
Document Number: MD00519
Revision 01.05
March 30, 2011

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

MIPS
Verified

™

MIPS32® 74K™ Processor Core Family
Software User’s Manual

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Template: nB1.02, Built with tags: 2B

Copyright © 2007-2011 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based,
MIPSsim, MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered
trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 3

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

4 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Introduction to the MIPS32® 74K™ Core Family .. 23
1.1: 74K™ Core Features... 24

1.1.1: Pipeline .. 24
1.1.2: Instruction Set .. 25
1.1.3: Memory Management, Caches, and Scratchpad Memory... 26
1.1.4: Interfaces ... 27
1.1.5: Power Control .. 27
1.1.6: Debug... 27
1.1.7: Other .. 28

1.2: 74K™ Core Block Diagram ... 28
1.2.1: Instruction Fetch Unit (IFU) .. 30
1.2.2: Instruction Cache ... 30
1.2.3: Instruction Decode/Dispatch Unit (IDU) ... 30
1.2.4: Instruction Execution Unit (IEU) ... 31
1.2.5: Multiply Divide Unit (MDU) ... 31
1.2.6: CorExtend® User Defined Instructions (UDIs)... 32
1.2.7: Load Store Unit (LSU).. 32
1.2.8: System Control Coprocessor (CP0)... 32
1.2.9: Memory Management Unit (MMU)... 32
1.2.10: Data Cache .. 33
1.2.11: Scratchpad RAM.. 33
1.2.12: Graduation Unit (GRU)... 33
1.2.13: Bus Interface Unit (BIU) ... 34
1.2.14: Coprocessor Interface Unit (CIU)... 34
1.2.15: Power Management ... 34
1.2.16: EJTAG Debug.. 34

Chapter 2: Pipeline of the 74K™ Core .. 37
2.1: Integer Pipeline Description... 37

2.1.1: IFU Pipeline.. 38
2.1.1.1: IT - Instruction Cache Tag Access ... 38
2.1.1.2: ID - Instruction Cache Data Access.. 39
2.1.1.3: IS - Instruction Select ... 39
2.1.1.4: IR - Instruction Recode... 39
2.1.1.5: IK - Instruction .. 39
2.1.1.6: IX - Instruction Macro Expansion.. 39
2.1.1.7: IB - Instruction Buffer .. 40

2.1.2: Instruction Decode Unit Pipeline .. 40
2.1.2.1: DD - Dispatch Decode.. 40
2.1.2.2: DR - Dispatch Rename... 40
2.1.2.3: DS - Dispatch Select .. 40
2.1.2.4: DM - DDQ Mux ... 41

2.1.3: ALU Pipeline .. 41
2.1.3.1: AF - ALU Pipe Register File Read.. 41
2.1.3.2: AM - ALU Pipe Operand Bypass Select Mux, This stage has the final operand bypass muxes
for the ALU pipe. The functionality corresponding to this stage resides entirely in the IEU. 41
2.1.3.3: AC - ALU Compute... 41

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 5

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.1.3.4: AB - ALU Bypass.. 41
2.1.4: MDU Pipeline ... 42

2.1.4.1: MB - Multiplier Booth Recode. .. 42
2.1.4.2: M1- M3 Multiplier Array .. 42
2.1.4.3: M4 - Multiply Add.. 42

2.1.5: AGEN Pipeline ... 42
2.1.5.1: EM - Execute Operand Bypass Select Mux ... 42
2.1.5.2: EA - Execute and Address Generate ... 42
2.1.5.3: EC - Execute and Cache Access ... 43
2.1.5.4: ES - Execute and Cache Second ... 43
2.1.5.5: EB - Execute and Cache Data Bypass... 43

2.1.6: GRU Pipeline ... 44
2.1.6.1: WB - Writeback... 44
2.1.6.2: GC - Graduation Commit .. 44

2.2: Programming the 74K Core... 44
2.3: Hazards ... 44

2.3.1: Types of Hazards ... 45
2.3.1.1: Execution Hazards, Execution hazards are those created by the execution of one instruction,
and seen by the execution of another instruction. Table 2.2 lists possible execution hazards and
whether they can be resolved via setting of the IHB bit in the CP0 Config7 register.. 46
2.3.1.2: Instruction Hazards, Instruction hazards are those created by the execution of one instruction,
and seen by the instruction fetch of another instruction. Table 2.3 lists instruction hazards. Because the
fetch unit is decoupled from the execution unit, these hazards are rather large. The use of a hazard
barrier instruction is required for reliable clearing of instruction hazards. ... 47

2.3.2: Instruction Listing ... 47
2.3.2.1: Instruction Encoding ... 48

2.3.3: Eliminating Hazards ... 48

Chapter 3: Floating-Point Unit of the 74Kf™ Core... 49
3.1: Features Overview .. 49

3.1.1: IEEE Standard 754 .. 50
3.2: Enabling the Floating-Point Coprocessor .. 50
3.3: Data Formats... 51

3.3.1: Floating-Point Formats... 51
3.3.1.1: Normalized and Denormalized Numbers.. 53
3.3.1.2: Reserved Operand Values—Infinity and NaN .. 53
3.3.1.3: Infinity and Beyond ... 53
3.3.1.4: Signalling Non-Number (SNaN) ... 53
3.3.1.5: Quiet Non-Number (QNaN) .. 53

3.3.2: Fixed-Point Formats... 54
3.4: Floating-Point General Registers .. 55

3.4.1: FPRs and Formatted Operand Layout ... 55
3.4.2: Formats of Values Used in FP Registers ... 55
3.4.3: Binary Data Transfers (32-Bit and 64-Bit) .. 57

3.5: Floating-Point Control Registers.. 58
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control Register 0)... 59
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)................................... 60
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control Register 26) .. 60
3.5.4: Floating-Point Enables Register (FENR, CP1 Control Register 28) .. 61
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)................................ 62
3.5.6: Operation of the FS/FO/FN Bits ... 64

3.5.6.1: Flush To Zero Bit .. 65
3.5.6.2: Flush Override Bit ... 65

6 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.6.3: Flush to Nearest ... 66
3.5.6.4: Recommended FS/FO/FN Settings.. 67

3.5.7: FCSR Cause Bit Update Flow.. 67
3.5.7.1: Exceptions Triggered by CTC1 .. 67
3.5.7.2: Generic Flow .. 67
3.5.7.3: Multiply-Add Flow ... 67
3.5.7.4: Cause Update Flow for Input Operands ... 68
3.5.7.5: Cause Update Flow for Unimplemented Operations .. 68

3.6: Instruction Overview .. 68
3.6.1: Data Transfer Instructions.. 68

3.6.1.1: Data Alignment in Loads, Stores, and Moves .. 69
3.6.1.2: Addressing Used in Data Transfer Instructions .. 69

3.6.2: Arithmetic Instructions.. 70
3.6.3: Conversion Instructions.. 71
3.6.4: Formatted Operand-Value Move Instructions .. 71
3.6.5: Conditional Branch Instructions ... 72
3.6.6: Miscellaneous Instructions ... 73

3.7: Exceptions ... 73
3.7.1: Precise Exception Mode .. 73
3.7.2: Exception Conditions ... 74

3.7.2.1: Invalid Operation Exception.. 75
3.7.2.2: Division By Zero Exception... 75
3.7.2.3: Underflow Exception... 76
3.7.2.4: Overflow Exception... 76
3.7.2.5: Inexact Exception ... 76
3.7.2.6: Unimplemented Operation Exception... 76

3.8: Pipeline and Performance ... 77
3.8.1: Pipeline Overview .. 77

3.8.1.1: DR Stage - Dispatch Rename .. 77
3.8.1.2: C1 - Coprocessor Interface Unit Stage 1.. 77
3.8.1.3: CR Stage - Coprocessor Interface Unit Queue Read... 78
3.8.1.4: CI Stage - Coprocessor 1 Interface .. 78
3.8.1.5: FR Stage - Decode, Register Read, and Unpack... 78
3.8.1.6: M1 Stage - Multiply Tree .. 78
3.8.1.7: M2 Stage - Multiply Complete .. 78
3.8.1.8: A1 Stage - Addition First Step .. 78
3.8.1.9: A2 Stage - Addition Second and Final Step ... 78
3.8.1.10: FP Stage - Result Pack .. 79
3.8.1.11: FW Stage - Register Write.. 79

3.8.2: Bypassing... 79
3.8.3: Repeat Rate and Latency .. 79

Chapter 4: The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set....... 81
4.1: Additional Register State for the DSP ASE ... 81

4.1.1: HI-LO Registers ... 81
4.1.2: DSP Control Register... 81

4.2: Software Detection of the DSP ASE Revision 2.. 83

Chapter 5: Memory Management of the 74K™ Core ... 85
5.1: Introduction.. 85
5.2: Modes of Operation ... 87

5.2.1: Virtual Memory Segments.. 87
5.2.1.1: Unmapped Segments... 88

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 7

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.2.1.2: Mapped Segments ... 89
5.2.2: User Mode.. 89
5.2.3: Supervisor Mode.. 90
5.2.4: Kernel Mode... 92

5.2.4.1: Kernel Mode, User Space (kuseg) ... 94
5.2.4.2: Kernel Mode, Kernel Space 0 (kseg0).. 94
5.2.4.3: Kernel Mode, Kernel Space 1 (kseg1).. 94
5.2.4.4: Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2) ... 95
5.2.4.5: Kernel Mode, Kernel Space 3 (kseg3).. 95

5.2.5: Debug Mode... 95
5.2.5.1: Debug Mode, Register (drseg) ... 96
5.2.5.2: Debug Mode, Memory (dmseg).. 96

5.3: Translation Lookaside Buffer... 97
5.3.1: Joint TLB.. 97
5.3.2: Instruction TLB... 99

5.4: Virtual-to-Physical Address Translation... 100
5.4.1: Hits, Misses, and Multiple Matches.. 101
5.4.2: Memory Space... 102

5.4.2.1: Page Sizes ... 102
5.4.2.2: Replacement Algorithm .. 102

5.4.3: TLB Instructions ... 103
5.5: Fixed Mapping MMU ... 104

Chapter 6: Exceptions and Interrupts in the 74K™ Core.. 107
6.1: Exception Conditions... 107
6.2: Exception Priority... 108
6.3: Interrupts ... 109

6.3.1: Interrupt Modes .. 110
6.3.1.1: Interrupt Compatibility Mode... 110
6.3.1.2: Vectored Interrupt Mode... 112
6.3.1.3: External Interrupt Controller Mode ... 115

6.3.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 117
6.4: GPR Shadow Registers... 118
6.5: Exception Vector Locations ... 120
6.6: General Exception Processing .. 122
6.7: Debug Exception Processing .. 125
6.8: Exception Descriptions .. 126

6.8.1: Reset Exception ... 127
6.8.2: Debug Single Step Exception .. 128
6.8.3: Debug Interrupt Exception ... 128
6.8.4: Non-Maskable Interrupt (NMI) Exception... 129
6.8.5: Machine Check Exception.. 129
6.8.6: Interrupt Exception ... 130
6.8.7: Debug Instruction Break Exception.. 130
6.8.8: Watch Exception — Instruction Fetch or Data Access... 130
6.8.9: Address Error Exception — Instruction Fetch/Data Access... 131
6.8.10: TLB Refill Exception — Instruction Fetch or Data Access ... 132
6.8.11: TLB Invalid Exception — Instruction Fetch or Data Access... 132
6.8.12: Cache Error Exception ... 133
6.8.13: Bus Error Exception — Instruction Fetch or Data Access.. 133
6.8.14: Debug Software Breakpoint Exception .. 134
6.8.15: Execution Exception — System Call.. 134
6.8.16: Execution Exception — Breakpoint.. 134

8 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.8.17: Execution Exception — Reserved Instruction .. 135
6.8.18: Execution Exception — Coprocessor Unusable .. 135
6.8.19: Execution Exception — CorExtend block Unusable .. 136
6.8.20: Execution Exception — DSP ASE State Disabled ... 136
6.8.21: Execution Exception — Floating Point Exception .. 136
6.8.22: Execution Exception — Integer Overflow... 137
6.8.23: Execution Exception — Trap.. 137
6.8.24: Debug Data Break Exception... 137
6.8.25: TLB Modified Exception — Data Access ... 137

6.9: Exception Handling and Servicing Flowcharts .. 138

Chapter 7: CP0 Registers of the 74K™ Core ... 145
7.1: CP0 Register Summary... 145
7.2: CP0 Register Descriptions .. 150

7.2.1: Index (CP0 Register 0, Select 0): Index into TLB array ... 151
7.2.2: Random (CP0 Register 1, Select 0): Randomly Generated Index into the TLB Array................... 152
7.2.3: EntryLo0-1 (CP0 Registers 2 and 3, Select 0): Output (physical) side of TLB entry...................... 152
7.2.4: Context (CP0 Register 4, Select 0): Mixture of Pre-programmed and BadVAddr Bits which can act as
an OS Page Table Pointer. .. 154
7.2.5: ContextConfig Register (CP0 Register 4, Select 1) ... 155
7.2.6: UserLocal (CP0 Register 4, Select 2): Address Causing the Last TLB-related Exception 156
7.2.7: PageMask (CP0 Register 5, Select 0): Control for Variable Page Size in TLB Entries 157
7.2.8: Wired (CP0 Register 6, Select 0): Controls Number of Fixed ("wired") TLB Entries...................... 158
7.2.9: HWREna (CP0 Register 7, Select 0): Bitmask Limiting User-mode Access to rdhwr Registers.... 158
7.2.10: BadVAddr (CP0 Register 8, Select 0): Address Causing the Last TLB-related Exception 160
7.2.11: Count (CP0 Register 9, Select 0): Free-running Counter at Half the Pipeline Speed.................. 160
7.2.12: EntryHi (CP0 Register10, Select 0): High-order Portion of TLB Entry ... 161
7.2.13: Compare (CP0 Register 11, Select 0): Timer Interrupt Control ... 162
7.2.14: Status (CP0 Register 12, Select 0): Processor Status and Control ... 162

7.2.14.1: Interruptibility .. 162
7.2.14.2: Operating Modes .. 163
7.2.14.3: Coprocessor Accessibility... 163

7.2.15: IntCtl (CP0 Register 12, Select 1): Setup for Interrupt Vector and Interrupt Priority Features..... 168
7.2.16: SRSCtl (CP0 Register12, Select 2): Shadow Register Set Selectors.. 169
7.2.17: SRSMap (CP0 Register 12, Select 3): Shadow Set Choice for Each Interrupt Level in VI Mode 171
7.2.18: Cause (CP0 Register 13, Select 0): Cause of Last General Exception 172
7.2.19: EPC (CP0 Register 14, Select 0): Restart Address from Exception .. 176
7.2.20: PRId (CP0 Register 15, Select 0): Processor Identification and Revision 177
7.2.21: EBase (CP0 Register 15, Select 1): Exception entry point base address and CPU/VPE ID 178
7.2.22: CDMMBase Register (CP0 Register 15, Select 2)... 179
7.2.23: Config (CP0 Register 16, Select 0): Legacy Configuration Register.. 180
7.2.24: Config1-2 (CP0 Register 16, Select 1-2): MIPS32/64 Configuration Registers 181

7.2.24.1: Config1 ... 181
7.2.24.2: Config2 ... 183

7.2.25: Config3 (CP0 Register 16, Select 3): Configuration register showing ASEs 183
7.2.26: Config6 (CP0 Register 16, Select 6) .. 184
7.2.27: Config7 (CP0 Register 16, Select 7): CPU-specific Configuration... 187
7.2.28: WatchLo0-3 (CP0 Register 18, Select 0-3): Watchpoint Address and Qualifiers 190
7.2.29: WatchHi0-3 (CP0 Register 19, Select 0-3): Watchpoint Control/Status....................................... 190
7.2.30: Debug (CP0 Register 23, Select 0): EJTAG Debug Status/Control
Register.. 191
7.2.31: Trace Control Register (CP0 Register 23, Select 1) .. 195
7.2.32: Trace Control2 Register (CP0 Register 23, Select 2) .. 197

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 9

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.33: User Trace Data1 Register (CP0 Register 23, Select 3) and User Trace Data2 Register (CP0
Register 24, Select 3)... 199
7.2.34: TraceIBPC Register (CP0 Register 23, Select 4) .. 200
7.2.35: TraceDBPC Register (CP0 Register 23, Select 5)... 201
7.2.36: DEPC (CP0 Register 24, Select 0): Restart Address from Last EJTAG Debug Exception.......... 202
7.2.37: Trace Control3 Register (CP0 Register 24, Select 2) .. 203
7.2.38: PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6): Performance Counter Control 204
7.2.39: PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7): Performance Counters..................................... 209
7.2.40: ErrCtl (CP0 Register 26, Select 0): Software Parity Control and Test Modes for Cache RAM Arrays
209
7.2.41: CacheErr (CP0 Register 27, Select 0): Cache Parity Exception Status....................................... 210
7.2.42: ITagLo (CP0 Register 28, Select 0): Read/write Interface for Load/Store Tag Cacheops........... 212

7.2.42.1: ITagLo (ErrCtlWST = 0, ErrCtlSPR = 0) ... 212
7.2.42.2: ITagLo-WST (ErrCtlWST = 1, ErrCtlSPR = 0) .. 212
7.2.42.3: ITagLo-WST (ErrCtlWST = 0, ErrCtlSPR = 1) .. 213

7.2.43: IDataLo (CP0 Register 28, Select 1): Read/write Interface for I-cache Special Cacheops.......... 213
7.2.44: DTagLo (CP0 Register 28, Select 2): Read/Write Interface for Load/Store Tag Cacheops 214

7.2.44.1: DTagLo (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0) ... 214
7.2.44.2: DTagLo-WST(ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)... 214
7.2.44.3: DTagLo-DYT (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)... 215

7.2.45: DDataLo (CP0 Register 28, Select 3): Low-order Data Read/Write Interface for D-cache.......... 216
7.2.46: L23TagLo (CP0 Register 28, Select 4): L2 and L3 Cacheop Tag Use .. 216
7.2.47: L23DataLo (CP0 Register 28, Select 5): Low-order Data Read/Write Interface for L2 or L3 cache ..
216
7.2.48: ITagHi (CP0 Register 29, Select 0): I-cache Predecode Bits... 217
7.2.49: IDataHi (CP0 Register 29, Select 1): High-order Data Read/write Interface for I-cache Special
Cacheops... 217
7.2.50: DTagHi (CP0 Register 29, Select 2): D-cache Virtual Index (including ASID)............................. 218
7.2.51: L23DataHi (CP0 Register 29, Select 5): High-order Data Read/Write Interface for L2 or L3 cache..
218
7.2.52: ErrorEPC (CP0 Register 30, Select 0): Restart Location from Reset or Cache Error Exception. 219
7.2.53: DESAVE (CP0 Register 31, Select 0): Scratch Read/Write Register for EJTAG Debug Exception
Handler... 219

Chapter 8: Hardware and Software Initialization of the 74K™ Core .. 221
8.1: Hardware-Initialized Processor State .. 221

8.1.1: Coprocessor 0 State .. 221
8.1.2: TLB Initialization... 222
8.1.3: Bus State Machines ... 222
8.1.4: Static Configuration Inputs ... 222
8.1.5: Fetch Address .. 222

8.2: Software-Initialized Processor State.. 222
8.2.1: Register File ... 222
8.2.2: TLB... 223
8.2.3: Caches ... 223
8.2.4: Coprocessor 0 State .. 223

Chapter 9: Caches of the 74K™ Core ... 225
9.1: Cache Configurations .. 225
9.2: Instruction Cache... 225

9.2.1: Virtual Aliasing ... 226
9.2.2: Precode bits ... 226
9.2.3: Parity .. 227

10 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

9.3: Data Cache.. 227
9.3.1: Virtual Aliasing ... 228
9.3.2: Parity .. 229

9.4: Write Back Buffer... 229
9.4.1: Uncached Accelerated Stores.. 230

9.5: Cache Protocols .. 231
9.5.1: Cache Organization ... 231
9.5.2: Cacheability Attributes ... 231
9.5.3: Replacement Policy ... 232
9.5.4: Line Locking ... 233

9.6: CACHE Instruction .. 233
9.7: Software Cache Testing .. 234

9.7.1: I-cache and D-cache Tag Arrays ... 234
9.7.2: I-cache Data Array ... 234
9.7.3: I-cache WS Array ... 234
9.7.4: D-cache Data Array.. 234
9.7.5: D-cache WS Array ... 235
9.7.6: D-cache DirtyArray... 235

9.8: Memory Coherence Issues.. 235

Chapter 10: Power Management in the 74K™ Core .. 237
10.1: Register-Controlled Power Management .. 237
10.2: Instruction-Controlled Power Management ... 238

Chapter 11: EJTAG Debug Support in the 74K™ Core ... 239
11.1: Debug Control Register ... 240
11.2: Hardware Breakpoints ... 244

11.2.1: Features of Instruction Breakpoint ... 244
11.2.2: Features of Data Breakpoint .. 245
11.2.3: Instruction Breakpoint Registers Overview .. 245
11.2.4: Data Breakpoint Registers Overview ... 245
11.2.5: Conditions for Matching Breakpoints ... 246

11.2.5.1: Conditions for Matching Instruction Breakpoints .. 246
11.2.5.2: Conditions for Matching Data Breakpoints ... 246

11.2.6: Debug Exceptions from Breakpoints.. 248
11.2.6.1: Debug Exception by Instruction Breakpoint.. 248
11.2.6.2: Debug Exception by Data Breakpoint... 248

11.2.7: Breakpoint used as TriggerPoint.. 250
11.2.8: Instruction Breakpoint Registers .. 250

11.2.8.1: Instruction Breakpoint Status (IBS) Register .. 250
11.2.8.2: Instruction Breakpoint Address n (IBAn) Register .. 251
11.2.8.3: Instruction Breakpoint Address Mask n (IBMn) Register .. 251
11.2.8.4: Instruction Breakpoint ASID n (IBASIDn) Register ... 252
11.2.8.5: Instruction Breakpoint Control n (IBCn) Register ... 252

11.2.9: Data Breakpoint Registers ... 254
11.2.9.1: Data Breakpoint Status (DBS) Register ... 254
11.2.9.2: Data Breakpoint Address n (DBAn) Register ... 255
11.2.9.3: Data Breakpoint Address Mask n (DBMn) Register ... 255
11.2.9.4: Data Breakpoint ASID n (DBASIDn) Register .. 256
11.2.9.5: Data Breakpoint Control n (DBCn) Register ... 256
11.2.9.6: Data Breakpoint Value n (DBVn) Register ... 258
11.2.9.7: Data Breakpoint Value High n (DBVHn) Register .. 258

11.3: Test Access Port (TAP) ... 259

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 11

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.3.1: EJTAG Internal and External Interfaces... 259
11.3.2: Test Access Port Operation ... 260

11.3.2.1: Test-Logic-Reset State... 261
11.3.2.2: Run-Test/Idle State... 261
11.3.2.3: Select_DR_Scan State... 261
11.3.2.4: Select_IR_Scan State .. 261
11.3.2.5: Capture_DR State .. 262
11.3.2.6: Shift_DR State.. 262
11.3.2.7: Exit1_DR State ... 262
11.3.2.8: Pause_DR State... 262
11.3.2.9: Exit2_DR State ... 262
11.3.2.10: Update_DR State ... 262
11.3.2.11: Capture_IR State.. 262
11.3.2.12: Shift_IR State ... 263
11.3.2.13: Exit1_IR State... 263
11.3.2.14: Pause_IR State .. 263
11.3.2.15: Exit2_IR State... 263
11.3.2.16: Update_IR State ... 263

11.3.3: Test Access Port (TAP) Instructions .. 263
11.3.3.1: BYPASS Instruction.. 264
11.3.3.2: IDCODE Instruction .. 264
11.3.3.3: IMPCODE Instruction ... 264
11.3.3.4: ADDRESS Instruction... 264
11.3.3.5: DATA Instruction .. 264
11.3.3.6: CONTROL Instruction .. 265
11.3.3.7: ALL Instruction.. 265
11.3.3.8: EJTAGBOOT Instruction .. 265
11.3.3.9: NORMALBOOT Instruction .. 265
11.3.3.10: FASTDATA Instruction ... 265
11.3.3.11: TCBCONTROLA Instruction... 266
11.3.3.12: TCBCONTROLB Instruction... 266
11.3.3.13: TCBCONTROLC Instruction... 266
11.3.3.14: TCBCONTROLE Instruction... 266
11.3.3.15: TCBDATA Instruction ... 266
11.3.3.16: PCSAMPLE Instruction .. 266
11.3.3.17: FDC Instruction... 266

11.4: EJTAG TAP Registers... 266
11.4.1: Instruction Register .. 266
11.4.2: Data Registers Overview ... 267

11.4.2.1: Bypass Register ... 267
11.4.2.2: Device Identification (ID) Register .. 267
11.4.2.3: Implementation Register... 268
11.4.2.4: EJTAG Control Register ... 269

11.4.3: Processor Access Address Register.. 275
11.4.3.1: Processor Access Data Register .. 275

11.4.4: Fastdata Register (TAP Instruction FASTDATA) ... 276
11.5: TAP Processor Accesses .. 277

11.5.1: Fetch/Load and Store From/To the EJTAG Probe Through dmseg... 278
11.6: PC Sampling.. 279

11.6.1: PC Sampling in Wait State... 280
11.7: Fast Debug Channel.. 280

11.7.1: Common Device Memory Map... 280
11.7.2: Fast Debug Channel Interrupt.. 280

12 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.7.3: 74K™Core FDC Buffers... 281
11.7.4: Sleep mode.. 283
11.7.5: FDC TAP Register ... 283
11.7.6: Fast Debug Channel Registers .. 284

11.7.6.1: FDC Access Control and Status (FDACSR) Register (Offset 0x0)..................................... 284
11.7.6.2: FDC Configuration (FDCFG) Register (Offset 0x8) .. 285
11.7.6.3: FDC Status (FDSTAT) Register (Offset 0x10) ... 286
11.7.6.4: FDC Receive (FDRX) Register (Offset 0x18) ... 287
11.7.6.5: FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n) .. 287

11.8: MIPS® Trace ... 288
11.8.1: Processor Modes ... 289
11.8.2: Software Versus Hardware Control.. 289
11.8.3: Trace Information ... 289
11.8.4: Load/Store Address and Data Trace Information... 290
11.8.5: Programmable Processor Trace Mode Options... 291
11.8.6: Programmable Trace Information Options ... 291

11.8.6.1: User Data Trace ... 291
11.8.7: Enable Trace to Probe On-chip Memory.. 292
11.8.8: TCB Trigger.. 292
11.8.9: Cycle-by-Cycle Information .. 292
11.8.10: Instruction and Data Cache Miss Tracing .. 292
11.8.11: Performance Counter Tracing.. 293
11.8.12: Filtered Data Trace Mode .. 294
11.8.13: PC Tracing Off ... 294
11.8.14: TMOAS Handling ... 295
11.8.15: Memory-mapped Access to On-Chip Trace RAM.. 297
11.8.16: Core-Specific Event Inefficiency Tracing ... 299
11.8.17: Trace Message Format .. 299
11.8.18: Trace Word Format .. 299

11.9: PDtrace™ Registers (Software Control).. 300
11.10: Trace Control Block (TCB) Registers (Hardware Control)... 300

11.10.1: TCBCONTROLA Register.. 301
11.10.2: TCBCONTROLB Register.. 304
11.10.3: TCBDATA Register .. 308
11.10.4: TCBCONTROLC Register ... 309
11.10.5: TCBCONTROLE Register.. 310
11.10.6: TCBCONFIG Register (Reg 0)... 311
11.10.7: TCBTW Register (Reg 4) ... 312
11.10.8: TCBRDP Register (Reg 5) ... 313
11.10.9: TCBWRP Register (Reg 6) .. 313
11.10.10: TCBSTP Register (Reg 7).. 314
11.10.11: TCBTRIGx Register (Reg 16-23) ... 314
11.10.12: Register Reset State .. 317

11.11: Enabling MIPS Trace... 317
11.11.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints .. 317
11.11.2: Turning On PDtrace™ Trace ... 318
11.11.3: Turning Off PDtrace™ Trace .. 319
11.11.4: TCB Trace Enabling... 320
11.11.5: Tracing a Reset Exception ... 320

11.12: TCB Trigger Logic ... 320
11.12.1: Trigger Units Overview... 320
11.12.2: Trigger Source Unit .. 321
11.12.3: Trigger Control Units .. 322

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 13

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.12.4: Trigger Action Unit ... 322
11.12.5: Simultaneous Triggers ... 322

11.12.5.1: Prioritized Trigger Actions .. 322
11.12.5.2: OR’ed Trigger Actions .. 323

11.13: MIPS Trace Cycle-by-Cycle Behavior ... 323
11.13.1: FIFO Logic in PDtrace and TCB Modules.. 323
11.13.2: Handling of FIFO Overflow in the PDtrace Module .. 323
11.13.3: Handling of FIFO Overflow in the TCB... 324

11.13.3.1: Probe Width and Clock-ratio Settings... 324
11.13.4: Adding Cycle Accurate Information to the Trace.. 325

11.14: TCB On-Chip Trace Memory... 325
11.14.1: On-Chip Trace Memory Size.. 325
11.14.2: Trace-From Mode .. 325
11.14.3: Trace-To Mode... 326

Chapter 12: Instruction Set Overview... 327
12.1: CPU Instruction Formats ... 327
12.2: Load and Store Instructions... 328

12.2.1: Scheduling a Load Delay Slot .. 328
12.2.2: Defining Access Types... 328

12.3: Computational Instructions .. 329
12.3.1: Cycle Timing for Multiply and Divide Instructions... 330

12.4: Jump and Branch Instructions ... 330
12.4.1: Overview of Jump Instructions ... 330
12.4.2: Overview of Branch Instructions .. 331

12.5: Control Instructions.. 331
12.6: Coprocessor Instructions... 331

Chapter 13: 74K™ Processor Core Instructions ... 333
13.1: Understanding the Instruction Descriptions... 333
13.2: 74K™ Opcode Map ... 333
13.3: Floating Point Unit Instruction Format Encodings ... 338
13.4: MIPS32™ Instruction Set for the 74K™ Core ... 339

CACHE.. 347
LL .. 355
PREF... 357
SC ... 361
SYNC .. 363
TLBR ... 367
TLBWI ... 369
WAIT ... 371
TLBWR.. 373

Chapter 14: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set 375
14.1: Instruction Bit Encoding... 375
14.2: Instruction Listing... 377

Appendix A: References .. 381

Appendix B: Revision History ... 383

14 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1.1: 74K™ Core Block Diagram ... 29
Figure 1.2: Address Translation During a Cache Access .. 33
Figure 2.1: 74K™ Core Pipeline .. 38
Figure 3.1: FPU Block Diagram ... 50
Figure 3.2: Single-Precision Floating-Point Format (S) .. 52
Figure 3.3: Double-Precision Floating-Point Format (D) .. 52
Figure 3.4: Word Fixed-Point Format (W) ... 54
Figure 3.5: Longword Fixed-Point Format (L) ... 54
Figure 3.6: Single Floating-Point or Word Fixed-Point Operand in an FPR ... 55
Figure 3.7: Double Floating-Point or Longword Fixed-Point Operand in an FPR .. 55
Figure 3.8: Effect of FPU Operations on the Format of Values Held in FPRs ... 56
Figure 3.9: FPU Word Load and Move-to Operations .. 57
Figure 3.10: FPU Doubleword Load and Move-to Operations ... 57
Figure 3.11: FIR Format .. 59
Figure 3.12: FCCR Format .. 60
Figure 3.13: FEXR Format .. 61
Figure 3.14: FENR Format .. 61
Figure 3.15: FCSR Format .. 62
Figure 3.16: FS/FO/FN Bits Influence on Multiply and Addition Results .. 65
Figure 3.17: Flushing to Nearest when Rounding Mode is Round to Nearest ... 66
Figure 3.18: FPU Pipeline .. 77
Figure 3.19: Arithmetic Pipeline Bypass Paths .. 79
Figure 4.1: MIPS32® DSP ASE Control Register (DSPControl) Format .. 81
Figure 5.1: Address Translation For Cache Access with TLB MMU .. 86
Figure 5.2: Address Translation For Cache Access with FM MMU ... 86
Figure 5.3: 74K™ Processor Core Virtual Memory Map .. 88
Figure 5.4: User Mode Virtual Address Space ... 89
Figure 5.5: Supervisor Mode Virtual Address Space ... 91
Figure 5.6: Kernel Mode Virtual Address Space .. 93
Figure 5.7: Debug Mode Virtual Address Space .. 95
Figure 5.8: JTLB Entry (Tag and Data) .. 97
Figure 5.9: Overview of Virtual-to-Physical Address Translation ... 100
Figure 5.10: 32-bit Virtual Address Translation .. 101
Figure 5.11: TLB Address Translation Flow in the 74K™ Processor Core .. 103
Figure 5.12: FM Memory Map (ERL=0) in the 74K™ Processor Core .. 105
Figure 5.13: FM Memory Map (ERL=1) in the 74K™ Processor Core .. 106
Figure 6.1: Interrupt Generation for Vectored Interrupt Mode .. 114
Figure 6.2: Interrupt Generation for External Interrupt Controller Interrupt Mode .. 116
Figure 6.3: DebugVectorAddr Register Format .. 126
Figure 6.4: General Exception Handler (HW) .. 139
Figure 6.5: General Exception Servicing Guidelines (SW) .. 140
Figure 6.6: TLB Miss Exception Handler (HW) .. 141
Figure 6.7: TLB Exception Servicing Guidelines (SW) ... 142
Figure 6.8: Reset and NMI Exception Handling and Servicing Guidelines .. 143
Figure 7.1: Register Format Color Coding of Access Field Types.. 151
Figure 7.2: Index Register Format ... 151
Figure 7.3: Random Register Format.. 152

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 15

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.4: EntryLo0, EntryLo1 Register Format ... 153
Figure 7-5: Context Register Format... 154
Figure 7.6: ContextConfig Register Format ... 155
Figure 7.7: IUserLocal Register Format .. 156
Figure 7.8: PageMask Register Format .. 157
Figure 7.9: Wired Register Format ... 158
Figure 7.10: HWREna Register Format .. 159
Figure 7.11: BadVAddr Register Format... 160
Figure 7.12: Count Register Format.. 161
Figure 7.13: EntryHi Register Format .. 161
Figure 7.14: Compare Register Format .. 162
Figure 7.15: Status Register Format ... 164
Figure 7.16: IntCtl Register Format... 168
Figure 7.17: SRSCtl Register Format ... 170
Figure 7.18: SRSMap Register Format... 172
Figure 7.19: Cause Register Format .. 172
Figure 7.20: EPC Register Format ... 177
Figure 7.21: PRId Register Format .. 177
Figure 7.22: EBase Register Format... 178
Figure 7.23: CDMMBase Register .. 179
Figure 7.24: Config Register Format... 180
Figure 7.25: Config1 Register Format... 181
Figure 7.26: Config2 Register Format... 183
Figure 7.27: Config3 Register Format... 184
Figure 7.28: Config6 Register Format... 184
Figure 7.29: Config7 Register Format... 187
Figure 7.30: WatchLo Register Format ... 190
Figure 7.31: WatchHi Register Format.. 191
Figure 7.32: Debug Register Format... 192
Figure 7.33: TraceControl Register Format ... 195
Figure 7.34: TraceControl2 Register Format ... 197
Figure 7.35: User Trace Data1 / User Trace Data2 Register Format .. 200
Figure 7.36: TraceIBPC Register Format ... 200
Figure 7.37: TraceDBPC Register Format ... 201
Figure 7.38: DEPC Register Format ... 202
Figure 7.39: TraceControl3 Register Format ... 203
Figure 7.40: PerfCtl0-3 Register Format ... 204
Figure 7.41: Performance Counter Count Register... 209
Figure 7.42: CacheErr Register Format .. 210
Figure 7.43: ITagLo Register Format (ErrCtlWST = 0, ErrCtlSPR = 0)... 212
Figure 7.44: ITagLo Register Format (ErrCtlWST = 1, ErrCtlSPR = 0)... 212
Figure 7.45: ITagLo Register Format (ErrCtlWST = 0, ErrCtlSPR = 1)... 213
Figure 7.46: IDataLo Register Format... 213
Figure 7.47: DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0) 214
Figure 7.48: DTagLo Register Format (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0) 215
Figure 7.49: Field Descriptions for DTagLo-DYT Register.. 215
Figure 7.50: DTagLo-SPT (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1) ... 215
Figure 7.51: DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1) 216
Figure 7.52: DDataLo Register Format ... 216
Figure 7.53: L23TagLo Register Format ... 216
Figure 7.54: L23DataLo Register Format.. 217
Figure 7.55: ITagHi Register Format... 217
Figure 7.56: IDataHi Register Format ... 217

16 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.57: DTagHi Register Format ... 218
Figure 7.58: L23DataHi Register Format .. 218
Figure 7.59: ErrorEPC Register Format.. 219
Figure 7.60: DeSave Register Format .. 219
Figure 9.1: Instruction Cache Organization .. 226
Figure 9.2: Data Cache Organization ... 228
Figure 11.1: Debug Control Register Format .. 240
Figure 11.2: IBS Register Format ... 250
Figure 11.3: IBAn Register Format ... 251
Figure 11.4: IBMn Register Format... 252
Figure 11.5: IBASIDn Register Format ... 252
Figure 11.6: IBCn Register Format ... 253
Figure 11.7: DBS Register Format ... 254
Figure 11.8: DBAn Register Format ... 255
Figure 11.9: DBMn Register Format .. 255
Figure 11.10: DBASIDn Register Format ... 256
Figure 11.11: DBCn Register Format ... 256
Figure 11.12: DBVn Register Format ... 258
Figure 11.13: DBVHn Register Format .. 258
Figure 11.14: TAP Controller State Diagram .. 261
Figure 11.15: Concatenation of the EJTAG Address, Data and Control Registers... 265
Figure 11.16: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 265
Figure 11.17: Device Identification Register Format .. 267
Figure 11.18: Implementation Register Format .. 268
Figure 11.19: EJTAG Control Register Format .. 270
Figure 11.20: Endian Formats for PAD Register... 276
Figure 11.21: Fastdata Register Format .. 276
Figure 11.22: TAP Register PCsample Format... 279
Figure 11.23: Fast Debug Channel Buffer Organization... 282
Figure 11.24: FDC TAP Register Format.. 283
Figure 11.25: FDC Access Control and Status Register Format .. 284
Figure 11.26: FDC Configuration Register Format ... 285
Figure 11.27: FDC Status Register Format... 286
Figure 11.28: FDC Receive Register Format.. 287
Figure 11.29: FDC Transmit Register Format... 287
Figure 11.30: MIPS® Trace Functional Blocks in the 74K™ Core .. 289
Figure 11.31: A TMOAS Trace Record... 296
Figure 11.32: TCBCONTROLA Register Format ... 301
Figure 11.33: TCBCONTROLB Register Format ... 304
Figure 11.34: TCBDATA Register Format ... 308
Figure 11.35: TCBCONTROLC Register Format ... 309
Figure 11.36: TCBCONTROLE Register Format ... 310
Figure 11.37: TCBCONFIG Register Format ... 311
Figure 11.38: TCBTW Register Format ... 313
Figure 11.39: TCBRDP Register Format ... 313
Figure 11.40: TCBWRP Register Format ... 314
Figure 11.41: TCBSTP Register Format .. 314
Figure 11.42: TCBTRIGx Register Format ... 315
Figure 11.43: TCB Trigger Processing Overview.. 321
Figure 12.1: Instruction Formats .. 328
Figure 13.1: Usage of Address Fields to Select Index and Way... 347

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 17

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2.1: 74K™ Core Pipeline Stages Descriptions.. 38
Table 2.2: Execution Hazards... 46
Table 2.3: Instruction Hazards .. 47
Table 2.4: Hazard Instruction Listing .. 47
Table 3.1: Parameters of Floating-Point Data Types.. 51
Table 3.2: Value of Single or Double Floating-Point Data Type Encoding.. 52
Table 3.3: Value Supplied When a New Quiet NaN is Created .. 54
Table 3.4: Coprocessor 1 Register Summary... 58
Table 3.5: Read/Write Properties.. 58
Table 3.6: FIR Bit Field Descriptions... 59
Table 3.7: FCCR Bit Field Descriptions .. 60
Table 3.8: FEXR Bit Field Descriptions... 61
Table 3.9: FENR Bit Field Descriptions... 61
Table 3.10: FCSR Bit Field Descriptions... 62
Table 3.11: Cause, Enables, and Flags Definitions .. 63
Table 3.12: Rounding Mode Definitions.. 64
Table 3.13: Handling Denormalized Floating-point Numbers ... 64
Table 3.14: Zero Flushing for Tiny Results ... 65
Table 3.15: Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting...................... 65
Table 3.16: Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings 65
Table 3.17: Handling of Tiny Final Result Based on FN and FS Bit Settings ... 66
Table 3.18: Recommended FS/FO/FN Settings ... 67
Table 3.19: FPU Data Transfer Instructions.. 69
Table 3.20: FPU Loads and Stores Using Register+Offset Address Mode .. 69
Table 3.21: FPU Loads and Stores Using Register+Register Address Mode .. 69
Table 3.22: FPU Move To and From Instructions ... 69
Table 3.23: FPU IEEE Arithmetic Operations ... 70
Table 3.24: FPU-Approximate Arithmetic Operations ... 70
Table 3.25: FPU Multiply-Accumulate Arithmetic Operations ... 71
Table 3.26: FPU Conversion Operations Using the FCSR Rounding Mode... 71
Table 3.27: FPU Conversion Operations Using a Directed Rounding Mode .. 71
Table 3.28: FPU Formatted Operand Move Instruction .. 72
Table 3.29: FPU Conditional Move on True/False Instructions... 72
Table 3.30: FPU Conditional Move on Zero/Non-Zero Instructions .. 72
Table 3.31: FPU Conditional Branch Instructions ... 73
Table 3.32: Deprecated FPU Conditional Branch Likely Instructions ... 73
Table 3.33: CPU Conditional Move on FPU True/False Instructions .. 73
Table 3.34: Result for Exceptions Not Trapped .. 74
Table 3.35: 74Kf Core FPU Latency and Repeat Rate... 79
Table 4.1: MIPS® DSP ASE Control Register (DSPControl) Field Descriptions .. 82
Table 4.2: DSPControl ouflag Bits ... 83
Table 5.1: User Mode Segments .. 90
Table 5.2: Supervisor Mode Segments... 92
Table 5.3: Kernel Mode Segments ... 94
Table 5.4: Physical Address and Cache Attributes for dseg, dmseg, and drseg .. 96
Table 5.5: CPU Access to drseg... 96
Table 5.6: CPU Access to dmseg ... 96

18 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 5.7: TLB Tag Entry Fields ... 98
Table 5.8: TLB Data Entry Fields.. 98
Table 5.9: Machine Check Exception ... 102
Table 5.10: TLB Instructions ... 103
Table 5.11: Cache Coherency Attributes .. 104
Table 5.12: Cacheability of Segments with Fixed Mapping Translation.. 104
Table 6.1: Priority of Exceptions ... 108
Table 6.2: Interrupt Modes.. 110
Table 6.3: Relative Interrupt Priority for Vectored Interrupt Mode... 113
Table 6.4: Exception Vector Offsets for Vectored Interrupts... 118
Table 6.5: Exception Vector Base Addresses, SI_UseExceptionBase = 0... 120
Table 6.6: Exception Vector Base Addresses, SI_UseExceptionBase = 1... 120
Table 6.8: Exception Vectors .. 121
Table 6.7: Exception Vector Offsets ... 121
Table 6.9: Value Stored in EPC, ErrorEPC, or DEPC on Exception... 123
Table 6.10: Debug Exception Vector Addresses .. 126
Table 6.11: DebugVectorAddr Register Field Descriptions... 126
Table 6.12: Register States an Interrupt Exception .. 130
Table 6.13: Register States on Watch Exception.. 131
Table 6.14: CP0 Register States on Address Exception Error.. 132
Table 6.15: CP0 Register States on TLB Refill Exception .. 132
Table 6.16: CP0 Register States on TLB Invalid Exception.. 133
Table 6.17: CP0 Register States on Cache Error Exception .. 133
Table 6.18: Register States on Coprocessor Unusable Exception ... 135
Table 6.19: Register States on Floating Point Exception.. 136
Table 6.20: Register States on TLB Modified Exception... 138
Table 7.1: CP0 Registers in Alphabetical Order ... 145
Table 7.2: CP0 Registers in Numerical Order... 146
Table 7.3: CP0 Registers Grouped by Function ... 149
Table 7.4: CP0 Register Field R/W Access Types.. 150
Table 7.6: Field Descriptions for Random Register .. 152
Table 7.5: Field Descriptions for Index Register ... 152
Table 7.7: Field Descriptions for EntryLo0-1 Register .. 153
Table 7.8: Cache Coherency Attributes encoding of C field of EntryLo0-1 and K0 field of Config Register 153
Table 7.9: Context Register Field Descriptions.. 154
Table 7.11: Recommended ContextConfig Values... 156
Table 7.12: UserLocal Register Field Description... 156
Table 7.10: ContextConfig Register Field Descriptions ... 156
Table 7.13: Field Descriptions for PageMask Register ... 157
Table 7.14: Field Descriptions for Wired Register... 158
Table 7.15: Field Descriptions for HWREna Register ... 159
Table 7.16: BadVAddr Register Field Description... 160
Table 7.17: Count Register Field Description ... 161
Table 7.18: Field Descriptions for EntryHi Register .. 161
Table 7.19: Compare Register Field Description .. 162
Table 7.20: Field Descriptions for Status Register.. 164
Table 7.21: Field Descriptions for IntCtl Register.. 168
Table 7.22: Field Descriptions for SRSCtl Register .. 170
Table 7.23: Sources for SRSCtlCSS on an Exception or Interrupt... 171
Table 7.24: Field Descriptions for SRSMap Register.. 172
Table 7.25: Field Descriptions for Cause Register.. 173
Table 7.26: Exception Code values in ExcCode Field of Cause Register .. 175
Table 7.27: EPC Register Field Description.. 177

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 19

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 7.28: Field Descriptions for PRId Register .. 177
Table 7.29: Field Descriptions for EBase Register ... 178
Table 7.30: CDMMBase Register Field Descriptions.. 179
Table 7.31: Field Descriptions for Config Register.. 180
Table 7.32: Field Descriptions for Config1 Register.. 182
Table 7.33: Field Descriptions for Config2 Register.. 183
Table 7.34: Field Descriptions for Config3 Register.. 184
Table 7.35: Field Descriptions for Config6 Register.. 185
Table 7.36: Field Descriptions for Config7 Register.. 187
Table 7.37: Field Descriptions for WatchLo0-3 Register... 190
Table 7.38: Field Descriptions for WatchHi0-3 Register ... 191
Table 7.39: Field Descriptions for Debug Register ... 192
Table 7.40: TraceControl Register Field Descriptions .. 195
Table 7.41: TraceControl2 Register Field Descriptions .. 198
Table 7.42: UserTraceData1 / UserTraceData2 Register Field Descriptions ... 200
Table 7.43: TraceIBPC Register Field Descriptions.. 200
Table 7.44: TraceDBPC Register Field Descriptions .. 201
Table 7.45: BreakPoint Control Modes: IBPC and DBPC... 202
Table 7.46: DEPC Register Formats... 202
Table 7.47: TraceControl3 Register Field Descriptions .. 203
Table 7.48: Field Descriptions for PerfCtl0-3 Register.. 204
Table 7.49: Performance Counter Events and Codes .. 204
Table 7.50: Performance Counter Count Register Field Descriptions .. 209
Table 7.51: Field Descriptions for ErrCtl Register... 209
Table 7.52: Field Descriptions for CacheErr Register... 210
Table 7.53: Field Descriptions for ITagLo Register... 212
Table 7.55: Field Descriptions for ITagLo-SPR Register .. 213
Table 7.56: IDataLo Register Field Description .. 213
Table 7.54: Field Descriptions for ITagLo-WST Register.. 213
Table 7.57: Field Descriptions for DTagLo Register ... 214
Table 7.58: Field Descriptions for DTagLo-WST Register .. 215
Table 7.59: Field Descriptions for DTagLo-DYT Register... 215
Table 7.60: Field Descriptions for DTagLo-SPT Register ... 216
Table 7.61: DDataLo Register Field Description... 216
Table 7.62: L23DataLo Register Field Description ... 217
Table 7.63: Field Descriptions for ITagHi Register ... 217
Table 7.65: Field Descriptions for DTagHi Register.. 218
Table 7.66: L23DataHi Register Field Description .. 218
Table 7.64: IDataHi Register Field Description ... 218
Table 7.67: ErrorEPC Register Field Description.. 219
Table 7.68: DeSave Register Field Description .. 219
Table 9.1: Instruction Cache Attributes... 225
Table 9.2: Data Cache Attributes.. 227
Table 9.3: Potential Virtual Aliasing Bits ... 228
Table 9.4: Way Selection Encoding, 4 Ways .. 233
Table 11.1: Debug Control Register Field Descriptions .. 240
Table 11.2: Overview of Status Register for Instruction Breakpoints.. 245
Table 11.3: Overview of Registers for Each Instruction Breakpoint.. 245
Table 11.4: Overview of Status Register for Data Breakpoints... 245
Table 11.5: Overview of Registers for Each Data Breakpoint... 246
Table 11.6: Rules for Update of BS Bits on Data Breakpoint Exceptions... 249
Table 11.7: Addresses for Instruction Breakpoint Registers ... 250
Table 11.8: IBS Register Field Descriptions ... 251

20 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 11.9: IBAn Register Field Descriptions ... 251
Table 11.10: IBMn Register Field Descriptions... 252
Table 11.11: IBASIDn Register Field Descriptions ... 252
Table 11.12: BCn Register Field Descriptions .. 253
Table 11.13: Addresses for Data Breakpoint Registers .. 254
Table 11.14: DBS Register Field Descriptions.. 254
Table 11.15: DBAn Register Field Descriptions.. 255
Table 11.16: DBMn Register Field Descriptions ... 255
Table 11.17: DBASIDn Register Field Descriptions.. 256
Table 11.18: DBCn Register Field Descriptions.. 256
Table 11.19: DBVn Register Field Descriptions.. 258
Table 11.21: EJTAG Interface Pins .. 259
Table 11.20: DBVHn Register Field Descriptions ... 259
Table 11.22: Implemented EJTAG Instructions .. 263
Table 11.24: Implementation Register Descriptions ... 268
Table 11.23: Device Identification Register Field Descriptions ... 268
Table 11.25: EJTAG Control Register Descriptions.. 270
Table 11.26: Fastdata Register Field Description... 276
Table 11.27: Operation of the FASTDATA Access... 277
Table 11.28: FDC TAP Register Field Descriptions.. 283
Table 11.29: FDC Register Mapping... 284
Table 11.30: FDC Access Control and Status Register Field Descriptions .. 284
Table 11.31: FDC Configuration Register Field Descriptions ... 285
Table 11.32: FDC Status Register Field Descriptions... 286
Table 11.33: FDC Receive Register Field Descriptions.. 287
Table 11.35: FDTXn Address Decode .. 288
Table 11.34: FDC Transmit Register Field Descriptions... 288
Table 11.36: TMOAS Trace Record Field Descriptions ... 296
Table 11.37: Mapping TCB Registers in drseg .. 298
Table 11.38: A List of Coprocessor 0 Trace Registers ... 300
Table 11.39: TCB EJTAG Registers ... 300
Table 11.40: Registers Selected by TCBCONTROLB.. 301
Table 11.41: TCBCONTROLA Register Field Descriptions .. 302
Table 11.42: TCBCONTROLB Register Field Descriptions .. 305
Table 11.43: Clock Ratio encoding of the CR field ... 308
Table 11.45: TCBCONTROLC Register Field Descriptions.. 309
Table 11.44: TCBDATA Register Field Descriptions .. 309
Table 11.46: TCBCONTROLE Register Field Descriptions .. 310
Table 11.47: TCBCONFIG Register Field Descriptions .. 311
Table 11.48: TCBTW Register Field Descriptions .. 313
Table 11.49: TCBRDP Register Field Descriptions .. 313
Table 11.50: TCBWRP Register Field Descriptions.. 314
Table 11.51: TCBSTP Register Field Descriptions ... 314
Table 11.52: TCBTRIGx Register Field Descriptions.. 315
Table 12.1: Byte Access Within a Doubleword ... 329
Table 13.1: Symbols Used in the Instruction Encoding Tables... 333
Table 13.2: MIPS32 Encoding of the Opcode Field .. 334
Table 13.3: MIPS32 SPECIAL Opcode Encoding of Function Field ... 334
Table 13.4: MIPS32 REGIMM Encoding of rt Field... 334
Table 13.5: MIPS32 SPECIAL2 Encoding of Function Field... 335
Table 13.6: MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture 335
Table 13.7: MIPS32 MOVCI Encoding of tf Bit ... 335
Table 13.8: MIPS32 SRL Encoding of Shift/Rotate .. 335

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 21

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 13.9: MIPS32 SRLV Encoding of Shift/Rotate .. 335
Table 13.10: MIPS32 BSHFLEncoding of sa Field ... 336
Table 13.11: MIPS32 COP0 Encoding of rs Field... 336
Table 13.12: MIPS32COP0 Encoding of Function Field When rs=CO ... 336
Table 13.13: MIPS32 COP1 Encoding of rs Field... 336
Table 13.14: MIPS32 COP1 Encoding of Function Field When rs=S ... 337
Table 13.15: MIPS32 COP1 Encoding of Function Field When rs=D... 337
Table 13.16: MIPS32 COP1 Encoding of Function Field When rs=W or L... 337
Table 13.17: MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF.. 337
Table 13.18: COP1X Encoding of Function Field ... 338
Table 13.19: MIPS32 COP2 Encoding of rs Field... 338
Table 13.20: Floating Point Unit Instruction Format Encodings.. 338
Table 13.21: 74K™ Core Instruction Set .. 339
Table 13.22: Usage of Effective Address.. 347
Table 13.23: Encoding of Bits[17:16] of CACHE Instruction... 348
Table 13.24: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, DYT, SPR] Cleared..................... 348
Table 13.25: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set, ErrCtl[DYT, SPR] Cleared ... 351
Table 13.26: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[DYT, WST] Cleared ... 352
Table 13.27: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[DYT] Set, ErrCtl[SPR, WST] Cleared ... 352
Table 13.28: Values of hint Field for PREF Instruction ... 357
Table 13.29: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field... 364
Table 14.1: Symbols Used in the Instruction Encoding Tables... 375
Table 14.2: MIPS16e Encoding of the Opcode Field .. 376
Table 14.3: MIPS16e JAL(X) Encoding of the x Field... 376
Table 14.4: MIPS16e SHIFT Encoding of the f Field .. 376
Table 14.5: MIPS16e RRI-A Encoding of the f Field... 376
Table 14.6: MIPS16e I8 Encoding of the funct Field... 376
Table 14.7: MIPS16e RRR Encoding of the f Field... 377
Table 14.8: MIPS16e RR Encoding of the Funct Field ... 377
Table 14.9: MIPS16e I8 Encoding of the s Field when funct=SVRS .. 377
Table 14.10: MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)... 377
Table 14.11: MIPS16e RR Encoding of the ry Field when funct=CNVT ... 377
Table 14.12: MIPS16e Load and Store Instructions ... 378
Table 14.13: MIPS16e Save and Restore Instructions ... 378
Table 14.14: MIPS16e ALU Immediate Instructions ... 378
Table 14.15: MIPS16e Arithmetic Two or Three Operand Register Instructions .. 378
Table 14.16: MIPS16e Special Instructions .. 379
Table 14.17: MIPS16e Multiply and Divide Instructions.. 379
Table 14.18: MIPS16e Jump and Branch Instructions.. 379
Table 14.19: MIPS16e Shift Instructions... 380

22 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 1

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 23

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® 74K™ Core Family

The 74K™ core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS® RISC processor core
family intended for use in custom system-on-silicon applications. The core is designed for semiconductor manufac-
turing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and
peripherals with a high-performance RISC processor. A 74K core is fully synthesizable to allow maximum flexibility;
it is highly portable across processes and can easily be integrated into full system-on-silicon designs. This allows
developers to focus their attention on end-user specific characteristics of their product.

The 74K core is ideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 74K family has two members: the MIPS32® 74Kc™ core and the MIPS32® 74Kf™core:

• The 74Kc 32-bit RISC core is optimized for high-performance applications.

• The 74Kf core adds an IEEE-754 compliant floating point unit.

The core implements the MIPS32 Release 2 Instruction Set Architecture (ISA). It also implements the following
Application-Specific Extensions (ASEs):

• The MIPS® DSP Application-Specific Extension (ASE) is optimized for signal-processing applications.

• The MIPS16e™ Application-Specific Extension (ASE) is optimized for code compression.

The 74K core achieves its high performance through the implementation of advanced superscalar and out-of-order
dispatch techniques in a deeply pipelined implementation of the MIPS32® architecture. The superscalar dispatch
allows the core to dispatch two instructions per cycle to two pipelines: a 15-stage AGEN pipeline that executes all
load/store and control transfer instructions, and a 14-stage ALU pipeline that executes all the rest of the instructions
(arithmetic, logic, and general computations). The out-of-order approach allows each pipeline to operate indepen-
dently and select from a pool of instructions for dispatch; and to ensure the availability of two instructions for dis-
patch, twice that number of instructions are fetched every cycle from an instruction cache. The 74K core also
implements sophisticated branch prediction techniques that minimize the cost of a mispredicted branch in such a
deeply pipelined core.

On the 74K core, instruction caches are configurable as 0, 16, 32, or 64 KB, and data caches are configurable as 0, 16,
32, or 64 KB in size. Each cache is organized as a 4-way set-associative data structure. The 74K core supports
prefetching of sequential cache lines on instruction cache misses. The extent of prefetching can be configured via
software to prefetch between 0 and 2 additional lines. The data cache features non-blocking load misses and can han-
dle up to 9 outstanding load misses in up to 4 unique cache lines. On a cache miss, the processor can continue execut-
ing instructions while the load data is being fetched until a dependent instruction is reached. Both caches are virtually
indexed and physically tagged. The MMU of the 74K core may contain a 4-entry instruction TLB (ITLB) and a dual-
entry joint TLB (JTLB), with variable page sizes. The JTLB can be configured to have 16, 32, 48, or 64 dual entries.
Optionally, the TLB can be replaced with a simplified fixed mapping (FM) translation mechanism for applications
that do not require the full capabilities of a TLB.

 Introduction to the MIPS32® 74K™ Core Family

24 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The Multiply Divide Unit (MDU) is fully pipelined and supports a maximum issue rate of one 32x32 multiply (MUL/
MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single-stepping, and re-start, as well
as software breakpoints using the SDBBP instruction. Support for connection to an external EJTAG probe through the
Test Access Port (TAP) and the Fast Debug Channel mechanism for efficient data transfer are also included. Instruc-
tion and data virtual address hardware breakpoints can be optionally included. In addition, optional PDtrace™ hard-
ware provides the ability to trace program flow, load/store addresses, and load/store data. Several run-time options
exist for the level of information which is traced, including tracing only when in specific processor modes (e.g., User
Mode or Kernel Mode).

The bus interface implements the Open Core Protocol (OCP) using 64-bit read and write data busesThe bus interface
may operate at the same rate or at a lower clock rate than the core itself.

1.1 74K™ Core Features

1.1.1 Pipeline

• Superscalar, dual-issue core supports two integer execution pipes

• 15-stage AGEN pipe: supports load/store, control transfer. and conditional move instructions

• 14-stage ALU pipe: supports all other arithmetic, logic, and computation instructions

• Out-of-order integer instruction dispatch

• Selects one of eight instructions in each pipe

• Multiply Divide Unit

• Offshoot of the ALU Pipe

• Maximum issue rate of one 32x32 multiply per clock

• Early-in divide control. Minimum 11, maximum 50-cycle clock latency on divide

• Dual- Issue Floating Point Unit supports two pipes (74Kf only)

• Arithmetic pipe

• To/From or Data transfer pipe

• Floating point instruction dispatch is maintained in-order

• Dynamic branch/return prediction

• Majority predictor featuring three tables of 256 entries, each with global history

• 8-entry return prediction stack

1.1 74K™ Core Features

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 25

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

1.1.2 Instruction Set

• MIPS32 Compatible Instruction Set

• Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

• Targeted multiply instruction (MUL)

• Zero and one detect instructions (CLZ, CLO)

• Wait instruction (WAIT)

• Conditional move instructions (MOVZ, MOVN)

• Prefetch instruction (PREF)

• MIPS32® Enhanced Architecture (Release 2) Features

• Vectored interrupts and support for an external interrupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow sets: 1 to 4 sets are supported

• Bit field manipulation instructions

• MIPS DSP ASE Rev 2

• Fractional data types (Q15, Q31)

• Saturating arithmetic

• SIMD instructions operated on 2x16b or 4x8b simultaneously

• 3 additional pairs of accumulator registers

• MIPS16e™ Application-Specific Extension

• 16-bit encodings of 32-bit instructions to improve code density

• Special PC-relative instructions for efficient loading of addresses and constants

• Data type conversion instructions (ZEB, SEB, ZEH, SEH)

• Compact jumps (JRC, JALRC)

• Stack frame set-up and tear-down macro instructions (SAVE and RESTORE)

• Floating Point Instruction support (74Kf)

• IEEE-754 compliant floating point unit

 Introduction to the MIPS32® 74K™ Core Family

26 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Compliant with MIPS 64-bit FPU standards

• Supports single and double precision datatypes

• CorExtend® User-Defined Instruction capability

• Support for the CorExtend feature allows users to define and add instructions to the core

• 3, 5, or multi-cycle latencies supported

• Source operands from register, immediate field, or local state

• Destination to a register or local state

• Interface to multiply-divide unit, allowing sharing of accumulator registers

1.1.3 Memory Management, Caches, and Scratchpad Memory

• Standard Memory Management Unit

• 16, 32, 48, or 64 dual-entry MIPS32-style JTLB with variable page sizes

• 4-entry instruction TLB

• Optional Memory Management Unit

• Simple Fixed Mapping Translation (FM)

• Address spaces mapped using register bits

• Caches

• Individually configurable instruction and data caches

• Instruction cache sizes of 0, 16, 32, or 64 KB

• Data cache sizes of 0, 16, 32, or 64 KB

• Data cache access widths can be configured to be 64b or 128b

• 4-way set associative

• 256-bit (32-byte) cache line size

• Configurable instruction cache line prefetch, to fetch between 0 to 2 additional cache lines on a miss

• Non-blocking data cache

• Up to 4 data cache line misses or 9 unique load misses

• Data cache supports write-back with write-allocation and write-through without write-allocation

• Virtually indexed, physically tagged

1.1 74K™ Core Features

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 27

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Cache line locking support

• Configurable support for parity

• Support for front-side external L2 cache

• Configurable support for elimination of aliases in 32 and 64KB data caches

• Independent Instruction and Data Scratch Pad RAMs

• Address range of 4K - 1MB supported

• 64-bit OCP interfaces for external access

1.1.4 Interfaces

• OCP Interface

• 32b address and 64b data

• Core/bus ratios of 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, and 10 are supported

• Supports bursts of 4x64b

• 4-entry write buffer that handles eviction data, write-through, uncached, and uncached accelerated store data

• Simple Byte Enable mode allows easy bridging to other bus standards

• Extensions for management of front-side L2 cache

• Critical data first and sub-block ordering support

• IEEE standard JTAG interface

1.1.5 Power Control

• No minimum frequency

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of fine-grain clock gating

1.1.6 Debug

• EJTAG Debug Support via JTAG interface

• CPU control with start, stop, and single stepping

• Software breakpoints via the SDBBP instruction

 Introduction to the MIPS32® 74K™ Core Family

28 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Optional hardware breakpoints on virtual addresses: 4 instruction and 2 data breakpoints

• Test Access Port (TAP) facilitates high-speed download of application code

• Fast Debug Channel with configurable FIFO depth for efficient data transfer to and from probe

• Optional MIPS PDtrace™ hardware to enable real-time tracing of executed code

1.1.7 Other

• R4000 Style Privileged Resource Architecture

• Count/Compare registers for real-time timer interrupts

• Instruction and data watch registers for software breakpoints

• Relocatable Bootstrap Exception Vector support

• Support for hardware selectable exception base in a multi-core environment

1.2 74K™ Core Block Diagram

The 74K core contains a number of blocks, shown in Figure 1.1. The major blocks are:

• Instruction Fetch Unit (IFU)

• Instruction Cache (I-cache)

• Instruction Decode and Dispatch Unit (IDU)

• Instruction Execution Unit (IEU)

• Multiply/Divide Unit (MDU)

• CorExtend® User Defined Instructions (UDI)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Load Store Unit (LSU)

• Data Cache (D-cache)

• Graduation unit (GRU)

• Bus Interface Unit (BIU)

• Coprocessor Interface unit (CIU) (only in 74Kf)

• Floating Point Unit (FPU) (only in 74Kf)

1.2 74K™ Core Block Diagram

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 29

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Power Management

• Enhanced JTAG (EJTAG) Controller

Figure 1.1 74K™ Core Block Diagram

The functional blocks shown in Figure 1.1 are described in the following subsections.

Bus Interface Unit (BIU)

Instruction Fetch Unit
(IFU)

Instruction
Decode/Dispatch

Unit (IDU)

Memory Management
Unit (MMU)

16-64 entry JTLB or FMT

4-way set associative

I-cache

4-way set associative

ALU PIPE

Integer Execution Unit
(IEU)

Multiply/Divide Unit
(MDU)

CorExtend

AGEN PIPE

Load/Store Unit (LSU)
Non-blocking

Data Scratchpad
RAM (DSPRAM)

4 KB - 1 MB

Coprocessor
Interface Unit (CIU)

Coprocessor 1 (CP1/FPU)

Graduation Unit (GRU) System Coprocessor

Power Management

EJTAG

0-64 KB

On-Chip Bus(es)

Off-chip
Debug I/F

CorExtend I/F

DSPRAM
DMA OCP I/F

OCP Interface

Trace
TAP

Off/On-chip
Trace I/F

Instruction
Scratchpad

RAM (ISPRAM)
ISPRAM

DMA OCP I/F
4 KB - 1 MB

Fixed/Required Optional

4-entry write buffer, 6-8 out-
standing reads

4outstanding misses

 D-cache 0-64 KB

 Introduction to the MIPS32® 74K™ Core Family

30 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

1.2.1 Instruction Fetch Unit (IFU)

The Instruction Fetch Unit (IFU) is responsible for fetching instructions from the instruction cache/memory and pro-
viding them to the IDU. The IFU can fetch up to 4 instructions at a time from an aligned fetch address. The IFU has a
4-entry microTLB which is used to translate the virtual fetch address into the physical fetch address. This translated
physical address is used to compare against tags in the instruction cache to determine a hit.

The IFU uses majority branch prediction based on gshare predictors. There are three, 256-entry Branch History
Tables that are indexed by different combinations of the instruction PC and Global History. The majority of these
three predictions are used to determine the predicted direction of a conditional branch. The IFU also has an 8-entry
Return Prediction Stack to predict subroutine return addresses.

There is a 12-entry Instruction Buffer to decouple the instruction fetch from execution. Up to 4 instructions at a time
can be written into this buffer, but a maximum of 2 instructions at a time can be read from this buffer by the IDU.

The 74K core includes supports for the MIPS16e ASE. This ASE improves code density through the use of 16-bit
encoding of many MIPS32 instructions plus some MIPS16e-specific instructions. The IFU contains the logic for the
handling of MIPS16e instructions.

1.2.2 Instruction Cache

The instruction cache is an on-chip memory block of 0/16/32/64 KB, with 4-way associativity. The instruction cache
is virtually indexed and physically tagged, allowing the virtual-to-physical address translation to occur in parallel
with the cache access, rather than having to wait for the physical address translation.

A tag entry holds 21 bits of physical address, a valid bit, a lock bit, and an optional parity bit. There are 7 precode bits
per instruction pair, making a total of 28 bits per tag entry. The data array line consists of 256 bits (8 MIPS32 instruc-
tions) of data. Each instruction doubleword (64 bits) has 8 bits of byte parity. The IFU interface consists of 128 bits (4
MIPS32 instructions) with 16 bits of parity. The LRU replacement bits (6 bits) are shared among the 4 ways of the
data and tag array and are stored in a separate array.

The core supports instruction cache locking. Cache locking allows critical code to be locked into the cache on a “per-
line” basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is always
available on all instruction cache entries.

The instruction cache also supports cache line prefetching on miss. This feature can be configured by software to
prefetch anywhere between 0 and 2 lines. The control for this prefetch resides in the Coprocessor Register field
Config7PREF. Refer to Appendix 7, “Config7 (CP0 Register 16, Select 7): CPU-specific Configuration” on page 187
for details on programming this feature. The default setting will fetch one additional cache line. This can be modified
by the user of the core. Increasing the number of cache lines prefetched to 2 will typically provide increased perfor-
mance for applications with a high I-cache miss rate. Decreasing the number of cache lines prefetched to 0 may be
appropriate for applications with very low I-cache miss rates, or when there is a desire to reduce memory bandwidth
for power or other reasons.

1.2.3 Instruction Decode/Dispatch Unit (IDU)

This unit is responsible for receiving instructions from the IFU and dispatching them out-of-order to the execution
units when their operands and required resources are available. Up to two instructions per cycle can be received in-
order from the IFU. As the IDU dispatches instructions speculatively and out-of-order, results from these instructions
are stored in temporary storage buffers referred to as completion buffers. The IDU assigns the completion buffer ID,
as well as a separate instruction ID for each instruction. The instruction is also renamed by looking up in a Rename

1.2 74K™ Core Block Diagram

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 31

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Map, and the source registers are replaced (if necessary) by completion buffer IDs of producer instructions, so that
operands may be bypassed as soon as possible.

Renamed instructions are assigned to one of two pipes (ALU or AGEN) and written into the Decode and Dispatch
Queue (DDQ) for that pipe. The oldest instruction that has all the operands ready and meets all resource requirements
is dispatched independently to the corresponding pipe. Instructions may be dispatched out-of-order relative to pro-
gram order. Dispatched instructions do not stall in the pipe and write the results into the completion buffer.

The IDU also keeps track of the progress of the instruction through the pipe, updating the availability of operands in
the Rename Map and in all dependent instructions in the DDQ.

The IDU also writes the instruction ID, completion buffer ID, and related information into structures in the Gradua-
tion Unit (GRU). The GRU reads instructions and corresponding results from the completion buffer, graduates the
instructions, and updates the architectural state of the machine.

1.2.4 Instruction Execution Unit (IEU)

The Instruction Execution Unit implements the entire ALU pipe and parts of the AGEN pipe (parts of the AGEN pipe
also reside in the LSU). The IEU provides data inputs to the multiply/divide unit (MDU) and CorExtend units and
receives outputs from them. The LSU, MDU, and CorExtend Unit are described in subsequent sections.

The architecturally-defined General Purpose Registers (GPRs) reside in the IEU. In addition to these, the IEU also
contains the completion buffers (CBs) used to store computed results. There is a dedicated completion buffer per
pipeline. Each pipe of the IEU has input bypass muxes to select data from the GPRs, CBs, or from the pipeline when
data forwarding is required. The IEU also contains the output muxes that generate final output data. In addition, the
IEU has certain pipe-specific execution units described below.

ALU Pipe

The ALU pipe contains the ALU for performing arithmetic and logical operations, the Shifter, and the Leading Zero/
One detector. The ALU pipe implements a subset of the DSP ASE instructions.

AGEN Pipe

The AGEN pipe contains the adder required for address computation in case of load/store and control transfer instruc-
tions. It also contains all the branch resolution logic.

The IEU also provides data inputs to the multiply/divide unit (MDU) and CorExtend units and receives outputs from
them.

1.2.5 Multiply Divide Unit (MDU)

The multiply/divide unit implements the multiply and divide operations. This unit also executes multiply class
instructions in the DSP ASE.

The MDU consists of a pipelined 32ξ32 multiplier, result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexors and control logic. The MDU supports execution of one multiply or multiply-
accumulate operation every clock cycle. Divide operations are implemented with a simple 1 bit per clock radix 2 iter-
ative SRT algorithm.

 Introduction to the MIPS32® 74K™ Core Family

32 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

1.2.6 CorExtend® User Defined Instructions (UDIs)

This module contains support for CorExtend user-defined instructions. These instructions are defined at build-time
for the 74K core. This feature makes 15 instructions in the opcode map available for user-defined customer use, and
the latency of each instruction can be selected to be 3, 5, or >5 cycles. A CorExtend instruction can operate on any
one or two general purpose registers or immediate data contained within the instruction, and can write the result of
each instruction back to a general purpose register or a local register. Further details regarding CorExtend can be
found in the CorExtend® Instruction Integrator’s Guide for MIPS32 74K™ Cores [9].

Refer to Table 13.5 for a specification of the opcode map available for user-defined instructions.

1.2.7 Load Store Unit (LSU)

The Load Store Unit, as the name implies, is primarily responsible for the implementation of Load/Store instructions.
In addition to the Load/Store instructions, it also implements the Prefetch, CACHE, and some other special instruc-
tions. The LSU contains all the control logic for the data cache. In addition it contains several holding structures for
address and data information. These are primarily a 4-cache-line Fill Store Buffer (FSB) to service cache line misses,
a 9-entry Load Data Queue (LDQ) to support 9 load misses, a 14-entry Load Store Queue (LSQ), and a 10-entry Load
Store Graduation Buffer (LSGB) to hold information for Loads and Store instructions in flight.

1.2.8 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for virtual-to-physical address translation, cache protocols, the exception
control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), power man-
agement, and the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and
the presence of build-time options are available by accessing the CP0 registers. Refer to Chapter 7, “CP0 Registers of
the 74K™ Core” for more information on the CP0 registers. Refer to Chapter 11, “EJTAG Debug Support in the
74K™ Core” for more information on EJTAG debug registers.

1.2.9 Memory Management Unit (MMU)

The 74K core contains an MMU that interfaces between the execution unit and the cache controllers. Although the
74K core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled after the MMU found
in the 64-bit R4000 family, as defined by the MIPS32 architecture.

By default, the 74K core implements its MMU based on a Translation Lookaside Buffer (TLB). The TLB consists of
two translation buffers: a configurable 16/32/48/64 dual-ported, dual-entry fully associative Joint TLB (JTLB) and a
4-entry fully associative Instruction TLB (ITLB).

The ITLB (Instruction micro TLB), which contains a subset of the JTLB, is managed by the hardware and is not visi-
ble to software. When translating an instruction fetch address, the ITLB is accessed first. If there is no matching entry,
the JTLB is used to translate the address and refill the ITLB. If the entry is not found in the JTLB, then an exception
is taken.

In order to translate an address for a data access, the MMU looks in the JTLB directly, as there is no Data micro TLB
present in the 74K core. The JTLB is dual-ported so as to avoid contention between instruction and data accesses.

The core optionally implements an FMT-based MMU instead of a TLB-based MMU. The FMT replaces the ITLB
and JTLB blocks in Figure 1.2. The FMT performs a simple translation to obtain the physical address from the virtual
address. Refer to Chapter 5, “Memory Management of the 74K™ Core” for more information on the FMT.

1.2 74K™ Core Block Diagram

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 33

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 1.2 shows how the address translation mechanism interacts with cache accesses.

Figure 1.2 Address Translation During a Cache Access

1.2.10 Data Cache

The data cache is an on-chip memory array of 0/16/32/64 KBytes. The cache is virtually indexed and physically
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag holds
20 bits of the physical address, a valid bit, a lock bit, and optionally a parity bit. For each entry there is also a corre-
sponding 20- bit virtual tag. The virtual tag is used to determine the way selected on a cache access. As a result of
this, data selection does not have to wait for the JTLB translation to complete.

The data entry is configurable to hold 64 or 128 bits of data per way, with optional parity per byte. The 128-bit option
allows faster refill and evictions of the data cache and is recommended where data cache bandwidth is critical. In the
64-bit configuration, there are 4 data entries per tag entry, and in the 128-bit configuration there are 2 data entries for
each tag entry. The tag and data entries exist for each way of the cache. A separate array holds the dirty and LRU bits
(6b), dirty bits (4b), and optional dirty parity bits (4b) for all 4 ways. A data cache locking mechanism is available
that is similar to the mechanism in the instruction cache.

The physical data cache memory must be byte-writable to support sub-word store operations. The LRU/dirty bit array
must be bit-writable.

1.2.11 Scratchpad RAM

The 74K core allows blocks of scratchpad RAM to be attached to the load/store and instruction units. These allow
low-latency access to a fixed block of memory.

1.2.12 Graduation Unit (GRU)

The Graduation Unit is responsible for graduating instructions in-order, even though they might have been dispatched
and have completed their result computation out-of-order. It does so by reading data and associated control informa-
tion from the completion buffers in program order and committing them into architectural state in that same program
order. It then releases any completion buffers and resources used by these instructions. The GRU is also responsible
for evaluating the exception conditions reported by execution units and taking the appropriate exception.

Instruction
Hit/Miss

ITLB

JTLB

Instruction
Address

Calculator

Data
Address

Calculator

Instruction
Cache

Tag RAM

Comparator

Comparator

Data
Cache

Tag RAM

Data
Hit/Miss

Virtual Address

Virtual Address

Entry

EntryDVA

IVA

 Introduction to the MIPS32® 74K™ Core Family

34 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

1.2.13 Bus Interface Unit (BIU)

The Bus Interface Unit controls the external interface signals. Additionally, it contains the implementation of a col-
lapsing write buffer. This buffer is used to merge write-through transactions and to gather multiple writes from dirty
line evictions and uncached accelerated stores. The write buffer consists of 4, 32-byte entries.

1.2.14 Coprocessor Interface Unit (CIU)

The coprocessor interface unit is responsible for maintaining an in-order interface between the integer core and the
Floating Point Unit (FPU). The FPU is described in further detail in Chapter 3, “Floating-Point Unit of the 74Kf™
Core”.

1.2.15 Power Management

The core offers a number of power-management features, including low-power design, active power management,
and power-down modes of operation. The core is a static design that supports a WAIT instruction designed to signal
the rest of the device that execution and clocking should be halted, hence reducing system power consumption during
idle periods. The core provides two mechanisms for system-level, low-power support:

• Register-controlled power management

• Instruction-controlled power management

In register-controlled power management mode, the core provides three bits in the CP0 Status register for software
control of the power-management function, and allows interrupts to be serviced even when the core is in power-down
mode. In instruction-controlled power-down mode, execution of the WAIT instruction is used to invoke low-power
mode.

Refer to Chapter 10, “Power Management in the 74K™ Core” for more information on power management.

1.2.16 EJTAG Debug

All cores provide basic EJTAG support with debug mode, run control, single-step, and software breakpoint instruc-
tion (SDBBP) as part of the core. These features allow basic software debugging of user and kernel code. A TAP con-
troller is also included, enabling communication between an EJTAG probe and the CPU through a dedicated port.
This provides the capability of debugging without debug code in the application, and for download of application
code to the system.

An optional EJTAG feature is hardware breakpoints. A 74K core may have four instruction breakpoints and two data
breakpoints, or no breakpoints. The hardware instruction breakpoints can be configured to generate a debug exception
when an instruction is executed anywhere in the virtual address space. Bit mask and Address Space Identifier (ASID)
values may apply in the address compare. These breakpoints are not limited to code in RAM, like the software
instruction breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on a data
transaction. The data transaction may be qualified with both virtual address, data value, size, and load/store transac-
tion type. Bit mask and ASID values may apply in the address compare, and byte mask may apply in the value com-
pare.

An optional MIPS Trace feature has been added to aid software debugging. The trace logic implements PDtrace ver-
sion 6, which allows tracing of the PC, load/store address, load/store data, and performance counter data, and also
provides information about processor pipeline inefficiencies. The trace information can be stored to either an on-chip
trace memory or an off-chip trace probe. The optional on-chip trace memory can be configured in various sizes.

1.2 74K™ Core Block Diagram

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 35

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

These trace features provide a powerful software debugging mechanism. Refer to Chapter 11, “EJTAG Debug
Support in the 74K™ Core” for more information on the EJTAG and tracing features.

 Introduction to the MIPS32® 74K™ Core Family

36 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 2

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 37

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Pipeline of the 74K™ Core

The 74K processor core is a superscalar processor capable of issuing two integer instructions every clock cycle. The
integer dual issue is achieved through two pipelines referred to as the ALU and AGEN pipelines. The 15-stage AGEN
pipeline implements the memory transfer and control transfer class of instructions, and the 14-stage ALU pipeline
implements all the rest of the instructions involving arithmetic, logic, and computation. The pipelines allows the pro-
cessor to achieve high frequency while minimizing device complexity, reducing both cost and power consumption.

This chapter contains the following sections:

• Section 2.1 “Integer Pipeline Description”

• Section 2.2 “Programming the 74K Core”

• Section 2.3 “Hazards”

2.1 Integer Pipeline Description

The two primarily integer pipelines, the AGEN and ALU pipelines, are supported by a common front and back end.
The common front end comprises of instruction fetch, decode, and dispatch, and represents the first eight stages of
the pipeline, except in MIPS16e mode, where three more stages are present. The common back end comprises of
instruction graduation and consumes the last two stages. The intermediate stages represent the instruction execution
specific portions of the ALU and AGEN pipelines.

The two major pipelines are further made up of multiple mini-pipelines. The front end stages form the IFU and IDU
pipelines. The backend forms the GRU pipeline.The functionality representing the IFU, IDU, and GRU pipelines
reside in the units with the same name. The instruction execution specific functionality of the ALU and AGEN pipe-
line resides in the IEU and the LSU.

In addition to the above mentioned pipelines, there are a few other pipelines that exist in the 74K processor core. The
Multiply Divide Unit (MDU) attaches to the ALU pipeline and is an offshoot of the ALU pipeline. The Floating Point
Unit (FPU) attaches to the common front end and has a separate pipeline that is described later. There is also a sepa-
rate post-graduation memory pipeline that comes into existence only for load/store instructions. This pipeline resides
entirely in the Load Store Unit.

Figure 2.1 shows the stages of the 74K processor core pipeline. The pipeline stages shown in the figure are described
in Table 2.1 and in the following subsections.

 Pipeline of the 74K™ Core

38 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 2.1 74K™ Core Pipeline

2.1.1 IFU Pipeline

2.1.1.1 IT - Instruction Cache Tag Access

The Instruction Fetch Unit (IFU) determines the address to be accessed in the cycle prior to IT. The I-cache tags, the
branch history table (BHT), and the Return Prediction Stack (RPS) are accessed in this stage. The tag data contains some
precode bits for each instruction pair indicating instruction type, etc. The I-cache is virtually indexed and the initial

Table 2.1 74K™ Core Pipeline Stages Descriptions

Stage Description Stage Description

IT I-cache Tag read; ITLB Lookup; BHT Lookup AF ALU register File read

ID I-cache Data read; Tag Compare AM ALU operand Mux select

IS Way Select; Target Calculation Start AC ALU Compute

IB Write Fetch Buffer; Target Calculation Done AB ALU Results Bypass

IR MIPS16 Recode (MB,M[1-4]) Booth recode, multiply stages 1-4

IK MIPS16 Branch Decode and validate EM Execute operands Mux select

IX MIPS16 macro expansion EA Address Generation; JTLB Access Start; Branch operand
select

DD Instruction Decode and Register Rename (read
RMap)

EC D-cache Read; JTLB access continue; Branch Compare

DR Write RMap; Write DDQs; Issue to CP1/CP2 ES PTag Compare start; Vhint selects Data; Branch Redirect

DS Select 1 instruction from DDQ0 and 1 from DDQ1 EB Load Align; Load data bypass; Ptag validate data select
Branch/Jump link data pipe forward.

DM Finish instruction selection and update DDQ
entries.

WB Completion buffer write; Exceptions determined

C1 Adjust InOrder instruction queue write pointer GC Graduation Complete

CR Read instruction from InOrder instruction queue

CI InOrder instruction dispatch to Coprocessor1

CR

IT ID IS IB DD DR DS DM

MB M1 M2 M3 M4

AF AM

WB GC

AC AB

EM EA EC ES EB
IR IK IX

MDU

ALU

AGEN

GRU

ALU

AGEN

IFU IDU

IFU

Added Stages
for MIPS 16eTM

mode

FR M1 M2 A1 A2 FP FW

FPUCIU

C1 CI

2.1 Integer Pipeline Description

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 39

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

lookup proceeds without any physical address bits. In parallel, the ITLB is accessed in this cycle in order to obtain the
virtual to physical address translation.

In addition to this Instruction fetch, related Watch exception conditions and EJTAG breakpoint matches are also
determined.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.2 ID - Instruction Cache Data Access

In this stage, the I-cache arrays are accessed and 128 bits of instruction are read out for each cache way. While the I-
cache data is being fetched, the tag outputs are compared against the physical address obtained from the ITLB lookup
and the Refill Buffer tags, and one of the 4 associative ways or Refill Buffer entries is determined. The Refill Buffers
represent the I-cache misses currently being serviced.

ITag parity error detection is also performed in this stage.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.3 IS - Instruction Select

In this cycle, data from the I-cache or Refill Buffer is selected based on results of the tag compare in the previous cycle.

In case the instruction fetched from the I-cache is a Branch type instruction that is predicted taken, the computation of
the target address is also started in this cycle.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.4 IR - Instruction Recode

This stage comes into existence in the main pipeline only for MIPS16e instructions. MIPS16 instructions are recoded in
this stage into MIPS32 equivalent instructions.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.5 IK - Instruction

This stage also comes into existence in the main pipeline only for MIPS16e instructions. In this stage the instructions
are decoded for control transfer instruction information and validated. The candidate branch/jump instruction is
determined out of the 4 possible instructions in this stage.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.1.6 IX - Instruction Macro Expansion

This stage also comes into existence in the main pipeline only for MIPS16e instructions. If a MIPS16e macro instruction
is detected, it is expanded into multiple MIPS32 instructions in this stage. This stage is bypassed if there are no macro
instructions.

The functionality corresponding to this stage resides entirely in the IFU.

 Pipeline of the 74K™ Core

40 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.1.1.7 IB - Instruction Buffer

The MIPS16e and MIPS32 pipelines converge at this stage. Up to 4 instructions from either the IS or IX stages
are written into the Fetch Buffers. A maximum of 2 instructions can be read from any Fetch Buffer. The write of
the Fetch Buffer can be bypassed in the same cycle.

The functionality corresponding to this stage resides entirely in the IFU.

2.1.2 Instruction Decode Unit Pipeline

2.1.2.1 DD - Dispatch Decode

In this stage the IDU receives up to 2 instructions and decodes them. In parallel with the decode operation the
Rename Map is looked up to determine whether the source operands are in the Register File, Completion Buffer/
pipeline, or Unavailable (pending long latency operation).

Lookups are done in this stage only if there are enough Completion Buffer resources available. Each instruction
that crosses this stage receives a Completion Buffer ID (CBID) and Instruction ID. The CBID determines the
location in AGCB or ALCB where the execution unit can write the results. The Instruction ID is a sequential ID
that uniquely determines the age of the instruction in the pipe between the DD stage and Graduation.

A branch and its delay slot are always presented together by the IFU into the IDU.

This stage is also the synchronization point for several hazard preventing serializing operations such as EHB,
branch mispredict redirect resolution, etc.

The functionality corresponding to this stage resides entirely in the IDU.

2.1.2.2 DR - Dispatch Rename

The instructions from the DD stage will arrive in the DR stage and any dependencies on older instructions and
intra-dependencies among the two incoming instructions are resolved. The RenameMap is updated with the new
destination CBID (if applicable) for both instructions.

Theinstructions are written into one of the two out-of-order dispatch queues, DDQ0 and DDQ1. The two queues
are 6 entries deep. Each queue is associated with an execution pipe. The queues are divided as follows:

• DDQ1 (AGEN Pipe): Supports Memory Transfer (Load/Store), Control Transfer, and Conditional Move
Instructions.

• DDQ0 (ALU Pipe): Supports all other instructions.

Coprocessor 1 instructions are handed off to the Coprocessor Interface Unit (CIU) in this stage. If necessary, some
instructions (such as Coprocessor 1 loads and Coprocessor 1 branches, etc.) are written into DDQ1 as well the
CIU.

The functionality corresponding to this stage resides entirely in the IDU.

2.1.2.3 DS - Dispatch Select

In this stage the IDU selects 1 instruction out of each DDQ to send down the corresponding execution pipe. It reads
a counter associated with each source register to determine the availability for dispatch. Each register (CBID) has
its own count down counters that is triggered by its producer that has been dispatched earlier. These counters are
used only if the register value is to be bypassed from within the pipeline/Completion Buffer. Older available

2.1 Integer Pipeline Description

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 41

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

instructions are given higher priority for selection. An instruction issues out-of-order only when preceding instructions
are held up by source register or resource dependencies.

The functionality corresponding to this stage resides entirely in the IDU.

2.1.2.4 DM - DDQ Mux

The result vector from the selection in the previous stage is used to completely read out the selected DDQ entry. The
destination CBID of the selected instruction is broadcast to the DDQ and to the RenameMap so that they can start their
count down timers. The initial value of the timers is determined in DD stage based on the instruction/execution pipe
properties.

In addition for instructions destined for the AGEN Pipe, the access of the Register File and Completion Buffers is started
in this stage.

The functionality corresponding to this stage resides largely in the IDU and to a small extent in the IEU.

2.1.3 ALU Pipeline

2.1.3.1 AF - ALU Pipe Register File Read

In this stage the Register File or Completion Buffer read is performed for the source operands of the instructions selected
in the DM stage. This functionality requires 2 read ports on the Register File and Completion Buffer, corresponding to
two sources for the instruction in ALU pipe. Only 1 instruction can be in the AF stage in the ALU pipe at any time.

The functionality corresponding to this stage resides entirely in the IEU.

2.1.3.2 AM - ALU Pipe Operand Bypass Select Mux, This stage has the final operand bypass muxes
for the ALU pipe. The functionality corresponding to this stage resides entirely in the IEU.

2.1.3.3 AC - ALU Compute

The 74K core’s ALU is pipelined. Some ALU instructions complete the operation and bypass the results in this cycle.
These instructions are referred to as single-cycle ops and they include all logical instructions (AND, ANDI, OR, ORI,
XOR, XORI, LUI), some shift instructions (SLL sa<=8, SRL 31<=sa<=25), and some arithmetic instructions (ADD
rt=0, ADDU rt=0, SLT, SLTI, SLTU, SLTIU, SEH, SEB, ZEH, ZEB). In addition, add instructions (ADD, ADDU,
ADDI, ADDIU) complete the operation and bypass results to the ALU pipe in this cycle. Add instructions cannot bypass
results to the AGEN pipe in this cycle, but will bypass to the AGEN pipe in the subsequent cycle. All other ALU
instructions take 2 cycles to execute and bypass the results to both pipes.This stage corresponds to the first stage of
execution for those instructions. The Multiply and Divide class of instructions start their execution in a separate MDU
pipe, and the first stage of that pipe is aligned with this stage.

The functionality corresponding to this stage resides entirely in the IEU.

2.1.3.4 AB - ALU Bypass

This is the second stage of the ALU pipeline. Instructions whose latency exceeds a single cycle perform their second
cycle of computation in this cycle.

All ALU operations can bypass their results from this stage to the muxes in AM, EM, and EA stages. All exception
information is gathered in this stage to be written into the completion buffer.

The functionality corresponding to this stage resides entirely in the IEU.

 Pipeline of the 74K™ Core

42 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.1.4 MDU Pipeline

2.1.4.1 MB - Multiplier Booth Recode.

The MDU performs Booth recoding on the input operand in this stage.

2.1.4.2 M1- M3 Multiplier Array

These stages represent the actual core of the multiplier array.

2.1.4.3 M4 - Multiply Add

This stage is used to perform the add or subtract operation in the case of complex multiply-add or multiply-subtract
type of instructions.

2.1.5 AGEN Pipeline

2.1.5.1 EM - Execute Operand Bypass Select Mux

In the presence of shadow set registers, this stage accommodates the final selectors of register data from the different
GPRs. In addition, this stage accommodates the bypass muxes for the Load/Store class instructions in the AGEN Pipe.

The functionality corresponding to this stage resides entirely in the IEU

2.1.5.2 EA - Execute and Address Generate

Load/Store Instructions

The effective address calculation for Load/Store class instructions is computed in this cycle. The JTLB access is also
started in this cycle for Load/Store type instructions. The JTLB is accessed in parallel using source operands and a
fast compare algorithm. This enables the JTLB access to start one cycle earlier than would otherwise be possible. It
also makes it possible for the 74K core to access the JTLB inline and avoid a DTLB.

The functionality corresponding to this adder resides entirely in the IEU. The JTLB resides in the MMU.

Control Transfer Instructions

In the case of Control Transfer instructions, the effective redirect address computation is started in this cycle. The
bypass muxes for source register operands for this class of instructions are also present in this stage. It is to be noted
that there are two sets of bypass muxes in the AGEN Pipe. The first set is in the EM stage and is used for Load/Store
instructions. The second set in the EA stage is used for Control Transfer instructions. While it would have been possi-
ble for Control transfer instructions to use the bypass muxes from EM and execute the branch in EA, performance
simulation has shown that it would significantly reduces overall performance, as it increases the producer/consumer
latency between most integer instructions and branches.

The functionality corresponding to Control Transfer Instructions for this stage resides entirely in the IEU.

2.1 Integer Pipeline Description

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 43

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.1.5.3 EC - Execute and Cache Access

Load/Store Instructions

The Data Cache is accessed using the effective address calculated in the preceding EA stage. The local buffers in the
Load Store Unit (LSU) are also compared against this effective address. The JTLB access is continued in this cycle.
The Data cache tags are also accessed in this cycle. The Dtag entry will contain a physical tag and virtual tag.

The functionality corresponding to D-cache and Dtag resides entirely in the LSU. The JTLB resides in the MMU.

Control Transfer Instructions

Conditional Branch and jump instructions are resolved in this cycle. The branch comparison is done and compared
against the predicted path. The branch instructions compute the alternate address and redirect the IFU if needed.
Since branch instructions can be issued out-of-order the branch execution unit keeps track of the age of the last redi-
rected branch. If the new resolution results in a mispredict the age of the new branch instruction is compared against
the age of the last redirected branch that has not yet graduated. Only if the new branch is older than the previous
branch the IFU will be redirected again. Register indirect jumps which have been predicted with the Return Stack are
also compared against the real register value in this cycle. If there is a mispredict the correct target is sent to the IFU.

The functionality corresponding to Control Transfer Instructions for this stage resides entirely in the IEU.

2.1.5.4 ES - Execute and Cache Second

Load/Store Instructions

The JTLB access is completed in this cycle. The virtual tag is compared against the effective address in this cycle.
The tag compare for the various internal LSU buffers is also completed in this cycle. Alignment of the D-cache data
from all four ways is also done in parallel in this cycle. If a store to load bypass situation is detected by virtue of a
load effective address matching one of the local buffers in the LSU (LSQ or FSB), those buffers are read in this stage.

The functionality corresponding to D-cache, DTag, LSQ and other buffers resides entirely in the LSU. The JTLB
resides in the MMU.

Control Transfer Instructions

The result of all the branch decisions is prioritized and communicated to the IFU in this cycle. In addition to the
branch unit redirects, there can be redirects from the graduating instructions. These redirects are prioritized over the
branch redirects, and the final redirect is sent over to the IFU in this cycle. This redirect causes the IFU to kill its cur-
rent fetch stream and all instructions in the IFU. A new fetch will be started with the newly received target address.

The functionality corresponding to Control Transfer Instructions for this stage resides entirely in the IEU.

2.1.5.5 EB - Execute and Cache Data Bypass

Load/Store Instructions

The D-cache data is selected based on the virtual tag comparison. The final Hit/Miss determination is done by the end
of this cycle based on the physical tag comparison with the JTLB output. Alignment of data in case of data return
from LSU buffers is done in this cycle. In case of a hit, the selection of data from the appropriate source is also com-
pleted in this cycle. The data return to the ALU bypass muxes in EM and EA is done in this cycle.

The functionality corresponding to the D-cache, DTag, LSQ, and other buffers resides entirely in the LSU. The JTLB
resides in the MMU.

 Pipeline of the 74K™ Core

44 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

All exception detection and prioritization within the LSU is completed in this cycle for the AGEN Pipe.

Control Transfer Instructions

In the case of branch and link or jump and link instructions, the link register update information is carried forward in
the pipe to be written into the completion buffer. This data is eventually written into the Register File when the
branch/jump instruction graduates. This data is written into the AGEN completion buffer and it uses the same write
port as Load/Store instructions.

The functionality corresponding to this stage for Control Transfer Instructions resides entirely in the IEU.

2.1.6 GRU Pipeline

2.1.6.1 WB - Writeback

The AGEN Pipe writes the AGEN completion buffer (AGCB) in this stage. The ALU pipe and the MDU pipe write into
the ALU completion buffer (ALCB) in this stage. All units will also have written their exception information at this
stage. The highest priority pipeline exception status will be available for each instruction at this point in the completion
buffer structure. In addition, the oldest 2 entries that have completed execution are identified as candidates for graduation
in the subsequent stage.

The buffers and their controls reside across multiple units (LSU, IEU, GRU), depending on the functionality.

2.1.6.2 GC - Graduation Commit

This stage is the final stage of the graduation pipeline. In this stage, the two oldest ready instructions that have been
identified in the previous stage are graduated. This implies that the result data corresponding to these two instructions is
committed to the architecturally visible GPR if no flush and redirect due to exceptions or other special cases is required.
If a redirect is required, the graduation/exception logic in the GRU will send the appropriate redirect information to the
IFU in this stage.

A select class of privileged instructions such as MTC0, TLB operations, and CACHE instructions are actually executed
at graduation. These instructions are sent to the different units for execution in this stage.

The functionality corresponding to this stage resides entirely in the GRU.

2.2 Programming the 74K Core

For guidelines on programming the 74K core and a better understanding of the impact of the pipeline on the software
programmer, refer to the document titled Programming the MIPS32® 1074K™ Coherent Processing System Family
(MD00750).

2.3 Hazards

In general, the 74K core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previous instruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS™ Architecture, hazards (primarily CP0 hazards) were relegated to implementation-
dependent cycle-based solutions, primarily based on the SSNOP instruction. The 74K core implements an out-of-
order dispatch technique that is incompatible with this concept of allocating cycles through fixed instruction spacing.

2.3 Hazards

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 45

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Release 2 defines new instructions which act as explicit barriers that eliminate hazards The new instructions have
been added in such a way that they are backward-compatible with existing MIPS processors.

The 74K core family requires that the programmer implement the hazard barrier instructions as defined in Release 2
of the architecture. This does not typically impact an application programmer and is relevant primarily to privileged
software. The following sections describe the types of hazards that are addressed. The hazard descriptions in the sub-
sequent sections are here to help the user in identifying hazards in his code.

2.3.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

 Pipeline of the 74K™ Core

46 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.3.1.1 Execution Hazards, Execution hazards are those created by the execution of one instruction,
and seen by the execution of another instruction. Table 2.2 lists possible execution hazards and
whether they can be resolved via setting of the IHB bit in the CP0 Config7 register..

Table 2.2 Execution Hazards

Producer → Consumer Hazard On
Does Config7.IHB=1
resolve this Hazard?

TLBWR, TLBWI → Load/store using new TLB entry TLB entry No

MTC0 → Load/store affected by new state WatchHi
WatchLo

No

MTC0 → MFC0 Any CP0 register No

MTC0 → EI/DI Status Yes

MTC0 → RDHWR $3 Count No

MTC0 → Coprocessor instruction execution depends on
the new value of StatusCU

StatusCU No

MTC0 → ERET EPC
DEPC

ErrorEPC

Yes

MTC0 → ERET Status Yes

EI, DI → Interrupted instruction StatusIE No

MTC0 → Interrupted instruction Status No

MTC0 → User-defined instruction StatusERL
StatusEXL

No

MTC0 → Interrupted Instruction StatusIM
(CauseIP)

No

TLBR → MFC0 EntryHi,
EntryLo0,
EntryLo1,
PageMask

Yes

TLBP → MFC0 Index Yes

MTC0 → TLBR Index (not
EntryHi)

No

MTC0 → TLBWI
TLBWR

EntryHi No

MTC0 → TLBP
Load/store affected by new state

EntryHiASID No

MTC0 → TLBWI Index No

MTC0 → TLBWR Random (not
Index)

No

MTC0
ContextConfig

→ MFC0 Context
ContextConfig

Yes

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS No

2.3 Hazards

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 47

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.3.1.2 Instruction Hazards, Instruction hazards are those created by the execution of one instruc-
tion, and seen by the instruction fetch of another instruction. Table 2.3 lists instruction hazards.
Because the fetch unit is decoupled from the execution unit, these hazards are rather large. The use
of a hazard barrier instruction is required for reliable clearing of instruction hazards.

2.3.2 Instruction Listing

Table 2.4 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture Refer-
ence Manual Volume II: The MIPS32® Instruction Set (MD00084) for a more detailed description of these instruc-
tions.

MTC0 → Instruction not seeing a Timer Interrupt Compare update
that clears Timer

Interrupt

No

MTC0 → Instruction affected by change Any other CP0
register

No

CACHE → MFC0 TagHi, TagLo,
DataHi, DataLo

Yes

Table 2.3 Instruction Hazards

Producer → Consumer Hazard On

TLBWR, TLBWI → Instruction fetch using new TLB entry TLB entry

MTC0 → Instruction fetch seeing the new value including:
• change to ERL followed by an instruction

fetch from the useg segment and
• change to ERL or EXL followed by a Watch

exception

Status

MTC0 → Instruction fetch seeing the new value EntryHiASID

MTC0 → Instruction fetch seeing the new value WatchHi
WatchLo

MTC0 (write to
Config7)

→ JR, JALR seeing the new value of IHB of
Config7

IHB bit of
Config7

Instruction stream
write via CACHE

→ Instruction fetch seeing the new instruction
stream

Cache entries

Instruction stream
write via store

→ Instruction fetch seeing the new instruction
stream

Cache entries

Table 2.4 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

ERET Clears both execution and instruction hazards

JALR.HB Clears both execution and instruction hazards

JR.HB Clears both execution and instruction hazards

Table 2.2 Execution Hazards (Continued)

Producer → Consumer Hazard On
Does Config7.IHB=1
resolve this Hazard?

 Pipeline of the 74K™ Core

48 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2.3.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on pro-
cessors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.3.3 Eliminating Hazards

In order to eliminate hazards, use one of the instructions listed in Table 2.4 between the producer and consumer of the
hazard. Execution hazards can be removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards
can be removed by using the JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction.

SYNCI Synchronize caches after instruction stream write

Table 2.4 Hazard Instruction Listing (Continued)

Mnemonic Function

Chapter 3

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 49

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 74Kf™ Core

This chapter describes the MIPS64® Floating-Point Unit (FPU) included in the 74Kf core. This chapter contains the
following sections:

• Section 3.1 “Features Overview”

• Section 3.2 “Enabling the Floating-Point Coprocessor”

• Section 3.3 “Data Formats”

• Section 3.4 “Floating-Point General Registers”

• Section 3.5 “Floating-Point Control Registers”

• Section 3.6 “Instruction Overview”

• Section 3.7 “Exceptions”

• Section 3.8 “Pipeline and Performance”

3.1 Features Overview

The FPU is provided via Coprocessor 1. Together with its dedicated system software, the FPU fully complies with the
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below.

• Full 64-bit operation is implemented in both the register file and functional units.

• A 32-bit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

• Like the main processor core, Coprocessor 1 is programmed and operated using a Load/Store instruction set. The
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer
does not have to worry about inserting delay slots after loads and between dependent instructions.

• Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

• The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE
accuracy specification, where the result is numerically identical to an equivalent computation using multiply,
add, subtract, or negate instructions.

 Floating-Point Unit of the 74Kf™ Core

50 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 3.1 depicts a block diagram of the FPU.

Figure 3.1 FPU Block Diagram

The MIPS architecture is designed such that a combination of hardware and software can be used to implement the
architecture. The 74K core FPU can operate on numbers within a specific range (in general, the IEEE normalized
numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in general, the
IEEE denormalized numbers). Supported number ranges for different instructions are described later in this chapter.
A fast Flush To Zero mode is provided to optimize performance for cases where IEEE denormalized operands and
results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR register; use of
this mode is recommended for best performance.

3.1.1 IEEE Standard 754

The IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as
“IEEE Standard 754”. IEEE Standard 754 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, see the IEEE web page at http://stdsbbs.ieee.org/.

3.2 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled through the CU1 bit in the CP0 Status register. When Coprocessor 1 is not enabled, any
attempt to execute a floating-point instruction causes a Coprocessor Unusable exception.

Processor
Core

Coprocessor
Interface

Control

Register File

Bypass

Add

Div/Sqrt Mul
Load/
Store

3.3 Data Formats

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 51

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The fixed-point types are signed integers provided by the CPU architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• a 32-bit single-precision floating point (type S, shown in Figure 3.2)

• a 64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities, +∞ and −∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s = 0 or 1

– E = any integer between E_min and E_max, inclusive

– bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

– p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes
are listed in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

 Floating-Point Unit of the 74Kf™ Core

52 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Layouts of these three fields are shown in Figures 3.2 and 3.3 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

Figure 3.3 Double-Precision Floating-Point Format (D)

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 3.2.
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction

1 8 23

63 62 52 51 0

S Exponent Fraction

1 11 52

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased
E f s b1 Value V Type of Value

Typical Single

Bit Pattern1
Typical Double

Bit Pattern1

E_max + 1 ≠ 0 1 SNaN Signaling NaN 0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN 0x7fbfffff 0x7ff7ffff ffffffff

E_max +1 0 1 − ∞ Minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
 to

E_min

1 - (2E)(1.f) Negative normalized num-
ber

0x80800000
 through
0xff7fffff

0x80100000 00000000
 through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000
 through
0x7f7fffff

0x00100000 00000000
 through
0x7fefffff ffffffff

E_min -1 ≠ 0 1 - (2E_min)(0.f) Negative denormalized
number

0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized num-
ber

0x007fffff 0x00ffffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single Double

3.3 Data Formats

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 53

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min – 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+∞), minus infinity (−∞), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed ∞ is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

Once created as a default result, ∞ can become an operand in a subsequent operation. The infinities are interpreted
such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on ∞ is regarded as exact, and exception
conditions do not arise. The out-of-range indication represented by ∞ is propagated through subsequent computations.
For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞. These cases raise the Invalid
Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOV.fmt, MOVT.fmt, MOVF.fmt, MOVN.fmt, MOVZ.fmt) non-arithmetic; they do not signal IEEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have
either value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one
value in a class of potential values that represent these special values.

 Floating-Point Unit of the 74Kf™ Core

54 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is

one1 of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 754
when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture
that detects or makes use of these “integer QNaN” values.

3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

• a 32-bit Word fixed point (type W), shown in Figure 3.4

• a 64-bit Longword fixed point (type L), shown in Figure 3.5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned
fixed-point data types are not provided by the architecture; application software can synthesize computations for
unsigned integers from the existing instructions and data types.

Figure 3.4 Word Fixed-Point Format (W)

Figure 3.5 Longword Fixed-Point Format (L)

1. In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

Table 3.3 Value Supplied When a New Quiet NaN is Created

Format New QNaN value

Single floating point 0x7fbf ffff

Double floating point 0x7ff7 ffff ffff ffff

Word fixed point 0x7fff ffff

Longword fixed point 0x7fff ffff ffff ffff

31 0

Integer

32

63 0

Integer

64

3.4 Floating-Point General Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 55

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64b
FPU, but a 32b register mode for backwards compatibility is also supported. The FR bit in the CP0 Status register
determines which mode is selected:

• When the FR bit is a 1, the 64b register model is selected, which defines 32 64-bit registers with all formats sup-
ported in a register.

• When the FR bit is a 0, the 32b register model is selected, which defines 32 32-bit registers with D-format values
stored in even-odd pairs of registers; thus the register file can also be viewed as having 16 64-bit registers.

These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU oper-
and values.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figures 3.6 and 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can
be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is
uninterpreted.

• A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of format
fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changes to a value
of format fmt. The binary contents cannot be reinterpreted in a different format.

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword

 Floating-Point Unit of the 74Kf™ Core

56 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs, the value in the register becomes unknown, and the result of the instruction is also
a value that is unknown. Using an FPR containing an unknown value as a source operand produces a result that has an
unknown value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data transfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the
encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

Figure 3.8 Effect of FPU Operations on the Format of Values Held in FPRs

A, B: Example formats
Load: Destination of LWC1, LDC1, MTC1 instructions.
Store: Source operand of SWC1, SDC1, MFC1 instructions.
Src fmt: Source operand of computational instruction expecting format “fmt.”
Rslt fmt: Result of computational instruction producing value of format “fmt.”

Load Store

Rslt unknown
Rslt A Rslt B

Src A (interpret) Src B (interpret)

B Load

Rslt A

Src B Src A

Rslt A Rslt B

Rslt unknown Rslt unknown

Src A Src B
Store

Load

Src A Rslt A
Store

Src B Rslt B
StoreValue in

Format
A

Value
uninterpreted

(binary
encoding)

Value in
Format

B

Value unknown

3.4 Floating-Point General Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 57

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 3.9 and Figure 3.10,
respectively.

The store and move-from instructions operate in reverse, reading data from the location that the corresponding load or
move-to instruction had written.

Figure 3.9 FPU Word Load and Move-to Operations

Figure 3.10 FPU Doubleword Load and Move-to Operations

Reg 0

Reg 1

63 0
FR BIT = 1 FR BIT = 0

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Undefined/Unused Data word (0)

Initial value 2

Undefined/Unused

Undefined/Unused

Data word (0)

Data word (4)

63 0

63 0

63 0

63 0

63 0

Reg 0

Reg 2

Reg 0

Reg 2

Reg 0

Reg 2

Undefined/Unused Data word (0)

Initial value 2

Data word (4) Data word (0)

Initial value 2

Initial value 1

Initial value 2

LWC1 f0, 0(r0) / MTC1 f0,r0

LWC1 f1, 4(r0) / MTC1 f1,r4

Reg 0

Reg 1

63 0

FR BIT = 1 FR BIT = 0

Initial value 1

Initial value 2

Data doubleword (0)

63 0

63 0

63 0

Reg 0

Reg 2

LDC1 f0, 0(r0)

LDC1 f1, 8(r0)

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Reg 0

Reg 2 Initial value 2

Data doubleword (0)

Data doubleword (8)

63 0

(Illegal when FR BIT = 0)

Data doubleword (0)

Initial value 2

 Floating-Point Unit of the 74Kf™ Core

58 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wide:
FIR, FCCR, FEXR, FENR, FCSR. Three of these registers, FCCR, FEXR, and FENR, select subsets of the float-
ing-point Control/Status register, the FCSR. These registers are also denoted Coprocessor 1 (CP1) control registers.

CP1 control registers are summarized in Table 3.4 and are described individually in the following subsections of this
chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

Table 3.4 Coprocessor 1 Register Summary

Register Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information that identifies
the FPU.

25 FCCR Floating-Point Condition Codes register.

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first read
returns a predictable value. This definition should not be confused with the formal definition of UNDEFINED behav-
ior.

R This field is either static or is updated only by hardware.
If the Reset State of this field is either “0” or “Preset”,
hardware initializes this field to zero or to the appropriate
state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hardware
updates this field only under those conditions specified in
the description of the field.

A field to which the value written by software is ignored
by hardware. Software may write any value to this field
without affecting hardware behavior. Software reads of
this field return the last value updated by hardware.
If the Reset State of this field is “Undefined,” software
reads of this field result in an UNPREDICTABLE value
except after a hardware update done under the conditions
specified in the description of the field.

0 Hardware does not update this field. Hardware can assume
a zero value.

The value software writes to this field must be zero. Soft-
ware writes of non-zero values to this field might result in
UNDEFINED behavior of the hardware. Software reads of
this field return zero as long as all previous software writes
are zero.
If the Reset State of this field is “Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.

3.5 Floating-Point Control Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 59

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the FIR; Table 3.6 describes the FIR bit fields.

Figure 3.11 FIR Format
31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FC 0 F64 L W 3D PS D S ProcessorID Revision

Table 3.6 FIR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FC 24 Indicates that full convert ranges are implemented:
• 0: Full convert ranges not implemented
• 1: Full convert ranges implemented
This bit is always 1 to indicate that full convert ranges are
implemented. This means that all numbers can be converted to
another type by the FPU (If FS bit in FCSR is not set Unimple-
mented Operation exception can still happen on denormal oper-
ands though).

R 1

F64 22 Indicates that this is a 64-bit FPU:
• 0: Not a 64-bit FPU
• 1: A 64-bit FPU.
This bit is always 1 to indicate that this is a 64-bit FPU.

R 1

L 21 Indicates that the long fixed point (L) data type and instructions
are implemented:
• 0: Long type not implemented
• 1: Long implemented
This bit is always 1 to indicate that long fixed point data types
are implemented.

R 1

W 20 Indicates that the word fixed point (W) data type and instruc-
tions are implemented:
• 0: Word type not implemented
• 1: Word implemented
This bit is always 1 to indicate that word fixed point data types
are implemented.

R 1

3D 19 Indicates that the MIPS-3D ASE is implemented:
• 0: MIPS-3D not implemented
• 1: MIPS-3D implemented
This bit is always 0 to indicate that MIPS-3D is not imple-
mented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data type
and instructions are implemented:
• 0: PS floating-point not implemented
• 1: PS floating-point implemented
This bit is always 0 to indicate that paired-single floating-point
data types are not implemented.

R 0

 Floating-Point Unit of the 74Kf™ Core

60 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, all eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR bit fields.

Figure 3.12 FCCR Format

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR bit fields.

D 17 Indicates that the double-precision (D) floating-point data type
and instructions are implemented:
• 0: D floating-point not implemented
• 1: D floating-point implemented
This bit is always 1 to indicate that double-precision floating-
point data types are implemented.

R 1

S 16 Indicates that the single-precision (S) floating-point data type
and instructions are implemented:
• 0: S floating-point not implemented
• 1: S floating-point implemented
This bit is always 1 to indicate that single-precision floating-
point data types are implemented.

R 1

Processor ID 15:8 Identifies the floating-point processor. This value matches the
corresponding field of the CP0 PRId register.

R 0x97

Revision 7:0 Specifies the revision number of the FPU. This field allows
software to distinguish between different revisions of the same
floating-point processor type. This value matches the corre-
sponding field of the CP0 PRId register.

R Hardwired

0 31:25, 23 These bits must be written as zeros; they return zeros on reads. 0 0

31 8 7 0

0 FCC

Table 3.7 FCCR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FCC 7:0 Floating-point condition code. Refer to the description of this
field in Section 3.5.5 “Floating-Point Control and Status
Register (FCSR, CP1 Control Register 31)”.

R/W Undefined

0 31:8 These bits must be written as zeros; they return zeros on reads. 0 0

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

3.5 Floating-Point Control Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 61

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 3.13 FEXR Format

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 3.8 FEXR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Cause 17:12 Cause bits. Refer to the description of this field in
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

Flags 6:2 Flag bits. Refer to the description of this field in
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

0 31:18, 11:7,
1:0

These bits must be written as zeros; they return zeros on
reads.

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0
F
S

RM

V Z O U I

Table 3.9 FENR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Enables 11:7 Enable bits. Refer to the description of this field in
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

FS 2 Flush to Zero bit. Refer to the description of this field in
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

0 31:12, 6:3 These bits must be written as zeros; they return zeros on
reads.

0 0

 Floating-Point Unit of the 74Kf™ Core

62 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports any IEEE exceptions that cumulatively arose in completed instructions

• indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the
coprocessor enables in the Status register). Figure 3.15 shows the format of the FCSR; Table 3.10 describes the
FCSR bit fields.

Figure 3.15 FCSR Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCC
F
S

F
C
C

F
O

F
N

0 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 3.10 FCSR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit

FCC 31:25, 23 Floating-point condition codes. These bits record the
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to use is specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS ISAs, the FCC bits are separated into
two non-contiguous fields.

R/W Undefined

FS 24 Flush to Zero (FS). Refer to 3.5.6 “Operation of the FS/
FO/FN Bits” for more details on this bit.

R/W Undefined

FO 22 Flush Override (FO). Refer to Section 3.5.6, "Operation of
the FS/FO/FN Bits" for more details on this bit.

R/W Undefined

FN 21 Flush to Nearest (FN). Refer to Section 3.5.6, "Operation
of the FS/FO/FN Bits" for more details on this bit.

R/W Undefined

3.5 Floating-Point Control Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 63

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Cause 17:12 Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, it is cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.
Refer to Table 3.11 for the meaning of each cause bit.

R/W Undefined

Enables 11:7 Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving a value to the
FCSR or one of its alternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-IEEE Unimplemented
Operation exceptions as always enabled.
Refer to Table 3.11 for the meaning of each enable bit.

R/W Undefined

Flags 6:2 Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.
When an FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Floating-
Point Exception (the enable bit was on) do not update the
Flags field.
Hardware never resets this field; software must explicitly
reset this field.
Refer to Table 3.11 for the meaning of each flag bit.

R/W Undefined

RM 1:0 Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).
Refer to Table 3.12 for the encoding of this field.

R/W Undefined

0 20:18 These bits must be written as zeros; they return zeros on
reads.

0 0

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

V Invalid Operations

Z Divide by Zero

O Overflow

U Underflow

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit

 Floating-Point Unit of the 74Kf™ Core

64 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bits in the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.

nonzero result between ±2E_min), whereby the FPU can handle these cases right away instead of relying on the much
slower software handler. The trade-off is a loss of IEEE compliance and accuracy (except for use of the FO bit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result
that a software handler would give. The benefit is a significantly improved performance and precision.

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

I Inexact

Table 3.12 Rounding Mode Definitions

RM Field Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable
values are equally near, the result is rounded to the value whose least-signifi-
cant bit is zero (even).

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the
result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

Table 3.13 Handling Denormalized Floating-point Numbers

FS and FN bit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,

RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG1

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions
when FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same
result as an equivalent sequence of arithmetic FPU operations.

FO bit: MADD, MSUB, NMADD, and NMSUB

Table 3.11 Cause, Enables, and Flags Definitions (Continued)

Bit Name Bit Meaning

3.5 Floating-Point Control Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 65

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 3.16 FS/FO/FN Bits Influence on Multiply and Addition Results

3.5.6.1 Flush To Zero Bit

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either
zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settings. Table
3.14 lists the flushing behavior for tiny results..

The flushing of results is based on an intermediate result computed by rounding the mantissa using an unbounded
exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading
zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown in Table 3.15.

3.5.6.2 Flush Override Bit

When the Flush Override (FO) bit is set, a tiny intermediate result of any multiply-add type instruction is not flushed
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accuracy.
FO only applies to the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown in Table 3.16.

Table 3.14 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result

RN (RM=0) -0 +0

RZ(RM=1) -0 +0

RP (RM=2) -0 +MinNorm

RM (RM=3) -MinNorm +0

Table 3.15 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

0 An Unimplemented Operation exception is taken.

1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny
results are forced to zero or MinNorm.

Table 3.16 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

Operand values
FS applies

AdditionMultiply

Intermediate Multiply-Add result
FS/FO applies

Final result
FS/FN applies

 Floating-Point Unit of the 74Kf™ Core

66 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), a tiny final result is
flushed to zero or MinNorm. If a tiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it
is flushed to MinNorm (see Figure 3.17). The flushed result has the same sign as the result prior to flushing. Note that
the FN bit takes precedence over the FS bit.

Figure 3.17 Flushing to Nearest when Rounding Mode is Round to Nearest

For all rounding modes other than Round to Nearest (RN), setting the FN bit causes final results to be flushed to zero
or MinNorm as if the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown in Table 3.17.

0 1 The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (see Table 3.34) instead of causing an Unimplemented Opera-
tion exception.

1 Don’t care The intermediate result is kept in an internal format, which can be perceived as hav-
ing the usual mantissa precision but with unlimited exponent precision and without
forcing to a specific value or taking an exception.

Table 3.17 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

0 1 Final result is forced to the value that would have been delivered for an untrapped
underflow (see Table 3.34) rather than causing an Unimplemented Operation
exception.

1 Don’t care Final result is rounded to either zero or 2E_min (MinNorm), whichever is closest
when in Round to Nearest (RN) rounding mode. For other rounding modes, a final
result is given as if FS was set to 1.

Table 3.16 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings (Continued)

FO Bit FS Bit Handling of Tiny Result Values

MinNorm/2-MinNorm/2

-MinNorm MinNorm0

3.5 Floating-Point Control Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 67

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.5.6.4 Recommended FS/FO/FN Settings

Table 3.18 summarizes the recommended FS/FO/FN settings.

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow

Computations are performed in two steps:

1. Compute rounded mantissa with unbound exponent range.

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that I and V both can be
set if a denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or IO). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized IEEE format.

Step #2 can set I if a default result is generated.

3.5.7.3 Multiply-Add Flow

For multiply-add type instructions, the computation is extended with two more steps:

1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if
FO = 1).

3. Compute rounded mantissa with unbounded exponent range for the add.

Table 3.18 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

0 0 0 IEEE-compliant mode. Low performance on denormal operands and tiny
results.

1 0 0 Regular embedded applications. High performance on denormal operands
and tiny results.

1 1 1 Highest accuracy and performance configuration.1

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD opera-
tion sequence.

 Floating-Point Unit of the 74Kf™ Core

68 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

4. Flush to default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 and Step #3 can set a cause bit as described for Step #1 in 3.5.7.2 “Generic Flow”.

Step #2 and Step #4 can set I if a default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNorm set
I (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E
to be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 3.6.1 “Data Transfer Instructions”

• Section 3.6.2 “Arithmetic Instructions”

• Section 3.6.3 “Conversion Instructions”

• Section 3.6.4 “Formatted Operand-Value Move Instructions”

• Section 3.6.5 “Conditional Branch Instructions”

• Section 3.6.6 “Miscellaneous Instructions”

The instructions are described in detail in Chapter 13, “74K™ Processor Core Instructions”, including descriptions of
supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has a load/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Data is transferred between registers and the rest of the

3.6 Instruction Overview

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 69

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

system with dedicated load, store, and move instructions. The transferred data is treated as unformatted binary data;
no format conversions are performed, and therefore no IEEE floating-point exceptions can occur.

Table 3.19 lists the supported transfer operations.

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is
the most-significant byte; for a little-endian machine, this is the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.20 through 3.22 list the FPU data transfer instructions.

Table 3.19 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register ↔ Memory Word/doubleword load/store

FPU general register ↔ CPU general register Word move

FPU control register ↔ CPU general register Word move

Table 3.20 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LWC1 Load Word to Floating Point

SDC1 Store Doubleword to Floating Point

SWC1 Store Word to Floating Point

Table 3.21 FPU Loads and Stores Using Register+Register Address Mode

Mnemonic Instruction

LDXC1 Load Doubleword Indexed to Floating Point

LUXC1 Load Doubleword Indexed Unaligned to Floating Point

LWXC1 Load Word Indexed to Floating Point

SDXC1 Store Doubleword Indexed to Floating Point

SUXC1 Store Doubleword Indexed Unaligned to Floating Point

SWXC1 Store Word Indexed to Floating Point

Table 3.22 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

 Floating-Point Unit of the 74Kf™ Core

70 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bits in
the CP1 FCSR register can override this behavior as described in Section 3.5.6, "Operation of the FS/FO/FN Bits".

Table 3.23 lists the FPU IEEE compliant arithmetic operations.

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.24 lists the FPU-approximate arithmetic operations.

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to a third operand, and produce a result. These instructions are listed in Table 3.25.
The product is rounded according to the current rounding mode prior to the accumulation. This model meets the IEEE

MFC1 Move Word From Floating Point

MTC1 Move Word To Floating Point

Table 3.23 FPU IEEE Arithmetic Operations

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIV.fmt Floating-Point Divide

MUL.fmt Floating-Point Multiply

NEG.fmt Floating-Point Negate

SQRT.fmt Floating-Point Square Root

SUB.fmt Floating-Point Subtract

Table 3.24 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

RECIP.fmt Floating-Point Reciprocal Approximation

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation

Table 3.22 FPU Move To and From Instructions (Continued)

Mnemonic Instruction

3.6 Instruction Overview

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 71

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,
or negate instructions.

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.
The FS and FN bits in the CP1 FCSR register can override this behavior as described in Section 3.5.6, "Operation of
the FS/FO/FN Bits".

Table 3.26 and Table 3.27 list the FPU conversion instructions according to their rounding mode.

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

Table 3.25 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction

MADD.fmt Floating-Point Multiply Add

MSUB.fmt Floating-Point Multiply Subtract

NMADD.fmt Floating-Point Negative Multiply Add

NMSUB.fmt Floating-Point Negative Multiply Subtract

Table 3.26 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D.fmt Floating-Point Convert to Double Floating Point

CVT.L.fmt Floating-Point Convert to Long Fixed Point

CVT.S.fmt Floating-Point Convert to Single Floating Point

CVT.W.fmt Floating-Point Convert to Word Fixed Point

Table 3.27 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point

CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point

FLOOR.L.fmt Floating-Point Floor to Long Fixed Point

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point

ROUND.L.fmt Floating-Point Round to Long Fixed Point

ROUND.W.fmt Floating-Point Round to Word Fixed Point

TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point

 Floating-Point Unit of the 74Kf™ Core

72 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32 Architecture Refer-
ence Manual, Volume II.)

Table 3.28 through Table 3.30 list the formatted operand-value move instructions.

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond.fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction in
the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of
the Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

Table 3.28 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV.fmt Floating-Point Move

Table 3.29 FPU Conditional Move on True/False Instructions

Mnemonic Instruction

MOVF.fmt Floating-Point Move Conditional on FP False

MOVT.fmt Floating-Point Move Conditional on FP True

Table 3.30 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction

MOVN.fmt Floating-Point Move Conditional on Nonzero

MOVZ.fmt Floating-Point Move Conditional on Zero

3.7 Exceptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 73

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The MIPS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in dis-
continuous fields in the FCSR.

Table 3.31 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.32 lists the deprecated
conditional branch likely instructions.

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.33 lists these conditional move instructions.

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trapping.
Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception bit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled through the
Enables field of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

3.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

Table 3.31 FPU Conditional Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3.32 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3.33 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction

MOVN Move Conditional on FP False

MOVZ Move Conditional on FP True

 Floating-Point Unit of the 74Kf™ Core

74 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving a value into the FCSR. There is no enable
bit for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from
being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.34). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
the bits are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754:

• Section 3.7.2.1 “Invalid Operation Exception”

• Section 3.7.2.2 “Division By Zero Exception”

• Section 3.7.2.3 “Underflow Exception”

• Section 3.7.2.4 “Overflow Exception”

• Section 3.7.2.5 “Inexact Exception”

3.7.2.6 “Unimplemented Operation Exception” also describes a MIPS-specific exception condition, Unimplemented
Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an IEEE arith-
metic operation can cause only one exception condition; the only case in which two exceptions can occur at the same
time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the exception
condition does not result in a trap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.34 summarizes the default results.

Table 3.34 Result for Exceptions Not Trapped

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

3.7 Exceptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 75

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT.fmt, MOVF.fmt,
MOVN.fmt, and MOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (−∞) or (−∞) - (−∞).

• Multiplication: 0 × ∞, with any signs.

• Division: 0/0 or ∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and ∞/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a correctly
signed infinity.

U Underflow Depends on the rounding mode as shown below:
• 0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.

• 2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative
underflow values, supplies a positive zero.

• 3 (RM): For positive underflow values, supplies a negative zero. For negative under-

flow values, supplies a negative 2E_min (MinNorm).
Note that this behavior is only valid if the FCSR FN bit is cleared.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled,
supplies the overflowed result. If caused by an underflow without the underflow trap
enabled, supplies the underflowed result.

O Overflow Depends on the rounding mode, as shown below:
• 0 (RN): Supplies an infinity with the sign of the exact result.
• 1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.
• 2 (RP): For positive overflow values, supplies positive infinity. For negative overflow

values, supplies the format’s most negative finite number.
• 3 (RM): For positive overflow values, supplies the format’s largest finite number. For

negative overflow values, supplies minus infinity.

Table 3.34 Result for Exceptions Not Trapped (Continued)

Bit Description Default Action

 Floating-Point Unit of the 74Kf™ Core

76 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between ±2E_min which, because it is tiny, might cause some other
exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess events. The
MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed as though

the exponent range were unbounded would lie strictly between ±2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have

been detected. The delivered result might be zero, denormalized, or 2E_min.

• When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininess is
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support. This
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture.
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

There is no enable bit for this condition; it always causes a trap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

3.8 Pipeline and Performance

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 77

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers
and where such are not handed by the FS/FO/FN bits.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU supports limited
dual-issue. It can accept one “to/from” instruction and one arithmetic instruction every cycle. A “to/from” instruction
is a data transfer instruction and covers the following instructions: MFC1, MFHC1, MTC1, MTHC1, CFC1, CTC1,
LWC1, LWXC1, LUXC1, LDC1, LDXC1, SWC1, SWXC1, SDC1 and SDXC1. The arithmetic group refers to all
other floating point instructions.

The FPU pipeline runs in parallel with the 74K integer pipeline. The FPU can be built to run at different frequencies
compared to the integer core. The supported ratios of integer core clock to FPU clk are: 2:1, 3:2 and 1:1.

The FPU pipe is optimized for single-precision instructions, such that the basic multiply, ADD/SUB, and MADD/
MSUB instructions can be performed with single-cycle throughput and low latency. Executing double-precision mul-
tiply and MADD/MSUB instructions requires a second pass through the M1 stage to generate all 64 bits of the prod-
uct. Executing long latency instructions, such as DIV and RSQRT, extends the M1 stage. Figure 3.18 shows the FPU
pipeline.

Figure 3.18 FPU Pipeline

3.8.1.1 DR Stage - Dispatch Rename

The DR stage is described in detail in Chapter 2, “Pipeline of the 74K™ Core”. This stage is common to both the
integer and floating point pipeline. The two pipelines fork off separately after this stage.

3.8.1.2 C1 - Coprocessor Interface Unit Stage 1

In this stage, the Coprocessor Interface Unit (CIU) receives two instructions from the IDU. It does some preliminary
decoding and determines if there is space available in its internal queues for the received instructions.

74K integer
pipeline

FPU instruction in general

FPU double multiplication (for example, MUL, MADD)

FPU long instructions (for example, DIV, RSQRT)

Dispatch

FR M1 M2 A1 A2 FP

FR M1 M1 M2 A1 A2

FW

FWFP

FR M1 M1 M2 A1 A2 FWFP

Second
Pass

Multiple cycles

DR C1 C2 CR CI

 Floating-Point Unit of the 74Kf™ Core

78 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.8.1.3 CR Stage - Coprocessor Interface Unit Queue Read

The CIU internal instruction queues are read in this stage and up to two instructions are selected for dispatch to the
FPU.

3.8.1.4 CI Stage - Coprocessor 1 Interface

This pipeline stage represents the interface stage, where instructions are sent to the FPU

3.8.1.5 FR Stage - Decode, Register Read, and Unpack

This pipeline is the second interface stage, where the instruction start is sent to the FPU.

The FR stage also has the following additional functionality:

• The dispatched instruction is decoded for register accesses.

• Data is read from the register file.

• The operands are unpacked into an internal format.

3.8.1.6 M1 Stage - Multiply Tree

The M1 stage has the following functionality:

• A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

• The long instructions, such as divide and square root, iterate for several cycles in this stage.

• Sum of exponents is calculated.

• If an exception can be predicted, then it is sent out in this pipeline stage.

3.8.1.7 M2 Stage - Multiply Complete

The M2 stage has the following functionality:

• Multiplication is complete when the carry-save encoded product is compressed into binary.

• Rounding is performed.

• Exponent difference for addition path is calculated.

3.8.1.8 A1 Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.9 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

3.8 Pipeline and Performance

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 79

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

3.8.1.10 FP Stage - Result Pack

The FP stage has the following functionality:

• The result coming from the datapath is packed into IEEE 754 Standard format for the FPR register file.

• Overflow and underflow exceptional conditions are resolved.

3.8.1.11 FW Stage - Register Write

The result is written to the FPR register file.

3.8.2 Bypassing

The FPU pipeline implements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into the
register file and read back before they can be used, but can be forwarded directly to an instruction already in the pipe.
Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CP0 Status register is 0, due
to the paired even-odd 32-bit registers that provide 64-bit registers.

Figure 3.19 Arithmetic Pipeline Bypass Paths

3.8.3 Repeat Rate and Latency

Table 3.35 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point opera-
tions are listed in terms of FPU clocks.

Table 3.35 74Kf Core FPU Latency and Repeat Rate

Opcode1
Latency
(cycles)

Repeat Rate
(cycles)

ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], MUL.S, MADD.S, MSUB.S,
NMADD.S, NMSUB.S

4 1

MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2

RECIP.S 13 10

RECIP.D 25 21

RSQRT.S 17 14

RSQRT.D 35 31

DIV.S, SQRT.S 17 14

DIV.D, SQRT.D 32 29

FR M1 M2 A1 A2 FP FW

A2 bypass

FP bypass

FW bypass

 Floating-Point Unit of the 74Kf™ Core

80 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

C.cond.[S,D] to MOVF.fmt and MOVT.fmt instruction / MOVT, MOVN, BC1
instruction

1 / 2 1

CVT.D.S, CVT.[S,D].[W,L] 4 1

CVT.S.D 6 1

CVT.[W,L].[S,D],
CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]

5 1

MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D] 4 1

LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1

MTC1, MFC1 2 1

1. Format: S = Single, D = Double, W = Word, L = Longword.

Table 3.35 74Kf Core FPU Latency and Repeat Rate (Continued)

Opcode1
Latency
(cycles)

Repeat Rate
(cycles)

Chapter 4

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 81

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The MIPS® DSP Application-Specific Extension to the
MIPS32® Instruction Set

The 74K core includes support for the MIPS DSP Application-Specific Extension (ASE) Revision 2 that provides
enhanced performance capabilities for a wide range of signal-processing applications, with computational support for
fractional data types, SIMD, saturation, and other operations that are commonly used in these applications.

Refer to MIPS32® Architecture For Programmers, Volume IV-e for a general description of the DSP ASE and
detailed descriptions of the DSP instructions. Additional programming information is contained in Programming the
MIPS 74K Family Cores for DSP and in the DSP chapter of Programming the MIPS32® 74K™ Coherent Processing
System Family.

4.1 Additional Register State for the DSP ASE

The DSP ASE defines three additional accumulator registers and one additional control/status register, as described
below. These registers require the operating system to recognize the presence of the DSP ASE and to include these
additional registers in the context save and restore operations.

4.1.1 HI-LO Registers

The DSP ASE includes three HI/LO accumulator register pairs (ac1, ac2, and ac3) in addition to the HI/LO register
pair (ac0) in the standard MIPS32 architecture. These registers improve the parallelization of independent accumula-
tion routines—for example, filter operations, convolutions, etc. DSP instructions that target the accumulators use two
instruction bits to specify the destination accumulator, with the zero value referring to the original accumulator.

4.1.2 DSP Control Register

The DSPControl register contains control and status information used by DSP instructions. Figure 4.1 illustrates the
bits in this register, and Table 4.1 describes their usage.

Figure 4.1 MIPS32® DSP ASE Control Register (DSPControl) Format

scount

31 06

ouflag

7

0

121516

ccond pos

24 23 13

c

14

0
2728 5

0EFI

 The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set

82 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 4.1 MIPS® DSP ASE Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:28 Reserved. Used in the MIPS64 architecture but not used
in the MIPS32 architecture. Must be written as zero;
returns zero on read.

0 0 Required

ccond 27:24 Condition code bits set by compare instructions. The
compare instruction sets the right-most bits as required
by the number of elements in the vector compare. Bits
not set by the instruction remain unchanged.

R/W 0 Required

ouflag 23:16 This field is written by hardware when certain instruc-
tions overflow or underflow and may have been satu-
rated. See Table 4.2 for a full list of which bits are set by
what instructions.

R/W 0 Required

EFI 14 Extract Fail Indicator. This bit is set to 1 when an EXTP,
EXTPV, EXTPDP, or EXTPDP instruction fails. These
instructions fail when there are insufficient bits to
extract, that is, when the value of pos in DSPControl is
less than the value of size specified in the instruction.
This bit is not sticky, so each invocation of one of the
four instructions will reset the bit depending on whether
or not the instruction failed.

R/W 0 Required

c 13 Carry bit. This bit is set and used by special add instruc-
tions that implement a 64-bit add across two GPRs. The
ADDSC instruction sets the bit and the ADDWC
instruction uses this bit.

R/W 0 Required

scount 12:7 This field is for use by the INSV instruction. The value
of this field is used to specify the size of the bit field to
be inserted.

R/W 0 Required

pos 5:0 This field is used by the variable insert instructions
INSV to specify the insert position.
It is also used to indicate the extract position for the
EXTP, EXTPV, EXTPDP, and EXTPDPV instructions.
The decrement pos (DP) variants of these instructions on
completion will have decremented the value of pos (by
the size amount).
The MTHLIP instruction will increment the pos value by
32 after copying the value of LO to HI.

R/W 0 Required

0 15:13 Must be written as zero; returns zero on read. 0 0 Reserved

4.2 Software Detection of the DSP ASE Revision 2

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 83

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The bits of the overflow flag ouflag field in the DSPControl register are set by a number of instructions, as described
in Table 4.2. These bits are sticky and can be reset only by an explicit write to these bits in the register (using the
WRDSP instruction).

4.2 Software Detection of the DSP ASE Revision 2

The presence of the MIPS DSP ASE in the 74K core is indicated by two static bits in the Config3 register: the DSPP
(DSP Present) bit indicates the presence of the DSP ASE, and the DSP2P (DSP Rev2 Present) bit indicates the pres-
ence of the MIPS DSP ASE Rev2. Because all members of the 74K core family support both ASEs, these bits are
always set to 1.

The MX (DSP ASE Enable) read/write bit in the CP0 Status register must be set to enable access to the extra instruc-
tions defined by the DSP ASE, as well as to the MTLO/HI, MFLO/HI instructions that access accumulators ac1, ac2,
and ac3. Executing a DSP ASE instruction or the MTLO/HI, MFLO/HI instructions with this bit set to zero causes a
DSP State Disabled Exception (exception code 26 in the CP0 Cause register). This exception can be used by system
software to do lazy context-switching.

Table 4.2 DSPControl ouflag Bits

Bit Number Description

16 This bit is set when the destination is accumulator (HI-LO pair) zero, and an operation overflow
or underflow occurs. These instructions are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA,
DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA, MAQ_S, MAQ_SA and MULSAQ_S.

17 Same instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Same instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Same instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that set this bit on an overflow/underflow: ABSQ_S, ADDQ, ADDQ_S, ADDU,
ADDU_S, ADDWC, SUBQ, SUBQ_S, SUBU and SUBU_S.

21 Instructions that set this bit on an overflow/underflow: MUL, MUL_S, MULEQ_S, MULEU_S,
MULQ_RS, and MULQ_S.

22 Instructions that set this bit on an overflow/underflow: PRECRQ_RS, SHLL, SHLL_S, SHLLV,
and SHLLV_S.

23 Instructions that set this bit on an overflow/underflow: EXTR, EXTR_S, EXTR_RS, EXTRV,
and EXTRV_RS.

 The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set

84 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 5

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 85

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Memory Management of the 74K™ Core

The 74K processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit and
the cache controller. The core contains either a Translation Lookaside Buffer (TLB) or a simpler Fixed Mapping
(FM)-style MMU, specified as a build-time option when the core is implemented.

This chapter contains the following sections:

• Section 5.1 “Introduction”

• Section 5.2 “Modes of Operation”

• Section 5.3 “Translation Lookaside Buffer”

• Section 5.4 “Virtual-to-Physical Address Translation”

• Section 5.5 “Fixed Mapping MMU”

5.1 Introduction

The MMU in a 74K processor core translates a virtual address to a physical address before the request is sent to the
cache controllers for tag comparison or to the bus interface unit for an external memory reference. Virtual-to-physical
address translation is especially useful for operating systems that must manage physical memory to accommodate
multiple tasks active in the same memory, and possibly in the same virtual address space (though, of course, in differ-
ent locations in physical memory). The MMU also enforces the protection of memory areas and defines the cache
protocols.

By default, the MMU is TLB-based. The TLB consists of two address-translation buffers: a dual-ported 16/32/48/64
dual-entry fully associative Joint TLB (JTLB) and a 4-entry instruction micro TLB (ITLB). When an instruction
address is translated, the ITLB is accessed first, and if the translation is not found, the JTLB is accessed. If there is a
miss in the JTLB, an exception is taken. When a data reference is translated, the JTLB is accessed directly. If the
address is not present in the JTLB, an exception is taken. The JTLB is dual-ported to prevent contention between
instruction and data accesses.

Optionally, the MMU can implement a Fixed Mapping (FM) mechanism, based on a simple algorithm that translates
virtual addresses into physical addresses. These translations are different for various regions of the virtual address
space.

Figure 5.1 shows how the MMU with TLB interacts with cache accesses, and Figure 5.2 shows the equivalent for the
FM MMU.

 Memory Management of the 74K™ Core

86 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.1 Address Translation For Cache Access with TLB MMU

Figure 5.2 Address Translation For Cache Access with FM MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA) JTLB

ITLB

Instruction
Cache
RAM

Data Cache
RAM

IVA Entry

Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction Hit/
Miss

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

FM MMU

Instruction
Cache
RAM

Data Cache
RAM

Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction Hit/
Miss

FM MMU

5.2 Modes of Operation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 87

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.2 Modes of Operation

The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is operating. A
74K processor core operates in one of four modes:

• User mode

• Supervisor mode

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically
used for handling exceptions and privileged operating system functions, including CP0 management and I/O device
accesses. Debug mode is used for software debugging and usually occurs within a software development tool.

5.2.1 Virtual Memory Segments

The MIPS32 architecture supports a 4 GByte virtual address space that is partitioned into a number of segments, each
characterized by a set of attributes defined by hardware and software. The virtual memory segments are different

depending on the mode of operation. Figure 5.3 shows the segmentation for the 4 GByte (232 bytes) virtual memory
space, addressed by a 32-bit virtual address, for each of the four modes.

User mode accesses are limited to a subset of the virtual address space (0x0000_0000 to 0x7FFF_FFFF) and can be
inhibited from accessing CP0 functions. In User mode, virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid
and cause an exception if accessed. Supervisor mode adds access to sseg (0xC000_0000 to 0xDFFF_FFFF). kseg0,
kseg1, and kseg3 will still cause exceptions if they are accessed. In Kernel mode, software has access to the entire
address space, as well as all CP0 registers.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CP0 registers as Kernel mode. In addition, while in Debug mode, the core has access to the debug
segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can be turned on
or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

 Memory Management of the 74K™ Core

88 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.3 74K™ Processor Core Virtual Memory Map

Segments can be mapped or unmapped, as described in the following subsections.

5.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB or the FM to translate virtual to physical addresses. Especially after
reset, it is important to have unmapped memory segments, because the TLB is not yet programmed to perform the
translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FM provides for the core, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of the
CP0 Config register (see Section 7.2.23 “Config (CP0 Register 16, Select 0): Legacy Configuration Register”).

useg kuseg kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

ksseg/kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000

suseg

sseg

Supervisor Mode

5.2 Modes of Operation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 89

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.2.1.2 Mapped Segments

A mapped segment uses the TLB or the FM to translate from virtual to physical addresses.

For the core with TLB, the translation of mapped segments is handled on a per-page basis. Included in this translation
is information defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the core with the FM MMU, the mapped segments have a fixed translation from virtual to physical address. The
cacheability of the segment is defined in the K23 and KU fields of the CP0 register Config (see Section
7.2.23 “Config (CP0 Register 16, Select 0): Legacy Configuration Register”). Write protection of segments is not
possible during FM translation.

5.2.2 User Mode

In user mode, a single 2 GByte (231 bytes) uniform virtual address space, called the user segment (useg), is available.
Figure 5.4 shows the location of user mode virtual address space.

Figure 5.4 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all other addresses
cause an address error exception.

The processor operates in User mode when the Status register contains the following bit values:

• KSU = 0b10

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0.

0x0000_0000

0x8000_0000

0x7FFF_FFFF

0xFFFF_FFFF

32 bits

Address Error

2GB Mapped
useg

 Memory Management of the 74K™ Core

90 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 5.1 lists the characteristics of the User mode segment.

All valid user mode virtual addresses have their most-significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. All attempts to reference an address with the most-significant bit set
while in user mode causes an address error exception.

All references to useg are mapped through the TLB or FM. For cores with a TLB, the virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address before translation. Also, bit settings within the
TLB entry for the page determine the cacheability of a reference. For FM MMU cores, the cacheability is set via the
KU field of the CP0 Config register.

5.2.3 Supervisor Mode

In supervisor mode, two uniform virtual address spaces are available: a 2 GByte (231 bytes) virtual address space
called the supervisor user segment (suseg), and a 512 MByte virtual address space called the supervisor segment
(sseg). The supervisor-mode virtual address space is shown in Figure 5.5.

Table 5.1 User Mode Segments

Address-Bit
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL KSU

32-bit
A(31) = 0

0 0 0b10 useg 0x0000_0000 -->
0x7FFF_FFFF

2 GByte

(231 bytes)

5.2 Modes of Operation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 91

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.5 Supervisor Mode Virtual Address Space

The supervisor user segment begins at address 0x0000_0000 and ends at address 0x7FFF_FFFF. The supervisor seg-
ment begins at 0xC000_0000 and ends at 0xDFFF_FFFF. Accesses to all other addresses in Supervisor mode cause
an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

• UM = 0 and SM= 1

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0.

Address Error

suseg

kseg0

kseg1

sseg

kseg3

Mapped, 2048MB

Address Error

Supervisor virtual address space
Mapped, 512MB

Address Error

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the 74K™ Core

92 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 5.2 lists the characteristics of the Supervisor mode segments.

The system maps all references to suseg and sseg through the TLB or FM. For cores with a TLB, the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address before translation. Also, bit set-
tings within the TLB entry for the page determine the cacheability of a reference. For FM MMU cores, the cacheabil-
ity of suseg and sseg is set via the KU and K23 fields of the CP0 Config register respectively.

5.2.4 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

• KSU = 0b00

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

In Kernel mode, a program has access to the entire virtual address space. Kernel mode virtual address space is divided
into regions differentiated by the high-order bits of the virtual address, as shown in Figure 5.6. The characteristics of
kernel-mode segments are listed in Table 5.3.

The core enters Kernel mode both at reset and when an exception is recognized.

Table 5.2 Supervisor Mode Segments

Address-Bit
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL UM SM

32-bit
A(31) = 0

0 0 0 1 suseg 0x0000_0000 -->
0x7FFF_FFFF

2 GByte

(231 bytes)

32-bit
A(31:29) = 1102

0 0 0 1 sseg 0xC000_0000 ->
0xDFFF_FFFF

512MB

(229 bytes)

5.2 Modes of Operation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 93

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.6 Kernel Mode Virtual Address Space

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the 74K™ Core

94 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.2.4.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF. For cores with TLBs, the virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include
the ASID field.

5.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address

space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

5.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, kseg1 virtual address

space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

Table 5.3 Kernel Mode Segments

Address-Bit
Values

Status Register
Is One of These

Values
Segment

Name Address Range
Segment

SizeKSU EXL ERL

A(31) = 0 (KSU = 002

or
EXL = 1

or
ERL = 1)

and
DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231 bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 1102 ksseg/kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes (229 bytes)

5.2 Modes of Operation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 95

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)

In Kernel mode, when KSU= 002, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected.

With the FM MMU, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 -
0xDFFF_FFFF. Otherwise, this space is mapped through the TLB.

5.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112 , the kseg3 virtual address

space is selected. With the FM MMU, this 229-byte (512-MByte) kernel virtual space is located at physical addresses
0xE000_0000 - 0xFFFF_FFFF. Otherwise, this space is mapped through the TLB.

5.2.5 Debug Mode

Except for kseg3, debug-mode address space is identical to kernel-mode address space with respect to mapped and
unmapped areas. In kseg3, a debug segment (dseg) coexists in the virtual address range 0xFF20_0000 to
0xFF3F_FFFF. The layout is shown in Figure 5.7.

Figure 5.7 Debug Mode Virtual Address Space

dseg is subdivided into the dmseg segment at 0xFF20_0000 to 0xFF2F_FFFF, which is used when the debug probe
services the memory segment, and the drseg segment at 0xFF30_0000 to 0xFF3F_FFFF, which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes of the segments are shown in Table 5.4.

Accesses to memory that would normally cause an exception in kernel mode cause the core to re-enter debug mode
via a debug-mode exception. This includes accesses usually causing a TLB exception, with the result that such
accesses are not handled by the usual memory-management routines.

0x0000_0000

0xFF20_0000

0xFF40_0000
0xFFFF_FFFF

dseg

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode

 Memory Management of the 74K™ Core

96 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The unmapped kseg0 and kseg1 segments from kernel-mode address space are available in debug mode, which allows
the debug handler to be executed from uncached, unmapped memory.

5.2.5.1 Debug Mode, Register (drseg)

The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as shown in
Table 5.5

Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped reg-
isters exist in drseg. The value returned in response to a read of any unimplemented memory-mapped register is
unpredictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR,
refer to Chapter 11, “EJTAG Debug Support in the 74K™ Core”.

The allowed access size is limited for the drseg. Only word-size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

5.2.5.2 Debug Mode, Memory (dmseg)

The conditions for CPU accesses to the dmseg address range (0xFF20_0000 to 0xFF2F_FFFF) are shown in Table
5.6.

Table 5.4 Physical Address and Cache Attributes for dseg, dmseg, and drseg

Segment
Name

Sub-Segment
Name

Virtual
Address Generates Physical Address

Cache
Attribute

dseg dmseg 0xFF20_0000
through

0xFF2F_FFFF

dmseg maps to addresses 0x0_0000 -
0xF_FFFF in EJTAG probe memory
space.
drseg maps to the breakpoint registers
0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFF30_0000
through

0xFF3F_FFFF

Table 5.5 CPU Access to drseg

Transaction
LSNM Bit in Debug

Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0

Table 5.6 CPU Access to dmseg

Transaction
ProbEn Bit in
DCR Register

LSNM Bit in
Debug Register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0 dmseg

Fetch 0 Don’t care See comments below

Load / Store 0 0 See comments below

5.3 Translation Lookaside Buffer

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 97

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such a refer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never
be a reference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the
debug software sampling the ProbEn bit as 1, and the probe clearing it to 0.

5.3 Translation Lookaside Buffer

The TLB memory-management scheme used in the 74Kc processor core includes two address-translation units:

• 16, 32, 48, or 64 dual-entry fully associative Joint TLB (JTLB)

• 4-entry fully associative Instruction micro TLB (ITLB)

5.3.1 Joint TLB

The 74K core implements a 16-64 dual-entry, fully associative Joint TLB that maps 32-128 virtual pages to their cor-
responding physical addresses. The purpose of the TLB is to translate virtual addresses and their corresponding ASID
into a physical memory address. The translation is performed by comparing the upper bits of the virtual address
(along with the ASID bits) against each of the entries in the tag portion of the JTLB structure. Because this structure
is used to translate both instruction and data virtual addresses, it is referred to as a “joint” TLB.

The JTLB is organized as 16-64 pairs of even and odd entries containing descriptions of pages that range in size from
4-KBytes to 256MBytes into the 4-GByte physical address space.

The JTLB is organized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds to two
physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not participating
in the tag comparison is used to determine which of the two data entries is used. Since page size can vary on a page-
pair basis, the determination of which address bits participate in the comparison and which bit is used to make the
even-odd selection must be done dynamically during the TLB lookup.

Figure 5.8 shows the contents of one of the dual-entries in the JTLB. The bit ranges shown in the figure serve to clar-
ify which address bits are (or may be) affected during the translation process.

Figure 5.8 JTLB Entry (Tag and Data)

PageMask[28:13]

D0

G ASID[7:0]

PFN0[31:12] C0[2:0]

D1PFN1[31:12] C1[2:0]

VPN2[31:13]

V0

V1

Tag Entry

Data Entries

17 1 8

20 3 1 1

G

 Memory Management of the 74K™ Core

98 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 5.7 and Table 5.8 explain each of the fields in a JTLB entry.

Table 5.7 TLB Tag Entry Fields

Field Name Description

PageMask[28:13] Page Mask Value. The Page Mask defines the page size by masking the appropriate
VPN2 bits from being involved in a comparison. It is also used to determine which
address bit is used to make the even-odd page (PFN0-PFN1) determination. See the table
below.

The PageMask column above shows all the legal values for PageMask. Because each
pair of bits can only have the same value, the physical entry in the JTLB will only save a
compressed version of the PageMask using only 8 bits. This is however transparent to
software, which will always work with a 16 bit field

VPN2[31:13] Virtual Page Number divided by 2. This field contains the upper bits of the virtual page
number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:29 are
always included in the TLB lookup comparison. Bits 28:13 are included depending on
the page size, defined by PageMask

G Global Bit. When set, indicates that this entry is global to all processes and/or threads
and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is associated
with.

Table 5.8 TLB Data Entry Fields

Field Name Description

PFN0[31:12],
PFN1[31:12]

Physical Frame Number. Defines the upper bits of the physical address.

PageMask Page Size Even/Odd Bank Select Bit

00_0000_0000_0000_00 4KB VAddr[12]

00_0000_0000_0000_11 16KB VAddr[14]

00_0000_0000_0011_11 64KB VAddr[16]

00_0000_0000_1111_11 256KB VAddr[18]

00_0000_0011_1111_11 1MB VAddr[20]

00_0000_1111_1111_11 4MB VAddr[22]

00_0011_1111_1111_11 16MB VAddr[24]

00_1111_1111_1111_11 64MB VAddr[26]

11_1111_1111_1111_11 256MB VAddr[28]

5.3 Translation Lookaside Buffer

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 99

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction (see Section 5.4.3 “TLB
Instructions”). Prior to invoking one of these instructions, several CP0 registers must be updated with the information
to be written to a TLB entry:

• PageMask is set in the CP0 PageMask register.

• VPN2, and ASID are set in the CP0 EntryHi register.

• PFN0, C0, D0, V0, and G bits are set in the CP0 EntryLo0 register.

• PFN1, C1, D1, V1, and G bits are set in the CP0 EntryLo1 register.

Note that the global bit “G” is part of both EntryLo0 and EntryLo1. The resulting “G” bit in the JTLB entry is the log-
ical AND between the two fields in EntryLo0 and EntryLo1. Please refer to Chapter 7, “CP0 Registers of the 74K™
Core” for further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The existence
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored in
the EntryHi register and is compared to the ASID value of each entry.

5.3.2 Instruction TLB

The ITLB is a 4-entry, fully-associative TLB dedicated to performing translations for the instruction stream. The
ITLB only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

C0[2:0],
C1[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and determines
whether the page should be placed in the cache or not. The field is encoded as follows:

D0,
D1

“Dirty” or Write-enable Bit. Indicates that the page has been written and/or is writable. If
this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page
cause a TLB Modified exception.

V0,
V1

Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping are valid. If
this bit is set, accesses to the page are permitted. If the bit is cleared, accesses to the page
cause a TLB Invalid exception.

Table 5.8 TLB Data Entry Fields (Continued)

Field Name Description

C[2:0] Coherency Attribute

0 Cacheable, noncoherent, write-through, no write-allocate

1 Reserved

2 Uncached

3 Cacheable, noncoherent, write-back, write-allocate

4 Reserved

5 Reserved

6 Reserved

7 Uncached Accelerated

 Memory Management of the 74K™ Core

100 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by the ITLB,
the JTLB is accessed trying to translate it in the following clock cycles. If successful, the translation information is
copied into the ITLB and bypassed to the tag comparators. This results in an ITLB miss penalty of at least 2 cycles.
Depending on the JTLB implementation or if it is busy with other operations, it may take additional cycles.

5.4 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with the
virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of the entry,
and either:

• The Global (G) bit of both the even and odd pages of the TLB entry are set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TLB hit. If there is no match, a TLB miss exception is taken by the processor, and soft-
ware is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 5.9 shows the translation of a virtual address into a physical address. In this figure, the virtual address is
extended with an 8-bit ASID, which reduces the frequency of TLB flushes during a context switch. This 8-bit ASID
contains the number assigned to that process and is stored in the CP0 EntryHi register.

Figure 5.9 Overview of Virtual-to-Physical Address Translation

If there is a virtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and concat-
enated with the Offset to form the physical address. The Offset represents an address within the page frame space. As
shown in Figure 5.9, the Offset does not pass through the TLB.

1.Virtual address (VA) represented by the virtual page
number (VPN) is compared with tag in TLB.

2. If there is a match, the page frame number
(PFN0 or PFN1) representing the upper bits of the
physical address (PA) is output from the TLB the
TLB.

3. The Offset, which does not pass through the TLB, is
then concatenated with the PFN.

OffsetVPNG ASID

Virtual Address

TLB
Entry

OffsetPFN

TLB

G ASID VPN2

C0 D0 V0 PFN0

PFN1C1 D1 V1

Physical Address

5.4 Virtual-to-Physical Address Translation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 101

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.10 shows a flow diagram of the address translation process for two page sizes. The top portion of the figure
shows a virtual address for a 4 KByte page size. The width of the Offset is defined by the page size. The remaining 20
bits of the address represent the virtual page number (VPN). The bottom portion of Figure 5.10 shows the virtual
address for a 16 MByte page size. The remaining 8 bits of the address represent the VPN.

Figure 5.10 32-bit Virtual Address Translation

5.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The
granularity of JTLB mappings is defined in terms of TLB pages. The JTLB supports pages of different sizes ranging
from 4 KB to 256 MB in powers of 4. If a match is found, but the entry is invalid (the V bit in the data field is 0), a
TLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in
memory. Figure 5.11 shows the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry. The
Random register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrap-
ping to the maximum once its value is equal to the Wired register. Thus, TLB entries below the Wired value cannot be
replaced by a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for a livelock
situation, the Random register includes a 10-bit LFSR that introduces a pseudo-random perturbation into the decre-
ment.

The core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. On the
TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB. If a match occurs,
the entry in the TLB is valid, and the entry being written is valid, the core takes a machine-check exception, sets the
TS bit in the CP0 Status register, and aborts the write operation. For further details on exceptions, please refer to
Chapter 6, “Exceptions and Interrupts in the 74K™ Core”. There is a hidden bit in each TLB entry that is cleared on
a Reset. This bit is set once the TLB entry is written and is included in the match detection. Therefore, uninitialized
TLB entries will not cause a TLB shutdown.

11
Virtual address with 1M (220) 4-KByte pages

Virtual Address with 256 (28)16-MByte pages

8 bits = 256 pages

20 bits = 1M pages

Virtual-to-physical
translation in TLB

Bit 31 of the virtual address
selects user and kernel address
spaces.

Offset passed unchanged to
physical memory.

Virtual-to-physical
translation in TLB

Offset passed unchanged to
physical memory.

32-bit Physical Address

ASID VPN Offset

PFN0/1 Offset

TLB

TLB

ASID VPN Offset
0233132 2439

313239 012

031

8 8 24

8 20 12

 Memory Management of the 74K™ Core

102 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Compared with previous cores from MIPS Technologies, the 74K core uses a more relaxed check for multiple
matches in order to avoid machine check exceptions while flushing or initializing the TLB. On a write, all matching
entries are disabled to prevent them from matching on future compares. A machine check is only signaled if the entry
being written has its valid bit set, the matching entry in the TLB has its valid bit set, and the matching entry is not the
entry being written. The cases for the signalling of the machine check exception are enumerated in Table 5.9.

5.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
regions, the 74K core provides two mechanisms.

5.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KBytes to 256
MBytes, in multiples of 4. The PageMask register is loaded with the desired page size, which is then entered into the
TLB when a new entry is written. Thus, operating systems can provide special-purpose maps. For example, a typical
frame buffer can be memory-mapped with only one TLB entry.

The 74K core implements the following page sizes:

4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, and 256M

Software can determine which page sizes are supported by writing all ones to the PageMask register, then reading the
value back. For additional information, see Section 7.2.7 “PageMask (CP0 Register 5, Select 0): Control for Variable
Page Size in TLB Entries”.

5.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. TLB refill is often done using
the TLBWR instruction to randomly replace one of the existing entries. The processor provides a mechanism
whereby a programmable number of mappings can be locked into the TLB via the CP0 Wired register, thus avoiding
random replacement. Refer to Section 7.2.8 “Wired (CP0 Register 6, Select 0): Controls Number of Fixed ("wired")
TLB Entries” for further details. For entries that are left available for random replacement, the core includes two
algorithms for selecting the entry. One involves a counter that decrements almost every cycle (with some pseudo-ran-
dom perturbation to minimize the likelihood of livelock conditions). A second scheme keeps a table of the TLB
entries that have been most recently used and tries to avoid selecting one of them. Selection of the algorithm is done
via the CP0 Config6NMRUD bit.

Table 5.9 Machine Check Exception

Existing
Match

Matching Entry equals
Written Entry Existing Page Valid Bit Written Page Valid Bit

Machine
Check

No X X X No

Yes Yes X X No

Yes No 0 0 No

Yes No 0 1 No

Yes No 1 0 No

Yes No 1 1 Yes

5.4 Virtual-to-Physical Address Translation

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 103

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.11 TLB Address Translation Flow in the 74K™ Processor Core

5.4.3 TLB Instructions

Table 5.10 lists the TLB-related instructions. Refer to Chapter 13, “74K™ Processor Core Instructions” for more
information on these instructions.

Table 5.10 TLB Instructions

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

For valid address space,
see the section describing
Modes of operation in this
chapter.

Virtual Address (Input)

VPN and
ASID

User
Mode?

NoYes

No

Yes

No

Yes

No

No No

No

No

No

No

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Exception

Global

Valid

Dirty

Noncacheable

Physical Address (Output)

User
Address?

Address
Error

Unmapped
Address

kseg0/kseg1
Address

VPN
Match?

 G = 1?

 C=010 or
C=111?

 ASID
Match?

 V = 1?

 D = 1? Write?

 TLB
Modified

 TLB
Invalid

 TLB Refill

 Access
Cache

 Access
Main

Memory

 Memory Management of the 74K™ Core

104 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

5.5 Fixed Mapping MMU

The 74K core optionally implements a simple Fixed Mapping (FM) memory management unit that is smaller than the
a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs virtual-to-physi-
cal address translation and provides attributes for the different memory segments. Those memory segments which are
unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FM MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in the Config regis-
ter. Table 5.11 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) fields of the Config reg-
ister.

With the FM MMU, no translation exceptions can be taken, although address errors are still possible.

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 5.11 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0 Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write-allocate

1 Reserved

2 Uncached

3 Cacheable, noncoherent, write-back, write-allocate

4 Reserved

5 Reserved

6 Reserved

7 Uncached Accelerated

Table 5.12 Cacheability of Segments with Fixed Mapping Translation

Segment
Virtual Address

Range Cacheability

useg/kuseg 0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of the Config register. Refer to
Table 5.11 for the encoding.

kseg0 0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of the Config register. See Table
5.11 for the encoding.

kseg1 0xA000_0000-
0xBFFF_FFFF

Always uncacheable

kseg2 0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of the Config register. Refer to
Table 5.11 for the encoding.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of the Config register. Refer to
Table 5.11 for the encoding.

Table 5.10 TLB Instructions (Continued)

Op Code Description of Instruction

5.5 Fixed Mapping MMU

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 105

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The FM performs a simple translation to map virtual addresses to physical addresses. This mapping is shown in
Figure 5.12.

When the ERL bit in the Status register is set, useg and kuseg are unmapped and uncached, just as they are when
there is a TLB. The mapping when ERL = 1 is shown in Figure 5.13. The ERL bit is usually not asserted by software,
but is asserted by hardware after a Reset, NMI, or Cache Error. See Section 6.8 “Exception Descriptions” for further
information on exceptions.

Figure 5.12 FM Memory Map (ERL=0) in the 74K™ Processor Core

useg/kuseg

useg/kuseg

Virtual Address Physical Address

kseg3

kseg2

kseg1

kseg0

kseg3

kseg2

reserved

kseg0/kseg1

0xE000_0000

0xC000_0000

0xA000_0000

0x8000_0000

0x0000_0000

0xE000_0000

0xC000_0000

0x0000_0000

0x2000_0000

0x4000_0000

 Memory Management of the 74K™ Core

106 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 5.13 FM Memory Map (ERL=1) in the 74K™ Processor Core

0xE000_0000

Physical AddressVirtual Address

kseg3

0xE000_0000

kseg3

kseg2kseg2

0xC000_00000xC000_0000

0xA000_0000

kseg1

reserved

0x8000_00000x8000_0000

kseg0

useg/kuseguseg/kuseg

0x2000_0000

0x0000_00000x0000_0000

kseg0/kseg1

Chapter 6

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 107

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 74K™ Core

The 74K processor core receives exceptions from a number of sources, including arithmetic overflows, misses in the
translation lookaside buffer (TLB), I/O interrupts, and system calls. When the CPU detects an exception, the normal
sequence of instruction execution is suspended and the processor enters kernel mode, disables interrupts, loads the
Exception Program Counter (EPC) register with the location where execution can restart after the exception has been
serviced, and forces execution of a software exception handler located at a specific address.

The software exception handler saves the context of the processor, including the contents of the program counter, the
current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to identify the
instruction that caused the exception. For precise exceptions, the restart location in the EPC register is the address of
the instruction that caused the exception or, if the instruction was executing in a branch delay slot (as indicated by the
BD bit in the Cause register), the address of the branch instruction immediately preceding the delay slot. Imprecise
exceptions, on the other hand, are those for which no return address can be identified. Bus error exceptions and CP2
exceptions are examples of imprecise exceptions.

This chapter contains the following sections:

• Section 6.1 “Exception Conditions”

• Section 6.2 “Exception Priority”

• Section 6.3 “Interrupts”

• Section 6.4 “GPR Shadow Registers”

• Section 6.5 “Exception Vector Locations”

• Section 6.6 “General Exception Processing”

• Section 6.7 “Debug Exception Processing”

• Section 6.8 “Exception Descriptions”

• Section 6.9 “Exception Handling and Servicing Flowcharts”

6.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline
are cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited.

 Exceptions and Interrupts in the 74K™ Core

108 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

When the exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the WB stage, the exception flag causes it to write various CP0 registers
with the exception state, change the current program counter (PC) to the appropriate exception vector address, and
clear the exception bits of earlier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to complete execution and pre-
vents all subsequent instructions from completing. Thus, the value in the EPC (or ErrorEPC for errors or DEPC for
debug exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in the order of execu-
tion—an instruction taking an exception may itself be killed by an instruction further down the pipeline that takes an
exception in a later cycle.

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after following
instructions have completed.

6.2 Exception Priority

Table 6.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of
their relative priority, from highest priority (Reset) to lowest priority (Load/store bus error). When several exceptions
occur simultaneously, the exception with the highest priority is taken.

Table 6.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or
by setting the EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store. Imprecise.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

TLBL Fetch TLB miss.
Fetch TLB hit to page with V=0.

I-cache Error Parity error on I-cache access.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction modifying local state when CorExtend is not
enabled.

6.3 Interrupts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 109

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.3 Interrupts

In the MIPS32® Release 1 architecture, support for exceptions included two software interrupts, six hardware inter-
rupts, and a special-purpose timer interrupt. The timer interrupt was provided external to the core and was typically
combined with hardware interrupt 5 in a system-dependent manner. Interrupts were handled either through the gen-
eral exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauseIV. Software
was required to prioritize interrupts as a function of the CauseIV bits in the interrupt handler prologue.

Release 2 of the Architecture, implemented by the 74K core, adds a number of upward-compatible extensions to the
Release 1 interrupt architecture, including support for vectored interrupts and the implementation of a new interrupt
mode that permits the use of an external interrupt controller.

Additionally, internal performance counters have been added to the 74K core. These counters can be configured to
count various events within the core. When the MSB of the counter is set, it can trigger a performance counter inter-
rupt. This interrupt, like the timer interrupt, is an output from the core that can be brought back into the core’s inter-
rupt pins in a system-dependent manner.

The Fast Debug Channel feature in EJTAG provides a low overhead means for sending data between core software
and the EJTAG probe. It includes a pair of FIFOs for transmit and receive data. Software can define FIFO thresholds
for generating an interrupt. The fast debug channel interrupt is also routed similarly to the timer and performance
counter interrupts. The interrupt status is made available on an output pin and can be brought back into the core’s
interrupt pins.

DSPDis DSP ASE State Disabled.

RI Execution of a Reserved Instruction.

FPE Floating Point exception.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only).

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.
Load reference to protected address.

AdES Store address alignment error.
Store to protected address.

TLBL Load TLB miss.
Load TLB hit to page with V=0

TLBS Store TLB miss.
Store TLB hit to page with V=0.

TLB Mod Store to TLB page with D=0.

D-cache Error Cache parity error. Imprecise.

DBE Load or store bus error. Imprecise.

Table 6.1 Priority of Exceptions (Continued)

Exception Description

 Exceptions and Interrupts in the 74K™ Core

110 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.3.1 Interrupt Modes

The 74K core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt Compatibility mode, in which the behavior of the 74K is identical to the behavior of an implementation
of Release 1 of the Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. Although this mode is architecturally optional, it is always present
on the 74K core, so the VInt bit will always read as a 1.

• External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On
the 74K core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate
the presence of an external interrupt controller.

Following reset, the 74K processor defaults to Compatibility mode, which is fully compatible with all implementa-
tions of Release 1 of the Architecture.

Table 6.2 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that can
affect the mode.

6.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200 (if
Cause IV = 1). This mode is in effect when any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

Table 6.2 Interrupt Modes

S
ta

tu
sB

E
V

C
au

se
IV

In
tC

tlV
S

C
on

fig
3V

IN
T

C
on

fig
3V

E
IC

Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0 Cannot occur because IntCtl VS cannot be non-zero if neither Vectored Inter-

rupt nor External Interrupt Controller mode is implemented.

“x” denotes don’t care

6.3 Interrupts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 111

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• IntCtlVS = 0, which is the case if vectored interrupts are not implemented or have been disabled.

Here is a typical software handler for compatibility mode:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before arriving
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simple UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

 Exceptions and Interrupts in the 74K™ Core

112 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * saving any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
s k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
l k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.3.1.2 Vectored Interrupt Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be
used to direct each interrupt to a dedicated handler routine. This mode also allows each interrupt to be mapped to a
GPR shadow register set for use by the interrupt handler. VI mode is in effect when all the following conditions are
true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

6.3 Interrupts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 113

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer,
performance counter, and fast debug channel interrupts are combined in a system-dependent way (external to the
core) with the hardware interrupts (the interrupt with which they are combined is indicated by the IntCtlIPTI/IPCI/IPFDCI

fields) to provide the appropriate relative priority of the those interrupts with that of the hardware interrupts. The pro-
cessor interrupt logic ANDs each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1,
and if interrupts are enabled (StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority
encoder scans the values in the order shown in Table 6.3.

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 6.1.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt Request
Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0

 Exceptions and Interrupts in the 74K™ Core

114 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 6.1 Interrupt Generation for Vectored Interrupt Mode

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following the
IVexception label shown for the compatibility mode handler above. Instead, the hardware performs the prioritiza-
tion, dispatching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored
interrupt handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Sim-
pleInterrupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
s k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/* this must include at least the IM bit */

C
om

bi
ne

CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch Mask Encode

Any
Request

O
ff

se
t G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

Shadow Set
Number

IntCtlIPTI

CauseFDCI

IntCtlIPPCI

IP0

IP7

IP6

IP5

IP4

IP3

IP2

IP1

IM0

IM7

IM6

IM5

IM4

IM3

IM2

IM1

HW0

HW5

HW4

HW3

HW2

HW1

Pr
io

ri
ty

 E
nc

od
e

SRSMap

IntCtlIPFDCI

CauseTI

6.3 Interrupts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 115

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
l k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

6.3.1.3 External Interrupt Controller Mode

External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured to provide
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, fast debug channel, and performance counter interrupts, and directly supplying
to the processor the vector number of the highest priority interrupt.

EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer, perfor-
mance counter, and fast debug channel interrupt requests (CauseTI/PCI/FDCI) to the external interrupt controller, which
prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be
a hardwired logic block, or it can be configurable by control and status registers. This allows the interrupt controller
to be more specific or more general as a function of the system environment and needs.

 Exceptions and Interrupts in the 74K™ Core

116 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-
ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit
encoded value in the range 0..63, inclusive. The values 1..63 represent the lowest (1) to highest (63) RIPL for the
interrupt to be serviced. A value of 0 indicates that no interrupt requests are pending. The interrupt controller inputs
this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC mode.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (a value of zero indicates that no interrupt is currently being serviced). When the interrupt control-
ler requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested inter-
rupt has a higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. The interrupt exception uses the value of CauseRIPL

as the vector number. Because CauseRIPL is only loaded by the processor when an interrupt exception is signaled, it is
available to software during interrupt processing.

In EIC mode, the external interrupt controller is also responsible for supplying the GPR shadow register set number to
use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the vec-
tored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the cor-
rect GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

Figure 6.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

CauseTI
CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch CompareEncode

Any
Request

O
ff

se
t G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

Shadow Set
Number

E
xt

er
na

l I
nt

er
ru

pt
 C

on
tr

ol
le

r

In
te

rr
up

t S
ou

rc
es

Sh
ad

ow
 S

et
M

ap
pi

ng

StatusIP1
StatusIP0

Requested
IPL

C
au

se
R

IP
L

SR
SC

tl E
IC

SS

Load
Fields

Interrupt
ExceptionInterrupt Service

Started

RIPL
Status
IPL

6.3 Interrupts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 117

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

A typical software handler for EIC mode bypasses the entire sequence of code following the IVexception label
shown for the compatibility-mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility-mode examples, an EIC interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt code
shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
CauseRIPL to StatusIPL to prevent lower priority interrupts from interrupting the handler. Here is an example of such
a routine:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 0x200 to create the
exception vector offset. For VI mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the
vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field specifies the
spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the pro-

 Exceptions and Interrupts in the 74K™ Core

118 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

cessor reverts to Interrupt Compatibility mode. A non-zero value enables vectored interrupts. Table 6.4 shows the
exception vector offset for a representative subset of the vector numbers and values of the IntCtlVS field.

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 0x200 + (vectorNumber × (IntCtlVS || 0b00000))

6.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high-priority inter-
rupts and exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and by allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are designated as shadow set zero.

The number of GPR shadow sets is a build-time option on the 74K core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, or four shadow sets. The highest
number actually implemented is indicated by the SRSCtlHSS field. If this field is zero, only the normal GPRs are
implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs operate
exactly as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged soft-
ware may need to reference all GPRs in the register file, even specific shadow registers that are not visible in the cur-
rent mode. The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register
provides the number of the current shadow register set, and the PSS field of the SRSCtl register provides the number
of the previous shadow register set (the set that was current before the last exception or interrupt occurred).

If the processor is operating in VI mode, binding of a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific shadow

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

0b00001 0b00010 0b00100 0b01000 0b10000

0 0x0200 0x0200 0x0200 0x0200 0x0200

1 0x0220 0x0240 0x0280 0x0300 0x0400

2 0x0240 0x0280 0x0300 0x0400 0x0600

3 0x0260 0x02C0 0x0380 0x0500 0x0800

4 0x0280 0x0300 0x0400 0x0600 0x0A00

5 0x02A0 0x0340 0x0480 0x0700 0x0C00

6 0x02C0 0x0380 0x0500 0x0800 0x0E00

7 0x02E0 0x03C0 0x0580 0x0900 0x1000

•
•
•

61 0x09A0 0x1140 0x2080 0x3F00 0x7C00

62 0x09C0 0x1180 0x2100 0x4000 0x7E00

63 0x09E0 0x11C0 0x2180 0x4100 0x8000

6.4 GPR Shadow Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 119

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl register.
When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set to the
value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to
restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions are true (in this case, steps 2 and 3
are skipped):

• The exception is one that sets StatusERL: Reset or NMI.

• The exception causes entry into EJTAG Debug Mode

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1.
These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions are true (in this case, step 2 is
skipped):

• A DERET is executed

• An ERET is executed with StatusERL = 1

2. SRSCtlPSS is copied to SRSCtlCSS.

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialized (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

 Exceptions and Interrupts in the 74K™ Core

120 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.5 Exception Vector Locations

The Reset, Soft Reset, NMI, and EJTAG Debug exceptions are vectored to a specific location, as shown in Table 6.5
and Table 6.6. Addresses for all other exceptions are a combination of a vector offset and a vector base address. In
Release 1 of the architecture, the vector base address was fixed. In Release 2, software is allowed to specify the vector
base address via the EBase register for exceptions that occur when StatusBEV equals 0. Another degree of flexibility
in the selection of the vector base address, for use when StatusBEV equals 1, is provided via a set of input pins,
SI_UseExceptionBase and SI_ExceptionBase[29:12]. Table 6.5 shows the vector base address when
SI_UseExceptionBase equals 0, as a function of the exception and whether the BEV bit is set in the Status register.
Table 6.6 shows the vector base addresses when SI_UseExceptionBase = 1. As can be seen in Table 6.6, when
SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV = 0 are not affected.

Table 6.7 shows the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 6.4 (on page 118) shows the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1.
Table 6.8 combines these two tables into one that contains all possible vector addresses as a function of the state that
can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtlVS = 0.

Table 6.5 Exception Vector Base Addresses, SI_UseExceptionBase = 0

Exception

StatusBEV

0 1

Reset, NMI 0xBFC0.0000

EJTAG Debug (with ProbEn = 0, in
the EJTAG_Control_register and
DCR.RDVec=0)

0xBFC0.0480

EJTAG Debug (with ProbEn = 0, in
the EJTAG_Control_register and
DCR.RDVec=1)

0x DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31..30 || 1 ||
EBase28..12 || 0x000

Note that EBase31..30 have the fixed value

0b10

0xBFC0.0300

Other EBase31..12 || 0x000
Note that EBase31..30 have the fixed value

0b10

0xBFC0.0200

‘||’ denotes bit string concatenation

Table 6.6 Exception Vector Base Addresses, SI_UseExceptionBase = 1

Exception

StatusBEV

0 1

Reset, NMI 0b10 || SI_ExceptionBase [29:12] || 0x000

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and
DCR.RDVec=0)

 DebugVectorAddr[31:7] || 2b0000000

6.5 Exception Vector Locations

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 121

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and
DCR.RDVec=1)

 0b10 ||SI_ExceptionBase[29:12] || 0x480

EJTAG Debug (with ProbEn = 1
in the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31..30 || 1 ||
EBase28..12 || 0x000

Note that EBase31..30 have the

fixed value 0b10

0b101 ||
SI_ExceptionBase[28:12] ||
0x300

Other EBase31..12 || 0x000
Note that EBase31..30 have the

fixed value 0b10

0b10 ||
SI_ExceptionBase[29:12] ||
0x200

‘||’ denotes bit string concatenation

Table 6.7 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

General Exception 0x180

Interrupt, CauseIV = 1 0x200 (In Release 2 implementa-
tions, this is the base of the vectored
interrupt table when StatusBEV = 0)

Reset, NMI None (uses reset base address)

Table 6.8 Exception Vectors

Exception S
I_

U
se

E
xc

ep
ti

o
n

B
as

e

S
ta

tu
s B

E
V

S
ta

tu
s E

X
L

C
au

se
IV

E
JT

A
G

 P
ro

b
E

n

Vector
(IntCtlVS = 0)

Reset, NMI 0 x x x x 0xBFC0.0000

Reset, NMI 1 x x x x 0b10 || SI_ExceptionBase[29:12] || 0x000

EJTAG Debug 0 x x x 0 0xBFC0.0480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)

EJTAG Debug 1 x x x 0 0b10 || SI_ExceptionBase[29:12] || 0x480 (if DCR.RDVec=0)
DebugVectorAddr[31:7] || 2b0000000 (if DCR.RDVec=1)

Table 6.6 Exception Vector Base Addresses, SI_UseExceptionBase = 1 (Continued)

Exception

StatusBEV

0 1

 Exceptions and Interrupts in the 74K™ Core

122 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted, and the BD bit is set appropriately in the Cause register (see Table 7.25). The value loaded into the
EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is
in the delay slot of a branch or jump which has delay slots. Table 6.9 shows the value stored in each of the CP0
PC registers, including EPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS

field in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

EJTAG Debug x x x x 1 0xFF20.0200

TLB Refill 0 0 1 x x 0xEBase[31:12] || 0x180

TLB Refill 0 1 0 x x 0xBFC0.0200

TLB Refill 1 1 0 x x 0b10 || SI_ExceptionBase[29:12] || 0x200

TLB Refill 0 1 1 x x 0xBFC0.0380

TLB Refill 1 1 1 x x 0b10 || SI_ExceptionBase[29:12] || 0x380

Cache Error 0 0 x x x 0xEBase[31:30] || 0b1 || EBase[28:12] || 0x100

Cache Error 0 1 x x x 0xBFC0.0300

Cache Error 1 1 x x x 0b101 || SI_ExceptionBase[28:12] || 0x300

Interrupt x 0 0 0 x 0xEBase[31:12] || 0x180

Interrupt x 0 0 1 x 0xEBase[31:12] || 0x200

Interrupt 0 1 0 0 x 0xBFC0.0380

Interrupt 1 1 0 0 x 0b10 || SI_ExceptionBase[29:12] || 0x380

Interrupt 0 1 0 1 x 0xBFC0.0400

Interrupt 1 1 0 1 x 0b10 || SI_ExceptionBase[29:12] || 0x400

All others 0 0 x x x 0xEBase[31:12] || 0x180

All others 0 1 x x x 0xBFC0.0380

All others 1 1 x x x 0b10 || SI_ExceptionBase[29:12] || 0x380

‘x’ denotes don’t care,
‘||’ denotes bit string concatenation

Table 6.8 Exception Vectors (Continued)

Exception S
I_

U
se

E
xc

ep
ti

o
n

B
as

e

S
ta

tu
s B

E
V

S
ta

tu
s E

X
L

C
au

se
IV

E
JT

A
G

 P
ro

b
E

n

Vector
(IntCtlVS = 0)

6.6 General Exception Processing

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 123

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor begins executing at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 0x180
else

/* For implementations that include the MIPS16e ASE, calculate potential */
/* PC adjustment for exceptions in the delay slot */
if Config1CA = 0 then

restartPC ← PC
branchAdjust ← 4 /* Possible adjustment for delay slot */

else
restartPC ← PC..1 || ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust ← 4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust ← 2 /* Possible adjustment for MIPS16 delay slot */
endif

endif
if InstructionInBranchDelaySlot then

EPC ← restartPC - branchAdjust/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

Table 6.9 Value Stored in EPC, ErrorEPC, or DEPC on Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the ISA Mode bit

 Exceptions and Interrupts in the 74K™ Core

124 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 0x000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 0x180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 0x200
else

if Config3VEIC = 1 then
VecNum ← CauseRIPL
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3..IPL×4

endif
vectorOffset ← 0x200 + (VecNum × (IntCtlVS || 0b00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if ((ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) and

(StatusERL = 0)) then
SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

if Config1CA = 1 then
ISAMode ← 0

endif

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 0xBFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 0x000

else
vectorBase ← 0x8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase..30 || (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

6.7 Debug Exception Processing

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 125

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if the
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot of a
branch.

• The DSS, DBp, DDBL, DDBS, DIB, and DINT bits (D* bits [5:0]) in the Debug register are updated appropriately,
depending on the debug exception type.

• Halt and Doze bits in the Debug register are updated appropriately.

• The DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits [5:0]) in the
Debug register.

No other CP0 registers or fields are changed due to the debug exception, and thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugD* bits at at [5:0] ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegisterProbTrap = 1 then

PC ← 0xFF20_0200
else

if DebugControlRegisterRDVec = 1 then
if CacheErr then

PC ← 2#101 || DebugVectorAddr28..7 || 2#0000000
else

PC ← 2#10 || DebugVectorAddr29..7 || 2#0000000
else

if SI_UseExceptionBase
if CacheErr then

PC ← 2#101 || SI_ExceptionBase[28:12] || 0x000
else

PC ← 2#10 || SI_ExceptionBase[29:12] || 0x000
else

 Exceptions and Interrupts in the 74K™ Core

126 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

PC ← 0xBFC0_0480
endif

The location of the debug exception vector is determined by the ProbTrap bit in the EJTAG Control register (ECR) and
the RDVec bit in the Debug Control register (DCR), as shown in Table 6.10.

The value in the optional drseg register DebugVectorAddr (offset 0x00020) is used as the debug exception vector
when the ECR ProbTrap bit is 0 and when enabled through the optional RDVec control bit in the Debug Control
Register (DCR). Bit 0 of DebugVectorAddr determines the ISA mode used to execute the handler. Figure 6.3 shows
the format of the DebugVectorAddr register; Table 6.11 describes the DebugVectorAddr register fields.

Figure 6.3 DebugVectorAddr Register Format

Bits 31..30 of the DebugVectorAddr register are fixed with the value 0b10, and the addition of the base address and the
exception offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination
of these two restrictions forces the final exception address to be in the kseg0 or kseg1 unmapped virtual address seg-
ments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception base address, so that this exception
always runs in the kseg1 unmapped, uncached virtual address segment.

When MIPS16 is implemented, the power-up state of IM is zero. If the implementation does not include MIPS16, the
IM field is read-only, should be written with zero and will return 0 on a read.

If the TAP is not implemented, the debug exception vector location is as if ProbTrap=0.

6.8 Exception Descriptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 6.1.

Table 6.10 Debug Exception Vector Addresses

ProbTrap bit in ECR
Register

RDVec bit in
DCR Register Debug Exception Vector Address

0 0 0xBFC0 0480

0 1 DebugVectorAddr31..7 || 0000000

1 0 0xFF20 0200 in dmseg

1 1

31 30 29 7 6 0

1 0 DebugVectorOffset 0 IM

Table 6.11 DebugVectorAddr Register Field Descriptions

Fields

Description Read / Write Reset StateName Bit(s)

1 31 Ignored on write; returns one on read. R 1

DebugVectorOffset 29:7 Programmable Debug Exception Vector Offset R/W Preset to
0x7F8009

IM 0 ISA mode to be used for exception handler R 0

0 30,6:1 Ignored on write; returns zero on read. R 0

6.8 Exception Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 127

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.8.1 Reset Exception

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When
a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, estab-
lishing critical state, and generally placing the processor in a state in which it can execute instructions from uncached,
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

• The Random register is initialized to the number of TLB entries - 1.

• The Wired register is initialized to zero.

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The I, R, and W fields of the WatchLo register are initialized to 0.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or
may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 0
StatusERL ← 1
WatchLoI ← 0
WatchLoR ← 0
WatchLoW ← 0
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

 Exceptions and Interrupts in the 74K™ Core

128 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non-jump/
branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in the
delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register, and
are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC register will not point to the
instruction which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register
is never set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in
one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with DEPC pointing to the SDBBP instruc-
tion.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

6.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

6.8 Exception Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 129

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Entry Vector Used

Debug exception vector

6.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

6.8.5 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
causes a machine check exception:

• The detection of multiple matching entries in the TLB. The core detects this condition on a TLB write and pre-
vents the write from being completed. The TS bit in the Status register is set to indicate this condition. This bit is
only a status flag and does not affect the operation of the device. Software clears this bit at the appropriate time.
This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be completed.

Cause Register ExcCode Value:

MCheck

 Exceptions and Interrupts in the 74K™ Core

130 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.6 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is
enabled by the Status register and the interrupt input is asserted. See 6.3 “Interrupts” on page 109 for more details
about the processing of interrupts.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

See 6.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 117 for the entry vector used,
depending on the interrupt mode the processor is operating in.

6.8.7 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.8 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug register is also
zero. If any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in the
Cause register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the
Cause register to determine if the EPC register points at the instruction that caused the watch exception, or if the
exception actually occurred while in kernel mode.

Table 6.12 Register States an Interrupt Exception

Register State Value

CauseIP Indicates the interrupts that are pending.

6.8 Exception Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 131

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:

WATCH

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.9 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Table 6.13 Register States on Watch Exception

Register State Value

CauseWP Indicates that the watch exception was deferred until after
StatusEXL, StatusERL, and DebugDM were zero. This bit

directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler execution.

WatchHi I,R,W Set for the watch channel that matched, and indicates
which type of match there was.

 Exceptions and Interrupts in the 74K™ Core

132 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.10 TLB Refill Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a
mapped address space and the EXL bit is 0 in the Status register. Note that this is distinct from the case in which an
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

General exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

6.8.11 TLB Invalid Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

Table 6.14 CP0 Register States on Address Exception Error

Register State Value

BadVAddr Failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 6.15 CP0 Register States on TLB Refill Exception

Register State Value

BadVAddr Failing address.

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

6.8 Exception Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 133

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception
is not maskable. Because the error was in a cache, the exception vector is to an unmapped, uncached address. This
exception can be imprecise and the ErrorEPC may not point to the instruction that saw the errorL2 cache errors are
considered to be imprecise. An L2 cache error on a data load operation can potentially corrupt the target GPR.

Cause Register ExcCode Value

N/A

Additional State Saved

Entry Vector Used

Cache error vector (offset 0x100)

6.8.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an instruc-

Table 6.16 CP0 Register States on TLB Invalid Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 6.17 CP0 Register States on Cache Error Exception

Register State Value

CacheErr Error state

ErrorEPC Restart PC

 Exceptions and Interrupts in the 74K™ Core

134 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

tion fetch or a data read. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on
an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Instruction errors are precise, will Data bus errors can be imprecise. These errors are taken when the ERR code is
returned on the OC_SResp input.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.15 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A system
call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.16 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

6.8 Exception Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 135

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

Table 6.18 Register States on Coprocessor Unusable Exception

Register State Value

CauseCE Unit number of the coprocessor being referenced

 Exceptions and Interrupts in the 74K™ Core

136 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.8.19 Execution Exception — CorExtend block Unusable

The CorExtend block unusable exception is one of the execution exceptions. All of these exceptions have the same
priority. A CEU exception occurs when an attempt is made to execute a CorExtend instruction when the CEE bit in
the Status register is not set. It is dependent on the implementation of the CorExtend block, but this exception should
be taken on any CorExtend instruction that modifies local state within the CorExtend block and can optionally be
taken on other CorExtend instructions.

Cause Register ExcCode Value:

CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.20 Execution Exception — DSP ASE State Disabled

The DSP ASE State Disabled exception an execution exception. It occurs when an attempt is made to execute a DSP
ASE instruction when the MX bit in the Status register is not set. This allows an OS to do “lazy” context switching.

Cause Register ExcCode Value:

DSPDis

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.21 Execution Exception — Floating Point Exception

A floating point exception is initiated by the floating point coprocessor.

Cause Register ExcCode Value:

FPE

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

Table 6.19 Register States on Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception

6.8 Exception Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 137

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

6.8.22 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.23 Execution Exception — Trap

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap exception
occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.24 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception has
not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the debug
handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.25 TLB Modified Exception — Data Access

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
dition is true:

 Exceptions and Interrupts in the 74K™ Core

138 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:

Mod

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions

• TLB miss exceptions

• Reset and NMI exceptions

• Debug exceptions

Generally speaking, exceptions are handled by hardware and then serviced by software. Note that unexpected debug
exceptions to the debug exception vector at 0xBFC0_0200 may be viewed as a reserved instruction since uncontrolled
execution of an SDBBP instruction caused the exception. The DERET instruction must be used at return from the
debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET instruction
returns to the address in the DEPC register.

Table 6.20 Register States on TLB Modified Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

6.9 Exception Handling and Servicing Flowcharts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 139

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 6.4 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)= 0 (normal)
Status.BEV

Comments

PC ← 0x8000_0000 + 180
(unmapped, cached)

PC ← 0xBFC0_0200 + 180
(unmapped, uncached)

EXL ← 1

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Instr. in Br.Dly.
Slot?

Yes

Processor forced to Kernel Mode
& interrupts disabled

=0

=1
Check if exception within another

exception EXL

EnHi and Context are set only for TLB- Invalid,
Modified, & Refill exceptions. BadVA is set only
for TLB- Invalid, Modified, Refill- and VCED/I
exceptions. Note: not set if it is a Bus Error

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Exceptions other than Reset, NMI, or first-level TLB miss. Note: Interrupts can be masked by IE or
IMs, and Watch is masked if EXL = 1.

No

 Exceptions and Interrupts in the 74K™ Core

140 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 6.5 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

Check Cause value & Jump to appropriate
Service Code

* After EXL=0, all exceptions allowed (except
interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
Set Status bits:

UM←0, EXL←0, IE←1

MFC0 -
Context, EPC, Status, Cause

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible
* EXL=1 so Watch and Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

Comments

6.9 Exception Handling and Servicing Flowcharts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 141

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 6.6 TLB Miss Exception Handler (HW)

To TLB Exception Servicing Guidelines

Vec. Off. = 0x180

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Vec. Off. = 0x000

EXL ← 1

Points to General Exception

Processor forced to Kernel Mode &
interrupts disabled

=0

=1 (bootstrap)= 0 (normal)

PC ← 0x8000_0000 + Vec.Off.(unmapped.
cached)

PC ← 0xBFC0_0200 + Vec.Off. (unmapped.
uncached)

Status.BEV

Check if exception within another
exception=1=1

=0

EXL EXL

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Instr. in Br.Dly.
Slot?

NoYes

 Exceptions and Interrupts in the 74K™ Core

142 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 6.7 TLB Exception Servicing Guidelines (SW)

Comments

ERET

Service Code

MFC0 -CONTEXT

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

* Load the mapping of the virtual address in Context Reg. Move it
to EntryLo and write into the TLB
* There could be a TLB miss again during the mapping of the data
or instruction address. The processor will jump to the general
exception vector since the EXL is 1. (Option to complete the first
level refill in the general exception handler or ERET to the original
instruction and take the exception again)

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

6.9 Exception Handling and Servicing Flowcharts

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 143

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 6.8 Reset and NMI Exception Handling and Servicing Guidelines

Status:
BEV ← 1
TS ← 0
SR ← 0
NMI ← 1
ERL ← 1

(Optional)

Reset Service Code

NMI Service Code

ERET

=0

=1

PC ← 0xBFC0_0000

ErrorEPC ← PC

Random ← TLBENTRIES - 1
Wired ← 0
Config ← Reset state
Status:

RP ← 0
BEV ← 1
TS ← 0
SR ← 0
NMI ← 0
ERL ← 1

WatchLo:
I, R,W ← 0

Reset Exception

NMI Exception
R

es
et

, S
of

t R
es

et
 &

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (S
W

)

 Exceptions and Interrupts in the 74K™ Core

144 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 7

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 145

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

CP0 Registers of the 74K™ Core

The System Control Coprocessor (CP0) provides the register interface to the 74K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CP0 register has a
unique number that identifies it, referred to as its register number. CP0 register numbers are denoted by n.s, where n
is the register number (between 0-31) and s is the "select" field (0-7). If the select field is omitted, it is zero. A select
field of x denotes all eight potential select numbers.

This chapter contains the following sections:

• Section 7.1 “CP0 Register Summary”

• Section 7.2 “CP0 Register Descriptions”

The CP0 EJTAG registers are described in Chapter 11, “EJTAG Debug Support in the 74K™ Core."

7.1 CP0 Register Summary

The CP0 registers are described in three tables. Table 7.1 lists the registers in alphabetic order, Table 7.2 lists the reg-
isters in numerical order, and Table 7.3 groups the registers according to their function. The CP0 registers are
described individually in Section 7.2, "CP0 Register Descriptions."

Table 7.1 CP0 Registers in Alphabetical Order

Name Number Name Number Name Number Name Number

BadVAddr 8.0 DDataLo 28.3 IDataLo 28.1 SRSMap 12.3

CacheErr 27.0 Debug 23.0 Index 0.0 Status 12.0

Cause 13.0 DEPC 24.0 IntCtl 12.1 TraceControl 23.1

CDMMBase 15.2 DESAVE 31.0 ITagHi 29.0 TraceControl2 23.2

DTagHi 29.2 ITagLo 28.0 TraceControl3 24.2

Compare 11.0 DTagLo 28.2 L23DataHi 29.5 TraceIPBC 23.4

Config 16.0 EBase 15.1 L23DataLo 28.5 TraceDPBC 23.5

Config1-2 16.1-2 EntryHi 10.0 L23TagLo 28.4 UserLocal 4.2

Config3 16.3 EntryLo0-1 2.0
3.0

PageMask 5.0 UserTraceData1 23.3

Config6 16.6 EPC 14.0 PerfCnt0-3 25.1
25.3
25.5
25.7

UserTraceData2 24.3

 CP0 Registers of the 74K™ Core

146 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Config7 16.7 ErrCtl 26.0 PerfCtl0-3 25.0
25.2
25.4
25.6

WatchHi0-3 19.0-3

Context 4.0 ErrorEPC 30.0 PRId 15.0 WatchLo0-3 18.0-3

ContextConfig 4.1 HWREna 7.0 Random 1.0 Wired 6.0

Count 9.0 IDataHi 29.1 SRSCtl 12.2

Table 7.2 CP0 Registers in Numerical Order

Number Register Description Page

0.0 Index Index into the TLB array 7.2.1, p.151

1.0 Random Randomly generated index into the TLB array 7.2.2, p.152

2.0
3.0

EntryLo0-1 Output (physical) side of TLB entry (even-/odd-numbered virtual
pages)

7.2.3, p.152

4.0 Context Mixture of pre-programmed and BadVAddr bits which can act as an
OS page table pointer.

7.2.4, p.154

4.1 ContextConfig Defines the bits of the Context register into which the high order bits
of the virtual address causing a TLB exception will be written.

7.2.5, p.155

4.2 UserLocal Kernel-writable but user-readable software-defined thread ID 7.2.6, p.156

5.0 PageMask Control for variable page size in TLB entries 7.2.7, p.157

6.0 Wired Controls the number of fixed ("wired") TLB entries 7.2.8, p.158

7.0 HWREna Bitmask limiting user-mode access to rdhwr registers 7.2.9, p.158

8.0 BadVAddr Address causing the last TLB-related exception 7.2.10, p.160

9.0 Count Free-running counter at half pipeline speed 7.11, p.160

10.0 EntryHi High-order portion of the TLB entry 7.2.12, p.161

11.0 Compare Timer interrupt control 7.2.13, p.162

12.0 Status Processor status and control 7.2.14, p.162

12.1 IntCtl Setup for interrupt vector and interrupt priority features. 7.2.15, p.168

12.2 SRSCtl Shadow register set selectors 7.2.16, p.169

12.3 SRSMap Shadow set choice for each interrupt level in VI mode 7.2.17, p.171

13.0 Cause Cause of last general exception 7.2.18, p.172

14.0 EPC Restart address from exception 7.2.19, p.176

15.0 PRId Processor identification and revision 7.2.20, p.177

15.1 EBase Exception entry point base address and CPU/VPE ID 7.2.21, p.178

15.2 CDMMBase 36-bit physical base address for the Common Device Memory Map
facility

7.2.22, p.179

16.0 Config Legacy configuration register 7.2.23, p.180

Table 7.1 CP0 Registers in Alphabetical Order (Continued)

Name Number Name Number Name Number Name Number

7.1 CP0 Register Summary

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 147

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

16.1-2 Config1-2 MIPS32/64 configuration registers (caches etc) 7.2.24, p.181

16.3 Config3 Configuration register showing ASEs etc 7.2.25, p.183

16.6 Config6 Additional information about the presence of optional extensions to the
base MIPS32 architecture

7.2.26, p.184

16.7 Config7 CPU-specific configuration 7.2.27, p.187

18.0-3 WatchLo0-3 Watchpoint address and qualifiers 7.2.28, p.190

19.0-3 WatchHi0-3 Watchpoint control/status 7.2.29, p.190

23.0 Debug EJTAG Debug status/control register 7.2.30, p.191

23.1 TraceControl EJTAG Trace Control register 7.2.31, p.195

23.2 TraceControl2 EJTAG Trace Control2 register 7.2.32, p.197

23.3 UserTraceData1 EJTAG User Trace Data1 register 7.2.33, p.199

23.4 TraceIBPC EJTAG Trace Instruction breakpoint control register 7.2.34, p.200

23.5 TraceDBPC EJTAG Trace Data breakpoint control register 7.2.35, p.201

24.0 DEPC Restart address from last EJTAG debug exception 7.2.36, p.202

24.2 TraceControl3 EJTAG Trace Control3 register 7.2.37, p.203

24.3 UserTraceData2 EJTAG User Trace Data2 register 7.2.33, p.199

25.0
25.2
25.4
25.6

PerfCtl0-3 Performance counter control 7.2.38, p.204

25.1
25.3
25.5
25.7

PerfCnt0-3 Performance counters 7.2.39, p.209

26.0 ErrCtl Software parity control and test modes for cache RAM arrays 7.2.40, p.209

27.0 CacheErr Cache parity exception status 7.2.41, p.210

28.0 ITagLo Read/write interface for I-cache tag cacheops 7.2.42, p.212

28.1 IDataLo Low-order data read/write interface for I-cache special cacheops 7.2.43, p.213

28.2 DTagLo Read/write interface for load/store tag cacheops 7.2.44, p.214

28.3 DDataLo Low-order data read/write interface for D-cache 7.2.45, p.216

28.4 L23TagLo Level 2/3 cache Tag information 7.2.46, p.216

28.5 L23DataLo Low-order data read/write interface for Level 2/3 cache 7.2.47, p.216

29.0 ITagHi I-cache predecode bits 7.2.48, p.217

29.1 IDataHi High-order data read/write interface for I-cache special cacheops 7.2.49, p.217

29.2 DTagHi D-cache virtual index (including ASID) 7.2.50, p.218

29.5 L23DataHi High-order data read/write interface for Level 2/3 cache 7.2.51, p.218

30.0 ErrorEPC Restart location from a reset or a cache error exception 7.2.52, p.219

31.0 DESAVE Scratch read/write register for EJTAG debug exception handler 7.2.53, p.219

Table 7.2 CP0 Registers in Numerical Order (Continued)

Number Register Description Page

 CP0 Registers of the 74K™ Core

148 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.1 CP0 Register Summary

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 149

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Note that after a CP0 register has been updated, there is a hazard period of zero or more instructions from the update
instruction (mtc0) until the update has taken effect in the core. There is no automatic handling of hazard by the hard-
ware in the 74K core. Release 2 requires that an ehb (Execution Hazard Barrier) instruction be placed between these
two instructions when they address the same CPO register. For more information about the MIPS32® Release 2
Architecture guidelines on hazard barriers, refer to Section 2.3, "Hazards."

Table 7.3 CP0 Registers Grouped by Function

Basic modes Status 12.0

TLB
Management

BadVAddr 8.0

EJTAG Debug

DEPC 24.0

OS/userland
thread ID

UserLocal 4.2 Context 4.0 DESAVE 31.0

Exception
Control

Cause 13.0 ContextConf
ig

4.1 Debug 23.0

EPC 14.0 EntryHi 10.0

PDtrace

TraceControl 23.1

Timer

Compare 11.0 EntryLo0-1 2.0
3.0

TraceControl2 23.2

Count 9.0 Index 0.0 TraceControl3 24.2

CPU
Configuration

Config 16.0 PageMask 5.0 TraceIPBC 23.4

Config1-2 16.1-2 Random 1.0 TraceIDBC 23.5

Config3 16.3 Wired 6.0 UserTraceData1 23.3

Config6 16.6

Cache
Management

DDataLo 28.3 UserTraceData2 24.3

Config7 16.7 DTagHi 29.2

Profiling

PerfCnt0-3 25.1
25.3
25.5
25.7

EBase 15.1 DTagLo 28.2 PerfCtl0-3 25.0
25.2
25.4
25.6

CDMMBase 15.2 ErrCtl 28.2 PerfCnt0-3 25.1
25.3
25.5
25.7

IntCtl 12.1 ErrorEPC 26.0
Debug/Analysis

WatchHi0-3 19.0-3

PRId 15.0 IDataHi 29.1 WatchLo0-3 18.0-3

SRSCtl 12.2 IDataLo 28.1 Control rdhwr
Access HWREna 7.0

SRSMap 12.3 ITagHi 29.0 Parity/ECC
control CacheErr 27.0

ITagLo 28.0

L23DataHi 29.5

L23TagLo 28.4

 CP0 Registers of the 74K™ Core

150 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2 CP0 Register Descriptions

This section contains descriptions of each CP0 register. The registers are listed in numerical order, first by register
number, then by select field number.

R/W Access Types

For each register described below, field descriptions include the read/write access properties of the field and the reset
state of the field. The read/write access properties are described in Table 7.4.

Table 7.4 CP0 Register Field R/W Access Types

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware
reads.
If the reset state of this field is “Undefined”, either software or hardware must initialize the value before the first
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED
behavior.

SO Software Only. A field that is read and written by software but has no hardware effect. An example is the
DESAVE register.

R A field that is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Preset”,
hardware initializes this field to zero or to the appropri-
ate state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hardware
updates this field only under those conditions specified
in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value to
this field without affecting hardware behavior. Software
reads of this field return the last value updated by hard-
ware.
If the Reset State of this field is “Undefined,” software
reads of this field result in an UNPREDICTABLE
value except after a hardware update done under the
conditions specified in the description of the field.

W A field that can be written by software but which cannot be read by software.
Software reads of this field will return an UNDEFINED value.

W0 Hardware can write 1’s or 0’s to this field. Software writes will only cause the bit to be cleared.
Software can never set this bit. An example is the NMI
bit field in the Status register.

W1C Hardware can write 1’s or 0’s to this field. Software should write “1” to this bit to clear it. An
example is the I, R, and W bit fields in the WatchHi0-3
register.

0 A field that hardware does not update, and for which
hardware can assume a zero value.

A field to which the value written by software must be
zero. Software writes of non-zero values to this field
may result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined”, software
must write this field with zero before it is guaranteed to
read as zero.

U A field that is not read or written by hardware. Software writes to this field will be ignored. Software
reads of this field will return an UNDEFINED value.

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 151

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Color Coding of Register Descriptions

The color codes used in the register descriptions to indicate the access types are summarized in Figure 7.1. A field
with two access types (for example, R/W0) is uncolored,

Figure 7.1 Register Format Color Coding of Access Field Types

Power-up State of CP0 Registers

The traditions of the MIPS architecture regard it as software’s job to initialize CP0 registers. As a rule, only fields
where a wrong setting could prevent the CPU from booting are specified to be brought to a particular state by reset;
other fields—perhaps other fields in the same register—are undefined. This manual documents where a field has a
forced-from-reset value; conversely, when no reset-time value is documented, that means the register comes up in an
undefined state.

To ensure robust programs, you should initialize all CP0 register fields, except those in which a random value is
known to be harmless.

A Note on Unused Fields in CP0 Registers

Unused fields in registers are marked either with the digit 0, an "X", or occasionally a "U". A field marked zero is
expected to read zero; a field marked "U" is expected to read back whatever you last wrote to it; and if the field is
marked "X", the value is unpredictable.

But again, for robustness, you should write unused fields either to a value you previously read from the same field or
(if no such value is available) to zero.

7.2.1 Index (CP0 Register 0, Select 0): Index into TLB array

Index is used as the TLB index when reading or writing the TLB with tlbr/tlbw respectively. It is also set by a
TLB probe (tlbp) instruction to return the location of an address match in the TLB.

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

This register is only valid when the TLB is implemented; it is reserved if the FM is implemented.

Figure 7.2 Index Register Format

31 5 0

R/W SO R
WRITE HAS UNUSUAL
EFFECT (W, WO, W1C)

0 U

31 30 6 5 0

P 0 Index

 CP0 Registers of the 74K™ Core

152 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.2 Random (CP0 Register 1, Select 0): Randomly Generated Index into the TLB
Array

The Random register is a read-only register whose value is used to index the TLB during a tlbwr instruction. It pro-
vides a quick way of replacing a TLB entry at random. Random is a free counter cycling through the range of valid
TLB indexes. The Random register is decremented by one almost every clock, wrapping after the value in the Wired
register is reached. As a result, it will not take values less than the value programmed in Wired.

To reduce the possibility of a live lock condition, an LFSR register is used which prevents the decrement pseudo-ran-
domly.

The processor initializes the Random register to the upper bound on a Reset exception and when the Wired register is
written.

Figure 7.3 Random Register Format

7.2.3 EntryLo0-1 (CP0 Registers 2 and 3, Select 0): Output (physical) side of TLB
entry

These registers hold and represent the contents of the physical (output) side of a TLB entry — each entry maps a pair
of pages and EntryLo0 and EntryLo1 are for even-/odd-numbered virtual pages respectively. They’re read during a
tlbwr or tblw instruction, and written by a tlbr, and are not used for anything else.

Table 7.5 Field Descriptions for Index Register

Name Bit(s) Description
Read/
Write Reset State

P 31 Probe Failure. This bit is automatically set when a tlbp search of the
TLB fails to find a matching entry.

R/W Undefined

Index 5:0 An index into the TLB used for tlbwi and tlbr. It’s set by tlbp
when it finds a matching entry.

R/W Undefined

31 6 5 0

0 Random

Table 7.6 Field Descriptions for Random Register

Name Bit(s) Description
Read/
Write Reset State

0 31:6 Must be written as zero; returns zero on reads. 0 0

Random 5:0 This field cycles "randomly" through the potential indices of the TLB, so
its length varies with the TLB size (the diagram shows a max TLB size of
64 entries). It’s usually a down counter, and starts off at the largest plau-
sible index.

R #TLB Entries —
1

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 153

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.4 EntryLo0, EntryLo1 Register Format

Table 7.8 Cache Coherency Attributes encoding of C field of EntryLo0-1 and K0 field of Config Register

31 26 25 6 5 3 2 1 0

0 PFN C D V G

Table 7.7 Field Descriptions for EntryLo0-1 Register

Name Bit(s) Description
Read/
Write Reset State

PFN 25:6 The "physical frame number" — traditional OS name for the high-order
bits of the physical address. 20 bits of PFN together with 12 bits of in-
page address make up a 32-bit physical address. The MIPS32® Architec-
ture permits the PFN to be as large as 24 bits, but the 74K core has a 32-
bit physical address bus.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 7.8. R/W Undefined

D 2 The "dirty" flag. Indicates that the page has been written, and/or is writ-
able. If this bit is a one, then stores to the page are permitted. If this bit is
a zero, then stores to the page cause a TLB Modified exception.
Software can use this bit to track pages that have been written to; when
you first map a page, you leave this bit clear, and then the first write
causes an exception which you note somewhere in the OS’ memory man-
agement tables (and, of course, remember to set the bit).

R/W Undefined

V 1 The “valid” flag. Indicates that the TLB entry, and thus the virtual page
mapping are valid. If this bit is a one, then accesses to the page are per-
mitted. If this bit is a zero, then accesses to the page cause a TLB Invalid
exception.
This bit can be used to make just one of a pair of pages valid.

R/W Undefined

G 0 The “global” bit. On a TLB write, the logical AND of the G bits in both
the EntryLo0 and EntryLo1 registers become the G bit in the TLB entry.
If the TLB entry G bit is a one, then the ASID comparisons are ignored
during TLB matches. On a read from a TLB entry, the G bits of both
EntryLo0 and EntryLo1 reflect the state of the TLB G bit.

R/W Undefined

C[5:3]
K0[2:0] Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Reserved

2 uncached

3 Cacheable, noncoherent, write-back, write allocate

4 Reserved

5 Reserved

6 Reserved

7 Uncached Accelerated

 CP0 Registers of the 74K™ Core

154 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.4 Context (CP0 Register 4, Select 0): Mixture of Pre-programmed and BadVAddr
Bits which can act as an OS Page Table Pointer.

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array.The Context register duplicates some of the
information provided in the BadVAddr register.

The BadVPN2 field of the Context register is not defined after an address error exception, and this field may be modi-
fied by hardware during the address error exception sequence.

If Config3CTXTC =1, the pointer implemented by the Context register can point to any power-of-two-sized PTE struc-
ture within memory. This allows the TLB refill handler to use the pointer without additional shifting and masking
steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair of 32-bit PTEs within a sin-
gle-level page table scheme, or to a first level page directory entry in a two-level lookup scheme.

A TLB exception (Refill, Invalid, or Modified) causes bits VA31:32-X+Y to be written to a variable range of bits “(X-
1):Y” of the Context register, where this range corresponds to the contiguous range of set bits in the ContextConfig
register. Bits 31:X are R/W to software, and are unaffected by the exception. Bits Y-1:0 will always read as 0. If X =
23 and Y = 4, i.e. bits 22:4 are set in ContextConfig, the behavior is identical to the standard MIPS32 Context register
(bits 22:4 are filled with VA31:13). Although the fields have been made variable in size and interpretation, the MIPS32
nomenclature is retained. Bits 31:X are referred to as the PTEBase field, and bits X-1:Y are referred to as BadVPN2.
When Config3CTXTC =0, X = 23, Y = 4.

The value of the Context register is UNPREDICTABLE following a modification of the contents of the
ContextConfig register.

Figure 7-5 shows the format of the Context Register; Table 7.9 describes the Context register fields.

Figure 7-5 Context Register Format
31 X X-1 Y Y-1 0

PTEBase BadVPN2 0

Table 7.9 Context Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

PTEBase Variable, 31:X where
X in {31..0}.
May be null.
If Config3CTXTC =0,
X = 23

This field is for use by the operating system
and is normally written with a value that
allows the operating system to use the
Context Register as a pointer to an array of
data structures in memory corresponding to
the address region that contains the virtual
address which caused the exception.

R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 155

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.5 ContextConfig Register (CP0 Register 4, Select 1)

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected of the Context register are R/W to software and serve as the PTEBase field. Bits below the selected field of
the Context register will read as zeroes.

The field to contain the virtual address index is defined by a single block of contiguous non-zero bits within the
ContextConfig register’s VirtualIndex field. Any zero bits to the right of the least significant one bit cause the corre-
sponding Context register bits to read as zero. Any zero bits to the left of the most significant one bit cause the corre-
sponding Context register bits to be R/W to software and unaffected by TLB exceptions.

A value of all ones in the ContextConfig register means that the full 32 bits of the faulting virtual address will be cop-
ied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.

The ContextConfig register is optional and its existence is denoted by the Config3CTXTC or Config3SM register fields.

Figure 7.6 shows the formats of the ContextConfig Register; Table 7.10 describes the ContextConfig register fields.

Figure 7.6 ContextConfig Register Format

BadVPN2 Variable, (X-1):Y
where
X in {32..1} and
Y in {31..0}.
May be null.
If Config3CTXTC =0,
X = 23, Y = 4

This field is written by hardware on a TLB
exception. It contains bits VA31:32-X+Y of the
virtual address that caused the exception.

R Undefined

0 Variable, (Y-1):0
where
Y in {31:1}.
May be null.
If Config3CTXTC =0,
Y = 4

Must be written as zero; returns zero on read. 0 0

31 0

VirtualIndex

Table 7.9 Context Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

 CP0 Registers of the 74K™ Core

156 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all ones to the register, and reading back the resulting values. Table 7.11 describes some useful
ContextConfig values.

7.2.6 UserLocal (CP0 Register 4, Select 2): Address Causing the Last TLB-related
Exception

UserLocal is a read-write 32-bit register that is not intepreted by the hardware and conditionally readable by soft-
ware. This register is suitable for a kernel-maintained thread ID whose value can be read by user-level code with
rdhwr 29, as long as HWRENAUL is set.

The presence of the UserLocal register is indicated by Config3ULRI=1.

Figure 7.7 IUserLocal Register Format

Table 7.10 ContextConfig Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

VirtualIndex 31:0 A mask of 0 to 32 contiguous 1 bits in this field causes
the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing
a TLB exception.
Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field.

R/W 0x007ffff0

Table 7.11 Recommended ContextConfig Values

Value
Page Table

Organization Page Size PTE Size Compliance

0x00000000007ffff0 Single Level 4K 64 bits/page REQUIRED

0x00000000003ffff8 Single Level 4K 32 bits/page RECOMMENDED

0x00000000007ffff8 Single Level 2K 32 bits/page RECOMMENDED

0x0000000000fffff8 Single Level 1K 32 bits/page RECOMMENDED

31 0

UserLocal

Table 7.12 UserLocal Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

UserLocal 31:0 Software information that is not interpreted by hardware. R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 157

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.7 PageMask (CP0 Register 5, Select 0): Control for Variable Page Size in TLB
Entries

Every TLB entry has an independent virtual-address mask that allows it to ignore some address bits when deciding to
match. By selectively ignoring lower page addresses, the entry can be made to match all the addresses in a "page"
larger than 4KB.

Software can determine which page sizes are supported by writing all ones to the PageMask register, then reading the
value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the proces-
sor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 7.13, even if
the hardware returns a different value on read. Hardware may depend on this requirement in implementing hardware
structures.

Figure 7.8 PageMask Register Format
31 29 28 13 12 0

0 Mask 0

Table 7.13 Field Descriptions for PageMask Register

Name Bit(s) Description
Read/
Write Reset State

0 31:29,
12:0

Ignored on write; returns zero on read. R 0

Mask 28:13 Acts as a kind of backward mask, in that a 1 bit means "don’t compare
this address bit when matching this address". However, only a restricted
range of PageMask values are legal (i.e., with "1"s filling the
PageMaskMask field from low bits upward, two at a time):

Note that the uTLBs handle only 4Kbyte and 1Mbyte page sizes; other
page sizes are down-converted to 4Kbyte or 1Mbyte as they are refer-
enced. For other page sizes, this may cause an unexpectedly high rate of
uTLB misses, which could lead to a noticeable performance loss.

R/W Undefined

PageMask
Value

Size of Each Output
Page

0x0000.0000 4 Kbytes

0x0000.6000 16 Kbytes

0x0001.E000 64 Kbytes

0x0007.E000 256 Kbytes

0x001F.E000 1 Mbyte

0x007F.E000 4 Mbytes

0x01FF.E000 16 Mbytes

0x07FF.E000 64 Mbytes

0x1FFF.E000 256 Mbytes

 CP0 Registers of the 74K™ Core

158 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.8 Wired (CP0 Register 6, Select 0): Controls Number of Fixed ("wired") TLB
Entries

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 7.14. The width of the Wired field is calculated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

The Wired register is reset to zero by a Reset exception. Writing the Wired register causes the Random register to reset
to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written to
the Wired register.

This register is only valid with a TLB. It is reserved when the FM is implemented.

Wired can be set to a non-zero value to prevent the random replacement of that many TLB pages. It does this by pre-
venting the Random register from taking values between 0 and the value of wired minus one: in turn that’s done by
arranging that the Random downcounter bounces back to its maximum value when it was previously equal to Wired.

Figure 7.9 Wired Register Format

7.2.9 HWREna (CP0 Register 7, Select 0): Bitmask Limiting User-mode Access to
rdhwr Registers

The HWREna register contains a bit mask that determines which hardware registers are accessible via the rdhwr
instruction when that instruction is executed in user mode.

The low-order four bits [3:0] control access to the four registers required by the MIPS32® architecture standard. The
two high-order bits [31:30] are available for implementation-dependent use.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide

31 6 5 0

0 Wired

Table 7.14 Field Descriptions for Wired Register

Name Bit(s) Description
Read/
Write Reset State

Wired 5:0 The oddly-named Wired controls Random’s behavior.
Random is implemented as a full CPU clock-rate downcounter. It won’t
decrement below the current value of Wired (when it gets there it
bounces off and starts again at the highest legal index). So in practice,
when used inside the TLB refill exception handler, Random delivers a
random index into the TLB somewhere between the value of Wired and
the top. Wired can therefore be set to reserve some TLB entries from ran-
dom replacement — a good place for an OS to keep translations which
must never cause a TLB translation-not-present exception.

R/W 0

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 159

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If a bit reads back as a one, the processor implements that hardware register.

Figure 7.10 HWREna Register Format
31 30 29 28 4 3 2 1 0

Impl UL 0 CCRes CC SYNCI_Step CPUNum

Table 7.15 Field Descriptions for HWREna Register

Name Bit(s) Description
Read/
Write Reset State

Impl 31:30 These bits control access to implementation-dependent hardware regis-
ters. These registers are not currently implemented in any 74K family
processor. Attempts to access these bits results in a Reserved Instruction
Exception.

R 0

UL 29 User Local Register. This register provides read access to the coprocessor
0 UserLocal register. Set this bit to 1 to permit user programs to obtain
the value of the UserLocal CP0 register using rdhwr 29.

R/W 0

CCRes 3 Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:

Set this bit to 1 so a user-mode rdhwr 3 can read the CCRes value. The
CCRes register will read a value of 2 when the Count register runs at
half the pipeline speed (as it always does in 74K family CPUs).

R/W 0

CC 2 High-resolution Cycle Counter. This register provides read access to the
coprocessor 0 Count Register. Set this bit to 1 so a user-mode
rdhwr 2 can read out the value of the Count register.

R/W 0

SYNCI_Step 1 Address step size to be used with the SYNCI instruction. See that instruc-
tion’s description for the use of this value. In the typical implementation,
this value should be zero if there are no caches in the system that must be
synchronized (either because there are no caches, or because the instruc-
tion cache tracks writes to the data cache). In other cases, the return value
should be the smallest line size of the caches that must be synchronized.
For the 74K corename-lowercase, the SYNCI_Step value is 32 since the
line size is 32 bytes.
Set this bit to 1 so a user-mode rdhwr 1 can read the cache line size
(actually, the smaller of the L1 I-cache line size and D-cache line size).
That line size determines the step between successive uses of the synci
instruction, which does the cache manipulation necessary to ensure that
the CPU can correctly execute instructions which you just wrote.

R/W 0

CCRes Value Meaning

1 CC register increments every cycle

2 CC register increments every second cycle

3 CC register increments every third cycle

etc.

 CP0 Registers of the 74K™ Core

160 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.10 BadVAddr (CP0 Register 8, Select 0): Address Causing the Last TLB-related
Exception

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions: Address error (AdEL or AdES), TLB/XTLB Refill, TLB Invalid (TLBL, TLBS) and TLB Modi-
fied.

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
errors.

There is more information about this register in the notes to the CauseExcCode field.

Figure 7.11 BadVAddr Register Format

7.2.11 Count (CP0 Register 9, Select 0): Free-running Counter at Half the Pipeline
Speed

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline. When enabled by clearing the DC bit in the Cause register, the
counter increments every other clock. By writing the CountDM bit in the Debug register, it is possible to control
whether the Count register continues incrementing while the processor is in debug mode.

Count may stop in only two circumstances. First, some implementations may stop Count in the low-power mode, for
example, through the wait instruction, but only if the CauseDC flag is set to 1. Secondly, you can arrange to stop
Count in debug mode by setting DebugCountDM.

Count will carry on counting from whatever value is loaded into it. However, OS timers are usually implemented by
leaving Count free-running and writing Compare as necessary.

CPUNum 0 This register provides read access to the coprocessor 0 EBaseCPUNum

field. Set this bit 1 so a user-mode rdhwr 0 reads out the CPU ID
number.

R/W 0

31 0

BadVAddr

Table 7.16 BadVAddr Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Bad-
VAddr

31:0 Bad virtual address. R Undefined

Table 7.15 Field Descriptions for HWREna Register

Name Bit(s) Description
Read/
Write Reset State

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 161

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.12 Count Register Format

7.2.12 EntryHi (CP0 Register10, Select 0): High-order Portion of TLB Entry

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of the EntryHi register. A TLBR instruction writes the EntryHi register with the corresponding
fields from the selected TLB entry. The ASID field is written by software with the current address space identifier
value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence. Software writes of the EntryHi register (via MTC0) do not
cause the implicit write of address-related fields in the BadVAddr, Context registers.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 7.13 EntryHi Register Format

31 0

Count

Table 7.17 Count Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

31 13 12 8 7 0

VPN2 0 ASID

Table 7.18 Field Descriptions for EntryHi Register

Name Bit(s) Description
Read/
Write Reset State

VPN2 31:13 EntryHiVPN2 is the virtual address to be matched on a tlbp. It is also
the virtual address to be written into the TLB on a tlbw and the desti-
nation of the virtual address on a tlbr.
On a TLB-related exception, the field VPN2 is automagically set to the
virtual address we were trying to translate when we got the exception. If
— as is most often the case — the outcome of the exception handler is to
find and install a translation to that address, VPN2 (and generally the
whole of EntryHi) will turn out to already have the right values in it.
It is written by software before a tlbp or tlbw and written by hard-
ware in all other cases.

R/W Undefined

 CP0 Registers of the 74K™ Core

162 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.13 Compare (CP0 Register 11, Select 0): Timer Interrupt Control

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function—
when the value of the Count register equals the value of the Compare register, the SI_TimerInt output pin is asserted.
SI_TimerInt remains asserted until the Compare register is written.

The SI_TimerInt output can be fed back into the core on one of the interrupt pins to generate an interrupt. Tradition-
ally, this has been done by multiplexing it with hardware interrupt 5 in order to set interrupt bit IP(7) in the Cause
register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. As a side effect, writing a value to this register clears the timer interrupt.

Figure 7.14 Compare Register Format

7.2.14 Status (CP0 Register 12, Select 0): Processor Status and Control

The Status register is a read/write register that contains the operating mode, interrupt enabling, and diagnostic states
of the processor. Fields in this register combine to create operating modes for the processor. Refer to Section
5.2 “Modes of Operation” for a discussion of operating modes, and to Section 6.3 “Interrupts” for a discussion of
interrupt modes. A brief summary is provided below.

7.2.14.1 Interruptibility

Interrupts are enabled when:

StatusIE == 1, StatusEXL == 0, StatusERL == 0, and DebugDM == 0.

When these conditions are met, individual interrupts can be disabled/enabled using the StatusIM7-0 mask bits.

ASID 7:0 This field does double-duty. It is used to stage data to and from the TLB,
but in normal running software it’s also the source of the current "ASID"
value, used to extend the virtual address to make sure you only get trans-
lations for the current process.

R/W 0

31 0

Compare

Table 7.19 Compare Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined

Table 7.18 Field Descriptions for EntryHi Register

Name Bit(s) Description
Read/
Write Reset State

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 163

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.14.2 Operating Modes

User Mode

The CPU is in user mode when:

StatusEXL == 0, StatusERL == 0, DebugDM == 0, and StatusUM,SM == 2.

In user mode, the CPU has access only to the mapped kuseg address region.

Refer to Section 5.2.2 “User Mode”.

Supervisor Mode

The CPU is in supervisor mode when:

StatusEXL == 0, StatusERL == 0, DebugDM == 0, and StatusUM,SM == 1.

In supervisor mode, the CPU has access to the top half of the kseg2 region (sometimes known as kseg3), but no
access to CP0 registers or most kernel memory. Supervisor mode is not compatible with the "fixed mapping" MMU
option. This mode is not used by any MIPS OS code.

Refer to Section 5.2.3 “Supervisor Mode”.

Kernel Mode

In kernel mode, the CPU has unrestricted access to all memory spaces (including, importantly, the "unmapped"
regions kseg0 and kseg1), and to all the privileged (CP0) registers documented in this chapter, but it is unable to
access some debug resources.

The CPU is in kernel mode when DebugDM is 0 and any of the following conditions are true:

StatusEXL == 1, StatusERL == 1, or StatusUM,SM == 0.

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an eret instruction.

Refer to Section 5.2.4 “Kernel Mode”.

Debug Mode

The processor is operating in Debug Mode when the DM bit in the CP0 Debug register is set to 1. In debug mode, the
processor has full access to all resources that are available in Kernel Mode operation, in addition to those provided by
EJTAG.

Refer to Section 5.2.5 “Debug Mode”.

7.2.14.3 Coprocessor Accessibility

The Status register CU bits control coprocessor accessibility. If any coprocessor is unusable, then an instruction that
accesses it generates an exception.

 CP0 Registers of the 74K™ Core

164 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.15 shows the format of the Status Register; Table 7.20 describes the Status register fields.

Figure 7.15 Status Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0

CU3 CU2 CU1 CU0 RP FR RE MX R BEV TS SR NMI 0 CEE 0 IM7-0 R UM SM ERL EXL IE

Table 7.20 Field Descriptions for Status Register

Name Bit(s) Description
Read/
Write Reset State

CU3 31 Coprocessor 3 Usable. Because no 74K family core has a coprocessor 3,
StatusCU3 is hardwired zero..

R 0

CU2 30 Coprocessor 2 Usable. Controls access to coprocessor 2:

CU2 is reserved for a customer’s coprocessor. Currently the 74K family
of cores does not support Coprocessor 2, so this bit is read-only and reads
zero.

R 0

CU1 29 Coprocessor 1 Usable. Controls access to coprocessor 1:

CU1 is most often used for a floating-point unit. When no coprocessor 1
is present, this bit is read-only and reads zero.

R/W Undefined

CU0 28 Coprocessor 0 Usable. Controls access to coprocessor 0 :

Coprocessor 0 is always usable when the processor is running in Kernel
or Debug Mode, regardless of the state of the CU0 bit.
Setting StatusCU0 to 1 has the peculiar effect of allowing privileged
instructions to execute in user mode, though this is not something a
secure OS is likely to allow.

R/W Undefined

MX 24 MIPS Extension. Enables access to DSP ASE resources:

An attempt to execute any DSP ASE instruction before this bit has been
set to 1 will cause a DSP State Disabled exception. The state of this bit is
reflected in Config3DSPP .

R/W 0

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 165

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

CEE 17 CorExtend Enable. Enable/disable CorExtend User Defined Instructions
(UDIs):

This signal’s usage by a CorExtend block is implementation-dependent.
The presence of the CorExtend extension is indicated in ConfigUDI,
which is set when the core is configured. This bit is reserved if CorEx-
tend is not present

R/W Undefined

RP 27 Reduced Power. Enable/disable reduced power mode:

The state of the RP bit is visible on the core’s external interface signal
SI_RP. The 74K core uses clocks that are generated outside the core, and
this could be used in your design to slow the input clock(s).

R/W 0

FR 26 Floating Register. This bit is used to control the floating-point register
mode for 64-bit floating point units:

This bit must be ignored on write and read as zero under the following
conditions
• No floating point unit is implemented
• 64-bit floating point unit is not implemented
If your processor has a floating point unit, set 0 for MIPS I compatibility
mode, which means you have only 16 real FP registers, with 16 odd FP
register numbers reserved for access to the high-order bits of double-pre-
cision values.

R/W 0

RE 25 Reverse Endian. Enables Reverse endianness for instructions that execute
in User mode. This feature is not supported in the 74K core and reads 0.

R 0

R 23 Reserved. Returns zeros on reads. R 0

BEV 22 Boot Exception Vector. Controls the location of exception vectors:

When set to 1, all exception entry points are relocated to near the reset
start address. Refer to Section 6.5 “Exception Vector Locations”.

R/W 1

Table 7.20 Field Descriptions for Status Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Meaning

0 Disable CorExtend block

1 Enable CorExtend block

Encoding Meaning

0 Disable reduced power mode

1 Enable reduced power mode

Encoding Meaning

0 Floating point registers can contain any 32-bit
datatype. 64-bit data types are stored in even-odd
pairs of registers

1 Floating point registers can contain any datatype

Encoding Meaning

0 Normal

1 Bootstrap

 CP0 Registers of the 74K™ Core

166 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

TS 21 TLB Shutdown. Set if software attempts to create a duplicate TLB entry
(which will also produce a "machine check" exception). Can be written
back to zero, but never written to 1. The name of the field originated as a
"TLB Shutdown"—historical MIPS CPUs quietly stopped translating
addresses when they detected TLB abuse.

R/W 0

SR 20 Soft Reset. The 74K core’s interface only supports a full external reset, so
this bit always reads zero.

R 0

NMI 19 Indicates that the entry through the reset exception vector was due to an
NMI:

Software can only write a 0 to this bit to clear it and cannot force a 0 to 1
transition.

R/W0 1 for NMI, 0 oth-
erwise

IM7-0 15:8 Interrupt Mask. Bitwise interrupt enables for the eight interrupt condi-
tions. The state of these bits is visible in CauseIP7-0, except in EIC
Mode, which is activated when Config3VEIC reads 1, you set CauseIV,
and write a non-zero "vector spacing" in IntCtlVS.
In EIC mode, IM7-2 is recycled to become a 6-bit StatusIPL (Interrupt
Priority Level) field. An interrupt is only triggered when the interrupt
controller presents an interrupt code which is numerically higher than the
current value of StatusIPL.
StatusIM1-0 always act as bitwise masks for the two software interrupt
bits programmable in CauseIP1-0.

R/W Undefined

R 7:5 Reserved. Returns zeros on reads. R 0

UM 4 These bits denote the processor’s operating mode. See Section
5.2 “Modes of Operation”.

Note that the processor can also be in Kernel mode if ERL or EXL is set,
regardless of the state of these bits.

R/W Undefined

SM 3 R/W Undefined

Table 7.20 Field Descriptions for Status Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Meaning

0 Not NMI (Reset)

1 NMI

UM SM Mode

0 0 Kernel

0 1 Supervisor

1 0 User

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 167

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset, NMI, or
Cache Error exception is taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in ErrorEPC

instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped and uncached
region. See Chapter 5, “Memory Management of the 74K™ Core”.
This allows main memory to be accessed for cache errors. The opera-
tion of the processor is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

R/W 1

EXL 1 Exception Level; Set by the processor when any exception other than
Reset, Soft Reset, Cache Error, or NMI exception is taken.

 When EXL is set:
• The processor is running in Kernel Mode
• Hardware and software interrupts are disabled.
• TLB Refill exceptions use the general exception vector instead of the

TLB Refill vector.
• EPC, CauseD and SRSCtl are not be updated if another exception is

taken.
When an exception occurs and EXL is set, a nested TLB Refill exception
is sent to the general exception handler (rather than to its dedicated han-
dler) and the values in EPC, CauseBD and SRSCtl are not overwritten.
The result is that when you return from the second exception, you skip
straight back to the code that was executing before the first exception
occurred.

R/W Undefined

IE 0 Interrupt Enable, Acts as the master enable for software and hardware
interrupts:

This bit can be written using the di/ei instructions.

R/W Undefined

Table 7.20 Field Descriptions for Status Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

 CP0 Registers of the 74K™ Core

168 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.15 IntCtl (CP0 Register 12, Select 1): Setup for Interrupt Vector and Interrupt Pri-
ority Features

The IntCtl register controls the interrupt capabilities of the 74K core, including vectored interrupts and support for an
external interrupt controller.

Figure 7.16 IntCtl Register Format
31 29 28 26 25 23 22 10 9 5 4 0

IPTI IPPCI IPFDCI 0 VS 0

Table 7.21 Field Descriptions for IntCtl Register

Name Bit(s) Description
Read/
Write Reset State

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Timer Interrupt request is merged,
and allows software to determine whether to consider CauseTI for a
potential interrupt.

The value of this bit is set by the static input, SI_IPTI[2:0]. This allows
external logic to communicate the specific SI_Int hardware interrupt pin
to which the SI_TimerInt signal is attached.
The value of this field is not meaningful if External Interrupt Controller
Mode is enabled. The external interrupt controller is expected to provide
this information for that interrupt mode.

R Externally Set

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt modes, this field spec-
ifies the IP number to which the Performance Counter Interrupt request is
merged, and allows software to determine whether to consider CausePCI
for a potential interrupt.

The value of this bit is set by the static input SI_IPPCI[2:0]. This allows
external logic to communicate the specific SI_Int hardware interrupt pin
to which the SI_PCInt signal is attached.
The value of this field is not meaningful if External Interrupt Controller
Mode is enabled. The external interrupt controller is expected to provide
this information for that interrupt mode.

R Externally Set

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 169

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.16 SRSCtl (CP0 Register12, Select 2): Shadow Register Set Selectors

The SRSCtl register controls the operation of GPR shadow sets in the processor. Refer to Section 6.4 “GPR Shadow
Registers”.

The presence and number of shadow sets is configurable by the SoC designer. If your CPU has shadow register sets,
SRSCtlHSS will be non-zero. If no shadow sets are implemented, a read of this register returns all zeroes.

IPFDCI 25:23 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Fast Debug Channel Interrupt
request is merged, and allows software to determine whether to consider
CauseFDCI for a potential interrupt.

The value of this bit is set by the static input, SI_IPFDCI[2:0]. This
allows external logic to communicate the specific SI_Int hardware inter-
rupt pin to which the SI_FDCInt signal is attached.
The value of this field is not meaningful if External Interrupt Controller
Mode is enabled. The external interrupt controller is expected to provide
this information for that interrupt mode.

R Externally Set

VS 9:5 If vectored interrupts are implemented (as denoted by Config3VInt or
Config3VEIC), this field specifies the spacing between vectored inter-
rupts.

All other values are reserved. The operation of the processor is UNDE-
FINED if a reserved value is written to this field.
Vector Spacing. Is writable to give you software control of the vector

spacing; if the value in VS is VS, you will get a spacing of 32 × 2(VS-1)

bytes.
Only values of 1, 2, 4, 8 and 16 are permitted, for spacings of 32, 64, 128,
256, and 512 bytes respectively.

R/W 0

Table 7.21 Field Descriptions for IntCtl Register

Name Bit(s) Description
Read/
Write Reset State

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding
Spacing Between

Vectors (hex)
Spacing Between
Vectors (decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512

 CP0 Registers of the 74K™ Core

170 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.17 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

Table 7.22 Field Descriptions for SRSCtl Register

Name Bit(s) Description
Read/
Write Reset State

HSS 29:26 Highest Shadow Set. This field contains the highest shadow set number
that is implemented by this processor (i.e., the number of available regis-
ter sets minus 1). A value of zero in this field indicates that only the regu-
lar GPRs are implemented.
Possible values of this field for the 74K processor are:
The value in this field also represents the highest value that can be written
to the ESS, EICSS, PSS, and CSS fields of this register, or to any of
the fields of the SRSMap register. The operation of the processor is
UNDEFINED if a value larger than the one in this field is written to any
of those other fields

R Preset

EICSS 21:18 External Interrupt Controller Shadow Set. If Config3VEIC is 1 (EIC inter-
rupt mode is enabled), this field is loaded from the external interrupt con-
troller for each interrupt request and is used in place of the SRSMap
register to select the current shadow set for the interrupt. See Section
6.3.1.3 “External Interrupt Controller Mode” for a discussion of EIC
interrupt mode. If Config3VEIC is 0, this field returns zero on reads.

R Undefined

ESS 15:12 Exception Shadow Set. This field specifies the shadow set to use on entry
to Kernel Mode caused by any exception other than a vectored interrupt.
The operation of the processor is UNDEFINED if software writes a
value in this field that is greater than the value in the HSS field.

R/W 0

PSS 9:6 Previous Shadow Set. If GPR shadow registers are implemented, with the
exclusions noted in the next paragraph, this field is copied from the CSS
field when an exception or interrupt occurs. An eret instruction copies
this value back into the CSS field if StatusBEV = 0.
This field is not updated on any exception which sets StatusERL to 1
(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG Debug
mode, or any exception or interrupt that occurs with StatusEXL = 1 or
StatusBEV = 1, or StatusERL = 1.
The operation of the processor is UNDEFINED if software writes a
value into this field that is greater than the value in the HSS field.

R/W 0

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 171

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.17 SRSMap (CP0 Register 12, Select 3): Shadow Set Choice for Each Interrupt
Level in VI Mode

The SRSMap register specifies the mapping of a vector number to a shadow register set number for use when servic-
ing an interrupt in Vectored Interrupt (VI) mode (Config3VInt = 1, Config3VEIC = 0, and CauseIV = 1). The values in
this register are not used for non-interrupt exceptions or non-vectored interrupts (CauseIV = 0 or IntCtlVS = 0); in these
cases, the shadow set number is the value in SRSCtlESS.

If SRSCtlHSS is zero (indicating that no shadow sets are implemented), the result of a software read or write of this
register is UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The same shadow set number can be used for multiple interrupt vectors, creating a many-to-one mapping from a vec-
tor to a single shadow register set number. In Interrupt Compatibility mode, one shadow set can be used for all excep-
tion handlers, including interrupt handlers, by setting SRSCtlESS to a non-zero value.

CSS 3:0 Current Shadow Set. If GPR shadow registers are implemented, this field
is the number of the current GPR set. With the exclusions noted in the
next paragraph, this field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an eret. Table 7.23
describes the various sources from which the CSS field is updated on an
exception or interrupt.
This field is not updated on any exception which sets StatusERL to 1
(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG Debug
mode, or any exception or interrupt that occurs with StatusEXL = 1, or
StatusBEV = 1. Neither is it updated on an eret with StatusERL = 1 or
StatusBEV = 1. This field is not updated on an exception that occurs
while StatusERL = 1.
The value of CSS can be changed directly by software only by writing
the PSS field and executing an eret instruction.

R 0

Table 7.23 Sources for SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Interrupt CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and
Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map register.
(for VECTNUM see Table 6.4).

Vectored EIC Interrupt CauseIV = 1 and
Config3VEIC = 1

SRSCtlEICSS Source is external interrupt
controller.

Table 7.22 Field Descriptions for SRSCtl Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

 CP0 Registers of the 74K™ Core

172 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

In EIC interrupt mode, this register has no effect, and the shadow set number to be used is determined by an input bus
from the external interrupt controller.

Figure 7.18 SRSMap Register Format

7.2.18 Cause (CP0 Register 13, Select 0): Cause of Last General Exception

The Cause register describes the cause of the most recent exception and controls software interrupt requests and the
vector through which interrupts are dispatched. With the exception of the IP1..0, DC, IV, and WP fields, all fields in
the Cause register are read-only. IP7..2 are interpreted as the Requested Interrupt Priority Level (RIPL) in External
Interrupt Controller (EIC) interrupt mode.

Figure 7.19 Cause Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 7.24 Field Descriptions for SRSMap Register

Name Bit(s) Description
Read/
Write Reset State

SSV7 31:28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27:24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23:20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19:16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15:12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11:8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7:4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3:0 Shadow register set number for Vector Number 0 R/W 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP FDCI 0 IP7-2 IP1-0 0 ExcCode 0

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 173

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 7.25 Field Descriptions for Cause Register

Name Bit(s) Description
Read/
Write Reset State

BD 31 Indicates whether the last exception taken occurred in a branch delay
slot:

The processor updates BD only if the EXL bit in the Status register was
zero when the exception occurred.

If the exception occurred in a branch delay slot, EPC is set to restart exe-
cution at the branch, which is usually the correct thing to do. You need to
consult CauseBD only when you need to look at the instruction which
caused the exception (perhaps to emulate it).

R Undefined

TI 30 Timer Interrupt. Denotes whether a timer interrupt is pending (analogous
to the IP bits for other interrupt types):

The state of this bit is available on the external Core interface as the
SI_TimerInt signal.

See also the descriptions of the Count and Compare registers.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken. This field is loaded by hardware on every exception,
but is UNPREDICTABLE for all exceptions except Coprocessor Unus-
able.

R Undefined

DC 27 Disable Count register. In some power-sensitive applications, the Count
register is not used but may still be the source of some noticeable power
dissipation. This bit allows the Count register to be stopped in such situ-
ations, for example, during low-power operation following a wait
instruction.

R/W 0

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

 CP0 Registers of the 74K™ Core

174 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

PCI 26 Performance Counter Interrupt. Indicates whether a performance counter
interrupt is pending (analogous to the IP bits for other interrupt types):

See also the description of the PerfCnt registers.

R Undefined

IV 23 Indicates whether an interrupt exception uses the general exception vec-
tor or a special interrupt vector:

When the IV bit in the Cause register is 1 and the BEV bit in the Status
register is 0, the special interrupt vector represents the base of the vector
interrupt table.

R/W Undefined

WP 22 Indicates that a watch exception was deferred because StatusEXL or
StatusERL was a one at the time the watch exception was detected. This
bit both indicates that the watch exception was deferred, and causes the
exception to be initiated when StatusEXL and StatusERL are both zero.
As such, software must clear this bit as part of the watch exception han-
dler to prevent a watch exception loop.

Software should not write a 1 to this bit when its value is a 0, thereby
causing a 0-to-1 transition. If such a transition is caused by software, it is
UNPREDICTABLE whether hardware ignores the write, accepts the
write with no side effects, or accepts the write and initiates a watch
exception once StatusEXL and StatusERL are both zero.

R/W Undefined

FDCI 21 Fast Debug Channel Interrupt: This bit denotes whether an FDC interrupt
is pending (analogous to the IP bits for other interrupt types):

The state of the FDCI bit is available on the external core interface as the
SI_FDCInt signal.

R Undefined

Table 7.25 Field Descriptions for Cause Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Meaning

0 No performance counter interrupt is
pending

1 Performance counter interrupt is
pending

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

Encoding Meaning

0 No FDC interrupt is pending

1 FDC interrupt is pending

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 175

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

IP7-2 15:10 Indicates an interrupt is pending:

If EIC interrupt mode is not enabled (Config3VEIC = 0), timer interrupts
are combined in a system-dependent way with any hardware interrupt. If
EIC interrupt mode is enabled (Config3VEIC = 1), these bits take on a
different meaning and are interpreted as the RIPL field, described below.
See Section 6.3 “Interrupts” for a general description of interrupt pro-
cessing.

R Undefined

IP1-0 9:8 Controls the request for software interrupts:

These bits are exported to an external interrupt controller for prioritiza-
tion in EIC interrupt mode with other interrupt sources. The state of these
bits is available on the external core interface as the SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6:2 Encodes the cause of the last exception as described in Table 7.26. R Undefined

Table 7.26 Exception Code values in ExcCode Field of Cause Register

Value Code What just happened?

0 Int Interrupt

1 Mod Store, but page marked as read-only in the TLB

2 TLBL Load or fetch, but page marked as invalid in the TLB

3 TLBS Store, but page marked as invalid in the TLB

4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a privi-
lege violation.5 AdES

6 IBE Bus error signaled on instruction fetch

7 DBE Bus error signaled on load/store (imprecise)

8 Sys System call, i.e. syscall instruction executed.

9 Bp Breakpoint, i.e. break instruction executed.

10 RI Instruction code not recognized (or not legal)

11 CpU Instruction code was for a co-processor which is not enabled in StatusCU3-0.

Table 7.25 Field Descriptions for Cause Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0

 CP0 Registers of the 74K™ Core

176 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.19 EPC (CP0 Register 14, Select 0): Restart Address from Exception

Following an exception other than a debug or error or debug exception, the Exception Program Counter (EPC) con-
tains the address at which processing resumes after the exception has been serviced. (The corresponding debug and
error exception use DEPC and ErrorEPC respectively.)

Unless the EXL bit in the Status register is set (indicating, among other things, that interrupts are disabled), the pro-
cessor writes the EPC register when an exception occurs.

• For synchronous (precise) exceptions, EPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

• For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the eret instruction.

12 Ov Overflow from a trapping variant of integer arithmetic instructions.

13 Tr Condition met on one of the conditional trap instructions teq etc.

14 - Reserved

15 FPE Floating point unit exception — more details in the FPU control/status registers.

16-17 - Available for implementation-dependent use.

19-22 - Reserved

23 WATCH Instruction or data reference matched a watchpoint.

24 MCheck "Machine check"

25 Thread Thread-related exception, only for CPUs supporting the MIPS MT ASE. In that case the cause
is further detailed in VPEControlEXCPT.

26 DSP Tried to run an instruction from the MIPS DSP ASE, but it’s either not enabled or not avail-
able. In particular, StatusMX is zero).

27-29 - Reserved

30 CacheErr Parity/ECC error somewhere in the core, on either instruction fetch, load or cache refill. In fact
you never see this value in CauseExcCode; but some of the codes in this table including this
one can be visible in the "debug mode" of the EJTAG debug unit — see and in particular the
notes on the Debug register.

31 - Reserved

Table 7.26 Exception Code values in ExcCode Field of Cause Register

Value Code What just happened?

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 177

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.20 EPC Register Format

7.2.20 PRId (CP0 Register 15, Select 0): Processor Identification and Revision

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 7.21 PRId Register Format

31 0

EPC

Table 7.27 EPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

31 24 23 16 15 8 7 0

CoOpt CoID Imp Rev

Table 7.28 Field Descriptions for PRId Register

Name Bit(s) Description
Read/
Write Reset State

CoOpt 31:24 Company Option. Whatever is specified by the SoC builder who synthe-
sizes the core— refer to your SoC manual. It should be a number
between 0 and 127— higher values are reserved by MIPS Technologies.

R Preset

CoID 23:16 Company ID. Identifies the company that designed or manufactured the
processor. In the 74K, this field contains a value of 1 to indicate MIPS
Technologies, Inc.

R 1

Imp 15:8 Processor ID. Identifies the type of processor. This field allows software
to distinguish between the various types of processors from MIPS Tech-
nologies. The value of this field is 0x97 for the 74K core.

R 0x97

Rev 7:0 The revision number of the core design. R Preset

Bit(s) Name Meaning

7:5 Major
Revision

This number is increased on major
revisions of the processor core

4:2 Minor
Revision

This number is increased on each
incremental revision of the processor
and reset on each new major revision

1:0 Patch
Level

If a patch is made to modify an older
revision of the processor, this field will
be incremented

 CP0 Registers of the 74K™ Core

178 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.21 EBase (CP0 Register 15, Select 1): Exception entry point base address and
CPU/VPE ID

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see Section
6.5 “Exception Vector Locations”) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits
31:12 of the EBase register initialize the exception base register to 16#8000.0000, providing backward compati-
bility with Release 1 implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or kseg1 unmapped virtual address segments. Bit 29 of exception base address will be forced to 1 on Cache Error
exceptions so the exception handler will be executed from the uncached kseg1 segment.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KBbyte page boundary.

Figure 7.22 EBase Register Format
31 30 29 12 11 10 9 0

1 0 VA 0 CPUNum

Table 7.29 Field Descriptions for EBase Register

Name Bit(s) Description
Read/
Write Reset State

VA 29:12 The base address for the exception vectors, adjustable to a resolution of
4Kbytes. See the exception entry points table for how that moves all the
exception entry points.
The top two bits of this register must be 10 to make sure the exception
vector ends up in kseg0, conventionally used for OS code.
By setting EBase in any CPU to a unique value, that CPU can have its
own unique exception handlers.
Write this field only when StatusBEV is set so that any exception will be
handled through the ROM entry points (otherwise you would be chang-
ing the exception address under your own feet, and the results of that are
undefined).

R/W 0x0000.0

CPUNum 9:0 This field contains an identifier that will be unique among the CPUs in a
multi-processor system. The value in this field is set by the
SI_CPUNum[9:0] static input pins to the core.

R Externally Set

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 179

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.22 CDMMBase Register (CP0 Register 15, Select 2)

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3CDMM is set to one.

Figure 7.23 shows the format of the CDMMBase register, and Table 7.30 describes the register fields.

Figure 7.23 CDMMBase Register

31 28 27 11 10 9 8 0

0 CDMM_UPPER_ADDR EN CI CDMMSize

Table 7.30 CDMMBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

CDMM_UPPER_
ADDR

27:11 Bits 31:15 of the base physical address of the common
device memory-mapped registers.

R/W Undefined

EN 10 Enables the CDMM region.
If this bit is cleared, memory requests to this address
region go to regular system memory. If this bit is set,
memory requests to this region go to the CDMM logic

R/W 0

CI 9 If set to 1, this indicates that the first 64-byte Device Reg-
ister Block of the CDMM is reserved for additional regis-
ters which manage CDMM region behavior and are not IO
device registers.
This feature is not implemented and this field will read as
0.

R 0

CDMMSize 8:0 This field represents the number of 64-byte Device Regis-
ter Blocks instantiated in the core.

R 2

Encoding Meaning

0 CDMM region is disabled.

1 CDMM region is enabled.

Encoding Meaning

0 1 DRB

1 2 DRBs

2 3 DRBs

... ...

511 512 DRBs

 CP0 Registers of the 74K™ Core

180 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.23 Config (CP0 Register 16, Select 0): Legacy Configuration Register

The main role of the (several) configuration registers is to be a read-only repository of information about the core’s
resources, encoded so as to be useful to operating system initialization code.

But this original Config register acquired some writable fields. Typically, these select the sort of options you’d write
once in initialization software and then never touch again.

Figure 7.24 Config Register Format
31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU ISP DSP UDI SB 0 WC MM 0 BM BE AT AR MT 0 VI K0

Table 7.31 Field Descriptions for Config Register

Name Bit(s) Description
Read/
Write Reset State

M 31 Reads 1 if Config1 is available. R 1

K23 30:28 If your CPU uses fixed mapping instead of having a TLB, you set the
cacheability attributes of chunks of the memory map by writing these
fields. They’re encoded like EntryLo0-1C.
If you have a TLB, these fields are unused (but please write only zero to
them).
ConfigK23 is for program addresses 0xC000.0000-0xFFFF.FFFF
(the "kseg2" and "kseg3" areas), while ConfigKU is for program
addresses 0x0000.0000-0x7FFF.FFFF (the "kuseg" area)
From reset, both are "uncached" (code 2).

FMT:
R/W

TLB: R

FMT:2
TLB:0

KU 27:25 FMT:
R/W

TLB: R

FMT:2
TLB:0

ISP 24 Reads 1 if I-side scratchpad (ISPRAM) is fitted. R Preset

DSP 23 Reads 1 if D-side scratchpad (SPRAM) is fitted.
(Don’t confuse this with the MIPS DSP ASE, whose presence is indi-
cated by Config3DSPP.)

R Preset

UDI 22 Reads 1 if your core implements user-defined "CorExtend" instructions. R Preset

SB 21 Read-only "SimpleBE" bus mode indicator, which reflects the core input
signal SI_SimpleBE.
If set, means that this core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte,
aligned half-word, and aligned word.
If zero, it may generate partial-word transfers with an arbitrary set of
bytes enabled (which some memory controllers may not like).

R Externally Set

WC 19 Write Control. Enable write control of cache size and
special function bits in the Config1 register.
0: Write control disabled
1: Write control enabled

R/W 0

MM 18 Writable: set 1 if you want writes resulting from separate store instruc-
tions in write-through mode merged into a single (possibly burst) transac-
tion at the interface. This doesn’t affect cache writebacks (which are
always whole blocks together) or uncached writes (which are never
merged).

R/W 1

BM 16 Read-only. Reads 0 when bus uses sequential burst order and reads 1
when it uses sub-block burst order; set by the core input signal
SI_SBlock signal to match your system controller.

R Externally Set

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 181

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.24 Config1-2 (CP0 Register 16, Select 1-2): MIPS32/64 Configuration Registers

These two registers tell you the size of the TLB, and the size and organization of L1, L2, and L3 caches (a zero "line
size" is used to indicate a cache which isn’t there).

Config2 also has fields which tell you about the presence of some extensions to the base MIPS32 architecture that are
implemented on this core.

7.2.24.1 Config1

This register displays the size and configuration of the TLB and primary caches, and the availability of some optional
CPU features.

Figure 7.25 Config1 Register Format

BE 15 Reads 1 for big-endian, 0 for little-endian, as selected by the core input
SI_Endian.

R Externally Set

AT 14:13 Reads 0 for MIPS32. R 0

AR 12:10 Reads 2 to reflect Release 2 of the MIPS32 architecture. Zero is for the
original release.

R 1

MT 9:7 MMU type:

All MIPS Technologies cores are type 1 or 3, as selected by your SoC
builder.

R Preset

VI 3 Reads 0 to indicate L1 I-cache is physically tagged. It would read 1 if the
L1 I-cache were virtual (both indexed and tagged using virtual address).

R 0

K0 2:0 Kseg0 coherency attribute of the page. See Table 7.8 for the field encod-
ing.

R/W 2

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMUSize IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 7.31 Field Descriptions for Config Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

0 MIPS32

1 MIPS64 instruction set but MIPS32 address map

2 MIPS64 instruction set with full address map

0 None

1 MIPS32/64 compliant TLB

2 "BAT" type

3 MIPS-standard fixed mapping

 CP0 Registers of the 74K™ Core

182 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 7.32 Field Descriptions for Config1 Register

Name Bit(s) Description Read/ Write Reset State

M 31 Continuation bit, set to 1 to indicate that Config2 is implemented. R 1

MMUSize 30:25 The size of the TLB array (the array has MMUSize +1 entries). R Preset

IS 24:22 Fields for the L1 I-cache. All caches have the same triplet of fields, which
report:

So if (IS, IL, IA) is (2,4,3), you have 256 sets/way, 32 bytes per line, and 4-
way set associativity, which is a 32Kbyte cache.
74K family cores always have 32-byte cache lines. The L1 caches are 4-way
set associative and are 16KB, 32KB, or 64KB. L1 I-cache of 0KB is supported.

R
R/W when

config.WC is
set

Preset

IL 21:19 R
R/W when

config.WC is
set

4

IA 18:16 R 3

DS 15:13 For L1 D-cache: same encoding as Config1IS,IL,IA.
The cache line size is fixed at 32 bytes when a D-cache is present. This field
reads 0 when a D-cache is not present. L1-D-cache of 0KB, 16KB, 32Kb, and
64KB are supported.

R
R/W when

config.WC is
set

Preset

DL 12:10 R
R/W when

config.WC is
set

Preset

DA 9:7 R 3

C2 6 the absence of a coprocessor 2 (that would be a customer-designed coproces-
sor).

R 0

MD 5 0 to indicate that the MDMX ASE is not implemented in the floating point unit
of the 74K core

R 0

PC 4 There is at least one performance counter implemented, see PerfCnt0-3. R 1

WR 3 Reads 1 because the 74K core always has watchpoint registers, see
WatchLo0-3/WatchHi0-3.

R 1

CA 2 Reads 1 because the MIPS16e compressed-code instruction set is available (as
it is on most MIPS Technologies cores).

R 1

EP 1 Reads 1 because an EJTAG debug unit is always provided on MIPS Technolo-
gies cores.

R 1

FP 0 A floating point unit is attached. R Preset

S Number of sets per way. Calculate as: 64 x 2S

L Line size. Zero means no cache at all, otherwise calculate as:

2 × 2L

A Associativity/number of ways. Calculate as A + 1

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 183

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.24.2 Config2

Figure 7.26 Config2 Register Format

7.2.25 Config3 (CP0 Register 16, Select 3): Configuration register showing ASEs

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture in addition to
those specified in Config2.

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

Table 7.33 Field Descriptions for Config2 Register

Name Bit(s) Description Read/ Write Reset State

M 31 Continuation bit, 1 if Config3 is implemented. R 1

TU 30:28 Reserved for extra control/status bits for an L3 cache, if fitted. R 0

TS 27:24 If Config2TL is non-zero, your CPU has an L3 (tertiary) cache. Its size and
shape are encoded as Config1IS,IL,IA described above. However, no 74K
family core is equipped for an L3 cache.

R 0

TL 23:20 R 0

TA 19:16 R 0

SU 15:13 Reserved for more secondary cache control/status bits, when required. Not
used on the 74K family cores.

R 0

L2B 12 L2_Bypass/L2_Bypassed. In systems which include an L2 cache, writing a
1 to this bit, will set the L2_Bypass output from the core. Setting the
L2_Bypass output, directs the L2 cache to go into bypass mode, L2
responds by assertion its L2_Bypassed output pin. The value of
L2_Bypassed is returned when L2B is read. When this bit is set through a
write operation, a subsequent read of this bit will not indicate a 1, until the
L2 has asserted the signal L2_Bypassed indicating that it has been
bypassed.

R/W 0

SS 11:8 If Config2SL is non-zero, your CPU has an external L2 (secondary) cache.
Its size and shape are encoded as in Config1IS,IL,IA above.

R
R/W when

config.WC is
set

Preset

SL 7:4 R
R/W when

config.WC is
set

Preset

SA 3:0 R
R/W when

config.WC is
set

Preset

 CP0 Registers of the 74K™ Core

184 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.27 Config3 Register Format

7.2.26 Config6 (CP0 Register 16, Select 6)

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture in addition to
those specified in Config2 and Config3.

Figure 7.28 Config6 Register Format

31 30 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 ULRI 0 DSP2P DSPP CTXTC 0 VEIC VInt SP CDMM MT SM TL

Table 7.34 Field Descriptions for Config3 Register

Name Bit(s) Description
Read/
Write Reset State

M 31 Continuation bit, zero because there is no Config4. R 0

ULRI 13 Reads 1 to indicate that the UserLocal Register is implemented R 1

DSP2P 11 Reads 1 to indicate that Revision 2 of the MIPS DSP ASE is implemented R 1

DSPP 10 Reads 1 to indicate that the MIPS DSP ASE extension is implemented. R 1

CTXTC 9 Reads 1 to indicate the ContextConfig register is . The width of the
BadVPN2 field in the Context register depends on the contents of this reg-
ister.

R 1

VEIC 6 Read-only bit from the core input signal SI_EICPresent, which should be
set in the SoC to alert software to the availability of an EIC-compatible
interrupt controller.

R Externally Set

VInt 5 Reads 1 to indicate the CPU can handle vectored interrupts. R 1

SP 4 Reads 0 to indicate the CPU does not support small (1Kbyte) pages. R 0

CDMM 3 Reads 1 to indicate the Common Device Memory Map is implemented. R 1

MT 2 Reads 0 to indicate the CPU does not include the MIPS MT (multithread-
ing) ASE.

R 0

SM 1 Reads 0 to indicate the CPU does not include the instructions of the Smart-
MIPS ASE.

R 0

TL 0 Reads1 to indicate instruction trace is supported. R 0

31 15 14 13 12 10 9 8 7 2 1 0

0 SPCD SYND IFUPerfCtl NMRUP NMRUD 0 JRCP JRCD

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 185

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 7.35 Field Descriptions for Config6 Register

Name Bit(s) Description
Read/
Write Reset State

SPCD 14 Sleep state Performance Counter Disable. When this bit is set, the perfor-
mance counter core clocks are prevented from shutting down.
The primary use of this bit is to keep performance counters alive when the
core is in sleep mode.

R/W 0

SYND 13 Synonym tag update Disable. This bit controls the tag update behavior for
loads with a Virtual Address miss but a Physical Address hit during a D-
cache look-up.

R/W 0

Encoding Meaning

0 Performance counter operation is enabled
in Sleep state.

1 Performance counter operation is disabled
in Sleep state.

Encoding Meaning

0 Synonym load misses will opportunisti-
cally update the tag so that subsequent
loads will hit (virtual address hit) at lookup.

1 Synonym load misses at lookup will not
update the tag with new information.

 CP0 Registers of the 74K™ Core

186 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

IFUPerfCtl 12:10 IFU Performance Control. This field encodes IFU events that provide debug
and performance information for the IFU pipeline.

Lost IDU bandwidth occurs when the IDU is accepting instructions, but
instructions are not being provided by the IFU. The count of these events
can be seen via Performance Counters 0 or 3, and the event number 11. In
order to view the IFU Perf Ctl events, the Performance Counter Control
needs to be programmed accordingly Table 7.49, "Performance Counter
Events and Codes" for general information on event number 11.

R/W 0

NMRUP 9 NMRU Present. Rather than a fully random replacement on TLBWR, a
table of the most recently used JTLB entries is maintained, whose entries
are not replaced whenever possible.

R 1

NMRUD 8 NMRU Disable. Disable bit for NMRU JTLB replacement scheme. R/W 0

Table 7.35 Field Descriptions for Config6 Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

 Encoding Meaning

000 IDU is accepting instructions, but IFU is not
providing any.

001 A control transfer instruction such as a
branch or jump causes lost IDU bandwidth.

010 A stalled instruction such as an unpredicted
jump must wait for an address and thus
causes lost IDU bandwidth.

011 Cache prediction was correct.

100 Cache prediction was incorrect.

101 Cache did not predict due to invalid JR
cache entry, or the instruction tag miscom-
pared with tag in JR cache.

110 Unimplemented.

111 Condition branch was taken.

Encoding Meaning

0 Most Recently Used JTLB replacement
scheme not present.

1 Most Recently Used JTLB replacement
scheme present.

Encoding Meaning

0 TLBWR instruction uses NMRU scheme.

1 TLBWR instruction uses random replace-
ment.

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 187

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.27 Config7 (CP0 Register 16, Select 7): CPU-specific Configuration

This register controls machine-specific features of the 74K core. A few of them are for hardware interface adaptation,
but most are for chip or system test only. They default into a "safe" value, and most software—even bootstrap soft-
ware—can and should ignore these registers.

Figure 7.29 Config7 Register Format

JRCP 1 JR Cache Present. JR cache learns the target address of "Jump Register"
type instructions and subsequently predicts that target address.

R 1

JRCD 0 JR Cache Prediction Disable. Disables JR target address prediction.. R/W 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WII FPFS IHB FPR1 SEHB CP2IO IAGN IALU DGHR SG SUI 0 HCI FPR0 AR 0 PREF IAR IVA ES 0 CP1IO 0 ULB BP RPS BHT SL

Table 7.36 Field Descriptions for Config7 Register

Name Bit(s) Description
Read/
Write Reset State

WII 31 Wait IE Ignore. When this bit is set, an interrupt will unblock a wait
instruction, even if StatusIE is preventing the interrupt from being taken.
If WII reads 0, the 74K core remains in the wait condition forever if
entered with interrupts disabled. If set to 1, it allows OS code to avoid
tricky race conditions.

R 1

FPFS 30 Fast Prepare for Store. When this bit is set, pref 31 will behave as
specified, i.e., the prefetch instruction will only validate the data tag but
not write 0’s into the data cache.
By default, this bit will be 0 and pref 31 will behave like pref 30.
This means that pref 31 will validate the data tag and write 0’s into
the data cache array for the specified line,

R/W 0

Table 7.35 Field Descriptions for Config6 Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Meaning

0 JR cache is not implemented.

1 JR cache is implemented.

Encoding Meaning

0 JR cache target address prediction is
enabled.

1 JR cache target address prediction is not
enabled.

 CP0 Registers of the 74K™ Core

188 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

IHB 29 If IHB=1, the following behavior will be true:
• When the core sees any explicit/implicit mtc0(cache, ll,
mtc0, tlbop, eret, deret, sync-in-debug-mode, di,
ei) followed by any implicit mfc0 (ehb, mfc0, eret,
deret, di, ei), the pipeline will behave as if an ehb is introduced
implicitly prior to executing the mfc0. This ensures all state modifi-
cation by mtc0 is completely seen by mfc0.

• Any jalr r31, jr r31 instruction seen by the core when CP0 is
usable (i.e CU0=1 or Kernel or Debug mode as defined in the PRA)
will automagically treat those instructions as jalr.hb and
jr.hb.

If IHB=0, the following behavior will be true:
• Programmer is responsible for resolving hazards and put ehb or .hb

where appropriate. Prior cores may have used some number of nops
or ssnops to ensure that the effect of a CP0 modifying instruction is
seen by a CP0 read instruction. 74K cannot guarantee such behavior
with a small number of nops/ssnops.

Per Release2, the programmer is expected to put in an explicit ehb or
.hb where needed. If there is reason to believe that the programmer has
not done this, then this bit can be enabled to get correct operation.

R/W 0

SEHB 27 "Slow EHB": experimental mode to accelerate CP0 sequences using
ehb
If this bit is set, ehb will block issue of instructions from the instruction
buffer until all older instructions have graduated and the pipe is empty.
By default, ehb will block issue of instructions from the instruction
buffer only if there are pending explicit CP0-modifying instructions in
the pipe.

R/W 0

CP2IO 26 core
Reserved for future use.

R/W 0

CP1IO 6 By default data sent from the core to a coprocessor block may be sent in
an order reflecting the internal pipeline execution sequence. Set this bit to
arrange that data will be sent only in instruction order to the FPU

R/W 0

IAGN 25 Selective control of out-of-order behavior: issue ALU-side or load/store-
side instructions (respectively) in program order.

R/W 0

IALU 24 R/W 0

DGHR 23 Disables the use of any global history in the branch predictor. R/W 0

SG 22 Set 1 to allow only one instruction to graduate per cycle. This has a nega-
tive impact on performance and should only be used for test purposes.

R/W 0

SUI 21 Strict Uncached Instruction (SUI) policy control.
Run uncached instruction strictly in order and (as far as possible) unpipe-
lined. This will be quite slow (the policy itself will introduce a 15-cycle
bubble between each instruction), but you’ll hardly notice, because run-
ning uncached is already so slow. Only the branch-delay-slot instruction
of a branch is fetched without this bubble.
The advantage is that the CPU will not wander off speculatively fetching
unwanted instructions from a (perhaps slow) boot memory.

R/W 0

Table 7.36 Field Descriptions for Config7 Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 189

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

HCI 18 Hardware Cache Initialization: 1 indicates that a cache does not require
initialization by software. This bit will most likely only be set on simula-
tion-only cache models and not on real hardware.

R Based on Hard-
ware Present

FPR1,
FPR0

28,17 Read-only fields. Indicates frequency of the core relative to FPU.
• 2’b00: core:FPU = 1:1
• 2’b01: core FPU = 2:1
• 2’b10: core:FPU = 3:2
• 2’b11: Reserved

R Based on Hard-
ware Present

AR 16 Read-only field, indicating that the D-cache is configured to avoid cache
aliases.
All the remaining fields are read/write, and control various functions.
Only one of them is likely to find real system use:

R Based on Hard-
ware Present

PREF 12:11 These two bits control the extent of prefetching of Instructions into the
Instruction Cache as indicated.
• 2’b00: Prefetch 0 cache lines on an I-cache miss in addition to fetching

the missing cache line. i.e. Disable I-cache prefetching.
• 2’b01: Prefetch 1 cache line (sequential next line) on an I-cache miss

in addition to fetching the missing cache line.
• 2’b10: Reserved
• 2’b11: Prefetch 2 cache lines (sequential next 2 lines) on an I-cache

miss in addition to fetching the missing cache line.

R/W 01

IAR 10 Instruction Alias Removed.
Indicates that this processor has hardware support to remove instruction
cache aliasing. This hardware is only present when the core is configured
with a TLB and cache size of 32KB and larger. The hardware is disabled
via the IVA bit.

R Based on Hard-
ware Present.

IVA 9 Instruction Virtual Aliasing disabled.
Setting this bit will disable the HW alias removal on the I-cache. If this
bit is cleared, CACHE Hit Invalidate and SYNCI instructions will look
up all possible aliased locations and invalidate the given cache line in all
of them. This bit is Read-only if IAR=0.

R/W or
R

0

ES 8 Externalize sync.
If this bit is set, and if the downstream device is capable of accepting
SYNCs (indicated by the pin SI_SyncTxEn), the sync instruction will
cause a SYNC-specific transaction to go out on the external bus. If this
bit is cleared or if SI_SyncTxEn is deasserted, no transaction will go
out, but all SYNC handling internal to the core will nevertheless be per-
formed.

The sync instruction will be signalled on the core’s OCP interface as an
"ordering barrier" transaction. The transaction is an extension to the OCP
standards, and system controllers which don’t support it will typically
under-decode it as a read from the boot ROM area. But that’s going to be
quite slow, so set this bit only if your system understands the synchroniz-
ing transaction.
When this bit is read, the value returned depends on the state of the
SI_SyncTxEn pin. If SI_SyncTxEn is 0, a value of 0 is returned. If
SI_SyncTxEn is 1, the value returned is the last value that was written to
this bit.

R/W 0

Table 7.36 Field Descriptions for Config7 Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

 CP0 Registers of the 74K™ Core

190 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.28 WatchLo0-3 (CP0 Register 18, Select 0-3): Watchpoint Address and Qualifiers

Used in conjunction with WatchHi0-3 respectively, each of these registers carries the virtual address and what-to-
match fields for a CP0 watchpoint. WatchLo0-1 are used for instruction side accesses and WatchLo2-3 are used for
data side accesses.

Figure 7.30 WatchLo Register Format

7.2.29 WatchHi0-3 (CP0 Register 19, Select 0-3): Watchpoint Control/Status

These registers provide the interface to a debug facility that causes an exception if an instruction or data access
matches the address specified in the registers. Watch exceptions are not taken if the CPU is already in exception
mode (that is if StatusEXL or StatusERL is already set).

Watch events which trigger in exception mode are remembered, and result in a "deferred" exception, taken as soon as
the CPU leaves exception mode.

ULB 4 Set to 1 to make all uncached loads blocking (a program usually only
blocks when it uses the data which is loaded). You should only do this
when nothing else works.

R/W 0

BP 3 When set, no branch prediction is done, and all branches and jump stall
as above.

R/W 0

RPS 2 When set, the return address branch predictor is disabled, so jr $31 is
treated just like any other jump register. Instruction fetch stalls after the
branch delay slot, until the jump instruction reaches the "EC" stage in the
pipeline and can provide the right address.

R/W 0

BHT 1 When set, the branch history table is disabled and all branches are pre-
dicted taken. This bit is don’t care if Config7BP is set.

R/W 0

SL 0 When set, disables non-blocking loads. Normally the 74K core will keep
running after a load instruction, even if it misses in the D-cache, until the
data is used. With this disable bit set, the CPU will stall on any load D-
cache miss.

R/W 0

31 3 2 1 0

VAddr I R W

Table 7.37 Field Descriptions for WatchLo0-3 Register

Name Bit(s) Description
Read/
Write Reset State

VAddr 31:3 The address to match on, with a resolution of a doubleword. R/W Undefined

I 2 Accesses to match: I-fetches, Reads (loads), Writes (stores). WatchLo0-
1R and WatchLo0-1W are fixed to zero, while WatchLo2-3I will be
zero.

R/W 0

R 1 R/W 0

W 0 R/W 0

Table 7.36 Field Descriptions for Config7 Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 191

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

WatchHi0-1 are used for instruction side accesses and WatchHi2-3 are used for data side accesses.

This CP0 watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHi0-3 hold a bundle of control fields.

Figure 7.31 WatchHi Register Format

7.2.30 Debug (CP0 Register 23, Select 0): EJTAG Debug Status/Control
Register

Very little can be accessed outside of debug mode. In non-debug mode, Debug may not be written at all, and only the
DM bit and the EJTAGver field return valid data.

The read-only information bits are updated every time the debug exception is taken, or when a normal exception is
taken when already in debug mode (a "nested exception"). Not all fields are valid in both circumstances: Halt and
Doze are not defined after a nested exception, and the nested-exception-type field DExcCode is undefined from a
debug exception.

31 30 29 24 23 16 15 12 11 3 2 1 0

M G 0 ASID 0 Mask I R W

Table 7.38 Field Descriptions for WatchHi0-3 Register

Name Bit(s) Description
Read/
Write Reset State

M 31 The WatchHi0-3M bit is set whenever there is one more watchpoint
register pair to find; your software should use it (starting with
WatchHi0) to figure out how many watchpoints there are. This field is
set for WatchHi0-2 and cleared on WatchHii3.

R X

G 30 WatchHi0-3ASID matches addresses from a particular address space
(the "ASID" is like that in TLB entries) — except that you can set
WatchHi0-3G ("global") to match the address in any address space.

R/W Undefined

ASID 23:16 R/W Undefined

Mask 11:3 Implements address ranges. Set bits in WatchHi0-3Mask to mark corre-
sponding WatchLo0-3VAddr address bits to be ignored when deciding
whether this is a match.

R/W Undefined

I 2 Read your WatchHi0-3 after a watch exception, and these fields tell
you what type of access (if any) matched.
Write a 1 to any of these bits in order to clear it (and therefore prevent
the exception from immediately happening again). This behaviour is
unusual among CP0 registers, but it is quite convenient: to clear a
watchpoint of all the exception causes you’ve seen, just read the value
of WatchHi0-3 and write it back again. WatchHi0-1R and WatchHi0-
1W should always read 0 and WatchHi2-3I should always read 0

W1C Undefined

R 1 W1C Undefined

W 0 W1C Undefined

 CP0 Registers of the 74K™ Core

192 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.32 Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI ...

19 18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

... DDBSImpr DDBLImpr EJTAGver DExcCode NoSSt SSt 0 DINT DIB DDBS DDBL DBp DSS

Table 7.39 Field Descriptions for Debug Register

Name Bit(s) Description
Read/
Write Reset State

DBD 31 Indicates if the last debug exception or exception in debug mode
occurred in a branch delay slot:

When set to 1, DEPC points to the branch instruction, which is usually
the correct place to restart.

R Undefined

DM 30 Indicates if the processor is operating in debug mode:

In debug mode, this bit is set on any debug exception and is cleared by
deret.

R 0

NoDCR 29 Indicates if the dseg memory segment and a memory-mapped DCR reg-
ister is present:

R 0

LSNM 28 Controls access of load/store between dseg and main memory:

Set this to 1 if you want debug-mode accesses to dseg addresses to be
sent to system memory. This makes most of the EJTAG unit’s control
systems unavailable, so will probably only be done around a particular
load/store.

R/W 0

Encoding Description

0 Not in delay slot

1 In delay slot

Encoding Description

0 Processor is operating in non-debug mode

1 Processor is operating in debug mode

Encoding Description

0 dseg is present

1 No dseg present

Encoding Description

0 Load/stores in dseg address range goes to dseg

1 Load/stores in dseg address range goes to main
memory

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 193

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Doze 27 Indicates that the processor was in any kind of low power mode when a
debug exception occurred:

Before the debug exception, CPU was in some kind of reduced power
mode.

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped when the debug
exception occurred:.

Before the debug exception, the CPU was stopped — probably asleep
following a wait instruction.

R Undefined

CountDM 25 Controls or indicates the Count register behavior in debug mode: R/W 1

IBusEP 24 These "pending exception" flags remember exception events caused by
instructions run in debug mode, but which have not yet occurred because
they are imprecise and DebugIEXI is set. Note that you can write a 1 to
any of these at any time, so they survive writes to the whole Debug reg-
ister; but a write of zero to a field is ignored.
They remain set until DebugIEXI is cleared explicitly, or implicitly by a
deret. If the deret clears the bit, the exception is taken and the
pending bit cleared.
IBusEP remembers a bus error on an instruction fetch. This exception is
precise on the 74K core, so it can’t occur, and the field is always zero.
MCheckP machine check condition (usually an illegal TLB update). As
above, the machine check is always precise on the 74K core, so this is
always zero.
CacheEP remembers a cache parity error.
DBusEP remembers a bus error on a data access.

R/W 0

MCheckP 23 R/W 0

CacheEP 22 R/W 0

DBusEP 21 R/W 0

IEXI 20 Set to 1 to defer imprecise exceptions. By default, this bit is set on entry
to debug mode and cleared on exit. The deferred exception will return
when and if this bit is cleared, and until then you can observe the occur-
rence of the imprecise exception in a “pending exception” flag
(DebugIBusEP,MCheckP,CacheEP,DBusEP).

R/W 0

DDBSImpr 19 Imprecise store breakpoint. DEPC probably points to an instruction
some time later in the sequence than the store which triggered the break-
point. The debugger or user (or both) have to cope as best they can.

R 0

Table 7.39 Field Descriptions for Debug Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Description

0 Processor not in low power mode when debug
exception occurred

1 Processor in low power mode when debug excep-
tion occurred

Encoding Description

0 Internal system bus clock running

1 Internal system bus clock stopped

Encoding Description

0 Count register stopped in debug mode

1 Count register is running in debug mode

 CP0 Registers of the 74K™ Core

194 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

DDBLImpr 18 Imprecise load breakpoint. See description above of imprecise store
breakpoint.

R 0

EJTAGver 17:15 These read-only bits encode the revision of the EJTAG specification to
which this implementation conforms. On the 74K core, the value is 3 for
version 3.1. The legal values are:

R 3

DExcCode 14:10 Indicates the cause of the latest exception in debug mode. Following ini-
tial entry to debug mode, this field is undefined. The subsequent value
will be one of those defined in CauseExcCode.

R Undefined

NoSSt 9 Indicates whether the single-step feature controllable by the SSt bit is
available in this implementation. This read-only bit is always zero on
MIPS Technologies’ cores because single-step is implemented.

R 0

SSt 8 Controls if debug single step exception is enabled. R/W 0

R 7..6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception (from EJTAG pin) occurred.
Cleared on exception in debug mode.

R Undefined

DIB 4 Instruction breakpoint. R Undefined

DDBS 3 Indicates that a debug data break exception occurred on a store. Cleared
on exception in debug mode.

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on a load. Cleared
on exception in debug mode.

R Undefined

Table 7.39 Field Descriptions for Debug Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

0 Version 2.0 and earlier

1 Version 2.5

2 Version 2.6

3 Version 3.1

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug data exception on a store

1 Debug instruction exception on a store

Encoding Description

0 No debug data exception on a load

1 Debug instruction exception on a load

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 195

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.31 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

Figure 7.33 TraceControl Register Format

DBp 1 Indicates that a debug software breakpoint exception occurred. Cleared
on exception in debug mode.

R Undefined

DSS 0 Indicates that a debug single-step exception occurred. Cleared on excep-
tion in debug mode.

R Undefined

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 Ineff TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

Table 7.40 TraceControl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hardware and the
software trace control bits. A value of zero selects the external hard-
ware trace block signals, and a value of one selects the trace control
bits in the TraceControl register.

R/W 0

UT 30 This bit is deprecated since there are now two explicit trace regis-
ters, UserTraceData1 and UserTraceData2. Previously this bit
indicated the type of user-triggered trace record. A value of zero
implies a user type 1, and a value of one implies a user type 2.

0 Undefined

R 29 Reserved for future use; Must be written as zero; returns zero on
read.

0 0

Ineff 28 When set to 1, core-specific inefficiency tracing is enabled, and
core-specific trace information is included in the trace stream. The
inefficiency code replaces an “NI” and is interpreted in the trace
stream with an expanded InsComp (Instruction Completion Indica-
tor). The InsComp is expanded from 3b to 4b for all trace formats.

R/W 0

Table 7.39 Field Descriptions for Debug Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

Encoding Description

0 No debug software breakpoint exception

1 Debug software breakpoint exception

Encoding Description

0 No debug single-step exception

1 Debug single-step exception

 CP0 Registers of the 74K™ Core

196 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

TB 27 Trace All Branch. When set to 1, this tells the processor to trace the
PC value for all branches taken, not just the ones whose branch tar-
get address is statically unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the core trace
logic that slow but complete tracing is desired. Hence, the core trac-
ing logic must not allow a FIFO overflow and discard trace data.
This is achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are ever lost.

R/W Undefined

D 25 When set to one, this enables tracing in Debug Mode. For trace to be
enabled in Debug mode, the On bit must also be one, and either the
G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in Debug Mode, regardless of the
setting other bits.

R/W Undefined

E 24 When set to one, enables tracing in Exception Mode. For trace to be
enabled in Exception mode, the On bit must be one, and either the G
bit must be one, or the current process ASID must match the ASID
field in this register.
When set to zero, trace is disabled in Exception Mode, regardless of
the setting of other bits.

R/W Undefined

K 23 When set to one, enables tracing in Kernel Mode. For trace to be
enabled in Kernel mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in Kernel Mode, regardless of the
setting other bits.

R/W Undefined

S 22 When set to one, this enables tracing in Supervisor Mode.For trace
to be enabled in Supervisor mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in Supervisor Mode, regardless of
other bits.
If the processor does not implement Supervisor Mode, this bit is
ignored on write and returns zero on read.

R/W Undefined

U 21 When set to one, enables tracing in User Mode. For trace to be
enabled in User mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in User Mode, regardless of the
setting of other bits.

R/W Undefined

ASID_M 20:13 This is a mask value applied to the ASID comparison (done when
the G bit is zero). A “1” in any bit in this field inhibits the corre-
sponding ASID bit from participating in the match. As such, a value
of zero in this field compares all bits of ASID. Note that the ability
to mask the ASID value is not available in the hardware signal bit; it
is only available via the software control register.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on writes and returns zero on reads.

R/W Undefined

Table 7.40 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 197

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.32 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 11.10 “Trace Control Block (TCB) Registers (Hardware
Control)”). As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these
values.

This register is only implemented if the MIPS Trace capability is present.

Figure 7.34 TraceControl2 Register Format

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is
one, this field is ignored.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on writes and returns zero on reads.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes,
provided that other enabling functions (like U, S, etc.,) are also true.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on writes and returns 1 on reads. This causes all
match equations to work correctly in the absence of an ASID.

R/W Undefined

TFCR 3 When set, indicates to the PDtrace interface that the optional Fcr bit
must be traced in the appropriate trace formats. If PC tracing is dis-
abled, the full PC of the function call (or return) instruction must
also be traced. Note that function call/return information is only
traced if tracing is actually enabled for the current mode.

R/W Undefined

TLSM 2 When set, this indicates to the PDtrace interface that information
about data cache misses should be traced. If PC, load/store address,
and data tracing are disabled (see the TraceControl2Mode field), the
full PC and load/store address are traced for data cache misses. If
load/store data tracing is enabled, the LSm bit must be traced in the
appropriate trace format. Note that data cache miss information is
only traced if tracing is actually enabled for the current mode.

R/W Undefined

TIM 1 When set, this indicates to the PDtrace interface that the optional Im
bit must be traced in the appropriate trace formats. If PC tracing is
disabled, the full PC of the instruction that missed in the I-cache
must be traced. Note that instruction cache miss information is only
traced if tracing is actually enabled in the current mode.

R/W Undefined

On 0 This is the master trace enable switch in software control. When
zero, tracing is always disabled. When set to one, tracing is enabled
whenever the other enabling functions are also true.

R/W 0

31 30 29 28 21 20 19 12 11 7 6 5 4 3 2 1 0

SyPExt CPUIdV CPUId TCV TCNum Mode ValidModes TBI TBU SyP

Table 7.40 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 74K™ Core

198 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 7.41 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SyPExt 31:30 Extension to the SyP (sync period) field for implementations that
need higher numbers of cycles between synchronization events.
The value of SyP is extended by assuming that these two bits are
juxtaposed to the left of the three bits of SyP (SypExtSyP). When
only SyP was used to specify the synchronization period, the value
was 2x, where x was computed from SyP by adding 5 to the actual
value represented by the bits. A similar formula is applied to the 5
bits just obtained by the juxtaposition of SyPExt and SyP. Sync

period values greater than 231 are UNPREDICTABLE. That is all
values greater than 11010 (26+5=31) are UNPREDICTABLE. With

SyPExt bits, a sync period range of 25 to 231 cycles can be obtained.

R/W 0

CPUIdV 29 When set, this bit specifies the VPE defined in CPUId must be
traced. Otherwise, instructions from all VPEs are traced when other
conditions for tracing are valid. This bit is ignored if TCV is
asserted.

R/W 0

CPUId 28:21 This field specifies the number of the VPE to trace when CPUIdV is
set.

R/W 0

TCV 20 When set, the TCNum field specifies the number of the TC that
must be traced. Otherwise, instructions from all TCs are traced when
other conditions for tracing are valid.

R/W 0

TCNum 19:12 Specifies the TC to trace when TCV is set. The right-most bits only
are used.

R/W 0

Mode 11:7 When tracing is turned on, this signal specifies what information is
to be traced by the core. It uses 5 bits, where each bit turns on trac-
ing of a specific tracing mode when that bit value is a 1. If the corre-
sponding bit is 0, then the Trace Value shown in column two is not
traced by the processor. The table shows what trace value is turned
on:

R/W Undefined

ValidModes 6:5 This field specifies the subset of tracing that is supported by the pro-
cessor.

R Preset

Bit Trace the Following

7 PC

8 Load address

9 Store address

10 Load data

11 Store data

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and store data

11 Reserved

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 199

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.33 User Trace Data1 Register (CP0 Register 23, Select 3) and User Trace Data2
Register (CP0 Register 24, Select 3)

A software write to any bits in the UserTraceData1 register or UserTraceData2 register will trigger a trace record to
be written with a type indicator TU1 or TU2 respectively.

These register are only implemented if the MIPS Trace capability is present.

TBI 4 This bit indicates how many trace buffers are implemented by the
TCB, as follows:

R Undefined

TBU 3 This bit denotes to which trace buffer the trace is currently being
written and is used to select the appropriate interpretation of the
TraceControl2SyP field.

This bit is loaded from TCBCONTROLBOfC.

R Undefined

SyP 2:0 The period (in cycles) to which the internal synchronization counter
is reset when tracing is started, or when the synchronization counter
has overflowed.

This field is loaded from TCBCONTROLASyP.

R Undefined

Table 7.41 TraceControl2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Only one trace buffer is implemented, and the TBU
bit of this register indicates which trace buffer is
implemented

1 Both on-chip and off-chip trace buffers are imple-
mented by the TCB and the TBU bit of this register
indicates to which trace buffer the traces is cur-
rently written.

Encoding Meaning

0 Trace data is being sent to an on-chip trace buffer

1 Trace Data is being sent to an off-chip trace buffer

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212

 CP0 Registers of the 74K™ Core

200 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.35 User Trace Data1 / User Trace Data2 Register Format

7.2.34 TraceIBPC Register (CP0 Register 23, Select 4)

The TraceIBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception
breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 7.36 TraceIBPC Register Format

31 0

Data

Table 7.42 UserTraceData1 / UserTraceData2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user
format trace record out of the PDtrace interface that transmits the
Data field to trace memory.

R/W 0

31 30 29 28 27 12 11 9 8 6 5 3 2 0

0 PCT IE 0 IBPC3 IBPC2 IBPC1 IBPC0

Table 7.43 TraceIBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30,
27:12

Reserved for future implementations. R 0

PCT 29 Used to specify whether a performance counter trigger signal is gen-
erated when an EJTAG instruction breakpoint match occurs:

R/W 0

IE 28 Used to specify whether or not the trigger signal from EJTAG
instruction breakpoint should trigger tracing functions:

R/W 0

Encoding Meaning

0 Disables performance counter trigger signal from
instruction breakpoints

1 Enables performance trigger signals from instruc-
tion breakpoints

Encoding Meaning

0 Disables trigger signals from instruction break-
points

1 Enables trigger signals from instruction break-
points

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 201

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.35 TraceDBPC Register (CP0 Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 7.37 TraceDBPC Register Format

IBPCn 3n+2:3n The three bits are decoded to enable different tracing modes. Table
7.45 shows the possible interpretations. Each set of 3 bits represents
the encoding for the instruction breakpoint n in the EJTAG imple-
mentation, if it exists. If the breakpoint does not exist, then the bits
are reserved, read as zero, and writes are ignored.

R/W 0

31 30 29 28 27 6 5 3 2 0

0 PCT DE 0 DBPC1 DBPC0

Table 7.44 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30,
27:6

Reserved for future implementations. R 0/1

PCT 29 Used to specify whether a performance counter trigger signal is gen-
erated when an EJTAG data breakpoint match occurs:

R/W 0

DE 28 Used to specify whether the trigger signal from EJTAG data break-
point should trigger tracing functions:

R/W 0

DBPCn 3n+2:3n The three bits are decoded to enable different tracing modes. Table
7.45 shows the possible interpretations. Each set of 3 bits represents
the encoding for the data breakpoint n in the EJTAG implementa-
tion, if it exists. If the breakpoint does not exist then the bits are
reserved, read as zero and writes are ignored.

R/W 0

Table 7.43 TraceIBPC Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Disables performance counter trigger signal from
data breakpoints

1 Enables performance trigger signals from data
breakpoints

Encoding Meaning

0 Disables trigger signals from data breakpoints

1 Enables trigger signals from data breakpoints

 CP0 Registers of the 74K™ Core

202 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.36 DEPC (CP0 Register 24, Select 0): Restart Address from Last EJTAG Debug
Exception

Points to the instruction to restart when you run an deret to leave debug mode. When DebugDBD is set, it means that
the "real" return address is in a branch delay slot, and DEPC points to the preceding branch.

Figure 7.38 DEPC Register Format

Table 7.45 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is
already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is
already turned on, then there is no effect.

010 None Reserved for future implementations.

100 Identical to trigger condition
000, and in addition, dump the
full performance counter values
into the trace stream

If tracing is currently on, dump the full values of all the implemented
performance counters into the trace stream, and turn tracing off. If trac-
ing is already off, then there is no effect.

101 Identical to trigger condition
001, and in addition, also dump
the full performance counter val-
ues into the trace stream

Unconditionally start tracing if tracing was turned off. If tracing is
already turned on, then there is no effect. In both cases, dump the full
values of all the implemented performance counters into the trace
stream.

110 Not used Reserved for future implementations.

31 0

DEPC

Table 7.46 DEPC Register Formats

Field

Description
Read /
Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of the
instruction that caused the debug exception. If the instruction is in
the branch delay slot, then the virtual address of the immediately
preceding branch or jump instruction is placed in this register.
Execution of the DERET instruction causes a jump to the address
in the DEPC.

R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 203

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.37 Trace Control3 Register (CP0 Register 24, Select 2)

The TraceControl3 register provides additional control and status information. Note that some fields in the
TraceControl3 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 11.10 “Trace Control Block (TCB) Registers (Hardware
Control)”). As such, these fields in the TraceControl3 register will not have valid values until the TCB asserts these
values.

This register is only implemented if the MIPS Trace capability is present.

Figure 7.39 TraceControl3 Register Format
31 14 13 12 11 10 9 8 7 2 1 0

0 PeCOvf PeCFCR PeCBP PeCSync PeCE PeC 0 TRPAD FDT

Table 7.47 TraceControl3 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:14 Reserved for future implementations. R 0

PeCOvf 13 Trace performance counters when one of the performance counters
overflows its count value. Enabled when set to 1.

R/W 0

PeCFCR 12 Trace performance counters on function call/return or on an excep-
tion handler entry. Enabled when set to 1.

R/W 0

PeCBP 11 Trace performance counters on hardware breakpoint match trigger.
Enabled when set to 1.

R/W 0

PeCSync 10 Trace performance counters on synchronization counter expiration.
Enabled when set to 1.

R/W 0

PeCE 9 Performance counter tracing enable. When set to 0, the tracing out of
performance counter values as specified is disabled. To enable, this
bit must be set to 1. This bit is used under software control. When
trace is controlled by an external probe, this enabling is done via
TraceControl3PeCE.

R/W 0

PeC 8 Specifies whether or not Performance Control Tracing is imple-
mented. This is an optional feature that may be omitted by imple-
mentation choice. Implemented when set to 1.

R/W 0

TrIDLE 2 Trace Unit Idle. This bit indicates if the trace hardware is currently
idle (not processing any data). This can be useful when switching
control of trace from hardware to software and vice versa. The bit is
read-only and updated by the trace hardware.

R/W 0

TRPAD 1 Trace RAM Access Disable. Disables program software access to
the on-chip trace RAM using load/store instructions. This bit is
loaded from TCBCONTROLBTRPAD.

R/W 0

FDT 0 Filtered Data Trace Mode Enable. When the bit is 0, this mode is
disabled. When set to 1, this mode is enabled.

R/W 0

 CP0 Registers of the 74K™ Core

204 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.38 PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6): Performance Counter Control

Cores in the 74K family provide four performance counters that provide the capability to count events or cycles for
use in performance analysis. Each performance counter consists of a pair of registers: a 32-bit control register
(PerfCtl) and a 32-bit counter register (PerfCnt) .

Performance counters can be configured to count implementation-dependent events or cycles under a specified set of
conditions that are determined by the performance counter’s control register. The counter register increments once
for each enabled event; when the most-significant bit of the counter register is a one (the counter overflows), and the
counter is enabled, the performance counter optionally requests an interrupt.

The IE flag in the performance counter control register is used to enable an interrupt to be signalled when bit 31 of the
corresponding counter overflows. The OR of all the performance counter register interrupts becomes the core output
SI_PCI, which is typically fed back into an interrupt input, conventionally identified by IntCtlIPPCI. However, systems
using more sophisticated interrupt controllers may feed the performance counter interrupt into the interrupt controller
(refer to Section 6.3.1.3, "External Interrupt Controller Mode").

Figure 7.40 PerfCtl0-3 Register Format
31 30 16 15 14 12 11 5 4 3 2 1 0

M 0 PCTD 0 Event IE U S K EXL

Table 7.48 Field Descriptions for PerfCtl0-3 Register

Name Bit(s) Description
Read/
Write Reset State

M 31 Set to 1 if there is another PerfCtl register after this one. This field is set
for PerfCtl0-2 and cleared on PerfCtl3.

R X

PCTD 15 Performance Counter Trace Disable. Setting this bit will prevent the trac-
ing of data from this performance counter when performance counter
trace mode in PDTrace is enabled.

R/W Undefined

Event 11:5 Determines which event to count. Available events are listed in Table
7.49, "Performance Counter Events and Codes".

R/W Undefined

IE 4 Set to cause an interrupt when the counter overflows into bit 31. This can
either be used to implement an extended count or (by presetting the
counter appropriately) to notify software after a certain number of events
have occurred.

R/W 0

U 3 Count events in User mode, Supervisor mode, Kernel mode, and Excep-
tion mode (i.e., when StatusEXL is set) respectively. Set multiple bits to
count in all cases.

R/W Undefined

S 2 R/W Undefined

K 1 R/W Undefined

EXL 0 R/W Undefined

Table 7.49 Performance Counter Events and Codes

Event
No Counter0/2 Counter1/3

0 Cycles

1 Instructions graduated

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 205

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2 jr $31 (return) instructions whose target is pre-
dicted

jr $31 (return) predicted but guessed wrong

3 Cycles where no instruction is fetched because it has
no “next address” candidate. This includes stalls due
to register indirect jumps such as jr, stalls follow-
ing a wait or eret and stalls dues to excep-
tions from instruction fetch

jr $31 (return) instructions fetched and not pre-
dicted using RPS

4 ITLB accesses. ITLB misses, which result in a JTLB access.

5 Reserved JTLB instruction access misses (will lead to an
exception)

6 Instruction Cache accesses. 74K cores have a 128-bit
connection to the I-cache and fetch 4 instructions
every access. This counts every such access, includ-
ing accesses for instructions which are eventually
discarded. For example, following a branch which is
incorrectly predicted, the 74K core will continue to
fetch instructions, which will eventually get thrown
away.

Instruction cache misses. Includes misses resulting
from fetch-ahead and speculation.

7 Cycles where no instruction is fetched because we
missed in the I-cache.

Reserved

8 Cycles where no instruction is fetched because we
are waiting for an I-fetch from uncached memory.

PDTrace back stalls

9 Number of times the instruction fetch pipeline is
flushed and replayed because the IFU buffers are full
and unable to accept any instructions.

Valid fetch slots killed due to taken branches/jumps
or stalling instructions

10 Reserved Reserved

11 Table 7.35, "Field Descriptions for Config6
Register"

12 • Reserved

13 Cycles where no instructions are brought into the
IDU because the ALU instruction candidate pool is
full.

Cycles where no instructions are brought into the
IDU because the AGEN instruction candidate pool is
full.

14 Cycles where no instructions can be added to the
issue pool because we have run out of ALU comple-
tion buffers (CB’s).

Cycles where no instructions can be added to the
issue pool because we have run out of AGEN com-
pletion buffers (CB’s).

15 Cycles where no instructions can be added to the
issue pool, because we have used all the FIFO entries
in the CLDQ, which keep track of data coming back
from the FPU.

Cycles where no instructions can be added to the
issue pool, because we have filled the “in order”
FIFO used for coprocessor 1 instructions (IOIQ).

Table 7.49 Performance Counter Events and Codes (Continued)

Event
No Counter0/2 Counter1/3

 CP0 Registers of the 74K™ Core

206 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

16 Cycles with no ALU-pipe issue: no instructions
available.

Cycles with no AGEN-pipe issue: no instructions
available.

17 Cycles with no ALU-pipe issue: we have instruc-
tions, but operands not ready.

Cycles with no AGEN-pipe issue: we have instruc-
tions, but operands not ready.

18 Cycles with no ALU-pipe issue: we have instruc-
tions, but some resource is unavailable. This
includes:
• Operands are not ready (same as event 17)
• div in progress inhibits MDU instructions
• CorExtend resource limitation.

Cycles with no AGEN-pipe issue: we have instruc-
tions, but some resource is unavailable. This
includes:
• Operands not ready (same as event 17)
• Non-issued stores blocking ready to issue loadsis-

sued cacheops blocking ready to issue loads

19 ALU-pipe bubble issued. This resulting empty pipe
stage guarantees that some resource will be unused
for a cycle, sometime soon. Used, for example, to
guarantee an opportunity to write mfc1 data into a
CB.
•

AGEN-pipe bubble issued. This resulting empty pipe
stage guarantees that some resource will be unused
for a cycle, sometime soon. Used, for example, to
allow access to the data cache for refill or eviction.

•

20 Cycles when only one instruction is issued. Cycles when two instructions are issued (one ALU,
one AGEN).

21 Cycles when instructions are issued out of order into
the ALU pipe. i.e. instruction issued is not the oldest
in the pool.

Cycles when instructions are issued out of order into
the AGEN pipe. i.e. instruction issued is not the old-
est in the pool.

22 Graduated JAR/JALR.HB D-cache line refill (not LD/ST misses)

23 Cacheable loads - Counts all accesses to the D-cache
caused by load instructions. This count includes
instructions that do not graduate.

All D-cache accesses (loads, stores, prefetch,
cacheop etc.). This count includes instructions that
do not graduate.

24 D-cache writebacks D-cache misses. This count is per instruction at grad-
uation and includes load, store, prefetch, synci
and address based cacheops.

25 JTLB d-side (data side as opposed to instruction
side) accesses

JTLB translation fails on d-side (data side as
opposed to instruction side) accesses. This count
includes instructions that do not graduate.

26 Load/store instruction redirects, which happen when
the load/store follows too closely on a possibly
matching cacheop.

The 74K core’s D-cache has an auxiliary virtual tag,
used to pick the right line early. When (occasionally)
the physical tag match and virtual tag match do not
line up, it is treated as a cache miss - in processing
the “miss” the virtual tag is corrected for future
accesses. This event counts those bogus misses.

27 •

28 L2 cache writebacks L2 cache accesses

29 L2 cache misses L2 cache miss cycles

30 Cycles Fill Store Buffer(FSB) are full and cause a
pipe stall

Cycles Fill Store Buffer(FSB) > 1/2 full

31 Cycles Load Data Queue (LDQ) are full and cause a
pipe stall

Cycles Load Data Queue(LDQ) > 1/2 full

Table 7.49 Performance Counter Events and Codes (Continued)

Event
No Counter0/2 Counter1/3

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 207

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

32 Cycles Writeback Buffer(WBB) are full and cause a
pipe stall

Cycles Writeback Buffer(WBB) > 1/2 full

33 Reserved Reserved

34 Reserved Reserved

35 Replays following optimistic issue of instruction
dependent on load which missed. Counted only when
the dependent instruction graduates.

Floating Point Load instructions graduated.

36 jr (not $31) instructions graduated. jr $31 mispredicted at graduation

37 Integer Branch instructions graduated Floating Point Branch instructions graduated

38 Branch likely instructions graduated Mispredicted Branch likely instructions graduated

39 Conditional branches graduated Mispredicted Conditional branches graduated

40 Integer instructions graduated (includes nop,
ssnop, ehb as well as all arithmetic, logic,
shift and extract type operations).

Floating Point instructions graduated (but not count-
ing Floating Point load/store)

41 Loads graduated (includes Floating Point) Stores graduated (includes Floating Point). Of sc
instructions, only successful ones are counted.

42 j/jal graduated MIPS16e instructions graduated

43 no-ops graduated - included (sll, nop,
ssnop, ehb).

integer multiply/divides graduated

44 DSP instructions graduated ALU-DSP instructions graduated, result was satu-
rated

45 DSP branch instructions graduated MDU-DSP instructions graduated, result was satu-
rated.

46 Uncached loads graduated. Uncached stores graduated.

47 Reserved Reserved

48 Reserved Reserved

49 EJTAG instruction triggers EJTAG data triggers

50 CP1 branches mispredicted. Reserved

51 sc instructions graduated. sc instructions failed.

52 prefetch instructions graduatedat the top of
LSGB.

prefetch instructions which did nothing,
because they hit in the cache.

53 Cycles where no instructions graduated Load misses graduated. Includes Floating Point
Loads.

54 Cycles where one instruction graduated Cycles where two instructions graduated

55 GFifo blocked cycles Floating point stores graduated

Table 7.49 Performance Counter Events and Codes (Continued)

Event
No Counter0/2 Counter1/3

 CP0 Registers of the 74K™ Core

208 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

56 GFifo blocked due to TLB or Cacheop Number of cycles no instructions graduated from the
time the pipe was flushed because of a replay until
the first new instruction graduates. This is an indica-
tor graduation bandwidth loss due to replay. Often
times this replay is a result of event 25 and therefore
an indicator of bandwidth lost due to cache miss.

57 Slot 0 mispredicted branch instruction graduation
cycles without the delayslo

Cycles waiting for delayslot to graduate on a mispre-
dicted branch

58 Exceptions taken Replays initiated from graduation

59 Implementation-specific CorExtend event. The inte-
grator of this core may connect the core pin
UDI_perfcnt_event to an event to be counted. This
is intended for use with the CorExtend interface.

Reserved

60 Reserved Reserved

61 Reserved Reserved

62 Implementation-specific DSPRAM event. The inte-
grator of this core may connect the pin
SP_prf_c13_e62_xx to the event to be counted

63 L2 single-bit errors detected Reserved

64 SI_Event[0] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[0] to an event to be counted

SI_Event[1] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[1] to an event to be counted

65 SI_Event[2] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[2] to an event to be counted

SI_Event[3] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[3] to an event to be counted

66 SI_Event[4] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[4] to an event to be counted

SI_Event[5] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[5] to an event to be counted

67 SI_Event[6] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[6] to an event to be counted

SI_Event[7] - Implementation-specific system event.
The integrator of this core may connect the core pin
SI_PCEvent[7] to an event to be counted

68 All OCP requests accepted All OCP cacheable requests accepted

69 OCP read requests accepted OCP cacheable read requests accepted

70 OCP write requests accepted OCP cacheable write requests accepted

71 Reserved OCP write data sent

72 Reserved OCP read data received

73 Reserved Reserved

74 Cycles Fill Store Buffer(FSB) < 1/4 full Cycles Fill Store Buffer(FSB) 1/4 to 1/2 full

75 Cycles Load Data Queue (LDQ) < 1/4 full Cycles Load Data Queue (LDQ) 1/4 to 1/2 full

76 Cycles Writeback Buffer(WBB) < 1/4 full Cycles Writeback Buffer(WBB) 1/4 to 1/2 full

77-127 Reserved Reserved

Table 7.49 Performance Counter Events and Codes (Continued)

Event
No Counter0/2 Counter1/3

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 209

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.39 PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7): Performance Counters

General purpose event counters, which operate as directed by PerfCtl0-3.

Figure 7.41 Performance Counter Count Register

7.2.40 ErrCtl (CP0 Register 26, Select 0): Software Parity Control and Test Modes for
Cache RAM Arrays

Most of the fields of this register are for test software only. The MIPS32 Architecture defines this register as imple-
mentation-dependent, but most CPUs put the parity-enable control in the top bit. So running OS software is well
advised to set this register to 0x8000.0000 to enable cache parity checking, or to zero to disable parity checking.

31 0

Counter

Table 7.50 Performance Counter Count Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined

31 0

Counter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 4 3 0

PE PO WST SPR PCO ITC LBE WABE L2P, L2EccEnable PCD DYT SE FE 0 PI PD

Table 7.51 Field Descriptions for ErrCtl Register

Name Bit(s) Description
Read/
Write Reset State

PE 31 1 to enable cache parity checking. Hard-wired to zero if parity isn’t
implemented.

R/W 0

PO 30 Parity Overwrite. Set 1 to set the parity bit regardless of parity computa-
tion, which is only for diagnostic/test purposes.
After setting this bit you can use cache IndexStoreTag to set
the cache data parity to the value currently in PI (for I-cache) or PD (for
D-cache), while the tag parity is forcefully set from ITagLoP/DTagLoP.

R/W 0

WST 29 Write to 1 for test mode for cache IndexLoadTag/
cache IndexStoreTag instructions, which then read/write the
cache’s internal way-selection RAM instead of the cache tags.

R/W 0

SPR 28 Scratchpad RAM. When set, index-type cache instructions work on the
scratchpad/DSPRAM/ISPRAM, if fitted.

R/W 0

PCO 27 Precode override. Used for diagnostic/test of the I-cache. When this bit is
set, then the precode values in the ITagHi register are used instead of the
hardware generated precode values. This applies to index store data
cacheop operation.

R/W 0

ITC 26 Reserved R/W Undefined

 CP0 Registers of the 74K™ Core

210 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.41 CacheErr (CP0 Register 27, Select 0): Cache Parity Exception Status

Read-only register used to analyze the details of a parity error.

Figure 7.42 CacheErr Register Format

LBE 25 Indicates whether a bus error (the last one, if there’s been more than one)
was triggered by a load or a write-allocate respectively. A write-allocate
is where a cacheable write has missed in the cache, and the cache has
read the line from memory.
Where both a load and write-allocate are waiting on the same cache-line
refill, both could be set. These bits are "sticky", remaining set until
explicitly written zero.

R/W0 Undefined

WABE 24 R/W0 Undefined

L2P,L2Ecc
Enable

23 L2 Present, L2EccEnable: Indicates whether ECC is enabled on the
L2Cache if present.
• 0: L2Presetnt & L2EccEnable = 0
• 1: L2Present & L2EccEnable = 1

R/W 0

DYT 21 Set 1 to arrange that cache load/store data operations work on the
"dirty array" — the slice of cache memory which holds the "dirty"/
"stored-into" bits.

R/W 0

PCD 22 Precode Disable. When set, cache IndexStoreTag instructions
do not update the corresponding precode field and precode parity in the
instruction cache tag array.

R/W 0

SE 20 Indicates that a second cache error was detected before the first error was
processed. This is an unrecoverable error. This bit is set when a cache
error is detected while the FE bit is set. This bit is cleared on reset or
when a cache error is detected with FE cleared.

R 0

FE 19 Indicates that this is the first cache error and therefore potentially recov-
erable. Error handling software should clear this bit when the error has
been processed. This bit is cleared on reset. Refer to SE bit description
for implications of this bit. Note that software can only write a 0 to this
bit. A write value of 1 will not have any effect.

R/W 0

PI 11:4 Parity bits being read/written to caches (I- and D-cache respectively),
when PO is set.

R/W

PD 3:0 R/W

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 0

ER EC ED ET ES EE EB EF SP EW Way DR Index

Table 7.52 Field Descriptions for CacheErr Register

Name Bit(s) Description
Read/
Write Reset State

ER 31 This bit reads 1 if the error was on a L1 data cache access and reads 0
otherwise. For errors caused by L1 I-fetch or L2 or higher level cache
accesses, this bit will read 0.

R Undefined

EC 30 Reads 0 if L1 cache errors and 1 for higher-level caches. R Undefined

Table 7.51 Field Descriptions for ErrCtl Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 211

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

ED 29 Set for errors in data field and tag field respectively. R Undefined

ET 28 R Undefined

ES 27 Error source. Not Supported. R Undefined

EE 26 Error external: Not supported. R Undefined

EB/EM 25 • If EC equals 0 indicating an error in the L1 cache, this bit is EB, indi-
cating Error in Both caches. If data and instruction-fetch error are
reported on the same instruction, it is unrecoverable. If so, the rest of
the register reports on the instruction-fetch error.

• If EC equals 1 indicating an error in the L2 or higher cache, this bit is
EM, indicating Error in Multiple locations.

R Undefined

EF 24 Unrecoverable (fatal) error (other than the EB type above). Some parity
errors can be fixed by invalidating the cache line and relying on good
data from memory. But if this bit is set, all is lost... It’s one of the follow-
ing:
7.52.1 Dirty parity error in dirty victim
7.52.1 Line being displaced from cache ("victim") has a tag parity error,

so we don’t know whether to write it back, or whether the writeback
location (which needs a correct tag) would be correct.

7.52.2 The victim’s tag indicates it has been written by the CPU since it
was obtained from memory (the line is "dirty" and needs a write-back),
but it has a data parity error.

7.52.3 Writeback store miss and CacheErrEW error.
7.52.4 At least one more cache error happened concurrently with or after

this one, but before we reached the relative safety of the cache error
exception handler.

7.52.5 If EC equals 0, and a second L2 error occurs when an earlier L2
error is pending.

R Undefined

SP 23 Error affecting a scratchpad RAM access. R Undefined

EW 22 Parity error on way-selection RAM array. R Undefined

Way 21:19 • If EC equals 0, bit 19 is unused. Bits 21:20 indicate the way-number of
the cache entry where the error occurred. It is not valid if a Scratchpad
RAM error is detected (SP=1).

• If EC equals 1, indicating an L2 or higher-level cache error, bits 21:19
indicate the way-number of the cache entry where the error occurred.

R Undefined

DR 18 A 1 bit indicates that the reported error affected the cache-line "dirty"
bits. This bit is only meaningful in case of an L1 data cache access.

R Undefined

Index 16:0 The cache index or Scratchpad RAM index of the double word entry
where the error occurred. The way of the faulty cache is written by hard-
ware in the Way field. The CacheErr bits [16:0] represents the Address
index bits [19:3].
The index-type cache instruction will need an "index" with the way
bits glued on top of this cache-entry field; you know how to put that
together, because the shape of the cache is defined in the Config1-2 reg-
isters.

R Undefined

Table 7.52 Field Descriptions for CacheErr Register (Continued)

Name Bit(s) Description
Read/
Write Reset State

 CP0 Registers of the 74K™ Core

212 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.42 ITagLo (CP0 Register 28, Select 0): Read/write Interface for Load/Store Tag
Cacheops

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

The interpretation of this register changes depending on the setting s of ErrCtlWST and ErrCtlSPR.

• Default cache interface mode (ErrCtlWST = 0, ErrCtlSPR = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlSPR = 0)

• For scratchpad memory setup (ErrCtlWST = 0, ErrCtlSPR = 1)

See the diagrams below for a description.

7.2.42.1 ITagLo (ErrCtlWST = 0, ErrCtlSPR = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization.

Figure 7.43 ITagLo Register Format (ErrCtlWST = 0, ErrCtlSPR = 0)

7.2.42.2 ITagLo-WST (ErrCtlWST = 1, ErrCtlSPR = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access the data in these fields either by cache load-tag or store-tag operations when ErrCtlWST is set.

Figure 7.44 ITagLo Register Format (ErrCtlWST = 1, ErrCtlSPR = 0)

31 12 11 10 9 8 7 6 5 4 1 0

PTagLo U 0 V 0 L 0 P

Table 7.53 Field Descriptions for ITagLo Register

Name Bit(s) Description
Read/
Write Reset State

PTagLo 31:12 The cache address tag, which is a physical address because the 74K
core’s caches are physically tagged. It holds bits 31:12 of the physical
address, i.e., the low-order 12 bits of the address are implied by the posi-
tion of the data in the cache.

R/W Undefined

V 7 Set to 1 if this cache entry is valid (set to zero to initialize the cache). R/W Undefined

L 5 Set to 1 to lock this cache entry, preventing it from being replaced by
another line when a cache miss occurs. Used when you have data so crit-
ical that it must be in the cache; however, it’s quite costly, reducing the
efficiency of the cache for memory data competing for space at this
index.

R/W Undefined

P 0 Parity bit over the cache tag entries (excluding the D bit). R/W Undefined

31 16 15 10 9 8 7 6 5 4 1 0

U LRU 0 U 0 U 0 U

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 213

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.42.3 ITagLo-WST (ErrCtlWST = 0, ErrCtlSPR = 1)

In this mode, the ITagLo register becomes the interface to the instruction scratchpad RAM.

Figure 7.45 ITagLo Register Format (ErrCtlWST = 0, ErrCtlSPR = 1)

7.2.43 IDataLo (CP0 Register 28, Select 1): Read/write Interface for I-cache Special
Cacheops

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers
(IDataHi, IDataLo) are needed, because the 74K core loads I-cache data at least 64 bits at a time.

Figure 7.46 IDataLo Register Format

Table 7.54 Field Descriptions for ITagLo-WST Register

Name Bit(s) Description
Read/
Write Reset State

LRU 15:10 When you read or write the tag in way-select test mode (that is, with
ErrCtlWST set), this field reads or writes the LRU ("least recently used")
state bits, held in the way-select RAM.

R/W Undefined

tag 31 19 16 15 12 10 9 8 7 6 5 4 1 0

0 BasePA U 0 E 0 U 0 U

1 U Size U 0 U 0 U 0 U

Table 7.55 Field Descriptions for ITagLo-SPR Register

Name Bit(s) Description
Read/
Write Reset State

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field will contain
bits [31:12] of the base address of the scratchpad region

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indicate
whether the scratchpad is enabled

R/W Undefined

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field indicates the
size of the scratchpad array. This field is the number of 4KB sections it
contains.

R/W Undefined

31 0

DATA

Table 7.56 IDataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

 CP0 Registers of the 74K™ Core

214 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.44 DTagLo (CP0 Register 28, Select 2): Read/Write Interface for Load/Store Tag
Cacheops

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

The interpretation of this register changes depending on the settings of ErrCtlWST and ErrCtlSPR.

• Default cache interface mode (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)

• Diagnostic "dirty array test mode" (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)

• For scratchpad memory setup (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1)

7.2.44.1 DTagLo (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization.

Figure 7.47 DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)

7.2.44.2 DTagLo-WST(ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access either by cache load-tag/store-tag operations when ErrCtlWST is set: then you get the data in these
fields.

31 12 11 10 9 8 7 6 5 4 1 0

PTagLo U 0 V 0 L 0 P

Table 7.57 Field Descriptions for DTagLo Register

Name Bit(s) Description
Read/
Write Reset State

PTagLo 31:12 The cache address tag — a physical address because the 74K core’s
caches are physically tagged. It holds bits 31-12 of the physical address
— the low 12 bits of the address are implied by the position of the data in
the cache.

R/W Undefined

V 7 1 if this cache entry is valid (set zero to initialize the cache). R/W Undefined

L 5 1 to lock this cache entry, preventing it from being replaced by another
line when there’s a cache miss. Done when you have data so critical that
it must be in the cache: it’s quite costly, reducing the efficiency of the
cache for memory data competing for space at this index.

R/W Undefined

P 0 Parity bit over the cache tag entries (excluding the D bit). R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 215

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.48 DTagLo Register Format (ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)

7.2.44.3 DTagLo-DYT (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)

The dirty RAM is another slice of the cache memory (distinct from the tag and data arrays). Test software can access
either by cache load-tag/store-tag operations when ErrCtlDYT is set: then you get the data in these fields.

Figure 7.49 Field Descriptions for DTagLo-DYT Register

r

Figure 7.50 DTagLo-SPT (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1)

If your CPU has scratchpad RAM, you will need to initialize and manage it using cache load/store operations while
ErrCtlSPR is set. The tag load/store operations are used to read and write control registers: and then you see these
fields.

31 24 23 20 19 16 15 10 9 8 7 6 5 4 1 0

U LP L LRU 0 U 0 U

Table 7.58 Field Descriptions for DTagLo-WST Register

Name Bit(s) Description
Read/
Write Reset State

LP 23:20 Cache-line locking control bits, held in the way select RAM. R/W Undefined

L 19:16 R/W Undefined

LRU 15:10 When you read or write the tag in way select test mode (that is, with
ErrCtlWST set) this field reads or writes the LRU ("least recently used")
state bits, held in the way select RAM.

R/W Undefined

31 24 23 20 19 16 15 12 11 10 9 8 7 6 5 4 1 0

U DP D U A 0 U 0 U 0 U

Table 7.59 Field Descriptions for DTagLo-DYT Register

Name Bit(s) Description
Read/
Write Reset State

DP 23:20 Cache line "dirty" bits (and parity across them). R/W Undefined

D 19:16 R/W Undefined

A 11:10 Cache line "alias" bits. R/W Undefined

 CP0 Registers of the 74K™ Core

216 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.51 DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 1)

7.2.45 DDataLo (CP0 Register 28, Select 3): Low-order Data Read/Write Interface for
D-cache

On 74K family cores, test software can read or write cache data using a cache index load tag/index store data
instruction. Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Figure 7.52 DDataLo Register Format

7.2.46 L23TagLo (CP0 Register 28, Select 4): L2 and L3 Cacheop Tag Use

This register in the 74K core is implemented to support access to external L2 cache tags via cache instructions. The
definition of the fields of this 32 bit register are defined by the SoC designer. Refer to the section on L2 Transactions
in the document ““MIPS32® 74K™ Processor Core Family Integrator’s Guide, MD00499” for further information
on using this register.

Figure 7.53 L23TagLo Register Format

7.2.47 L23DataLo (CP0 Register 28, Select 5): Low-order Data Read/Write Interface for
L2 or L3 cache

On 74K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

31 12 11 10 9 8 7 6 5 4 1 0

PTAG U 0 E 0 U 0 U

Table 7.60 Field Descriptions for DTagLo-SPT Register

Name Bit(s) Description
Read/
Write Reset State

PTAG 31:12 Scratchpad control. Sets base address. R/W Undefined

E 7 Scratchpad control enable. R/W Undefined

31 0

DATA

Table 7.61 DDataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 217

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 7.54 L23DataLo Register Format

7.2.48 ITagHi (CP0 Register 29, Select 0): I-cache Predecode Bits

This register represents the I-cache Predecode bits and is intended for diagnostic use only

Figure 7.55 ITagHi Register Format

7.2.49 IDataHi (CP0 Register 29, Select 1): High-order Data Read/write Interface for I-
cache Special Cacheops

Staging registers for special cache which load or store data from or to the cache line. Two registers (IDataHi,
IDataLo) are needed because the 74K core loads I-cache data at least 64-bits at a time.

Figure 7.56 IDataHi Register Format

31 0

DATA

Table 7.62 L23DataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 25 24 18 17 11 10 4 3 2 1 0

PREC_67 PREC_45 PREC_23 PREC_01 P_67 P_45 P_23 P_01

Table 7.63 Field Descriptions for ITagHi Register

Name Bit(s) Description
Read/
Write Reset State

PREC_67 31:25 74K family cores do some decoding of instructions when they’re loaded
into the I-cache, which helps speed instruction dispatch. When you use
cache tag load/store instructions, you see that information here.
The individual PREC fields hold precode information for pairs of adja-
cent instructions in the I-cache line, and the P fields hold parity over
them.

R/W Undefined

PREC_45 24:18 R/W Undefined

PREC_23 17:11 R/W Undefined

PREC_01 10:4 R/W Undefined

P_67 3 R/W Undefined

P_45 2 R/W Undefined

P_23 1 R/W Undefined

P_01 0 R/W Undefined

31 0

DATA

 CP0 Registers of the 74K™ Core

218 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.50 DTagHi (CP0 Register 29, Select 2): D-cache Virtual Index (including ASID)

More cache tag bits for the 74K core’s dual-tagged L1 D-cache. For diagnostics only.

Figure 7.57 DTagHi Register Format

7.2.51 L23DataHi (CP0 Register 29, Select 5): High-order Data Read/Write Interface for
L2 or L3 cache

On 74K family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Figure 7.58 L23DataHi Register Format

Table 7.64 IDataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

31 12 11 10 9 8 7 0

VTAG U 0 G ASID

Table 7.65 Field Descriptions for DTagHi Register

Name Bit(s) Description
Read/
Write Reset State

VTAG 31:12 74K family cores have a dual-tagged D-cache, combining a virtual tag for
fast lookup with a physical tag to avoid aliases.
Bit[11] always gets virtual address[11] of the tag when index load tag
cache instruction is executed.
These fields store the information required to match a virtual address: the
virtual address itself, the ASID (tracking the "address space identifier"
maintained in EntryHiASID) and a global ("G") bit which can be set to
make it not necessary to match the ASID.

R/W Undefined

U 11 R/W Undefined

G 8 R/W Undefined

ASID 7:0 R/W Undefined

31 0

DATA

Table 7.66 L23DataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 219

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

7.2.52 ErrorEPC (CP0 Register 30, Select 0): Restart Location from Reset or Cache
Error Exception

This full 32-bit register is filled with the restart address on a cache error exception or any kind of CPU reset — in fact,
any exception which sets StatusERL and leaves the CPU in "error mode".

Figure 7.59 ErrorEPC Register Format

7.2.53 DESAVE (CP0 Register 31, Select 0): Scratch Read/Write Register for EJTAG
Debug Exception Handler

Software-only register, with no hardware effect. Provided because the debug exception handler can’t use the k0-1 GP
registers, used by ordinary exception handlers to bootstrap themselves: but a debug handler can save a GPR into
DESAVE, and then use that GPR register in code which saves everything else.

Figure 7.60 DeSave Register Format

31 0

ErrorEPC

Table 7.67 ErrorEPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

Table 7.68 DeSave Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. SO Undefined

 CP0 Registers of the 74K™ Core

220 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 8

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 221

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Hardware and Software Initialization of the 74K™ Core

A 74K processor core contains only a minimal amount of hardware initialization and relies on software to fully ini-
tialize the device.

This chapter contains the following sections:

• Section 8.1 “Hardware-Initialized Processor State”

• Section 8.2 “Software-Initialized Processor State”

8.1 Hardware-Initialized Processor State

A 74Kprocessor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal sub-
set of the processor state is cleared. This is enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. Unlike previous MIPS processors, there is no
distinction between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft
reset.

8.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0:

• Random - cleared to maximum value on Reset (TLB/MMU only)

• Wired - cleared to 0 on Reset (TLB/MMU only)

• StatusBEV - set to 1 on Reset

• StatusTS - cleared to 0 on Reset

• StatusNMI - cleared to 0 on Reset

• StatusERL - set to 1 on Reset

• StatusRP - cleared to 0 on Reset

• CDMMBaseEN - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset

 Hardware and Software Initialization of the 74K™ Core

222 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• ConfigKU - set to 010 (uncached) on Reset (FMT/MMU only)

• ConfigK23 - set to 010 (uncached) on Reset (FMT/MMU only)

• DebugDM - cleared to 0 on Reset (unless EJTAGBOOT option is used to boot into Debug Mode, as described in
Chapter 11, “EJTAG Debug Support in the 74K™ Core”.

• DebugLSNM - cleared to 0 on Reset

• DebugIBusEP - cleared to 0 on Reset

• DebugDBusEP - cleared to 0 on Reset

• DebugIEXI - cleared to 0 on Reset

• DebugSSt - cleared to 0 on Reset

8.1.2 TLB Initialization

Each TLB entry has a “hidden” state bit, which is set by Reset and is cleared when the TLB entry is written. This bit
disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up values in the TLB
array (when two or more TLB entries match a single address). This bit is not visible to software.

8.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Reset excep-
tion is taken.

8.1.4 Static Configuration Inputs

All static configuration inputs (for example, those defining the bus mode and cache size) should only be changed dur-
ing Reset.

8.1.5 Fetch Address

Upon Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA 0x1FC00000).
This address is in kseg1, which is unmapped and uncached, so that the TLB and caches do not require hardware ini-
tialization.

8.2 Software-Initialized Processor State

Software is required to initialize parts of the device, as described below.

8.2.1 Register File

The register file powers up in an unknown state with the exception of r0, which is always 0. Initializing the rest of the
register file is not required for proper operation. Good code will generally not read a register before writing to it, but
the boot code can initialize the register file for added safety.

8.2 Software-Initialized Processor State

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 223

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

8.2.2 TLB

Because of the hidden bit indicating initialization, the core does not initialize the TLB upon Reset. This is an imple-
mentation-specific feature of the 74K core and cannot be relied upon if writing generic code for MIPS32/64 proces-
sors.

8.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function).
This can be a long process, especially because the instruction cache initialization must run in an uncached address
region.

8.2.4 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized before exiting the boot code. There are various exceptions which are
blocked by ERL=1 or EXL=1, and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), and SW0 and SW1 (Software Interrupts) should be cleared.

• Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing kseg0.

• Config: (FM MMU only) KU and K23 should be set to the desired CCA for useg/kugeg and kseg2/3 respectively
prior to accessing those regions.

• Count: Should be set to a known value if timer tnterrupts are used.

• Compare: Should be set to a known value if timer tnterrupts are used. Note that the write to Compare will also
clear any pending timer interrupts, so Count should be set before Compare to avoid any unexpected interrupts.

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
be masked off after reading these registers.

 Hardware and Software Initialization of the 74K™ Core

224 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 9

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 225

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Caches of the 74K™ Core

This chapter describes the caches present in a 74K processor core. It contains the following sections:

• Section 9.1 “Cache Configurations”

• Section 9.2 “Instruction Cache”

• Section 9.3 “Data Cache”

• Section 9.4 “Write Back Buffer”

• Section 9.5 “Cache Protocols”

• Section 9.6 “CACHE Instruction”

• Section 9.7 “Software Cache Testing”

• Section 9.8 “Memory Coherence Issues”

9.1 Cache Configurations

A 74K processor core has separate instruction and data caches, which allows instruction and data references to pro-
ceed simultaneously. Each of the caches is 4-way set associative and can be configured at build time to be 0, 16, 32, or
64KB. Both caches use a 32B line size and support locking on a per line basis. Parity protection of the cache arrays
is an optional feature.

9.2 Instruction Cache

Table 9.1 shows the key characteristics of the instruction cache. Figure 9.1 shows the format of an entry in the three
arrays comprising the instruction cache: data, tag, and way-select.

Table 9.1 Instruction Cache Attributes

Attribute With Parity Without Parity

Size 0, 16, 32, 64KB

Line Size 32B

Number of Cache Sets 128, 256, 512

Associativity 4 way

Replacement LRU

Cache Locking per line

Data Array

 Caches of the 74K™ Core

226 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 9.1 Instruction Cache Organization

9.2.1 Virtual Aliasing

The instruction cache on the 74K processor core is virtually indexed and physically tagged. The lower bits of the vir-
tual address are used to access the cache arrays and the physical address is used in the tags. Because the way size can
be larger than the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical
address can exist in multiple indices within the cache, if it is accessed with different virtual addresses. Virtual aliasing
comes into effect only for cache sizes that are larger than 16KB. The 16KB cache size does not suffer from virtual
aliasing, because the way size equals the minimum page size.

This reduces the cache efficiency somewhat, but is generally not a problem unless the instruction stream is being writ-
ten to. When instructions are written, software must ensure that the store data is written out to memory and the old
data is invalidated in the instruction cache (via the CACHE or SYNCI instruction). Because one physical address can
exist in multiple locations, the cache should be invalidated using all of the virtual addresses used to access that physi-
cal address. The hardware implementation takes care of this automatically when Config7.IVA bit is cleared. In the
absence of the hardware feature, alternatively, all of the relevant cache indices or the entire cache can be invalidated.

9.2.2 Precode bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bits indicate the type and location of branch or jump instructions within a
64b fetch bundle. These precode bits are not used when executing MIPS16e code.

Read Unit 144b x 4 128b x 4

Write Unit 144b 128b

Tag Array

Read Unit 55b x 4 50b x 4

Write Unit 55b 50b

Way-Select Array

Read Unit 6b

Write Unit 1-6b

Table 9.1 Instruction Cache Attributes (Continued)

Attribute With Parity Without Parity

Tag (per way):

Data (per way)1:

Way-Select:

5 1 1 20 7 7 7 7

Parity Valid Lock PA[31:12] Precode_67 Precode_45 Precode_23 Precode_01

16 64 64 16 64 64

Parity dword3 dword2 Parity dword1 dword0

6

LRU

1. Parity bits in data array will be interleaved with precode and data bytes.

9.3 Data Cache

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 227

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

9.2.3 Parity

Parity protection of the instruction cache arrays can optionally be included. The data array has 16 parity bits—one for
each byte of the 128b data. The tag array has 5 parity bits for each tag—one for each of the 4 precode fields and one
for the physical tag, lock, and valid bits. The LRU array does not have any parity.

9.3 Data Cache

The data cache is similar to the instruction cache, with a few key differences. The data cache does not contain any
precode information. To handle store bytes, the data array is byte-accessible, and the optional data parity is 1 bit per
byte. The way-select array for the data cache holds the lock bits (and optional lock parity bits) for each cache line, in
addition to the LRU information. The lock bits indicate the cache lines that have been locked using the CACHE
instruction. There is a separate dirty array to hold the dirty bits of cache lines. Table 9.2 shows the key characteristics
of the data cache. Figure 9.2 shows the format of an entry in the arrays comprising the data cache: tag, data, way-
select, and dirty.

Table 9.2 Data Cache Attributes

Attribute With Parity Without Parity

Size 0, 16, 32, 64KB

Line Size 32B

Number of Cache Sets 128,256,512

Associativity 4 way

Replacement LRU

Cache Locking per line

Data Array

Read Unit 72b x 4 64b x 4

Write Unit 9b 8b

Tag Array

Read Unit 53b x 4 52b x 4

Write Unit 53b 52b

Way-Select Array

Read Unit 14b 10b

Write Unit 1-14b

Dirty Array

Read Unit 10b 6b

Write Unit 1-10b

 Caches of the 74K™ Core

228 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 9.2 Data Cache Organization

9.3.1 Virtual Aliasing

Since the caches are virtually indexed and physically tagged, a phenomenon known as virtual aliasing can occur for
some cache sizes. Virtual aliasing occurs if the virtual bits used to index a cache array are not consistent with the
overlapping physical bits, after the virtual address has been translated to a physical address. Virtual aliasing can only
occurs in address regions which are mapped through a TLB-based memory management unit.

In TLB-mapped address regions, virtual aliasing may occur if the cache size per way is greater than the page size. For
example, consider a 32KB cache organized as 4-way set associative. The size per way is then 8 KB, so virtual address
bits [12:0] are used to index the array. If the address is in a translated region with a page size of 4 KB, then address
bits [11:0] are untranslated but address bits [31:12] will be mapped and for these bits the virtual and physical
addresses may be different. In this example, bit [12] could pose a potential problem due to virtual aliasing. Imagine
two virtual addresses, VA0 and VA1, whose only difference is the value of bit [12], which map to the same physical
address. These two virtual addresses would be indexed to two different lines by the cache, even though they were
intended to represent the same physical address. Then if a program does a load using VA0 and a store using VA1, or
vice-versa, the cache may not return the expected data.

Table 9.3 shows the overlapped virtual/physical address bits which could potentially be involved in virtual aliasing,
given the possible minimum page sizes and cache way sizes supported by a 74K core. Because there are no direct
writes to the I-cache in the MIPS architecture, aliasing is usually an issue only for the D-cache. A special hardware
mechanism is available to prevent the possibility of virtual aliasing in 32KB and 64KB data caches. In cores not con-
figured with this mechanism, virtual aliasing must be handled by software. The software solution must ensure that the
mapping of virtual address bits which overlap with physical address bits be handled consistently. The simplest
approach is to ensure that the overlapping bits are unity-mapped (VA equals PA).

Table 9.3 Potential Virtual Aliasing Bits

Minimum Page Size
(KB) Cache Way Size (KB)

Overlapped address
bits with possible

aliasing

4 8 [12]

16 [13:12]

Tag (per way):

Data (per way):

Way-Select:

1 21 1 8 21 1

Parity PA[31:11] Global ASID VA[31:11] Valid

1 8 9x30 1 8

Parity Data31 ... Parity Data0

4 4 6

Lock Parity Lock LRU

2 4 4

Reserved Dirty Parity Dirty
Dirty

9.4 Write Back Buffer

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 229

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

A related issue can occur in virtually indexed, physically tagged caches if the number of physical bits stored in the tag
array does not fully overlap the physically translated bits for the smallest page size. For a 74K core, there are always
at least 20 address bits stored in the cache tag, representing bits [31:12] of the physical address. Since the minimum
page size is 4KB with bits [31:12] physically translated by the TLB, the cache tag size does overlap the translated bits
and this issue will not occur.

9.3.2 Parity

Parity protection of the data cache arrays can optionally be included. The data array requires a parity bit for each byte,
corresponding to the minimum write quantum for a store. The tag array has a single parity bit for each tag. The way-
select array has separate parity bits to cover each lock bit, but the LRU bits are not covered by parity. The dirty array
also has a parity bit for each dirty bit.

9.4 Write Back Buffer

The BIU includes a Write Back Buffer (WBB) that holds writes going to memory. This includes evictions from the
data cache, as well as write-through stores, uncached stores, and uncached accelerated stores. The WBB consists of 4
entries, each of which is capable of holding 32B of data. The WBB also holds L2 CACHE instructions that are to be
sent out on the bus.

The WBB will attempt to gather uncached accelerated (UCA) stores to allow full line burst writes. UCA behavior is
described in Section 9.4.1 “Uncached Accelerated Stores”. Write through stores can also be gathered in a WBB entry
if ConfigMM= 1.

WBB entries are ‘flushed’ under a variety of conditions. When a buffer is flushed, the write command is queued in
the BIU and the WBB entry will not accept any more activity until the data has been written to the bus and the buffer
is freed up. UCA flush conditions are described in the next section. Flush conditions for other types are shown here:

• Uncached (non-accelerated) stores flush immediately

• L2 CACHE instruction commands are also flushed immediately

• Entries for D$ evictions are flushed when all 4 dwords (32B) of data have been gathered

• Write-through entries are flushed under the following conditions:

• A full 32B line has been gathered

• A read request matches the address of the WT line. The write command will be ordered ahead of the read
command. There is no direct bypass of the WBB data to the read—the read gets the data from memory.

• A WT request to a different 32B line is seen. Only 1 WT merge can be active at any time.

8 16 [13]

Table 9.3 Potential Virtual Aliasing Bits (Continued)

Minimum Page Size
(KB) Cache Way Size (KB)

Overlapped address
bits with possible

aliasing

 Caches of the 74K™ Core

230 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

9.4.1 Uncached Accelerated Stores

Uncached Accelerated gathering is supported for word and doubleword stores only.

Gathering of uncached accelerated stores will start on cache-line aligned addresses, i.e. 32 byte aligned addresses.
Uncached accelerated word or doubleword stores that do not to meet the conditions required to start gathering will be
treated like regular uncached stores.

When an uncached accelerated store meets the requirements needed to start gathering, a gather buffer is reserved for
this store. All subsequent uncached accelerated word or doubleword stores to the same cache line will write sequen-
tially into this buffer, regardless of the word address associated with these stores. The uncached accelerated buffer is
tagged with the address of the first store.

An uncached accelerated buffer is written to memory (flushed) if:

1. The last word in the entry being gathered is written (implicit flush).

2. A PREF Nudge which match the address associated with the gather buffer (explicit flush).

3. A SYNC instruction is executed (Explicit flush).

4. Bits <31:5> of the address of a Load instruction match the address associated with the gather buffer (implicit
flush).

5. Uncached Accelerated store to a different 32B line (implicit flush).

6. An exception occurs (implicit flush).

When an uncached accelerated buffer is flushed, the address sent out on the system interface is the address associated
with the gather buffer.

Caveats:

• Any uncached stores and any uncached loads to unrelated addresses that occur between uncached accelerated
stores that are part of a gather sequence will go out-of-order. They will not enforce ordering.

• The only constraint imposed on the gathering is that doubleword stores are only allowed to write to doubleword-
aligned locations in the buffer. For example, if uncached accelerated gathering starts with a Store Word (SW), it
may not be followed by a Store Double (SDC1).

• Uncached accelerated stores of the following types are not intended to be used by software and may generate
unpredictable results:

1. Halfword Stores

2. Unaligned Stores

3. Store conditionals

• In order for software to execute correctly on implementations without uncached accelerated stores, software
should always generate accesses starting on a cache-line aligned address, proceed to generate correctly incre-
mented sequential addresses, and observe the restrictions for uncached accelerated stores.

9.5 Cache Protocols

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 231

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

9.5 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data caches.
This section also discusses issues relating to virtual aliasing.

9.5.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data, and way-select. In addition, the data cache has
a dirty array. The caches are virtually indexed, since a virtual address is used to select the appropriate line within each
of the three arrays. The caches are physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache.
The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the data
cache.

Figure 9.1 (instruction cache) and Figure 9.2 (data cache) show the format of each line in the tag, data, and way-select
arrays.

A tag entry consists of the upper bits of the physical address (bits [31:12] for instruction cache, bits[31:11] for data
cache), one valid bit for the line, and a lock bit. A data entry contains the four, 64-bit doublewords in the line, for a
total of 32 bytes. All four words in the line are present or not in the data array together, hence the single valid bit
stored with the tag. Once a valid line is resident in the cache, byte, halfword, triple-byte or full word stores can update
all or a portion of the words in that line. The tag and data entries are repeated for each of the 4 lines in the set.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The array
with way-select entries for the data cache also holds dirty bits for the lines. One dirty bit is required per line, as shown
in Figure 9.2. The instruction cache only supports reads, hence only LRU entries are stored in the instruction way-
select array.

9.5.2 Cacheability Attributes

A 74K core supports the following cacheability attributes:

• Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without changing cache contents.

• Writeback With Write Allocation: Loads and instruction fetches first search the cache, reading main memory only
if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the
target address is in the cache. If it is, the cache contents are updated, but main memory is not written. If the cache
lookup misses on a store, main memory is read to bring the line into the cache and merge it with the new store
data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data stores will update the appropri-
ate dirty bit in the way-select array to indicate that the line contains modified data. When a line with dirty data is
displaced from the cache, it is written back to memory.

• Write-through With No Write Allocation: Loads and instruction fetches first search the cache, reading main mem-
ory only if the desired data does not reside in the cache. On data store operations, the cache is first searched to
see if the target address is cache resident. If it is resident, the cache contents are updated, and main memory is
also written. If the cache lookup misses on a store, only main memory is written. Hence, the allocation policy on
a cache miss is read-allocate only.

 Caches of the 74K™ Core

232 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Uncached Accelerated: Uncached stores are gathered together for more efficient bus utilization. See Section
9.4.1 “Uncached Accelerated Stores” for more details

Some segments of memory employ a fixed caching policy; for example, kseg1 is always uncacheable. Other segments
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programmable
regions is defined by a cacheability attribute field associated with that region of memory. See Chapter 5, “Memory
Management of the 74K™ Core” for further details.

9.5.3 Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a
cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways. The LRU bit(s) in the
way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST=0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used if
valid bit is cleared in TagLo CP0 register.

• Index Store Tag, WST=1: Update the field with the contents of the TagLo CP0 register (refer to Table 7.58
for the valid values of this field).

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
ways, the LRU bits are used to identify the way which has been used least-recently, and that way is selected for
replacement.

9.6 CACHE Instruction

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 233

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

9.5.4 Line Locking

The 74K core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the cache
at a given index are locked by either Fetch and Lock or Index Store Tag CACHE instructions, subsequent cache
misses at that cache index will displace one of the locked lines.

• The core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the cache
at a given index are locked, subsequent cache misses at that cache index will displace one of the locked lines.

9.6 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag
arrays, including the locking of individual cache lines. These instructions are described in detail in Chapter 13,
“74K™ Processor Core Instructions”.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the Way Select (WS)
RAM by setting the WST bit in the ErrCtl register. (The ErrCtl register is described in Section 7.2.40 “ErrCtl (CP0
Register 26, Select 0): Software Parity Control and Test Modes for Cache RAM Arrays”.) Similarly, the SPR bit in
the ErrCtl register will cause Index Load Tag and Index Store Tag instructions to read the pseudo-tags associated with
the scratchpad RAM array. Note that when the WST and SPR bits are zero, the CACHE index instructions access the
cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue,
however, if the WS RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings
for way selection order is shown in Table 9.4.

Table 9.4 Way Selection Encoding, 4 Ways

Selection Order1

1. The order is indicated by listing the least-recently used way to the left and the most-
recently used way to the right, etc.

WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010

0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

 Caches of the 74K™ Core

234 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

9.7 Software Cache Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with
interrupts disabled in order to maintain the cache contents. There are multiple methods for testing these arrays in soft-
ware, some of which are described in the following subsections.

9.7.1 I-cache and D-cache Tag Arrays

These arrays can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. Index
Store Tag will write the contents of the ITagLo and ITagHi registers into the selected tag entry. Index Load Tag will
read the selected tag entry into the ITagLo and ITagHi registers.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl
register. This will override the parity calculation and use the parity bits in ITagLo and ItagHi as the parity values.

9.7.2 I-cache Data Array

This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The Index Store Data instruction can optionally update the corresponding precode field in the tag array.The precode
bits in the array are updated if the PCD bit in the ErrCtl register is zero when we execute the Index Store Data instruc-
tion. The precode value is generated by the hardware automatically if the PCO bit in the ErrCtl register is zero. Other-
wise, the corresponding precode value (PREC_01/PREC_23/PREC_45/PREC_67) from the ITagHi register is used in
updating the tag array.

The parity bits in the array can be tested by setting the PO bit in the ErrCtl register. This will use the PI field in ErrCtl
instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the IDataLo and IDataHi registers.

9.7.3 I-cache WS Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

9.7.4 D-cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to set
the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to the
PAs that are resident in the cache. The value can then be read using LW instructions and compared to the expected
data.

The parity bits can be implicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used, and only 32b of data is
read/written per operation.

9.8 Memory Coherence Issues

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 235

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

9.7.5 D-cache WS Array

The lock and LRU bits can be tested using the same mechanism as the I-cache WS array.

9.7.6 D-cache DirtyArray

The testing of this array is also done through Index Load Tag and Index Store Tag CACHE instructions. By setting the
DYT bit in the ErrCtl register, these operations will read and write the dirty array instead of the tag array.

9.8 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system design.
Since a cache holds a copy of memory data, it is possible for another memory master to modify a memory location,
thus making other copies of that location stale. A detailed discussion of memory coherence is beyond the scope of
this document, but following are a few related comments.

A 74K processor contains no direct hardware support for managing coherency with respect to its caches, so it must be
handled via the system design or software. The data cache supports either write-back or write-through protocols.

In write-through mode, all data writes will eventually be sent to memory. However, because of the presence of write
buffers, there could be a delay in the actual write to memory. So if another memory master updates cacheable memory
that could also be in the core’s caches, those locations may need to be flushed from the cache. The only way to
accomplish this invalidation is by use of the CACHE instruction.

In write-back mode, data writes only go to the cache and not to memory (until explicitly evicted). So the processor
cache may contain the only copy of data in the system, until that data is written to main memory. Dirty lines are only
written to memory when displaced from the cache as a new line is filled, or if they are explicitly forced by certain fla-
vors of the CACHE or PREF instructions.

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the core’s
write buffers.

 Caches of the 74K™ Core

236 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 10

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 237

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Power Management in the 74K™ Core

A 74K processor core offers a number of power management features, including low-power design, active power
management, and power-down modes of operation. The core is a static design that supports a WAIT instruction
designed to signal the rest of the device that execution and clocking should be halted, reducing system power con-
sumption during idle periods.

The core provides two mechanisms for system-level low-power support, which are discussed in the following sec-
tions:

• Section 10.1 “Register-Controlled Power Management”

• Section 10.2 “Instruction-Controlled Power Management”

10.1 Register-Controlled Power Management

The RP (Reduced Power) bit in the CP0 Status register enables a standard software mechanism for placing the system
into a low-power state. The state of the RP bit is available externally on the SI_RP output signal. Three additional
pins— SI_EXL, SI_ERL, and EJ_DebugM—support the power-management functions by allowing the user to change
the power state if an exception or error occurs while the core is in a low-power state.

Setting the RP bit of the CP0 Status register causes the core to assert the SI_RP signal. The external agent can then
decide to reduce the clock frequency and place the core into power-down mode.

If an interrupt occurs while the device is in power-down mode, that interrupt may need to be serviced, depending on
the needs of the application. The interrupt causes an exception, which in turn causes the EXL bit to be set. Setting the
EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an interrupt
has occurred. When SI_EXL is asserted, the external agent can choose to either speed-up the clocks and service the
interrupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. The external agent can then choose to either speed up the clocks and service the error
or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power-down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared, and the fourth pin indicates that the processor is in
debug mode:

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

 Power Management in the 74K™ Core

238 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

• The EJ_DebugM signal indicates that the processor has entered debug mode.

10.2 Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is through execution of the WAIT instruction. The WAIT
instruction brings the processor into a low-power state, where the internal clocks are suspended and the pipeline is
frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset, and EJ_DINT) con-
tinue to run. The clocks are not shut down until all bus and coprocessor transactions have completed. When the CPU
is in instruction-controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition
causes the CPU to exit this mode and resume normal operation. While the core is in this low-power mode, the
SI_SLEEP signal is asserted to indicate to external agents the state of the chip.

Chapter 11

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 239

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 74K™ Core

The EJTAG debug logic in the 74K processor core is compliant with MIPS® EJTAG Specification Version 4.12 and
includes:

1. Standard core debug features

2. Optional hardware breakpoints

3. Standard Test Access Port (TAP) for a dedicated connection to a debug host

4. Optional MIPS trace capability for program counter/data address/data value trace to on-chip memory or to trace
probe

This chapter contains the following sections:

• Section 11.1 “Debug Control Register”

• Section 11.2 “Hardware Breakpoints”

• Section 11.3 “Test Access Port (TAP)”

• Section 11.4 “EJTAG TAP Registers”

• Section 11.5 “TAP Processor Accesses”

• Section 11.6 “PC Sampling”

• Section 11.7 “Fast Debug Channel”

• Section 11.8 “MIPS® Trace”

• Section 11.9 “PDtrace™ Registers (Software Control)”

• Section 11.10 “Trace Control Block (TCB) Registers (Hardware Control)”

• Section 11.11 “Enabling MIPS Trace”

• Section 11.12 “TCB Trigger Logic”

• Section 11.13 “MIPS Trace Cycle-by-Cycle Behavior”

• Section 11.14 “TCB On-Chip Trace Memory”

 EJTAG Debug Support in the 74K™ Core

240 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.1 Debug Control Register

The Debug Control register (DCR) controls and provides information about debug issues, and is always provided with
the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug software
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to the
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, and a
pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of some sources for reset. The 74K core does not distinguish
between soft and hard reset, but typically only soft reset sources in the system would be maskable, and hard sources
such as the reset switch would not be. The soft reset masking should only be applied to a soft reset source if that
source can be efficiently masked in the system, thus resulting in no reset at all. If that is not possible, then that soft
reset source should not be masked, since a partial soft reset may cause the system to fail or hang. There is no auto-
matic indication of whether the SRE is effective, so the user must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table below
takes effect on any CPU reset.

Figure 11.1 Debug Control Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res ENM Res
PCno
TCID

PCIM
PCno
ASID

DASQ DASe DAS Res
FDC
Impl

DB IB

‘5 14 ‘3 12 11 10 9 8 6 5 4 3 2 1 0

IVM DVM 0 RDVec CBT PCS PCR PCSE INTE NMIE NMIP SRE PE

Table 11.1 Debug Control Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:30 Reserved R 0

ENM 29 Endianess in which the processor is running in kernel and Debug
Mode:

R Preset

Res 28 Reserved R 0

Encoding Meaning

0 Little endian

1 Big endian

11.1 Debug Control Register

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 241

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

PCnoTCID 27 Controls whether PC Sampling includes or omits the TC identity
field when the MT ASE is implemented:

Read,
Optional

write

Preset

PCIM 26 Configures PC Sampling to capture all executed addresses or only
those that miss in the instruction cache:

Read,
Optional

write

Undefined

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes or omits the
ASID field:

R Undefined

DASQ 24 Qualifies Data Address Sampling using a data breakpoint: R 0

DASe 23 Enables Data Address Sampling: R 0

DAS 22 Indicates if the Data Address Sampling feature is implemented: R Preset

Res 21:19 Reserved R 0

FDCImpl 18 Indicates if the fast debug channel is implemented: R 1

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 TC field included in PCSAMPLE scan

1 TC field omitted from PCSAMPLE scan

Encoding Meaning

0 All PCs are captured

1 Only PCs that miss in the instruction
cache are captured

Encoding Meaning

0 ASID included in PCSAMPLE scan

1 ASID omitted from PCSAMPLE scan

Encoding Meaning

0 All data addresses are sampled

1 Sample matches of data breakpoint 0

Encoding Meaning

0 Data Address sampling disabled

1 Data Address sampling enabled

Encoding Meaning

0 No Data Address sampling imple-
mented

1 Data Address sampling implemented

Encoding Meaning

0 No fast debug channel implemented

1 Fast debug channel implemented

 EJTAG Debug Support in the 74K™ Core

242 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

DB 17 Indicates if data hardware breakpoint is implemented: R Preset

IB 16 Indicates if instruction hardware breakpoint is implemented: R Preset

Res 13:11 Reserved R 0

IVM 15 Indicates if inverted data value match on data hardware breakpoints
is implemented:

R 0

DVM 14 Indicates if a data value store on a data value breakpoint match is
implemented:

R 0

RDVec 11 Enables relocation of the debug exception vector. The value in the
DebugVectorAddr register is used for EJTAG exceptions when Prob-
Trap=0 and RDVec=1.

R/W 0

CBT 10 Indicates if complex breakpoint block is implemented: R Preset

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Encoding Meaning

0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

Encoding Meaning

0 No data value store on a data value
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

11.1 Debug Control Register

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 243

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

PCS 9 Indicates if the PC Sampling feature is implemented.: R Preset

PCR 8:6 PC Sampling Rate: Values from 0 to 7 map to 25 to 212 cycles
respectively. That is, a PC sample is written out every 32, 64, 128,
256, 512, 1024, 2048, or 4096 cycles. The external probe or software
is allowed to set this value to the desired sample rate

R/W 7

PCSE 5 Indicates if PC Sampling is enabled:

This bit is set to 0 following Reset. It must be set by software to
enable PC sampling.

R/W 0

INTE 4 Interrupt Enable in Normal Mode. This bit provides the hardware
and software interrupt enable for non-debug mode, in addition to
other masking mechanisms in conjunction with other disable mecha-
nisms:

R/W 1

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug Mode: R/W 1

NMIP 2 Indication for pending NMI: R 0

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 No PC Sampling implemented

1 PC Sampling implemented

Encoding Meaning

0 PC Sampling not enabled

1 PC Sampling enabled

Encoding Meaning

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

Encoding Meaning

0 NMI disabled

1 NMI enabled

Encoding Meaning

0 No NMI pending

1 NMI pending

 EJTAG Debug Support in the 74K™ Core

244 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area,. Data breakpoints can be set to
cause a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike in many
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 74K core: instruction breakpoints and data
breakpoints.

A core may be configured with the following breakpoint options:

• No breakpoints

• Four instruction and two data breakpoints

11.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus between
the CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the TLB-based
MMU. Finally, a mask can be applied to the virtual address to set breakpoints on a range of instructions.

SRE 1 Soft Reset Enable
This bit allows the system to mask soft resets. The core does not
internally mask resets. Rather the state of this bit appears on the
EJ_SRstE external output signal, allowing the system to mask soft
resets if desired.

Bit is read-only (R) and reads as zero if not implemented.

R/W 1

PE 0 Probe Enable
This bit reflects the value of the ProbEn bit in the EJTAG Control
register:

Bit is read-only (R) and reads as zero if not implemented.

R Same value as
ProbEn in ECR
(see Table 11.25)

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 Soft reset masked for soft reset sources
dependent on implementation

1 Soft reset is fully enabled

Encoding Meaning

0 No access should occur to the dmseg
segment

1 Probe services accesses to the dmseg
segment

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 245

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a
debug exception and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate
that the match occurred.

11.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data break-
point including masking or qualification on the transaction properties. When a data breakpoint matches, a debug
exception and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the
match occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the
breakpoint to match.

11.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown in Table 11.2.

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by n.
The registers for each breakpoint are shown in Table 11.3.

11.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shown in Table 11.4.

Table 11.2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 11.3 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n

Table 11.4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

 EJTAG Debug Support in the 74K™ Core

246 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by n. The
registers for each breakpoint are shown in Table 11.5.

11.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE
bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

11.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level,
and match also can include an optional compare of ASID. The registers for each instruction breakpoint have the val-
ues and mask used in the compare, and the equation that determines the match is shown below in C-like notation.

IB_match =
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAnIBA) &&
((IBMnISAM | ~(ISAMode ^ IBAnISA))))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

11.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

Table 11.5 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 247

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||
((TYPE == store) && ! DBCnNoSB)) &&

DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the ASID
value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown
below.

DB_addr_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword float-
ing point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 8 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not considered in these
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for
setup of the breakpoint corresponding with endianess.

DB_value_match =
((DATA[7:0] == DBVnDBV[7:0]) || !BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] == DBVnDBV[15:8]) || !BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
((DATA[23:16] == DBVnDBV[23:16]) || !BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2])&&
((DATA[31:24] == DBVnDBV[31:24]) || !BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3])&&
((DATA[39:32] == DBVnDBV[39:32]) || !BYTELANE[4] || DBCnBLM[4] || DBCnBAI[4])&&
((DATA[47:40] == DBVnDBV[47:40]) || !BYTELANE[5] || DBCnBLM[5] || DBCnBAI[5])&&
((DATA[55:48] == DBVnDBV[55:48]) || !BYTELANE[6] || DBCnBLM[6] || DBCnBAI[6])&&
((DATA[63:56] == DBVnDBV[63:56]) || !BYTELANE[7] || DBCnBLM[7] || DBCnBAI[7]))

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always imprecise.

 EJTAG Debug Support in the 74K™ Core

248 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

11.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register point
to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions receiv-
ing a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

11.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match condi-
tion is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug exception.
A matching data breakpoint generates either a precise or imprecise debug exception

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates a match. In this
case the DEPC register and DBD bit in the Debug register points to the instruction that caused the DB_match equation
to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, is not
allowed to complete the load.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed.

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 249

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the rules shown in Table 11.6 apply with respect to updating the BS[n] bits.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. Debug software is responsible for disabling breakpoints when returning to the instruction; otherwise
the debug data break exception will reoccur.

Debug Data Break Load/Store Exception as an Imprecise Debug Exception

An Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match.
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the
Debug register point to an instruction later in the execution flow rather than at the load/store instruction that caused
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DDBSImpr bit do not point to that
instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding
DDBSImpr bits and DDBLImpr/DDBSImpr in the Debug register to be set, but no debug exception is generated for suc-
ceeding matches because the processor is already in Debug Mode. Similarly, if a debug exception had already
occurred at the time of the first match (for example, due to a precise debug exception), then all matches cause the cor-
responding BS bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is
already in Debug Mode.

Table 11.6 Rules for Update of BS Bits on Data Breakpoint Exceptions

Instruction

Breakpoints that Match
Update of BS Bits for Matching Data

Breakpoints

Without Value
Compare With Value Compare

Without Value
Compare With Value Compare

Load/Store One or more None BS bits set for all (No matching break-
points)

Load One or more One or more BS bits set for all Unchanged BS bits since
load of data value does

not occur so match of the
breakpoint cannot be

determined

Load None One or more (No matching break-
points)

BS bits set for all

Store One or more One or more BS bits set for all BS bits set for all

Store None One or more (No matching break-
points)

BS bits set for all

 EJTAG Debug Support in the 74K™ Core

250 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The SYNC instruction, followed by appropriate spacing must be executed before the DDBSImpr bits and
DDBSImpr/DDBSImpr bits are accessed for read or write. This delay ensures that these bits are fully updated.

Any DDBSImpr bit set prior to the match and debug exception are kept set, because only debug software can clear the
DDBSImpr bits.

11.2.7 Breakpoint used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate
a debug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register controls if an
instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com-
pared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

11.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 11.7.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

11.2.8.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the instruction breakpoints.

Figure 11.2 IBS Register Format

Table 11.7 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number in range 0 to 3

31 30 29 28 27 24 23 4 3 0

Res ASIDsup Res BCN Res BS

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 251

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2.8.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n.

Figure 11.3 IBAn Register Format

11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n.

Table 11.8 IBS Register Field Descriptions

Fields
Description Read /

Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Indicates that ASID compare is supported in instruction break-
points.

R Fixed MMU - 0
TLB - 1

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 4

Res 23:4 Must be written as zero; returns zero on read. R 0

31 1 0

IBA ISA

Table 11.9 IBAn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

IBA 31:1 Instruction breakpoint address for condition. R/W Undefined

ISA 0 Instruction breakpoint ISA mode for condition R/W Undefined

Encoding Meaning

0 No ASID compare.

1 ASID compare (IBASIDn register
implemented).

 EJTAG Debug Support in the 74K™ Core

252 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.4 IBMn Register Format

11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with an FM MMU, this register is reserved and reads as 0.

Figure 11.5 IBASIDn Register Format

11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

31 1 0

IBM ISAM

Table 11.10 IBMn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

IBM 31:1 Instruction breakpoint address mask for condition: R/W Undefined

ISAM 0 Instruction breakpoint ISA mode mask for condition: R/W Undefined

31 8 7 0

Res ASID

Table 11.11 IBASIDn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R/W Undefined

Encoding Meaning

0 Corresponding address bit not masked.

1 Corresponding address bit masked.

Encoding Meaning

0 ISA mode considered for match condi-
tion

1 ISA mode masked

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 253

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

Figure 11.6 IBCn Register Format
31 24 23 22 21 3 2 1 0

Res
ASIDuse

Res
Res TE Res BE

Table 11.12 BCn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R/W Undefined

Res 22 Must be written as zero; returns zero on read. R 0

Res 21:3 Must be written as zero; returns zero on read. R 0

TE 2 Use instruction breakpoint n as triggerpoint: R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Use instruction breakpoint n as breakpoint: R/W 0

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Don’t use it as triggerpoint

1 Use it as triggerpoint

Encoding Meaning

0 Don’t use it as breakpoint

1 Use it as breakpoint

 EJTAG Debug Support in the 74K™ Core

254 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 11.13.

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

11.2.9.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented if data breakpoints are implemented.

The Data Breakpoint Status (DBS) register contains implementation and status information about the data break-
points.

The ASIDsup field indicates whether ASID compares are supported.

Figure 11.7 DBS Register Format

Table 11.13 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2124 + 0x100*n DBVHn Data Breakpoint Value High n

n is breakpoint number as 0 or 1

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 11.14 DBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Indicates that ASID compares are supported in data breakpoints. R TLB MMU - 1
FM MMU - 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 2

Res 23:2 Must be written as zero; returns zero on read. R 0

Encoding Meaning

0 Not supported

1 Supported

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 255

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2.9.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

Figure 11.8 DBAn Register Format

11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for
data breakpoint n.

Figure 11.9 DBMn Register Format

BS 1:0 Break status for breakpoint n is at BS[n], with n from 0 to 1. The bit
is set to 1 when the condition for the corresponding breakpoint has
matched.

R/W0 Undefined

31 0

DBA

Table 11.15 DBAn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

31 0

DBM

Table 11.16 DBMn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition: R/W Undefined

Table 11.14 DBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 Corresponding address bit not masked

1 Corresponding address bit masked

 EJTAG Debug Support in the 74K™ Core

256 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with the FM MMU, this register is reserved and reads as 0.

Figure 11.10 DBASIDn Register Format

11.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

Figure 11.11 DBCn Register Format

31 8 7 0

Res ASID

Table 11.17 DBASIDn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined

31 24 23 22 21 14 13 12 11 4 3 2 1 0

Res
ASIDuse

Res
BAI NoSB NoLB BLM Res TE Res BE

Table 11.18 DBCn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n: R/W Undefined

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

11.2 Hardware Breakpoints

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 257

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Res 22 Must be written as zero; returns zero on reads R 0

BAI 21:14 Byte access ignore controls ignore of access to a specific byte.
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1]
ignores access to byte at bits [15:8], etc.

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is not fulfilled on a store
transaction:

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is not fulfilled on a load
transaction:

R/W Undefined

BLM 11:4 Byte lane mask for value compare on data breakpoint. BLM[0]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Use data breakpoint n as triggerpoint: R/W 0

Res 1 Must be written as zero; returns zero on reads. R 0

Table 11.18 DBCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is
ignored

Encoding Meaning

0 Condition may be fulfilled on store
transaction

1 Condition is never fulfilled on store
transaction

Encoding Meaning

0 Condition may be fulfilled on load
transaction

1 Condition is never fulfilled on load
transaction

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Don’t use it as triggerpoint

1 Use it as triggerpoint

 EJTAG Debug Support in the 74K™ Core

258 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.2.9.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

Figure 11.12 DBVn Register Format

11.2.9.7 Data Breakpoint Value High n (DBVHn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value High n (DBVHn) register has the value used in the condition for data breakpoint n.

Figure 11.13 DBVHn Register Format

BE 0 Use data breakpoint n as breakpoint: R/W 0

31 0

DBV

Table 11.19 DBVn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

31 0

DBVH

Table 11.18 DBCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Don’t use it as breakpoint

1 Use it as breakpoint

11.3 Test Access Port (TAP)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 259

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

11.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Table 11.20 DBVHn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBVH 31:0 Data breakpoint value high for condition. This register provides the
high order bits [63:32] for data value on double-word floating point
loads and stores.

R/W Undefined

Table 11.21 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is
independent of the processor clock, so the EJTAG probe can drive TCK independently of the
processor clock frequency.
The core signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.
The core signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising
edge of the TCK clock, depending on the TAP controller state.
The core signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The core signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

 EJTAG Debug Support in the 74K™ Core

260 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs deter-
mine whether an instruction register scan or data register scan is performed. The TAP consists of a small controller,
driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 11.14. The TAP
uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the falling
edge of TCK.

At power-up, the TAP is forced into the Test-Logic-Reset state by a low value on TRST_N. The TAP instruction regis-
ter is thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 11.14.

The states of the data and instruction register scan blocks are mirror images of each other, adding symmetry to the
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data regis-
ters, the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruc-
tion register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and
instruction in the TAP module, independent of the processor logic. The processor is not reset
by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on
and then leave it high, in case the signal is not available as a pin on the chip. If available on the
chip, then it must be low on the board when the EJTAG debug features are unused by the
probe.

Table 11.21 EJTAG Interface Pins (Continued)

Pin Type Description

11.3 Test Access Port (TAP)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 261

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.14 TAP Controller State Diagram

11.3.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state as long as
TMS is HIGH.

11.3.2.2 Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot
change when the TAP controller is in this state.

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

11.3.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state.
A HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the
TAP controller is in this state.

11.3.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A

Shift_IR

Select_IR_Scan

Capture_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

1

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Shift_DR

Select_DR_Scan

Capture_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Test-Logic-Reset

Run-Test/Idle

0

1

0

 EJTAG Debug Support in the 74K™ Core

262 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller is in this state.

11.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state.

11.3.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The
instruction cannot change while the TAP controller is in this state.

11.3.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A HIGH
on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

11.3.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in
this state.

11.3.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state.

11.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge of
the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

11.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

11.3 Test Access Port (TAP)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 263

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in
this state.

11.3.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

11.3.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition
to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-
ler is in this state and the instruction register retains its previous state.

11.3.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller is in this state.

11.3.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

11.3.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state.

11.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

Table 11.22 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

 EJTAG Debug Support in the 74K™ Core

264 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.3.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

11.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

11.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

11.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

11.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shifts 32
bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selects the TCBTCONTROLC register in the Trace Control Block

0x14 PCSAMPLE Selects the PCSAMPLE register

0x16 TCBCONTROLE Selects the TCBTCONTROLE register in the Trace Control Block

0x17 FDC Select Fast Debug Channel

0x1F BYPASS Bypass mode

Table 11.22 Implemented EJTAG Instructions (Continued)

Value Instruction Function

11.3 Test Access Port (TAP)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 265

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG Probe
shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via TDO.

11.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
between TDI and TDO. It can be used in particular if switching instructions in the instruction register takes too many
TCK cycles. The first bit shifted out is bit 0.

Figure 11.15 Concatenation of the EJTAG Address, Data and Control Registers

11.3.3.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and the Update-IR state is left, then the reset values of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 1 after a reset.

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is given, TRST_N is asserted or a rising
edge of TCK occurs when the TAP controller is in Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after a reset, without fetching or executing any instructions
from the normal memory area. This can be used for download of code to a system which has no code in ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

11.3.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

11.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 11.16.

Figure 11.16 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

Address 0

Data 0

EJTAG Control 0 TDO

TDI

TDI Data TDOFastdata0

 EJTAG Debug Support in the 74K™ Core

266 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.3.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register is
only implemented if the Trace unit is present. If no TRU is present, this instruction will select the Bypass register.

11.3.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is
only implemented if the Trace unit is present. If no TRU is present, then this instruction will select the Bypass regis-
ter.

11.3.3.13 TCBCONTROLC Instruction

This instruction is used to select the TCBCONTROLC register to be connected between TDI and TDO. This register is
only implemented if the Trace unit is present. If no TRU is present, then this instruction will select the Bypass regis-
ter.

11.3.3.14 TCBCONTROLE Instruction

This instruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. This register is
only implemented if the Trace unit is present. If no TRU is present, then this instruction will select the Bypass regis-
ter.

11.3.3.15 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only
implemented if the Trace unit is present. If no TRU is present, then this instruction will select the Bypass register. It
should be noted that the TCBDATA register is only an access register to other TCB registers. The width of the
TCBDATA register is dependent on the specific TCB register.

11.3.3.16 PCSAMPLE Instruction

This instruction is used to select the PCSAMPLE register to be connected between TDI and TDO. This register is
always implemented.

11.3.3.17 FDC Instruction

This instruction is used to select the Fast Debug Channel register to be connected between TDI and TDO. This register
is always implemented.

11.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of Data registers, all of which are accessible
through the TAP:

11.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruction
register scan operation, the TAP controller selects the output of the Instruction register to drive the TDO pin. The shift
register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruction
register scan operations, the TAP controls the register to capture status information and shift data from TDI to TDO.
Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the TDO
occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is set to

11.4 EJTAG TAP Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 267

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device ID reg-
ister. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register scan
operation. A list of the implemented instructions are listed in Table 11.22.

11.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-
put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write
bits.

The description above applies in general to the following EJTAG data registers:

• Bypass

• Device Identification

• Implementation

• EJTAG Control (ECR)

• Processor Access Address

• Processor Access Data

• FastData

11.4.2.1 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to
satisfy the IEEE 1149.1 Bypass instruction requirement.

11.4.2.2 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 11.23 shows the bit assignments defined for the read-only ID regis-
ter; inputs to the core determine the value of these bits. These bits can be scanned out of the ID register after being
selected. The register is selected when the Instruction register is loaded with the IDCODE instruction.

Figure 11.17 Device Identification Register Format
31 28 27 12 11 1 0

Version PartNumber ManufID R

 EJTAG Debug Support in the 74K™ Core

268 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.4.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE
instruction.

Figure 11.18 Implementation Register Format

Table 11.23 Device Identification Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Version 31:28 Version (4 bits)
This field identifies the version number of the processor
derivative.

 R EJ_Version[3:0]

PartNumber 27:12 Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A.

 R EJ_ManufID[10:0]

R 0 Reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 11 10 1 0

EJTAGver Res DINTsup ASIDsize Res MIPS16 0 NoDMA Type TypeInfo Res

Table 11.24 Implementation Register Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

EJTAGver 31:29 EJTAG Version 4.14 R 3

Res 28:25 Reserved R 0

DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported:

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation: R TLB MMU- 2
FM MMU- 0

Encoding Meaning

0 DINT signal from the probe is not sup-
ported

1 Probe can use DINT signal to make
debug interrupt.

Encoding Meaning

0 No ASID in implementation

1 8-bit ASID

1,3 Reserved

11.4 EJTAG TAP Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 269

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by executing the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc bit is either 0 or
written to 0). This is in order to ensure proper handling of processor accesses.

Res 20:17 Reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented: R 1

Res 15 Reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

Type 13:11 Indicates what type of entity is associated with this TAP
and whether the TypeInfo field exists.

Tied to b’01 for this core.

R Preset

TypeInfo 10:1 Identifier information specific to the type of entity associated
with this TAP. The attached entity is specified by the
Type field.

R Preset

Res 0 Reserved R 0

Table 11.24 Implementation Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 No MIPS16 support

1 MIPS16 implemented

Encoding Meaning

0 TypeInfo field not implemented.
Legacy value - probably attached to a
CPU.

1 This TAP is attached to a CPU and the
TypeInfo field reflects
EBaseCPUNUM.

2 This TAP is attached to a Trace-Master
and the TypeInfo field is not used.

Others Reserved

Attached
Entity Meaning

CPU Reflects EBaseCPUNUM of the associ-
ated CPU.

others Reserved

 EJTAG Debug Support in the 74K™ Core

270 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets by
e.g., TRST_N. TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value
when the TCK applies. The first 5 TCK clocks after CPU resets may result in reset of the bits, due to synchronization
between clock domains.

Figure 11.19 EJTAG Control Register Format
31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res Res Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res

Table 11.25 EJTAG Control Register Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CPU reset has occurred:

The Rocc bit will keep the 1 value as long as reset is applied.
This bit must be cleared by the probe, to acknowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state
unless Rocc is 0, or written to 0. This is in order to ensure proper
handling of processor access.

R/W 1

Encoding Meaning

0 No reset occurred since bit last
cleared.

1 Reset occurred since bit last cleared.

11.4 EJTAG TAP Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 271

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two address bits
of the Address register to determine the size of a processor access
transaction. The bits are only valid when processor access is pend-
ing.

Note: LE=little endian, BE=big endian, the byte# refers to the byte
number in a 32-bit register, where byte 3 = bits 31:24; byte 2 = bits
23:16; byte 1 = bits 15:8; byte 0=bits 7:0, independently of the endi-
aness.

R Undefined

Res 28:24 Reserved R 0

Res 23 Reserved R 0

Doze 22 Doze state
The Doze bit indicates any kind of low-power mode. The value is
sampled in the Capture-DR state of the TAP controller:

Doze includes the Reduced Power (RP) and WAIT power-reduction
modes.

R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or
stopped. The value is sampled in the Capture-DR state of the TAP
controller:

R 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)

00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1, 0)

00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,
0)

All others Reserved

Encoding Meaning

0 CPU not in low-power mode.

1 CPU is in low-power mode.

Encoding Meaning

0 Internal system clock is running

1 Internal system clock is stopped

 EJTAG Debug Support in the 74K™ Core

272 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

PerRst 20 Peripheral Reset
When the bit is set to 1, it is only guaranteed that the peripheral reset
has occurred in the system when the read value of this bit is also 1.
This is to ensure that the setting from the TCK clock domain takes
effect in the CPU clock domain and in peripherals.
When the bit is written to 0, then the bit must also be read as 0
before it is guaranteed that the indication is also cleared in the CPU
clock domain.
This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a read or
write transaction, and the bit is only valid while PrAcc is set.

R Undefined

PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA) to the
EJTAG memory is pending:

The probe’s software must clear this bit to 0 to indicate the end of
the PA. Write of 1 is ignored.
A pending Processor Access is cleared when Rocc is set, but
another PA may occur just after the reset if a debug exception
occurs.
Finishing a Processor Access is not accepted while the Rocc bit is
set. This is to avoid that a Processor Access occurring after the reset
is finished due to indication of a Processor Access that occurred
before the reset.
The FASTDATA access can clear this bit.

R/W0 0

Res 17 Reserved R 0

PrRst 16 Processor Reset (Implementation dependent behavior)
When the bit is set to 1, then it is only guaranteed that this setting
has taken effect in the system when the read value of this bit is also
1. This is to ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be read as 0
before it is guaranteed that the indication is cleared in the CPU clock
domain also.
This bit controls the EJ_PrRst signal. If the signal is used in the
system, then it must be ensured that both the processor and all
devices required for a reset are properly reset. Otherwise the system
may fail or hang. The bit resets itself, since the EJTAG Control reg-
ister is reset by a reset.

R/W 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 Read transaction

1 Write transaction

Encoding Meaning

0 No pending processor access

1 Pending processor access

11.4 EJTAG TAP Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 273

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is handled by
the probe so processor accesses are answered:

It is an error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the pro-
cessor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the ProbEn bit, bit
0, in the Debug Control Register (DCR).
The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; however,
it is ensured that change of the ProbEn prior to setting the EjtagBrk
bit will have effect for the debug handler executed due to the debug
exception.
The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 The probe does not handle EJTAG
memory transactions

1 The probe does handle EJTAG mem-
ory transactions

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

 EJTAG Debug Support in the 74K™ Core

274 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

ProbTrap 14 Probe Trap
This bit controls the location of the debug exception vector:

Valid setting of the ProbTrap bit depends on the setting of the
ProbEn bit, as described for the ProbEn bit.
The ProbTrap should not be set to 1, for debug exception vector in
EJTAG memory, unless the ProbEn bit is also set to 1 to indicate
that the EJTAG memory may be accessed.
The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; however,
it is ensured that change of the ProbTrap bit prior to setting the
EjtagBrk bit will have effect for the EjtagBrk.
The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Res 13 Reserved R 0

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the processor, unless
the CPU was in debug mode or another debug exception occurred.
When the debug exception occurs, the processor core clock is
restarted if the CPU was in low-power mode. This bit is cleared by
hardware when the debug exception is taken.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

R/W1 0 or 1
from

EJTAGBOOT

Res 11:4 Reserved R 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 In normal memory 0xBFC0.0480

1 In EJTAG memory at 0xFF20.0200 in
dmseg

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

11.4 EJTAG TAP Registers

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 275

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.4.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

11.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
this register is only valid when a processor access write is pending. The register is used to provide the data value for a
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure 11.20. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:

The bit is sampled in the Capture-DR state of the TAP controller.

R 0

Res 2:0 Reserved R 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Meaning

0 Processor is in non-debug mode

1 Processor is in debug mode

 EJTAG Debug Support in the 74K™ Core

276 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.20 Endian Formats for PAD Register

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

11.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

Figure 11.21 Fastdata Register Format

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The

0

SPrAcc

Table 11.26 Fastdata Register Field Description

Fields

Description
Read /
Write

Power-up
StateName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fastdata access.
The PrAcc bit in the EJTAG Control register is overwritten with
zero when the access succeeds. (The access succeeds if PrAcc is
one, and the operation address is in the legal dmseg Fastdata area.)
When successful, a one is shifted out. Shifting out a zero indicates
a Fastdata access failure.
Shifting in a one does not complete the Fastdata access, and the
PrAcc bit is unchanged. Shifting out a one indicates that the access
would have been successful if allowed to complete, and a zero
indicates the access would not have successfully completed.

R/W Undefined

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most-significant byte is at lowest address.
Word is addressed by byte address of most-significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least-significant byte is at lowest address.
Word is addressed by byte address of least-significant byte.

11.5 TAP Processor Accesses

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 277

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Data plus Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fast-
data area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1, indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to
see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 11.27 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There are no restrictions on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the ECR register is not used for the FASTDATA operation.

11.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken from
the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs in a
serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Table 11.27 Operation of the FASTDATA Access

Probe
Operation

Address
Match
Check

PrAcc in
the Control

Register

LSB
(SPrAcc)
Shifted In

Action in
the Data
Register

PrAcc
Changes to

LSBShifted
Out

Data
Shifted Out

Download
using FAST-
DATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

 EJTAG Debug Support in the 74K™ Core

278 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a reset.

11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug exception:
0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc sta-
tus bit (Processor Access): when the PrAcc bit is 1, the requested address is available and can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor has to
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register.

2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

11.6 PC Sampling

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 279

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc sta-
tus bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and can
be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

11.6 PC Sampling

The PC sampling feature enables periodic sampling of the PC value. This information can be used for statistical pro-
filing akin to gprof and is also very useful for detecting hot-spots in the code. PC sampling cannot be turned on or
off, that is, the PC value is continually sampled.

The presence or absence of the PC Sampling feature is specified in Debug ControlPCS (bit 9). The sampled PC values
are written into a TAP register. The old value in the TAP register is overwritten by a new value, even if this register
has not been read out by the debug probe. The sample rate is specified in a manner similar to the PDtrace synchroni-
zation period, with three bits. These bits in the Debug Control register are 8:6 and called PCSR (PC SampleRate).

These three bits take the value 25 to 212 similar to SyncPeriod. Note that the processor samples PC even when it is
asleep (in a WAIT state). This permits an analysis of the amount of time spent by a processor in WAIT state which
may be used for example to revert to a low-power mode during the non-execution phase of a real-time application.

The sampled values includes a New data bit, the PC, the ASID of the sampled PC, and the Thread Context ID if the
processor implements the MIPS MT ASE. Figure 11.22 shows the format of the sampled values in the TAP register
PCsample. The new data bit is used by the probe to determine if the PCsample register data just read out is new or
already been read and must be discarded.

Figure 11.22 TAP Register PCsample Format

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

48 41 40 33 32 1 0

TC (for MIPS MT
processors only)

ASID PC New

 EJTAG Debug Support in the 74K™ Core

280 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.6.1 PC Sampling in Wait State

When the processor is in a WAIT state (to save power, for example), an external agent might want to know how long
it stays in the WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, when in a
WAIT state, the processor must simply switch the New bit to 1 every time it is set to 0 by the probe hardware. Hence,
the external agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains in
the WAIT state. When the processor leaves the WAIT state, counting is resumed as before.

11.7 Fast Debug Channel

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the Core and an
external device using the EJTAG TAP pins. The external device would typically be an EJTAG probe and that is the
term used here, but it could be something else. FDC utilizes two First In First Out (FIFO) structures to buffer data
between theCore and probe. The probe uses the FDC TAP instruction to access these FIFOs, while the Core itself
accesses them using memory accesses. To transfer data out of the Core, the Core writes one or more pieces of data to
the transmit FIFO. At this time, the Core can resume doing other work. An external probe would examine the status
of the transmit FIFO periodically. If there is data to be read, the probe starts to receive data from the FIFO, one entry
at a time. When all data from the FIFO has been drained, the probe goes back to waiting for more data. The Core can
either choose to be informed of the empty transmit FIFO via an interrupt, or it can choose to periodically check the
status. Receiving data works in a similar manner - the probe writes to the receive FIFO. At that time, the Core is either
interrupted, or finds out via polling a status bit. The Core can then do load accesses to the receive FIFO and receive
data being sent to it by the probe. The TAP transfer is bidirectional - a single shift can be pulling transmit data and
putting receive data at the same time.

The primary advantage of FDC over normal processor accesses or fastdata accesses is that it does not require the Core
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the Core
overhead and makes the data transfer far less intrusive to the code executing on the Core.

Refer to the EJTAG Specification [11] for the general details on FDC. The remainder of this section describes imple-
mentation specific behavior and register values.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of 0xFD.

11.7.1 Common Device Memory Map

Software on the Core accesses FDC through memory mapped registers. These memory mapped registers are located
within the Common Device Memory Map (CDMM). The CDMM is a region of physical address space that is
reserved for mapping IO device configuration registers within a MIPS processor. The base address and enabling of
this region is controlled by the CDMMBase CP0 register, see Section 7.2.22 “CDMMBase Register (CP0 Register
15, Select 2)”.

Refer to Volume III of the Architecture Reference Manuals [14] for full details on CDMM.

11.7.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being available
in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The
CauseFDCI bit indicates that the interrupt is pending. The interrupt is also sent to the core output SI_FDCI where it is
combined with one of the SI_Int pins. For non-EIC mode, the SI_IPFDCI input indicates which interrupt pin is has

11.7 Fast Debug Channel

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 281

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

been combined with and this information is reflected in the IntCtlIPFDCI field. Note that this interrupt is a regular inter-
rupt and not a debug interrupt.

The FDC Configuration Register (see Section 11.7.6.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”)
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt
thresholds are specified independently, but they are ORed together to form a single interrupt .

The following interrupt thresholds are supported:

• Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if
incoming data is available or if there is space for outgoing data.

• Minimum Core Overhead: This setting minimizes the Core overhead by not generating an interrupt until the
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

• Minimum latency: To have the Core take data as soon as it is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There is a complimentary TxFIFO not full setting although that may not be quite
as useful.

• Maximum bandwidth: When configured for minimum Core overhead, bandwidth between the probe and Core
can be wasted if the Core does not service the interrupt before the next transfer occurs. To reduce the chances of
this happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier.
This setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit
interrupts are generated when there are 0 or 1 used TxFIFO entries (see note in following section about this con-
dition)

11.7.3 74K™Core FDC Buffers

Figure 11.23 shows the general organization of the transmit and receive buffers on the 74K Core.

 EJTAG Debug Support in the 74K™ Core

282 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.23 Fast Debug Channel Buffer Organization

One particular thing to note is the asynchronous crossings between the EJ_TCK and SI_ClkIn clock domains. This
crossing is handled with a handshake interface that safely transfers data between the domains. Two data registers are
included in this interface, one in the source domain and one in the destination domain. The control logic actively
manages these registers so that they can be used as FIFO entries. The fact that one FIFO entry is in the EJ_TCK clock
domain is normally transparent, but it can create some unexpected behavior:

• TxFIFO availability: Data is first written into the SI_Clk FIFO entries, then it will move into the EJ_TCK FIFO
entry. But, it takes several EJ_TCK cycles to complete the handshake and move the data. EJ_TCK is generally
much slower than SI_ClkIn and may even be stopped (although that would be uncommon when this feature is in
use). This can result in there not being space for new data, even though there are only N-1 data values queued up.
To prevent the loss of data, the FDSTATTxF bit is set when all of the SI_ClkIn FIFO entries are full. Software writ-
ing to the FIFO should always check the FDSTATTxF bit prior to attempting a write and should not make any
assumptions about being able to arbitrarily use all entries. i.e., software seeing the FDSTATFxE bit set should not
assume that it can write FDCFGTxCnt data words without checking for full.

• TxFIFO Almost Empty Interrupt: As transmit data moves from SI_ClkIn to EJ_TCK, both of the flops will tem-
porarily look full. This makes it difficult to determine when just 1 FIFO entry is in use. To enable a simpler con-
dition, the almost empty TxInterrupt condition is set when all of the SI_ClkIn FIFO entries are empty. When this

Chan Data

Addr
Decode

Store Data to FDTXnStore Address Load from FDSTAT Load from FDRX

SI_ClkIn

EJ_TCK

Chan DataStatus

Capture-DR Update-DR

EJ_TDOEJ_TDI

Control
Logic

TxFIFO RxFIFO

Shift Register

Chan Data

Chan Data Chan Data

Chan Data

Chan Data

11.7 Fast Debug Channel

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 283

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only
one valid entry if it is an SI_ClkIn entry

• The RxFIFO has similar characteristics but these are even less visible to software since SI_ClkIn must be running
to access the FDC registers.

11.7.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the
core up.

11.7.5 FDC TAP Register

The FDC TAP instruction performs a 38 bit bidirectional transfer of the FDC TAP register. The register format is
shown in Figure 11.24 and the fields are described in Figure 11.28

Figure 11.24 FDC TAP Register Format

37 36 35 32 31 0

In
Probe Data

Accept
Data In
Valid

ChannelID Data

Out
Receive

Buffer Full
Data Out

Valid

Table 11.28 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Probe Data
Accept

37 Indicates to core that the probe is accepting the data that
was scanned out.

W Undefined

Data In Valid 36 Indicates to core that the probe is sending new data to the
receive FIFO.

W Undefined

Receive
Buffer Full

37 Indicates to probe that the receive buffer is full and the
core will not accept the data being scanned in. Analogous
to ProbeDataAccept, but opposite polarity

R 0x0

Data Out
Valid

36 Indicates to probe that the core is sending new data from
the transmit FIFO

R 0

ChannelID 35:32 Channel number associated with the data being scanned in
or out. This field can be used to indicate the type of data
that is being sent and allow independent communication
channels

Scanning in a value with ChannelID=0xd and Data In
Valid = 0 will generate a receive interrupt. This can be
used when the probe has completed sending data to the
core.

R/W Undefined

 EJTAG Debug Support in the 74K™ Core

284 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.7.6 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets
are shown in Table 11.29

11.7.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 11.25 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 11.30 describes the register fields.

Figure 11.25 FDC Access Control and Status Register Format

Data 31:0 Data value being scanned in or out R/W Undefined

Table 11.29 FDC Register Mapping

Offset in CDMM
Device Block

Register
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 ≤ n ≤ 15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevID 0 DevSize DevRev 0 Uw Ur Sw Sr

Table 11.30 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

DevID 31:24 This field specifies the type of device. R 0xfd

DevSize 21:16 This field specifies the number of extra 64-byte blocks
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.

R 0x2

DevRev 15:12 This field specifies the revision number of the device. The
value 0x0 indicates that this is the initial version of FDC.

R 0x0

Table 11.28 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

11.7 Fast Debug Channel

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 285

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.7.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 11.26 has the format of the FDC Configuration register, and Table 11.31 describes the register fields.

Figure 11.26 FDC Configuration Register Format

Uw 3 This bit indicates if user-mode write access to this device
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

R/W 0

Ur 2 This bit indicates if user-mode read access to this device is
enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

R/W 0

Sw 1 This bit indicates if supervisor-mode write access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled is ignored.

R/W 0

Sr 0 This bit indicates if supervisor-mode read access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to read from the device while in supervisor mode
with access disabled will return 0 and not change any
state..

R/W 0

0 11:4 Reserved for future use. Ignored on write; returns zero on
read.

R 0

31 20 19 18 17 16 15 8 7 0

0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

Table 11.31 FDC Configuration Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:20 Reserved for future use. Read as zeros, must be written as
zeros.

R 0

Table 11.30 FDC Access Control and Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

 EJTAG Debug Support in the 74K™ Core

286 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.7.6.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 11.27 has the format of
the FDC Status register, and Table 11.32 describes the register fields.

Figure 11.27 FDC Status Register Format

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the
state of the TxFIFO needed to generate an interrupt.

R/W 0

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the
state of the RxFIFO needed to generate an interrupt.

R/W 0

TxFIFOSize 15:8 This field holds the total number of entries in the transmit
FIFO.

R Preset

RxFIFOSize 7:0 This field holds the total number of entries in the receive
FIFO.

R Preset

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Table 11.32 FDC Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0

Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0

Table 11.31 FDC Configuration Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 Transmit Interrupt Disabled

1 Empty

2 Not Full

3 Almost Empty - zero or one entry in
use*(see 11.7.2 for specifics)

Encoding Meaning

0 Receive Interrupt Disabled

1 Full

2 Not empty

3 Almost Full - zero or one entry free

11.7 Fast Debug Channel

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 287

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.7.6.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the
FIFO is empty is also UNDEFINED so software must check the FDSTATRxE flag prior to reading. Figure 11.28 has
the format of the FDC Receive register, and Table 11.33 describes the register fields.

Figure 11.28 FDC Receive Register Format

11.7.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers all access the bottom entry in the transmit FIFO. The different addresses are used to generate a
4b channel identifier that is attached to the data value. This allows software to track different event types without
needing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit
FIFO of the data value and channel ID corresponding to the register being written. Reads from these registers are
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software
running on the core must check the FDSTATTxF flag to ensure that there is space for the write. Figure 11.29 has the
format of the FDC Transmit register, and Table 11.34 describes the register fields.

Figure 11.29 FDC Transmit Register Format

0 15:8 Reserved for future use. Must be written as zeros and read
as zeros.

R 0

RxChan 7:4 This field indicates the channel number used by the top
item in the receive FIFO. This field is only valid if RxE=0.

R Undefined

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not set,
the FIFO is not empty.

R 1

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set, the
FIFO is not full.

R 0

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not set,
the FIFO is not empty.

R 1

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set, the
FIFO is not full.

R 0

31 0

RxData

Table 11.33 FDC Receive Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

31 0

TxData

Table 11.32 FDC Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

 EJTAG Debug Support in the 74K™ Core

288 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.8 MIPS® Trace

The optional MIPS Trace block provides the user with an informative method of tracing program flow, load/store
addresses and data, performance counters, and core-specific inefficiencies. The level of information which is traced,
for example, tracing only when in specific processor modes (e.g., User Mode or Kernel Mode) is controlled by
run-time options.

When MIPS Trace is implemented, the CP0 Config3TL bit is set by hardware when the core is configured.

The pipeline-specific architecture of MIPS Trace is specified in the PDtrace™ Interface and Trace Control Block
Specification [12].

There are two primary functional blocks: the PDtrace capture block and the blocks that implement the functionality of
the Trace Control Block (TCB). The PDtrace capture block extracts the trace information from the end of the proces-
sor pipeline from the in-order graduation stage and stores the information in an internal FIFO called the Unified
FIFO. The capture block then presents the data from the Unified FIFO to the PDtrace compression block.

The functionality of the TCB is specified in

The compression block and the TCB Registers implement the Trace Control Block (TCB). Though there is not an
explicit module called TCB, the functionality of the TCB, as specified in [12], has been completely implemented and
integrated into the PDtrace unit. Thus, it is no longer a customer option to implement a custom TCB.

Note that the generic pin interface, as defined in the retired document PDtrace™ Interface Specification, that was
used to “communicate” between the capture and the TCB functionality is deprecated. The interface is replaced by an
internal interface that is called the capture-to-compression interface. This interface is embedded inside the 74K core,
and will not be discussed in detail here. Suffice it to say that the internal interface embodies all the functionality
described in [12]. While working closely together, the two parts of MIPS Trace are controlled separately by software.
Figure 11.30 shows an overview of the MIPS Trace modules within the core.

Table 11.34 FDC Transmit Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

TxData 31:0 This register holds the bottom entry in the transmit FIFO W,
Undefined
value on

read

Undefined

Table 11.35 FDTXn Address Decode

Addr Chan Addr Chan Addr Chan Addr Chan

0x20 0x0 0x40 0x4 0x60 0x8 0x80 0xc

0x28 0x1 0x48 0x5 0x68 0x9 0x88 0xd

0x30 0x2 0x50 0x6 0x70 0xa 0x90 0xe

0x38 0x3 0x58 0x7 0x78 0xb 0x98 0xf

11.8 MIPS® Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 289

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.30 MIPS® Trace Functional Blocks in the 74K™ Core

To some extent, the two modules provide similar trace control features, but the access to these features is quite differ-
ent. The PDtrace software controls can only be reached through access to CP0 registers. The PDtrace hardware con-
trols can only be reached through EJTAG TAP access. The selection of one of these controls determines what is
traced from the core pipeline and the information presented in the internal capture-to-compression interface.

Before describing the MIPS Trace implemented in the 74K core, some common terminology and basic features are
explained. The remaining sections of this chapter will then provide a more thorough explanation.

11.8.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes.
The terminology is then used elsewhere in the document.

DebugMode ← (DebugDM = 1)
ExceptionMode ← (not DebugMode) and ((StatusEXL = 1) or (StatusERL = 1))
KernelMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#00)
SupervisorMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#01)
UserMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#10)

11.8.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms “software control” and “hardware control” are used to refer to
the method used to control for the trace. Software control is when the CP0 register TraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCBRegs is used to select
the trace modes. The TraceControlTS bit determines whether software or hardware control is active. Even in Software
control mode, trace logic will need to toggle TCK atleast once before it is turned on. It is assumed that the EJTAG
probe will be connected while using trace, and the probe’s reset sequence would toggle TCK. Note that to extract trace
data from the trace compression block, TCBCONTROLBEN should be set to 1. even in “software control” mode.

11.8.3 Trace Information

The main object of trace is to show the exact program flow from a specific program execution or just a small window
of the execution. In MIPS Trace this is done by providing the minimal cycle-by-cycle information necessary for trace
regeneration software to reproduce the trace. The following is a summary of the type of information traced:

Pipeline-specific PDtrace™
block

Internal Interface

Control pathCP0 control bus EJTAG TAP access

Extracted Pipeline
information

Back-stall to
pipeline

On-chip Trace
Memory (optional)

Trace
Probe

74K boundary
(m74k_top)

Trace
compression and

allignment
Trace

extraction

TAP
Probe

Capture-to-compression

Pipeline-independant
Trace Contol Block (TCB) functionality

 EJTAG Debug Support in the 74K™ Core

290 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag.
The PC is implicitly pointing to the next instruction.

• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static program
image.

• When branch targets are unpredictable, only the delta value from the current PC is traced, if it is dynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is
traced.

• When a completing instruction is executed in a different processor mode from the previous one, the new pro-
cessor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and
full PC. The sync instruction is not a load and not a store.

All the instruction flags above are combined into one, 3-bit value, called the “instruction completion” to minimize the
bit information to trace. The possible processor modes are explained in Section 11.8.1 “Processor Modes”.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software must know the static program image in memory, in order to reproduce the dynamic flow
with the above information. But this is usually not a problem. Only the virtual value of the PC is used. Physical mem-
ory location will typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a
safety check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this syn-
chronization is cycle-based and programmable.

11.8.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace:

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to
compress the information which must be sent.

1. An SC (Store Conditional) instruction is flagged as a store instruction, even if the load-locked bit prevented the actual store.
Thus the SC does not have special handling and is treated as any other store; it is up to the reconstruction software to deter-
mine if the SC succeeded or failed.

11.8 MIPS® Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 291

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full address if load/store address tracing is enabled.

11.8.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 11.8.1 “Processor Modes”. In addition to this, trace can be
turned on globally for all processes, or only for specific processes, by tracing only specific masked values of the
ASID found in EntryHiASID.

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn
them all on. Another trigger point can disable this override.

11.8.6 Programmable Trace Information Options

The processor mode changes are always traced:

• On the first instruction

• On any synchronization instruction

• When the mode changes, and either the previous or the current processor mode is selected for trace

The amount of extra information traced is programmable to include:

• PC information only

• PC and cross product of load/store address/data

• If the optional performance counter trace is enabled, when the specific events defined in Section
11.8.11 “Performance Counter Tracing” occur, up to four performance counter registers are traced.

If the full internal state of the processor is known prior to trace start, PC and load data are the only information
needed to recreate all register values on an instruction-by-instruction basis.

11.8.6.1 User Data Trace

Two special CP0 registers, UserTraceData1 and UserTraceData2, can generate a data trace. When either of these reg-
isters is written, and the global Trace On is set, the 32-bit data written is put in the trace as special User Data informa-
tion. Since writing these registers is performed via an MTC0 operation, only one register is updated in any given
cycle. Thus in the same cycle, only one of the UserTraceData registers is traced. However, in back to back cycles, the
tracing of the two registers can alternate and is handled correctly.

 EJTAG Debug Support in the 74K™ Core

292 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Note: The User Data is sent even if the processor is operating in an un-traced processor mode.

11.8.7 Enable Trace to Probe On-chip Memory

When trace is On, based on the options listed in Section 11.8.5 “Programmable Processor Trace Mode Options”, the
trace information is continuously sent to the Trace Compression and TCB Control Block. However, the TCB must be
enabled to transmit the trace information to the Trace probe or to on-chip trace memory by setting the
TCBCONTROLBEN bit. This bit can be set in three ways:

• Set/clear the TCBCONTROLBEN bit via an EJTAG TAP operation.

• Initialize a TCB trigger to set/clear the TCBCONTROLBEN bit.

• Use the drseg mapping of TCBCONTROLB to clear TCBCONTROLBEN via a load to drseg space. See
Section 11.8.15 “Memory-mapped Access to On-Chip Trace RAM” for special access rules.

11.8.8 TCB Trigger

The TCB can optionally include 0 to 8 triggers. A TCB trigger can be programmed to fire from any combination of:

• Probe Trigger Input to the TCB

• Chip-level Trigger Input to the TCB

• Processor entry into DebugMode

When a trigger fires, it can be programmed to have any combination of actions:

• Create Probe Trigger Output from TCB

• Create Chip-level Trigger Output from TCB

• Set, clear, or start countdown to clear the TCBCONTROLBEN bit (start/end/about trigger)

• Put an information byte into the trace stream, that is, a TF6 is inserted into the trace stream

11.8.9 Cycle-by-Cycle Information

The PDtrace capture block collects all of the trace information listed in Section 11.8.3 “Trace Information” and
Section 11.8.4 “Load/Store Address and Data Trace Information”. The trace is then compressed and aligned to fit in
64-bit trace words, with no loss of information. It is possible to exclude/include the exact cycle-by-cycle relationship
between each instruction. If excluded, the number of bits required in the trace information from the TCB is reduced,
and each trace word will only contain information from completing instructions.

11.8.10 Instruction and Data Cache Miss Tracing

It is possible to embed information about Instruction and/or Data cache misses into the trace information, with some
limitations, as described below.

For the instruction cache miss indicator:

11.8 MIPS® Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 293

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

• The instruction cache miss indicator is based on whether the instruction is pulled from the cache or the fill buffer.
On a cache miss, the fetch is restarted when the data comes back from the BIU and the instructions will come
from the Fill Buffer (FB). The miss flag is only set for the first fetch that hits out of the FB to avoid marking
every fetch from the line a miss. However, two instructions can be fetched per cycle and both will be marked as a
miss, though if branching to the middle of a dword, only 1 miss will be seen.

• The IFU can prefetch a speculative path which might not be immediately executed. These speculative fetches are
filled into the cache; subsequently, when the code accesses the same address, it is possible that the instruction
will hit in the cache even if that instruction was being executed for the first time.

For the data cache miss indicator:

• PDtrace instruction capture is done at the end of the GRU (graduation) pipe. However, at this point the cache
miss info is not accurate. Hit indication is accurate, but the miss indication is not. The miss could change to a hit
after it enters the LSU graduation buffer. Thus, this miss indicator is instead sent with the data value.

• For loads, this allows an accurate miss indication as the miss state must be resolved before we have the data.

• For stores, the miss indicator is also sent with the data value. The store data value is captured when the store
instruction exist the LSU graduation buffer.

11.8.11 Performance Counter Tracing

The optional feature of including performance counter values in the trace stream allows performance counter events
to be correlated with the specific instruction execution path. TraceControl3PeC indicates if this optional feature is
implemented, and the feature is enabled via TraceControl3PeCE and TCBCONTROLEPeCE.

Performance counters are traced out based on four specific events. When an enabled event occurs, up to four perfor-
mance counters are traced and a fifth value is traced by the core. The fifth value is the cycle count register. Tracing the
cycle count register is unique to the core.

Control over which particular performance counter is traced is specified by bit PCTD in each Performance Counter
Control register. If set to zero (default setting), tracing is enabled for this performance counter, and if set to one, trac-
ing is disabled for this performance counter. The cycle counter is traced out if at least one of the performance counter
control PCTD bits is set, and at least one of the enabled performance counter tracing events occurs. In the case where
more than one event occurs in the same cycle, the performance counter values are traced only once for that cycle.

1. Synchronization counter expiration will trigger tracing of the performance counter values. This is controlled by
TraceControl3PeCSync and TCBCONTROLEPeCSync.

2. Hardware trace breakpoint will trigger tracing of the performance counter values. This is contingent on several
control bit settings. The TE bit in the breakpoint control register should be set. This allows a trigger signal to be
sent to the Trace Unit. When set, TraceControl3PeCBP / TCBCONTROLEPeCBP act as the enable for performance
counter tracing. Additionally the generation of a performance counter trigger is controlled by setting active both
TraceIBPCPCT and TraceIBPCIE, and, or setting active hi both TraceDBPCPCT and TraceDBPCIE . Furthermore,
the BreakPointControl field for the specific hardware breakpoint in TraceIBPC or TraceDBPC must be encoded as
3’b100 or 3’b101 to allow performance counter values into the trace stream.

3. Function call, function return, or the occurrence of an exception will trigger tracing of the performance counter
values. This is controlled by TraceControl3PeCFCR / TCBCONTROLEPeCFCR.

 EJTAG Debug Support in the 74K™ Core

294 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

4. An overflow of an active performance counter will trigger tracing of the performance counter values. This is con-
trolled by TraceControl3PeCOvf / TCBCONTROLEPeCOvf.

The Performance counter data will always use a TF3 with the PCV bit set to one. If the traced data is not Performance
counter data, and performance counter tracing is enabled, then the PCV bit will be zero.

11.8.12 Filtered Data Trace Mode

This mode is used to support tracing of events in application code on a Linux system. This type of instrumented code
tracing is primarily used for performance analysis, although it can also be used for event logging and debug. Filtered
data tracing mode provides a mechanism to do low-overhead event tracing from user application code, since the
UserTraceData registers require a kernel call from user mode.

In this mode, data load and store addresses are compared to the hardware data breakpoint address. If the addresses
match, the data value and address associated with that match are traced out.

This mode works even when data address and/or value tracing is turned on. However, the general usage model is
when both PC and Data trace are turned off since it may not always be possible to identify data that was traced due to
a match vs. the regular data stream. This mode is used to shadow one or more static (fixed-address) variables. When
there is a store to the variable, the store value is captured into the trace. Since there are generally two or more data
triggers/watchpoints, the trace will need to uniquely identify the shadowed variable by also tracing out the associated
address.

Filtered Data Trace mode is controlled by TraceControl2FDT / TCBCONTROLBFDT.

11.8.13 PC Tracing Off

PC tracing turned off is simply to disable PC tracing which is controlled by TraceControl2Mode.PC /
TCBCONTROLCMode.PC. Turning off this bit has more implications than simply not tracing the PC. There is some
special behavior which is contingent on the setting of other mode bits.

1. PC tracing off, TLSM=1 (TraceControlTLSM / TCBCONTROLATLSM), Address tracing=0, Data tracing=0. For data
cache misses, trace out full PC and full address and the associated instruction completions. Instruction comple-
tion information not associated with a data cache miss will not appear in trace memory.

2. PC tracing off, TLSM=1, One or both of these modes is enabled {Address tracing, Data tracing}: PC is not traced
out, but only what is enabled—for example if address tracing is enabled, the full address is traced out. Instruction
completion information not associated with a traced address or a traced data will not appear in trace memory.

3. PC tracing off, TIM=1 (TraceControlTIM / TCBCONTROLATIM), or TFCR=1 (TraceControlTFCR /
TCBCONTROLATFCR): If an instruction cache miss or function call/return occurs, the full PC is traced along with
the corresponding instruction completion information.

4. PC tracing off, TLSM=0, TIM=0, TFCR=0: All trace messages related to instructions are disabled. TF6 with
no-trace counts can still be generated if Cycle Accurate mode is enabled. TF2 should never be generated.

In addition, when PC tracing is turned off, PC-sync messages are globally disabled, except if Performance Monitor-
ing is enabled. The reconstruction software would need a PC-sync in the case of TLSM=1 if the PCs traced out were
delta PCs. However, given that the full PC is traced, there is no need for the PC-Sync message.

11.8 MIPS® Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 295

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

When Performance Monitoring is enabled and PC tracing is off then PC-sync messages are traced. The sync mes-
sages provide periodic sampling and along with the Performance Counter data, some conditions like average IPC over
fixed intervals, or cache miss ratio can be inferred from the trace.

With PC tracing disabled, there is a significant decrease in the instruction completion information that is traced. Only
if the PC, address, or data have been traced out will the corresponding instruction completion also be traced; other-
wise, the instruction completion is dropped.

11.8.14 TMOAS Handling

The MIPS PDtrace™ Specification requires a TMOAS transaction to be inserted into the trace stream. TMOAS trans-
actions are used to record processor mode change, start or end of the tracing activity, overflow of the internal buffers
in the PDtrace unit, and periodic synchronization. The following is a summary of the cases where a TMOAS transac-
tion is generated:

• Start of Tracing, When tracing is first started, or when it is re-started after a break, some basic information is
needed to allow external software to identify the trace start point in the static program image, and to make some
reasonable conclusions about the processor mode. At the start of the tracing, a TMOAS record is sent out at the
same time as the first completed instruction. This trace record type shows the processor mode and the ASID
value of the currently executing processor. This record is followed by a trace of the full PC value for the first
instruction traced.

• Trace Synchronization, The synchronization tracing function is triggered when the internal synchronization
counter overflows, based on the synchronization period bits as set in TraceControl2SyP andTCBCONTROLASyP.
As with the start of tracing, when the synchronization period is reached, a TMOAS record is sent, followed by a
full PC value. Note that the TMOAS associated with synchronization is sent only when the IPC instruction has
been identified, in order to prevent other TType records between the TMOAS and the full PC trace for the syn-
chronization.

• Trace Overflow and Restart. The trace unit’s internal FIFO or buffers are used to hold address and data values
waiting to be compressed, formatted, and traced out of the processor. It is possible to have a program sequence
that overflows one or more of these FIFOs. In this situation, the core is essentially losing trace data and thus the
output is no longer a true representation of the program execution sequence. In this situation, the abandon tracing
in the current cycle, discard all entries in the FIFO, and restart tracing from the next completed instruction in the
following cycle. In this situation, a TMOAS record is first sent after the overflow.

• Tracing During Processor Mode Changes. During normal execution, the processor will change its operation
mode frequently. For example, when executing user-level code, an interrupt may cause the processor to jump to
kernel mode to service the interrupt. When the interrupt has been serviced, the processor will return to user
mode. A mode change is indicated in the tracing logic by tracing out a TMOAS for TType. In the situation that
the mode change affects tracing—for example, the tracing system has been set up to trace only in user mode and
not in kernel mode—then the interrupt service routine should not be traced. Upon jumping to kernel mode, the
core tracing logic will add a TMOAS as the last record. When jumping from a non-tracing mode to a tracing
mode, the first record output is TMOAS to indicate the mode change. This is followed by a full PC value of the
first instruction in the tracing mode. This will enable the external trace reconstruction software to re-synchronize
itself and track program execution in the desired mode.

Figure 11.31 and Table 11.36 describe the bit fields for a TMOAS record. A TMOAS record is usually associated
with an instruction, except for the case of a trace end TMOAS, where a TMOAS is sent out because the processor
enters a non-tracing mode. In this case, the TMOAS is not associated with any instruction because the processor is
not tracing, and some of the fields in the TMOAS record can be invalid data, for example, the ISAM field can be inde-
terministic. This should not present an issue for the software, because this TMOAS is only used as an indication that
the trace has ended.

 EJTAG Debug Support in the 74K™ Core

296 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

.

Table 11.36 TMOAS Trace Record Field Descriptions

Figure 11.31 A TMOAS Trace Record
31 30 23 22 21 20 19 16 15 14 13 12 11 10 8 7 0

0 TCid DKill V PIKill PendL SYNC EPL 0 ISAM POM ASID

Fields

DescriptionName Bits

TCid 30:23 Id of the TC that corresponds to the DKill signal assertion described below.
Only required if the processor implements MT; otherwise reserved.

DKill 22 When a ITC data instruction is killed for a given TC, this is indicated by
asserting a TMOAS record with this bit set and a TCid value. When this bit is
not set to one, it indicates that no Data kill information is valid in this
TMOAS record.
Only required if the processor implements MT; otherwise reserved.

V 21 This bit determines whether or not only the DKill bits are valid in this
TMOAS record, or the entire TMOAS record is valid. That is, if V is 0, then
all defined TMOAS bits are valid, and if V is 1, then only bits 30:22 are
valid.
Only required if the processor implements MT; otherwise ignored.

PIKill 20 This bit indicates that the instruction just previously traced was actually
killed after it was traced. This scenario is possible in some situations where
for example, an exception is taken after the ER stage of the ALU pipe. There
are at least two cases to consider:
• If an exception happens after ER when tracing a LW/SW accessing ITC

memory in a core implementing MT.
• If in an MT core, a TC is halted while executing Wait, Yield, or an instruc-

tion accessing ITC memory.
Only required if the processor implements MT; otherwise ignored.

PendL 19:16 This field is valid only when SYNC is 1. When SYNC is 1, this field indi-
cates the number of outstanding loads and stores at the IPC cycle. If the num-
ber of load/stores is zero, then all data transmissions’ TDs thereafter are
ignored until the next load/store instruction, at which point counting is
restarted. Such TD transmissions are from store instructions which could not
complete before the IPC signal was sent.
Note that a sync occurs with an InsComp value of IPC (indicating that the
instruction completed this cycle was a PC SYNC). Depending on whether or
not there is data internally buffered and waiting to be sent, the accompanying
TMOAS may not be sent until several cycles later. In the meantime, any data
sent in between the IPC and the TMOAS record may be ignored (at trace
start or after an overflow) since this belongs to load and store instructions
that happened before the sync. Now, if there are any load or store instructions
between the IPC and the TMOAS, then the data for this will only be seen
after the TMOAS is transmitted, since they would get buffered behind the
TMOAS.

11.8 MIPS® Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 297

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.8.15 Memory-mapped Access to On-Chip Trace RAM

The main access mode to the on-chip trace memory is provided by the TAP Probe using the EJTAG Tap access port to
the Trace unit. The on-chip trace memory can also be accessed directly by software using load and store instructions.
Access is provided by mapping the TCB registers to drseg address space, which allows them to be accessed by soft-
ware in debug mode. Because the TCB registers that are accessed indirectly via TCBData by the TAP Probe are
mapped directly to drseg, the TCBData register does not need to be mapped.

The mapped drseg registers are shown in Table 11.37. These mappings are “active” only when an external probe is
either not present or not enabled (i.e., the ProbEN bit in the EJTAG Control Register or ECR is set to zero). If the map-
pings are active, writes to the TCB registers via drseg are enabled (so long as these writes are otherwise permitted). If
the mappings are inactive, writes to the TCB registers via drseg are ignored. Note that a hardware probe could set the
ProbEN bit to zero and still access the TCBControl registers. Writing the TCB registers via the probe and drseg
simultaneously will result in unpredictable behavior. Software should not rely on reads from the TCB registers via
drseg to return reliable data when the mappings are inactive. If the mappings are active on reset (i.e., ProbEN=0), soft-
ware is responsible for initializing all control register fields, except for TCBCONTROLAOn and TCBCONTROLBEn.;
those control bits are set to zero on a core reset if the drseg mappings are active.

SYNC 15 When 0, this record was sent when the ASID, POM, or ISAM changed.
When 1, this record was sent for a synchronization event.

EPL 14 When 1, the PendL field is to be interpreted as (PendL + 16). When 0, the
PendL field is interpreted by itself. This is introduced in PDtrace rev. 6.00

ISAM 12:11 Indicates ISA mode:

POM 10:8 Indicates processor mode:

ASID 7:0 The ASID of the current process. If the processor does not implement the
standard TLB-based MMU, this field is always traced as a zero because the
EntryHi register, and hence the ASID, is not defined.

R 31,13 Reserved for future use.

Fields

DescriptionName Bits

Value In Architecture Mode

00 MIPS32

01 MIPS64

10 MIPS16e from MIPS32 mode

11 MIPS16e from MIPS64 mode

Value Description

000 Kernel Mode (EXL = 0, ERL = 0)

001 Exception Mode (EXL = 1, ERL = 0)

010 Exception Mode (EXL = don’t care, ERL = 1)

011 Debug Mode

100 Supervisor Mode

101 User Mode

110 Reserved

111 Reserved

 EJTAG Debug Support in the 74K™ Core

298 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

On-chip trace memory can be read by doing a load instruction to TCBTW. Accessing the TCBTW has the side effect
of automatically incrementing the value of TCBRDP to the next trace word. The trace memory cannot be written to
via this mechanism. Software can also do direct loads and stores to TCBRDP and TCBWRP at the beginning of the

Table 11.37 Mapping TCB Registers in drseg

Offset in drseg Register Name Description

0x3000 TCBControlA The TCBControlA register. See Section 11.10.1 “TCBCONTROLA Register” for more
details about register contents.

0x3008 TCBControlB The TCBControlB register. See Section 11.10.2 “TCBCONTROLB Register” for more
details about register contents.

0x3010 TCBControlC The TCBControlC register. See Section 11.10.4 “TCBCONTROLC Register” for more
details about register contents.

0x3020 TCBControlE The TCBControlE register. See Section 11.10.5 “TCBCONTROLE Register” for more details
about register contents.

0x3028 TCBConfig The TCBConfig register. See Section 11.10.6 “TCBCONFIG Register (Reg 0)” for more
details about register contents.

0x3100 TCBTW Trace Word read register. This register holds the Trace Word just read from on-line trace mem-
ory. See Section 11.10.7 “TCBTW Register (Reg 4)” for more details about register contents.

0x3108 TCBRDP Trace Word Read pointer. It points to the location in the on-line trace memory where the next
Trace Word will be read. A TW read has the side-effect of post-incrementing this register value
to point to the next TW location. (A maximum value wraps the address around to the begin-
ning of the trace memory). See Section 11.10.8 “TCBRDP Register (Reg 5)” for more details
about register contents.

0x3110 TCBWRP Trace Word Write pointer. It points to the location in the on-line trace memory where the next
new Trace Word will be written. See Section 11.10.9 “TCBWRP Register (Reg 6)” for more
details about register contents.

0x3118 TCBSTP Trace Word Start Pointer. It points to the location of the oldest TW in the on-chip trace mem-
ory. See Section 11.10.10 “TCBSTP Register (Reg 7)” for more details about register con-
tents.

0x3120 BKUPRDP This is not a TCB register, but is needed on a reset to save the TCBRDP value before that reg-
ister is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last-known good value of TCBRDP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3128 BKUPWRP This is not a TCB register, but needed on a reset to save the TCBWRP value before that regis-
ter is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last known good value of TCBWRP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3130 BKUPSTP This is not a TCB register, but is needed on a reset to save the TCBSTP value before that reg-
ister is reset to 0. This allows the software that comes up after a (hard or soft) reset to know the
last known good value of TCBSTP before system crash, and potentially read the trace mem-
ory from or to the appropriate trace memory location.

0x3200-0x3238 TCBTrigX The TCBTrigX set of registers. The number of implemented registers is determined by the
value in TCBCONFIGTRIG. See Section 11.10.11 “TCBTRIGx Register (Reg 16-23)” for
more details about register contents.

11.8 MIPS® Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 299

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

trace memory dump function. Note that writing to these registers in the middle of the trace logic writing into this
memory can result in UNPREDICTABLE results and junked values in the trace memory.

Whether or not software has access to on-chip trace memory is controlled by TCBCONTROLBTRPAD. This is a control
disable bit. The bit in TCBCONTROLB is mirrored in TraceControl3. To access the on-chip memory control registers,
namely the memory pointers, the TCBTW, and both of the backup pointer bits,TRPAD and ProbEN, must be zero. To
access the other registers, it is sufficient to set the ProbEN bit to zero. Regardless of the setting of ProbEN and
TRPAD, all the registers listed in Table 11.37 can be read out by software.

Tracing is stopped when the system crashes and an exception handler is invoked. The last known valid values of
TCBRDP, TCBWRP, and TCBSTP are saved in the backup registers shown in the table. Software should not rely on
TCBRDP, TCBWRP, and TCBSTP holding their last known good values across a reset, and should use the backup reg-
isters for this purpose.

11.8.16 Core-Specific Event Inefficiency Tracing

It is possible the trace can relay some hints as to the reason for loss of execution performance. This is done by
enabling the core-specific inefficiency tracing via TraceControlbit28 / TCBCONTROLAbit28. The inefficiency is deter-
mined at the same point that the PC, address, data, etc. is captured from the core pipeline. That is, the inefficiency is
determined in the last pipestage of the graduation. An inefficiency code applies only when there is no instruction
graduating. In other words, the inefficiency replaces an “NI”.

When inefficiency tracing is enabled, the instruction completion indicator in all trace formats that have an instruction
completion field will increase from three bits to four bits. Reconstruction software will look for the extra bit, and
when the msb of the instruction completion is set to 1’b1, which indicates that the inefficiency code is valid. If the
msb of the instruction completion is set to 1’b0, then a valid instruction has graduated and there is no inefficiency.

The inefficiency events defined are the following:

1. Load/store cache miss is the reason for the “NI”.

2. Branch/return misprediction is the reason for the “NI”.

3. Replay of a load consumer, or a branch likely, or a cacheop is the reason for the “NI”.

4. Graduation stall, due to the backpressure of the Load Store Graduation Buffer (LSGB) full or some other stall
from the core is the reason for the “NI”.

11.8.17 Trace Message Format

The TCB collects trace information every cycle from the PDtrace interface. This information is collected into six dif-
ferent Trace Formats (TF1 to TF6). All Trace Formats have at least one non-zero bit, which prevents the reconstruc-
tion software from incorrectly detecting an end of trace.

11.8.18 Trace Word Format

After the PDtrace data has been encoded in Trace Formats, the trace information must be streamed to either on-chip
trace memory or to the trace probe. Each of the major Trace Formats are of different size, which complicates their
efficient storage in an on-chip memory of fixed width and their transmission through a fixed-width trace probe inter-
face to off-chip memory. To minimize memory overhead and/or bandwidth-loss, the Trace Formats are collected into
Trace Words of fixed width.

 EJTAG Debug Support in the 74K™ Core

300 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW contains all zeros. A TW which contains one
or more valid TFs is guaranteed to have a non-zero value in one of the four least-significant bits [3:0]. During opera-
tion of the TCB, each TW is built from the TFs generated each clock cycle. When all 64 bits are used, the TW is full
and can be sent to either on-chip trace memory or to the trace probe.

11.9 PDtrace™ Registers (Software Control)

The CP0 registers associated with PDtrace are listed in Table 11.38 and described in Chapter 7, “CP0 Registers of the
74K™ Core”.

11.10 Trace Control Block (TCB) Registers (Hardware Control)

The registers used to control TCB operations are described in Table 11.39 and Table 11.40. These registers are
accessed via the EJTAG TAP interface.

Table 11.38 A List of Coprocessor 0 Trace Registers

Register
Number Sel Register Name Reference

23 1 TraceControl Section 7.2.31 “Trace Control Register (CP0 Register 23, Select 1)”

23 2 TraceControl2 Section 7.2.32 “Trace Control2 Register (CP0 Register 23, Select
2)”

24 2 TraceControl3 Section 7.2.37 “Trace Control3 Register (CP0 Register 24, Select
2)”

23 3 UserTraceData1 Section 7.2.33 “User Trace Data1 Register (CP0 Register 23, Select
3) and User Trace Data2 Register (CP0 Register 24, Select 3)”

24 3 UserTraceData2 Section 7.2.33 “User Trace Data1 Register (CP0 Register 23, Select
3) and User Trace Data2 Register (CP0 Register 24, Select 3)”

23 4 TraceIBPC Section 7.2.34 “TraceIBPC Register (CP0 Register 23, Select 4)”

23 5 TraceDBPC Section 7.2.35 “TraceDBPC Register (CP0 Register 23, Select
5)”Section 7.2.34 “TraceIBPC Register (CP0 Register 23, Select 4)”

Table 11.39 TCB EJTAG Registers

EJTAG
Register Name Description Implemented

0x10 TCBCONTROLA Control register in the TCB mainly used for controlling the trace input sig-
nals to the core on the PDtrace interface. See Section
11.10.1 “TCBCONTROLA Register”.

Yes

0x11 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with
the trace information. The REG [25:21] field in this register specifies the
number of the TCB internal register accessed by the TCBDATA register. A
list of all the registers that can be accessed by the TCBDATA register is
shown in Table 11.40. See Section 11.10.2 “TCBCONTROLB Register”.

Yes

0x12 TCBDATA This is used to access registers specified by the REG field in the
TCBCONTROLB register. See Section 11.10.3 “TCBDATA Register”.

Yes

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 301

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
core’s tracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register is written by an EJTAG TAP controller instruction, TCBCONTROLA (0x10).

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 11.41.

Figure 11.32 TCBCONTROLA Register Format

0x13 TCBCONTROLC Control Register in the TCB used to control and hold tracing information.
See Section 11.10.4 “TCBCONTROLC Register”.

Yes

0x16 TCBCONTROLE Control Register in the TCB used to control tracing for the performance
counter tracing feature. See Section 11.10.5 “TCBCONTROLE
Register”.

Yes

Table 11.40 Registers Selected by TCBCONTROLB

TCBCONTROLBREG
Field Name Reference Implemented

0 TCBCONFIG Section 11.10.6 “TCBCONFIG Register (Reg 0)” Yes

4 TCBTW Section 11.10.7 “TCBTW Register (Reg 4)” Yes
if on-chip memory exists.

Otherwise No
5 TCBRDP Section 11.10.8 “TCBRDP Register (Reg 5)”

6 TCBWRP Section 11.10.9 “TCBWRP Register (Reg 6)”

7 TCBSTP Section 11.10.10 “TCBSTP Register (Reg 7)”

16-23 TCBTRIGx Section 11.10.11 “TCBTRIGx Register (Reg 16-23)” Only the number indicated
by TCBCONFIGTRIG are

implemented.

31 30 29 27 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

SyPExt Impl 0 VModes ADW SyP TB IO D E S K U ASID G TFCR TLSM TIM On

Table 11.39 TCB EJTAG Registers

EJTAG
Register Name Description Implemented

 EJTAG Debug Support in the 74K™ Core

302 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 11.41 TCBCONTROLA Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SyPExt 31:30 Extension to the SyP (sync period) field for implementations that
need higher numbers of cycles between synchronization events.
The value of SyP is extended by assuming that these two bits are
juxtaposed to the left of the three bits of SyP (SypExt.SyP). When
only SyP was used to specify the synchronization period, the value

was 2x, where x was computed from SyP by adding 5 to the actual
value represented by the bits. A similar formula is applied to the 5
bits obtained by the juxtaposition of SyPExt and SyP. Sync period

values greater than 231 are UNPREDICTABLE. That is all values
greater than 11010 (26+5=31) are UNPREDICTABLE. With

SyPExt bits, a sync period range of 25 to 231 cycles can be obtained.

R/W 0

Impl 29 Reserved for implementation-specific use. R 0

Ineff 28 Core-specific inefficiency tracing is enabled. If enabled core-specific
trace information is included in the trace stream. The inefficiency
code replaces an “NI” and is interpreted in the trace stream with an
expanded InsComp. The InsComp is expanded from 3b to 4b for all
trace formats.

R/W 0

Impl 27 Reserved for implementation-specific use. R 0

0 26 Reserved. Must be written as zero; returns zero on read. R 0

VModes 25:24 This field specifies the type of tracing that is supported by the pro-
cessor:

This field is preset to the value of ValidModes.

R 10

ADW 23 The data value width used in the trace formats: R 1

Encoding Meaning

00 PC tracing only

01 PC and Load and store address tracing only

10 PC, load and store address, and load and store data.

11 Reserved

Encoding Meaning

0 width is 16 bits

1 width is is 32 bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 303

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchronization
information is to be sent is defined as shown in the table below.

R/W 000

TB 19 Trace All Branches.
When set to one, this field indicates that the core must trace either
full or incremental PC values for all branches. When set to zero,
only the unpredictable branches are traced.

R/W Undefined

IO 18 Inhibit Overflow.
This bit is used to indicate to the core trace logic that slow but com-
plete tracing is desired. Hence, the core tracing logic must not allow
a FIFO overflow and discard trace data. This is achieved by stalling
the pipeline when the FIFO is nearly full so that no trace records are
ever lost.

R/W Undefined

D 17 When set to one, this enables tracing in Debug mode, i.e., when the
DM bit is one in the Debug register. For trace to be enabled in
Debug mode, the On bit must be one and either the G bit must be
one, or the current process must match the ASID field in this regis-
ter.
When set to zero, trace is disabled in Debug mode, irrespective of
other bits.

R/W Undefined

E 16 This controls when tracing is enabled. When set, tracing is enabled
when either of the EXL or ERL bits in the Status register is one, pro-
vided that the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.

R/W Undefined

S 15 When set, this enables tracing when the core is in Supervisor mode
as defined in the MIPS32 or MIPS64 architecture specification. This
is provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.

R/W Undefined

K 14 When set, this enables tracing when the On bit is set and the core is
in Kernel mode. Unlike the usual definition of Kernel Mode, this bit
enables tracing only when the ERL and EXL bits in the Status reg-
ister are zero. This is provided the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matches the
ASID field in this register.

R/W Undefined

Table 11.41 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212

 EJTAG Debug Support in the 74K™ Core

304 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do with
the trace information received.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 11.42.

Figure 11.33 TCBCONTROLB Register Format

U 13 When set, this enables tracing when the core is in User mode as
defined in the MIPS32 or MIPS64 architecture specification. This is
provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is
one, this field is ignored.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes,
provided that other enabling functions (like U, S, etc.,) are also true.

R/W Undefined

TFCR 3 When set, this indicates to the PDtrace interface that the optional Fcr
bit must be traced in the appropriate trace formats. If PC tracing is
disabled, the full PC of the function call (or return) instruction must
also be traced. Note that function call/return information is only
traced if tracing is actually enabled for the current mode.

R/W Undefined

TLSM 2 When set, this indicates to the PDtrace interface that information
about data cache misses should be traced. If PC, load/store addresses
and data tracing are disabled (see TraceControlMode field), the full
PC and load/store address are traced for data cache misses. If
load/store data tracing is enabled, the LSm bit must be traced in the
appropriate trace format. Note that data cache miss information is
only traced if tracing is actually enabled for the current mode.

R/W Undefined

TIM 1 When set, this indicates to the PDtrace interface that the optional Im
bit must be traced in the appropriate trace formats. If PC tracing is
disabled, the full PC of the instruction that missed in the I-cache
must be traced. Note that instruction cache miss information is only
traced if tracing is actually enabled in the current mode.

R/W Undefined

On 0 This is the global trace enable switch to the core. When zero, tracing
from the core is always disabled, unless enabled by core internal
software override.
When set to one, tracing is enabled whenever the other enabling
functions are also true.

R/W 0

31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 TRPAD FDT RM TR BF TM TLSIF CR Cal TWSrcVal CA OfC EN

Table 11.41 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 305

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 11.42 TCBCONTROLB Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

0 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrcWidth 27:26 Used to indicate the number of bits used in the source field of the Trace
Word, this is a configuration option of the core that cannot be modified
by software.

This field can either be 00, 01, or 10 for the 74K core.

R Preset

REG 25:21 Register select: This field select the registers accessible through the
TCBDATA register. Legal values are shown in Table 11.40.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is read
and written when TCBDATA is accessed. Otherwise the selected regis-
ter is only read.

R/W 0

0 19 Reserved. Must be written as zero; returns zero on read. R 0

TRPAD 18 Trace RAM access disable bit, disables program software access to the
on-chip trace RAM using load/store instructions. When this bit is set,
that is, the access is disabled, then software access to the on-chip mem-
ory is disabled. If probe access is not provided in the implementation,
then this register bit must be tied to zero value to allow software to con-
trol access.

R/W 0

FDT 17 Filtered Data Trace Mode enable bit. When the bit is 0, this mode is
disabled, reset value is disable. When set to 1, this mode is enabled.
This mode is described in Section 11.8.12 “Filtered Data Trace Mode”

R/W 0

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip memory is
set to point to the oldest memory location written since the last reset of
pointers.
Subsequent access to the TCBTW register (through theTCBDATA reg-
ister), will automatically increment the read pointer (TCBRDP regis-
ter) after each read. Note: The read pointer does not auto-increment if
the WR field is one.
When the write pointer is reached, this bit is automatically reset to 0,
and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by set-
ting the TR bit or by reading the last Trace word in TCBTW.
This bit is reserved if on-chip memory is not implemented

R/W1 0

Encoding Meaning

00 Zero source field width

01 2- bit source field width

10 4- bit source field width

11 Reserved for future use

 EJTAG Debug Support in the 74K™ Core

306 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace memory
are reset to zero. Also the RM bit is reset to 0.
This bit is automatically de-asserted back to 0 when the reset is com-
pleted.
This bit is reserved if on-chip memory is not implemented.

R/W1 0

BF 14 Buffer Full.
Indicator used by the TCB to communicate to external software that the
on-chip trace memory is being deployed in the trace-from and
trace-to mode. (See Section 11.14 “TCB On-Chip Trace Memory”)
This bit is cleared when writing 1 to the TR bit
This bit is reserved if on-chip memory is not implemented.

R 0

TM 13:12 Trace Mode. This field determines how the trace memory is filled when
using the simple-break control in the PDtrace interface to start or stop
trace.

In Trace-To mode, the on-chip trace memory is filled, continuously
wrapping around and overwriting older Trace Words, as long as there is
trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled from the point
that the core starts tracing until the on-chip trace memory is full.
In both cases, de-asserting the EN bit in this register will also stop fill
to the trace memory.
If a TCBTRIGx trigger control register is used to start/stop tracing,
then this field should be set to Trace-To mode.
This bit is reserved if on-chip memory is not implemented.

R/W 0

TLSIF 11 When set, this indicates to the TCB that information about Load and
Store data cache miss, instruction cache miss, and function call are to
be taken from the PDtrace interface and trace them out in the appropri-
ate trace formats as the three optional bits LSm, Im, and Fcr.

R/W 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the core clock
to the off-chip trace memory interface clock. The clock-ratio encoding
is shown in Table 11.43.
Remark: As the Probe interface works in double data rate (DDR)
mode, a 1:2 ratio indicates one data packet sent per core clock rising
edge.
This bit is reserved if off-chip trace option is not implemented.

R/W 100

Table 11.42 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 307

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Cal 7 Calibrate off-chip trace interface.
If set to one, the off-chip trace pins will produce the following pattern
in consecutive trace clock cycles. If more than 4 data pins exist, the pat-
tern is replicated for each set of 4 pins. The pattern repeats from top to
bottom until the Cal bit is de-asserted.

Note: The clock source of the TCB and PIB must be running.
This bit is reserved if off-chip trace option is not implemented.

R/W 0

TWSrcVal 6:3 These bits are used to indicate the value of the TW source field that
will be traced if TWSrcWidth indicates a source bit-field width of 2 or
4 bits. Note that if the field is 2 bits, then only bits 4:3 of this field will
be used in the TW.

R 0

CA 2 Cycle accurate trace.
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and remove bit
zero from all transmitted TF’s.
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats.

R/W 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If set to 0, trace info is sent to on-chip memory.
This bit is read only if a single memory option exists (either off-chip or
on-chip only).

R/W Preset

Table 11.42 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Calibrations pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 fo
r

ev
er

y
4

bi
ts

of
T

R
_D

A
T

A
pi

ns
.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

 EJTAG Debug Support in the 74K™ Core

308 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table
11.40. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLBWR bit is set. For read-only registers, the TCBCONTROLBWR is a don’t care. If software is accessing
the on-chip trace memory to read out the trace words, then TCBDATA is not used for the indirect read of the TCBTW.
Instead software can read from TCBTW directly.

The format of the TCBDATA register is shown below, and the field is described in Table 11.44. The width of TCBDATA
is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 11.34 TCBDATA Register Format

EN 0 Enable trace.
This is the master enable for trace to be generated from the TCB. This
bit can be set or cleared, either by writing this register or from a
start/stop/about trigger.
When set to 1, trace information is sampled on the output pins (of the
capture-to-compression interface) or written in the on-chip trace mem-
ory. Trace Words are generated and sent to either on-chip memory or to
the Trace Probe. The target of the trace is selected by the OfC bit.
When set to 0, trace information on the output pins are ignored. A
potential TF6-stop (from a stop trigger) is generated as the last infor-
mation, the TCB pipeline is flushed, and trace output is stopped.

R/W 0

Table 11.43 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of core clock)

001 4:1 (Trace clock is four times that of core clock)

010 2:1 (Trace clock is double that of core clock)

011 1:1 (Trace clock is same as core clock)

100 1:2 (Trace clock is one half of core clock)

101 1:4 (Trace clock is one fourth of core clock)

110 1:6 (Trace clock is one sixth of core clock)

111 1:8 (Trace clock is one eighth of core clock)

31(63) 0

Data

Table 11.42 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 309

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLC register.

The TCBCONTROLC register is written by an EJTAG TAP controller instruction, TCBCONTROLC (0x13).

The format of the TCBCONTROLC register is shown below, and the fields are described in Table 11.45.

Figure 11.35 TCBCONTROLC Register Format

Table 11.44 TCBDATA Register Field Descriptions

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the
TCBCONTROLBREG field

Only writable if
TCBCONTROLBWR

is set

0

30 30 29 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0

Res NumDO Mode Res Res Res Res Res Res Res Res Res

Table 11.45 TCBCONTROLC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Reserved 31:30 Reserved for future use. Must be written as zero; returns zero on
read.

0 0

NumDO 29:28 Specifies the number of bits needed by this implementation to spec-
ify the DataOrder:
00 - Four bits
01 - Five bits
10 - Six bits
11 - Eight bits

R Preset

Mode 27:23 When tracing is turned on, this signal specifies what information is
to be traced by the core. It uses 5 bits, where each bit turns on a trac-
ing of a specific tracing mode.

The table shows what trace value is turned on when that bit value is a
1. If the corresponding bit is 0, then the Trace Value shown in col-
umn two is not traced by the processor.

R/W 0

Bit # Set Trace The Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data

 EJTAG Debug Support in the 74K™ Core

310 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.5 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by
writing the TCBCONTROLE register.

The TCBCONTROLE register is written by an EJTAG TAP controller instruction, TCBCONTROLE (0x16).

The format of the TCBCONTROLE register is shown below, and the fields are described in Table 11.46.

Figure 11.36 TCBCONTROLE Register Format

Res 22:0 Reserved for future use. Must be written as zero; returns zero on
read.

0 0

31 9 8 7 6 5 4 3 2 1 0

0 TdIDLE 0 PecOvf PeCFCR PeCBP PeCSync PeCE PeC

Table 11.46 TCBCONTROLE Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:9 Reserved for future use. Must be written as zero; returns
zero on read.

0 0

TrIDLE 8 Trace Unit Idle. This bit indicates if the trace hardware is
currently idle (not processing any data). This can be useful
when switching control of trace from hardware to software
and vice versa. The bit is read-only and updated by the
trace hardware.

R 1

0 7:6 Reserved for future use; Must be written as zero; returns
zero on read. (Hint to architect, Reserved for future expan-
sion of performance counter trace events).

0 0

PeCOvf 5 Trace performance counters when one of the performance
counters overflows its count value. Enabled when set to 1.

R/W 0

PeCFCR 4 Trace performance counters on function call/return or on
an exception handler entry. Enabled when set to 1.

R/W 0

PeCBP 3 Trace performance counters on hardware breakpoint
match trigger. Enabled when set to 1.

R/W 0

PeCSync 2 Trace performance counters on synchronization counter
expiration. Enabled when set to 1.

R/W 0

Table 11.45 TCBCONTROLC Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 311

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.6 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the field is described in Table 11.47.

Figure 11.37 TCBCONFIG Register Format

PeCE 1 Performance counter tracing enable. When set to 0, the
tracing out of performance counter values as specified is
disabled. To enable, this bit must be set to 1. This bit is
used under software control. When trace is controlled by
an external probe, this enabling is done via the TCB
Control register.

R/W 0

PeC 0 Specifies whether or not Performance Control Tracing is
implemented. This is an optional feature that may be omit-
ted by implementation choice. See Section
11.8.11 “Performance Counter Tracing” for details.

R Preset

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

Table 11.47 TCBCONFIG Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision,
TCBCONFIG1 does not exist and this bit always reads zero.

R 0

0 30:25 Reserved. Must be written as zero; returns zero on read. R 0

TRIG 24:21 Number of triggers implemented. This also indicates the number of
TCBTRIGx registers that exist.

R Preset
Legal values are 0 - 8

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the
on-chip trace memory.

The size in bytes is given by 2(SZ+8), implying that the minimum size
is 256 bytes and the largest is 8Mb.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encoding is
shown in Table 11.43.
This bit is reserved if off-chip trace option is not implemented.

R Preset

Table 11.46 TCBCONTROLE Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 EJTAG Debug Support in the 74K™ Core

312 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.7 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The Trace Word (TW) read is the
one pointed to by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register
increments to the next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory,
the increment wraps back to address zero. The TCBTW register is mapped to offset 0x3100 in drseg. An access to off-
set 0x3100 automatically causes the read pointer to be incremented. The use of load half-word or load byte instruc-
tions can lead to unpredictable results, and is not recommended. The results of attempting to write to trace memory
by an explicit store instruction targeting TCBTW are unpredictable.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBTW register is shown below, and the field is described in Table 11.48.

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio encoding is
shown in Table 11.43.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace interface
TR_DATA pins. The number of TR_DATA pins is encoded, as
shown in the table.

This field is preset based on input signals to the TCB and the actual
capability of the TCB.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

OnT 5 When set, this bit indicates that on-chip trace memory is present.
This bit is preset based on the selected option when the TCB is
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present.
This bit is preset based on the selected option when the TCB is
implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

R Preset

REV 3:0 Revision of TCB. An implementation that conforms to PDtrace ver-
sion 4.1 must has a value of 1 for this field.

R 1

Table 11.47 TCBCONFIG Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

PW Number of bits used on TR_DATA

00 4 bits

01 8 bits

10 16 bits

11 Reserved

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 313

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.38 TCBTW Register Format

11.10.8 TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 11.49. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 11.39 TCBRDP Register Format

11.10.9 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new TW
for on-chip trace will be written.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBWRP register is shown below, and the fields are described in Table 11.50. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always
zero.

63 0

Data

Table 11.48 TCBTW Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 63:0 Trace Word (TW) R/W 0

31 n+1 n 0

Address

Table 11.49 TCBRDP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

 EJTAG Debug Support in the 74K™ Core

314 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.40 TCBWRP Register Format

11.10.10 TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This register points to the on-chip trace memory address at which
the oldest TW is located. This pointer is reset to zero when the TCBCONTROLBTR bit is written to 1. If a continuous
trace to on-chip memory wraps around the on-chip memory, TSBSTP will have the same value as TCBWRP.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBSTP register is shown below, and the fields are described in Table 11.51. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

Figure 11.41 TCBSTP Register Format

11.10.11 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x is a single digit number
from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger
occurs. Please also read Section 11.12 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 11.52.

31 n+1 n 0

Address

Table 11.50 TCBWRP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

0 Address

Table 11.51 TCBSTP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

11.10 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 315

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.42 TCBTRIGx Register Format
31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro PDTro 0 DM CHTri PDTri Type FO TR

Table 11.52 TCBTRIGx Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

TCBinfo 31:24 TCBinfo to be used in a possible TF6 trace format when this trigger
fires.

R/W 0

Trace 23 When set, generate TF6 trace information when this trigger fires.
Use TCBinfo field for the TCBinfo of TF6 and use Type field for the
two MSB of the TCBtype of TF6. The two LSB of TCBtype are 00.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by a simultaneous trigger. If so, the
read value will be 0. If the write value was 0, the read value is
always 0. This special read value is valid until the TCBTRIGx regis-
ter is written.

R/W 0

0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

CHTro 15 When set, generate a single cycle strobe on TC_ChipTrigOut when
this trigger fires.

R/W 0

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut
when this trigger fires.

R/W 0

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6 When set, this Trigger will fire when a rising edge on the Debug
mode indication from the core is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

CHTri 5 When set, this Trigger will fire when a rising edge on
TC_ChipTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

 EJTAG Debug Support in the 74K™ Core

316 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

PDTri 4 When set, this Trigger will fire when a rising edge on
TC_ProbeTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

Type 3:2 Trigger Type: The Type indicates the action to take when this trigger
fires. The table below show the Type values and the Trigger action.

The actual action is to set or clear the TCBCONTROLBEN bit. A
Start trigger will set TCBCONTROLBEN, a End trigger will clear
TCBCONTROLBEN. The About trigger will clear
TCBCONTROLBEN half way through the trace memory, from the
trigger. The size determined by the TCBCONFIGSZ field for
on-chip memory. Or from the TCBCONTROLASyP field for
off-chip trace.
If Trace is set, then a TF6 format is added to the trace words. For
Start and Info triggers this is done before any other TF’s in that same
cycle. For End and About triggers, the TF6 format is added after any
other TF’s in that same cycle.
If the TCBCONTROLBTM field is implemented, it must be set to
Trace-To mode (00), for the Type field to control on-chip trace fill.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11. If
the write value was 11 the read value is always 11. This special read
value is valid until the TCBTRIGx register is written.

R/W 0

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is
de-asserted. When de-asserted, this trigger will fire each time one of
the trigger sources indicates trigger.

R/W 0

Table 11.52 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of trace.

01 Trigger End: Trigger end-point of trace.

10 Trigger About: Trigger center-point of trace.

11 Trigger Info: No action trigger, only for trace info.

11.11 Enabling MIPS Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 317

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.10.12 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

11.11 Enabling MIPS Trace

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

11.11.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 74K core, then these breakpoint can be used as
triggers to start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are capa-
ble of only generating an internal trigger to the trace logic. This is done by only setting the TE bit and not the BE bit
in the Breakpoint Control register. Please see Section 11.2.8.5 “Instruction Breakpoint Control n (IBCn) Register”
and Section 11.2.9.5 “Data Breakpoint Control n (DBCn) Register” for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace action
when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a start or a
stop trigger to the trace logic. Please see sections Section 7.2.34 “TraceIBPC Register (CP0 Register 23, Select 4)”
and Section 7.2.35 “TraceDBPC Register (CP0 Register 23, Select 5)” for details on how to define a start/stop trig-
ger.

The trace triggers are best used for fine grain tracing. First the mode in which the fine grain tracing is desired should
be disabled in the TraceControl. For example if fine grain tracing is to be done in User Mode then TraceControlU is set
to zero. This disables general tracing while the program is in User Mode. Then a breakpoint start trigger turns on the
trace at a particular instruction, and a breakpoint off trigger turns off the trace at the desired ending instruction. The
breakpoint trigger can be caused by a breakpoint address match or a breakpoint data match. Both precise and impre-
cise data match is supported. The imprecise data match will generate the trace trigger after the expected start/end
point, as the imprecise data match is dependent on system latencies.

TR 0 Trigger happened. When set, this trigger fired since the TR bit was
last written 0.
This bit is used to inspect whether the trigger fired since this bit was
last written zero.
When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but more
than one is possible.
Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

R/W0 0

Table 11.52 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateNames Bits

 EJTAG Debug Support in the 74K™ Core

318 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.11.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, except that the bits in the control reg-
ister are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether hardware
(via the TCB), or software (via the TraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControlTS and TraceControlOn) or
((not TraceControlTS) and TCBCONTROLAOn)

)
and
(MatchEnable or TriggerEnable)

)

where,

MatchEnable ←
(

TraceControlTS
and
(

TraceControlG or
(((TraceControlASID xor EntryHiASID) and (not TraceControlASID_M)) = 0)

)
and
(

(TraceControlU and UserMode) or
(TraceControlS and SupervisorMode) or
(TraceControlK and KernelMode) or
(TraceControlE and ExceptionMode) or
(TraceControlD and DebugMode)

)
)
or
(

(not TraceControlTS)
and
(TCBCONTROLAG or (TCBCONTROLAASID = EntryHiASID))
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAS and SupervisorMode) or
(TCBCONTROLAK and KernelMode) or
(TCBCONTROLAE and ExceptionMode) or
(TCBCONTROLADM and DebugMode)

)
)

and where,

TriggerEnable ←
(

DBCiTE and
DBSBS[i] and

11.11 Enabling MIPS Trace

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 319

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

TraceBPCDE and
(TraceBPCDBPOn[i] = 1)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlOn or
TCBCONTROLAOn is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signals from the TCB or the bits in the TraceControl register. This tracing is done over general program areas.
For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the TriggerEnable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method
enables finer grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControlTS=0, i.e., hardware controlled tracing, assert
TCBCONTROLAOn, TCBCONTROLAG, and all the other signals in the second part of expression MatchEnable. To
only trace when a particular process with a particular ASID is executing, assert TCBCONTROLAOn, the correct
TCBCONTROLAASID value, and the TCBCONTROLAU, TCBCONTROLAK, TCBCONTROLAE, and
TCBCONTROLADM registers. (If it is known that the particular process is a user-level process, then it would be suffi-
cient to only assert TCBCONTROLAU for example). When using the EJTAG hardware triggers to turn trace on and
off, it is best if TCBCONTROLAOn is asserted with all the other processor mode selection bits in TCBCONTROLA are
turned off. This would be the least confusing way to control tracing with the trigger signals. In a similar manner, trac-
ing can be controlled via software with the TraceControl register.

11.11.3 Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControlTS and (not TraceControlOn))) or
((not TraceControlTS) and (not TCBCONTROLAOn))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable

)

where,

TriggerDisable ←
(

DBCiTE and

 EJTAG Debug Support in the 74K™ Core

320 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 0)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlOn bit or the TCBCONTROLAOn signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, regardless of the
TraceControlG bit (TCBCONTROLAG) and TraceControlASID (TCBCONTROLAASID) values. EJTAG hardware break-
points can be used to trigger trace off as well.

Note that if simultaneous triggers are generated, and even one of them turns on tracing, then even if all of the others
attempt to trigger trace off, tracing will still be turned on. This condition is reflected in presence of the “(not Trigger-
Enable)” term in the expression above.

11.11.4 TCB Trace Enabling

The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information is
sent on the PDtrace interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will send
trace information to either on-chip trace memory or to the Trace Probe, as controlled by the setting of the
TCBCONTROLBOfC bit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEN bit. Please see Section
11.12 “TCB Trigger Logic” for details.

11.11.5 Tracing a Reset Exception

Tracing a reset exception is possible. However, the TraceControlTS bit is reset to 0 at core reset, so all the trace control
must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace FIFO and the entire TCB are
reset based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then
reset the processor core.

11.12 TCB Trigger Logic

The TCB is optionally implemented with a trigger unit, which is indicated by a non-zero value in the
TCBCONFIGTRIG. This subsection will explain some of the issues around triggers in the TCB.

11.12.1 Trigger Units Overview

TCB trigger logic features three main parts:

1. Common Trigger Source detection unit

2. 1 to 8 separate Trigger Control units

3. Common Trigger Action unit

11.12 TCB Trigger Logic

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 321

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 11.43 shows the functional overview of the trigger flow in the TCB.

Figure 11.43 TCB Trigger Processing Overview

11.12.2 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigIn)

2. Probe trigger input (TR_TRIGIN)

3. Debug Mode (DM) entry indication from the processor core

The input triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into a single-cycle strobe
to the Trigger Control Units.

Trigger Control Logic 7

Trigger Control Logic 1

Trigger Control Logic 0

Trigger Control Unit 7

Trigger Control Unit 1

Trigger Control Unit 0

Trigger Action Unit

Trigger sources

Trigger strobes

Priority/
OR-function

Priority/
OR-function

Priority/
OR-function

Trigger Source Unit

Trigger control Unit 1 to 7
are optional, when trigger
logic is implemented.

Depending on the trigger action,
the Action strobes must pass
through a priority function or an
OR-gate.

 EJTAG Debug Support in the 74K™ Core

322 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.12.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has its own Trigger Control Register (TCBTRIGx,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger events, and they can fire one or more of the Trigger Actions, as explained in the descrip-
tion of the Trigger Control register TCBTRIGx (Section 11.10.11 “TCBTRIGx Register (Reg 16-23)”).

11.12.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut)

2. Probe trigger output (TR_TRIGOUT)

3. Trace information. Put a programmable byte into the trace stream from the TCB.

4. Start, End, or About (delayed end) control of the TCBCONTROLBEN bit

The basic function of the trigger actions is explained in Section 11.10.11 “TCBTRIGx Register (Reg 16-23)”. See
also Section 11.12.5 “Simultaneous Triggers”.

11.12.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on the trigger action set for each. and
whether or not they should produce a TF6 trace information output. There are two groups of trigger actions: Priori-
tized and OR’ed.

11.12.5.1 Prioritized Trigger Actions

For simultaneous prioritized trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence
over all others.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEN bit. The About trigger is delayed and will always change TCBCONTROLBEN because it is
the oldest trigger when it de-asserts TCBCONTROLBEN. An About trigger will not start the countdown if an even
older About trigger is using the Trace Word counter.

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires, even if a trigger action is suppressed by a
higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the suppressed
trigger action will not happen until after the TCBTRIGxTR is cleared.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the TCBTRIGxType

field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is sticky. If any of the
two actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is zero), then the read
values in Trace and/or Type are set to indicate any suppressed action.

11.13 MIPS Trace Cycle-by-Cycle Behavior

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 323

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBEN bit is always executed, regardless of priority from
another Start trigger at the time of the TCBCONTROLBEN change. This means that if a simultaneous About trigger
action on the TCBCONTROLBEN bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11 in
the TCBTRIGxType field. But, if the TCBTRIGxTrace bit is set, a TF6 trace information will still go in the trace.

11.12.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are OR’ed together to produce the final trigger.
One or more expected trigger strobes on TC_ChipTrigOut can thus disappear. External logic should not rely on the
counting of strobes to predict a specific event, unless simultaneous triggers are known not to occur.

11.13 MIPS Trace Cycle-by-Cycle Behavior

A key reason for using trace to debug a software problem, rather than using single stepping, is to get an accurate pic-
ture of real-time behavior. However, the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior.

11.13.1 FIFO Logic in PDtrace and TCB Modules

All the information that needs to be captured from the core pipeline is stored in a structure called the Unified FIFO
(UFIFO). The Unified FIFO holds PC, load/store address values (delta or full), load/store data, processor mode
changes (which are in the form of a TMOAS message), and Performance Counter data. The capture module reads out
two UFIFO entries per cycle and sends them to the TCB where they are translated into two PDtrace-defined trace for-
mats. These trace messages are then fed to the compression datapath which generates a PDtrace-defined trace word.
To maintain throughput, the compression datapath is wide enough to sustain the generation of up to two trace words
per cycle. The trace words are stored in a buffer called the TraceWord FIFO (TWFIFO). One trace word is read out
from the TWFIFO and sent to the off-chip memory interface, or up to 2 trace words are read out per cycle and sent to
the on-chip trace memory. The buffer will advance to the next trace word when a read acknowledge is received from
the on-chip or off-chip memory interface.

In the TCB, the on-chip trace memory is defined as a 128-bit wide synchronous memory running at core-clock speed.
In this case, the TWFIFO needs only four entries to guarantee it will not overflow. The TWFIFO could be filled in
such a way that only 64 bits of the 128 bits is written to memory, which accounts for the four-entry requirement. For
off-chip trace going through the Trace Probe, the FIFO is much more important because of the limited number of pins
(4, 8, or 16) between the Probe and memory. Also, the speed of the Trace Probe interface can be different (either
faster or slower) from that of the 74K core. So for off-chip tracing, a deeper TCB TWFIFO is desirable.

11.13.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 32-bit data inter-
face is needed, it is possible for the PDtrace FIFO to overflow from time to time. There are two ways to handle this
case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core until the FIFO has enough empty slots to accept new trace data.

 EJTAG Debug Support in the 74K™ Core

324 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The PDtrace FIFO option is controlled by either the TraceControlIO or the TCBCONTROLAIO bit, depending on the
setting of the TraceControlTS bit.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of
potentially losing trace information. After an overflow, the FIFO is completely emptied, and the next instruction is
traced as if it were the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced FIFO information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved
by back-stalling the core pipeline, giving the PDtrace FIFO time to empty enough room in the FIFO to accept new
trace information from a new instruction. This option can obviously change the real-time behavior of the core when
tracing is turned on. In 74K core, the UFIFO has 64 entries, while TWFIFO has 11 entries. The TWFIFO will almost
always fill up first and be the cause of the back-stall to the core pipeline.

If PC trace information is the only thing enabled (in TraceControl2MODE or TCBCONTROLCMODE, depending on the
setting of TraceControlTS), and tracing of all branches is turned off (via TraceControlTB or TCBCONTROLATB,
depending on the setting of TraceControlTS), then the FIFO is unlikely to overflow. Of course, this depend on the code
executed and the frequency of exception handler jumps, but with this setting there is very little information overhead.

11.13.3 Handling of FIFO Overflow in the TCB

As mentioned earlier, the buffer in the TCB (TWFIFO) is used to buffer the TWs which are sent off-chip through the
Trace Probe. The data width of the probe can be either 4, 8, or 16 pins, and the speed of these data pins can be from
16 times the core clock to 1/4 of the core clock (the trace probe clock always runs at a double data rate multiple of the
core-clock). See Section 11.13.3.1 “Probe Width and Clock-ratio Settings” for a description of probe width and
clock-ratio options. The combination of the probe width (4, 8, or 16) and the data speed, allows for data rates through
the trace probe from 256 bits to only 1 bit per core-clock cycle. The high extreme is not likely to be supported in any
implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB TWFIFO overflow is considered. The TCB will at
maximum produce one full 64-bit TW per core-clock cycle. This is true for any selection of trace mode in
TraceControl2MODE or TCBCONTROLCMODE. The PDtrace module will guarantee the limited amount of data. If the
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB FIFO can possibly over-
flow. There are two options:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by asserting a stall-signal back to the core. This will in turn stall the core pipeline.

There is no way to guarantee that this back-stall from the TCB is never asserted, unless the effective data rate of the
Trace Probe interface is at least 64-bits per core-clock cycle.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding
any cycle-accurate information. This is explained in Section 11.13.2 “Handling of FIFO Overflow in the PDtrace
Module” and Section 11.13.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data rate of
8-bits per core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt activity
can increase the number of unpredictable jumps considerably.

11.13.3.1 Probe Width and Clock-ratio Settings

The actual number of data pins (4, 8, or 16) is defined by the TCBCONFIGPW field. Furthermore, the frequency of the
Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is a double data rate clock,
which means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock

11.14 TCB On-Chip Trace Memory

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 325

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

is running at a clock ratio of 1:2 (one half) of the core clock, the data output registers are running at core-clock fre-
quency. The clock ratio is set in the TCBCONTROLBCR field. The legal range for the clock ratio is defined in
TCBCONFIGCRMax and TCBCONFIGCRMin (both values inclusive). If TCBCONTROLBCR is set to an unsupported
value, the result is UNPREDICABLE. The maximum possible value for TCBCONFIGCRMax is 8:1 (TR_CLK is run-
ning 8 times faster than the core-clock). The minimum possible value for TCBCONFIGCRMin is 1:8 (TR_CLK is run-
ning at one eighth of the core-clock). See Table 11.43 for a description of the encoding of the clock ratio fields.

11.13.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. This information is added to the trace when the TCBCONTROLBCA bit is set. The overhead on
the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB TWFIFO and not the PDtrace UFIFO. The extra bit therefore only affects the likeli-
hood of the TCB TWFIFO overflowing.

11.14 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIGOnT is set), the on-chip memory is typically smaller than exter-
nal trace-probe memory. The assumption is that it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode

2. Trace-To mode

3. Under Trigger unit control

Software can select this mode using the TCBCONTROLBTM field. If one or more trigger control registers (TCBTRIGx)
are implemented, and they are using Start, End or About triggers, then the trace mode in TCBCONTROLBTM should
be set to Trace-To mode.

11.14.1 On-Chip Trace Memory Size

The supported on-chip trace memory size can range from 256 bytes to 8 Mbytes, in powers of 2. The actual size is
shown in the TCBCONFIGSZ field.

11.14.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value which is
defined to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is stopped
when the buffer is full. The TCB then signals buffer full using TCBCONTROLBBF. When external software polling
this register finds the TCBCONTROLBBF bit set, it can then read out the internal trace memory. Saving the trace into
the internal buffer will re-commence again only when the TCBCONTROLBBF bit is reset and if the core is sending
valid trace data.

 EJTAG Debug Support in the 74K™ Core

326 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

11.14.3 Trace-To Mode

In the Trace-To mode, the TCB continues writing to the internal trace memory, overwriting the oldest information,
until the processor reaches an end of trace condition. End of trace is reached by leaving the processor mode/ASID
value which is traced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this point, the
on-chip trace buffer is dumped as described in Section 11.14.2 “Trace-From Mode”.

Chapter 12

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 327

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Instruction Set Overview

This chapter provides an overview of the 74K™ core instruction set, including the instruction formats and the basic
instruction types.

This chapter discusses the following topics:

• Section 12.1 “CPU Instruction Formats”

• Section 12.2 “Load and Store Instructions”

• Section 12.3 “Computational Instructions”

• Section 12.4 “Jump and Branch Instructions”

• Section 12.5 “Control Instructions”

• Section 12.6 “Coprocessor Instructions”

Refer to Chapter 13, “74K™ Processor Core Instructions” for a complete listing and description of those instructions
whose behavior differs in the 74K processor core. The complete MIPS32 instruction set is described in Volume II of
the MIPS32® Architecture For Programmers.

12.1 CPU Instruction Formats

A CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction formats:
immediate (I-type), jump (J-type), and register (R-type). The use of a small number of instruction formats simplifies
instruction decoding, allowing the compiler to synthesize more complicated (and less frequently used) operations and
addressing modes from these three formats as needed. The instruction formats are shown in Figure 12.1.

 Instruction Set Overview

328 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Figure 12.1 Instruction Formats

12.2 Load and Store Instructions

Load and store instructions are immediate (I-type) instructions that move data between memory and the general reg-
isters. The only addressing mode that integer load and store instructions directly support is base register plus 16-bit
signed immediate offset. Floating point load and store instructions can use either that addressing mode or register plus
register indexed addressing.

12.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a delayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the load
delay slot.

In a 74K core, the instruction immediately following a load instruction can use the contents of the loaded register;
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay slots can be desirable, both for performance and R-Series processor compatibility.

12.2.2 Defining Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian con-
figuration, the low-order byte is the least-significant byte.

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch condition

immediate 16-bit immediate value, branch displacement or address
displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

I-Type (Immediate)

R-Type (Register)

J-Type (Jump)

immediate

015

rt

1620

op

2631

rs

2125

target

015

op

2631

rt

1620

op

2631

rs

2125

sa

610

rd

1115

funct

05

target

025

op

2631

12.3 Computational Instructions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 329

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

The access type, together with the three low-order bits of the address, defines the bytes accessed within the addressed
word, as shown in Table 12.1. Only the combinations shown in Table 12.1 are permissible; other combinations cause
address-error exceptions.

Instruction fetches are either halfword accesses (MIPS16e™ code) or word accesses (32b code). These references
will be impacted by endianness in the same way as load/store references of those sizes.

12.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Table 12.1 Byte Access Within a Doubleword

Access Type

Low-Order
Address Bits

Bytes Accessed

Big Endian
(63----------------31-------------------0)

Little Endian
(63----------------31-------------------0)

2 1 0 Byte Byte

Doubleword 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Word 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

 Instruction Set Overview

330 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Computational instructions perform the following operations on register values:

– Arithmetic

– Logical

– Shift

– Count Leading Zeros/Ones

– Multiply

– Divide

These operations fit in the following four categories of computational instructions:

– ALU Immediate instructions

– Three-operand Register-type Instructions

– Shift Instructions

– Multiply And Divide Instructions

12.3.1 Cycle Timing for Multiply and Divide Instructions

Multiply instruction in the integer pipeline are transferred to the multiplier while remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the 74K™ Core” for more information on instruction latency
and repeat rates.

12.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (the instruction in the so-
called delay slot) always executes while the target instruction is being fetched from storage.

12.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-
order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that use the 32-bit byte address contained in one of the general pur-
pose registers.

For more information about jump instructions, refer to the individual instructions in MIPS32® Architecture Reference
Manual, Volume II: The MIPS32® Instruction Set.

12.5 Control Instructions

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 331

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

12.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

12.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

12.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 13, “74K™ Processor Core Instructions” for
a listing of CP0 instructions.

 Instruction Set Overview

332 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 13

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 333

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

74K™ Processor Core Instructions

This chapter supplements the MIPS32® Architecture Reference Manual by describing instruction behavior that is
specific to the 74K processor core. The chapter contains the following sections:

• Section 13.1 “Understanding the Instruction Descriptions”

• Section 13.2 “74K™ Opcode Map”

• Section 13.3 “Floating Point Unit Instruction Format Encodings”

• Section 13.4 “MIPS32™ Instruction Set for the 74K™ Core”

The 74K processor core also supports the instructions in the MIPS DSP ASE Revision 2 and the MIPS16e ASE. The
MIPS DSP ASE Revision 2 instruction set is described in Chapter 4, “The MIPS® DSP Application-Specific
Extension to the MIPS32® Instruction Set”. The MIPS16e ASE instruction set is described in Chapter 14,
“MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set”.

13.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32® Architecture Reference Manual for more information about the instruction
descriptions. That document contains a description of the instruction fields, a definition of terms, and a description
function notation.

13.2 74K™ Opcode Map

Table 13.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use, are valid encodings
for a higher-order MIPS ISA level, or are part of an application specific extension not implemented
on this core. Executing such an instruction will cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol are a field class. The
instruction word must be further decoded by examining additional tables that show values for
another instruction field.

∇ Operation or field codes marked with this symbol represent instructions which are only legal if 64-
bit floating point operations are enabled. In other cases, executing such an instruction will cause a
Reserved Instruction Exception (non-coprocessor encodings or coprocessor instruction encodings
for a coprocessor to which access is allowed) or a Coprocessor Unusable Exception (coprocessor
instruction encodings for a coprocessor to which access is not allowed).

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

 74K™ Processor Core Instructions

334 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 13.2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δREGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 δ COP1 δ COP2 δ COP1X BEQL φ BNEL φ BLEZL φ BGTZL φ
3 011 ∗ ∗ ∗ ∗ SPECIAL2

δ
JALX ∗ SPECIAL3

δ
4 100 LB LH LWL LW LBU LHU LWR ∗
5 101 SB SH SWL SW ∗ ∗ SWR CACHE

6 110 LL LWC1 LWC2 PREF ∗ LDC1 LDC2 ∗
7 111 SC SWC1 SWC2 * ∗ SDC1 SDC2 ∗

Table 13.3 MIPS32 SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL1 MOVCI δ SRL δ SRA SLLV * SRLV δ SRAV

1 001 JR2 JALR2 MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO ∗ * ∗ ∗
3 011 MULT MULTU DIV DIVU ∗ ∗ ∗ ∗
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU ∗ ∗ ∗ ∗
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 ∗ * ∗ ∗ ∗ * ∗ ∗

1. Specific encodings of the rt, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, and
EHB functions.

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table 13.4 MIPS32 REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALLφ BGEZALL
φ

* * * *

3 11 * * * * * * * SYNCI

13.2 74K™ Opcode Map

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 335

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 13.5 MIPS32 SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL ∗ MSUB MSUBU * *

1 001 * * * * * * * *

2 010 CorExtend

3 011

4 100 CLZ CLO * * ∗ ∗ * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * SDBBP

Table 13.6 MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT ∗ ∗ ∗ INS ∗ ∗ ∗
1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 BSHFL δ * * * ∗ * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * RDHWR * * * *

Table 13.7 MIPS32 MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table 13.8 MIPS32 SRL Encoding of Shift/Rotate

tf bit 21

0 1

SRL ROTR

Table 13.9 MIPS32 SRLV Encoding of Shift/Rotate

tf bit 6

0 1

SRLV ROTRV

 74K™ Processor Core Instructions

336 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 13.10 MIPS32 BSHFLEncoding of sa Field1

sa bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 WSBH

1 01

2 10 SEB

3 11 SEH

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.

Table 13.11 MIPS32 COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 ∗ * * MTC0 ∗ * *

1 01 * * RDPGPR MFMC01 δ * * WRPGPR *

2 10 C0 δ
3 11

1. Release 2 of the Architecture added the MFMC0 function, which is further decoded as the DI and EI
instructions.

Table 13.12 MIPS32COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET

4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 13.13 MIPS32 COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 ∗ CFC1 MFHC1 MTC1 ∗ CTC1 MTHC1

1 01 BC1 δ ∗ ∗ * * * * *

2 10 S δ D δ * * W δ L δ * *

3 11 * * * * * * * *

13.2 74K™ Opcode Map

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 337

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 13.14 MIPS32 COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L
∇

TRUNC.L
∇

CEIL.L ∇ FLOOR.L
∇

ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 * CVT.D * * CVT.W CVT.L ∇ ∗ *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 13.15 MIPS32 COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L
∇

TRUNC.L
∇

CEIL.L ∇ FLOOR.L
∇

ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 CVT.S * * * CVT.W CVT.L ∇ * *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 13.16 MIPS32 COP1 Encoding of Function Field When rs=W or L1

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * ∗ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

1. Format type L is legal only if 64-bit floating point operations are enabled.

Table 13.17 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt

 74K™ Processor Core Instructions

338 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

13.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabular pre-
sentation of the encodings described in tables Table 13.13 and Table 13.18 above.

Table 13.18 COP1X Encoding of Function Field1

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 ∇ LDXC1 ∇ * * * LUXC1 ∇ * *

1 001 SWXC1 ∇ SDXC1 ∇ * * * SUXC1 ∇ * PREFX ∇
2 010 * * * * * * * *

3 011 * * * * * * ∗ *

4 100 MADD.S ∇ MADD.D ∇ * * * * ∗ *

5 101 MSUB.S ∇ MSUB.D ∇ * * * * ∗ *

6 110 NMADD.S
∇

NMADD.D
∇

* * * * ∗ *

7 111 NMSUB.S ∇ NMSUB.D
∇

* * * * ∗ *

Table 13.19 MIPS32 COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 ∗ CFC2 MFHC2 MTC2 ∗ CTC2 MTHC2

1 01 BC2δ ∗ ∗ * * * * *

2 10 C2

3 11

Table 13.20 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of

COP1X opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

16 10 0 0 S Single 32 Floating Point

17 11 1 1 D Double 64 Floating Point

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

20 14 4 4 W Word 32 Fixed Point

21 15 5 5 L Long 64 Fixed Point

22 16 6 6 PS Paired Sin-
gle

2 × 32 Floating Point

13.4 MIPS32™ Instruction Set for the 74K™ Core

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 339

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

13.4 MIPS32™ Instruction Set for the 74K™ Core

This section describes the MIPS32 instructions for the 74K cores. Table 13.21 lists the instructions in alphabetical
order. Following the table, the instructions that have implementation-dependent behavior in the 74K core are
described individually. The descriptions of other instructions that exist in theMIPS32® Architecture Reference Man-
ual are not duplicated here.

23 17 7 7 Reserved for future use by the architecture.

24..31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

Table 13.21 74K™ Core Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDIUPC Unsigned Integer Add Immediate to PC (MIPS16
only)

Rt = PC +u Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC2F Branch On Cp2 False if (cc[i] == 0) then
 PC += (int)offset

BC2FL Branch On Cp2 False Likely if (cc[i] == 0)then
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On Cp2True if(cc[i] == 1) then
PC += (int)offset

BC2TL Branch On Cp2 True Likely if (cc[i] == 1) then
PC += (int)offset

else
Ignore Next Instruction

Table 13.20 Floating Point Unit Instruction Format Encodings (Continued)

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of

COP1X opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

 74K™ Processor Core Instructions

340 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And Link
Likely

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

13.4 MIPS32™ Instruction Set for the 74K™ Core

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 341

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See the description of the CACHE
instruction on page 347.

CFC2 Move Control Word From Cp2 Rt = CP2_Control[Fs]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Software User’s Manual

COP2 Coprocessor 2 Operation Implementation-dependent

CTC2 Move Control Word to Cp2 Cp2 Control[Fs] = Rt

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; StatusIE = 0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stop instruction execution until execution
hazards are cleared

EI Atomically Enable Interrupts Rt = Status; StatusIE = 1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC
SR[1] = 0

SR[2] = 0
LL = 0

EXT Extract Bit Field Rt = ExtractField(Rs, pos,
size)

INS Insert Bit Field Rt = InsertField(Rs, Rt, pos,
size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

 74K™ Processor Core Instructions

342 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution and
instruction hazards

JALRC Jump and Link Register Compact - do not execute
instruction in jump delay slot(MIPS16 only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and
instruction hazards

JRC Jump Register Compact - do not execute instruction
in jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[base+offset]

LBU Unsigned Load Byte Rt = (ubyte)Mem[base+offset]

LDC2 Load Doubleword to Cp2 Ft = memory[base+offset]

LH Load Halfword Rt = (half)Mem[base+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[base+offset]

LL Load Linked Word Rt = Mem[base+offset]
LL = 1

See also the description of the LL instruc-
tion on page 355.

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word to Cp2 Ft = memory[base+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

LWL Load Word Left See Architecture Reference Manual

LWR Load Word Right See Architecture Reference Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC2 Move From Cp2 Register Rt = Fs31..0

MFHC2 Move From High Half of Cp2 Register Rt = Fs63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN GPR Conditional Move on Not Zero if Rt ≠ 0 then
Rd = Rs

MOVZ GPR Conditional Move on Zero if Rt = 0 then
Rd = Rs

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

13.4 MIPS32™ Instruction Set for the 74K™ Core

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 343

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTC2 Move to Cp2 register Fs = Rt

MTHC2 Move to High Half of Cp2 register Fd = Rt || Fs31..0

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache. See also
the description of the PREF instruction
on page 357.

RDHWR Read Hardware Register Allows unprivileged access to registers
enabled by HWREna register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RESTORE Restore registers and deallocate stack frame
(MIPS16 only)

See Architecture Reference Manual

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

SAVE Save registers and allocate stack frame (MIPS16
only)

See Architecture Reference Manual

SB Store Byte (byte)Mem[base+offset] = Rt

SC Store Conditional Word if LL = 1
 mem[base+offset] = Rt
Rt = LL

See also the description of the SC instruc-
tion on page 361.

SDBBP Software Debug Break Point Trap to SW Debug Handler

SDC2 Store Doubleword from Cp2 memory[base+offset] = Ft

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

 74K™ Processor Core Instructions

344 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[base+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[base+offset] = Rt

SWC2 Store Word From Cp2 Register Mem[base+offset] = Fs

SWL Store Word Left See Architecture Reference Manual

SWR Store Word Right See Architecture Reference Manual

SYNC Synchronize See the description of the SYNC instruc-
tion on page 363.

SYNCI Synchronize Caches to Make Instruction Writes
Effective

For D-cache writeback and I-cache inval-
idate on specified address

SYSCALL System Call SystemCallException

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

13.4 MIPS32™ Instruction Set for the 74K™ Core

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 345

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
 TrapException

TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
 TrapException

TLBWI Write Indexed TLB Entry See the description of the TLBWI
instruction on page 369.

TLBWR Write Random TLB Entry See the description of the TLBWR
instruction on page 373.

TLBP Probe TLB for Matching Entry See Software Users Manual

TLBR Read Index for TLB Entry See the description of the TLBR instruc-
tion on page 367.

TLT Trap if Less Than if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal if Rs != Rt
 TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
 TrapException

WAIT Wait for Interrupts Stall until interrupt occurs. See the
description of the WAIT instruction on
page 371.

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

WSBH Word Swap Bytes Within HalfWords Rd = Rt23..16 || Rt31..24 || Rt7..0
|| Rt15..8

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

 74K™ Processor Core Instructions

346 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 13.21 74K™ Core Instruction Set (Continued)

Instruction Description Function

Perform Cache Operation ICACHE

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 347

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: CACHE op, offset(base) MIPS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Figure 13.1 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store

31 26 25 21 20 16 15 0

CACHE
101111

base op offset

6 5 5 16

Table 13.22 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← AddrWayBit-1..IndexBit
Index ← AddrIndexBit-1..OffsetBit

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte indexUnused Way Index Byte Index

0

WayBit IndexBit OffsetBit

Perform Cache Operation CACHE

348 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portion of the
kernel address space which would normally result in such an exception.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows

Some of the operations use coprocessor0 registers as either sources or destinations. Each of the caches has a separate
set of Tag and Data registers. The last column in Table 13.23 lists which registers are used by operations to each
cache.

Bits [20:18] of the instruction specify the operation to perform.On Index Load Tag and Index Store Data operations,
the specific word (primary D) or double-word (primary I, secondary) that is addressed is loaded into or read from the
DDataLo (primary D), L23DataLo, and L23DataHi (secondary), or IDataLo and IDataHi (primary I) registers. All
other cache instructions are line-based, and the word and byte indexes will not affect their operation

Table 13.23 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache Cop0 Registers Used

2#00 I Primary Instruction ITagLo, ITagHi, IDataLo, IDataHi, ErrCtl

2#01 D Primary Data DTagLo, DTagHi, DDataLo, ErrCtl

2#10 T Tertiary - Not supported

2#11 S Secondary L2TagLo

Table 13.24 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, DYT, SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation

2#000 I Index Invalidate Index Set the state of the cache line at the specified
index to invalid.
This encoding may be used by software to
invalidate the entire instruction cache by step-
ping through all valid indices.

Yes

D, S Index Writeback
Invalidate

Index If the state of the cache line at the specified
index is valid and dirty, write the line back to
the memory address specified by the cache tag.
After that operation is completed, set the state
of the cache line to invalid. If the line is valid
but not dirty, set the state of the line to invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

Yes

Perform Cache Operation ICACHE

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 349

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2#001 I Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the ITagLo and ITagHi regis-
ters.

• Read the data corresponding to the dwordin-
dex into the IDataLo and IDataHi registers.

• If parity is implemented, read the parity bits
corresponding to the data into ErrCtlPI

Yes

2#001 D Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the DTagLo Coprocessor 0
register.

• Read the data corresponding to the word
index into the DDataLo register.

• Data array parity bits are also read into the
ErrCtl register.

Yes

2#001 S Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the L23TagLo Coprocessor
0 register.

• Read the data corresponding to the dword
index into the L23DataLo and L23DataHi
registers.

Yes

2#010 I Index Store Tag Index • Write the tag for the cache block at the spec-
ified index from the ITagLo and ITagHi reg-
isters.

• If parity is implemented, the parity written
into the cache is generated by the hardware
if ErrCtlPO = 0, or it is obtained from

ITagLo and ITagHi if ErrCtlPO = 1.

Yes

2#010 D,S Index Store Tag Index Write the tag for the cache line at the specified
index from the associated TagLo Coprocessor
0 register.

By default, the tag parity value will be
automatically calculated. For test purposes, the
parity/ECC bits from the associated TagLo
register will be used if ErrCtlPO is set.

This encoding may be used by software to ini-
tialize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo register associated
with the cache be initialized first.

Yes

2#011 I Reserved Unspecified Executed as a no-op No

Table 13.24 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, DYT, SPR] Cleared (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation

Perform Cache Operation CACHE

350 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

2#011 S Index Store Data Index Write the L23DataHi and L23DataLo
Coprocessor 0 register contents at the way and
dword index specified.

The ECC bits are always generated by the
hardware (if present)

Yes

2#100 All Hit Invalidate Address If the cache line contains the specified address,
set the state of the cache line to invalid.
This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

2#101 I Fill Address Fill the cache from the specified address.

The cache line is refetched even if it is already
in the cache. In that case, the existing copy in
the cache is invalidated

Yes

D, S Hit WriteBack
Invalidate

Address If the cache line contains the specified address
and it is valid and dirty, write the contents back
to memory. After that operation is completed,
set the state of the cache line to invalid. If the
line is valid but not dirty, set the state of the line
to invalid.

This encoding may be used by software to
invalidate a range of addresses from the data
cache by stepping through the address range
by the line size of the cache.

Yes

2#110 D, S Hit WriteBack Address If the cache line contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state.

Yes

2#111 All Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory is the least
recently used.

The lock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation with the lock bit reset in
the associated TagLo register.

It is illegal to lock all ways at a given cache
index. If all ways are locked, subsequent
references to that index will displace one of the
locked lines.

Yes

Table 13.24 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST, DYT, SPR] Cleared (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation

Perform Cache Operation ICACHE

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 351

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 13.25 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set, ErrCtl[DYT, SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation

2#001 I Index Load WS Index Read the WS RAM at the specified index into
the ItagLo Coprocessor 0 register. Yes

2#001 D,S Index Load WS Index Read the WS RAM at the specified index into
the associated TagLo Coprocessor 0 register. Yes

2#010 I Index Store WS Index Update the WS RAM at the specified index
from the ITagLo Coprocessor 0 register. Yes

2#010 D Index Store WS Index Update the WS RAM at the specified index
from the DTagLo Coprocessor 0 register.

Yes

2#010 S Index Store WS Index Update the WS RAM at the specified index
from the L23TagLo Coprocessor 0 register.

If ErrCtlPO is set, the dirty parity values in the
L23TagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#011 I Index Store Data Index Write the IDataLo and IDataHi Coprocessor 0
register contents at the way and dword index
specified.

If ErrCtlPO is set, ErrCtlPI is used for the parity
value. Otherwise, the parity value is calculated
for the write data.

In addition, the precode value for the write data
is also updated in the tag if ErrCtlPCD is not
set. If ErrCtlPCO is set, ITagHi is used for the
precode value and its corresponding parity bit.
Otherwise, the precode value and its
corresponding parity bit are calculated based
on the write data.

Yes

2#011 D Index Store Data Index Write the DDataLo Coprocessor 0 register
contents at the way and word index specified.

If ErrCtlPO is set, ErrCtlPD is used for the
parity value. Otherwise, the parity value is
calculated for the write data.

Yes

2#011 S Index Store ECC Index Write the L23DataLo Coprocessor 0 register
contents to the ECC bits at the way and dword
index specified.

Yes

All Oth-
ers

All Other codes should not be used while
ErrCtlWST is set.

Perform Cache Operation CACHE

352 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Note: ErrCtlSPR is a don’t care for cache operations to I-cache.

Note: ErrCtlDYT is a don’t care for cache operations to I-cache.

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)

Table 13.26 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[DYT, WST] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation

2#001 D Index Load Tag Index Read the SPRAM tag at the specified index into
the TagLo1 Coprocessor 0 register.

Yes

2#010 D Index Store Tag Index Update the SPRAM tag at the specified index
from the TagLo Coprocessor 0 register.

Yes

2#011 D Index Store Data Index Write the DDataLo Coprocessor 0 register
contents into the SPRAM at the word index
specified.

The data parity is always calculated in this
case.

Yes

All Oth-
ers

D Other codes should not be used while
ErrCtlSPR is set.

All S,T Secondary and Tertiary operations should not
be performed while ErrCtlSPR is set.

Table 13.27 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[DYT] Set, ErrCtl[SPR, WST] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation

2#001 D Index Load Tag Index Read the dirty RAM at the specified index into
the TagLo1 Coprocessor 0 register.

Yes

2#010 D Index Store Tag Index Update the dirty RAM at the specified index
from the TagLo1 Coprocessor 0 register.

Yes

All Oth-
ers

D Other codes should not be used while
ErrCtlDYT is set.

Perform Cache Operation ICACHE

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 353

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

Perform Cache Operation CACHE

354 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Load Linked Word ILL

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 355

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed, it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

31 26 25 21 20 16 15 0

LL
110000

base rt offset

6 5 5 16

Load Linked Word LL

356 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Prefetch IPREF

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 357

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: PREF hint, offset(base) MIPS32

Purpose: Prefetch

To move data between memory and cache

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs. However, even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation-dependent whether a Bus Error or Cache Error exception is reported, if such an error is detected
as a by-product of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed coherency
attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by a load or store to the effective address.

31 26 25 21 20 16 15 0

PREF
110011

base hint offset

6 5 5 16

Table 13.28 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved Reserved - treated as a NOP.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load. LRU replacement information is ignored
and data is placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 is locked,
data will be placed in the way pointed to by the LRU.

Prefetch PREF

358 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a store. LRU replacement information is ignored
and data is placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 is locked,
data will be placed in the way pointed to by the LRU.

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load. LRU replacement information is used, but
way 0 of the cache is specifically excluded. This prevents streamed
prefetches from displacing the line.

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store. LRU replacement information is used, but
way 0 of the cache is specifically excluded. This prevents streamed
prefetches from displacing the line.

8-24 Reserved Reserved - treated as a NOP.

25 writeback_invalidate (also
known as “nudge”)

Action: Schedule a writeback of any dirty data. The cache line is marked as
invalid upon completion of the writeback. If cache line is locked, no action is
taken. If a line is clean, it will be marked invalid and there will be no write-
back scheduled.

26-29 Reserved Reserved - treated as a NOP.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty
victim is written back to memory, the entire line is filled with zero data, and
the state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used
as a fast bzero-type function.

31 Fast Prepare For Store Use: Prepare the cache for writing an entire line. No data is filled into the
line.
Action: If reference hits in the cache, no action is taken. If reference misses
in the cache, a line is selected for replacement, any valid and dirty victim is
written back to memory, the line is validated by writing the tag of the line
while leaving the data as is.
Programming Note: If the prefetch is not followed by real writes, it is possi-
ble that prevailing data and data parity may indicate a parity error.

Table 13.28 Values of hint Field for PREF Instruction

Prefetch IPREF

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 359

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a by-product of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Prefetch PREF

360 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Store Conditional Word ISC

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 361

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]

31 26 25 21 20 16 15 0

SC
111000

base rt offset

6 5 5 16

Store Conditional Word SC

362 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

if vAddr1..0 ≠ 02 then
SignalException(AddressError)

endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Synchronize Shared Memory ISYNC

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 363

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: SYNC (stype = 0 implied) MIPS32

Purpose: Synchronize Shared Memory

To order loads and stores.

Description:

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers

Simple Description of Completion Barrier:

• SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release
2 of the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC is required on entry to and exit from Debug Mode to guarantee that memory affects are han-
dled correctly.

Detailed Description of Completion Barrier:

• SYNC does not guarantee the order in which instruction fetches are performed. A stype value of zero will always
be defined such that it performs the most complete set of synchronization operations that are defined. This means
stype zero always does a completion barrier that affects both loads and stores preceding the SYNC instruction
and both loads and stores that are subsequent to the SYNC instruction. Non-zero values of stype may be defined
by the architecture or specific implementations to perform synchronization behaviors that are less complete than
that of stype zero. If an implementation does not use one of these non-zero values to define a different synchroni-
zation behavior, then that non-zero value of stype must act the same as stype zero completion barrier. This allows
software written for an implementation with a lighter-weight barrier to work on another implementation which
only implements the stype zero completion barrier.

Simple Description of Ordering Barrier:

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0

stype
SYNC
001111

6 15 5 6

Synchronize Shared Memory ISYNC

364 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Detailed Description of Ordering Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

• The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Because the core processes loads and stores in order, ordering barriers are much lighter weight. The LSU does not
issue the RMB and Acquire barrier types to the BIU. For the MB, WMB, Release barrier types, the LSU will com-
plete any store hits and hit-type cacheops before issuing them to the BIU. The BIU will stop merging on all WBB
entries. No external request will be generated and the core will not wait for pending transactions to complete.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

Table 13.29 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype
field.

Table 13.29 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes

0x0 SYNC
or

SYNC(0)

Loads, Stores Loads, Stores Loads, Stores

0x4 SYNC_WMB
or

SYNC(4)

Stores Stores

Synchronize Shared Memory ISYNC

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 365

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation(stype)

Exceptions:

None

0x10 SYNC_MB
or

SYNC(16)

Loads, Stores Loads, Stores

0x11 SYNC_ACQUIRE
or

SYNC(17)

Loads Loads, Stores

0x12 SYNC_RELEASE
or

SYNC(18)

Loads, Stores Stores

0x13 SYNC_RMB
or

SYNC(19)

Loads Loads

0x1, 0x5-0xF,0x14 -
0x1F

RESERVED

Table 13.29 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes

Synchronize Shared Memory ISYNC

366 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry ITLBR

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 367

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
Note that the value written to the EntryHi, EntryLo0, and EntryLo1 registers may be different from that originally
written to the TLB via these registers in that:

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i]Mask
EntryHi ←

TLB[i]VPN2 ||
05 || TLB[i]ASID

EntryLo1 ← 0 ||
TLB[i]PFN1 ||
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 0 ||
TLB[i]PFN0 ||
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBR
000001

6 1 19 6

Read Indexed TLB Entry ITLBR

368 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry ITLBWI

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 369

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry

To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. If multiple TLB matches are detected on a TLBWI, a Machine Check exception is signaled.
The information written to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLo1 regis-
ters, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWI
000010

6 1 19 6

Write Indexed TLB Entry ITLBWI

370 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode WAIT

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 371

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction forces the core into low-power mode. The pipeline is stalled, and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or
SI_ColdReset) is signaled or when an interrupt is signalled, irrespective of whether the interrupt is enabled or not.
(SI_NMI, SI_Int, or EJ_DINT). Note that the core does not use the code field in this instruction. If the pipeline
restarts as the result of an interrupt, that interrupt is taken between the WAIT instruction and the following instruction
(EPC for the interrupt points to the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

Implementation-Dependent Code
WAIT

100000

6 1 19 6

Enter Standby Mode WAIT

372 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Write Random TLB Entry TLBWR

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 373

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Format: TLBWR MIPS32

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. If multiple TLB matches are detected on a TLBWR, a Machine Check exception is sig-
naled. The information written to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLo1
registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Random
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWR
000110

6 1 19 6

Write Random TLB Entry TLBWR

374 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Chapter 14

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 375

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e™ ASE as implemented in the 74K core. Refer to Volume IV-a of the MIPS32
Architecture Reference Manual for a general description of the MIPS16e ASE and detailed descriptions of the
instructions.

 This chapter covers the following topics:

• Section 14.1 “Instruction Bit Encoding”

• Section 14.2 “Instruction Listing”

14.1 Instruction Bit Encoding

Table 14.2 through Table 14.9 describe the encoding used for the MIPS16e ASE. Table 14.1 describes the meaning of
the symbols used in the tables.

Table 14.1 Symbols Used in the Instruction Encoding Tables

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction causes a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denote a field class. The
instruction word must be further decoded by examining additional tables that show values for another
instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order MIPS
ISA level. Executing such an instruction causes a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc. when one
of these encodings is used. If no instruction is encoded with this value, executing such an instruction
must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor instruction encod-
ings for a coprocessor to which access is allowed) or a Coprocessor Unusable Exception (coprocessor
instruction encodings for a coprocessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation of
this encoding is optional for each implementation. If the encoding is not implemented, executing such
an instruction must cause a Reserved Instruction Exception. If the encoding is implemented, it must
match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific Exten-
sions. If the ASE is not implemented, executing such an instruction must cause a Reserved Instruction
Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future revi-
sion of the MIPS64 ISA. Software should avoid using these operation or field codes.

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

376 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 14.2 MIPS16e Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X) δ BEQZ BNEZ SHIFT δ β

1 01 RRI-A δ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β

2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

β

3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRR δ RR δ EXTEND δ β

Table 14.3 MIPS16e JAL(X) Encoding of the x Field

x bit 26

0 1

JAL JALX

Table 14.4 MIPS16e SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL β SRL SRA

Table 14.5 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1

ADDIU1

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

β

Table 14.6 MIPS16e I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2

2. The ADJSP function is used by the ADDIU sp, immediate instruction

SVRS δ MOV32R3

3. The MOV32R function is used by the MOVE r32, rz instruction

* MOVR324

14.2 Instruction Listing

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 377

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

14.2 Instruction Listing

The MIPS16e instructions are listed by instruction type in Table 14.12 through Table 14.19.

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 14.7 MIPS16e RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

β ADDU β SUBU

Table 14.8 MIPS16e RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C) δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV

1 01 β * CMP NEG AND OR XOR NOT

2 10 MFHI CNVT δ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 14.9 MIPS16e I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 14.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx JR ra JALR * JRC rx JRC ra JALRC *

Table 14.11 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ZEH β * SEB SEH β *

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

378 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Table 14.12 MIPS16e Load and Store Instructions

Mnemonic Instruction
Extensible
Instruction

LB Load Byte Yes

LBU Load Byte Unsigned Yes

LH Load Halfword Yes

LHU Load Halfword Unsigned Yes

LW Load Word Yes

SB Store Byte Yes

SH Store Halfword Yes

SW Store Word Yes

Table 14.13 MIPS16e Save and Restore Instructions

Mnemonic Instruction
Extensible
Instruction

RESTORE Restore Registers and Deallocate Stack Frame Yes

SAVE Save Registers and Setup Stack Frame Yes

Table 14.14 MIPS16e ALU Immediate Instructions

Mnemonic Instruction
Extensible
Instruction

ADDIU Add Immediate Unsigned Yes

CMPI Compare Immediate Yes

LI Load Immediate Yes

SLTI Set on Less Than Immediate Yes

SLTIU Set on Less Than Immediate Unsigned Yes

Table 14.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

ADDU Add Unsigned No

AND AND No

CMP Compare No

MOVE Move No

NEG Negate No

14.2 Instruction Listing

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 379

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

NOT Not No

OR OR No

SEB Sign-Extend Byte No

SEH Sign-Extend Halfword No

SLT Set on Less Than No

SLTU Set on Less Than Unsigned No

SUBU Subtract Unsigned No

XOR Exclusive OR No

ZEB Zero-Extend Byte No

ZEH Zero-Extend Halfword No

Table 14.16 MIPS16e Special Instructions

Mnemonic Instruction
Extensible
Instruction

BREAK Breakpoint No

SDBBP Software Debug Breakpoint No

EXTEND Extend No

Table 14.17 MIPS16e Multiply and Divide Instructions

Mnemonic Instruction
Extensible
Instruction

DIV Divide No

DIVU Divide Unsigned No

MFHI Move From HI No

MFLO Move From LO No

MULT Multiply No

MULTU Multiply Unsigned No

Table 14.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction

B Branch Unconditional Yes

BEQZ Branch on Equal to Zero Yes

BNEZ Branch on Not Equal to Zero Yes

Table 14.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

380 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

BTEQZ Branch on T Equal to Zero Yes

BTNEZ Branch on T Not Equal to Zero Yes

JAL Jump and Link No

JALR Jump and Link Register No

JALRC Jump and Link Register Compact No

JALX Jump and Link Exchange No

JR Jump Register No

JRC Jump Register Compact No

Table 14.19 MIPS16e Shift Instructions

Mnemonic Instruction
Extensible
Instruction

SRA Shift Right Arithmetic Yes

SRAV Shift Right Arithmetic Variable No

SLL Shift Left Logical Yes

SLLV Shift Left Logical Variable No

SRL Shift Right Logical Yes

SRLV Shift Right Logical Variable No

Table 14.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction

Appendix A

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 381

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

References

This appendix lists other publications available from MIPS Technologies, Inc. that are referenced in this document.
These documents may be included in the $MIPS_PROJECT/doc area of a typical 74K soft or hard core release, or
in some cases may be available on the MIPS web site http://www.mips.com.

1. MIPS32® Architecture For Programmers, Volume I: Introduction to the MIPS32 Architecture
MIPS document: MD0082

2. MIPS32® Architecture For Programmers, Volume II: The MIPS32 Instruction Set
MIPS document: MD0082

3. MIPS32® Architecture For Programmers, Volume IV-e: The MIPS® DSP Application-Specific Extension to the
MIPS32 Architecture
MIPS document: MD00374

4. Programming the MIPS32® 74K™ Processor Core Family
MIPS document: MD00541

5. Programming the MIPS 74KTM Family Cores for DSP
MIPS document: MD00544

6. MIPS32® 74K™ Processor Core Family Integrator’s Guide
MIPS document: MD00499

7. MIPS32® 74K™ Processor Core Family Implementor’s Guide
MIPS document: MD00498

8. MIPS32® 74K™ Processor Core System User’s Manual
MIPS document: MD00647

9. CorExtend™ Instruction Integrator’s Guide for MIPS32® 74K™ Cores
MIPS document: MD00523

10. Getting Started with CorExtend® Instructions for MIPS32® 74K™ Cores
MIPS document: MD00524

11. MIPS® EJTAG Specification
MIPS document: MD00047

12. MIPS® PDtrace™ Interface and Trace Control Block Specification
MIPS document: MD00439

13. PDtrace™ and TCB Usage Guidelines
MIPS document: MD00365

http://www.mips.com/content/Documentation/MIPSDocumentation/ProcessorCores/doclibrary

 References

382 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

14. MIPS32® Architecture For Programmers, Volume III: Privileged Resource Architecture
MIPS document: MD00088

Appendix B

MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05 383

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

Revision History

MIPS documents include change bars (vertical bars in the page margin) that mark significant changes to the docu-
ment since its last release. Change bars are removed for changes which are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

Date Revision Description

January 31, 2007 01.00 Initial external release

May 25, 2007 01.01 Updates to Pipeline description, CP0 registers, FPU
pipeline, CACHE and WAIT instructions

Dec 14, 2007 01.02 Updated to reflect:
• Reduction in effective pipeline length by 2 stages

(removal of AP, EF and GR stages)
• Instruction buffer size increase to 12 entries
• Addition of Instruction cache Prefetching and associ-

ated controls in Config7PREF
• Addition of UserLocal Coprocessor 0 register and

associated controls in Config3ULRI, HWREnal
• Addition of Config7WII to enable unblocking of

wait even if StatusIE is cleared

• Inclusion of L23DataLo and L23DataHi and renam-
ing of STagLo to L23TagLo

• Corrections to descriptions of ITagLo and DTagLo
• Enhanced description of PerfCtl register
• Removed Config6 register
• Revised description of CacheErr register

November 14, 2008 01.03 • Updated Fig.7.37 to mark bit[10] as unused
• Add section on PDtrace, including new registers
• Modify document to reflect support for Instruction

Scratchpad RAM (ISPRAM) and optional I-cache size
of 0KB

June 04. 2010 01.04 • Add IAR and IVA bits, updated ES bit description in
Config7 Register fields in CP0 Registers chapter.
Changed UX, SX, KX, and PX bits in Status Register
to R (Reserved. reads as 0).

• Add FastDebugChannel and Common Device Mem-
ory Map descriptions

• Add new CP0 registers Config6, CDMMBase, and
ContextConfig

• Add new drseg register DebugVectorAddr

 Revision History

384 MIPS32® 74K™ Processor Core Family Software User’s Manual, Revision 01.05

Copyright © 2007-2011 MIPS Technologies Inc. All rights reserved.

March 30, 2011 01.05 • Add description of 6 new bits in DCR.
• Add description of 2 new bits in Implementation reg-

ister.
• Updated hazard tables.
• Updated description of DC bit in Cause register.

Date Revision Description

	MIPS32® 74K™ Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32® 74K™ Core Family
	1.1 74K™ Core Features
	1.1.1 Pipeline
	1.1.2 Instruction Set
	1.1.3 Memory Management, Caches, and Scratchpad Memory
	1.1.4 Interfaces
	1.1.5 Power Control
	1.1.6 Debug
	1.1.7 Other

	1.2 74K™ Core Block Diagram
	1.2.1 Instruction Fetch Unit (IFU)
	1.2.2 Instruction Cache
	1.2.3 Instruction Decode/Dispatch Unit (IDU)
	1.2.4 Instruction Execution Unit (IEU)
	1.2.5 Multiply Divide Unit (MDU)
	1.2.6 CorExtend® User Defined Instructions (UDIs)
	1.2.7 Load Store Unit (LSU)
	1.2.8 System Control Coprocessor (CP0)
	1.2.9 Memory Management Unit (MMU)
	1.2.10 Data Cache
	1.2.11 Scratchpad RAM
	1.2.12 Graduation Unit (GRU)
	1.2.13 Bus Interface Unit (BIU)
	1.2.14 Coprocessor Interface Unit (CIU)
	1.2.15 Power Management
	1.2.16 EJTAG Debug

	Pipeline of the 74K™ Core
	2.1 Integer Pipeline Description
	2.1.1 IFU Pipeline
	2.1.1.1 IT - Instruction Cache Tag Access
	2.1.1.2 ID - Instruction Cache Data Access
	2.1.1.3 IS - Instruction Select
	2.1.1.4 IR - Instruction Recode
	2.1.1.5 IK - Instruction
	2.1.1.6 IX - Instruction Macro Expansion
	2.1.1.7 IB - Instruction Buffer

	2.1.2 Instruction Decode Unit Pipeline
	2.1.2.1 DD - Dispatch Decode
	2.1.2.2 DR - Dispatch Rename
	2.1.2.3 DS - Dispatch Select
	2.1.2.4 DM - DDQ Mux

	2.1.3 ALU Pipeline
	2.1.3.1 AF - ALU Pipe Register File Read
	2.1.3.2 AM - ALU Pipe Operand Bypass Select Mux, This stage has the final operand bypass muxes for the ALU pipe. The functionality corresponding to this stage resides entirely in the IEU.
	2.1.3.3 AC - ALU Compute
	2.1.3.4 AB - ALU Bypass

	2.1.4 MDU Pipeline
	2.1.4.1 MB - Multiplier Booth Recode.
	2.1.4.2 M1- M3 Multiplier Array
	2.1.4.3 M4 - Multiply Add

	2.1.5 AGEN Pipeline
	2.1.5.1 EM - Execute Operand Bypass Select Mux
	2.1.5.2 EA - Execute and Address Generate
	2.1.5.3 EC - Execute and Cache Access
	2.1.5.4 ES - Execute and Cache Second
	2.1.5.5 EB - Execute and Cache Data Bypass

	2.1.6 GRU Pipeline
	2.1.6.1 WB - Writeback
	2.1.6.2 GC - Graduation Commit

	2.2 Programming the 74K Core
	2.3 Hazards
	2.3.1 Types of Hazards
	2.3.1.1 Execution Hazards, Execution hazards are those created by the execution of one instruction, and seen by the execution of...
	2.3.1.2 Instruction Hazards, Instruction hazards are those created by the execution of one instruction, and seen by the instruct...

	2.3.2 Instruction Listing
	2.3.2.1 Instruction Encoding

	2.3.3 Eliminating Hazards

	Floating-Point Unit of the 74Kf™ Core
	3.1 Features Overview
	3.1.1 IEEE Standard 754

	3.2 Enabling the Floating-Point Coprocessor
	3.3 Data Formats
	3.3.1 Floating-Point Formats
	3.3.1.1 Normalized and Denormalized Numbers
	3.3.1.2 Reserved Operand Values-Infinity and NaN
	3.3.1.3 Infinity and Beyond
	3.3.1.4 Signalling Non-Number (SNaN)
	3.3.1.5 Quiet Non-Number (QNaN)

	3.3.2 Fixed-Point Formats

	3.4 Floating-Point General Registers
	3.4.1 FPRs and Formatted Operand Layout
	3.4.2 Formats of Values Used in FP Registers
	3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

	3.5 Floating-Point Control Registers
	3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)
	3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)
	3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)
	3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)
	3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)
	3.5.6 Operation of the FS/FO/FN Bits
	3.5.6.1 Flush To Zero Bit
	3.5.6.2 Flush Override Bit
	3.5.6.3 Flush to Nearest
	3.5.6.4 Recommended FS/FO/FN Settings

	3.5.7 FCSR Cause Bit Update Flow
	3.5.7.1 Exceptions Triggered by CTC1
	3.5.7.2 Generic Flow
	3.5.7.3 Multiply-Add Flow
	3.5.7.4 Cause Update Flow for Input Operands
	3.5.7.5 Cause Update Flow for Unimplemented Operations

	3.6 Instruction Overview
	3.6.1 Data Transfer Instructions
	3.6.1.1 Data Alignment in Loads, Stores, and Moves
	3.6.1.2 Addressing Used in Data Transfer Instructions

	3.6.2 Arithmetic Instructions
	3.6.3 Conversion Instructions
	3.6.4 Formatted Operand-Value Move Instructions
	3.6.5 Conditional Branch Instructions
	3.6.6 Miscellaneous Instructions

	3.7 Exceptions
	3.7.1 Precise Exception Mode
	3.7.2 Exception Conditions
	3.7.2.1 Invalid Operation Exception
	3.7.2.2 Division By Zero Exception
	3.7.2.3 Underflow Exception
	3.7.2.4 Overflow Exception
	3.7.2.5 Inexact Exception
	3.7.2.6 Unimplemented Operation Exception

	3.8 Pipeline and Performance
	3.8.1 Pipeline Overview
	3.8.1.1 DR Stage - Dispatch Rename
	3.8.1.2 C1 - Coprocessor Interface Unit Stage 1
	3.8.1.3 CR Stage - Coprocessor Interface Unit Queue Read
	3.8.1.4 CI Stage - Coprocessor 1 Interface
	3.8.1.5 FR Stage - Decode, Register Read, and Unpack
	3.8.1.6 M1 Stage - Multiply Tree
	3.8.1.7 M2 Stage - Multiply Complete
	3.8.1.8 A1 Stage - Addition First Step
	3.8.1.9 A2 Stage - Addition Second and Final Step
	3.8.1.10 FP Stage - Result Pack
	3.8.1.11 FW Stage - Register Write

	3.8.2 Bypassing
	3.8.3 Repeat Rate and Latency

	The MIPS® DSP Application-Specific Extension to the MIPS32® Instruction Set
	4.1 Additional Register State for the DSP ASE
	4.1.1 HI-LO Registers
	4.1.2 DSP Control Register

	4.2 Software Detection of the DSP ASE Revision 2

	Memory Management of the 74K™ Core
	5.1 Introduction
	5.2 Modes of Operation
	5.2.1 Virtual Memory Segments
	5.2.1.1 Unmapped Segments
	5.2.1.2 Mapped Segments

	5.2.2 User Mode
	5.2.3 Supervisor Mode
	5.2.4 Kernel Mode
	5.2.4.1 Kernel Mode, User Space (kuseg)
	5.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)
	5.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)
	5.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)
	5.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

	5.2.5 Debug Mode
	5.2.5.1 Debug Mode, Register (drseg)
	5.2.5.2 Debug Mode, Memory (dmseg)

	5.3 Translation Lookaside Buffer
	5.3.1 Joint TLB
	5.3.2 Instruction TLB

	5.4 Virtual-to-Physical Address Translation
	5.4.1 Hits, Misses, and Multiple Matches
	5.4.2 Memory Space
	5.4.2.1 Page Sizes
	5.4.2.2 Replacement Algorithm

	5.4.3 TLB Instructions

	5.5 Fixed Mapping MMU

	Exceptions and Interrupts in the 74K™ Core
	6.1 Exception Conditions
	6.2 Exception Priority
	6.3 Interrupts
	6.3.1 Interrupt Modes
	6.3.1.1 Interrupt Compatibility Mode
	6.3.1.2 Vectored Interrupt Mode
	6.3.1.3 External Interrupt Controller Mode

	6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

	6.4 GPR Shadow Registers
	6.5 Exception Vector Locations
	6.6 General Exception Processing
	6.7 Debug Exception Processing
	6.8 Exception Descriptions
	6.8.1 Reset Exception
	6.8.2 Debug Single Step Exception
	6.8.3 Debug Interrupt Exception
	6.8.4 Non-Maskable Interrupt (NMI) Exception
	6.8.5 Machine Check Exception
	6.8.6 Interrupt Exception
	6.8.7 Debug Instruction Break Exception
	6.8.8 Watch Exception - Instruction Fetch or Data Access
	6.8.9 Address Error Exception - Instruction Fetch/Data Access
	6.8.10 TLB Refill Exception - Instruction Fetch or Data Access
	6.8.11 TLB Invalid Exception - Instruction Fetch or Data Access
	6.8.12 Cache Error Exception
	6.8.13 Bus Error Exception - Instruction Fetch or Data Access
	6.8.14 Debug Software Breakpoint Exception
	6.8.15 Execution Exception - System Call
	6.8.16 Execution Exception - Breakpoint
	6.8.17 Execution Exception - Reserved Instruction
	6.8.18 Execution Exception - Coprocessor Unusable
	6.8.19 Execution Exception - CorExtend block Unusable
	6.8.20 Execution Exception - DSP ASE State Disabled
	6.8.21 Execution Exception - Floating Point Exception
	6.8.22 Execution Exception - Integer Overflow
	6.8.23 Execution Exception - Trap
	6.8.24 Debug Data Break Exception
	6.8.25 TLB Modified Exception - Data Access

	6.9 Exception Handling and Servicing Flowcharts

	CP0 Registers of the 74K™ Core
	7.1 CP0 Register Summary
	7.2 CP0 Register Descriptions
	7.2.1 Index (CP0 Register 0, Select 0): Index into TLB array
	7.2.2 Random (CP0 Register 1, Select 0): Randomly Generated Index into the TLB Array
	7.2.3 EntryLo0-1 (CP0 Registers 2 and 3, Select 0): Output (physical) side of TLB entry
	7.2.4 Context (CP0 Register 4, Select 0): Mixture of Pre-programmed and BadVAddr Bits which can act as an OS Page Table Pointer.
	7.2.5 ContextConfig Register (CP0 Register 4, Select 1)
	7.2.6 UserLocal (CP0 Register 4, Select 2): Address Causing the Last TLB-related Exception
	7.2.7 PageMask (CP0 Register 5, Select 0): Control for Variable Page Size in TLB Entries
	7.2.8 Wired (CP0 Register 6, Select 0): Controls Number of Fixed ("wired") TLB Entries
	7.2.9 HWREna (CP0 Register 7, Select 0): Bitmask Limiting User-mode Access to rdhwr Registers
	7.2.10 BadVAddr (CP0 Register 8, Select 0): Address Causing the Last TLB-related Exception
	7.2.11 Count (CP0 Register 9, Select 0): Free-running Counter at Half the Pipeline Speed
	7.2.12 EntryHi (CP0 Register10, Select 0): High-order Portion of TLB Entry
	7.2.13 Compare (CP0 Register 11, Select 0): Timer Interrupt Control
	7.2.14 Status (CP0 Register 12, Select 0): Processor Status and Control
	7.2.14.1 Interruptibility
	7.2.14.2 Operating Modes
	7.2.14.3 Coprocessor Accessibility

	7.2.15 IntCtl (CP0 Register 12, Select 1): Setup for Interrupt Vector and Interrupt Priority Features
	7.2.16 SRSCtl (CP0 Register12, Select 2): Shadow Register Set Selectors
	7.2.17 SRSMap (CP0 Register 12, Select 3): Shadow Set Choice for Each Interrupt Level in VI Mode
	7.2.18 Cause (CP0 Register 13, Select 0): Cause of Last General Exception
	7.2.19 EPC (CP0 Register 14, Select 0): Restart Address from Exception
	7.2.20 PRId (CP0 Register 15, Select 0): Processor Identification and Revision
	7.2.21 EBase (CP0 Register 15, Select 1): Exception entry point base address and CPU/VPE ID
	7.2.22 CDMMBase Register (CP0 Register 15, Select 2)
	7.2.23 Config (CP0 Register 16, Select 0): Legacy Configuration Register
	7.2.24 Config1-2 (CP0 Register 16, Select 1-2): MIPS32/64 Configuration Registers
	7.2.24.1 Config1
	7.2.24.2 Config2

	7.2.25 Config3 (CP0 Register 16, Select 3): Configuration register showing ASEs
	7.2.26 Config6 (CP0 Register 16, Select 6)
	7.2.27 Config7 (CP0 Register 16, Select 7): CPU-specific Configuration
	7.2.28 WatchLo0-3 (CP0 Register 18, Select 0-3): Watchpoint Address and Qualifiers
	7.2.29 WatchHi0-3 (CP0 Register 19, Select 0-3): Watchpoint Control/Status
	7.2.30 Debug (CP0 Register 23, Select 0): EJTAG Debug Status/Control Register
	7.2.31 Trace Control Register (CP0 Register 23, Select 1)
	7.2.32 Trace Control2 Register (CP0 Register 23, Select 2)
	7.2.33 User Trace Data1 Register (CP0 Register 23, Select 3) and User Trace Data2 Register (CP0 Register 24, Select 3)
	7.2.34 TraceIBPC Register (CP0 Register 23, Select 4)
	7.2.35 TraceDBPC Register (CP0 Register 23, Select 5)
	7.2.36 DEPC (CP0 Register 24, Select 0): Restart Address from Last EJTAG Debug Exception
	7.2.37 Trace Control3 Register (CP0 Register 24, Select 2)
	7.2.38 PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6): Performance Counter Control
	7.2.39 PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7): Performance Counters
	7.2.40 ErrCtl (CP0 Register 26, Select 0): Software Parity Control and Test Modes for Cache RAM Arrays
	7.2.41 CacheErr (CP0 Register 27, Select 0): Cache Parity Exception Status
	7.2.42 ITagLo (CP0 Register 28, Select 0): Read/write Interface for Load/Store Tag Cacheops
	7.2.42.1 ITagLo (ErrCtlWST = 0, ErrCtlSPR = 0)
	7.2.42.2 ITagLo-WST (ErrCtlWST = 1, ErrCtlSPR = 0)
	7.2.42.3 ITagLo-WST (ErrCtlWST = 0, ErrCtlSPR = 1)

	7.2.43 IDataLo (CP0 Register 28, Select 1): Read/write Interface for I-cache Special Cacheops
	7.2.44 DTagLo (CP0 Register 28, Select 2): Read/Write Interface for Load/Store Tag Cacheops
	7.2.44.1 DTagLo (ErrCtlWST = 0, ErrCtlDYT = 0, ErrCtlSPR = 0)
	7.2.44.2 DTagLo-WST(ErrCtlWST = 1, ErrCtlDYT = 0, ErrCtlSPR = 0)
	7.2.44.3 DTagLo-DYT (ErrCtlWST = 0, ErrCtlDYT = 1, ErrCtlSPR = 0)

	7.2.45 DDataLo (CP0 Register 28, Select 3): Low-order Data Read/Write Interface for D-cache
	7.2.46 L23TagLo (CP0 Register 28, Select 4): L2 and L3 Cacheop Tag Use
	7.2.47 L23DataLo (CP0 Register 28, Select 5): Low-order Data Read/Write Interface for L2 or L3 cache
	7.2.48 ITagHi (CP0 Register 29, Select 0): I-cache Predecode Bits
	7.2.49 IDataHi (CP0 Register 29, Select 1): High-order Data Read/write Interface for I- cache Special Cacheops
	7.2.50 DTagHi (CP0 Register 29, Select 2): D-cache Virtual Index (including ASID)
	7.2.51 L23DataHi (CP0 Register 29, Select 5): High-order Data Read/Write Interface for L2 or L3 cache
	7.2.52 ErrorEPC (CP0 Register 30, Select 0): Restart Location from Reset or Cache Error Exception
	7.2.53 DESAVE (CP0 Register 31, Select 0): Scratch Read/Write Register for EJTAG Debug Exception Handler

	Hardware and Software Initialization of the 74K™ Core
	8.1 Hardware-Initialized Processor State
	8.1.1 Coprocessor 0 State
	8.1.2 TLB Initialization
	8.1.3 Bus State Machines
	8.1.4 Static Configuration Inputs
	8.1.5 Fetch Address

	8.2 Software-Initialized Processor State
	8.2.1 Register File
	8.2.2 TLB
	8.2.3 Caches
	8.2.4 Coprocessor 0 State

	Caches of the 74K™ Core
	9.1 Cache Configurations
	9.2 Instruction Cache
	9.2.1 Virtual Aliasing
	9.2.2 Precode bits
	9.2.3 Parity

	9.3 Data Cache
	9.3.1 Virtual Aliasing
	9.3.2 Parity

	9.4 Write Back Buffer
	9.4.1 Uncached Accelerated Stores

	9.5 Cache Protocols
	9.5.1 Cache Organization
	9.5.2 Cacheability Attributes
	9.5.3 Replacement Policy
	9.5.4 Line Locking

	9.6 CACHE Instruction
	9.7 Software Cache Testing
	9.7.1 I-cache and D-cache Tag Arrays
	9.7.2 I-cache Data Array
	9.7.3 I-cache WS Array
	9.7.4 D-cache Data Array
	9.7.5 D-cache WS Array
	9.7.6 D-cache DirtyArray

	9.8 Memory Coherence Issues

	Power Management in the 74K™ Core
	10.1 Register-Controlled Power Management
	10.2 Instruction-Controlled Power Management

	EJTAG Debug Support in the 74K™ Core
	11.1 Debug Control Register
	11.2 Hardware Breakpoints
	11.2.1 Features of Instruction Breakpoint
	11.2.2 Features of Data Breakpoint
	11.2.3 Instruction Breakpoint Registers Overview
	11.2.4 Data Breakpoint Registers Overview
	11.2.5 Conditions for Matching Breakpoints
	11.2.5.1 Conditions for Matching Instruction Breakpoints
	11.2.5.2 Conditions for Matching Data Breakpoints

	11.2.6 Debug Exceptions from Breakpoints
	11.2.6.1 Debug Exception by Instruction Breakpoint
	11.2.6.2 Debug Exception by Data Breakpoint

	11.2.7 Breakpoint used as TriggerPoint
	11.2.8 Instruction Breakpoint Registers
	11.2.8.1 Instruction Breakpoint Status (IBS) Register
	11.2.8.2 Instruction Breakpoint Address n (IBAn) Register
	11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
	11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
	11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

	11.2.9 Data Breakpoint Registers
	11.2.9.1 Data Breakpoint Status (DBS) Register
	11.2.9.2 Data Breakpoint Address n (DBAn) Register
	11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
	11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
	11.2.9.5 Data Breakpoint Control n (DBCn) Register
	11.2.9.6 Data Breakpoint Value n (DBVn) Register
	11.2.9.7 Data Breakpoint Value High n (DBVHn) Register

	11.3 Test Access Port (TAP)
	11.3.1 EJTAG Internal and External Interfaces
	11.3.2 Test Access Port Operation
	11.3.2.1 Test-Logic-Reset State
	11.3.2.2 Run-Test/Idle State
	11.3.2.3 Select_DR_Scan State
	11.3.2.4 Select_IR_Scan State
	11.3.2.5 Capture_DR State
	11.3.2.6 Shift_DR State
	11.3.2.7 Exit1_DR State
	11.3.2.8 Pause_DR State
	11.3.2.9 Exit2_DR State
	11.3.2.10 Update_DR State
	11.3.2.11 Capture_IR State
	11.3.2.12 Shift_IR State
	11.3.2.13 Exit1_IR State
	11.3.2.14 Pause_IR State
	11.3.2.15 Exit2_IR State
	11.3.2.16 Update_IR State

	11.3.3 Test Access Port (TAP) Instructions
	11.3.3.1 BYPASS Instruction
	11.3.3.2 IDCODE Instruction
	11.3.3.3 IMPCODE Instruction
	11.3.3.4 ADDRESS Instruction
	11.3.3.5 DATA Instruction
	11.3.3.6 CONTROL Instruction
	11.3.3.7 ALL Instruction
	11.3.3.8 EJTAGBOOT Instruction
	11.3.3.9 NORMALBOOT Instruction
	11.3.3.10 FASTDATA Instruction
	11.3.3.11 TCBCONTROLA Instruction
	11.3.3.12 TCBCONTROLB Instruction
	11.3.3.13 TCBCONTROLC Instruction
	11.3.3.14 TCBCONTROLE Instruction
	11.3.3.15 TCBDATA Instruction
	11.3.3.16 PCSAMPLE Instruction
	11.3.3.17 FDC Instruction

	11.4 EJTAG TAP Registers
	11.4.1 Instruction Register
	11.4.2 Data Registers Overview
	11.4.2.1 Bypass Register
	11.4.2.2 Device Identification (ID) Register
	11.4.2.3 Implementation Register
	11.4.2.4 EJTAG Control Register

	11.4.3 Processor Access Address Register
	11.4.3.1 Processor Access Data Register

	11.4.4 Fastdata Register (TAP Instruction FASTDATA)

	11.5 TAP Processor Accesses
	11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

	11.6 PC Sampling
	11.6.1 PC Sampling in Wait State

	11.7 Fast Debug Channel
	11.7.1 Common Device Memory Map
	11.7.2 Fast Debug Channel Interrupt
	11.7.3 74K™Core FDC Buffers
	11.7.4 Sleep mode
	11.7.5 FDC TAP Register
	11.7.6 Fast Debug Channel Registers
	11.7.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)
	11.7.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)
	11.7.6.3 FDC Status (FDSTAT) Register (Offset 0x10)
	11.7.6.4 FDC Receive (FDRX) Register (Offset 0x18)
	11.7.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

	11.8 MIPS® Trace
	11.8.1 Processor Modes
	11.8.2 Software Versus Hardware Control
	11.8.3 Trace Information
	11.8.4 Load/Store Address and Data Trace Information
	11.8.5 Programmable Processor Trace Mode Options
	11.8.6 Programmable Trace Information Options
	11.8.6.1 User Data Trace

	11.8.7 Enable Trace to Probe On-chip Memory
	11.8.8 TCB Trigger
	11.8.9 Cycle-by-Cycle Information
	11.8.10 Instruction and Data Cache Miss Tracing
	11.8.11 Performance Counter Tracing
	11.8.12 Filtered Data Trace Mode
	11.8.13 PC Tracing Off
	11.8.14 TMOAS Handling
	11.8.15 Memory-mapped Access to On-Chip Trace RAM
	11.8.16 Core-Specific Event Inefficiency Tracing
	11.8.17 Trace Message Format
	11.8.18 Trace Word Format

	11.9 PDtrace™ Registers (Software Control)
	11.10 Trace Control Block (TCB) Registers (Hardware Control)
	11.10.1 TCBCONTROLA Register
	11.10.2 TCBCONTROLB Register
	11.10.3 TCBDATA Register
	11.10.4 TCBCONTROLC Register
	11.10.5 TCBCONTROLE Register
	11.10.6 TCBCONFIG Register (Reg 0)
	11.10.7 TCBTW Register (Reg 4)
	11.10.8 TCBRDP Register (Reg 5)
	11.10.9 TCBWRP Register (Reg 6)
	11.10.10 TCBSTP Register (Reg 7)
	11.10.11 TCBTRIGx Register (Reg 16-23)
	11.10.12 Register Reset State

	11.11 Enabling MIPS Trace
	11.11.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	11.11.2 Turning On PDtrace™ Trace
	11.11.3 Turning Off PDtrace™ Trace
	11.11.4 TCB Trace Enabling
	11.11.5 Tracing a Reset Exception

	11.12 TCB Trigger Logic
	11.12.1 Trigger Units Overview
	11.12.2 Trigger Source Unit
	11.12.3 Trigger Control Units
	11.12.4 Trigger Action Unit
	11.12.5 Simultaneous Triggers
	11.12.5.1 Prioritized Trigger Actions
	11.12.5.2 OR’ed Trigger Actions

	11.13 MIPS Trace Cycle-by-Cycle Behavior
	11.13.1 FIFO Logic in PDtrace and TCB Modules
	11.13.2 Handling of FIFO Overflow in the PDtrace Module
	11.13.3 Handling of FIFO Overflow in the TCB
	11.13.3.1 Probe Width and Clock-ratio Settings

	11.13.4 Adding Cycle Accurate Information to the Trace

	11.14 TCB On-Chip Trace Memory
	11.14.1 On-Chip Trace Memory Size
	11.14.2 Trace-From Mode
	11.14.3 Trace-To Mode

	Instruction Set Overview
	12.1 CPU Instruction Formats
	12.2 Load and Store Instructions
	12.2.1 Scheduling a Load Delay Slot
	12.2.2 Defining Access Types

	12.3 Computational Instructions
	12.3.1 Cycle Timing for Multiply and Divide Instructions

	12.4 Jump and Branch Instructions
	12.4.1 Overview of Jump Instructions
	12.4.2 Overview of Branch Instructions

	12.5 Control Instructions
	12.6 Coprocessor Instructions

	74K™ Processor Core Instructions
	13.1 Understanding the Instruction Descriptions
	13.2 74K™ Opcode Map
	13.3 Floating Point Unit Instruction Format Encodings
	13.4 MIPS32™ Instruction Set for the 74K™ Core
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	WAIT
	TLBWR

	MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set
	14.1 Instruction Bit Encoding
	14.2 Instruction Listing

	References
	Revision History

