and store address, and load and store data.
11 Reserved

Thisfield is preset to the value of ValidModes.

ADW 23 The data value width used in the trace formats: R 1

Encoding Meaning

0 width is 16 bits
1 width isis 32 bits

302 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 11.41 TCBCONTROLA Register Field Descriptions (Continued)

11.10 Trace Control Block (TCB) Registers (Hardware Control)

Fields

Name

Bits

Description

Read /
Write

Reset State

SyP

22:20

Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchronization
information is to be sent is defined as shown in the table below.

SyP Sync Period
000 25
001 26
010 27
011 28
100 29
101 210
110 11
11 12

RIW

000

B

19

Trace All Branches.

When set to one, thisfield indicates that the core must trace either
full or incremental PC values for all branches. When set to zero,
only the unpredictable branches are traced.

RIW

Undefined

18

Inhibit Overflow.

This bit is used to indicate to the core trace logic that slow but com-
pletetracing is desired. Hence, the core tracing logic must not allow
aFIFO overflow and discard trace data. Thisis achieved by stalling
the pipeline when the FIFO is nearly full so that no trace records are
ever lost.

RIW

Undefined

17

When set to one, this enables tracing in Debug mode, i.e., when the
DM bit isonein the Debug register. For trace to be enabled in
Debug mode, the On bit must be one and either the G bit must be
one, or the current process must match the ASID field in thisregis-
ter.

When set to zero, trace is disabled in Debug mode, irrespective of
other bits.

RIW

Undefined

16

This controls when tracing is enabled. When set, tracing is enabled
when either of the EXL or ERL bitsin the Satus register is one, pro-
vided that the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.

R/W

Undefined

15

When set, this enables tracing when the core isin Supervisor mode

as defined in the MIPS32 or MIPS64 architecture specification. This
is provided the On bit (bit 0) isalso set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.

RIW

Undefined

14

When set, this enables tracing when the On bit is set and the coreis
in Kernel mode. Unlike the usual definition of Kernel Mode, this bit
enables tracing only when the ERL and EXL bitsin the Status reg-
ister are zero. Thisis provided the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matches the
ASID fidd in this register.

RIW

Undefined

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

303



EJTAG Debug Support in the 74K™ Core

Table 11.41 TCBCONTROLA Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
U 13 When set, this enables tracing when the coreisin User mode as R/W Undefined
defined in the MIPS32 or M1PS64 architecture specification. Thisis
provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.
ASID 12:5 The ASID field to match when the G bit is zero. When the G hit is RIW Undefined
one, thisfield isignored.
G 4 When set, thisimplies that tracing is to be enabled for all processes, R/W Undefined
provided that other enabling functions (like U, S, etc.,) are also true.
TFCR 3 When set, thisindicatesto the PDtrace interface that the optional Fcr R/W Undefined

bit must be traced in the appropriate trace formats. If PC tracing is
disabled, the full PC of the function call (or return) instruction must
also be traced. Note that function call/return information is only
traced if tracing is actually enabled for the current mode.

TLSM 2 When set, this indicates to the PDtrace interface that information R/W Undefined
about data cache misses should betraced. If PC, |oad/store addresses
and data tracing are disabled (see TraceControlyogde field), the full
PC and load/store address are traced for data cache misses. If
load/store data tracing is enabled, the LSm bit must be traced in the
appropriate trace format. Note that data cache missinformation is
only traced if tracing is actually enabled for the current mode.

TIM 1 When set, thisindicates to the PDtrace interface that the optiona Im R/W Undefined
bit must be traced in the appropriate trace formats. If PC tracing is
disabled, the full PC of the instruction that missed in the |-cache
must be traced. Note that instruction cache miss information is only
traced if tracing is actually enabled in the current mode.

On 0 Thisisthe global trace enable switch to the core. When zero, tracing R/W 0
from the core is always disabled, unless enabled by core internal
software override.

When set to one, tracing is enabled whenever the other enabling
functions are also true.

11.10.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). Thisregister generally controls what to do with
the trace information received.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 11.42.

Figure 11.33 TCBCONTROLB Register Format
31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR (0| TRPAD [FDT|RM|TR|BF| TM |TLSIF| CR |Ca|TWSrcVva |CA |OfC|EN

304 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




11.10 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.42 TCBCONTROLB Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

WE

31

Write Enable.
Only when set to 1 will the other bits be writtenin TCBCONTROLB.
This bit will alwaysread 0.

0

0

30:28

Reserved. Must be written as zero; returns zero on read.

TWSrcWidth

27:26

Used to indicate the number of bits used in the sourcefield of the Trace
Word, thisis a configuration option of the core that cannot be modified
by software.

Encoding Meaning

00 Zero source field width

01 2- hit source field width
10 4- bit source field width
11 Reserved for future use

Thisfield can either be 00, 01, or 10 for the 74K core.

Preset

REG

2521

Register select: Thisfield select the registers accessible through the
TCBDATA register. Legal values are shown in Table 11.40.

R/W

WR

20

Write Registers: When set, the register selected by REG field is read
and written when TCBDATA is accessed. Otherwise the selected regis-
ter isonly read.

RIW

19

Reserved. Must be written as zero; returns zero on read.

TRPAD

18

Trace RAM access disable bit, disables program software access to the
on-chip trace RAM using load/store instructions. When this bit is set,
that is, the access is disabled, then software access to the on-chip mem-
ory isdisabled. If probe accessis not provided in the implementation,
then thisregister bit must be tied to zero value to allow software to con-
trol access.

RIW

FDT

17

Filtered Data Trace Mode enable bit. When the bit is 0, thismodeis
disabled, reset value is disable. When set to 1, this mode is enabl ed.
Thismodeisdescribed in Section 11.8.12 “Filtered Data Trace Mode”

RIW

RM

16

Read on-chip trace memory.

When written to 1, the read address-pointer of the on-chip memory is
set to point to the oldest memory location written since the last reset of
pointers.

Subsequent access to the TCBTW register (through theTCBDATA reg-
ister), will automatically increment the read pointer (TCBRDP regis-
ter) after each read. Note: The read pointer does not auto-increment if
the WR field isone.

When the write pointer is reached, this bit is automatically reset to O,
and the TCBTW register will read all zeros.

Once set to 1, writing 1 again will have no effect. The bit isreset by set-
ting the TR hit or by reading the last Trace word in TCBTW.

This bit isreserved if on-chip memory is not implemented

R/W1

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

305



EJTAG Debug Support in the 74K™ Core

Table 11.42 TCBCONTROLB Register Field Descriptions (Continued)

Fields Read /

Name Bits Description Write Reset State

TR 15 Trace memory reset. R/W1 0
When written to one, the address pointers for the on-chip trace memory
arereset to zero. Also the RM bhit isreset to 0.

This bit is automatically de-asserted back to 0 when the reset is com-
pleted.

This bit isreserved if on-chip memory is not implemented.

BF 14 Buffer Full. R 0
Indicator used by the TCB to communicate to external softwarethat the
on-chip trace memory is being deployed in the trace-from and
trace-to mode. (See Section 11.14 “TCB On-Chip Trace Memory”)
This bit is cleared when writing 1 to the TR bit

This bit isreserved if on-chip memory is not implemented.

™ 13:12 | Trace Mode. Thisfield determines how the trace memory isfilled when R/W 0
using the simple-break control in the PDtrace interface to start or stop
trace.

™ Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved

In Trace-To mode, the on-chip trace memory isfilled, continuously
wrapping around and overwriting older Trace Words, aslong asthereis
trace data coming from the core.

In Trace-From mode, the on-chip trace memory isfilled from the point
that the core starts tracing until the on-chip trace memory isfull.

In both cases, de-asserting the EN bit in this register will also stop fill
to the trace memory.

If aTCBTRIGXx trigger control register is used to start/stop tracing,
then this field should be set to Trace-To mode.

This bit isreserved if on-chip memory is not implemented.

TLSIF 11 When set, thisindicates to the TCB that information about Load and R/W 0
Store data cache miss, instruction cache miss, and function call are to
be taken from the PDtrace interface and trace them out in the appropri-
ate trace formats as the three optional bits LSm, Im, and Fcr.

CR 10:8 Off-chip Clock Ratio. Writing thisfield, sets the ratio of the core clock R/W 100
to the off-chip trace memory interface clock. The clock-ratio encoding
isshownin Table 11.43.

Remark: Asthe Probe interface worksin double datarate (DDR)
mode, a 1:2 ratio indicates one data packet sent per core clock rising
edge.

This bit isreserved if off-chip trace option is not implemented.

306 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.10 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.42 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
Cal 7 Cadlibrate off-chip trace interface. R/W 0
If set to one, the off-chip trace pins will produce the following pattern
in consecutive trace clock cycles. If morethan 4 data pins exist, the pat-
tern isreplicated for each set of 4 pins. The pattern repeats from top to
bottom until the Cal hit is de-asserted.
Calibrations pattern
3 2 1 0
ofo0o]Jo|oO
111(1]1
@ ofo0ojJo|oO
3
< of1(0|1
>
S |l1]|o]1]o0
5 £ o[0]oO
=3 1
o
S</o0|1|0]0
e a
P Flojo|1]o0
£E°%o0|olo]1
g
P 111(1]0
ey
F 11|01
1)10(1]|1
o111
Note: The clock source of the TCB and PIB must be running.
This bit isreserved if off-chip trace option is not implemented.
TWSrcVal 6:3 These bits are used to indicate the value of the TW source field that R 0
will betraced if TWSrcWidth indicates a source bit-field width of 2 or
4 hits. Note that if thefield is 2 bits, then only bits 4:3 of thisfield will
be used in the TW.
CA 2 Cycle accurate trace. R/W 0
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and remove bit
zero from all transmitted TF's.
The stall information included/excluded is:
» TF6 formats with TCBcode 0001 and 0101.
» All TF1 formats.
ofC 1 If set to 1, traceis sent to off-chip memory using TR_DATA pins. R/W Preset
If set to O, traceinfo is sent to on-chip memory.
Thishbitisread only if asingle memory option exists (either off-chip or
on-chip only).
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 307

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.42 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
EN 0 Enable trace. R/W 0

Thisisthe master enable for trace to be generated from the TCB. This
bit can be set or cleared, either by writing this register or from a
start/stop/about trigger.

When set to 1, trace information is sampled on the output pins (of the
capture-to-compression interface) or written in the on-chip trace mem-
ory. Trace Words are generated and sent to either on-chip memory or to
the Trace Probe. The target of the traceis selected by the OfC hit.
When set to 0, trace information on the output pins are ignored. A
potential TF6-stop (from a stop trigger) is generated as the last infor-
mation, the TCB pipelineis flushed, and trace output is stopped.

Table 11.43 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio
000 8:1 (Trace clock is eight times that of core clock)
001 4:1 (Trace clock is four times that of core clock)
010 2:1 (Trace clock is double that of core clock)
011 1:1 (Trace clock is same as core clock)
100 1:2 (Trace clock is one half of core clock)
101 1:4 (Trace clock is one fourth of core clock)
110 1:6 (Trace clock is one sixth of core clock)
111 1:8 (Trace clock is one eighth of core clock)

11.10.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBReG field; see Table
11.40. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLByR bit is set. For read-only registers, the TCBCONTROLBwR isadon’t care. If software is accessing
the on-chip trace memory to read out the trace words, then TCBDATA is not used for the indirect read of the TCBTW.
Instead software can read from TCBTW directly.

Theformat of the TCBDATA register is shown below, and the field is described in Table 11.44. The width of TCBDATA
is 64 bits when on-chip trace words (TWSs) are accessed (TCBTW access).

Figure 11.34 TCBDATA Register Format
31(63) 0

Data

308 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.10 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.44 TCBDATA Register Field Descriptions

Fields
Names Bits Description Read/Write Reset State
Data 31.0 Register fields or data as defined by the Only writableif 0
63.0 TCBCONTROLBREgG field TCBCONTROLBwR
isset

11.10.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signalsto the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipul ate the trace output by

writing the TCBCONTROLC register.

The TCBCONTROLC register iswritten by an EJTAG TAP controller instruction, TCBCONTROLC (0x13).

The format of the TCBCONTROLC register is shown below, and the fields are described in Table 11.45.

Figure 11.35 TCBCONTROLC Register Format

30 30 29 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0
Res | NumDO Mode Res Res Res Res Res Res Res Res Res
Table 11.45 TCBCONTROLC Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
Reserved 31:30 | Reserved for future use. Must be written as zero; returns zero on 0 0
read.
NumDO 29:28 | Specifies the number of bits needed by this implementation to spec- R Preset
ify the DataOrder:
00 - Four bits
01 - Five bits
10 - Six bits
11 - Eight bits
Mode 27:23 | When tracing isturned on, this signal specifies what information is R/W 0

to be traced by the core. It uses 5 bits, where each bit turns on atrac-
ing of a specific tracing mode.

Bit # Set Trace The Following
0 PC
1 Load address
2 Store address
3 Load data
4 Store data

Thetable showswhat trace value isturned on when that bit valueisa
1. If the corresponding bit is 0, then the Trace Value shown in col-
umn two is not traced by the processor.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

309



EJTAG Debug Support in the 74K™ Core

Table 11.45 TCBCONTROLC Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
Res 22:.0 Reserved for future use. Must be written as zero; returns zero on 0 0
read.

11.10.5 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signalsto the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipul ate the trace output by
writing the TCBCONTROLE register.

The TCBCONTROLE register iswritten by an EJTAG TAP controller instruction, TCBCONTROLE (0x16).
The format of the TCBCONTROLE register is shown below, and the fields are described in Table 11.46.

Figure 11.36 TCBCONTROLE Register Format
31 9 8 7 6 5 4 3 2 1 0

0 TdIDLE 0 PecOvf| PeCFCR | PeCBP | PeCSync | PeCE | PeC

Table 11.46 TCBCONTROLE Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 31:9 Reserved for future use. Must be written as zero; returns 0 0
zero on read.
TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is R 1
currently idle (not processing any data). This can be useful
when switching control of tracefrom hardware to software
and vice versa. The bit is read-only and updated by the
trace hardware.
0 7:6 Reserved for future use; Must be written as zero; returns 0 0
zero on read. (Hint to architect, Reserved for future expan-
sion of performance counter trace events).
PeCOvVf 5 Trace performance counters when one of the performance R/W 0
counters overflows its count value. Enabled when set to 1.
PeCFCR 4 Trace performance counters on function call/return or on R/W 0
an exception handler entry. Enabled when set to 1.
PeCBP 3 Trace performance counters on hardware breakpoint R/W 0
match trigger. Enabled when set to 1.
PeCSync 2 Trace performance counters on synchronization counter R/W 0
expiration. Enabled when set to 1.
310 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.10 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.46 TCBCONTROLE Register Field Descriptions (Continued)

Fields

Name

Bits Description

Read /
Write

Reset State

PeCE

1 Performance counter tracing enable. When set to 0, the
tracing out of performance counter values as specified is
disabled. To enable, this bit must be set to 1. Thishit is
used under software control. When trace is controlled by
an external probe, this enabling is done viathe TCB
Control register.

RIW

0

PeC

0 Specifies whether or not Performance Control Tracing is
implemented. Thisis an optional feature that may be omit-
ted by implementation choice. See Section

11.8.11 “Performance Counter Tracing” for details.

Preset

11.10.6 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the field is described in Table 11.47.

Figure 11.37 TCBCONFIG Register Format

31 30 25 24 21 20 17 16 14 13 1 10 9 8 6 5 4 3 0
CF1 0 TRIG SZ CRMax CRMin | PW PiIN | OnT | OfT REV
Table 11.47 TCBCONFIG Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
CF1 31 Thisbitisset if aTCBCONFIGL1 register exists. In thisrevision, R 0
TCBCONFIG1 does not exist and this bit always reads zero.
0 30:25 | Reserved. Must be written as zero; returns zero on read. R 0
TRIG 24:21 | Number of triggers implemented. This also indicates the number of R Preset
TCBTRIGX registers that exist. Legal valuesare0- 8
Sz 20:17 | On-chip trace memory size. Thisfield holds the encoded size of the R Preset
on-chip trace memory.
Thesizein bytesisgiven by 2(52*8) implying that the minimum size
is 256 bytes and the largest is 8Mb.
This bit isreserved if on-chip memory is not implemented.
CRMax 16:14 | Off-chip Maximum Clock Ratio. R Preset
Thisfield indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encoding is
shown in Table 11.43.
This bit is reserved if off-chip trace option is not implemented.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

311



EJTAG Debug Support in the 74K™ Core

Table 11.47 TCBCONFIG Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
CRMin 13:11 | Off-chip Minimum Clock Ratio. R Preset

Thisfield indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio encoding is
shown in Table 11.43.

This bit isreserved if off-chip trace option is not implemented.

PW 10:9 Probe Width: Number of bits available on the off-chip trace interface R Preset
TR_DATA pins. The number of TR_DATA pinsis encoded, as
shown in the table.

PW Number of bits used on TR_DATA
00 4 bits

01 8 bits

10 16 bits

11 Reserved

Thisfield is preset based on input signals to the TCB and the actual
capability of the TCB.
This bit isreserved if off-chip trace option is not implemented.

PiN 8:6 Pipe number. R 0
Indicates the number of execution pipelines.

onT 5 When set, this bit indicates that on-chip trace memory is present. R Preset
This bit is preset based on the selected option when the TCB is
implemented.

OfT 4 When set, this bit indicates that off-chip trace interface is present. R Preset

This bit is preset based on the selected option when the TCB is
implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

REV 3.0 Revision of TCB. An implementation that conforms to PDtrace ver- R 1
sion 4.1 must has avalue of 1 for thisfield.

11.10.7 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The Trace Word (TW) read isthe
one pointed to by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register
increments to the next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory,
the increment wraps back to address zero. The TCBTW register is mapped to offset 0x3100 in drseg. An access to off-
set 0x3100 automatically causes the read pointer to be incremented. The use of load half-word or load byte instruc-
tions can lead to unpredictable results, and is not recommended. The results of attempting to write to trace memory
by an explicit store instruction targeting TCBTW are unpredictable.

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBTW register is shown below, and the field is described in Table 11.48.

312 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.10 Trace Control Block (TCB) Registers (Hardware Control)

Figure 11.38 TCBTW Register Format
63 0

Data

Table 11.48 TCBTW Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 63:0 Trace Word (TW) R/W 0

11.10.8 TCBRDP Register (Reg 5)

The TCBRDP register isthe address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRy bit to 1, this pointer is reset to the current value of TCBSTP.

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 11.49. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 11.39 TCBRDP Register Format
31 n+l n 0

Address

Table 11.49 TCBRDP Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

11.10.9 TCBWRP Register (Reg 6)

The TCBWRP register isthe address pointer to on-chip trace memory. It points to the location where the next new TW
for on-chip trace will be written.

Thisregister isreserved if on-chip trace memory is not implemented.
The format of the TCBWRP register is shown below, and the fields are described in Table 11.50. The value of n

depends on the size of the on-chip trace memory. Asthe address pointsto a 64-bit TW, the lower three bits are always
zero.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 313

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

314

Figure 11.40 TCBWRP Register Format

31 n+l n 0

Address

Table 11.50 TCBWRP Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

11.10.10 TCBSTP Register (Reg 7)

The TCBSTP register isthe start pointer register. This register points to the on-chip trace memory address at which
the oldest TW islocated. This pointer is reset to zero when the TCBCONTROLBTR hit iswritten to 1. If a continuous
trace to on-chip memory wraps around the on-chip memory, TSBSTP will have the same value as TCBWRP.

Thisregister isreserved if on-chip trace memory is not implemented.
The format of the TCBSTP register is shown below, and the fields are described in Table 11.51. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always

Z€ero.

Figure 11.41 TCBSTP Register Format

31 n+1l n 0

0 Address

Table 11.51 TCBSTP Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

11.10.11 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x isasingle digit number
from0to 7 (TCBTRIGO is Reg 16). The actual number of trigger registersimplemented is defined in the
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger isfired, and the action to be taken when the trigger
occurs. Please also read Section 11.12 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 11.52.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.10 Trace Control Block (TCB) Registers (Hardware Control)

Figure 11.42 TCBTRIGx Register Format
31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro | PDTro 0 DM | CHTri | PDTri | Type| FO| TR

Table 11.52 TCBTRIGx Register Field Descriptions

Fields
Read /

Names Bits Description Write Reset State

TCBinfo 31:24 | TCBinfo to beused in apossible TF6 trace format when this trigger R/W 0
fires.

Trace 23 When set, generate TF6 trace information when this trigger fires. R/W 0
Use TCBinfo field for the TCBinfo of TF6 and use Typefield for the
two M SB of the TCBtype of TF6. Thetwo LSB of TCBtype are 00.
The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by asimultaneous trigger. If so, the
read value will be 0. If the write value was O, the read value is
always 0. This special read valueisvalid until the TCBTRIGX regis-
ter iswritten.

0 22:16 | Reserved. Must be written as zero; returns zero on read. R 0

CHTro 15 When set, generate asingle cycle strobe on TC_ChipTrigOut when R/W 0
thistrigger fires.

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut R/W 0
when thistrigger fires.

0 13:7 Reserved. Must be written as zero; returns zero on read. R

DM 6 When set, this Trigger will fire when arising edge on the Debug R/W
mode indication from the core is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread value is dways 0. This special read value isvalid until the
TCBTRIGX register iswritten.

CHTri 5 When set, this Trigger will fire when arising edge on R/W 0
TC_ChipTrigln is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will changeto indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread valueis always 0. This specia read valueisvalid until the
TCBTRIGX register iswritten.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 315

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

Table 11.52 TCBTRIGx Register Field Descriptions (Continued)

Fields
Read /

Names Bits Description Write Reset State

PDTri 4 When set, this Trigger will fire when arising edge on R/W 0
TC_ProbeTrigln is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread valueis always 0. This specia read valueisvalid until the
TCBTRIGX register iswritten.

Type 32 Trigger Type: The Type indicates the action to take when thistrigger R/W 0
fires. The table below show the Type values and the Trigger action.

Type Trigger action

00 Trigger Start: Trigger start-point of trace.
01 Trigger End: Trigger end-point of trace.
10 Trigger About: Trigger center-point of trace.

11 Trigger Info: No action trigger, only for trace info.

The actual action isto set or clear the TCBCONTROLBE bit. A
Start trigger will set TCBCONTROLBEgN, aEnd trigger will clear
TCBCONTROLBEN. The About trigger will clear
TCBCONTROLBEgp haf way through the trace memory, from the
trigger. The size determined by the TCBCONFIGg; field for
on-chip memory. Or from the TCBCONTROLAsyp field for
off-chip trace.

If Traceis set, then a TF6 format is added to the trace words. For
Start and Info triggersthisis done before any other TF'sin that same
cycle. For End and About triggers, the TF6 format is added after any
other TF'sin that same cycle.

If the TCBCONTROLBT)\ field isimplemented, it must be set to
Trace-To mode (00), for the Type field to control on-chip tracefill.
The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11. If
the write value was 11 the read value is always 11. This specia read
valueisvalid until the TCBTRIGX register iswritten.

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is R/W 0
de-asserted. When de-asserted, this trigger will fire each time one of
the trigger sources indicates trigger.

316 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.11 Enabling MIPS Trace

Table 11.52 TCBTRIGx Register Field Descriptions (Continued)

Fields
Read /
Names Bits Description Write Reset State
TR 0 Trigger happened. When set, thistrigger fired since the TR bit was R/WO 0

last written O.

Thisbit is used to inspect whether the trigger fired since this bit was
last written zero.

When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read val ue, but more
than oneis possible.

Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

11.10.12 Register Reset State

Reset state for all register fields is entered when either of the following occur:
1. TAPcontroller enters/isin Test-L ogic-Reset state.

2. EJ_TRST_Ninput is asserted low.
11.11 Enabling MIPS Trace

Asthere are several waysto enabletracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

11.11.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 74K core, then these breakpoint can be used as
triggersto start/stop trace. When used for this, the breakpoints need not al so generate a debug exception, but are capa
ble of only generating an internal trigger to the trace logic. Thisis done by only setting the TE bit and not the BE hit
in the Breakpoint Control register. Please see Section 11.2.8.5 “Instruction Breakpoint Control n (IBCn) Register”
and Section 11.2.9.5 “Data Breakpoint Control n (DBCn) Register” for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace action
when atrigger happens. When a breakpoint is enabled as atrigger (TE = 1), it can be selected to be either astart or a
stop trigger to the trace logic. Please see sections Section 7.2.34 “Tracel BPC Register (CPO Register 23, Select 4)”
and Section 7.2.35 “TraceDBPC Register (CPO Register 23, Select 5)” for details on how to define a start/stop trig-
ger.

Thetrace triggers are best used for fine grain tracing. First the mode in which the fine grain tracing is desired should
be disabled in the TraceControl. For exampleif fine grain tracing isto be donein User Mode then TraceControly is set
to zero. This disables general tracing while the program isin User Mode. Then a breakpoint start trigger turns on the
trace at a particular instruction, and a breakpoint off trigger turns off the trace at the desired ending instruction. The
breakpoint trigger can be caused by a breakpoint address match or a breakpoint data match. Both precise and impre-
cise data match is supported. The imprecise data match will generate the trace trigger after the expected start/end
point, as the imprecise data match is dependent on system latencies.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 317

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

11.11.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, except that the bits in the control reg-
ister are used instead of the input enable signals from the TCB. The TraceControlts bit controls whether hardware
(viathe TCB), or software (viathe TraceControl register) controls tracing functionality.

Traceis turned on when the following expression eval uates true:
(

(TraceControlpg and TraceControlpn) or
((not TraceControlpg) and TCBCONTROLApL)
)
and
(MatchEnable or TriggerEnable)

where,

MatchEnable «
(
TraceControlrqg
and
(
TraceControlg or
(((TraceControlagrp xor EntryHiagrp) and (not TraceControlagipwm)) = 0)
)
and
(
(TraceControly and UserMode) or
(TraceControlg and SupervisorMode) or
(TraceControlig and KernelMode) or
(TraceControlg and ExceptionMode) or
(TraceControlp and DebugMode)

or
(
(not TraceControlrg)
and
(TCBCONTROLAg or (TCBCONTROLAagTp = EntryHiagrp))
and
(
(TCBCONTROLAy and UserMode) or
(TCBCONTROLAg and SupervisorMode) or
(TCBCONTROLAx and KernelMode) or
(TCBCONTROLAr and ExceptionMode) or
(TCBCONTROLApy and DebugMode)
)
)
and where,

TriggerEnable <«
(

DBCiTE and
DBSgg [i] and

318 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.11 Enabling MIPS Trace

TraceBPCpg and
(TraceBPCpgpon(i] = 1)

)

or

(
IBCirg and
IBSBs[i] and
TraceBPCig and
(TraceBPCrgpon(i] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlop, or
TCBCONTROLAQp isfirst asserted.

Once thisis asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signals from the TCB or the bits in the TraceControl register. Thistracing is done over general program areas.
For example, al of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the Trigger Enable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG isimplemented, and hardware breakpoints can be set, then using this method
enablesfiner grain tracing control. It is possible to send atrigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace isto assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControlts=0, i.e., hardware controlled tracing, assert
TCBCONTROLAQop, TCBCONTROLAG, and all the other signalsin the second part of expression MatchEnable. To
only trace when a particular process with a particular ASID is executing, assert TCBCONTROLAQn, the correct
TCBCONTROLAagp Value, and the TCBCONTROLAy, TCBCONTROLAk, TCBCONTROLAE, and
TCBCONTROLApy registers. (If it is known that the particular processis a user-level process, then it would be suffi-
cient to only assert TCBCONTROLA for example). When using the EJTAG hardware triggers to turn trace on and
off, it isbest if TCBCONTROLAQj is asserted with all the other processor mode selection bitsin TCBCONTROLA are
turned off. Thiswould be the least confusing way to control tracing with the trigger signals. In asimilar manner, trac-
ing can be controlled via software with the TraceControl register.

11.11.3 Turning Off PDtrace™ Trace

Traceisturned off when the following expression evaluates true:

(

(TraceControlpg and (not TraceControlpn))) or
((not TraceControlgg) and (not TCBCONTROLAopn) )

(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable

)
where,
TriggerDisable «

(
DBC iTE and

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 319

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

DBSBs[i] and
TraceBPCpg and
(TraceBPCprpon(i] = 0)

)

or

(
IBCirg and
IBSBS[i] and
TraceBPCrg and
(TraceBPCigpon[i] = 0)

)
Tracing can be unconditionally turned off by de-asserting the TraceControlop, bit or the TCBCONTROLAQR signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, regardless of the
TraceControlg bit (TCBCONTROLAG) and TraceControlasip (TCBCONTROLAps|p) Values. EJTAG hardware break-
points can be used to trigger trace off as well.
Note that if simultaneous triggers are generated, and even one of them turns on tracing, then even if al of the others

attempt to trigger trace off, tracing will still be turned on. This condition is reflected in presence of the “(not Trigger-
Enable)” term in the expression above.

11.11.4 TCB Trace Enabling

The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information is
sent on the PDtrace interface. The main switch for thisisthe TCBCONTROLBEgy bit. When set, the TCB will send
trace information to either on-chip trace memory or to the Trace Probe, as controlled by the setting of the
TCBCONTROLBosc hit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEgy bit. Please see Section
11.12 “TCB Trigger Logic” for details.

11.11.5 Tracing a Reset Exception

Tracing areset exception is possible. However, the TraceControlys bit isreset to O at core reset, so al the trace control
must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace FIFO and the entire TCB are
reset based on an EJTAG reset. It isthus possible to set up the trace modes, etc., using the TAP controller, and then
reset the processor core.

11.12 TCB Trigger Logic

The TCB is optionally implemented with atrigger unit, which isindicated by a non-zero value in the
TCBCONFIGTRIG. This subsection will explain some of the issues around triggersin the TCB.

11.12.1 Trigger Units Overview

TCB trigger logic features three main parts:
1. Common Trigger Source detection unit
2. 1to 8 separate Trigger Control units

3. Common Trigger Action unit

320 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.12 TCB Trigger Logic

Figure 11.43 shows the functional overview of the trigger flow in the TCB.

Figure 11.43 TCB Trigger Processing Overview

Trigger sources

YUY YUYy

Trigger Source Unit

Tr

=

gger strobes

y

Trigger control Unit 1 to 7 Trigger Control Unit 7
are optional, when trigger P
logic is implemented. Pis

,_v ~
Trigger Control Unit 1

Trigger Control Unit 0

Priority/
OR-function

Depending on the trigger action,
the Action strobes must pass
through a priority function or an
OR-gate.

Priority/
OR-function

Trigger Action Unit

11.12.2 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigin)

2. Probetrigger input (TR_TRIGIN)

3. Debug Mode (DM) entry indication from the processor core

Theinput triggers are al rising-edge triggers, and the Trigger Source Units convert the edge into asingle-cycle strobe
to the Trigger Control Units.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 321

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

11.12.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them hasits own Trigger Control Register (TCBTRIGX,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger events, and they can fire one or more of the Trigger Actions, as explained in the descrip-
tion of the Trigger Control register TCBTRIGx (Section 11.10.11 “TCBTRIGx Register (Reg 16-23)").

11.12.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut)

2. Probetrigger output (TR_TRIGOUT)

3. Traceinformation. Put a programmable byte into the trace stream from the TCB.
4. Start, End, or About (delayed end) control of the TCBCONTROLBEgy bit

The basic function of the trigger actions is explained in Section 11.10.11 “TCBTRIGx Register (Reg 16-23)”. See
also Section 11.12.5 “Simultaneous Triggers’.

11.12.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on the trigger action set for each. and
whether or not they should produce a TF6 trace information output. There are two groups of trigger actions: Priori-
tized and OR’ ed.

11.12.5.1 Prioritized Trigger Actions

For simultaneous prioritized trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence
over al others.

The following trigger actions are prioritized when two or more units fire simultaneously:

»  Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEg bit. The About trigger is delayed and will always change TCBCONTROLBEgy becauseitis
the oldest trigger when it de-asserts TCBCONTROLBgN. An About trigger will not start the countdown if an even
older About trigger is using the Trace Word counter.

»  Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires, even if atrigger action is suppressed by a
higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxgo bit is set), then the suppressed
trigger action will not happen until after the TCBTRIGxtR is cleared.

If aTrigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxtR bit is set, for
the TCBTRIGxTrace field will be O for suppressed TF6 trace information actions. The read value in the TCBTRIGXType
field for suppressed Start/End/About triggerswill be 11. Thisindication of a suppressed action is sticky. If any of the
two actions (Trace and Type) are ever suppressed for amulti-fire trigger (the TCBTRIGxro bit is zero), then the read
valuesin Trace and/or Type are set to indicate any suppressed action.

322 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.13 MIPS Trace Cycle-by-Cycle Behavior

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBgy bit is always executed, regardless of priority from
another Start trigger at the time of the TCBCONTROLBEgy change. This meansthat if a simultaneous About trigger
action on the TCBCONTROLBEg bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store11in
the TCBTRIGxType field. But, if the TCBTRIGxTrace bit is set, @ TF6 trace information will still go in the trace.

11.12.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are OR’ ed together to produce the final trigger.
One or more expected trigger strobes on TC_ChipTrigOut can thus disappear. External logic should not rely on the
counting of strobes to predict a specific event, unless simultaneous triggers are known not to occur.

11.13 MIPS Trace Cycle-by-Cycle Behavior

A key reason for using trace to debug a software problem, rather than using single stepping, is to get an accurate pic-
ture of real-time behavior. However, the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior.

11.13.1 FIFO Logic in PDtrace and TCB Modules

All theinformation that needs to be captured from the core pipelineis stored in a structure called the Unified FIFO
(UFIFO). The Unified FIFO holds PC, |oad/store address values (delta or full), load/store data, processor mode
changes (which arein the form of aTMOAS message), and Performance Counter data. The capture module reads out
two UFIFO entries per cycle and sends them to the TCB where they are trandated into two PDtrace-defined trace for-
mats. These trace messages are then fed to the compression datapath which generates a PDtrace-defined trace word.
To maintain throughput, the compression datapath is wide enough to sustain the generation of up to two trace words
per cycle. The trace words are stored in a buffer called the TraceWord FIFO (TWFIFO). One trace word is read out
from the TWFIFO and sent to the off-chip memory interface, or up to 2 trace words are read out per cycle and sent to
the on-chip trace memory. The buffer will advance to the next trace word when aread acknowledge is received from
the on-chip or off-chip memory interface.

In the TCB, the on-chip trace memory is defined as a 128-bit wide synchronous memory running at core-clock speed.
In this case, the TWFIFO needs only four entries to guarantee it will not overflow. The TWFIFO could befilled in
such away that only 64 bits of the 128 bitsis written to memory, which accounts for the four-entry requirement. For
off-chip trace going through the Trace Probe, the FIFO is much more important because of the limited number of pins
(4, 8, or 16) between the Probe and memory. Also, the speed of the Trace Probe interface can be different (either
faster or slower) from that of the 74K core. So for off-chip tracing, adeeper TCB TWFIFO is desirable.

11.13.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 32-bit data inter-
face isneeded, it is possible for the PDtrace FIFO to overflow from time to time. There are two ways to handle this
case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core until the FIFO has enough empty slots to accept new trace data.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 323

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

The PDtrace FIFO option is controlled by either the TraceControlio or the TCBCONTROLA|p bit, depending on the
setting of the TraceControlrs hit.

The first option isfree of any cycle-by-cycle change whether trace is turned on or not. Thisis achieved at the cost of
potentially losing trace information. After an overflow, the FIFO is completely emptied, and the next instruction is
traced asif it were the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced FIFO information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases thisis then achieved
by back-stalling the core pipeline, giving the PDtrace FIFO time to empty enough room in the FIFO to accept new
trace information from a new instruction. This option can obviously change the real-time behavior of the core when
tracing isturned on. In 74K core, the UFIFO has 64 entries, while TWFIFO has 11 entries. The TWFIFO will almost
alwaysfill up first and be the cause of the back-stall to the core pipeline.

If PC trace information is the only thing enabled (in TraceControl2mope OF TCBCONTROLCwvope, depending on the
setting of TraceControlts), and tracing of all branches isturned off (via TraceControltg of TCBCONTROLATg,

depending on the setting of TraceControlts), then the FIFO isunlikely to overflow. Of course, this depend on the code
executed and the frequency of exception handler jumps, but with this setting there is very little information overhead.

11.13.3 Handling of FIFO Overflow in the TCB

Asmentioned earlier, the buffer in the TCB (TWFIFO) is used to buffer the TWs which are sent off-chip through the
Trace Probe. The data width of the probe can be either 4, 8, or 16 pins, and the speed of these data pins can be from
16 times the core clock to 1/4 of the core clock (the trace probe clock always runs at a double data rate multiple of the
core-clock). See Section 11.13.3.1 “Probe Width and Clock-ratio Settings” for a description of probe width and
clock-ratio options. The combination of the probe width (4, 8, or 16) and the data speed, allows for data rates through
the trace probe from 256 bits to only 1 bit per core-clock cycle. The high extremeis not likely to be supported in any
implementation, but the low one might be.

The datarate is an important figure when the likelihood of a TCB TWFIFO overflow is considered. The TCB will at
maximum produce one full 64-bit TW per core-clock cycle. Thisistrue for any selection of trace mode in
TraceControl2yope OF TCBCONTROLCpyope. The PDtrace module will guarantee the limited amount of data. If the
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB FIFO can possibly over-
flow. There are two options:

1. Allow the overflow to happen, and thereby lose some information from the trace data.
2. Prevent the overflow by asserting a stall-signal back to the core. Thiswill in turn stall the core pipeline.

Thereis no way to guarantee that this back-stall from the TCB is never asserted, unless the effective data rate of the
Trace Probe interface is at least 64-bits per core-clock cycle.

Asapractical matter, the amount of datato the TCB can be minimized by only tracing PC information and excluding
any cycle-accurate information. Thisisexplained in Section 11.13.2 “Handling of FIFO Overflow in the PDtrace
Module” and Section 11.13.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data rate of
8-bits per core-clock cycleisusually sufficient. No guarantees can be given here, however, as heavy interrupt activity
can increase the number of unpredictable jumps considerably.

11.13.3.1 Probe Width and Clock-ratio Settings

The actual number of datapins (4, 8, or 16) is defined by the TCBCONFIGpyy field. Furthermore, the frequency of the
Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is adouble data rate clock,
which means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock

324 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



11.14 TCB On-Chip Trace Memory

isrunning at aclock ratio of 1:2 (one half) of the core clock, the data output registers are running at core-clock fre-
guency. The clock ratio is set in the TCBCONTROLBcR field. The legal range for the clock ratio is defined in
TCBCONFIGcRrMax and TCBCONFIGcrwin (both valuesinclusive). If TCBCONTROLBcR is set to an unsupported
value, the result is UNPREDICABLE. The maximum possible value for TCBCONFIGcrMax 1$8:1 (TR_CLK isrun-
ning 8 times faster than the core-clock). The minimum possible value for TCBCONFIGcrwmin IS 1:8 (TR_CLK isrun-
ning at one eighth of the core-clock). See Table 11.43 for a description of the encoding of the clock ratio fields.

11.13.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. Thisinformation is added to the trace when the TCBCONTROLBcA bit is set. The overhead on
the trace information is alittle more than one extra bit per core-clock cycle.

This setting only affectsthe TCB TWFIFO and not the PDtrace UFIFO. The extra bit therefore only affectsthe likeli-
hood of the TCB TWFIFO overflowing.

11.14 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIGonT iS Set), the on-chip memory istypically smaller than exter-
nal trace-probe memory. The assumption isthat it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode

2. Trace-To mode

3. Under Trigger unit control

Software can select this mode using the TCBCONTROLBTy, field. If one or moretrigger control registers (TCBTRIGx)

are implemented, and they are using Start, End or About triggers, then the trace mode in TCBCONTROLBTy should
be set to Trace-To mode.

11.14.1 On-Chip Trace Memory Size

The supported on-chip trace memory size can range from 256 bytesto 8 Mbytes, in powers of 2. The actual sizeis
shown in the TCBCONFIGg; field.

11.14.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value whichiis
defined to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is stopped
when the buffer isfull. The TCB then signals buffer full using TCBCONTROLBgg. When external software polling
thisregister findsthe TCBCONTROLBg bit set, it can then read out the internal trace memory. Saving the trace into
the internal buffer will re-commence again only when the TCBCONTROLBgE bit isreset and if the coreis sending
valid trace data.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 325

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



EJTAG Debug Support in the 74K™ Core

11.14.3 Trace-To Mode

In the Trace-To mode, the TCB continues writing to the internal trace memory, overwriting the oldest information,
until the processor reaches an end of trace condition. End of trace is reached by leaving the processor mode/ASID
value which istraced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this point, the
on-chip trace buffer is dumped as described in Section 11.14.2 “Trace-From Mode”.

326 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 12

Instruction Set Overview

This chapter provides an overview of the 74K ™ core instruction set, including the instruction formats and the basic
instruction types.

This chapter discusses the following topics:

» Section 12.1 “CPU Instruction Formats’

»  Section 12.2 “Load and Store Instructions”

e Section 12.3 “Computational Instructions’

e Section 12.4 “Jump and Branch Instructions’

»  Section 12.5 “Control Instructions’

e Section 12.6 “Coprocessor Instructions’

Refer to Chapter 13, “ 74K ™ Processor Core Instructions” for acomplete listing and description of those instructions

whose behavior differsin the 74K processor core. The complete MIPS32 instruction set is described in Volume 11 of
the MIPS32® Architecture For Programmers.

12.1 CPU Instruction Formats

A CPU instruction consists of a single 32-bit word, aligned on aword boundary. There are three instruction formats:
immediate (I-type), jump (J-type), and register (R-type). The use of a small number of instruction formats simplifies
instruction decoding, allowing the compiler to synthesize more complicated (and less frequently used) operations and
addressing modes from these three formats as needed. The instruction formats are shown in Figure 12.1.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 327

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Instruction Set Overview

Figure 12.1 Instruction Formats

I-Type (Immediate)
31 26 25 2120 16 15 0
op rs rt immediate
J-Type (Jump)
31 26 25 0
op target
R-Type (Register)
31 26 25 2120 16 15 1110 65 0
op rs it rd sa funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-hit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address
displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount

12.2 Load and Store Instructions

328

Load and store instructions are immediate (I-type) instructions that move data between memory and the general reg-
isters. The only addressing mode that integer load and store instructions directly support is base register plus 16-bit
signed immediate offset. Floating point load and store instructions can use either that addressing mode or register plus
register indexed addressing.

12.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called adelayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the load
delay dot.

Ina74K core, the instruction immediately following aload instruction can use the contents of the loaded register;
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay dots can be desirable, both for performance and R-Series processor compatibility.

12.2.2 Defining Access Types

Access type indicates the size of a core dataitem to be loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For abig-endian configuration, the low-order byte is the most-significant byte; for alittle-endian con-
figuration, the low-order byte is the least-significant byte.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



12.3 Computational Instructions

The access type, together with the three low-order bits of the address, defines the bytes accessed within the addressed
word, as shown in Table 12.1. Only the combinations shown in Table 12.1 are permissible; other combinations cause
address-error exceptions.

Instruction fetches are either halfword accesses (MIPS16e™ code) or word accesses (32b code). These references
will be impacted by endianness in the same way as load/store references of those sizes.

Table 12.1 Byte Access Within a Doubleword

Bytes Accessed
Low-Order Big Endian Little Endian
Address Bits (63 31 0) (63 31 0)
Access Type 2 1 0
Doubleword 0 0 0
Word 0 0 0
1 0 0
Triplebyte 0 0 0
0 0 1
oo o [5]4]
AEIE 5 6] 7| 7 65
Halfword 0 0 0
0 1 0
oo oa 5 ]3]
K o 7] 7o
Byte 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

12.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or inimme-
diate (I-type) format, in which one operand is a 16-bit immediate.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 329

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Instruction Set Overview

Computational instructions perform the following operations on register values:

Arithmetic

— Logica
—  Shift
— Count Leading Zeros/Ones
— Multiply
— Divide
These operations fit in the following four categories of computational instructions:

ALU Immediate instructions

Three-operand Register-type Instructions

Shift Instructions

Multiply And Divide Instructions

12.3.1 Cycle Timing for Multiply and Divide Instructions

Multiply instruction in the integer pipeline are transferred to the multiplier while remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction isfollowed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the 74K™ Core” for more information on instruction latency
and repeat rates.

12.4 Jump and Branch Instructions

330

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of oneinstruction: that is, the instruction immediately following the jump or branch (the instruction in the so-
called delay slot) always executes while the target instruction is being fetched from storage.

12.4.1 Overview of Jump Instructions

Subroutine callsin high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are Jtype instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-
order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that use the 32-bit byte address contained in one of the general pur-
pose registers.

For more information about jump instructions, refer to the individual instructionsin MIPS32® Architecture Reference
Manual, Volume I1: The MIPS32® Instruction Set.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



12.5 Control Instructions

12.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-hit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of oneinstruction.

If aconditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.
12.5 Control Instructions
Control instructions allow the software to initiate traps; they are always R-type.

12.6 Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 13, “74K™ Processor Core Instructions” for
alisting of CPO instructions.

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 331

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Instruction Set Overview

332 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 13

74K™ Processor Core Instructions

This chapter supplements the MIPS32® Architecture Reference Manual by describing instruction behavior that is
specific to the 74K processor core. The chapter contains the following sections:

e Section 13.1 “Understanding the Instruction Descriptions’

e Section 13.2 “74K™ Opcode Map”

e Section 13.3 “Floating Point Unit Instruction Format Encodings’

*  Section 13.4 “MIPS32™ [nstruction Set for the 74K™ Core”

The 74K processor core aso supports the instructions in the MIPS DSP ASE Revision 2 and the MIPS16e ASE. The
MIPS DSP ASE Revision 2 instruction set is described in Chapter 4, “ The MIPS® DSP Application-Specific

Extension to the MIPS32® Instruction Set”. The MIPS16e ASE instruction set is described in Chapter 14,
“MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set”.

13.1 Understanding the Instruction Descriptions

Refer to Volume |1 of the MIPS32® Architecture Reference Manual for more information about the instruction
descriptions. That document contains a description of the instruction fields, a definition of terms, and a description
function notation.

13.2 74K™ Opcode Map

Table 13.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use, are valid encodings
for ahigher-order MIPS ISA level, or are part of an application specific extension not implemented
on this core. Executing such an instruction will cause a Reserved Instruction Exception.

o (Alsoitalic field name.) Operation or field codes marked with this symbol are afield class. The
instruction word must be further decoded by examining additional tables that show values for
another instruction field.

\% Operation or field codes marked with this symbol represent instructions which are only legal if 64-
bit floating point operations are enabled. In other cases, executing such an instruction will cause a
Reserved Instruction Exception (non-coprocessor encodings or coprocessor instruction encodings
for a coprocessor to which accessis allowed) or a Coprocessor Unusable Exception (coprocessor
instruction encodings for a coprocessor to which accessis not allowed).

() Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 333

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



74K™ Processor Core Instructions

Table 13.2 MIPS32 Encoding of the Opcode Field

opcode | bits28..26
0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0 | 000 [SPECIAL §REGIMM & J JAL BEQ BNE BLEZ BGTZ
1 [001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 |010| COP0OS | COP16 | COP25% | COP1IX BEQL ¢ | BNEL ¢ | BLEZL ¢ | BGTZL ¢
3 | 011 * * * * SPECIAL2| JALX * SPECIAL3
) )
4 | 100 LB LH LWL LW LBU LHU LWR ®
5 | 101 SB SH SWL Sw * * SWR CACHE
6 | 110 LL LWC1 LWC2 PREF #* LDC1 LDC2 ®
7 111 SC SWC1 SwWC2 * * SDC1 SDC2 *

Table 13.3 MIPS32 SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 st MOVCI& | SRLS SRA SLLV * SRLV & SRAV
1 |001 JR? ALR? MOvVZ MOVN |SYSCALL| BREAK * SYNC
2 | 010 MFHI MTHI MFLO MTLO * * * *
3 (011 MULT MULTU DIV DIVU * ® * ®
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 | 101 * * SLT SLTU * ® * *
6 | 110 TGE TGEU TLT TLTU TEQ * TNE *
7 111 * * * * % * % *

1. Specific encodings of thert, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOPR, and
EHB functions.
2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table 13.4 MIPS32 REGIMM Encoding of rt Field

rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL ¢ | BGEZL ¢ * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10 | BLTZAL | BGEZAL BLTZALL ¢{BGEZALL * * * *
¢
3 11 * * * * * * * SYNCI
334 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



13.2 74K™ Opcode Map

Table 13.5 MIPS32 SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 [000| MADD | MADDU MUL * MSUB MSUBU * *
1 001 * * * * * * * *
2 | 010 CorExtend
3 (011
4 | 100 CLz CLO * * * ® * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 | 111 * * * * * * * SDBBP

Table 13.6 MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 EXT * * * INS * * s
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4 | 100 | BSHFL 8 * * * x * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 111 * * * RDHWR * * * *
Table 13.7 MIPS32 MOVCI Encoding of tf Bit
tf bit 16
0 1
MOVF MOVT
Table 13.8 MIPS32 SRL Encoding of Shift/Rotate
tf bit 21
0 1
SRL ROTR
Table 13.9 MIPS32 SRLV Encoding of Shift/Rotate
tf bit 6
0 1
SRLV ROTRV
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 335

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



74K™ Processor Core Instructions

Table 13.10 MIPS32 BSHFLENncoding of sa Field!

sa bits 8..6

0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0 | 00 WSBH

1|0
2 | 10 SEB
3 |11 SEH

1. The safield is sparsely decoded to identify the final instructions. Entriesin this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.

Table 13.11 MIPS32 COPO Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 | 00 | MFCO i * * MTCO & * *
1|01 * * RDPGPR |MEMCOL § * * WRPGPR *
2 |10 Coo
3 |1
1. Release 2 of the Architecture added the MFM CO function, which is further decoded as the DI and El

instructions.

Table 13.12 MIPS32COPO Encoding of Function Field When rs=CO

function bits 2..0
0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * * TLBWR *
1 |001| TLBP * * * * * * *
2 OlO * * * * * * * *
3 |011| ERET * * * * * * DERET
4 |100| WAIT * * * * * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 111 * * * * * * * *

Table 13.13 MIPS32 COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFC1 * CFC1 MFHC1 MTC1 * CTC1 MTHC1
1 01 BC16 * * * * * * *
2 | 10 Sé D& * * W Ld * *
3 11 * * * * * * * *
336 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



13.2 74K™ Opcode Map

Table 13.14 MIPS32 COP1 Encoding of Function Field When rs=S

function bits 2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 | 001 |ROUND.L | TRUNC.L | CEIL.L V | FLOOR.L [ROUND.W|TRUNC.W| CEIL.W [FLOOR.W
\Y% v v
2 | 010 * MOVCF&| MOVZ MOVN * RECIPV | RSQRT V *
3 |o11 * * * * * * * *
4 | 100 * CVTD * * CVTW | CVTLV * *
5 101 * * * * * * * *
6 110 % * % * % * % *
7 111 * % * % * % * *

Table 13.15 MIPS32 COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MoV NEG
1 | 001 |ROUND.L [ TRUNC.L | CEIL.L V | FLOOR.L [ROUND.W|TRUNC.W| CEIL.W [FLOOR.W
\% \% \%
2 | 010 * MOVCF&| MOVZ MOVN * RECIPV | RSQRT V *
3 011 * * * * % * % *
4 [100| CVT.S * * * CVTW | CVTLV * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 111 * * * * * * * *

Table 13.16 MIPS32 COP1 Encoding of Function Field When rs=W or L}

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 oll * * * * * * * *

4 |100| CVTS CVTD * * * * % *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

1. Format type L islegal only if 64-bit floating point operations are enabled.
Table 13.17 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF
tf bit 16
0 1
MOVFEfmt [ MOVT.fmt
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 337

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



74K™ Processor Core Instructions

function bits 2..0

Table 13.18 COP1X Encoding of Function Field?®

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0| 000 | LWXC1V | LDXC1V * * * LUXC1V * *
1| 001 | SWXC1V | SDXC1V * * * SUXC1V * PREFX V
2 010 * * * * * * * *
3 011 * * * * * * 3 *
4 | 100 [MADD.SV |MADD.D V * * * * * *
5] 101 | MSUB.SV |MSUB.D V * * * * * *
6 | 110 | NMADD.S |NMADD.D * * * * * *

\% \%
7 | 111 |NMSUB.SV| NMSUB.D * * * * * *

\%
1. COP1X instructions are legal only if 64-bit floating point operations are enabled.
Table 13.19 MIPS32 COP2 Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111

0| 00 MFC2 & CFC2 MFHC2 MTC2 * cTc2 MTHC2
1|01 BC26 & * * * * * *
2| 10 c2
3| 11

13.3 Floating Point Unit Instruction Format Encodings

338

Instruction format encodings for the floating point unit are presented in this section. Thisinformation isatabular pre-

sentation of the encodings described in tables Table 13.13 and Table 13.18 above.

Table 13.20 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of
COP1 opcode) COP1X opcode)
Decimal Hex | Decimal Hex | Mnemonic Name Bit Width Data Type
0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFCL,
CTC1, etc.). Not used for format encoding.
16 10 0 0 S Single 32 Floating Point
17 11 1 1 D Double 64 Floating Point
0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.
20 14 w Word 32 Fixed Point
21 15 L Long 64 Fixed Point
22 16 6 6 PS Paired Sin- 2x 32 Floating Point
gle

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




13.4 MIPS32™ Instruction Set for the 74K™ Core

Table 13.20 Floating Point Unit Instruction Format Encodings (Continued)

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of
COP1 opcode) COP1X opcode)
Decimal Hex |Decimal| Hex |Mnemonic Name Bit Width Data Type
23 17 7 7 Reserved for future use by the architecture.
24..31 18.1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

13.4 MIPS32™ |nstruction Set for the 74K™ Core

This section describes the M1PS32 instructions for the 74K cores. Table 13.21 lists the instructions in a phabetical
order. Following the table, the instructions that have implementation-dependent behavior in the 74K core are
described individually. The descriptions of other instructions that exist in theMIPS32® Architecture Reference Man-
ual are not duplicated here.

Table 13.21 74K™ Core Instruction Set

Instruction Description Function
ADD Integer Add Rd = Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt = Rs +y Immed
ADDIUPC Unsigned Integer Add Immediate to PC (MIPS16 Rt = PC +, Immed

only)

ADDU Unsigned Integer Add Rd = Rs +y Rt
AND Logical AND Rd = Rs & Rt
ANDI Logical AND Immediate Rt = Rs & (0445 || Immed)
B Unconditional Branch PC += (int)offset

(Assembler idiom for: BEQ r0, r0, offset)

BAL Branch and Link GPR[31] = PC + 8
(Assembler idiom for: BGEZAL r0, offset) PC += (int)offset
BC2F Branch On Cp2 False if (cc[i] == 0) then
PC += (int)offset
BC2FL Branch On Cp2 False Likely if (ccl[i] == 0)then
PC += (int)offset
else

Ignore Next Instruction

BC2T Branch On Cp2True if(cc[i] == 1) then
PC += (int)offset
BC2TL Branch On Cp2 True Likely if (ccl[i] == 1) then
PC += (int)offset

else

Ignore Next Instruction

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 339

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



74K™ Processor Core Instructions

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
BEQ Branch On Equal if Rs == Rt
PC += (int)offset
BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset
else

Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if IRs([31]
PC += (int)offset
BGEZAL Branch on Greater Than or Equal To Zero And Link | GPR[31] = PC + 8
if IRs[31]

PC += (int)offset

BGEZALL Branch on Greater Than or Equal ToZeroAndLink | GPR[31] = PC + 8
Likely if IRs[31]
PC += (int)offset
else

Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely if 'Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if I'Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset
else
Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset
BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else

Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]
PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

340 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation See the description of the CACHE
instruction on page 347.
CFC2 Move Control Word From Cp2 Rt = CP2_Control[Fs]
CLO Count Leading Ones Rd = NumLeadingOnes (Rs)
CLZ Count Leading Zeroes Rd = NumLeadingZeroes (Rs)
COPO Coprocessor 0 Operation See Software User’s Manual
COP2 Coprocessor 2 Operation Implementati on-dependent
CTC2 Move Control Word to Cp2 Cp2 Control[Fs] = Rt
DERET Return from Debug Exception PC = DEPC
Exit Debug Mode
DI Atomically Disable Interrupts Rt = Status; Statusig = 0
DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
EHB Execution Hazard Barrier Stop instruction execution until execution
hazards are cleared
EI Atomically Enable Interrupts Rt = Status; Statusig = 1
ERET Return from Exception if SR[2]
PC = ErrorEPC
else
PC = EPC
SR[1] = 0
SR[2] = 0
LL = 0
EXT Extract Bit Field Rt = ExtractField(Rs, pos,
size)
INS Insert Bit Field Rt = InsertField(Rs, Rt, pos,
size)
J Unconditional Jump PC = PC[31:28] || offset<<2
JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2
JALR Jump and Link Register Rd = PC + 8
PC = Rs

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

13.4 MIPS32™ Instruction Set for the 74K™ Core

341



74K™ Processor Core Instructions

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but aso clears execution and
instruction hazards
JALRC Jump and Link Register Compact - do not execute | Rd = PC + 2
instruction in jump delay slot(MIPS16 only) PC = Rs
JR Jump Register PC = Rs
JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and
instruction hazards
JRC Jump Register Compact - do not executeinstruction | PC = Rs
injump delay slot (MIPS16 only)
LB Load Byte Rt = (byte)Mem[base+offset]
LBU Unsigned Load Byte Rt = (ubyte)Mem[base+offset]
LDC2 Load Doubleword to Cp2 Ft = memory[base+offset]
LH Load Halfword Rt = (half)Mem[base+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[base+offset]
LL Load Linked Word Rt = Mem[base+offset]
LSZe;\Is::) the description of the LL instruc-
tion on page 355.
LUI Load Upper Immediate Rt = immediate << 16
Lw Load Word Rt = Mem[Rs+offset]
LWC2 Load Word to Cp2 Ft = memory[base+offset]
LWPC Load Word, PC relative Rt = Mem[PC+offset]
LWL Load Word L eft See Architecture Reference Manual
LWR Load Word Right See Architecture Reference Manual
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPR[0, Rd, sel]
MFC2 Move From Cp2 Register Rt = Fs31. .0
MFHC2 Move From High Half of Cp2 Register Rt = Fsg3. .32
MFHI Move From HlI Rd = HI
MFLO Move From LO Rd = LO
MOVN GPR Conditional Move on Not Zero if Rt # 0 then
Rd = Rs
MOVZ GPR Conditional Move on Zero if Rt = 0 then
Rd = Rs
342 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



13.4 MIPS32™ Instruction Set for the 74K™ Core

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPR[0, n, Sel] = Rt
MTC2 Move to Cp2 register Fs = Rt
MTHC2 Move to High Half of Cp2 register Fd = Rt || Fs3;, ¢
MTHI Move To HI HI = Rs
MTLO Move To LO LO = Rs
MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)s3; g
MULT Integer Multiply HI | LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOP No Operation
(Assembler idiom for: SLL rO, r0, r0)
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd = Rs | Rt
ORI Logical OR Immediate Rt = Rs | Immed
PREF Prefetch Load Specified Line into Cache. See also
the description of the PREF instruction
on page 357.
RDHWR Read Hardware Register Allows unprivileged access to registers
enabled by HWREna register
RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlpgg, Rd]
RESTORE Restore registers and deall ocate stack frame See Architecture Reference Manual
(MIPS16 only)
ROTR Rotate Word Right Rd = Rtga 1. o || RE31. ca
ROTRV Rotate Word Right Variable Rd = Rtpg1. o || Rt3p. gs
SAVE Save registers and allocate stack frame (MIPS16 See Architecture Reference Manual
only)
SB Store Byte (byte)Mem[base+offset] = Rt
sc Store Conditional Word if LL = 1
mem[base+offset] = Rt
Rt = LL
See also the description of the SC instruc-
tion on page 361.
SDBBP Software Debug Break Point Trap to SW Debug Handler
SDC2 Store Doubleword from Cp2 memory [base+offset] = Ft

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

343



74K™ Processor Core Instructions

344

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
SEB Sign Extend Byte Rd = (byte)Rs
SEH Sign Extend Half Rd = (half)Rs
SH Store Half (half)Mem[base+offset] = Rt
SLL Shift Left Logical Rd = Rt << sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1
else
Rd = 0
SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1
else
Rt = 0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1
else
Rt = 0
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1
else
Rd = 0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscaar Inhibit No Operation NOP
SUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
Sw Store Word Mem[base+offset] = Rt
SWC2 Store Word From Cp2 Register Mem[base+offset] = Fs
SWL Store Word Left See Architecture Reference Manual
SWR Store Word Right See Architecture Reference Manual
SYNC Synchronize See the description of the SYNC instruc-
tion on page 363.
SYNCI Synchronize Caches to Make Instruction Writes For D-cache writeback and I-cache inval-
Effective idate on specified address
SYSCALL System Call SystemCallException

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
TEQ Trap if Equal if Rs == Rt
TrapException
TEQT Trap if Equal Immediate if Rs == (int)Immed
TrapException
TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException
TGEIU Trap if Greater Than or Equal Immediate Unsigned | if (uns)Rs >= (uns)Immed
TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLBWI Write Indexed TLB Entry See the description of the TLBWI
instruction on page 369.
TLBWR Write Random TLB Entry See the description of the TLBWR
instruction on page 373.
TLBP Probe TLB for Matching Entry See Software Users Manual
TLBR Read Index for TLB Entry See the description of the TLBR instruc-
tion on page 367.
TLT Trapif Less Than if (int)Rs < (int)Rt
TrapException
TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException
TNE Trap if Not Equal if Rs != Rt
TrapException
TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException
WAIT Wait for Interrupts Stall until interrupt occurs. Seethe
description of the WAIT instruction on
page 371.
WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlpgg, RA] = Rt
WSBH Word Swap Bytes Within HalfWords Rd = Rty3. 16 || Rt31. .24 || Rt o
|| Rtis. g
XOR Exclusive OR Rd = Rs " Rt
XORI Exclusive OR Immediate Rt = Rs ~ (uns)Immed
ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

13.4 MIPS32™ Instruction Set for the 74K™ Core

345



74K™ Processor Core Instructions

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function
ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs
346 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Perform Cache Operation CACHE

31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Format: CACHE op, offset (base) M1PS32

Purpose: Perform Cache Operation
To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective addressis used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 13.22 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address
Address Physical The effective addressistranslated by the MM U to aphysical address. The physical
address is then used to address the cache
Index N/A The effective address is used to index the cache.

Assuming that the total cache sizein bytesis CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)
IndexBit <« Log2(CS / A)
WayBit ¢ IndexBit + Ceiling(Log2 (A))

Way <« AderayBitfl..IndexBit
Index ¢« AddrijgexBit-1..0ffsetBit

Figure 13.1 Usage of Address Fields to Select Index and Way

[ WayBit[ IndexBit /— OffsetBit
0

Unused Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Maodified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 347

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Perform Cache Operation CACHE

tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occursiif the effective address references a portion of the
kernel address space which would normally result in such an exception.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows

Table 13.23 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache Cop0 Registers Used
2#00 | Primary Instruction ITagLo, ITagHi, IDataLo, IDataHi, ErrCtl
2#01 D Primary Data DTaglLo, DTagHi, DDatalLo, ErrCtl

2#10 T Tertiary - Not supported

2#11 S Secondary L2TagLo

Some of the operations use coprocessor0 registers as either sources or destinations. Each of the caches has a separate
set of Tag and Data registers. The last column in Table 13.23 lists which registers are used by operations to each
cache.

Bits [20:18] of the instruction specify the operation to perform.On Index Load Tag and Index Store Data operations,
the specific word (primary D) or double-word (primary |, secondary) that is addressed is loaded into or read from the
DDatalo (primary D), L23Datalo, and L23DataHi (secondary), or IDatalLo and IDataHi (primary 1) registers. All
other cache instructions are line-based, and the word and byte indexes will not affect their operation

Table 13.24 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[WST, DYT, SPR] Cleared

Effective
Address
Operand
Code Caches Name Type Operation
2#000 | Index Invalidate Index Set the state of the cache line at the specified Yes
index to invalid.
This encoding may be used by software to
invalidate the entire instruction cache by step-
ping through all valid indices.
D,S Index Writeback Index If the state of the cache line at the specified Yes
Invalidate index isvalid and dirty, write the line back to

the memory address specified by the cachetag.
After that operation is completed, set the state
of the cachelinetoinvalid. If thelineisvalid

but not dirty, set the state of the lineto invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through al valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

348

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Perform Cache Operation

CACHE

Table 13.24 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[WST, DYT, SPR] Cleared (Continued)

Code

Caches

Name

Effective
Address
Operand

Type

Operation

2#001

Index Load Tag

Index

» Read the tag for the cache line at the speci-
fied index into the ITagLo and ITagHi regis-
ters.

* Read the data corresponding to the dwordin-
dex into the IDatalLo and IDataHi registers.

« |If parity isimplemented, read the parity bits
corresponding to the datainto ErrCtlp,

Yes

2#001

Index Load Tag

Index

» Read the tag for the cache line at the speci-
fied index into the DTagLo Coprocessor O
register.

* Read the data corresponding to the word
index into the DDatal o register.

» Dataarray parity bits are also read into the
ErrCitl register.

Yes

2#001

Index Load Tag

Index

» Read the tag for the cache line at the speci-
fied index into the L23TagLo Coprocessor
O register.

» Read the data corresponding to the dword
index into the L23Datalo and L23DataHi
registers.

Yes

2#010

Index Store Tag

Index

» Writethetag for the cache block at the spec-
ified index from the ITagLo and ITagHi reg-
isters.

* If parity isimplemented, the parity written
into the cache is generated by the hardware
if ErrCtlpg = 0, or it is obtained from

ITagLo and ITagHi if ErrCtlpg = 1.

Yes

2#010

D,S

Index Store Tag

Index

Write the tag for the cache line at the specified
index from the associated TagLo Coprocessor
0 register.

By default, the tag parity value will be
automatically calculated. For test purposes, the
parity/ECC bits from the associated TagLo
register will be used if ErrCtlpg is set.

This encoding may be used by software to ini-
tialize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo register associated
with the cache be initialized first.

Yes

2#011

Reserved

Unspecified

Executed as a no-op

No

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

349



Perform Cache Operation

CACHE

Table 13.24 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[WST, DYT, SPR] Cleared (Continued)

Code

Caches

Name

Effective
Address
Operand

Type

Operation

2#011

S

Index Store Data

Index

Write the L23DataHi and L23Datal o
Coprocessor O register contents at the way and
dword index specified.

The ECC hits are always generated by the
hardware (if present)

Yes

2#100

All

Hit Invalidate

Address

If the cache line contains the specified address,
set the state of the cache lineto invalid.

This encoding may be used by software to
invalidate arange of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

2#101

Fill

Address

Fill the cache from the specified address.

The cachelineisrefetched even if it isalready
in the cache. In that case, the existing copy in
the cacheisinvalidated

Yes

D,S

Hit WriteBack
Invalidate

Address

If the cache line contains the specified address
anditisvalid and dirty, write the contents back
to memory. After that operation is completed,
set the state of the cachelineto invalid. If the
lineisvalid but not dirty, set the state of theline
toinvalid.

This encoding may be used by software to
invalidate arange of addresses from the data
cache by stepping through the address range
by the line size of the cache.

Yes

2#110

D,S

Hit WriteBack

Address

If the cache line contains the specified address
anditisvalid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state.

Yes

2#111

All

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory isthe least
recently used.

Thelock stateis cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or viaan Index
Store Tag operation with the lock bit reset in
the associated TagLo register.

Itisillegal to lock all ways at a given cache
index. If all ways are locked, subsequent
referencesto that index will displace one of the
locked lines.

Yes

350

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Perform Cache Operation CACHE

Table 13.25 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[WST] Set, ErrCtI[DYT, SPR] Cleared

Effective
Address
Operand
Code Caches Name Type Operation

Read the WS RAM at the specified index into

the ItagLo Coprocessor O register. Yes

2#001 | Index Load WS Index

Read the WS RAM at the specified index into

24001 DS Index Load WS Index the associated TagLo Coprocessor O register.

Yes

Update the WS RAM at the specified index

from the ITagLo Coprocessor O register. Yes

2#010 | Index Store WS Index

2#010 D Index Store WS Index Update the WS RAM at the specified index Yes
from the DTagLo Coprocessor O register.

2#010 S Index Store WS Index Update the WS RAM at the specified index Yes
from the L23TagLo Coprocessor O register.

If ErrCtlpg is set, the dirty parity valuesin the
L23TagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

2#011 | Index Store Data Index Writethe IDatalo and IDataHi Coprocessor 0 Yes
register contents at the way and dword index
specified.

If ErrCtlpg isset, ErrCtlp, isused for the parity

value. Otherwise, the parity valueis calculated
for the write data.

In addition, the precode value for thewrite data
is aso updated in thetag if ErrCtlpcp is not
set. If ErrCtipo is set, ITagHi is used for the
precode value and its corresponding parity bit.
Otherwise, the precode value and its
corresponding parity bit are calculated based
on the write data.

2#011 D Index Store Data Index Write the DDatalLo Coprocessor O register Yes
contents at the way and word index specified.

If ErrCtlpg isset, ErrCtlpp is used for the
parity value. Otherwise, the parity valueis
calculated for the write data.

2#011 S Index Store ECC Index Write the L23Datalo Coprocessor O register Yes
contentsto the ECC hits at the way and dword
index specified.

All Oth- All Other codes should not be used while
ers El’l’CﬂWST isset.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 351

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Perform Cache Operation

CACHE

Table 13.26 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[SPR] Set, ErrCtI[DYT, WST] Cleared

Effective
Address
Operand
Code Caches Name Type Operation
2#001 D Index Load Tag Index Read the SPRAM tag at the specified index into Yes
the TagLo1 Coprocessor O register.
2#010 D Index Store Tag Index Update the SPRAM tag at the specified index Yes
from the TagLo Coprocessor O register.
2#011 D Index Store Data Index Write the DDatalL.o Coprocessor O register Yes
contents into the SPRAM at the word index
specified.
The data parity is always calculated in this
case.
All Oth- D Other codes should not be used while
ers ErrCtlgpg is set.
All ST Secondary and Tertiary operations should not
be performed while ErrCtlgpg is set.

Note: ErrCtlgpg isadon’t care for cache operations to I-cache.

Table 13.27 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[DYT] Set, ErrCtI[SPR, WST] Cleared

Effective
Address
Operand
Code Caches Name Type Operation
2#001 D Index Load Tag Index Read the dirty RAM at the specified index into Yes
the TagLo1 Coprocessor O register.
2#010 D Index Store Tag Index Update the dirty RAM at the specified index Yes
from the TagLol1 Coprocessor O register.
All Oth- D Other codes should not be used while
ers ErrCtlpyT is set.

Note: ErrCtlpyt isadon’t care for cache operations to I-cache.

Restrictions:

The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-

able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation (vAddr, DataReadReference)

352

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05



Perform Cache Operation CACHE

CacheOp (op, VvAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical addressis used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR &0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */
MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 353

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



354 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Load Linked Word LL

31 26 25 21 20 16 15 0
LL
110000 base rt offset
6 5 5 16
Format: L1LL rt, offset (base) M1PS32

Purpose: Load Linked Word
To load aword from memory for an atomic read-modify-write

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed, it starts an active RMW sequence replacing any other sequence that was active. The RMW
seguence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
seguence without attempting a write.
Restrictions:

The addressed |ocation must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 |east-significant bits of the effective address is hon-
zero, an Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

Exceptions:

TLB R€fill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

Thereisno Load Linked Word Unsigned operation corresponding to L oad Word Unsigned.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 355

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



356 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Prefetch PREF

31 26 25 21 20 16 15 0
PREF .
110011 base hint offset
6 5 5 16
Format: PREF hint, offset (base) M1PS32

Purpose: Prefetch
To move data between memory and cache

Description: prefetch_memory (GPR[base] + offset)

PREF adds the 16-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs. However, evenif no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It isimplementation-dependent whether a Bus Error or Cache Error exception is reported, if such an error is detected
as a by-product of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed coherency
attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by aload or store to the effective address.

Table 13.28 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action
0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asif for aload.
1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data asif for astore.
2-3 Reserved Reserved - treated asa NOP.
4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused

extensively; it “streams” through cache.

Action: Fetch data asif for aload. LRU replacement information isignored
and datais placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 islocked,
datawill be placed in the way pointed to by the LRU.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 357

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Prefetch PREF

Table 13.28 Values of hint Field for PREF Instruction

5 store_streamed Use: Prefetched datais expected to be stored or modified but not reused
extensively; it “streams’ through cache.

Action: Fetch data asif for astore. LRU replacement information isignored
and datais placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 islocked,
datawill be placed in the way pointed to by the LRU.

6 load retained Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for aload. LRU replacement information is used, but
way 0 of the cacheis specifically excluded. This prevents streamed
prefetches from displacing the line.

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for astore. LRU replacement information is used, but
way 0 of the cacheis specifically excluded. This prevents streamed
prefetches from displacing the line.

8-24 Reserved Reserved - treated asa NOP.
25 writeback_invalidate (also Action: Schedule awriteback of any dirty data. The cache lineis marked as
known as “nudge’) invalid upon completion of the writeback. If cachelineislocked, no actionis
taken. If alineis clean, it will be marked invalid and there will be no write-
back scheduled.
26-29 Reserved Reserved - treated asa NOP.
30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead

involved in filling the line from memory.

Action: If the reference hits in the cache, no action istaken. If the reference
missesin the cache, aline is selected for replacement, any valid and dirty
victim is written back to memory, the entire lineisfilled with zero data, and
the state of the line is marked asvalid and dirty.

Programming Note: Because the cache lineisfilled with zero dataon acache
miss, software must not assume that this action, in and of itself, can be used
as afast bzero-type function.

31 Fast Prepare For Store Use: Prepare the cache for writing an entire line. No dataisfilled into the
line.

Action: If reference hitsin the cache, no action is taken. If reference misses
in the cache, alineis selected for replacement, any valid and dirty victim is
written back to memory, the line is validated by writing the tag of the line
whileleaving the dataasis.

Programming Note: If the prefetch is not followed by real writes, it is possi-
ble that prevailing data and data parity may indicate a parity error.

Restrictions:

None

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

358 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Prefetch PREF

Exceptions:
Bus Error, Cache Error
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have trandations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It isimplementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a by-product of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 359

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



360 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Store Conditional Word SC

31 26 25 21 20 16 15 0
SC
111000 base rt offset
6 5 5 16
Format: sSC rt, offset (base) M1PS32

Purpose: Store Conditional Word

To store aword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] « GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding L L instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:
e The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

e A, indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a0, indicating failure, is written into GPR rt.
If the following event occurs between the execution of LL and SC, the SC fails:

* AnERET instruction is executed.
If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

* A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

» Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCis UNPREDICTABLE:
»  Execution of SC must have been preceded by execution of an LL instruction.

*  An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The addressis the same if the virtual address, physical address, and cache-coherence
algorithm areidentical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 361

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Store Conditional Word

362

if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

endif
GPR[rt] « 0 || LLbit
Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1, (T0) # load counter
ADDI T2, Tl, 1 # increment
scC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again

NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

|ation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Synchronize Shared Memory SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 Stvpe SYNC
000000 00 0000 0000 0000 O yp 001111
6 15 5 6
Format: SYNC (stype = 0 implied) M1PS32

Purpose: Synchronize Shared Memory
To order loads and stores.

Description:

These types of ordering guarantees are available through the SY NC instruction:
*  Completion Barriers

*  Ordering Barriers

Smple Description of Completion Barrier:

*  SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

» Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

* SYNC isrequired, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release
2 of the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC isrequired on entry to and exit from Debug Mode to guarantee that memory affects are han-
died correctly.

Detailed Description of Completion Barrier:

e SYNC does not guarantee the order in which instruction fetches are performed. A stype value of zero will always
be defined such that it performs the most compl ete set of synchronization operations that are defined. This means
stype zero always does a completion barrier that affects both loads and stores preceding the SYNC instruction
and both loads and stores that are subsequent to the SY NC instruction. Non-zero values of stype may be defined
by the architecture or specific implementations to perform synchronization behaviors that are less complete than
that of stype zero. If an implementation does not use one of these non-zero values to define a different synchroni-
zation behavior, then that non-zero value of stype must act the same as stype zero completion barrier. Thisallows
software written for an implementation with a lighter-weight barrier to work on another implementation which
only implements the stype zero completion barrier.

Smple Description of Ordering Barrier:

e The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

e Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 363

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Synchronize Shared Memory SYNC

364

Detailed Description of Ordering Barrier:

»  Bvery synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SY NC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» |f any memory instruction before the SY NC instruction in program order, generates amemory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

*  Thebarrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Because the core processes |oads and storesin order, ordering barriers are much lighter weight. The LSU does not
issue the RMB and Acquire barrier typesto the BIU. For the MB, WMB, Release barrier types, the LSU will com-
plete any store hits and hit-type cacheops before issuing them to the BIU. The BIU will stop merging on al WBB
entries. No external request will be generated and the core will not wait for pending transactions to complete.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as|oads and stores. That

is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

Table 13.29 lists the avail able completion barrier and ordering barriers behaviors that can be specified using the stype
field.

Table 13.29 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Younger
Olderinstructions instructions Olderinstructions
which must reach | which must reach which must be
the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores
or
SYNC(0)
0x4 SYNC WMB Stores Stores
or
SYNC(4)

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Synchronize Shared Memory

Table 13.29 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Olderinstructions
which must reach

Younger
instructions
which must reach

Olderinstructions
which must be

the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes
0x10 SYNC_MB Loads, Stores Loads, Stores
or
SYNC(16)
O0x11 SYNC_ACQUIRE Loads Loads, Stores
or
SYNC(17)
0x12 SYNC_RELEASE Loads, Stores Stores
or
SYNC(18)
0x13 SYNC_RMB Loads Loads
or
SYNC(19)
0x1, 0x5-0xF,0x14 - RESERVED
Ox1F
Restrictions:

SYNC

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:

None

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

365



366 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO CcO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The EntryHi, EntryLoO, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it isimplementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
Note that the value written to the EntryHi, EntryLo0, and EntryLo1l registers may be different from that originaly
written to the TLB viathese registersin that:

» Thevaluereturned in the G bit in both the EntryLoO and EntryLo1l registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLoO and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢ Index
if i > (TLBEntries - 1) then
UNDEFINED
endif
PageMaskyagk ¢ TLB[1lyagk
EntryHi <«
TLB[1ilyenz ||
0% || TLBIilasmp
EntryLol <« 0 ||
TLB[ilppyy ||
TLB[iley || TLB[ilp; || TLBI[ilyy || TLBIilg
EntryLo0 < 0 ||
TLB[ilpryo ||
TLB[ilge || TLBI[ilpy || TLBI[ilyy || TLBIilg

Exceptions:
Coprocessor Unusable
Machine Check

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 367

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



368 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Write Indexed TLB Entry

TLBWI

31 26 25 24 0
COPO Co 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010

6

Format: TLBWI

Purpose: Write Indexed TLB Entry

1

19

To write a TLB entry indexed by the Index register.

Description:

MIPS32

The TLB entry pointed to by the Index register iswritten from the contents of the EntryHi, EntryLoO, EntryLo1, and
PageMask registers. If multiple TLB matches are detected on a TLBW!I, a Machine Check exception is signaled.
The information written to the TLB entry may be different from that in the EntryHi, EntryLoO, and EntryLo1l regis-

ters, in that:

* Thesingle G bitin the TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-

ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB

entries in the processor.
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢« Index

TLB[1ilyask ¢ PageMasky,qx
TLB[ilypys ¢ EntryHiypys
TLB[i]agrp ¢ EntryHigrp

TLB[i]g ¢ EntryLolg and EntryLoOg

[

[

[
TLB[1i]ppy1 ¢ EntryLolppy
TLB[i]s; ¢ EntryLolg
TLB[i]lp; ¢ EntryLolp
TLB[il]y; ¢ EntryLoly
TLB[i]ppyo ¢ EntryLoOppy
TLB[i]lcp ¢ EntryLoO¢
TLB([i]py ¢« EntryLoOp
TLB[i]yo ¢ EntryLoOy

Exceptions:

Coprocessor Unusable

Machine Check

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

369



370 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Enter Standby Mode WAIT

31 26 25 24 6 5 0
COPO CO . WAIT
010000 1 Implementation-Dependent Code 100000
6 1 19 6
Format: waAIT MIPS32

Purpose: Enter Standby Mode
Wit for Event

Description:

The WAIT instruction forces the core into low-power mode. The pipelineis stalled, and when all externa requests are
completed, the processor's main clock is stopped. The processor will restart when reset (SI_Reset or
SlI_ColdReset) is signaled or when an interrupt is signalled, irrespective of whether the interrupt is enabled or not.
(SI_NMI, SI_Int, or EJ_DINT). Note that the core does not use the code field in this instruction. If the pipeline
restarts as the result of an interrupt, that interrupt is taken between the WAIT instruction and the following instruction
(EPC for theinterrupt points to the instruction following the WAIT instruction).

Restrictions:
The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 371

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



372 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Write Random TLB Entry TLBWR

31 26 25 24 6 5 0
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR MIPS32

Purpose: Write Random TLB Entry
To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register iswritten from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. If multiple TLB matches are detected on a TLBWR, a Machine Check exception is sig-
naled. The information written to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLol
registers, in that:

* Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i < Random

TLB[i]yask ¢ PageMasky,qx
TLB[i]lypyy ¢ EntryHiypys
TLB[ilagrp ¢« EntryHigrp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB([i]ppy1 ¢ EntryLolppy
TLB[i]c; ¢« EntryLolg
TLB([i]lp; ¢ EntryLolp
TLB[i]y; ¢ EntryLoly
TLB[ilppyo & EntryLoOppy
TLB[i]lcp ¢ EntryLoOc
TLB([i]pgy ¢« EntryLoOp
TLB([i]yg ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 373

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



374 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Chapter 14

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e™ ASE as implemented in the 74K core. Refer to Volume 1V-a of the MIPS32
Architecture Reference Manual for a general description of the M1PS16e ASE and detailed descriptions of the
instructions.

This chapter covers the following topics:

e Section 14.1 “Instruction Bit Encoding”

e Section 14.2 “Instruction Listing”
14.1 Instruction Bit Encoding

Table 14.2 through Table 14.9 describe the encoding used for the M1PS16e ASE. Table 14.1 describes the meaning of
the symbols used in the tables.

Table 14.1 Symbols Used in the Instruction Encoding Tables

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction causes a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denote afield class. The
instruction word must be further decoded by examining additional tables that show values for another
instruction field.

B Operation or field codes marked with this symbol represent avalid encoding for a higher-order MIPS
I1SA level. Executing such an instruction causes a Reserved Instruction Exception.

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc. when one
of these encodingsis used. If no instruction is encoded with this value, executing such an instruction
must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor instruction encod-
ings for a coprocessor to which accessis allowed) or a Coprocessor Unusable Exception (coprocessor
instruction encodings for a coprocessor to which accessis not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation of
thisencoding is optional for each implementation. If the encoding is not implemented, executing such
an instruction must cause a Reserved Instruction Exception. If the encoding isimplemented, it must
match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Application Specific Exten-
sions. If the ASE is not implemented, executing such an instruction must cause a Reserved Instruction
Exception.

[0} Operation or field codes marked with this symbol are obsolete and will be removed from afuture revi-

sion of the MIPS64 I SA. Software should avoid using these operation or field codes.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05 375

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

Table 14.2 MIPS16e Encoding of the Opcode Field

opcode | hits13..11
0 1 2 3 4 5 6 7
bits 15..14 000 001 010 011 100 101 110 111
0| 00 | ADDIUSP! | ADDIUPC? B JAL(X) 6 BEQZ BNEZ SHIFT & B
1] 01| RRI-AS | aApDIUSS SLTI SLTIU 188 LI CMPI B
2| 10 LB LH LWSP* LW LBU LHU LWPC? B
3| 11 SB SH SWSPP Sw RRR S RR& EXTEND & B

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
3. The ADDIUS opcode is used by the ADDIU rx, immediate instruction

4. The LWSP opcodeis used by the LW rx, offset(sp) instruction

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

Table 14.3 MIPS16e JAL(X) Encoding of the x Field

X bit 26

0 1
JAL JALX

Table 14.4 MIPS16e SHIFT Encoding of the f Field

f bits1..0
0 1 2 3
00 01 10 11
SLL B SRL SRA

Table 14.5 MIPS16e RRI-A Encoding of the f Field
f bit 4

0 1

ADDIU? p

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

Table 14.6 MIPS16e I8 Encoding of the funct Field

funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ BTNEZ | swRASP! | ADJSP? SVRSS | MOV32R3 * MOVR32*

1. The SWRASP function is used by the SW ra, offset(sp) instruction
2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV 32R function is used by the MOVE r32, rz instruction

376 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



4. The MOVR32 function is used by the MOV E ry, r32 instruction

Table 14.7 MIPS16e RRR Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
B ADDU B SUBU

Table 14.8 MIPS16e RR Encoding of the Funct Field

bits 2..0

funct

14.2 Instruction Listing

0 1 2 3 4 5 6 7
bits 4..3 000 001 010 011 100 101 110 111
0| 00 |JALR(C) 8| SDBBP SLT SLTU SLLV BREAK SRLV SRAV
1| 01 B * CMP NEG AND OR XOR NOT
2| 10 MFHI CNVT MFLO B B * B B
3| 11| MuLT MULTU DIV DIVU B B B B
Table 14.9 MIPS16e I8 Encoding of the s Field when funct=SVRS
S bit 7
0 1
RESTORE SAVE
Table 14.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)
ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JR rx JRra JALR * JRC rx JRCra JALRC *
Table 14.11 MIPS16e RR Encoding of the ry Field when funct=CNVT
ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ZEH B * SEB SEH B *

14.2 Instruction Listing

The MIPS16e instructions are listed by instruction typein Table 14.12 through Table 14.19.

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

377



MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

378

Table 14.12 MIPS16e Load and Store Instructions

Extensible

Mnemonic Instruction Instruction
LB Load Byte Yes
LBU Load Byte Unsigned Yes
LH Load Halfword Yes
LHU Load Halfword Unsigned Yes
LW Load Word Yes
SB Store Byte Yes
SH Store Halfword Yes
Sw Store Word Yes

Table 14.13 MIPS16e Save and Restore Instructions

Extensible

Mnemonic Instruction Instruction
RESTORE Restore Registers and Deallocate Stack Frame Yes
SAVE Save Registers and Setup Stack Frame Yes

Table 14.14 MIPS16e ALU Immediate Instructions

Extensible

Mnemonic Instruction Instruction
ADDIU Add Immediate Unsigned Yes
CMPI Compare Immediate Yes
LI Load Immediate Yes
SLTI Set on Less Than Immediate Yes
SLTIU Set on Less Than Immediate Unsigned Yes

Table 14.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Extensible

Mnemonic Instruction Instruction
ADDU Add Unsigned No
AND AND No
CMP Compare No
MOVE Move No
NEG Negate No

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




14.2 Instruction Listing

Table 14.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Extensible

Mnemonic Instruction Instruction
NOT Not No
OR OR No
SEB Sign-Extend Byte No
SEH Sign-Extend Halfword No
SLT Set on Less Than No
SLTU Set on Less Than Unsigned No
SUBU Subtract Unsigned No
XOR Exclusive OR No
ZEB Zero-Extend Byte No
ZEH Zero-Extend Halfword No

Table 14.16 MIPS16e Special Instructions

Extensible

Mnemonic Instruction Instruction
BREAK Breakpoint No
SDBBP Software Debug Breakpoint No
EXTEND Extend No

Table 14.17 MIPS16e Multiply and Divide Instructions

Extensible

Mnemonic Instruction Instruction
DIV Divide No
DIVU Divide Unsigned No
MFHI Move From HI No
MFLO Move From LO No
MULT Multiply No
MULTU Multiply Unsigned No

Table 14.18 MIPS16e Jump and Branch Instructions

Mnemonic

Instruction

Extensible
Instruction

B

Branch Unconditional

Yes

BEQZ

Branch on Equal to Zero

Yes

BNEZ

Branch on Not Equal to Zero

Yes

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

379

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

380

Table 14.18 MIPS16e Jump and Branch Instructions

Extensible

Mnemonic Instruction Instruction
BTEQZ Branch on T Equal to Zero Yes
BTNEZ Branch on T Not Equal to Zero Yes
JAL Jump and Link No
JALR Jump and Link Register No
JALRC Jump and Link Register Compact No
JALX Jump and Link Exchange No
JR Jump Register No
JRC Jump Register Compact No

Table 14.19 MIPS16e Shift Instructions

Extensible

Mnemonic Instruction Instruction
SRA Shift Right Arithmetic Yes
SRAV Shift Right Arithmetic Variable No
SLL Shift Left Logical Yes
SLLV Shift Left Logical Variable No
SRL Shift Right Logical Yes
SRLV Shift Right Logical Variable No

MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.




Appendix A

References

This appendix lists other publications available from MI1PS Technologies, Inc. that are referenced in this document.
These documents may be included in the SMIPS_PROJECT/doc areaof atypical 74K soft or hard core release, or
in some cases may be available on the MIPS web site http://www.mips.com.

1.

10.

11.

12.

13.

MIPS32® Architecture For Programmers, Volume |: Introduction to the MIPS32 Architecture

MIPS document: MD0082

MIPS32® Architecture For Programmers, Volume I1: The MIPS32 Instruction Set

MIPS document: MD0082

MIPS32® Architecture For Programmers, Volume IV-e: The MIPS® DSP Application-Specific Extension to the

MIPS32 Architecture
MIPS document: MD00374

Programming the MIPS32® 74K ™ Processor Core Family
MIPS document: MD00541

Programming the MIPS 74K™ Family Cores for DSP
MIPS document: MD00544

MIPS32® 74K™ Processor Core Family Integrator’s Guide
MIPS document: MD00499

MIPS32® 74K™ Processor Core Family Implementor’s Guide
MIPS document: MD00498

MIPS32® 74K™ Processor Core System User’'s Manual
MIPS document: MD00647

CorExtend™ Instruction Integrator’s Guide for MIPS32® 74K™ Cores
MIPS document: MD00523

Getting Started with CorExtend® Instructions for MIPS32® 74K™ Cores
MIPS document: MD00524

MIPS® EJTAG Specification
MIPS document: MD00047

MIPS® PDtrace™ Interface and Trace Control Block Specification
MIPS document: MD00439

PDtrace™ and TCB Usage Guidelines
MIPS document: MD00365

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

381


http://www.mips.com/content/Documentation/MIPSDocumentation/ProcessorCores/doclibrary

References

14. MIPS32® Architecture For Programmers, Volume I11: Privileged Resource Architecture
MIPS document: MD00088

382 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



Appendix B

Revision History

MIPS documents include change bars (vertical barsin the page margin) that mark significant changes to the docu-

ment since its last release. Change bars are removed for changes which are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture

document.

Date

Revision

Description

January 31, 2007

01.00

Initial external release

May 25, 2007

01.01

Updates to Pipeline description, CPO registers, FPU
pipeline, CACHE and WAIT instructions

Dec 14, 2007

01.02

Updated to reflect:

Reduction in effective pipeline length by 2 stages
(removal of AP, EF and GR stages)

Instruction buffer sizeincrease to 12 entries
Addition of Instruction cache Prefetching and associ-
ated controlsin Config7prer

Addition of UserLocal Coprocessor O register and
associated controlsin Config3y g;, HWREnal
Addition of Config7y,, to enable unblocking of
wait evenif Status,g iscleared

Inclusion of L23DatalLo and L23DataHi and renam-
ing of STagLo to L23TagLo

Corrections to descriptions of ITagLo and DTagLo
Enhanced description of PerfCtl register

Removed Config6 register

Revised description of CacheErr register

November 14, 2008

01.03

Updated Fig.7.37 to mark bit[10] as unused

Add section on PDtrace, including new registers
Modify document to reflect support for Instruction
Scratchpad RAM (ISPRAM) and optional |-cachesize
of OKB

June 04. 2010

01.04

Add IAR and IVA bits, updated ES bit description in
Config7 Register fields in CPO Registers chapter.
Changed UX, SX, KX, and PX bitsin Status Register
to R (Reserved. reads as 0).

Add FastDebugChannel and Common Device Mem-
ory Map descriptions

Add new CPO registers Configs, CDMMBase, and
ContextConfig

Add new drseg register DebugVectorAddr

MIPS32® 74K™ Processor Core Family Software User’'s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

383



Revision History

Date Revision Description
March 30, 2011 01.05 « Add description of 6 new bitsin DCR.
» Add description of 2 new bitsin Implementation reg-
ister.

» Updated hazard tables.
» Updated description of DC bit in Cause register.

384 MIPS32® 74K™ Processor Core Family Software User's Manual, Revision 01.05
Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.



	MIPS32® 74K™ Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32® 74K™ Core Family
	1.1 74K™ Core Features
	1.1.1 Pipeline
	1.1.2 Instruction Set
	1.1.3 Memory Management, Caches, and Scratchpad Memory
	1.1.4 Interfaces
	1.1.5 Power Control
	1.1.6 Debug
	1.1.7 Other

	1.2 74K™ Core Block Diagram
	1.2.1 Instruction Fetch Unit (IFU)
	1.2.2 Instruction Cache
	1.2.3 Instruction Decode/Dispatch Unit (IDU)
	1.2.4 Instruction Execution Unit (IEU)
	1.2.5 Multiply Divide Unit (MDU)
	1.2.6 CorExtend® User Defined Instructions (UDIs)
	1.2.7 Load Store Unit (LSU)
	1.2.8 System Control Coprocessor (CP0)
	1.2.9 Memory Management Unit (MMU)
	1.2.10 Data Cache
	1.2.11 Scratchpad RAM
	1.2.12 Graduation Unit (GRU)
	1.2.13 Bus Interface Unit (BIU)
	1.2.14 Coprocessor Interface Unit (CIU)
	1.2.15 Power Management
	1.2.16 EJTAG Debug


	Pipeline of the 74K™ Core
	2.1 Integer Pipeline Description
	2.1.1 IFU Pipeline
	2.1.1.1 IT - Instruction Cache Tag Access
	2.1.1.2 ID - Instruction Cache Data Access
	2.1.1.3 IS - Instruction Select
	2.1.1.4 IR - Instruction Recode
	2.1.1.5 IK - Instruction
	2.1.1.6 IX - Instruction Macro Expansion
	2.1.1.7 IB - Instruction Buffer

	2.1.2 Instruction Decode Unit Pipeline
	2.1.2.1 DD - Dispatch Decode
	2.1.2.2 DR - Dispatch Rename
	2.1.2.3 DS - Dispatch Select
	2.1.2.4 DM - DDQ Mux

	2.1.3 ALU Pipeline
	2.1.3.1 AF - ALU Pipe Register File Read
	2.1.3.2 AM - ALU Pipe Operand Bypass Select Mux, This stage has the final operand bypass muxes for the ALU pipe. The functionality corresponding to this stage resides entirely in the IEU.
	2.1.3.3 AC - ALU Compute
	2.1.3.4 AB - ALU Bypass

	2.1.4 MDU Pipeline
	2.1.4.1 MB - Multiplier Booth Recode.
	2.1.4.2 M1- M3 Multiplier Array
	2.1.4.3 M4 - Multiply Add

	2.1.5 AGEN Pipeline
	2.1.5.1 EM - Execute Operand Bypass Select Mux
	2.1.5.2 EA - Execute and Address Generate
	2.1.5.3 EC - Execute and Cache Access
	2.1.5.4 ES - Execute and Cache Second
	2.1.5.5 EB - Execute and Cache Data Bypass

	2.1.6 GRU Pipeline
	2.1.6.1 WB - Writeback
	2.1.6.2 GC - Graduation Commit


	2.2 Programming the 74K Core
	2.3 Hazards
	2.3.1 Types of Hazards
	2.3.1.1 Execution Hazards, Execution hazards are those created by the execution of one instruction, and seen by the execution of...
	2.3.1.2 Instruction Hazards, Instruction hazards are those created by the execution of one instruction, and seen by the instruct...

	2.3.2 Instruction Listing
	2.3.2.1 Instruction Encoding

	2.3.3 Eliminating Hazards


	Floating-Point Unit of the 74Kf™ Core
	3.1 Features Overview
	3.1.1 IEEE Standard 754

	3.2 Enabling the Floating-Point Coprocessor
	3.3 Data Formats
	3.3.1 Floating-Point Formats
	3.3.1.1 Normalized and Denormalized Numbers
	3.3.1.2 Reserved Operand Values-Infinity and NaN
	3.3.1.3 Infinity and Beyond
	3.3.1.4 Signalling Non-Number (SNaN)
	3.3.1.5 Quiet Non-Number (QNaN)

	3.3.2 Fixed-Point Formats

	3.4 Floating-Point General Registers
	3.4.1 FPRs and Formatted Operand Layout
	3.4.2 Formats of Values Used in FP Registers
	3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

	3.5 Floating-Point Control Registers
	3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)
	3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)
	3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)
	3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)
	3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)
	3.5.6 Operation of the FS/FO/FN Bits
	3.5.6.1 Flush To Zero Bit
	3.5.6.2 Flush Override Bit
	3.5.6.3 Flush to Nearest
	3.5.6.4 Recommended FS/FO/FN Settings

	3.5.7 FCSR Cause Bit Update Flow
	3.5.7.1 Exceptions Triggered by CTC1
	3.5.7.2 Generic Flow
	3.5.7.3 Multiply-Add Flow
	3.5.7.4 Cause Update Flow for Input Operands
	3.5.7.5 Cause Update Flow for Unimplemented Operations


	3.6 Instruction Overview
	3.6.1 Data Transfer Instructions
	3.6.1.1 Data Alignment in Loads, Stores, and Moves
	3.6.1.2 Addressing Used in Data Transfer Instructions

	3.6.2 Arithmetic Instructions
	3.6.3 Conversion Instructions
	3.6.4 Formatted Operand-Value Move Instructions
	3.6.5 Conditional Branch Instructions
	3.6.6 Miscellaneous Instructions

	3.7 Exceptions
	3.7.1 Precise Exception Mode
	3.7.2 Exception Conditions
	3.7.2.1 Invalid Operation Exception
	3.7.2.2 Division By Zero Exception
	3.7.2.3 Underflow Exception
	3.7.2.4 Overflow Exception
	3.7.2.5 Inexact Exception
	3.7.2.6 Unimplemented Operation Exception


	3.8 Pipeline and Performance
	3.8.1 Pipeline Overview
	3.8.1.1 DR Stage - Dispatch Rename
	3.8.1.2 C1 - Coprocessor Interface Unit Stage 1
	3.8.1.3 CR Stage - Coprocessor Interface Unit Queue Read
	3.8.1.4 CI Stage - Coprocessor 1 Interface
	3.8.1.5 FR Stage - Decode, Register Read, and Unpack
	3.8.1.6 M1 Stage - Multiply Tree
	3.8.1.7 M2 Stage - Multiply Complete
	3.8.1.8 A1 Stage - Addition First Step
	3.8.1.9 A2 Stage - Addition Second and Final Step
	3.8.1.10 FP Stage - Result Pack
	3.8.1.11 FW Stage - Register Write

	3.8.2 Bypassing
	3.8.3 Repeat Rate and Latency


	The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set
	4.1 Additional Register State for the DSP ASE
	4.1.1 HI-LO Registers
	4.1.2 DSP Control Register

	4.2 Software Detection of the DSP ASE Revision 2

	Memory Management of the 74K™ Core
	5.1 Introduction
	5.2 Modes of Operation
	5.2.1 Virtual Memory Segments
	5.2.1.1 Unmapped Segments
	5.2.1.2 Mapped Segments

	5.2.2 User Mode
	5.2.3 Supervisor Mode
	5.2.4 Kernel Mode
	5.2.4.1 Kernel Mode, User Space (kuseg)
	5.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)
	5.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)
	5.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)
	5.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

	5.2.5 Debug Mode
	5.2.5.1 Debug Mode, Register (drseg)
	5.2.5.2 Debug Mode, Memory (dmseg)


	5.3 Translation Lookaside Buffer
	5.3.1 Joint TLB
	5.3.2 Instruction TLB

	5.4 Virtual-to-Physical Address Translation
	5.4.1 Hits, Misses, and Multiple Matches
	5.4.2 Memory Space
	5.4.2.1 Page Sizes
	5.4.2.2 Replacement Algorithm

	5.4.3 TLB Instructions

	5.5 Fixed Mapping MMU

	Exceptions and Interrupts in the 74K™ Core
	6.1 Exception Conditions
	6.2 Exception Priority
	6.3 Interrupts
	6.3.1 Interrupt Modes
	6.3.1.1 Interrupt Compatibility Mode
	6.3.1.2 Vectored Interrupt Mode
	6.3.1.3 External Interrupt Controller Mode

	6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

	6.4 GPR Shadow Registers
	6.5 Exception Vector Locations
	6.6 General Exception Processing
	6.7 Debug Exception Processing
	6.8 Exception Descriptions
	6.8.1 Reset Exception
	6.8.2 Debug Single Step Exception
	6.8.3 Debug Interrupt Exception
	6.8.4 Non-Maskable Interrupt (NMI) Exception
	6.8.5 Machine Check Exception
	6.8.6 Interrupt Exception
	6.8.7 Debug Instruction Break Exception
	6.8.8 Watch Exception - Instruction Fetch or Data Access
	6.8.9 Address Error Exception - Instruction Fetch/Data Access
	6.8.10 TLB Refill Exception - Instruction Fetch or Data Access
	6.8.11 TLB Invalid Exception - Instruction Fetch or Data Access
	6.8.12 Cache Error Exception
	6.8.13 Bus Error Exception - Instruction Fetch or Data Access
	6.8.14 Debug Software Breakpoint Exception
	6.8.15 Execution Exception - System Call
	6.8.16 Execution Exception - Breakpoint
	6.8.17 Execution Exception - Reserved Instruction
	6.8.18 Execution Exception - Coprocessor Unusable
	6.8.19 Execution Exception - CorExtend block Unusable
	6.8.20 Execution Exception - DSP ASE State Disabled
	6.8.21 Execution Exception - Floating Point Exception
	6.8.22 Execution Exception - Integer Overflow
	6.8.23 Execution Exception - Trap
	6.8.24 Debug Data Break Exception
	6.8.25 TLB Modified Exception - Data Access

	6.9 Exception Handling and Servicing Flowcharts

	CP0 Registers of the 74K™ Core
	7.1 CP0 Register Summary
	7.2 CP0 Register Descriptions
	7.2.1 Index (CP0 Register 0, Select 0): Index into TLB array
	7.2.2 Random (CP0 Register 1, Select 0): Randomly Generated Index into the TLB Array
	7.2.3 EntryLo0-1 (CP0 Registers 2 and 3, Select 0): Output (physical) side of TLB entry
	7.2.4 Context (CP0 Register 4, Select 0): Mixture of Pre-programmed and BadVAddr Bits which can act as an OS Page Table Pointer.
	7.2.5 ContextConfig Register (CP0 Register 4, Select 1)
	7.2.6 UserLocal (CP0 Register 4, Select 2): Address Causing the Last TLB-related Exception
	7.2.7 PageMask (CP0 Register 5, Select 0): Control for Variable Page Size in TLB Entries
	7.2.8 Wired (CP0 Register 6, Select 0): Controls Number of Fixed ("wired") TLB Entries
	7.2.9 HWREna (CP0 Register 7, Select 0): Bitmask Limiting User-mode Access to rdhwr Registers
	7.2.10 BadVAddr (CP0 Register 8, Select 0): Address Causing the Last TLB-related Exception
	7.2.11 Count (CP0 Register 9, Select 0): Free-running Counter at Half the Pipeline Speed
	7.2.12 EntryHi (CP0 Register10, Select 0): High-order Portion of TLB Entry
	7.2.13 Compare (CP0 Register 11, Select 0): Timer Interrupt Control
	7.2.14 Status (CP0 Register 12, Select 0): Processor Status and Control
	7.2.14.1 Interruptibility
	7.2.14.2 Operating Modes
	7.2.14.3 Coprocessor Accessibility

	7.2.15 IntCtl (CP0 Register 12, Select 1): Setup for Interrupt Vector and Interrupt Priority Features
	7.2.16 SRSCtl (CP0 Register12, Select 2): Shadow Register Set Selectors
	7.2.17 SRSMap (CP0 Register 12, Select 3): Shadow Set Choice for Each Interrupt Level in VI Mode
	7.2.18 Cause (CP0 Register 13, Select 0): Cause of Last General Exception
	7.2.19 EPC (CP0 Register 14, Select 0): Restart Address from Exception
	7.2.20 PRId (CP0 Register 15, Select 0): Processor Identification and Revision
	7.2.21 EBase (CP0 Register 15, Select 1): Exception entry point base address and CPU/VPE ID
	7.2.22 CDMMBase Register (CP0 Register 15, Select 2)
	7.2.23 Config (CP0 Register 16, Select 0): Legacy Configuration Register
	7.2.24 Config1-2 (CP0 Register 16, Select 1-2): MIPS32/64 Configuration Registers
	7.2.24.1 Config1
	7.2.24.2 Config2

	7.2.25 Config3 (CP0 Register 16, Select 3): Configuration register showing ASEs
	7.2.26 Config6 (CP0 Register 16, Select 6)
	7.2.27 Config7 (CP0 Register 16, Select 7): CPU-specific Configuration
	7.2.28 WatchLo0-3 (CP0 Register 18, Select 0-3): Watchpoint Address and Qualifiers
	7.2.29 WatchHi0-3 (CP0 Register 19, Select 0-3): Watchpoint Control/Status
	7.2.30 Debug (CP0 Register 23, Select 0): EJTAG Debug Status/Control Register
	7.2.31 Trace Control Register (CP0 Register 23, Select 1)
	7.2.32 Trace Control2 Register (CP0 Register 23, Select 2)
	7.2.33 User Trace Data1 Register (CP0 Register 23, Select 3) and User Trace Data2 Register (CP0 Register 24, Select 3)
	7.2.34 TraceIBPC Register (CP0 Register 23, Select 4)
	7.2.35 TraceDBPC Register (CP0 Register 23, Select 5)
	7.2.36 DEPC (CP0 Register 24, Select 0): Restart Address from Last EJTAG Debug Exception
	7.2.37 Trace Control3 Register (CP0 Register 24, Select 2)
	7.2.38 PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6): Performance Counter Control
	7.2.39 PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7): Performance Counters
	7.2.40 ErrCtl (CP0 Register 26, Select 0): Software Parity Control and Test Modes for Cache RAM Arrays
	7.2.41 CacheErr (CP0 Register 27, Select 0): Cache Parity Exception Status
	7.2.42 ITagLo (CP0 Register 28, Select 0): Read/write Interface for Load/Store Tag Cacheops
	7.2.42.1 ITagLo (ErrCtlWST = 0, ErrCtlSPR = 0)
	7.2.42.2 ITagLo-WST (ErrCtlWST = 1, ErrCtlSPR = 0)
	7.2.42.3 ITagLo-WST (ErrCtlWST = 0, ErrCtlSPR = 1)

	7.2.43 IDataLo (CP0 Register 28, Select 1): Read/write Interface for I-cache Special Cacheops
	7.2.44 DTagLo (CP0 Register 28, Select 2): Read/Write Interface for Load/Store Tag Cacheops
	7.2.44.1 DTagLo (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)
	7.2.44.2 DTagLo-WST(ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)
	7.2.44.3 DTagLo-DYT (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)

	7.2.45 DDataLo (CP0 Register 28, Select 3): Low-order Data Read/Write Interface for D-cache
	7.2.46 L23TagLo (CP0 Register 28, Select 4): L2 and L3 Cacheop Tag Use
	7.2.47 L23DataLo (CP0 Register 28, Select 5): Low-order Data Read/Write Interface for L2 or L3 cache
	7.2.48 ITagHi (CP0 Register 29, Select 0): I-cache Predecode Bits
	7.2.49 IDataHi (CP0 Register 29, Select 1): High-order Data Read/write Interface for I- cache Special Cacheops
	7.2.50 DTagHi (CP0 Register 29, Select 2): D-cache Virtual Index (including ASID)
	7.2.51 L23DataHi (CP0 Register 29, Select 5): High-order Data Read/Write Interface for L2 or L3 cache
	7.2.52 ErrorEPC (CP0 Register 30, Select 0): Restart Location from Reset or Cache Error Exception
	7.2.53 DESAVE (CP0 Register 31, Select 0): Scratch Read/Write Register for EJTAG Debug Exception Handler


	Hardware and Software Initialization of the 74K™ Core
	8.1 Hardware-Initialized Processor State
	8.1.1 Coprocessor 0 State
	8.1.2 TLB Initialization
	8.1.3 Bus State Machines
	8.1.4 Static Configuration Inputs
	8.1.5 Fetch Address

	8.2 Software-Initialized Processor State
	8.2.1 Register File
	8.2.2 TLB
	8.2.3 Caches
	8.2.4 Coprocessor 0 State


	Caches of the 74K™ Core
	9.1 Cache Configurations
	9.2 Instruction Cache
	9.2.1 Virtual Aliasing
	9.2.2 Precode bits
	9.2.3 Parity

	9.3 Data Cache
	9.3.1 Virtual Aliasing
	9.3.2 Parity

	9.4 Write Back Buffer
	9.4.1 Uncached Accelerated Stores

	9.5 Cache Protocols
	9.5.1 Cache Organization
	9.5.2 Cacheability Attributes
	9.5.3 Replacement Policy
	9.5.4 Line Locking

	9.6 CACHE Instruction
	9.7 Software Cache Testing
	9.7.1 I-cache and D-cache Tag Arrays
	9.7.2 I-cache Data Array
	9.7.3 I-cache WS Array
	9.7.4 D-cache Data Array
	9.7.5 D-cache WS Array
	9.7.6 D-cache DirtyArray

	9.8 Memory Coherence Issues

	Power Management in the 74K™ Core
	10.1 Register-Controlled Power Management
	10.2 Instruction-Controlled Power Management

	EJTAG Debug Support in the 74K™ Core
	11.1 Debug Control Register
	11.2 Hardware Breakpoints
	11.2.1 Features of Instruction Breakpoint
	11.2.2 Features of Data Breakpoint
	11.2.3 Instruction Breakpoint Registers Overview
	11.2.4 Data Breakpoint Registers Overview
	11.2.5 Conditions for Matching Breakpoints
	11.2.5.1 Conditions for Matching Instruction Breakpoints
	11.2.5.2 Conditions for Matching Data Breakpoints

	11.2.6 Debug Exceptions from Breakpoints
	11.2.6.1 Debug Exception by Instruction Breakpoint
	11.2.6.2 Debug Exception by Data Breakpoint

	11.2.7 Breakpoint used as TriggerPoint
	11.2.8 Instruction Breakpoint Registers
	11.2.8.1 Instruction Breakpoint Status (IBS) Register
	11.2.8.2 Instruction Breakpoint Address n (IBAn) Register
	11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
	11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
	11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

	11.2.9 Data Breakpoint Registers
	11.2.9.1 Data Breakpoint Status (DBS) Register
	11.2.9.2 Data Breakpoint Address n (DBAn) Register
	11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
	11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
	11.2.9.5 Data Breakpoint Control n (DBCn) Register
	11.2.9.6 Data Breakpoint Value n (DBVn) Register
	11.2.9.7 Data Breakpoint Value High n (DBVHn) Register


	11.3 Test Access Port (TAP)
	11.3.1 EJTAG Internal and External Interfaces
	11.3.2 Test Access Port Operation
	11.3.2.1 Test-Logic-Reset State
	11.3.2.2 Run-Test/Idle State
	11.3.2.3 Select_DR_Scan State
	11.3.2.4 Select_IR_Scan State
	11.3.2.5 Capture_DR State
	11.3.2.6 Shift_DR State
	11.3.2.7 Exit1_DR State
	11.3.2.8 Pause_DR State
	11.3.2.9 Exit2_DR State
	11.3.2.10 Update_DR State
	11.3.2.11 Capture_IR State
	11.3.2.12 Shift_IR State
	11.3.2.13 Exit1_IR State
	11.3.2.14 Pause_IR State
	11.3.2.15 Exit2_IR State
	11.3.2.16 Update_IR State

	11.3.3 Test Access Port (TAP) Instructions
	11.3.3.1 BYPASS Instruction
	11.3.3.2 IDCODE Instruction
	11.3.3.3 IMPCODE Instruction
	11.3.3.4 ADDRESS Instruction
	11.3.3.5 DATA Instruction
	11.3.3.6 CONTROL Instruction
	11.3.3.7 ALL Instruction
	11.3.3.8 EJTAGBOOT Instruction
	11.3.3.9 NORMALBOOT Instruction
	11.3.3.10 FASTDATA Instruction
	11.3.3.11 TCBCONTROLA Instruction
	11.3.3.12 TCBCONTROLB Instruction
	11.3.3.13 TCBCONTROLC Instruction
	11.3.3.14 TCBCONTROLE Instruction
	11.3.3.15 TCBDATA Instruction
	11.3.3.16 PCSAMPLE Instruction
	11.3.3.17 FDC Instruction


	11.4 EJTAG TAP Registers
	11.4.1 Instruction Register
	11.4.2 Data Registers Overview
	11.4.2.1 Bypass Register
	11.4.2.2 Device Identification (ID) Register
	11.4.2.3 Implementation Register
	11.4.2.4 EJTAG Control Register

	11.4.3 Processor Access Address Register
	11.4.3.1 Processor Access Data Register

	11.4.4 Fastdata Register (TAP Instruction FASTDATA)

	11.5 TAP Processor Accesses
	11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

	11.6 PC Sampling
	11.6.1 PC Sampling in Wait State

	11.7 Fast Debug Channel
	11.7.1 Common Device Memory Map
	11.7.2 Fast Debug Channel Interrupt
	11.7.3 74K™Core FDC Buffers
	11.7.4 Sleep mode
	11.7.5 FDC TAP Register
	11.7.6 Fast Debug Channel Registers
	11.7.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)
	11.7.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)
	11.7.6.3 FDC Status (FDSTAT) Register (Offset 0x10)
	11.7.6.4 FDC Receive (FDRX) Register (Offset 0x18)
	11.7.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)


	11.8 MIPS® Trace
	11.8.1 Processor Modes
	11.8.2 Software Versus Hardware Control
	11.8.3 Trace Information
	11.8.4 Load/Store Address and Data Trace Information
	11.8.5 Programmable Processor Trace Mode Options
	11.8.6 Programmable Trace Information Options
	11.8.6.1 User Data Trace

	11.8.7 Enable Trace to Probe On-chip Memory
	11.8.8 TCB Trigger
	11.8.9 Cycle-by-Cycle Information
	11.8.10 Instruction and Data Cache Miss Tracing
	11.8.11 Performance Counter Tracing
	11.8.12 Filtered Data Trace Mode
	11.8.13 PC Tracing Off
	11.8.14 TMOAS Handling
	11.8.15 Memory-mapped Access to On-Chip Trace RAM
	11.8.16 Core-Specific Event Inefficiency Tracing
	11.8.17 Trace Message Format
	11.8.18 Trace Word Format

	11.9 PDtrace™ Registers (Software Control)
	11.10 Trace Control Block (TCB) Registers (Hardware Control)
	11.10.1 TCBCONTROLA Register
	11.10.2 TCBCONTROLB Register
	11.10.3 TCBDATA Register
	11.10.4 TCBCONTROLC Register
	11.10.5 TCBCONTROLE Register
	11.10.6 TCBCONFIG Register (Reg 0)
	11.10.7 TCBTW Register (Reg 4)
	11.10.8 TCBRDP Register (Reg 5)
	11.10.9 TCBWRP Register (Reg 6)
	11.10.10 TCBSTP Register (Reg 7)
	11.10.11 TCBTRIGx Register (Reg 16-23)
	11.10.12 Register Reset State

	11.11 Enabling MIPS Trace
	11.11.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	11.11.2 Turning On PDtrace™ Trace
	11.11.3 Turning Off PDtrace™ Trace
	11.11.4 TCB Trace Enabling
	11.11.5 Tracing a Reset Exception

	11.12 TCB Trigger Logic
	11.12.1 Trigger Units Overview
	11.12.2 Trigger Source Unit
	11.12.3 Trigger Control Units
	11.12.4 Trigger Action Unit
	11.12.5 Simultaneous Triggers
	11.12.5.1 Prioritized Trigger Actions
	11.12.5.2 OR’ed Trigger Actions


	11.13 MIPS Trace Cycle-by-Cycle Behavior
	11.13.1 FIFO Logic in PDtrace and TCB Modules
	11.13.2 Handling of FIFO Overflow in the PDtrace Module
	11.13.3 Handling of FIFO Overflow in the TCB
	11.13.3.1 Probe Width and Clock-ratio Settings

	11.13.4 Adding Cycle Accurate Information to the Trace

	11.14 TCB On-Chip Trace Memory
	11.14.1 On-Chip Trace Memory Size
	11.14.2 Trace-From Mode
	11.14.3 Trace-To Mode


	Instruction Set Overview
	12.1 CPU Instruction Formats
	12.2 Load and Store Instructions
	12.2.1 Scheduling a Load Delay Slot
	12.2.2 Defining Access Types

	12.3 Computational Instructions
	12.3.1 Cycle Timing for Multiply and Divide Instructions

	12.4 Jump and Branch Instructions
	12.4.1 Overview of Jump Instructions
	12.4.2 Overview of Branch Instructions

	12.5 Control Instructions
	12.6 Coprocessor Instructions

	74K™ Processor Core Instructions
	13.1 Understanding the Instruction Descriptions
	13.2 74K™ Opcode Map
	13.3 Floating Point Unit Instruction Format Encodings
	13.4 MIPS32™ Instruction Set for the 74K™ Core
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	WAIT
	TLBWR


	MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set
	14.1 Instruction Bit Encoding
	14.2 Instruction Listing

	References
	Revision History


