
Document Number: MD00343
Revision 03.11

December 19, 2008

MIPS Technologies, Inc.
 955 East Arques Avenue

 Sunnyvale, CA 94085-4521

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MIPS
Verified™

MIPS32® 24K® Processor Core Family
Software User’s Manual

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B MIPS32 PROC

Copyright © 2004-2008 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 3

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Introduction to the MIPS32® 24K® Processor Core Family .. 21
1.1: 24K® Core Features.. 22
1.2: 24K® Core Block Diagram .. 25

1.2.1: Logic Blocks ... 26
1.2.1.1: Execution Unit .. 26
1.2.1.2: Multiply/Divide Unit (MDU) ... 27
1.2.1.3: System Control Coprocessor (CP0) ... 27
1.2.1.4: Memory Management Unit (MMU) ... 27
1.2.1.5: Fetch Unit ... 28
1.2.1.6: Instruction Cache.. 28
1.2.1.7: Load/Store Unit... 29
1.2.1.8: Data Cache... 29
1.2.1.9: Bus Interface Unit (BIU).. 29
1.2.1.10: Power Management ... 29
1.2.1.11: MIPS16e™ Application Specific Extension .. 30
1.2.1.12: EJTAG Debug .. 30
1.2.1.13: CorExtend® User Defined Instructions... 30

Chapter 2: Pipeline of the 24K® Core ... 31
2.1: Pipeline Stages.. 31

2.1.1: IF Stage: Instruction Fetch First ... 32
2.1.2: IS - Instruction Fetch Second... 32
2.1.3: IR - Instruction Recode (MIPS16e only)... 33
2.1.4: IK - Instruction Kill (MIPS16e only) .. 33
2.1.5: IT - Instruction Fetch Third ... 33
2.1.6: RF - Register File Access .. 33
2.1.7: AG - Address Generation... 33
2.1.8: EX - Execute/Memory Access.. 33
2.1.9: MS - Memory Access Second.. 33
2.1.10: ER- Exception Resolution .. 34
2.1.11: WB - Writeback .. 34

2.2: Instruction Fetch .. 34
2.2.1: Branch History Table.. 37

2.2.1.1: Branch Target Calculation .. 38
2.2.2: Return Prediction Stack ... 38
2.2.3: ITLB.. 38
2.2.4: Cache Miss Timing... 39
2.2.5: MIPS16e™... 39

2.3: Load Store Unit.. 40
2.3.1: DTLB.. 41
2.3.2: Data Cache Access.. 42
2.3.3: Outstanding misses.. 43
2.3.4: Uncached Accesses... 43

2.4: MDU Pipeline... 43
2.4.1: Multiply Pipeline Stages ... 45
2.4.2: Divide Operations... 47

2.5: Skewed ALU.. 48

4 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.6: Interlock Handling.. 49
2.7: Instruction Interlocks.. 50
2.8: Hazards ... 51

2.8.1: Types of Hazards ... 51
2.8.1.1: Execution Hazards ... 51
2.8.1.2: Instruction Hazards... 52

2.8.2: Instruction Listing ... 53
2.8.2.1: Instruction Encoding ... 53

2.8.3: Eliminating Hazards ... 54

Chapter 3: Floating-Point Unit of the 24Kf™ Core... 55
3.1: Features Overview .. 55

3.1.1: IEEE Standard 754 .. 56
3.2: Enabling the Floating-Point Coprocessor .. 56
3.3: Data Formats... 57

3.3.1: Floating-Point Formats... 57
3.3.1.1: Normalized and Denormalized Numbers.. 59
3.3.1.2: Reserved Operand Values—Infinity and NaN .. 59
3.3.1.3: Infinity and Beyond ... 59
3.3.1.4: Signalling Non-Number (SNaN) ... 59
3.3.1.5: Quiet Non-Number (QNaN) .. 59

3.3.2: Fixed-Point Formats... 60
3.4: Floating-Point General Registers .. 61

3.4.1: FPRs and Formatted Operand Layout ... 61
3.4.2: Formats of Values Used in FP Registers ... 61
3.4.3: Binary Data Transfers (32-Bit and 64-Bit) .. 63

3.5: Floating-Point Control Registers.. 64
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control Register 0)... 65
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)................................... 66
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control Register 26) .. 67
3.5.4: Floating-Point Enables Register (FENR, CP1 Control Register 28) .. 67
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)................................ 68
3.5.6: Operation of the FS/FO/FN Bits ... 70

3.5.6.1: Flush To Zero Bit .. 71
3.5.6.2: Flush Override Bit ... 72
3.5.6.3: Flush to Nearest ... 72
3.5.6.4: Recommended FS/FO/FN Settings.. 73

3.5.7: FCSR Cause Bit Update Flow.. 73
3.5.7.1: Exceptions Triggered by CTC1 .. 73
3.5.7.2: Generic Flow .. 73
3.5.7.3: Multiply-Add Flow ... 74
3.5.7.4: Cause Update Flow for Input Operands ... 74
3.5.7.5: Cause Update Flow for Unimplemented Operations .. 74

3.6: Instruction Overview .. 74
3.6.1: Data Transfer Instructions.. 75

3.6.1.1: Data Alignment in Loads, Stores, and Moves .. 75
3.6.1.2: Addressing Used in Data Transfer Instructions .. 75

3.6.2: Arithmetic Instructions.. 76
3.6.3: Conversion Instructions.. 77
3.6.4: Formatted Operand-Value Move Instructions .. 78
3.6.5: Conditional Branch Instructions ... 79
3.6.6: Miscellaneous Instructions ... 79

3.7: Exceptions ... 80

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 5

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.7.1: Precise Exception Mode .. 80
3.7.2: Exception Conditions ... 80

3.7.2.1: Invalid Operation Exception.. 81
3.7.2.2: Division By Zero Exception... 82
3.7.2.3: Underflow Exception... 82
3.7.2.4: Overflow Exception... 82
3.7.2.5: Inexact Exception ... 82
3.7.2.6: Unimplemented Operation Exception... 83

3.8: Pipeline and Performance ... 83
3.8.1: Pipeline Overview .. 83

3.8.1.1: FR Stage - Decode, Register Read, and Unpack... 84
3.8.1.2: M1 Stage - Multiply Tree .. 84
3.8.1.3: M2 Stage - Multiply Complete .. 84
3.8.1.4: A1 Stage - Addition First Step .. 84
3.8.1.5: A2 Stage - Addition Second and Final Step ... 84
3.8.1.6: FP Stage - Result Pack .. 84
3.8.1.7: FW Stage - Register Write.. 84

3.8.2: Bypassing... 85
3.8.3: Repeat Rate and Latency .. 85

Chapter 4: Memory Management of the 24K® Core .. 87
4.1: Introduction.. 87
4.2: Modes of Operation ... 89

4.2.1: Virtual Memory Segments.. 89
4.2.1.1: Unmapped Segments... 90
4.2.1.2: Mapped Segments ... 91

4.2.2: User Mode.. 91
4.2.3: Supervisor Mode.. 92
4.2.4: Kernel Mode... 94

4.2.4.1: Kernel Mode, User Space (kuseg) ... 96
4.2.4.2: Kernel Mode, Kernel Space 0 (kseg0).. 96
4.2.4.3: Kernel Mode, Kernel Space 1 (kseg1).. 96
4.2.4.4: Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2) ... 97
4.2.4.5: Kernel Mode, Kernel Space 3 (kseg3).. 97

4.2.5: Debug Mode... 97
4.2.5.1: Conditions and Behavior for Access to drseg, EJTAG Registers ... 98
4.2.5.2: Conditions and Behavior for Access to dmseg, EJTAG Memory ... 98

4.3: Translation Lookaside Buffer... 99
4.3.1: Joint TLB.. 99
4.3.2: Instruction TLB... 101
4.3.3: Data TLB.. 102

4.4: Virtual-to-Physical Address Translation... 102
4.4.1: Hits, Misses, and Multiple Matches.. 104
4.4.2: Memory Space... 105

4.4.2.1: Page Sizes ... 105
4.4.2.2: Replacement Algorithm .. 105

4.4.3: TLB Instructions ... 106
4.5: Fixed Mapping MMU ... 107
4.6: System Control Coprocessor... 109

Chapter 5: Exceptions and Interrupts in the 24K® Core... 110
5.1: Exception Conditions... 110
5.2: Exception Priority... 111

6 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.3: Interrupts ... 112
5.3.1: Interrupt Modes .. 112

5.3.1.1: Interrupt Compatibility Mode... 113
5.3.1.2: Vectored Interrupt Mode... 115
5.3.1.3: External Interrupt Controller Mode ... 118

5.3.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 120
5.4: GPR Shadow Registers... 121
5.5: Exception Vector Locations ... 123
5.6: General Exception Processing .. 125
5.7: Debug Exception Processing .. 127
5.8: Exceptions ... 129

5.8.1: Reset Exception ... 129
5.8.2: Debug Single Step Exception .. 130
5.8.3: Debug Interrupt Exception ... 130
5.8.4: Non-Maskable Interrupt (NMI) Exception... 131
5.8.5: Machine Check Exception.. 131
5.8.6: Interrupt Exception ... 132
5.8.7: Debug Instruction Break Exception.. 132
5.8.8: Watch Exception — Instruction Fetch or Data Access... 132
5.8.9: Address Error Exception — Instruction Fetch/Data Access... 133
5.8.10: TLB Refill Exception — Instruction Fetch or Data Access ... 134
5.8.11: TLB Invalid Exception — Instruction Fetch or Data Access... 134
5.8.12: Cache Error Exception ... 135
5.8.13: Bus Error Exception — Instruction Fetch or Data Access.. 135
5.8.14: Debug Software Breakpoint Exception .. 136
5.8.15: Execution Exception — System Call.. 136
5.8.16: Execution Exception — Breakpoint.. 136
5.8.17: Execution Exception — Reserved Instruction .. 137
5.8.18: Execution Exception — Coprocessor Unusable .. 137
5.8.19: Execution Exception — CorExtend block Unusable .. 138
5.8.20: Execution Exception — Floating Point Exception .. 138
5.8.21: Execution Exception — Integer Overflow... 138
5.8.22: Execution Exception — Trap.. 139
5.8.23: Execution Exception — C2E.. 139
5.8.24: Execution Exception — IS1.. 139
5.8.25: Debug Data Break Exception... 139
5.8.26: TLB Modified Exception — Data Access ... 140

5.9: Exception Handling and Servicing Flowcharts .. 140

Chapter 6: CP0 Registers of the 24K® Core .. 146
6.1: CP0 Register Summary... 146
6.2: CP0 Register Descriptions .. 148

6.2.1: Index Register (CP0 Register 0, Select 0) ... 149
6.2.2: Random Register (CP0 Register 1, Select 0) .. 149
6.2.3: EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0).. 150
6.2.4: Context Register (CP0 Register 4, Select 0).. 151
6.2.5: UserLocal Register (CP0 Register 4, Select 2).. 152
6.2.6: PageMask Register (CP0 Register 5, Select 0) ... 153
6.2.7: Wired Register (CP0 Register 6, Select 0)... 154
6.2.8: HWREna Register (CP0 Register 7, Select 0) ... 154
6.2.9: BadVAddr Register (CP0 Register 8, Select 0).. 156
6.2.10: Count Register (CP0 Register 9, Select 0) .. 157
6.2.11: EntryHi Register (CP0 Register 10, Select 0) .. 157

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 7

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.12: Compare Register (CP0 Register 11, Select 0) ... 158
6.2.13: Status Register (CP0 Register 12, Select 0).. 158

6.2.13.1: Operating Modes .. 159
6.2.13.2: Coprocessor Accessibility... 160

6.2.14: IntCtl Register (CP0 Register 12, Select 1).. 164
6.2.15: SRSCtl Register (CP0 Register 12, Select 2) .. 165
6.2.16: SRSMap Register (CP0 Register 12, Select 3).. 167
6.2.17: Cause Register (CP0 Register 13, Select 0).. 168
6.2.18: Exception Program Counter (CP0 Register 14, Select 0) .. 172
6.2.19: Processor Identification (CP0 Register 15, Select 0) ... 173
6.2.20: EBase Register (CP0 Register 15, Select 1) ... 173
6.2.21: Config Register (CP0 Register 16, Select 0).. 174
6.2.22: Config1 Register (CP0 Register 16, Select 1).. 176
6.2.23: Config2 Register (CP0 Register 16, Select 2).. 178
6.2.24: Config3 Register (CP0 Register 16, Select 3).. 180
6.2.25: Config7 Register (CP0 Register 16, Select 7).. 182
6.2.26: WatchLo Register (CP0 Register 18, Select 0-3)... 183
6.2.27: WatchHi Register (CP0 Register 19, Select 0-3) ... 184
6.2.28: Debug Register (CP0 Register 23, Select 0) ... 185
6.2.29: Trace Control Register (CP0 Register 23, Select 1) .. 189
6.2.30: Trace Control2 Register (CP0 Register 23, Select 2) .. 191
6.2.31: User Trace Data Register (CP0 Register 23, Select 3).. 193
6.2.32: TraceIBPC Register (CP0 Register 23, Select 4) .. 193
6.2.33: TraceDBPC Register (CP0 Register 23, Select 5)... 194
6.2.34: Debug Exception Program Counter Register (CP0 Register 24, Select 0) 195
6.2.35: Performance Counter Register (CP0 Register 25, select 0-3) ... 196
6.2.36: ErrCtl Register (CP0 Register 26, Select 0)... 204
6.2.37: CacheErr Register (CP0 Register 27, Select 0)... 207
6.2.38: ITagLo Register (CP0 Register 28, Select 0)... 211
6.2.39: DTagLo Register (CP0 Register 28, Select 2 .. 212
6.2.40: L23TagLo Register (CP0 Register 28, Select 4).. 214
6.2.41: IDataLo Register (CP0 Register 28, Select 1) ... 214
6.2.42: DDataLo Register (CP0 Register 28, Select 3).. 214
6.2.43: L23DataLo Register (CP0 Register 28, Select 5) .. 215
6.2.44: IDataHi Register (CP0 Register 29, Select 1) .. 215
6.2.45: L23DataHi Register (CP0 Register 29, Select 5) ... 216
6.2.46: ErrorEPC (CP0 Register 30, Select 0) ... 216
6.2.47: DeSave Register (CP0 Register 31, Select 0) ... 217

Chapter 7: Hardware and Software Initialization of the 24K® Core ... 218
7.1: Hardware-Initialized Processor State .. 218

7.1.1: Coprocessor 0 State .. 218
7.1.2: TLB Initialization... 219
7.1.3: Bus State Machines ... 219
7.1.4: Static Configuration Inputs ... 219
7.1.5: Fetch Address .. 219

7.2: Software Initialized Processor State.. 219
7.2.1: Register File ... 220
7.2.2: TLB... 220
7.2.3: Caches ... 220
7.2.4: Coprocessor 0 State .. 220

Chapter 8: Caches of the 24K® Core .. 221

8 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.1: Cache Configurations .. 221
8.2: Instruction Cache... 221

8.2.1: Virtual Aliasing ... 222
8.2.2: Precode Bits... 223
8.2.3: Parity .. 223

8.3: Data Cache.. 223
8.3.1: Virtual Aliasing ... 224
8.3.2: Parity .. 225

8.4: Write Back Buffer... 225
8.4.1: Uncached Accelerated Stores.. 226

8.5: Cache Protocols .. 227
8.5.1: Cache Organization ... 227
8.5.2: Cacheability Attributes ... 227
8.5.3: Replacement Policy ... 228
8.5.4: Line Locking ... 229

8.6: CACHE Instruction .. 229
8.7: Software Cache Testing .. 230

8.7.1: I-Cache and D-cache Tag Arrays... 230
8.7.2: I-Cache Data Array .. 230
8.7.3: I-Cache WS Array .. 230
8.7.4: D-Cache Data Array... 230
8.7.5: D-cache WS Array ... 230

8.8: Memory Coherence Issues.. 231

Chapter 9: Power Management in the 24K® Core ... 232
9.1: Register-Controlled Power Management .. 232
9.2: Instruction-Controlled Power Management ... 233

9.2.1: Wait IE Ignore .. 233

Chapter 10: Instruction Set Overview... 235
10.1: CPU Instruction Formats ... 235
10.2: Load and Store Instructions... 236

10.2.1: Scheduling a Load Delay Slot .. 236
10.2.2: Defining Access Types... 236

10.3: Computational Instructions .. 237
10.3.1: Cycle Timing for Multiply and Divide Instructions... 238

10.4: Jump and Branch Instructions ... 238
10.4.1: Overview of Jump Instructions ... 238
10.4.2: Overview of Branch Instructions .. 238

10.5: Control Instructions.. 239
10.6: Coprocessor Instructions... 239

Chapter 11: EJTAG Debug Support in the 24K® Core .. 240
11.1: Debug Control Register ... 241
11.2: Hardware Breakpoints ... 242

11.2.1: Features of Instruction Breakpoint ... 243
11.2.2: Features of Data Breakpoint .. 243
11.2.3: Instruction Breakpoint Registers Overview .. 243
11.2.4: Data Breakpoint Registers Overview ... 244
11.2.5: Conditions for Matching Breakpoints ... 244

11.2.5.1: Conditions for Matching Instruction Breakpoints .. 244
11.2.5.2: Conditions for Matching Data Breakpoints ... 245

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 9

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.6: Debug Exceptions from Breakpoints.. 246
11.2.6.1: Debug Exception by Instruction Breakpoint.. 246
11.2.6.2: Debug Exception by Data Breakpoint... 246

11.2.7: Breakpoint used as TriggerPoint.. 248
11.2.8: Instruction Breakpoint Registers .. 248

11.2.8.1: Instruction Breakpoint Status (IBS) Register .. 248
11.2.8.2: Instruction Breakpoint Address n (IBAn) Register .. 249
11.2.8.3: Instruction Breakpoint Address Mask n (IBMn) Register .. 249
11.2.8.4: Instruction Breakpoint ASID n (IBASIDn) Register ... 250
11.2.8.5: Instruction Breakpoint Control n (IBCn) Register ... 250

11.2.9: Data Breakpoint Registers ... 251
11.2.9.1: Data Breakpoint Status (DBS) Register ... 251
11.2.9.2: Data Breakpoint Address n (DBAn) Register ... 252
11.2.9.3: Data Breakpoint Address Mask n (DBMn) Register ... 252
11.2.9.4: Data Breakpoint ASID n (DBASIDn) Register .. 253
11.2.9.5: Data Breakpoint Control n (DBCn) Register ... 253
11.2.9.6: Data Breakpoint Value n (DBVn) Register ... 254
11.2.9.7: Data Breakpoint Value High n (DBVHn) Register .. 255

11.3: Test Access Port (TAP) ... 255
11.3.1: EJTAG Internal and External Interfaces... 256
11.3.2: Test Access Port Operation ... 256

11.3.2.1: Test-Logic-Reset State... 257
11.3.2.2: Run-Test/Idle State... 257
11.3.2.3: Select_DR_Scan State... 258
11.3.2.4: Select_IR_Scan State .. 258
11.3.2.5: Capture_DR State .. 258
11.3.2.6: Shift_DR State.. 258
11.3.2.7: Exit1_DR State ... 258
11.3.2.8: Pause_DR State... 258
11.3.2.9: Exit2_DR State ... 258
11.3.2.10: Update_DR State ... 259
11.3.2.11: Capture_IR State.. 259
11.3.2.12: Shift_IR State ... 259
11.3.2.13: Exit1_IR State... 259
11.3.2.14: Pause_IR State .. 259
11.3.2.15: Exit2_IR State... 259
11.3.2.16: Update_IR State ... 259

11.3.3: Test Access Port (TAP) Instructions .. 260
11.3.3.1: BYPASS Instruction.. 260
11.3.3.2: IDCODE Instruction .. 260
11.3.3.3: IMPCODE Instruction ... 260
11.3.3.4: ADDRESS Instruction... 261
11.3.3.5: DATA Instruction .. 261
11.3.3.6: CONTROL Instruction .. 261
11.3.3.7: ALL Instruction.. 261
11.3.3.8: EJTAGBOOT Instruction .. 261
11.3.3.9: NORMALBOOT Instruction .. 261
11.3.3.10: FASTDATA Instruction ... 262
11.3.3.11: TCBCONTROLA Instruction... 262
11.3.3.12: TCBCONTROLB Instruction... 262
11.3.3.13: TCBCONTROLC Instruction... 262
11.3.3.14: TCBDATA Instruction ... 262
11.3.3.15: PCSAMPLE Instruction .. 262

10 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4: EJTAG TAP Registers... 262
11.4.1: Instruction Register .. 262
11.4.2: Data Registers Overview ... 263

11.4.2.1: Bypass Register ... 263
11.4.2.2: Device Identification (ID) Register .. 263
11.4.2.3: Implementation Register... 264
11.4.2.4: EJTAG Control Register ... 265

11.4.3: Processor Access Address Register.. 269
11.4.3.1: Processor Access Data Register .. 269

11.4.4: Fastdata Register (TAP Instruction FASTDATA) ... 270
11.5: TAP Processor Accesses .. 271

11.5.1: Fetch/Load and Store From/To the EJTAG Probe Through dmseg... 271
11.6: PC Sampling.. 273

11.6.1: PC Sampling in Wait State... 273
11.7: MIPS® Trace ... 273

11.7.1: Processor Modes ... 274
11.7.2: Software Versus Hardware Control.. 274
11.7.3: Trace Information ... 275
11.7.4: Load/Store Address and Data Trace Information... 276
11.7.5: Programmable Processor Trace Mode Options... 276
11.7.6: Programmable Trace Information Options ... 276

11.7.6.1: User Data Trace ... 277
11.7.7: Enable Trace to Probe On-chip Memory.. 277
11.7.8: TCB Trigger.. 277
11.7.9: Cycle-by-Cycle Information .. 277
11.7.10: Instruction and Data Cache Miss Tracing .. 277
11.7.11: Trace Message Format .. 278
11.7.12: Trace Word Format .. 278

11.8: PDtrace™ Registers (Software Control).. 278
11.9: Trace Control Block (TCB) Registers (Hardware Control)... 279

11.9.1: TCBCONTROLA Register.. 279
11.9.2: TCBCONTROLB Register.. 282
11.9.3: TCBDATA Register .. 285
11.9.4: TCBCONTROLC Register ... 286
11.9.5: TCBCONFIG Register (Reg 0)... 287
11.9.6: TCBTW Register (Reg 4) ... 288
11.9.7: TCBRDP Register (Reg 5) ... 288
11.9.8: TCBWRP Register (Reg 6) .. 289
11.9.9: TCBSTP Register (Reg 7).. 289
11.9.10: TCBTRIGx Register (Reg 16-23) ... 290
11.9.11: Register Reset State .. 292

11.10: Enabling MIPS Trace... 293
11.10.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints .. 293
11.10.2: Turning On PDtrace™ Trace ... 293
11.10.3: Turning Off PDtrace™ Trace .. 295
11.10.4: TCB Trace Enabling... 295
11.10.5: Tracing a Reset Exception ... 296

11.11: TCB Trigger Logic ... 296
11.11.1: Trigger Units Overview... 296
11.11.2: Trigger Source Unit .. 297
11.11.3: Trigger Control Units .. 298
11.11.4: Trigger Action Unit ... 298
11.11.5: Simultaneous Triggers ... 298

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.11.5.1: Prioritized Trigger Actions .. 298
11.11.5.2: OR’ed Trigger Actions .. 299

11.12: MIPS Trace Cycle-by-Cycle Behavior ... 299
11.12.1: FIFO Logic in PDtrace and TCB Modules.. 299
11.12.2: Handling of FIFO Overflow in the PDtrace Module .. 299
11.12.3: Handling of FIFO Overflow in the TCB... 300

11.12.3.1: Probe Width and Clock-ratio Settings... 300
11.12.4: Adding Cycle Accurate Information to the Trace.. 301

11.13: TCB On-Chip Trace Memory... 301
11.13.1: On-Chip Trace Memory Size.. 301
11.13.2: Trace-From Mode .. 301
11.13.3: Trace-To Mode... 301

Chapter 12: 24K® Processor Core Instructions .. 303
12.1: Understanding the Instruction Descriptions... 303
12.2: 24K® Opcode Map.. 303
12.3: Floating Point Unit Instruction Format Encodings ... 309
12.4: MIPS32® Instruction Set for the 24K® Core ... 309

CACHE.. 329
LL .. 335
PREF... 336
SC ... 339
SYNC .. 341
TLBR ... 345
TLBWI ... 346
TLBWR.. 347
WAIT ... 348

Chapter 13: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set 349
13.1: Instruction Bit Encoding... 349
13.2: Instruction Listing... 352

Appendix A: References .. 355

Appendix B: Revision History ... 356

12 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1.1: 24K® Processor Core Block Diagram ... 26
Figure 1.2: Address Translation During a Cache Access .. 28
Figure 2.1: 24K® Core Pipeline Stages ... 32
Figure 2.2: IFU Block Diagram ... 35
Figure 2.3: Timing of 32-bit Mode Sequential Fetches .. 36
Figure 2.4: Timing of 32-bit Mode Branch Taken Path .. 36
Figure 2.5: Fetch Timing of 32-bit Mode Branch Mispredict .. 37
Figure 2.6: Execution Timing of 32-bit Mode Branch Mispredict ... 37
Figure 2.7: Timing of an ITLB Miss .. 39
Figure 2.8: Timing of a Cache Miss ... 39
Figure 2.9: LSU Pipeline .. 41
Figure 2.10: DTLB Miss Timing .. 42
Figure 2.11: Cache Miss Timing .. 43
Figure 2.12: Multiply Pipeline ... 45
Figure 2.13: Multiply With Dependency From ALU .. 45
Figure 2.14: Multiply With Dependency From Load Hit .. 46
Figure 2.15: Multiply With Dependency From Load Miss ... 46
Figure 2.16: MUL Bypassing Result to Integer Instructions ... 46
Figure 2.17: MDU Pipeline Flow During a 8-bit Divide (DIV) Operation ... 47
Figure 2.18: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ... 47
Figure 2.19: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ... 47
Figure 2.20: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ... 48
Figure 2.21: Load Data Bypass ... 48
Figure 2.22: ALU Data Bypass .. 49
Figure 3.1: FPU Block Diagram ... 56
Figure 3.2: Single-Precision Floating-Point Format (S) .. 58
Figure 3.3: Double-Precision Floating-Point Format (D) .. 58
Figure 3.4: Word Fixed-Point Format (W) .. 60
Figure 3.5: Longword Fixed-Point Format (L) .. 60
Figure 3.6: Single Floating-Point or Word Fixed-Point Operand in an FPR ... 61
Figure 3.7: Double Floating-Point or Longword Fixed-Point Operand in an FPR .. 61
Figure 3.8: Effect of FPU Operations on the Format of Values Held in FPRs ... 62
Figure 3.9: FPU Word Load and Move-to Operations .. 63
Figure 3.10: FPU Doubleword Load and Move-to Operations ... 63
Figure 3.11: FIR Format ... 65
Figure 3.12: FCCR Format ... 66
Figure 3.13: FEXR Format ... 67
Figure 3.14: FENR Format ... 67
Figure 3.15: FCSR Format ... 68
Figure 3.16: FS/FO/FN Bits Influence on Multiply and Addition Results .. 71
Figure 3.17: Flushing to Nearest when Rounding Mode is Round to Nearest ... 72
Figure 3.18: FPU Pipeline .. 83
Figure 3.19: Arithmetic Pipeline Bypass Paths .. 85
Figure 4.1: Address Translation During a Cache Access with TLB MMU .. 88
Figure 4.2: Address Translation During a Cache Access with FM MMU ... 88
Figure 4.3: 24K® Processor Core Virtual Memory Map ... 90
Figure 4.4: User Mode Virtual Address Space ... 91

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 13

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.5: Supervisor Mode Virtual Address Space ... 93
Figure 4.6: Kernel Mode Virtual Address Space .. 95
Figure 4.7: Debug Mode Virtual Address Space .. 97
Figure 4.8: JTLB Entry (Tag and Data) .. 99
Figure 4.9: Overview of a Virtual-to-Physical Address Translation .. 103
Figure 4.10: 32-bit Virtual Address Translation .. 104
Figure 4.11: TLB Address Translation Flow in the 24K® Processor Core ... 106
Figure 4.12: FM Memory Map (ERL=0) in the 24K® Processor Core ... 108
Figure 4.13: FM Memory Map (ERL=1) in the 24K® Processor Core ... 109
Figure 5.1: Interrupt Generation for Vectored Interrupt Mode .. 117
Figure 5.2: Interrupt Generation for External Interrupt Controller Interrupt Mode .. 119
Figure 5.3: General Exception Handler (HW) .. 141
Figure 5.4: General Exception Servicing Guidelines (SW) .. 142
Figure 5.5: TLB Miss Exception Handler (HW) .. 143
Figure 5.6: TLB Exception Servicing Guidelines (SW) ... 144
Figure 5.7: Reset and NMI Exception Handling and Servicing Guidelines .. 145
Figure 6.1: Index Register Format ... 149
Figure 6.2: Random Register Format ... 150
Figure 6.3: EntryLo0, EntryLo1 Register Format ... 150
Figure 6.4: Context Register Format .. 152
Figure 6.5: UserLocal Register Format .. 152
Figure 6.6: PageMask Register Format ... 153
Figure 6.7: Wired and Random Entries in the TLB ... 154
Figure 6.8: Wired Register Format ... 154
Figure 6.9: HWREna Register Format ... 155
Figure 6.10: BadVAddr Register Format .. 156
Figure 6.11: Count Register Format ... 157
Figure 6.12: EntryHi Register Format .. 157
Figure 6.13: Compare Register Format ... 158
Figure 6.14: Status Register Format .. 160
Figure 6.15: IntCtl Register Format .. 164
Figure 6.16: SRSCtl Register Format ... 165
Figure 6.17: SRSMap Register Format ... 168
Figure 6.18: Cause Register Format ... 168
Figure 6.19: EPC Register Format ... 172
Figure 6.20: PRId Register Format .. 173
Figure 6.21: EBase Register Format .. 174
Figure 6.22: Config Register Format — Select 0 ... 174
Figure 6.23: Config1 Register Format .. 177
Figure 6.24: Config2 Register Format .. 179
Figure 6.25: Config3 Register Format .. 180
Figure 6.26: Config7 Register Format .. 182
Figure 6.27: WatchLo Register Format .. 184
Figure 6.28: WatchHi Register Format ... 184
Figure 6.29: Debug Register Format .. 186
Figure 6.30: TraceControl Register Format ... 189
Figure 6.31: TraceControl2 Register Format ... 191
Figure 6.32: User Trace Data Register Format .. 193
Figure 6.33: TraceIBPC Register Format ... 194
Figure 6.34: TraceDBPC Register Format ... 194
Figure 6.35: DEPC Register Format .. 196
Figure 6.36: Performance Counter Control Register .. 197
Figure 6.37: Performance Counter Count Register .. 204

14 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 6.38: ErrCtl Register ... 205
Figure 6.39: CacheErr Register (Primary Caches) ... 207
Figure 6.40: CacheErr Register (Secondary Cache) .. 209
Figure 6.41: ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0).. 211
Figure 6.42: ITagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0).. 211
Figure 6.43: ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1) .. 211
Figure 6.44: DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0) .. 212
Figure 6.45: DTagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0) .. 212
Figure 6.46: DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1) .. 213
Figure 6.47: IDataLo Register Format .. 214
Figure 6.48: DDataLo Register Format .. 214
Figure 6.49: L23DataLo Register Format ... 215
Figure 6.50: IDataHi Register Format .. 215
Figure 6.51: L23DataHi Register Format ... 216
Figure 6.52: ErrorEPC Register Format ... 217
Figure 6.53: DeSave Register Format ... 217
Figure 8.1: Instruction Cache Organization .. 222
Figure 8.2: Data Cache Organization ... 224
Figure 10.1: Instruction Formats ... 236
Figure 11.1: Debug Control Register ... 241
Figure 11.2: IBS Register Format .. 248
Figure 11.3: IBAn Register Format .. 249
Figure 11.4: IBMn Register Format .. 250
Figure 11.5: IBASIDn Register Format .. 250
Figure 11.6: IBCn Register Format .. 250
Figure 11.7: DBS Register Format ... 252
Figure 11.8: DBAn Register Format ... 252
Figure 11.9: DBMn Register Format .. 253
Figure 11.10: DBASIDn Register Format ... 253
Figure 11.11: DBCn Register Format ... 253
Figure 11.12: DBVn Register Format ... 254
Figure 11.13: DBVHn Register Format .. 255
Figure 11.14: TAP Controller State Diagram .. 257
Figure 11.15: Concatenation of the EJTAG Address, Data and Control Registers... 261
Figure 11.16: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 262
Figure 11.17: Device Identification Register Format .. 263
Figure 11.18: Implementation Register Format .. 264
Figure 11.19: EJTAG Control Register Format .. 265
Figure 11.20: Endian Formats for the PAD Register... 269
Figure 11.21: Fastdata Register Format .. 270
Figure 11.22: TAP Register PCsample Format... 273
Figure 11.23: MIPS® Trace Modules in the 24K® Core .. 274
Figure 11.24: TCBCONTROLA Register Format ... 280
Figure 11.25: TCBCONTROLB Register Format ... 282
Figure 11.26: TCBDATA Register Format ... 285
Figure 11.27: TCBCONTROLC Register Format ... 286
Figure 11.28: TCBCONFIG Register Format ... 287
Figure 11.29: TCBTW Register Format ... 288
Figure 11.30: TCBRDP Register Format ... 289
Figure 11.31: TCBWRP Register Format ... 289
Figure 11.32: TCBSTP Register Format .. 290
Figure 11.33: TCBTRIGx Register Format ... 290
Figure 11.34: TCB Trigger Processing Overview.. 297

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 15

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 12.1: Usage of Address Fields to Select Index and Way... 329

16 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2.1: Recode bandwidth ... 40
Table 2.2: MDU Instruction Delays ... 44
Table 2.3: Multiply Instruction (updating HI/LO) Repeat Rates... 44
Table 2.4: MUL Repeat Rates .. 45
Table 2.5: Pipeline Interlocks.. 49
Table 2.6: Instruction Interlocks .. 50
Table 2.7: Execution Hazards... 51
Table 2.8: Instruction Hazards .. 52
Table 2.9: Hazard Instruction Listing .. 53
Table 3.1: Parameters of Floating-Point Data Types.. 57
Table 3.2: Value of Single or Double Floating-Point Data Type Encoding.. 58
Table 3.3: Value Supplied When a New Quiet NaN is Created .. 60
Table 3.4: Coprocessor 1 Register Summary... 64
Table 3.5: Read/Write Properties.. 64
Table 3.6: FIR Bit Field Descriptions... 65
Table 3.7: FCCR Bit Field Descriptions .. 66
Table 3.8: FEXR Bit Field Descriptions... 67
Table 3.9: FENR Bit Field Descriptions... 67
Table 3.10: FCSR Bit Field Descriptions... 69
Table 3.11: Cause, Enables, and Flags Definitions .. 70
Table 3.12: Rounding Mode Definitions.. 70
Table 3.13: Zero Flushing for Tiny Results ... 71
Table 3.14: Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting...................... 71
Table 3.15: Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings 72
Table 3.16: Handling of Tiny Final Result Based on FN and FS Bit Settings ... 72
Table 3.17: Recommended FS/FO/FN Settings ... 73
Table 3.18: FPU Data Transfer Instructions.. 75
Table 3.19: FPU Loads and Stores Using Register+Offset Address Mode .. 75
Table 3.20: FPU Move To and From Instructions ... 76
Table 3.21: FPU IEEE Arithmetic Operations ... 76
Table 3.22: FPU-Approximate Arithmetic Operations ... 76
Table 3.23: FPU Multiply-Accumulate Arithmetic Operations ... 77
Table 3.24: FPU Conversion Operations Using the FCSR Rounding Mode... 77
Table 3.25: FPU Conversion Operations Using a Directed Rounding Mode .. 77
Table 3.26: FPU Formatted Operand Move Instruction .. 78
Table 3.27: FPU Conditional Move on True/False Instructions... 78
Table 3.28: FPU Conditional Move on Zero/Non-Zero Instructions .. 78
Table 3.29: FPU Conditional Branch Instructions ... 79
Table 3.30: Deprecated FPU Conditional Branch Likely Instructions ... 79
Table 3.31: CPU Conditional Move on FPU True/False Instructions .. 79
Table 3.32: Result for Exceptions Not Trapped .. 81
Table 3.33: 24Kf Core FPU Latency and Repeat Rate... 85
Table 4.1: User Mode Segments .. 92
Table 4.2: Supervisor Mode Segments... 94
Table 4.3: Kernel Mode Segments ... 96
Table 4.4: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces 98
Table 4.5: Accesses to drseg Address Range.. 98

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 17

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 4.6: Accesses to dmseg Address Range .. 98
Table 4.7: TLB Tag Entry Fields ... 100
Table 4.8: TLB Data Entry Fields.. 100
Table 4.9: Machine Check Exception ... 105
Table 4.10: TLB Instructions ... 106
Table 4.11: Cache Coherency Attributes .. 107
Table 4.12: Cacheability of Segments with Fixed Mapping Translation.. 107
Table 5.1: Priority of Exceptions ... 111
Table 5.2: Interrupt Modes.. 113
Table 5.3: Relative Interrupt Priority for Vectored Interrupt Mode... 116
Table 5.4: Exception Vector Offsets for Vectored Interrupts... 121
Table 5.5: Exception Vector Base Addresses when SI_UseExceptionBase equals 0.. 123
Table 5.6: Exception Vector Base Addresses when SI_UseExceptionBase equals 1... 123
Table 5.8: Exception Vectors .. 124
Table 5.7: Exception Vector Offsets ... 124
Table 5.9: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 125
Table 5.10: Debug Exception Vector Addresses .. 128
Table 5.11: Register States an Interrupt Exception .. 132
Table 5.12: Register States on a Watch Exception... 133
Table 5.13: CP0 Register States on an Address Exception Error... 134
Table 5.14: CP0 Register States on a TLB Refill Exception ... 134
Table 5.15: CP0 Register States on a TLB Invalid Exception... 135
Table 5.16: CP0 Register States on a Cache Error Exception ... 135
Table 5.17: Register States on a Coprocessor Unusable Exception .. 137
Table 5.18: Register States on a Floating Point Exception... 138
Table 5.19: Register States on a TLB Modified Exception.. 140
Table 6.1: CP0 Registers .. 146
Table 6.2: CP0 Register Field Types .. 148
Table 6.3: Index Register Field Descriptions .. 149
Table 6.4: Random Register Field Descriptions.. 150
Table 6.5: EntryLo0, EntryLo1 Register Field Descriptions .. 150
Table 6.6: Cache Coherency Attributes .. 151
Table 6.7: Context Register Field Descriptions... 152
Table 6.8: UserLocal Register Field Descriptions ... 152
Table 6.9: PageMask Register Field Descriptions .. 153
Table 6.10: Values for the Mask Field of the PageMask Register .. 153
Table 6.11: Wired Register Field Descriptions.. 154
Table 6.12: HWREna Register Field Descriptions .. 155
Table 6.13: RDHWR Register Numbers ... 155
Table 6.14: BadVAddr Register Field Description... 156
Table 6.15: Count Register Field Description ... 157
Table 6.17: Compare Register Field Description .. 158
Table 6.16: EntryHi Register Field Descriptions ... 158
Table 6.18: Status Register Field Descriptions... 160
Table 6.19: IntCtl Register Field Descriptions... 164
Table 6.20: SRSCtl Register Field Descriptions ... 166
Table 6.21: Sources for new SRSCtlCSS on an Exception or Interrupt ... 167
Table 6.22: SRSMap Register Field Descriptions... 168
Table 6.23: Cause Register Field Descriptions... 169
Table 6.24: Cause Register ExcCode Field .. 171
Table 6.25: EPC Register Field Description.. 172
Table 6.26: PRId Register Field Descriptions ... 173
Table 6.27: EBase Register Field Descriptions... 174

18 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.28: Config Register Field Descriptions... 174
Table 6.29: Cache Coherency Attributes .. 176
Table 6.30: Config1 Register Field Descriptions... 177
Table 6.31: Config2 Register Field Descriptions... 179
Table 6.32: Config3 Register Field Descriptions... 180
Table 6.33: Config7 Register Field Descriptions... 182
Table 6.34: WatchLo Register Field Descriptions... 184
Table 6.35: WatchHi Register Field Descriptions.. 185
Table 6.36: Debug Register Field Descriptions... 186
Table 6.37: TraceControl Register Field Descriptions .. 189
Table 6.38: TraceControl2 Register Field Descriptions .. 191
Table 6.39: UserTraceData Register Field Descriptions... 193
Table 6.40: TraceIBPC Register Field Descriptions.. 194
Table 6.41: TraceDBPC Register Field Descriptions .. 194
Table 6.42: BreakPoint Control Modes: IBPC and DBPC... 195
Table 6.43: DEPC Register Formats... 196
Table 6.44: Performance Counter Register Selects.. 196
Table 6.45: Performance Counter Control Register Field Descriptions .. 197
Table 6.46: Performance Counter Count Register Field Descriptions .. 197
Table 6.47: Event Descriptions ... 200
Table 6.48: Performance Counter Count Register Field Descriptions .. 204
Table 6.49: ErrCtl Register Field Descriptions .. 205
Table 6.50: CacheErr Register Field Descriptions (Primary Caches) ... 207
Table 6.51: CacheErr Register Field Descriptions (Secondary Cache) .. 209
Table 6.52: ITagLo Register Field Descriptions.. 211
Table 6.53: DTagLo Register Field Descriptions .. 213
Table 6.54: IDataLo Register Field Description .. 214
Table 6.56: L23DataLo Register Field Description ... 215
Table 6.55: DDataLo Register Field Description... 215
Table 6.58: L23DataHi Register Field Description .. 216
Table 6.57: IDataHi Register Field Description ... 216
Table 6.59: ErrorEPC Register Field Description.. 217
Table 6.60: DeSave Register Field Description .. 217
Table 8.1: Instruction Cache Attributes... 221
Table 8.2: Data Cache Attributes.. 223
Table 8.3: Potential Virtual Aliasing Bits ... 225
Table 8.4: Way Selection Encoding, 4 Ways .. 229
Table 10.1: Byte Access Within a Doubleword ... 237
Table 11.1: Debug Control Register Field Descriptions .. 241
Table 11.2: Overview of Status Register for Instruction Breakpoints.. 243
Table 11.3: Overview of Registers for Each Instruction Breakpoint.. 243
Table 11.4: Overview of Status Register for Data Breakpoints... 244
Table 11.5: Overview of Registers for Each Data Breakpoint... 244
Table 11.6: Rules for Update of BS Bits on Data Breakpoint Exceptions... 247
Table 11.7: Addresses for Instruction Breakpoint Registers ... 248
Table 11.9: IBAn Register Field Descriptions ... 249
Table 11.8: IBS Register Field Descriptions ... 249
Table 11.10: IBMn Register Field Descriptions... 250
Table 11.11: IBASIDn Register Field Descriptions ... 250
Table 11.13: Addresses for Data Breakpoint Registers .. 251
Table 11.12: IBCn Register Field Descriptions ... 251
Table 11.14: DBS Register Field Descriptions.. 252
Table 11.15: DBAn Register Field Descriptions.. 252

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 19

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 11.16: DBMn Register Field Descriptions ... 253
Table 11.17: DBASIDn Register Field Descriptions.. 253
Table 11.18: DBCn Register Field Descriptions.. 254
Table 11.20: DBVHn Register Field Descriptions ... 255
Table 11.19: DBVn Register Field Descriptions.. 255
Table 11.21: EJTAG Interface Pins .. 256
Table 11.22: Implemented EJTAG Instructions .. 260
Table 11.24: Implementation Register Descriptions ... 264
Table 11.23: Device Identification Register... 264
Table 11.25: EJTAG Control Register Descriptions.. 265
Table 11.26: Fastdata Register Field Description... 270
Table 11.27: Operation of the FASTDATA Access... 271
Table 11.28: A List of Coprocessor 0 Trace Registers ... 278
Table 11.29: TCB EJTAG Registers ... 279
Table 11.30: Registers Selected by TCBCONTROLBREG .. 279
Table 11.31: TCBCONTROLA Register Field Descriptions .. 280
Table 11.32: TCBCONTROLB Register Field Descriptions .. 282
Table 11.33: Clock Ratio encoding of the CR field ... 285
Table 11.35: TCBCONTROLC Register Field Descriptions.. 286
Table 11.34: TCBDATA Register Field Descriptions .. 286
Table 11.36: TCBCONFIG Register Field Descriptions .. 287
Table 11.37: TCBTW Register Field Descriptions .. 288
Table 11.38: TCBRDP Register Field Descriptions .. 289
Table 11.39: TCBWRP Register Field Descriptions.. 289
Table 11.40: TCBSTP Register Field Descriptions ... 290
Table 11.41: TCBTRIGx Register Field Descriptions.. 290
Table 12.1: Symbols Used in the Instruction Encoding Tables... 303
Table 12.2: MIPS32 Encoding of the Opcode Field .. 304
Table 12.3: MIPS32 SPECIAL Opcode Encoding of Function Field ... 304
Table 12.4: MIPS32 REGIMM Encoding of rt Field... 304
Table 12.5: MIPS32 SPECIAL2 Encoding of Function Field... 305
Table 12.6: MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture 305
Table 12.7: MIPS32 MOVCI Encoding of tf Bit ... 305
Table 12.8: MIPS32 SRL Encoding of Shift/Rotate .. 305
Table 12.9: MIPS32 SRLV Encoding of Shift/Rotate .. 305
Table 12.10: MIPS32 BSHFLEncoding of sa Field ... 306
Table 12.11: MIPS32 COP0 Encoding of rs Field... 306
Table 12.12: MIPS32COP0 Encoding of Function Field When rs=CO ... 306
Table 12.13: MIPS32 COP1 Encoding of rs Field... 307
Table 12.14: MIPS32 COP1 Encoding of Function Field When rs=S ... 307
Table 12.15: MIPS32 COP1 Encoding of Function Field When rs=D... 307
Table 12.16: MIPS32 COP1 Encoding of Function Field When rs=W or L... 308
Table 12.17: MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF.. 308
Table 12.18: MIPS64 COP1X Encoding of Function Field.. 308
Table 12.19: MIPS32 COP2 Encoding of rs Field... 308
Table 12.20: Floating Point Unit Instruction Format Encodings.. 309
Table 12.21: 24K™ Core Instruction Set .. 309
Table 12.22: List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class 318
Table 12.23: List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class 320
Table 12.24: List of instructions in the MIPS32® DSP ASE in the Multiply sub-class .. 321
Table 12.25: List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class............................ 324
Table 12.26: List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class................................ 324
Table 12.27: List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access sub-class.

20 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

325
Table 12.28: List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class................................ 328
Table 12.29: List of instructions in the MIPS32® DSP ASE in the Branch sub-class ... 328
Table 12.1: Usage of Effective Address.. 329
Table 12.2: Encoding of Bits[17:16] of CACHE Instruction... 330
Table 12.3: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared................................. 330
Table 0-1: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared 333
Table 12.4: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[WST] Cleared 334
Table 12.1: Values of hint Field for PREF Instruction ... 336
Table 12.1: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field... 343
Table 13.1: Symbols Used in the Instruction Encoding Tables... 349
Table 13.2: MIPS16e Encoding of the Opcode Field .. 350
Table 13.3: MIPS16e JAL(X) Encoding of the x Field... 350
Table 13.4: MIPS16e SHIFT Encoding of the f Field .. 350
Table 13.5: MIPS16e RRI-A Encoding of the f Field... 350
Table 13.6: MIPS16e I8 Encoding of the funct Field... 351
Table 13.7: MIPS16e RRR Encoding of the f Field... 351
Table 13.8: MIPS16e RR Encoding of the Funct Field ... 351
Table 13.9: MIPS16e I8 Encoding of the s Field when funct=SVRS .. 351
Table 13.10: MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)... 351
Table 13.11: MIPS16e RR Encoding of the ry Field when funct=CNVT ... 352
Table 13.12: MIPS16e Load and Store Instructions ... 352
Table 13.13: MIPS16e Save and Restore Instructions ... 352
Table 13.14: MIPS16e ALU Immediate Instructions ... 352
Table 13.15: MIPS16e Arithmetic Two or Three Operand Register Instructions .. 353
Table 13.16: MIPS16e Special Instructions .. 353
Table 13.17: MIPS16e Multiply and Divide Instructions.. 353
Table 13.18: MIPS16e Jump and Branch Instructions.. 354
Table 13.19: MIPS16e Shift Instructions... 354

Chapter 1

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 21

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® 24K® Processor Core Family

The 24K® core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS® RISC processor core
family intended for custom system-on-silicon applications. The core is designed for semiconductor manufacturing
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripher-
als with a high-performance RISC processor. A 24K core is fully synthesizable to allow maximum flexibility; it is
highly portable across processes and can easily be integrated into full system-on-silicon designs. This allows develop-
ers to focus their attention on end-user specific characteristics of their product.

The 24K core is ideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 24K family has four members: the MIPS32® 24Kc™ core, the MIPS32 24Kc Pro™ core, the MIPS32 24Kf™
core, and the MIPS32 24Kf Pro™ core.

• The 24Kc is a 32-bit RISC core for high performance applications.

• The 24Kf core adds an IEEE-754 compliant floating point unit.

• The 24Kc Pro core offers the CorExtend® capability.

• The 24Kf Pro core has both the floating point unit and the CorExtend capability.

The term 24K core, as used in this document, generally refers to all cores in the 24K family. When referring to char-
acteristics unique to an individual family member, the specific core type is identified.

On a 24K core, instruction and data caches are configurable as 0, 8, 16, 32, or 64 KB in size. Each cache is organized
as 4-way set associative. The data cache features non-blocking load misses. On a cache miss, the processor can con-
tinue executing instructions until a dependent instruction is reached. Both caches are virtually indexed and physically
tagged. Virtual indexing allows the cache to be indexed in the same clock in which the address is generated rather
than waiting for the virtual-to-physical address translation in the TLB.

The core implements the MIPS32 Release 2 Instruction Set Architecture (ISA) and the MIPS16e™ Application Spe-
cific Extension (ASE) for code compression.

The MMU of the 24K core may be TLB-based or a simple fixed mapping translation mechanism. If TLB-based,
micro TLBs in the fetch and load/store units cache the latest address translations from the larger joint TLB.

The Multiply-Divide Unit (MDU) is fully pipelined and supports a maximum issue rate of one 32x32 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per
clock.

The basic Enhanced JTAG (EJTAG) features provide run control with stop, single stepping, and re-start, and with
software breakpoints through the SDBBP instruction. Support for connection to an external EJTAG probe through the
Test Access Port (TAP) is also included. Instruction and data virtual address hardware breakpoints as well as the
MIPS Trace mechanism can be optionally included.

 Introduction to the MIPS32® 24K® Processor Core Family

22 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The bus interface implements the Open Core Protocol (OCP) [10], with 64-bit read and write data buses. The bus
interface may operate at the same or a lower clock rate than the core itself.

The rest of this chapter provides an overview of the MIPS32 24K processor core and consists of the following sec-
tions:

• Section 1.1 “24K® Core Features”

• Section 1.2 “24K® Core Block Diagram”

1.1 24K® Core Features

• 8-stage pipeline

• 32-bit Address Paths

• 64-bit Data Paths to Caches

• MIPS32-Compatible Instruction Set

• Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

• Targeted multiply instruction (MUL)

• Zero and one detect instructions (CLZ, CLO)

• Wait instruction (WAIT)

• Conditional move instructions (MOVZ, MOVN)

• Prefetch instruction (PREF)

• MIPS32 Enhanced Architecture (Release 2) Features

• Vectored interrupts and support for an external interrupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow sets

• Bit field manipulation instructions

• MIPS16e Application Specific Extension

• 16 bit encodings of 32-bit instructions to improve code density

• Special PC-relative instructions for efficient loading of addresses and constants

• Data type conversion instructions (ZEB, SEB, ZEH, SEH)

1.1 24K® Core Features

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 23

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Compact jumps (JRC, JALRC)

• Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)

• Programmable L1 Cache Sizes

• Individually configurable instruction and data caches

• Sizes of 0, 8, 16, 32, or 64 KB

• 4-Way set associative

• Up to 9 non-blocking loads

• Data cache supports Write-back with write-allocation and Write-through without write-allocation

• 256-bit (32-byte) cache line size, doubleword sectored - suitable for standard single-port SRAM

• Cache line locking support

• Non-blocking prefetches

• Data and Instruction ScratchPad RAMs

• Separate RAMs for Instruction and Data

• Addressable up to 1MB

• 64-bit OCP interfaces for external access

• R4000 Style Privileged Resource Architecture

• Count/compare registers for real-time timer interrupts

• Instruction and data watch registers for software breakpoints

• Standard Memory Management Unit

• 16/32/64 dual-entry MIPS32-style JTLB with variable page sizes

• 4 entry instruction TLB

• 8-entry data TLB

• Optional Memory Management Unit

• Simple Fixed Mapping Translation (FMT)

• Address spaces mapped using register bits

• OCP Bus Interface Unit (BIU)

• 32b address and 64b data

 Introduction to the MIPS32® 24K® Processor Core Family

24 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Flexible core/bus clock ratios

• Supports bursts of 4x64b

• 4 entry write buffer - handles eviction data, write-through, uncached, and uncached accelerated store data

• Simple Byte enable mode allows easier bridging to other bus standards

• Extensions for management of front side L2 cache

• CorExtend® User Defined Instruction capability (24Kc Pro and 24Kf Pro)

• Optional support for the CorExtend feature allows users to define and add instructions to the core (as a
build-time option)

• Single- or multi-cycle instructions

• Source operations from register, immediate field, or local state

• Destination to a register or local state

• Interface to multiply-divide unit, allowing sharing of accumulation registers

• Multiply-Divide Unit

• Maximum issue rate of one 32x32 multiply per clock

• Early-in divide control. Minimum 11, maximum 34 clock latency on divide

• Floating Point Unit (24Kf and 24Kf Pro only)

• IEEE-754 compliant floating point unit

• Compliant to MIPS 64b FPU standards

• Supports single and double precision datatypes

• Coprocessor2 Interface

• 64-bit interface to user designed coprocessor

• Power Control

• No minimum frequency

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of fine-grain clock gating

• EJTAG Debug Support

1.2 24K® Core Block Diagram

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 25

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Start, stop, and single stepping control

• Software breakpoints via the SDBBP instruction

• Optional hardware breakpoints on virtual addresses; 0 or 4 instruction and 0 or 2 data breakpoints

• Test Access Port (TAP) facilitates high speed download of application code

• Optional MIPS Trace hardware to enable real-time tracing of executed code

1.2 24K® Core Block Diagram

The 24K core contains a number of blocks, as shown in the block diagram in Figure 1.1. The major blocks are as fol-
lows:

• Execution Unit (ALU)

• Multiply-Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Floating Point Unit (FPU) - only in 24Kf

• Cache Controller

• Bus Interface Unit (BIU)

• Power Management

• MIPS16e support

• Instruction Cache (I-cache)

• Data Cache (D-cache)

• Enhanced JTAG (EJTAG) Controller

• CorExtend® User Defined Instructions (UDI)

Figure 1.1 shows a block diagram of a 24K core.The MMU can be implemented using either a translation lookaside
buffer or a fixed mapping (FMT). Refer to Chapter 4, “Memory Management of the 24K® Core” on page 87 for more
information.

 Introduction to the MIPS32® 24K® Processor Core Family

26 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 1.1 24K® Processor Core Block Diagram

1.2.1 Logic Blocks

The following subsections describe the various logic blocks of the 24K processor core.

1.2.1.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera-
tions (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit gen-
eral-purpose registers (GPRs) used for scalar integer operations and address calculation. Optionally, one or three
additional register file shadow sets (each containing thirty-two registers) can be added to minimize context switching
overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is
fully bypassed to minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Logic for branch determination and branch target address calculation

• Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions
are followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ and CLO instructions

• ALU for performing bitwise logical operations

• Shifter and Store aligner

Fetch Unit

MDU

MMU

D-cache

BIU

TAP

EJTAG

 Power
Mgmt

I-cache

Off-Chip Debug
I/F

 Execution Unit
(RF/ALU/Shift

O
n-

C
hi

p
Bu

s(
es

)

FPU

Only 24Kf core

Load/Store Unit

System Coprocessor

 ScratchPad
RAM I/FsCorExtend I/F Coprocessor2 I/F

Trace

Off/On-Chip Trace
I/F

1.2 24K® Core Block Diagram

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 27

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Floating Point Unit Interface

• Coprocessor2 Interface

1.2.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations.The MDU consists of a pipelined 32x32 multi-
plier, result-accumulation registers (HI and LO), multiply and divide state machines, and all multiplexers and control
logic required to perform these functions. This pipelined MDU supports execution of a multiply or multiply-accumu-
late operation every clock cycle. Unlike previous cores, there is no dependence between operand size and issue rate
for multiplies. Divide operations are implemented with a simple 1 bit per clock iterative algorithm and require 35
clock cycles in worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual
size is 24, 16 or 8 bit. the divider will skip 7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU
instruction while a divide is still active causes a pipeline stall until the divide operation is completed.

On Pro Series cores, the MDU accumulator is accessible from the CorExtend block. Many CorExtend instruction
types can make use of the HI/LO accumulation registers.

1.2.1.3 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and
the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and presence of
build-time options are available by accessing the CP0 registers. Refer to Chapter 6, “CP0 Registers of the 24K®
Core” on page 146 for more information on the CP0 registers. Refer to Chapter 11, “EJTAG Debug Support in the
24K® Core” on page 240 for more information on EJTAG debug registers.

1.2.1.4 Memory Management Unit (MMU)

The 24K core contains an MMU that interfaces between the execution unit and the cache controllers, shown in Figure
1.2. Although the 24K core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled after
the MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

On the 24K core, by default the MMU is based on a Translation Lookaside Buffer (TLB). The TLB consists of three
translation buffers: a configurable 16/32/64 dual-entry fully associative Joint TLB (JTLB), a 4 entry fully associative
Instruction TLB (ITLB) and a 8-entry fully associative data TLB (DTLB). The ITLB and DTLB, also referred to as
the micro TLBs, are managed by the hardware and are not software visible. The micro TLBs contain subsets of the
JTLB. When translating addresses, the corresponding micro TLB (I or D) is accessed first. If there is not a matching
entry, the JTLB is used to translate the address and refill the micro TLB. If the entry is not found in the JTLB, then an
exception is taken.

The core optionally implements a FMT-based MMU instead of a TLB-based MMU. The FMT replaces the ITLB and
DTLB and the JTLB is removed. The FMT performs a simple translation to get the physical address from the virtual
address. Refer to Chapter 4, “Memory Management of the 24K® Core” on page 87 for more information on the FMT.

Figure 1.2 shows how the address translation mechanism interacts with cache accesses.

 Introduction to the MIPS32® 24K® Processor Core Family

28 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 1.2 Address Translation During a Cache Access

1.2.1.5 Fetch Unit

The fetch unit is responsible for providing instructions to the execution unit. The fetch unit includes:

• Control logic for the instruction cache

• MIPS16e instruction recoder

• Dynamic branch prediction

• 512-entry bimodal branch history table for predicting conditional branches

• 4-entry return prediction stack for predicting return addresses

• 8-entry instruction buffer to decouple the fetch and execution pipelines

• Interface to Instruction ScratchPad RAM

1.2.1.6 Instruction Cache

The instruction cache is an on-chip memory array of up to 64 KB. The cache is virtually indexed and physically
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access rather than hav-
ing to wait for the physical address translation. The tag holds 20 or 21 bits of the physical address, a valid bit, a lock
bit, and optionally a parity bit. There is a separate 6b array which holds data for all 4 ways to be used in the Least
Recently Used (LRU) replacement scheme. Some precode information is included in the instruction cache data array.
An additional 6b per pair of 32b instructions is used to enable quick detection of branches and jumps in the fetch unit.
If parity is implemented, a single bit covers the 6b precode and 8b cover the 64b data.

The core supports instruction cache locking. Cache locking allows critical code to be locked into the cache on a
“per-line” basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is

I-cache

D-cache

Comparator

Comparator

Instruction
Hit/Miss

Data Hit/Miss

Virtual Address

Virtual Address

ITLB/FMT

JTLB

DTLB/FMT

Instruction
Address

Calculator

Data Address
Calculator

Entry

EntryIVA

DVA

1.2 24K® Core Block Diagram

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 29

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

always available on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing
the lock bit) on a per-entry basis using the CACHE instruction.

The LRU array must be bit-writable. The tag and data arrays only need to be word-writable.

1.2.1.7 Load/Store Unit

The Load/Store Unit is responsible for data loads and stores. It includes:

• Data cache control logic

• 4 line fill/store buffer

• ScratchPad RAM interface

1.2.1.8 Data Cache

The data cache is an on-chip memory array of up to 64 KB. The cache is virtually indexed and physically tagged,
allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag holds 20 or 21
bits of the physical address, a valid bit, a lock bit, and optionally a parity bit. A separate array holds the LRU bits
(6b), dirty bits (4b), and optionally, dirty parity bits (4b) for all 4 ways. The data array is optionally parity protected
with 1b per 8b of data.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the
instruction cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents
cannot be selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a
per-entry basis using the CACHE instruction.

The physical data cache memory must be byte writable to support sub-word store operations. The LRU/dirty bit array
must be bit-writable.

1.2.1.9 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation of a
collapsing write buffer. This buffer is used to merge Write-Through transactions as well as to gather multiple writes
together from dirty line evictions and uncached accelerated stores. The write buffer consists of 4 32B entries.

1.2.1.10 Power Management

The core offers a number of power management features, including low-power design, active power management,
and power-down modes of operation. The core is a static design that supports slowing or stopping the clocks to
reduce power.

A register-controlled power management mode in the core provides three bits in the CP0 Status register for software
control of the power management function and allows interrupts to be serviced even when the core is in power-down
mode.

An instruction-controlled power-down mode is entered by execution of the WAIT instruction and is used to invoke
low-power mode.

coreRefer to Chapter 9, “Power Management in the 24K® Core” on page 232 for more information on power man-
agement.

 Introduction to the MIPS32® 24K® Processor Core Family

30 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

1.2.1.11 MIPS16e™ Application Specific Extension

The 24K core includes support for the MIPS16e ASE. This ASE improves code density through the use of 16-bit
encodings of MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick access to
constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for efficient sub-
routine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

A decompressor converts the MIPS16e 16-bit instructions fetched from the instruction cache or external interface
back into 32-bit instructions for execution by the core.

Refer to the MIPS32® Architecture For Programmers, Volume IV-a: The MIPS16e™ Application-Specific Extension
to the MIPS32® Architecture [3] and to Chapter 4, “The MIPS® DSP Application-Specific Extension to the
MIPS32® Instruction Set” on page 99 for more information on the features of the MIPS16e ASE.

1.2.1.12 EJTAG Debug

All cores provide basic EJTAG support with debug mode, run control, single step, and software breakpoint instruction
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code. A TAP con-
troller is also included, enabling communication with an external EJTAG probe through a dedicated port. This pro-
vides the possibility for debugging without debug code in the application, and for download of application code to the
system.

An optional EJTAG feature is hardware breakpoints. A 24K core may have four instruction breakpoints and two data
breakpoints, or no breakpoints. The hardware instruction breakpoints can be configured to generate a debug exception
when an instruction is executed anywhere in the virtual address space. Bit mask and Address Space Identifier (ASID)
values may apply in the address compare. These breakpoints are not limited to code in RAM like the software instruc-
tion breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on a data transac-
tion. The data transaction may be qualified with both virtual address, data value, size and load/store transaction type.
Bit mask and ASID values may apply in the address compare, and byte mask may apply in the value compare.

Another optional debug feature is support for MIPS Trace that enables real-time tracing capability. The trace infor-
mation can be stored to either an on-chip trace memory or an off-chip trace probe. The trace of program flow is
highly flexible and can include the instruction program counter as well as data addresses and data values. The trace
features can provide a powerful software debugging mechanism.

Refer to the EJTAG Specification [11] and to Chapter 11, “EJTAG Debug Support in the 24K® Core” on page 240
for more information on the EJTAG features.

1.2.1.13 CorExtend® User Defined Instructions

This optional module contains support for CorExtend user defined instructions. These instructions must be defined at
build-time for the 24K core. The CorExtend feature is a capability of the 24Kc Pro and 24Kf Pro cores. This feature
makes 16 instructions in the opcode map available for customer usage, and each instruction can have single or
multi-cycle latency. A CorExtend instruction can operate on any one or two general-purpose registers or immediate
data contained within the instruction, and can write the result of each instruction back to a general purpose register or
a local register. Implementation details for CorExtend can be found in the CorExtend® Instruction Integrator's Guide
for MIPS32® Cores [8].

Refer to Section Table 12.5 “MIPS32 SPECIAL2 Encoding of Function Field” for a specification of the opcode map
available for user defined instructions.

Chapter 2

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 31

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

The 24K processor core implements an 8-stage pipeline. The pipeline allows the processor to achieve high frequency
while minimizing device complexity, reducing both cost and power consumption. This chapter contains the following
sections:

• Section 2.1 “Pipeline Stages”

• Section 2.2 “Instruction Fetch”

• Section 2.3 “Load Store Unit”

• Section 2.4 “MDU Pipeline”

• Section 2.5 “Skewed ALU”

• Section 2.6 “Interlock Handling”

• Section 2.7 “Instruction Interlocks”

• Section 2.8 “Hazards”

2.1 Pipeline Stages

The pipeline consists of eight stages:

• IF - Instruction fetch First

• IS - Instruction fetch Second

• IR - Instruction recode (MIPS16e only)

• IK - Instruction kill (MIPS16e only)

• RF - Register File

• AG - Address Generation

• EX - EXecute

• MS - Memory Second

• ER - Exception Resolution

• WB - WriteBack

 Pipeline of the 24K® Core

32 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Three additional stages are conditionally added to the fetch pipeline after the IS stage when executing MIPS16e code.
The IR and IK stages are generally bypassed while executing 32-bit code.

Figure 2.1 shows the basic pipeline organization. The various parts of the pipeline are described in more detail in this
chapter.

Figure 2.1 24K® Core Pipeline Stages

2.1.1 IF Stage: Instruction Fetch First

• I-cache tag/data arrays accessed

• Branch History Table accessed

• ITLB address translation performed

• EJTAG break/watch compares done

2.1.2 IS - Instruction Fetch Second

• Detect I-cache hit

• Way select

• MIPS32 Branch prediction

IF IS IR/IK/IT RF AG EX MS ER

IFU ALU LSU

I-cache Array
Access, ITLB

Lookup

32b mode branch
predict, Hit detect,

way select,

MIPS16e recode
and branch
predict, instn

buffer Register File
Access, instn

decode

Data
Address

Generation

Execution and
branch resolution

Instruction
completion,
exception

processing, write
setup

D-cache Array
Access, DTLB

Lookup

hit detection, way
select, load align

Register File Write

WB

2.1 Pipeline Stages

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 33

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.1.3 IR - Instruction Recode (MIPS16e only)

• MIPS16 recode

• MIPS16 branch prediction

• Stage is bypassed when executing MIPS32 code

2.1.4 IK - Instruction Kill (MIPS16e only)

• Kill MIPS16 instructions (due to branches as an example)

• Stage is bypassed when executing MIPS32 code

2.1.5 IT - Instruction Fetch Third

• Stage is bypassed when executing MIPS32 code and the instruction buffer is empty

• Instruction Buffer

• Branch target calculation

2.1.6 RF - Register File Access

• Register File access

• Instruction decoding/dispatch logic

• Bypass muxes

2.1.7 AG - Address Generation

• D-cache Address Generation

• Bypass muxes

2.1.8 EX - Execute/Memory Access

• Skewed ALU

• DTLB

• Start DCache access

• Branch Resolution

2.1.9 MS - Memory Access Second

• Complete DCache access

• DCache hit detection

 Pipeline of the 24K® Core

34 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Way select mux

• Load align

2.1.10 ER- Exception Resolution

• Instruction completion

• Register file write setup

• Exception processing

2.1.11 WB - Writeback

• Register file writeback occurs on rising edge of this cycle

2.2 Instruction Fetch

The IFU is responsible for supplying instructions to the execution units and handling the results of all control transfer
instructions (branches, jumps, etc.). The IFU operation encompasses four pipe stages: IF (Instruction fetch First), IS
(Instruction fetch Second), IR (Instruction Recode) and IK (Instruction Kill). The instruction cache tags and data are
accessed in IF, and the hit determination and the first part of the 32-bit mode target calculation is done in IS. The IR
and IK stage handle MIPS16e recoding. The remainder of the 32-bit mode target calculation as well as instruction
buffering to the ALU is done in the IT stage, but can be bypassed during 32-bit mode if the instruction buffer is
empty. This instruction buffering decouples the IFU from the rest of the pipeline, allowing fetches to proceed even if
the processor execution is stalled for some reason. The fetch pipeline and cache bandwidth is 64 bits, supplying up to
two instructions per cycle in MIPS32 mode, which allows the IFU to get ahead of the ALU and shields the execution
pipeline from some IFU miss penalties.

Figure 2.2 shows the general datapath of the IFU along with major structures.

2.2 Instruction Fetch

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 35

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.2 IFU Block Diagram

The following diagrams illustrate the timing of various IFU operations. The simplest of these is the sequential fetch
path, in which the next fetch PC is incremented by 8 bytes in parallel with the cache lookup. If each fetch hits in the
cache, the IFU can provide two instructions per cycle and will quickly fill up the instruction buffer, after which it will
stall based on a buffer full signal.

IF IS IT

I-cache Tag

I-cache Data

Fill buffers

ITLB

compare

BHT Target calc.

PA

ba
nk

 h
it

71b data x5

M16
recode

R
PS

ALUre
di

re
ct

M16 target calc.
to mux

M16 target

new PC

Watch/EJTAG
new PC exception

to ITLB etc.

Precode

BIU

to fill buffer

new fetch PC

index/low PC

$ data

precode

new PC

+2/4/8
sequential

resume PC

inst.,
EPC,
exc.,
pred.

exc. tag

fill buf

fil
l d

at
a

Inst.
Buffer

EPC

Early
decode

BIU

RPS
Buffer

RPS

ALU

JR $31
target

WS Array
index

hit/miss

way

to fill buffer

fill/cacheop

 Pipeline of the 24K® Core

36 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.3 Timing of 32-bit Mode Sequential Fetches

Another common situation is a control transfer instruction (branch/jump). The calculation of the target for 32-bit
mode instructions starts in the IS stage, but does not complete until the IT stage. For a predicted taken path this means
that if the delay slot of that branch is in the same fetch bundle, there will be a 2 cycle bubble since the sequential
fetches will not be used. If the delay slot is in the next fetch bundle, there will be a 1 cycle bubble.

Figure 2.4 Timing of 32-bit Mode Branch Taken Path

For conditional branches, the control transfer is most likely speculative, based upon the branch history table. The res-
olution of this branch by the ALU will be calculated in the EX stage and will be used by the IFU in the MS stage,
resulting in a several-cycle fetch bubble. The following figure illustrates one possibility assuming the instruction
buffer is empty and the delay slot is in the same fetch bundle.

PC+8

PC+8

. . .

. . .

. . .

Two inst/cycle

IF IS IT

IF IS IT

. . .

IF IS IT

IF IS IT

. . .

IF IS IT

IF IS IT

. . .

PC+8

target

predicted taken
IF IS IT

IF IS IT

IF

IF

branch

delay slot
. . .

killed

.IF IS IT

IF IS IT

IF

IF

PC+8
killed

2.2 Instruction Fetch

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 37

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.5 Fetch Timing of 32-bit Mode Branch Mispredict

The delay slot and the IT stage bypass lessens the impact of a mispredict on the execution pipeline, though. Assuming
no stalls, the ALU sees a four-cycle bubble:

Figure 2.6 Execution Timing of 32-bit Mode Branch Mispredict

2.2.1 Branch History Table

A branch history table (BHT) will be accessed in parallel with the cache in the IF stage. This table is a 512-entry
bimodal predictor. The table is indexed with bits 11:3 of the VA and each entry contains a two bit saturating counter
that indicates whether a branch is taken or not. The indexing is down to bit 3 because in 32b code there can only be
one branch every 64b because of the branch delay slot. In MIPS16e code, the smaller instructions and lack of delay
slots means that up to 4 branches can exist within a 64b fetch bundle and will share the same BHT entry. However, in
typical code, the branch density is lower than in 32b code and keeping the same 64b indexing maintains reasonable
prediction accuracy.

Unlike some previous MIPS processors, the 24K core uses the BHT to predict branch likely instructions. Architectur-
ally, these are specified to only be used when a branch is taken > 95% of the time. However, the default settings of

AG

EX

RF

IT

PC+8

. . .

killed

redirect

predicted taken (wrong)

. . .

. . .

RF

IF IS IT

. . .

IF IS IT

IF IS IT

AG

RF

.

IF IS

IF IS IT

. . .
branch

delay slot

. . .

IF IS IT

IF IS IT

target
killed

IF IS

RF AG

RF

MS

. . .

redirect

branch (mispredicted)

. . .

delay slot

(bubble)

(bubble)

. . .

. . .

IF IS

IF IS IT

RF AG EX MS ER

RF AG EX MS ER

. . .

. . .

. . . WB

WB

(bubble)

(bubble)

RF IT Bypassed

 Pipeline of the 24K® Core

38 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

many compilers use these even when that is not the case. The delay slot characteristics (the delay slot is only executed
if the branch is taken) allow a useful instruction to be placed in the delay slot instead of a NOP. When used in this
fashion, dynamic prediction is much more accurate than statically predicting a branch likely as taken.

Unconditional branches (BEQ r0, r0 and BGEZAL r0) are detected by the precode logic and will be statically pre-
dicted taken, bypassing the BHT.

The ALU verifies the correctness of the prediction when the branch reaches the EX stage. In the case of a mispredict,
the instructions on the mispredicted path will be killed and the fetch will be redirected to the correct instruction. This
will cause a 4 cycle bubble in the pipeline.

2.2.1.1 Branch Target Calculation

Branch target calculation is done in the IT stage. This alleviates a critical timing path in the IFU and removes the need
for replicating the branch target logic on all 4 ways of the cache. In the case of a jump or a branch that is predicted
taken, subsequent fetches will be killed (after the fetch of the delay slot). This added cycle is generally covered by the
instruction buffer. A string of taken branches will slowly drain the instruction buffer as only two instructions are
fetched every three cycles.

2.2.2 Return Prediction Stack

The return prediction stack (RPS) is a simple stack to hold return addresses. Every time a JAL, JALR ra, or BGEZAL
is seen, the link address is pushed onto the stack. When a JR ra is executed, a link address is popped off of the stack.
If calling convention is maintained and the stack doesn’t overflow, this will have very high prediction accuracy. The
RPS contains 4 entries.

The ALU will verify the correctness of the prediction in the EX stage. If the prediction was wrong, the fetch will be
redirected in the MS stage and there will be a 4 cycle bubble from the misprediction.

JR that don’t use ra are not predicted. The IFU will stall until the ALU reads the register file. The timing on this will
be the same as for a return mispredict.

2.2.3 ITLB

The IFU relies on a small subset of TLB entries stored locally in a four-entry ITLB to translate the PC into a physical
address for tag comparison. The ITLB stores mappings for 4KB or 1MB pages or sub-pages (i.e. if the JTLB page is
64KB, only the 4KB sub-page containing the desired virtual address will be mapped into the ITLB). The ITLB access
occurs in parallel with the primary cache lookup. If there is a miss in the ITLB, the BIU must look up the entry in the
main JTLB.

A miss in the ITLB will be detected in the IF stage, and the IFU will kill that fetch. The virtual address and the miss
indication will be sent to the BIU during IF, allowing the JTLB to start a lookup in the next cycle. The latency of the
JTLB lookup can be impacted by several factors. The JTLB can be busy processing a DTLB miss or a TLB operation,
delaying the start of the JTLB lookup. Also, the JTLB access time depends on how it is implemented. An
SRAM-based PFN array will take an extra cycle over a flop-based version, yielding a 3 cycle latency instead of 2. The
fetch will be restarted when the JTLB indicates that data is going to be returned.

The cache coherence attributes can be reduced to one bit (uncached/cached) for the instruction cache. An ITLB entry
will also record the associated JTLB entry, so that for a JTLB write, the ITLB can invalidate its copy if present. The
ITLB uses a true LRU replacement algorithm.

2.2 Instruction Fetch

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 39

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.7 Timing of an ITLB Miss

2.2.4 Cache Miss Timing

A miss in the instruction cache will be detected in the IS stage. The IFU will allocate one of the entries in the fill
buffer and send the translated physical address and the miss indication to the BIU during the next cycle. The IFU will
then enter an idle state and, assuming no redirect event, will replay the IF stage once the data returns from the BIU.
Prior to writing into the cache, the IFU precodes the instructions with some additional information about
branches/jumps that help speed up fetch unit processing of those instructions. Precoding the instructions and the write
into the fill buffer will happen in the cycle the BIU returns the data, and in the following IF stage the data can be
bypassed from the fill buffer. Thus, the IFU portion of the cache miss penalty is normally 4 cycles. The total miss
penalty could range from a minimum of 10-12 cycles for an L2 hit to 50 or more for an access to main memory.

Figure 2.8 Timing of a Cache Miss

2.2.5 MIPS16e™

The IFU is responsible for recoding MIPS16e instructions. Before the MIPS16e instruction is sent to the ALU, it is
recoded into a 32b instruction. Some additional state is used for the MIPS16e instructions that does not have a direct
counterpart in the MIPS32 instruction set (such as PC-relative loads and adds). This recoding step is handled in an
additional pipeline stage that is only active when executing MIPS16e code.

In each cycle, the recode logic processes 32b of the instruction stream and puts 1-2 instructions in the fetch buffer.
Many instructions can be generated two at a time, but there are two exceptions: JAL(X) and EXTENDED instruc-
tions are 32b. When the JAL(X) is in the 32b fetch window, it will be recoded in one cycle. If the JAL(X) starts in the
middle of a fetch window, the first instruction will be recoded in the first cycle, and the fetch window will be shifted
so the JAL(X) can be recoded in the second cycle. EXTENDs are handled the same way—the EXTEND and the

IF IS* IF IF* IS

ITLB lookup -
miss detected

Fetch
completes with

translated
address

PTE read - 1 or 2 cycles
depending on JTLB

implementation

Fetch killed
JTLB lookup

begins

ITLB Miss Handling
2-3 cycle stall.

IF IF IS

IF IF IS

. . .

PA
cache fill data

to BIU from BIU

N-cycle wait

pre

code

(critical portion)

. . .

. . .
IS

IS

miss
signalled

 Pipeline of the 24K® Core

40 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

instruction it is extending are only recoded when they are in the fetch window together. Since a single fetch of 64bits
can result in up to 4 MIPS16e instructions, in MIPS16e mode, the processor fetches every other cycle.

2.3 Load Store Unit

The Load Store Unit (LSU) is responsible for loads and stores. This primarily includes the data cache control logic.

Table 2.1 Recode bandwidth

First 16b Second 16b 32b Instns generated

16b instruction 16b instruction 2

Extend 16 instruction 1

16b instruction Extend/JAL(X) 1

JAL(X) 1

2.3 Load Store Unit

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 41

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.9 LSU Pipeline

2.3.1 DTLB

The data cache access begins in the AG stage. The ALU generates the virtual address in this stage. In parallel, the
source operands are passed to the LSU and the 8-entry DTLB is accessed. If there is a miss in the DTLB, the LSU
will stall and give the address to the BIU to lookup in the JTLB. If there is a hit in the JTLB, the page information will
be returned to the LSU and the access will continue. Since it is only the LSU pipe that stalls on a DTLB miss, it is
possible for other non load-store instructions to keep progressing down the ALU pipe.

EJTAG/Watch

D-cacheindex

D-cacheindex

pa

=
hit

MS

D-cacheindex

FSBSB

store
data

D-cache

F/SB

EXAG

FAC
DTLBopA

opB

Tag
=

F/SB
Data

Tag(8)

DTLB
Data

bypass

LDQLDQ

LA
LA
LA
LA

LA

BIU
from miss to

BIU
pa

va

lsu_utb

lsu_cct

lsu_fsb

lsu_ldq

write
data

pa

to
BIU

Eviction Control

lsu_evc

lsu_dbg

exception

lsu_lda

WT/UNC

Tag

Data

WS

Data

 Pipeline of the 24K® Core

42 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.10 DTLB Miss Timing

The DTLB will only store mappings either for 4K or 1M pages or subpages of a larger JTLB entry. A DTLB entry
will also record the associated JTLB entry, so that for a JTLB write, the DTLB can invalidate its copy if present. The
DTLB uses a pseudo-LRU replacement algorithm. If the Fixed Mapping MMU is used instead of a TLB, the address
translation will be done in the EX stage, and there will never be a DTLB miss.

2.3.2 Data Cache Access

The data cache access is done during the EX stage. The tag and data arrays are accessed and the values are saved in
flops for use in the MS stage. In parallel with the array lookup (in EX), the physical address is used to do an early tag
compare on entries in the Fill Store Buffer (FSB) and Store Buffer (SB).

The SB is a single entry buffer that is used to stage store data into the other structures. It is fully bypass-able, allowing
a load immediately after a store to the same address to execute without stalls. From the SB, the store data will move
into the FSB if the store hits in the cache or it is an allocating miss. The store data is then written into the cache oppor-
tunistically.

During the MS stage, the data cache tags are compared to the physical address to determine whether a reference hit in
the cache or not. If there is a hit, the way select (WS) array will be written to mark the most recently used way, and
load data will be bypassed back to the ALU. On a cache miss, an FSB entry is allocated to hold the fill data as it
returns from the BIU. The WS array is read and the replacement way is determined. If the line selected for replace-
ment is dirty, an eviction will begin and the dirty data will be written back to memory. A load miss will also allocate
an entry in the Load Queue (LDQ). This buffer is used to hold the aligned load data while it is being staged back into
the ALU.

The core portion of a load miss is shown in Figure 2.11. It takes one cycle to get from the LSU through the BIU and
out onto the OCP bus. It takes at least 1 cycle for the data to be returned. Then 2 more cycles are required to get the
data back to the ALU.

AG EX* EX* EX* EX

DTLB lookup -
miss detected

LSU p ipe
restarts with
translated
address

PTE read - 1 or 2 cycles
depending on JTLB

implementation

Pipe Stalls
Address sent to

JTLB for
lookup

DTLB Miss Handling
2-3 cycle lsu pipe stall.

2.4 MDU Pipeline

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 43

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.11 Cache Miss Timing

2.3.3 Outstanding misses

The 24K core features non-blocking D-cache misses. In the cases where the following instructions are not dependent
on the load data, the core can continue executing instructions while the miss is being processed. The core can handle
multiple outstanding misses.

• Up to 8 independent cache lines - this includes cache refills requested for loads, stores, and prefetches as well as
single uncached load requests. Multiple cacheable requests to the same line can be merged. This limit is depen-
dent on the number of Fill-Store Buffer (FSB) entries the core is configured with.

• Up to 9 load misses - Up to 9 separate loads can be outstanding. The loads can be to different cache lines or mul-
tiple loads can be to the same cache line. This limit is dependent on the number of Load Data Queue (LDQ)
entries the core was built with.

2.3.4 Uncached Accesses

Uncached accesses are handled similarly to cached accesses. The cacheability of the reference is not known until the
address translation has completed in the EX stage, so the cache access is performed anyway. On an uncached refer-
ence, a miss will be forced. Uncached loads will request the exact amount of data required and allocate an FSB and
LDQ entry. Uncached loads are non-blocking just like cached misses. Uncached stores will be sent to the BIU.

To the LSU, uncached accelerated stores look the same as uncached stores. In the BIU, however, they are handled
differently—the BIU will attempt to gather uncached accelerated stores and do a bursted write to improve bus effi-
ciency.

2.4 MDU Pipeline

The autonomous multiply/divide unit (MDU) has a separate pipeline for multiply and divide operations. This pipeline
operates in parallel with the integer unit (ALU) pipeline and does not stall when the ALU pipeline stalls. This allows
multi-cycle MDU operations, such as a divide, to be partially masked by system stalls and/or other integer unit
instructions.

The MDU consists of a 32x32 booth recoded multiplier array, separate carry-lookahead adders for multiply and
divide, result/accumulation registers (HI and LO), multiply and divide state machines, and all necessary multiplexers
and control logic.

MS

load
miss

to BIU
Request
Queue

OCP

- - - -

BIU LDQ

to pipe

1 2x

 Pipeline of the 24K® Core

44 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The MDU supports execution of a multiply operation every clock cycle. Divide operations are implemented with a
simple 1 bit per clock iterative algorithm with an early in detection of sign extension on the dividend (rs). An attempt
to issue a subsequent MDU instruction which would access the HI or LO register before the divide completes causes a
delay in starting the subsequent MDU instruction. Some concurrency is enabled by the separate adders for the multi-
ply and divide data paths. The MDU instruction may start executing once the divide is ensured of writing to the HI
and LO registers before the MDU instruction will access them. A MUL instruction, which does not access the HI or
LO register, may start executing anytime relative to a previous divide instruction.

Table 2.2 lists the delays (number of cycles until a result is available) for multiply and divide instructions. The delays
are listed in terms of pipeline clocks. In this table ‘delay’ refers to the number of cycles the pipeline must stall the sec-
ond instruction to wait for the result of the first instruction.

In Table 2.2 a delay of zero means that the first and second instructions can be issued back to back in the code without
the MDU causing any stalls in the ALU pipeline. A delay of one means that if issued back to back, the ALU pipeline
will be stalled for one cycle.

Table 2.2 MDU Instruction Delays

Size of Operand

1st Instruction[1]

Instruction Sequence
Delay

Clocks1st Instruction 2nd Instruction

32 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or MFHI/MFLO

0

32 bit MUL Integer operation[1] 4

8 bit DIVU MFHI/MFLO 7

16 bit DIVU MFHI/MFLO 15

24 bit DIVU MFHI/MFLO 23

32 bit DIVU MFHI/MFLO 31

8 bit DIV MFHI/MFLO 9[2]

16 bit DIV MFHI/MFLO 17[2]

24 bit DIV MFHI/MFLO 25[2]

32 bit DIV MFHI/MFLO 33[2]

any MFHI/MFLO Integer operation[1] 4

any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU

1

any MTHI/MTLO MFHI/MFLO 0

[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[2] If both operands are positive, then the two Sign Adjust stages are bypassed. Delay is then the same as

for DIVU.

Table 2.3 Multiply Instruction (updating HI/LO) Repeat Rates

Instruction Sequence
Repeat

Rate1st Instruction 2nd Instruction

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

1

2.4 MDU Pipeline

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 45

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The repeat rate of 1 for MULT/MULTU/MADD/MADDU/MSUB/MSUBU to MADD/MADDU/MSUB/MSUBU
are achieved by feeding the result of the M3MDU stage for the first instruction back into the M3MDU stage for the sec-
ond instruction.

2.4.1 Multiply Pipeline Stages

The multiply operation begins in BMDU stage, which would be the EX stage in the integer pipeline. The booth recod-
ing function occurs at this time. The multiply calculation requires three clocks and occurs in the M1MDU, M2MDU,
and M3MDU stages. The carry-lookahead-add (CLA) function occurs at the end of the M3MDU stage. In the AMDU

stage, the result is selected from the multiply data path, HI register, and LO register to be returned to the ALU for the
MFHI, MFLO, and MUL instructions. If the MDU instruction is not one of these, the result is selected to be written
into the HI/LO registers instead. The result is ready to be read from the HI/LO registers in the WMDU stage.

The following figures illustrate a multiply (accumulate) instruction and the interaction with the main integer pipeline.
These figures are applicable to MUL, MULT, MULTU, MADD, MADDU, MSUB, and MSUBU instructions

Figure 2.12 Multiply Pipeline

Figure 2.13 Multiply With Dependency From ALU

Table 2.4 MUL Repeat Rates

Instruction Sequence
Repeat

Rate1st Instruction 2nd Instruction

MUL MUL (no data dependency) 1-3[1,2]

[1] There is no data dependency between first and second MUL. Otherwise, the
repeat rate is the same as for MUL to integer operations in Figure 2.2

[2] MULs can be issued at the maximum rate of 3 every 5 cycles. Three can be
issued back to back, but a fourth one would stall.

RF BMDU M1MDU M2MDU AMDU WMDUAG

(EX)

M3MDU

Result bypassRF EXAG

RF BMDU M1MDU M2MDU AMDU WMDUAG M3MDU

 Pipeline of the 24K® Core

46 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.14 Multiply With Dependency From Load Hit

Figure 2.15 Multiply With Dependency From Load Miss

The following figure shows the results of the GPR targeted MUL instruction being bypassed to a later instruction.
Independent instructions can execute while the multiply is happening. If a dependent instruction is found, it will stall
until the result is available. When the MUL completes, it will arbitrate for access to the write port of the register file.
If the integer pipe is busy with other instructions, the MDU pipeline will stall until the result can be written.

If the MUL target is being used as the base address for a load or store instruction, it needs to be bypassed by the AG
stage, so one extra cycle will be required.

Figure 2.16 MUL Bypassing Result to Integer Instructions

RF BMDU M1MDU M2MDU AMDU WMDUAG

RF EXAG MS

EX*

Result bypass

M3MDU

* - MUL enters EX stage but stalls because data is not ready

RF BMDU M1MDU M2MDU AMDU WMDUAG

RF EXAG MS

EX

...ER*

EX ...

ER

Result bypass

M3MDU

RF BMDU M1MDU M2MDU AMDUAG

RF AG EX* MS ER

Result bypassM3MDU

WB

RF AG EX MS* ER WB

RF AG EX MS ER WB

RF AG EX MS ER WB

RF AG EX MS ER WB

RF AG EX MS ER WB

MUL

Earliest dependent ALU instn

Earliest dependent load/store base address

2.4 MDU Pipeline

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 47

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.4.2 Divide Operations

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. Note
that this cycle is spent even if the adjustment is not necessary. In cycle 2, the first add/subtract iteration is executed. In
cycle 3 an early-in detection is performed. The adjusted rs operand is detected to be zero extended on the upper most
8, 16 or 24 bits. If this is the case the following 7, 15 or 23 cycles of the add/subtract iterations are skipped. During
the next maximum 31 cycles (4-34), the remaining iterative add/subtract loop is executed.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
adjust stages are skipped if both operands are positive.

Figure 2.17, Figure 2.18, Figure 2.19 and Figure 2.20 show the worst case latencies for 8, 16, 24 and 32 bit divide
operations, respectively. The worst case repeat rate is either 14, 22, 30 or 38 cycles (two less if the sign adjust stage is
skipped).

Figure 2.17 MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Figure 2.18 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Figure 2.19 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/SubtraceEarly In

Clock 1 3 4-10 11

SGN Stage

12

Rem. Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

13

Sign Adjust 2

IDLE Stage

14

Result Ready

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/SubtraceEarly In

Clock 1 3 4-18 19

SGN Stage

20

Rem. Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

21

Sign Adjust 2

IDLE Stage

22

Result Ready

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/SubtraceEarly In

Clock 1 3 4-26 27

SGN Stage

28

Rem. Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

29

Sign Adjust 2

IDLE Stage

30

Result Ready

 Pipeline of the 24K® Core

48 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.20 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

2.5 Skewed ALU

The 24K core has a skewed ALU. This is referring to the fact that the ALU is located in the EX stage instead of the
AG stage. This allows the load to use delay to be two cycles, the same as it was in the shorter 4KE pipeline. Software
optimized for that pipeline can run without incurring additional stalls. Of course, this does not come for free - an
ALU instruction generating the base address for a load or store will have an additional cycle stall. Independent of the
ALU location, pointer chasing loads (loads generating the base address for following loads) will see the full 3 cycles
of cache access time.

This is shown in Figure 2.21. The earliest an ALU consumer of load data can issue is two cycles after the load. The
earliest a load/store consumer can issue is three cycles after the load.

The bypass of data from the ALU is shown in Figure 2.22. For back to back ALU instructions, the result is bypassed
from the EX stage to the AG stage. For an ALU bypassing to the base address register of a load or store, the bypass-
ing is from the EX stage to the RF stage and the load cannot issue until two cycles after the ALU instruction. Note
that the data register for a store is not used in the AG stage and a dependency there will look like the ALU to ALU
bypass.

Figure 2.21 Load Data Bypass

RS Adjust

IDLE Stage ERLY Stage DIV Stages RMD Stage

Add/SubtraceEarly In

Clock 1 3 4-34 35

SGN Stage

36

Rem. Adjust

DIV1 Stage

Add/Subtract

2

Sign Adjust 1

SGN2 Stage

37

Sign Adjust 2

IDLE Stage

38

Result Ready

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

RF AG EX MS ER

RF AG EX MS ER

RF AG EX MS

Load Instruction

ALU Consumer of Load Data Instruction

Data bypass from MS to AG/RF

RF AG EXLoad/Store Consumer of Load Data Instruction

2.6 Interlock Handling

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 49

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.22 ALU Data Bypass

2.6 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referred to as interlocks. At each cycle, interlock conditions
are checked for all active instructions.

Table 2.5 lists the types of pipeline interlocks for the 24K processor core.

Table 2.5 Pipeline Interlocks

Interlock Type Sources Slip Stage

GPR dependency - load/store address Dest. register for any instruction in previ-
ous cycle

AG

Dest. register for loads/MFCx/MDU instns
in previous 2 cycles

MDU busy Previous MDU operation not completed AG

GPR dependency Dest. register for loads/MFCx/MDU instns
in previous cycle

EX

LDQ full Load in pipe while Load Queue is full

Blocking load bubble Blocking load immediately following
another blocking load

SYNC, I-Cache Previous I-Cache not completed

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

RF AG EX MS ER

RF AG EX MS ER

RF AG EX MS

ALU Instruction

ALU Consumer of ALU Data

Data bypass from EX to AG/RF

Load/Store Consumer of ALU Data

 Pipeline of the 24K® Core

50 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.7 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In order to adhere to the sequential programming
model, the issue of an instruction must sometimes be delayed. This to ensure that the result of a prior instruction is
available. Table 2.6 details the instruction interactions that prevent an instruction from advancing in the processor
pipeline.

Destination GPR dependency Outstanding GPR write to same register MS

WBB full Store/CACHE instn in pipe while Write-
back Buffer is full

SPRAM busy SPRAM load/store in pipe while SPRAM
is busy

FSB flush SYNC/CACHE/load/store instn requires
Fill Store Buffer to be flushed

DTLB miss Load/Store address miss in microTLB

CACHE CACHE instn needs to re-access data cache

L2 CACHE Previous L2 CACHE not completed

Blocking load miss Load misses with non-blocking loads dis-
abled

ER

Table 2.6 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/L
WL/LWR

ALU Consumer of load data 1 EX stage

Load/Store consumer for base
address register

2 AG stage

MFC0 ALU consumer of destination
register

2 EX stage

Load/store consumer for base
address

3 AG stage

MULTx/MADDx/MSUBx MFLO/MFHI 0

MUL/MFHI/MFLO ALU Consumer of target data 4 EX stage

Load/Store consumer of target
data for base address

5 AG stage

MULTx/MADDx/MSUBx MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0 EX stage

DIV MUL/MULTx/MADDx/
MSUBx/MTHI/MTLO/
MFHI/MFLO/DIV

See Figure 2.2 EX stage

TLBWR/TLBWI Load/Store/PREF/CACHE/
COP0 op

2 EX stage

TLBR 1 EX stage

Table 2.5 Pipeline Interlocks (Continued)

Interlock Type Sources Slip Stage

2.8 Hazards

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 51

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.8 Hazards

In general, the 24K core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previous instruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS32® Architecture, hazards (primarily CP0 hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are back-
ward-compatible with existing MIPS processors.

2.8.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

2.8.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. These hazards should be resolved by executing an EHB instruction or an instruction hazard barrier (JR.HB,
JALR.HB, or ERET) between the two instructions. Table 2.7 lists execution hazards.

Table 2.7 Execution Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

TLBWR, TLBWI → TLBP, TLBR TLB entry 2

Load/store using new TLB entry TLB entry 3

MTC0 → Load/store affected by new state WatchHi
WatchLo

2

MTC0 → MFC0 any cp0 register 2

MTC0 → EI/DI Status 2

MTC0 → RDHWR $3 Count 2

MTC0 → ERET EPC
DEPC

ErrorEPC

2

MTC0 → ERET Status 2

EI, DI → Interrupted instruction StatusIE 2

MTC0 → Interrupted instruction Status 2

MTC0 → User-defined instruction (only for Pro core) StatusERL StatusEXL 4

MTC0 → Interrupted Instruction CauseIP 2

 Pipeline of the 24K® Core

52 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.8.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.8 lists instruction hazards. Because the fetch unit is decoupled from the execution unit, these haz-
ards are rather large. The use of a hazard barrier instruction is highly recommended for reliable clearing of instruction
hazards.

TLBR → MFC0 EntryHi,
EntryLo0,

EntryLo1, Page-
Mask

2

TLBP → MFC0 Index 2

MTC0 → TLBR
TLBWI
TLBWR

EntryHi 2

MTC0 → TLBP
Load/store affected by new state

EntryHiASID 2

MTC0 → TLBWI
TLBWR

EntryLo0
EntryLo1

2

MTC0 → TLBWI
TLBWR

Index 2

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS 1

MTC0 → Instruction not seeing a Timer Interrupt Compare update
that clears Timer

Interrupt

41

MTC0 → Load/Store affected by new state EntryHiASID 3

MTC0 → Load/Store affected by new state StatusERL 3

MTC0 → Load/Store affected by new state DebugLSNM 3

MTC0 → Coprocessor instruction affected by new state StatusCU 4

MTC0 → Coprocessor instruction affected by new state StatusFR 4

MTCO → CorExtend instruction affected by new state StatusCEE 3

MTC0 → MFTR / MTTR VpeControlTargTC 4

MTC0 → Instruction affected by change Any other CP0
register

2

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the
SI_TimerInt output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or a function of the
method for handling SI_TimerInt in an external interrupt controller.

Table 2.8 Instruction Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

TLBWR, TLBWI → Instruction fetch using new TLB entry TLB entry 10

Table 2.7 Execution Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

2.8 Hazards

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 53

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.8.2 Instruction Listing

Table 2.9 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for Pro-
grammers Volume II: The MIPS32 Instruction Set (MD00084) for a more detailed description of these instructions.

2.8.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction. SYNCI
must be used in conjunction with an instruction hazard barrier to ensure that the updated value is seen.

SYNCI offset(base)

MTC0 → Instruction fetch seeing the new value including:
1 change to ERL followed by an instruction fetch from

the useg segment and
2 change to ERL or EXL followed by a Watch excep-

tion

Status 10

MTC0 → Instruction fetch seeing the new value EntryHiASID 10

MTC0 → Instruction fetch seeing the new value WatchHi
WatchLo

10

Instruction stream
write via CACHE

→ Instruction fetch seeing the new instruction stream Cache entries 10

Instruction stream
write via store

→ Instruction fetch seeing the new instruction stream Cache entries System-depen-

dent1

1. This value depends on how long it takes for the store value to propagate through the system.

Table 2.9 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

ERET Clears both execution and instruction hazards

JALR.HB Clears both execution and instruction hazards

JR.HB Clears both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

Table 2.8 Instruction Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

 Pipeline of the 24K® Core

54 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SYNC
JR.HB
NOP

2.8.3 Eliminating Hazards

The Spacing column shown in Table 2.7 and Table 2.8 indicates the number of unrelated instructions (such as NOPs
or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer
of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries in the
table that are listed as 0 are traditional MIPS hazards which are not hazards on the 24K core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to place
one of the instructions listed in Table 2.9 between the producer and consumer of the hazard. Execution hazards can be
removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction.

Chapter 3

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 55

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

This chapter describes the MIPS64® Floating-Point Unit (FPU) included in the 24Kf core. This chapter contains the
following sections:

• Section 3.1 “Features Overview”

• Section 3.2 “Enabling the Floating-Point Coprocessor”

• Section 3.3 “Data Formats”

• Section 3.4 “Floating-Point General Registers”

• Section 3.5 “Floating-Point Control Registers”

• Section 3.6 “Instruction Overview”

• Section 3.7 “Exceptions”

• Section 3.8 “Pipeline and Performance”

3.1 Features Overview

The FPU is provided via Coprocessor 1. Together with its dedicated system software, the FPU fully complies with the
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below:

• Full 64-bit operation is implemented in both the register file and functional units.

• A 32-bit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

• Like the main processor core, Coprocessor 1 is programmed and operated using a Load/Store instruction set. The
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer
does not have to worry about inserting delay slots after loads and between dependent instructions.

• Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

• The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE
accuracy specification where the result is numerically identical to an equivalent computation using multiply, add,
subtract, or negate instructions.

 Floating-Point Unit of the 24Kf™ Core

56 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 3.1 depicts a block diagram of the FPU.

Figure 3.1 FPU Block Diagram

The MIPS architecture is designed such that a combination of hardware and software can be used to implement the
architecture. The 24K core FPU can operate on numbers within a specific range (in general, the IEEE normalized
numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in general, the
IEEE denormalized numbers). Supported number ranges for different instructions are described later in this chapter.
A fast Flush To Zero mode is provided to optimize performance for cases where IEEE denormalized operands and
results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR register; use of
this mode is recommended for best performance.

3.1.1 IEEE Standard 754

The IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as
“IEEE Standard 754”. IEEE Standard 754 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, see the IEEE web page at http://stdsbbs.ieee.org/.

3.2 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled through the CU1 bit in the CP0 Status register. When Coprocessor 1 is not enabled, any
attempt to execute a floating-point instruction causes a Coprocessor Unusable exception.

Processor
Core

Coprocessor
Interface

Control

Register File

Bypass

Add

Div/Sqrt Mul
Load/
Store

3.3 Data Formats

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 57

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The fixed-point types are signed integers provided by the MIPS architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• a 32-bit single-precision floating point (type S, shown in Figure 3.2)

• a 64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities, +∞ and -∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

• s = 0 or 1

• E = any integer between E_min and E_max, inclusive

• bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

• p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes
are listed in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

 Floating-Point Unit of the 24Kf™ Core

58 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Layouts of these three fields are shown in Figure 3.2 and Figure 3.3 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

Figure 3.3 Double-Precision Floating-Point Format (D)

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 3.2.
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction

1 8 23

63 62 52 51 0

S Exponent Fraction

1 11 52

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased
E f s b1 Value V Type of Value

Typical Single

Bit Pattern1
Typical Double

Bit Pattern1

E_max + 1 ≠ 0 1 SNaN Signaling NaN 0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN 0x7fbfffff 0x7ff7ffff ffffffff

E_max +1 0 1 - ∞ Minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
 to

E_min

1 - (2E)(1.f) Negative normalized num-
ber

0x80800000
 through
0xff7fffff

0x80100000 00000000
 through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000
 through
0x7f7fffff

0x00100000 00000000
 through
0x7fefffff ffffffff

E_min -1 ≠ 0 1 - (2E_min)(0.f) Negative denormalized
number

0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized num-
ber

0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single Double

3.3 Data Formats

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 59

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min – 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+∞), minus infinity (-∞), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed ∞ is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

Once created as a default result, ∞ can become an operand in a subsequent operation. The infinities are interpreted
such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on ∞ is regarded as exact, and exception
conditions do not arise. The out-of-range indication represented by ∞ is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞. These cases raise the
Invalid Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOV.fmt, MOVT.fmt, MOVF.fmt, MOVN.fmt, MOVZ.fmt) non-arithmetic; they do not signal IEEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either
value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in
a class of potential values that represent these special values.

 Floating-Point Unit of the 24Kf™ Core

60 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is

one1 of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 754
when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture
that detects or makes use of these “integer QNaN” values.

3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

• a 32-bit Word fixed point (type W), shown in Figure 3.4

• a 64-bit Longword fixed point (type L), shown in Figure 3.5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned
fixed-point data types are not provided by the architecture; application software can synthesize computations for
unsigned integers from the existing instructions and data types.

Figure 3.4 Word Fixed-Point Format (W)

Figure 3.5 Longword Fixed-Point Format (L)

1. In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

Table 3.3 Value Supplied When a New Quiet NaN is Created

Format New QNaN value

Single floating point 0x7fbf ffff

Double floating point 0x7ff7 ffff ffff ffff

Word fixed point 0x7fff ffff

Longword fixed point 0x7fff ffff ffff ffff

31 0

Integer

32

63 0

Integer

64

3.4 Floating-Point General Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 61

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64b
FPU, but a 32b register mode for backwards compatibility is also supported. The FR bit in the CP0 Status register
determines which mode is selected:

• When the FR bit is a 1, the 64b register model is selected, which defines 32 64-bit registers with all formats sup-
ported in a register.

• When the FR bit is a 0, the 32b register model is selected, which defines 32 32-bit registers with D-format values
stored in even-odd pairs of registers; thus the register file can also be viewed as having 16 64-bit registers.

These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU oper-
and values.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figure 3.6 and Figure 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can
be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is
uninterpreted.

• A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of for-
mat fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changes to a
value of format fmt. The binary contents cannot be reinterpreted in a different format.

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword

 Floating-Point Unit of the 24Kf™ Core

62 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs, the value in the register becomes unknown, and the result of the instruction is also
a value that is unknown. Using an FPR containing an unknown value as a source operand produces a result that has an
unknown value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data transfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the
encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

Figure 3.8 Effect of FPU Operations on the Format of Values Held in FPRs

A, B: Example formats
Load: Destination of LWC1, LDC1, or MTC1 instructions.
Store: Source operand of SWC1, SDC1, or MFC1 instructions.
Src fmt: Source operand of computational instruction expecting format “fmt.”
Rslt fmt: Result of computational instruction producing value of format “fmt.”

Load Store

Rslt unknown
Rslt A Rslt B

Src A (interpret) Src B (interpret)

B Load

Rslt A

Src B Src A

Rslt A Rslt B

Rslt unknown Rslt unknown

Src A Src B
Store

Load

Src A Rslt A
Store

Src B Rslt B
StoreValue in

Format
A

Value
uninterpreted

(binary
encoding)

Value in
Format

B

Value unknown

3.4 Floating-Point General Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 63

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 3.9 and Figure 3.10,
respectively.

The store and move-from instructions operate in reverse, reading data from the location that the corresponding load
or move-to instruction had written.

Figure 3.9 FPU Word Load and Move-to Operations

Figure 3.10 FPU Doubleword Load and Move-to Operations

Reg 0

Reg 1

63 0
FR BIT = 1 FR BIT = 0

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Undefined/Unused Data word (0)

Initial value 2

Undefined/Unused

Undefined/Unused

Data word (0)

Data word (4)

63 0

63 0

63 0

63 0

63 0

Reg 0

Reg 2

Reg 0

Reg 2

Reg 0

Reg 2

Undefined/Unused Data word (0)

Initial value 2

Data word (4) Data word (0)

Initial value 2

Initial value 1

Initial value 2

LWC1 f0, 0(r0) / MTC1 f0,r0

LWC1 f1, 4(r0) / MTC1 f1,r4

Reg 0

Reg 1

63 0

FR BIT = 1 FR BIT = 0

Initial value 1

Initial value 2

Data doubleword (0)

63 0

63 0

63 0

Reg 0

Reg 2

LDC1 f0, 0(r0)

LDC1 f1, 8(r0)

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Reg 0

Reg 2 Initial value 2

Data doubleword (0)

Data doubleword (8)

63 0

(Illegal when FR BIT = 0)

Data doubleword (0)

Initial value 2

 Floating-Point Unit of the 24Kf™ Core

64 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wide:
FIR, FCCR, FEXR, FENR, FCSR. Three of these registers, FCCR, FEXR, and FENR, select subsets of the float-
ing-point Control/Status register, the FCSR. These registers are also denoted Coprocessor 1 (CP1) control registers.

CP1 control registers are summarized in Table 3.4 and are described individually in the following subsections of this
chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

Table 3.4 Coprocessor 1 Register Summary

Register Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information that identifies the
FPU.

25 FCCR Floating-Point Condition Codes register.

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by
hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the
first read returns a predictable value. This definition should not be confused with the formal definition of
UNDEFINED behavior.

R This field is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Pre-
set”, hardware initializes this field to zero or to the
appropriate state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is “Undefined,” soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

0 Hardware does not update this field. Hardware can
assume a zero value.

The value software writes to this field must be zero.
Software writes of non-zero values to this field might
result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

3.5 Floating-Point Control Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 65

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the FIR; Table 3.6 describes the FIR bit fields.

Figure 3.11 FIR Format
31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FC 0 F64 L W 3D PS D S ProcessorID Revision

Table 3.6 FIR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FC 24 Indicates that full convert ranges are implemented:
0: Full convert ranges not implemented
1: Full convert ranges implemented
This bit is always 1 to indicate that full convert ranges are
implemented. This means that all numbers can be con-
verted to another type by the FPU (If FS bit in FCSR is not
set Unimplemented Operation exception can still happen
on denormal operands though).

R 1

F64 22 Indicates that this is a 64-bit FPU:
0: Not a 64-bit FPU
1: A 64-bit FPU.
This bit is always 1 to indicate that this is a 64-bit FPU.

R 1

L 21 Indicates that the long fixed point (L) data type and
instructions are implemented:
0: Long type not implemented
1: Long implemented
This bit is always 1 to indicate that long fixed point data
types are implemented.

R 1

W 20 Indicates that the word fixed point (W) data type and
instructions are implemented:
0: Word type not implemented
1: Word implemented
This bit is always 1 to indicate that word fixed point data
types are implemented.

R 1

3D 19 Indicates that the MIPS-3D ASE is implemented:
0: MIPS-3D not implemented
1: MIPS-3D implemented
This bit is always 0 to indicate that MIPS-3D is not imple-
mented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data
type and instructions are implemented:
0: PS floating-point not implemented
1: PS floating-point implemented
This bit is always 0 to indicate that paired-single float-
ing-point data types are not implemented.

R 0

 Floating-Point Unit of the 24Kf™ Core

66 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, all eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR bit fields.

Figure 3.12 FCCR Format

D 17 Indicates that the double-precision (D) floating-point data
type and instructions are implemented:
0: D floating-point not implemented
1: D floating-point implemented
This bit is always 1 to indicate that double-precision float-
ing-point data types are implemented.

R 1

S 16 Indicates that the single-precision (S) floating-point data
type and instructions are implemented:
0: S floating-point not implemented
1: S floating-point implemented
This bit is always 1 to indicate that single-precision float-
ing-point data types are implemented.

R 1

Processor ID 15:8 Identifies the floating-point processor. This value matches
the corresponding field of the CP0 PRId register.

R 0x93

Revision 7:0 Specifies the revision number of the FPU. This field
allows software to distinguish between one revision and
another of the same floating-point processor type. This
value matches the corresponding field of the CP0 PRId
register.

R Hardwired

0 31:25, 23 These bits must be written as zeros; they return zeros on
reads.

0 0

31 8 7 0

0 FCC

Table 3.7 FCCR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FCC 7:0 Floating-point condition code. Refer to the description of
this field in Section 3.5.5 “Floating-Point Control and
Status Register (FCSR, CP1 Control Register 31)”.

R/W Undefined

0 31:8 These bits must be written as zeros; they return zeros on
reads.

0 0

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

3.5 Floating-Point Control Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 67

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR bit fields.

Figure 3.13 FEXR Format

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 3.8 FEXR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Cause 17:12 Cause bits. Refer to the description of this field in Section
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

R/W Undefined

Flags 6:2 Flag bits. Refer to the description of this field in Section
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

0 31:18, 11:7,
1:0

These bits must be written as zeros; they return zeros on
reads.

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS RM

V Z O U I

Table 3.9 FENR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Enables 11:7 Enable bits. Refer to the description of this field in Section
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

 Floating-Point Unit of the 24Kf™ Core

68 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports any IEEE exceptions that cumulatively arose in completed instructions

• indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the
coprocessor enables in the Status register). Figure 3.15 shows the format of the FCSR; Table 3.10 describes the FCSR
bit fields.

Figure 3.15 FCSR Format

FS 2 Flush to Zero bit. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 31:12, 6:3 These bits must be written as zeros; they return zeros on
reads.

0 0

31 25 24 23 22 21 20 18 17 12 11 7 6 2 1 0

FCC FS FCC FO FN 0 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 3.9 FENR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

3.5 Floating-Point Control Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 69

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 3.10 FCSR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit

FCC 31:25, 23 Floating-point condition codes. These bits record the
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to use is specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS ISAs, the FCC bits are separated into
two non-contiguous fields.

R/W Undefined

FS 24 Flush to Zero (FS). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

FO 22 Flush Override (FO). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

FN 21 Flush to Nearest (FN). Refer to Section 3.5.6 “Operation
of the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

Cause 17:12 Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, it is cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.
Refer to Table 3.11 for the meaning of each cause bit.

R/W Undefined

Enables 11:7 Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving a value to the
FCSR or one of its alternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-IEEE Unimplemented
Operation exceptions as always enabled.
Refer to Table 3.11 for the meaning of each enable bit.

R/W Undefined

Flags 6:2 Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.
When an FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Float-
ing-Point Exception (the enable bit was on) do not update
the Flags field.
Hardware never resets this field; software must explicitly
reset this field.
Refer to Table 3.11 for the meaning of each flag bit.

R/W Undefined

 Floating-Point Unit of the 24Kf™ Core

70 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bits in the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.

nonzero result between ±2E_min), whereby the FPU can handle these cases right away instead of relying on the much
slower software handler. The trade-off is a loss of IEEE compliance and accuracy (except for use of the FO bit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result
that a software handler would give. The benefit is a significantly improved performance and precision.

RM 1:0 Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).
Refer to Table 3.12 for the encoding of this field.

R/W Undefined

0 20:18 These bits must be written as zeros; they return zeros on
reads.

0 0

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

V Invalid Operations

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Table 3.12 Rounding Mode Definitions

RM Field
Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (even).

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit

3.5 Floating-Point Control Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 71

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

Figure 3.16 FS/FO/FN Bits Influence on Multiply and Addition Results

3.5.6.1 Flush To Zero Bit

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either
zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settings. Table
3.13 lists the flushing behavior for tiny results..

The flushing of results is based on an intermediate result computed by rounding the mantissa using an unbounded
exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading
zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown in Table 3.14.

FS and FN bit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,

RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG1

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions when
FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same result as an
equivalent sequence of arithmetic FPU operations.

FO bit: MADD, MSUB, NMADD, and NMSUB

Table 3.13 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result

RN (RM=0) -0 +0

RZ(RM=1) -0 +0

RP (RM=2) -0 +MinNorm

RM (RM=3) -MinNorm +0

Table 3.14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

0 An Unimplemented Operation exception is taken.

Operand values
FS applies

AdditionMultiply

Intermediate Multiply-Add result
FS/FO applies

Final result
FS/FN applies

 Floating-Point Unit of the 24Kf™ Core

72 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.6.2 Flush Override Bit

When the Flush Override (FO) bit is set, a tiny intermediate result of any multiply-add type instruction is not flushed
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accuracy.
FO only applies to the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown in Table 3.15.

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), a tiny final result is
flushed to zero or MinNorm. If a tiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it
is flushed to MinNorm (see Figure 3.17). The flushed result has the same sign as the result prior to flushing. Note that
the FN bit takes precedence over the FS bit.

Figure 3.17 Flushing to Nearest when Rounding Mode is Round to Nearest

For all rounding modes other than Round to Nearest (RN), setting the FN bit causes final results to be flushed to zero
or MinNorm as if the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown in Table 3.16.

1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny
results are forced to zero or MinNorm.

Table 3.15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

0 1 The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (see Table 3.32) instead of causing an Unimplemented Operation
exception.

1 Don’t care The intermediate result is kept in an internal format, which can be perceived as having
the usual mantissa precision but with unlimited exponent precision and without forcing
to a specific value or taking an exception.

Table 3.16 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit FS Bit Handling of Tiny Result Values

0 0 An Unimplemented Operation exception is taken.

Table 3.14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

MinNorm/2-MinNorm/2

-MinNorm MinNorm0

3.5 Floating-Point Control Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 73

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.6.4 Recommended FS/FO/FN Settings

Table 3.17 summarizes the recommended FS/FO/FN settings.

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow

Computations are performed in two steps:

1. Compute rounded mantissa with unbound exponent range.

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that I and V both can be
set if a denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or IO). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized IEEE format.

Step #2 can set I if a default result is generated.

0 1 Final result is forced to the value that would have been delivered for an untrapped under-
flow (see Table 3.32) rather than causing an Unimplemented Operation exception.

1 Don’t care Final result is rounded to either zero or 2E_min (MinNorm), whichever is closest when in
Round to Nearest (RN) rounding mode. For other rounding modes, a final result is given
as if FS was set to 1.

Table 3.17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

0 0 0 IEEE-compliant mode. Low performance on denormal operands and tiny results.

1 0 0 Regular embedded applications. High performance on denormal operands and
tiny results.

1 1 1 Highest accuracy and performance configuration.1

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD operation
sequence.

Table 3.16 Handling of Tiny Final Result Based on FN and FS Bit Settings (Continued)

FN Bit FS Bit Handling of Tiny Result Values

 Floating-Point Unit of the 24Kf™ Core

74 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5.7.3 Multiply-Add Flow

For multiply-add type instructions, the computation is extended with two more steps:

1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if
FO = 1).

3. Compute rounded mantissa with unbounded exponent range for the add.

4. Flush to default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 and Step #3 can set a cause bit as described for Step #1 in Section 3.5.7.2 “Generic Flow”.

Step #2 and Step #4 can set I if a default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNorm set
I (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E
to be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 3.6.1 “Data Transfer Instructions”

• Section 3.6.2 “Arithmetic Instructions”

• Section 3.6.3 “Conversion Instructions”

• Section 3.6.4 “Formatted Operand-Value Move Instructions”

• Section 3.6.5 “Conditional Branch Instructions”

3.6 Instruction Overview

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 75

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Section 3.6.6 “Miscellaneous Instructions”

The instructions are described in detail in Chapter 12, “24K® Processor Core Instructions” on page 303, including
descriptions of supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has a load/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Data is transferred between registers and the rest of the
system with dedicated load, store, and move instructions. The transferred data is treated as unformatted binary data;
no format conversions are performed, and therefore no IEEE floating-point exceptions can occur.

Table 3.18 lists the supported transfer operations.

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is
the most-significant byte; for a little-endian machine, this is the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.19 through 3.20 list the FPU data transfer instructions.

Table 3.18 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register ↔ Memory Word/doubleword load/store

FPU general register ↔ CPU general register Word move

FPU control register ↔ CPU general register Word move

Table 3.19 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LWC1 Load Word to Floating Point

SDC1 Store Doubleword to Floating Point

SWC1 Store Word to Floating Point

 Floating-Point Unit of the 24Kf™ Core

76 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bits in
the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of the FS/FO/FN Bits”.

Table 3.21 lists the FPU IEEE compliant arithmetic operations.

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.22 lists the FPU-approximate arithmetic operations.

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

MFC1 Move Word From Floating Point

MTC1 Move Word To Floating Point

Table 3.21 FPU IEEE Arithmetic Operations

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIV.fmt Floating-Point Divide

MUL.fmt Floating-Point Multiply

NEG.fmt Floating-Point Negate

SQRT.fmt Floating-Point Square Root

SUB.fmt Floating-Point Subtract

Table 3.22 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

RECIP.fmt Floating-Point Reciprocal Approximation

3.6 Instruction Overview

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 77

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to a third operand, and produce a result. These instructions are listed in Table 3.23.
The product is rounded according to the current rounding mode prior to the accumulation. This model meets the IEEE
accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,
or negate instructions.

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.
The FS and FN bits in the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of
the FS/FO/FN Bits”.

Table 3.24 and Table 3.25 list the FPU conversion instructions according to their rounding mode.

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation

Table 3.23 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction

MADD.fmt Floating-Point Multiply Add

MSUB.fmt Floating-Point Multiply Subtract

NMADD.fmt Floating-Point Negative Multiply Add

NMSUB.fmt Floating-Point Negative Multiply Subtract

Table 3.24 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D.fmt Floating-Point Convert to Double Floating Point

CVT.L.fmt Floating-Point Convert to Long Fixed Point

CVT.S.fmt Floating-Point Convert to Single Floating Point

CVT.W.fmt Floating-Point Convert to Word Fixed Point

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point

CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point

FLOOR.L.fmt Floating-Point Floor to Long Fixed Point

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point

ROUND.L.fmt Floating-Point Round to Long Fixed Point

Table 3.22 FPU-Approximate Arithmetic Operations (Continued)

Mnemonic Instruction

 Floating-Point Unit of the 24Kf™ Core

78 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32 Architecture Refer-
ence Manual, Volume II [2].)

Table 3.26 through Table 3.28 list the formatted operand-value move instructions.

ROUND.W.fmt Floating-Point Round to Word Fixed Point

TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point

Table 3.26 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV.fmt Floating-Point Move

Table 3.27 FPU Conditional Move on True/False Instructions

Mnemonic Instruction

MOVF.fmt Floating-Point Move Conditional on FP False

MOVT.fmt Floating-Point Move Conditional on FP True

Table 3.28 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction

MOVN.fmt Floating-Point Move Conditional on Nonzero

MOVZ.fmt Floating-Point Move Conditional on Zero

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode (Continued)

Mnemonic Instruction

3.6 Instruction Overview

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 79

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond.fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction
in the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of
the Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

The MIPS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in dis-
continuous fields in the FCSR.

Table 3.29 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.30 lists the deprecated
conditional branch likely instructions.

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.31 lists these conditional move instructions.

Table 3.29 FPU Conditional Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3.30 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3.31 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction

MOVN Move Conditional on FP False

MOVZ Move Conditional on FP True

 Floating-Point Unit of the 24Kf™ Core

80 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trapping.
Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception bit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled through the
Enables field of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

3.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving a value into the FCSR. There is no enable
bit for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from
being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.32). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
the bits are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754:

• Section 3.7.2.1 “Invalid Operation Exception”

• Section 3.7.2.2 “Division By Zero Exception”

• Section 3.7.2.3 “Underflow Exception”

• Section 3.7.2.4 “Overflow Exception”

• Section 3.7.2.5 “Inexact Exception”

3.7 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 81

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Section 3.7.2.6 “Unimplemented Operation Exception” also describes a MIPS-specific exception condition, Unim-
plemented Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an
IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can occur
at the same time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-
tion condition does not result in a trap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.32 summarizes the default results.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT.fmt, MOVF.fmt,
MOVN.fmt, and MOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (−∞) or (−∞) − (−∞).

• Multiplication: 0 × ∞, with any signs.

• Division: 0/0 or ∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

Table 3.32 Result for Exceptions Not Trapped

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Depends on the rounding mode as shown below:
0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.

2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative underflow
values, supplies a positive zero.
3 (RM): For positive underflow values, supplies a negative zero. For negative underflow val-

ues, supplies a negative 2E_min (MinNorm).
Note that this behavior is only valid if the FCSR FN bit is cleared.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result. If caused by an underflow without the underflow trap enabled,
supplies the underflowed result.

O Overflow Depends on the rounding mode, as shown below:
0 (RN): Supplies an infinity with the sign of the exact result.
1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.
2 (RP): For positive overflow values, supplies positive infinity. For negative overflow values,
supplies the format’s most negative finite number.
3 (RM): For positive overflow values, supplies the format’s largest finite number. For nega-
tive overflow values, supplies minus infinity.

 Floating-Point Unit of the 24Kf™ Core

82 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and ∞/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a correctly
signed infinity.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between ±2E_min which, because it is tiny, might cause some
other exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess
events. The MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed

as though the exponent range were unbounded would lie strictly between ±2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have

been detected. The delivered result might be zero, denormalized, or ±2E_min.

• When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininess is
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

3.8 Pipeline and Performance

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 83

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support.
This exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture.
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

There is no enable bit for this condition; it always causes a trap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

• when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers
and where such are not handed by the FS/FO/FN bits.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU pipeline runs in
parallel with the 24K integer pipeline. The FPU can be built to run at either the same frequency as the integer core or
at one-half the frequency of the integer core.

The FPU pipe is optimized for single-precision instructions, such that the basic multiply, ADD/SUB, and
MADD/MSUB instructions can be performed with single-cycle throughput and low latency. Executing double-preci-
sion multiply and MADD/MSUB instructions requires a second pass through the M1 stage to generate all 64 bits of
the product. Executing long latency instructions, such as DIV and RSQRT, extends the M1 stage. Figure 3.18 shows
the FPU pipeline.

Figure 3.18 FPU Pipeline

24K integer pipeline

FPU instruction in general

FPU double multiplication (for example, MUL, MADD)

FPU long instructions (for example, DIV, RSQRT)

Dispatch

FR M1 M2 A1 A2 FP

FR M1 M1 M2 A1 A2

FW

FWFP

FR M1 M1 M2 A1 A2 FWFP

Second
Pass

Multiple cycles

RF AG EX MS ER WB

 Floating-Point Unit of the 24Kf™ Core

84 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.8.1.1 FR Stage - Decode, Register Read, and Unpack

The FR stage has the following functionality:

• The dispatched instruction is decoded for register accesses.

• Data is read from the register file.

• The operands are unpacked into an internal format.

3.8.1.2 M1 Stage - Multiply Tree

The M1 stage has the following functionality:

• A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

• The long instructions, such as divide and square root, iterate for several cycles in this stage.

• Sum of exponents is calculated.

3.8.1.3 M2 Stage - Multiply Complete

The M2 stage has the following functionality:

• Multiplication is complete when the carry-save encoded product is compressed into binary.

• Rounding is performed.

• Exponent difference for addition path is calculated.

3.8.1.4 A1 Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.5 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

3.8.1.6 FP Stage - Result Pack

The FP stage has the following functionality:

• The result coming from the datapath is packed into IEEE 754 Standard format for the FPR register file.

• Overflow and underflow exceptional conditions are resolved.

3.8.1.7 FW Stage - Register Write

The result is written to the FPR register file.

3.8 Pipeline and Performance

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 85

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.8.2 Bypassing

The FPU pipeline implements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into the
register file and read back before they can be used, but can be forwarded directly to an instruction already in the pipe.
Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CP0 Status register is 0, due
to the paired even-odd 32-bit registers that provide 64-bit registers.

Figure 3.19 Arithmetic Pipeline Bypass Paths

3.8.3 Repeat Rate and Latency

Table 3.33 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point opera-
tions are listed in terms of FPU clocks.

Table 3.33 24Kf Core FPU Latency and Repeat Rate

Opcode1

1. Format: S = Single, D = Double, W = Word, L = Longword.

Latency
(cycles)

Repeat Rate
(cycles)

ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], MUL.S, MADD.S,
MSUB.S, NMADD.S, NMSUB.S

4 1

MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2

RECIP.S 13 10

RECIP.D 25 21

RSQRT.S 17 14

RSQRT.D 35 31

DIV.S, SQRT.S 17 14

DIV.D, SQRT.D 32 29

C.cond.[S,D] to MOVF.fmt and MOVT.fmt instruction / MOVT, MOVN,
BC1 instruction

1 / 2 1

CVT.D.S, CVT.[S,D].[W,L] 4 1

CVT.S.D 6 1

CVT.[W,L].[S,D],
CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]

5 1

MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D] 4 1

LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1

MTC1, MFC1 2 1

FR M1 M2 A1 A2 FP FW

A2 bypass

FP bypass

FW bypass

 Floating-Point Unit of the 24Kf™ Core

86 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 4

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 87

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

The 24K processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit and
the cache controller. The core contains either a Translation Lookaside Buffer (TLB) or a simpler Fixed Mapping
(FM) style MMU, specified as a build-time option when the core is implemented.

This chapter contains the following sections:

• Section 4.1 “Introduction”

• Section 4.2 “Modes of Operation”

• Section 4.3 “Translation Lookaside Buffer”

• Section 4.4 “Virtual-to-Physical Address Translation”

• Section 4.5 “Fixed Mapping MMU”

• Section 4.6 “System Control Coprocessor”

4.1 Introduction

The MMU in a 24K processor core will translate any virtual address to a physical address before a request is sent to
the cache controllers for tag comparison or to the bus interface unit for an external memory reference. This translation
is a very useful feature for operating systems when trying to manage physical memory to accommodate multiple tasks
active in the same memory, possibly on the same virtual address but of course in different locations in physical mem-
ory. Other features handled by the MMU are protection of memory areas and defining the cache protocol.

By default, the MMU is TLB based. The TLB consists of three address translation buffers: a 16/32/64 dual-entry fully
associative Joint TLB (JTLB), a 4-entry instruction micro TLB (ITLB), and an 8-entry data micro TLB (DTLB).
When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation is not
found in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

Optionally, the MMU can be based on a simple algorithm to translate virtual addresses into physical addresses via a
Fixed Mapping (FM) mechanism. These translations are different for various regions of the virtual address space
(useg/kuseg, kseg0, kseg1, kseg2/3).

Figure 4.1 shows how the memory management unit interacts with cache accesses with a TLB, while Figure 4.2
shows the equivalent for the FM MMU.

 Memory Management of the 24K® Core

88 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.1 Address Translation During a Cache Access with TLB MMU

Figure 4.2 Address Translation During a Cache Access with FM MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

JTLB

ITLB

Instruction
Cache
RAM

DTLB

Data Cache
RAM

IVA Entry

Entry

Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction
Hit/Miss

DVA

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

FM MMU

Instruction
Cache
RAM

Data Cache
RAM

Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction
Hit/Miss

FM MMU

4.2 Modes of Operation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 89

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2 Modes of Operation

A 24K processor core supports four modes of operation:

• User mode

• Supervisor mode (only w/ TLB)

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode has an intermediate privilege level with
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically
used for handling exceptions and privileged operating system functions, including CP0 management and I/O device
accesses. Debug mode is used for software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

4.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation. Figure 4.3 shows the segmentation

for the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the four modes of opera-
tion.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well as all CP0 registers. User mode accesses are limited to a subset of the vir-
tual address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User
mode, virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and cause an exception if accessed. Supervisor
mode adds access to sseg (0xC000_0000 to 0xDFFF_FFFF). kseg0, kseg1, and kseg3 will still cause exceptions if
they are accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CP0 registers as for Kernel mode. In addition, while in Debug mode the core has access to the
debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned
on or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

 Memory Management of the 24K® Core

90 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.3 24K® Processor Core Virtual Memory Map

Each of the segments shown in Figure 4.3 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections Section 4.2.2 “User Mode”, Section 4.2.4 “Kernel Mode”, and Section 4.2.5 “Debug
Mode” specify which segments are actually mapped and unmapped.

4.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB or the FM to translate from virtual-to-physical addresses. Especially
after reset, it is important to have unmapped memory segments, because the TLB is not yet programmed to perform
the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FM provides for the core, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of the
CP0 register Config (see Section 6.2.21 “Config Register (CP0 Register 16, Select 0)”).

useg kuseg kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

ksseg/kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000

suseg

sseg

Supervisor Mode

4.2 Modes of Operation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 91

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2.1.2 Mapped Segments

A mapped segment does use the TLB or the FM to translate from virtual-to-physical addresses.

For the core with TLB, the translation of mapped segments is handled on a per-page basis. Included in this translation
is information defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the core with the FM MMU, the mapped segments have a fixed translation from virtual to physical address. The
cacheability of the segment is defined in the CP0 register Config, fields K23 and KU (see Section 6.2.21 “Config
Register (CP0 Register 16, Select 0)”). Write protection of segments is not possible during FM translation.

4.2.2 User Mode

In user mode, a single 2 GByte (231 bytes) uniform virtual address space called the user segment (useg) is available.
Figure 4.4 shows the location of user mode virtual address space.

Figure 4.4 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all other addresses
cause an address error exception.

The processor operates in User mode when the Status register contains the following bit values:

• KSU = 2#10

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0.

0x0000_0000

0x8000_0000

0x7FFF_FFFF

0xFFFF_FFFF

32 bit

Address Error

2GB Mapped
useg

 Memory Management of the 24K® Core

92 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 4.1 lists the characteristics of the User mode segment.

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the TLB or FM. For cores with a TLB, the virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address before translation. Also bit settings within
the TLB entry for the page determine the cacheability of a reference. For FM MMU cores, the cacheability is set via
the KU field of the CP0 Config register.

4.2.3 Supervisor Mode

In supervisor mode, two virtual address spaces are available. A 2 GByte (231 bytes) uniform virtual address space
called the user segment (useg) as well as the 512MB (ksseg) are available. Figure 4.5 shows the location of supervisor
mode virtual address space.

Table 4.1 User Mode Segments

Address Bit
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL KSU

32-bit
A(31) = 0

0 0 2#10 useg 0x0000_0000 -->
0x7FFF_FFFF

2 GByte

(231 bytes)

4.2 Modes of Operation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 93

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.5 Supervisor Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. The supervisor segment begins
at 0xC000_0000 and ends at 0xDFFF_FFFF. Accesses to all other addresses cause an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

• KSU = 2#01

• EXL = 0

• ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0.

Address Error

Address Error

Supervisor virtual address space
Mapped, 512MB

Address Error

suseg

kseg0

kseg1

sseg

kseg3

Mapped, 2048MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the 24K® Core

94 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 4.1 lists the characteristics of the Supervisor mode segments.

The system maps all references to useg and ksseg through the TLB or FM. For cores with a TLB, the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address before translation. Also bit set-
tings within the TLB entry for the page determine the cacheability of a reference. For FM MMU cores, the cacheabil-
ity of useg and ksseg is set via the KU and K23 fields of the CP0 Config register respectively.

4.2.4 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

• KSU = 2#00

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 4.6. Also, Table 4.3 lists the characteristics of the Kernel mode segments.

Table 4.2 Supervisor Mode Segments

Address Bit
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL KSU

32-bit
A(31) = 0

0 0 2#01 suseg 0x0000_0000 -->
0x7FFF_FFFF

2 GByte

(231 bytes)

32-bit
A(31:29) = 1102

0 0 2#01 sseg 0xC000_0000 ->
0xDFFF_FFFF

512MB

(229 bytes)

4.2 Modes of Operation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 95

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.6 Kernel Mode Virtual Address Space

Kernel virtual address space
Unmapped, 512MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

Mapped, 2048MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the 24K® Core

96 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2.4.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF. For cores with TLBs, the virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include
the ASID field.

4.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address

space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

4.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual

address space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

Table 4.3 Kernel Mode Segments

Address Bit
Values

Status Register Is One
of These Values

Segment
Name Address Range Segment SizeKSU EXL ERL

A(31) = 0 (KSU = 002

or
EXL = 1

or
ERL = 1)

and
DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231 bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes (229

bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes (229

bytes)

A(31:29) = 1102 ksseg/kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes (229

bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes (229

bytes)

4.2 Modes of Operation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 97

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)

In Kernel mode, when KSU= 002, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected.

With the FM MMU, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 -
0xDFFF_FFFF. Otherwise, this space is mapped through the TLB.

4.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112 , the kseg3 virtual address

space is selected. With the FM MMU, this 229-byte (512-MByte) kernel virtual space is located at physical addresses
0xE000_0000 - 0xFFFF_FFFF. Otherwise, this space is mapped through the TLB.

4.2.5 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment, dseg, co-exists in the virtual address range 0xFF20_0000 to
0xFF3F_FFFF. The layout is shown in Figure 4.7.

Figure 4.7 Debug Mode Virtual Address Space

The dseg is subdivided into the dmseg segment at 0xFF20_0000 to 0xFF2F_FFFF, which is used when the probe ser-
vices the memory segment, and the drseg segment at 0xFF30_0000 to 0xFF3F_FFFF which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes for the segments are shown in Table 4.4.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-enter
debug mode via a debug mode exception. This includes accesses usually causing a TLB exception, with the result that
such accesses are not handled by the usual memory management routines.

0x0000_0000

0xFF20_0000

0xFF40_0000
0xFFFF_FFFF

dseg

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode

 Memory Management of the 24K® Core

98 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The unmapped kseg0 and kseg1 segments from kernel mode address space are available from debug mode, which
allows the debug handler to be executed from uncached and unmapped memory.

4.2.5.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as shown in Table
4.5

Debug software is expected to read the debug control register (DCR) to determine which other memory mapped reg-
isters exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is
unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 11, “EJTAG
Debug Support in the 24K® Core” on page 240 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

4.2.5.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined by the table
shown in Table 4.6.

Table 4.4 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment
Name

Sub-Segment
Name Virtual Address

Generates Physical
Address

Cache
Attribute

dseg dmseg 0xFF20_0000
through

0xFF2F_FFFF

dmseg maps to addresses
0x0_0000 - 0xF_FFFF in EJTAG

probe memory space.

drseg maps to the breakpoint reg-
isters 0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFF30_0000
through

0xFF3F_FFFF

Table 4.5 Accesses to drseg Address Range

Transaction
LSNM bit in Debug

Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0

Table 4.6 Accesses to dmseg Address Range

Transaction
ProbEn bit in
DCR Register

LSNM bit in
Debug Register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0

4.3 Translation Lookaside Buffer

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 99

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

4.3 Translation Lookaside Buffer

The following subsections discuss the TLB memory management scheme used in the 24Kc processor core. The TLB
consists of the joint and micro address translation buffers:

• 16-64 dual-entry fully associative Joint TLB (JTLB)

• 4-entry fully associative Instruction micro TLB (ITLB)

• 8-entry fully associative Data micro TLB (DTLB)

4.3.1 Joint TLB

The 16-64 dual-entry, fully associative Joint TLB maps 32-128 virtual pages to their corresponding physical
addresses. The purpose of the TLB is to translate virtual addresses and their corresponding ASID into a physical
memory address. The translation is performed by comparing the upper bits of the virtual address (along with the
ASID bits) against each of the entries in the tag portion of the JTLB structure. Because this structure is used to trans-
late both instruction and data virtual addresses, it is referred to as a “joint” TLB.

The JTLB is organized as 16-64 pairs of even and odd entries containing descriptions of pages that range in size from
4-KBytes to 256MBytes into the 4-GByte physical address space.

The JTLB is organized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds to two
physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not participating
in the tag comparison is used to determine which of the two data entries is used. Since page size can vary on a
page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make
the even-odd selection must be done dynamically during the TLB lookup.

Figure 4.8 shows the contents of one of the dual-entries in the JTLB. The bit range indication in the figure serves to
clarify which address bits are (or may be) affected during the translation process.

Figure 4.8 JTLB Entry (Tag and Data)

PageMask[28:13]

D0

G ASID[7:0]

PFN0[31:12] C0[2:0]

D1PFN1[31:12] C1[2:0]

VPN2[31:13]

V0

V1

Tag Entry

Data Entries

19 1 8

20 3 1 1

G

 Memory Management of the 24K® Core

100 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 4.7 and Table 4.8 explain each of the fields in a JTLB entry.

Table 4.7 TLB Tag Entry Fields

Field Name Description

PageMask[28:13] Page Mask Value. The Page Mask defines the page size by masking the appropriate
VPN2 bits from being involved in a comparison. It is also used to determine which
address bit is used to make the even-odd page (PFN0-PFN1) determination. See the table
below.

The PageMask column above shows all the legal values for PageMask. Because each
pair of bits can only have the same value, the physical entry in the JTLB will only save a
compressed version of the PageMask using only 8 bits. This is however transparent to
software, which will always work with a 16 bit field

VPN2[31:13] Virtual Page Number divided by 2. This field contains the upper bits of the virtual page
number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:29 are
always included in the TLB lookup comparison. Bits 28:13 are included depending on
the page size, defined by PageMask

G Global Bit. When set, indicates that this entry is global to all processes and/or threads
and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is associated
with.

Table 4.8 TLB Data Entry Fields

Field Name Description

PFN0[31:12],
PFN1[31:12]

Physical Frame Number. Defines the upper bits of the physical address.

PageMask Page Size Even/Odd Bank Select Bit

00_0000_0000_0000_00 4KB VAddr[12]

00_0000_0000_0000_11 16KB VAddr[14]

00_0000_0000_0011_11 64KB VAddr[16]

00_0000_0000_1111_11 256KB VAddr[18]

00_0000_0011_1111_11 1MB VAddr[20]

00_0000_1111_1111_11 4MB VAddr[22]

00_0011_1111_1111_11 16MB VAddr[24]

00_1111_1111_1111_11 64MB VAddr[26]

11_1111_1111_1111_11 256MB VAddr[28]

4.3 Translation Lookaside Buffer

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 101

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction (See Section 4.4.3 “TLB
Instructions”). Prior to invoking one of these instructions, several CP0 registers must be updated with the information
to be written to a TLB entry:

• PageMask is set in the CP0 PageMask register.

• VPN2, and ASID are set in the CP0 EntryHi register.

• PFN0, C0, D0, V0, and G bits are set in the CP0 EntryLo0 register.

• PFN1, C1, D1, V1, and G bits are set in the CP0 EntryLo1 register.

Note that the global bit “G” is part of both EntryLo0 and EntryLo1. The resulting “G” bit in the JTLB entry is the log-
ical AND between the two fields in EntryLo0 and EntryLo1. Please refer to Chapter 6, “CP0 Registers of the 24K®
Core” on page 146 for further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The existence
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored in
the EntryHi register and is compared to the ASID value of each entry.

4.3.2 Instruction TLB

The ITLB is a small, 4-entry fully associative TLB dedicated to perform translations for the instruction stream. The
ITLB only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

C0[2:0],
C1[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and determines
whether the page should be placed in the cache or not. The field is encoded as follows:

D0,
D1

“Dirty” or Write-enable Bit. Indicates that the page has been written and/or is writable. If
this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page
cause a TLB Modified exception.

V0,
V1

Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping are valid. If
this bit is set, accesses to the page are permitted. If the bit is cleared, accesses to the page
cause a TLB Invalid exception.

Table 4.8 TLB Data Entry Fields (Continued)

Field Name Description

C[2:0] Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Reserved

2 Uncached

3 Cacheable, noncoherent, write-back, write allocate

4,5,6 Reserved

7 Uncached Accelerated

 Memory Management of the 24K® Core

102 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by the ITLB,
the JTLB is accessed trying to translate it in the following clock cycles. If successful, the translation information is
copied into the ITLB and bypassed to the tag comparators. This results in an ITLB miss penalty of at least 2 cycles.
Depending on the JTLB implementation or if it is busy with other operations, it may take additional cycles.

4.3.3 Data TLB

The DTLB is a small 8-entry, fully associative TLB which provides a faster translation for Load/Store addresses than
is possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. For simultaneous ITLB and DTLB
misses, the DTLB has priority and will access the JTLB first.

4.4 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with
the virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of the
entry, and either:

• The Global (G) bit of both the even and odd pages of the TLB entry are set, or

• The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TLB hit. If there is no match, a TLB miss exception is taken by the processor and soft-
ware is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 4.9 shows the logical translation of a virtual address into a physical address.

In this figure the virtual address is extended with an 8-bit ASID, which reduces the frequency of TLB flushing during
a context switch. This 8-bit ASID contains the number assigned to that process and is stored in the CP0 EntryHi regis-
ter.

4.4 Virtual-to-Physical Address Translation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 103

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.9 Overview of a Virtual-to-Physical Address Translation

If there is a virtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and concat-
enated with the Offset, to form the physical address. The Offset represents an address within the page frame space. As
shown in Figure 4.9, the Offset does not pass through the TLB. Figure 4.10 shows a flow diagram of the address trans-
lation process for two page sizes. The top portion of the figure shows a virtual address for a 4 KByte page size. The
width of the Offset is defined by the page size. The remaining 20 bits of the address represent the virtual page number
(VPN). The bottom portion of Figure 4.10 shows the virtual address for a 16 MByte page size. The remaining 8 bits
of the address represent the VPN.

1.Virtual address (VA) represented by the virtual page
number (VPN) is compared with tag in TLB.

2. If there is a match, the page frame number
(PFN0 or PFN1) representing the upper bits of the
physical address (PA) is output from the TLB the
TLB.

3. The Offset, which does not pass through the TLB, is
then concatenated with the PFN.

OffsetVPNG ASID

Virtual Address

TLB
Entry

OffsetPFN

TLB

G ASID VPN2

C0 D0 V0 PFN0

PFN1C1 D1 V1

Physical Address

 Memory Management of the 24K® Core

104 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.10 32-bit Virtual Address Translation

4.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The
granularity of JTLB mappings is defined in terms of TLB pages. The JTLB supports pages of different sizes ranging
from 4KB to 256 MB in powers of 4. If a match is found, but the entry is invalid (i.e., the V bit in the data field is 0),
a TLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in
memory. Figure 4.11 shows the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry. The
Random register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrap-
ping to the maximum once its value is equal to the Wired register. Thus, TLB entries below the Wired value cannot be
replaced by a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for a livelock
situation, the Random register includes a 10-bit LFSR that introduces a pseudo-random perturbation into the decre-
ment.

The core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. On the
TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB. If a match occurs, the
entry in the TLB is valid, and the entry being written is valid, the core takes a machine-check exception, sets the TS
bit in the CP0 Status register, and aborts the write operation. For further details on exceptions, please refer to Chapter
5, “Exceptions and Interrupts in the 24K® Core” on page 110. There is a hidden bit in each TLB entry that is cleared
on a Reset. This bit is set once the TLB entry is written and is included in the match detection. Therefore, uninitial-
ized TLB entries will not cause a TLB shutdown.

Compared with previous cores from MIPS Technologies, the 24K core uses a more relaxed check for multiple
matches in order to avoid machine check exceptions while flushing or initializing the TLB. On a write, all matching
entries are disabled to prevent them from matching on future compares. A machine check is only signaled if the entry

11
Virtual address with 1M (220) 4-KByte pages

Virtual Address with 256 (28)16-MByte pages

8 bits = 256 pages

20 bits = 1M pages

Virtual-to-physical
translation in TLB

Bit 31 of the virtual address
selects user and kernel address
spaces.

Offset passed unchanged to
physical memory.

Virtual-to-physical
translation in TLB

Offset passed unchanged to
physical memory.

32-bit Physical Address

ASID VPN Offset

PFN0/1 Offset

TLB

TLB

ASID VPN Offset
0233132 2439

313239 012

031

8 8 24

8 20 12

4.4 Virtual-to-Physical Address Translation

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 105

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

being written has its valid bit set, the matching entry in the TLB has its valid bit set, and the matching entry is not the
entry being written. The cases for the signalling of the machine check exception are enumerated in Table 4.9.

4.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
regions, the 24K core provides two mechanisms.

4.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KByte to 256
MByte, in multiples of 4. The CP0 PageMask register is loaded with the desired page size, which is then entered into
the TLB when a new entry is written. Thus, operating systems can provide special-purpose maps. For example, a typ-
ical frame buffer can be memory mapped with only one TLB entry.

The 24K core implements the following page sizes:

4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M.

Software may determine which page sizes are supported by writing all ones to the CP0 PageMask register, then read-
ing the value back. For additional information, see Section 6.2.5 “UserLocal Register (CP0 Register 4, Select 2)”.

4.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 24K core provides a random replacement algorithm. However, the processor also
provides a mechanism whereby a programmable number of mappings can be locked into the TLB via the CP0 Wired
register, thus avoiding random replacement. Please refer to Section 6.2.7 “Wired Register (CP0 Register 6, Select 0)”
for further details.

Table 4.9 Machine Check Exception

Existing
Match

Matching Entry equals
Written Entry

Existing Page
Valid Bit

Written Page
Valid Bit

Machine
Check?

No X X X No

Yes Yes X X No

Yes No 0 0 No

Yes No 0 1 No

Yes No 1 0 No

Yes No 1 1 Yes

 Memory Management of the 24K® Core

106 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.11 TLB Address Translation Flow in the 24K® Processor Core

4.4.3 TLB Instructions

Table 4.10 lists the TLB-related instructions. Refer to Chapter 12, “24K® Processor Core Instructions” on page 303
for more information on these instructions.

Table 4.10 TLB Instructions

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

For valid address space,
see the section describing
Modes of operation in this
chapter.

Virtual Address (Input)

VPN and
ASID

User
Mode?

NoYes

No

Yes

No

Yes

No

No No

No

No

No

No

Yes

Yes Yes

Yes

Yes

Yes

Yes

Exception

Global

Valid

Dirty

Noncacheable

Physical Address (Output)

User
Address?

Address
Error

Unmapped
Address

kseg0/kseg1
Address

VPN
Match?

 G = 1?

 C=010 or
C=111?

 ASID
Match?

 V = 1?

 D = 1? Write?

 TLB
Modified

 TLB
Invalid

 TLB Refill

 Access
Cache

 Access
Main

Memory

4.5 Fixed Mapping MMU

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 107

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.5 Fixed Mapping MMU

The 24K core optionally implements a simple Fixed Mapping (FM) memory management unit that is smaller than the
a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs virtual-to-physi-
cal address translation and provides attributes for the different memory segments. Those memory segments which are
unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FM MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in the Config regis-
ter. Table 4.11 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of the Config register.

With the FM MMU, no translation exceptions can be taken, although address errors are still possible.

The FM performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 4.12. When ERL=1, useg and kuseg become unmapped and uncached just like they do if there is a TLB. The
ERL mapping is shown in Figure 4.13.

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 4.11 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0 Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Reserved

2 Uncached

3 Cacheable, noncoherent, write-back, write allocate

4,5,6 Reserved

7 Uncached Accelerated

Table 4.12 Cacheability of Segments with Fixed Mapping Translation

Segment
Virtual Address

Range Cacheability

useg/kuseg 0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of the Config register. Refer
to Table 4.11 for the encoding.

kseg0 0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of the Config register. See
Table 4.11 for the encoding.

kseg1 0xA000_0000-
0xBFFF_FFFF

Always uncacheable

kseg2 0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of the Config register.
Refer to Table 4.11 for the encoding.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of the Config register. Refer to
Table 4.11 for the encoding.

Table 4.10 TLB Instructions (Continued)

Op Code Description of Instruction

 Memory Management of the 24K® Core

108 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The ERL bit is usually never asserted by software. It is asserted by hardware after a Reset, NMI, or Cache Error. See
Section 5.8 “Exceptions” for further information on exceptions.

Figure 4.12 FM Memory Map (ERL=0) in the 24K® Processor Core

useg/kuseg

useg/kuseg

Virtual Address Physical Address

kseg3

kseg2

kseg1

kseg0

kseg3

kseg2

reserved

kseg0/kseg1

0xE000_0000

0xC000_0000

0xA000_0000

0x8000_0000

0x0000_0000

0xE000_0000

0xC000_0000

0x0000_0000

0x2000_0000

0x4000_0000

4.6 System Control Coprocessor

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 109

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.13 FM Memory Map (ERL=1) in the 24K® Processor Core

4.6 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the 24K processor core and supports
memory management, address translation, exception handling, and other privileged operations. Certain CP0 registers
are used to support memory management. Refer to Chapter 6, “CP0 Registers of the 24K® Core” on page 146 for
more information on the CP0 register set.

0xE000_0000

Physical AddressVirtual Address

kseg3

0xE000_0000

kseg3

kseg2kseg2

0xC000_00000xC000_0000

0xA000_0000

kseg1

reserved

0x8000_00000x8000_0000

kseg0

useg/kuseguseg/kuseg

0x2000_0000

0x0000_00000x0000_0000

kseg0/kseg1

Chapter 5

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 110

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Programs executing on the 24K processor core receive exceptions from a number of sources, including translation
lookaside buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When one of these exceptions
is detected, the normal sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode interrupts are disabled and a software exception processor (also called a handler), located at a specifici
address, is executed. The handler saves the context of the processor, including the contents of the program counter,
the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

When an exception occurs, the Exception Program Counter (EPC) register is loaded with a location where execution
can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be used to
identify the instruction that caused the exception. For precise exceptions the restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the
address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software must
read the BD bit in the CP0 Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For imprecise
exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

• Section 5.1 “Exception Conditions”

• Section 5.2 “Exception Priority”

• Section 5.3 “Interrupts”

• Section 5.4 “GPR Shadow Registers”

• Section 5.5 “Exception Vector Locations”

• Section 5.6 “General Exception Processing”

• Section 5.7 “Debug Exception Processing”

• Section 5.8 “Exceptions”

• Section 5.9 “Exception Handling and Servicing Flowcharts”

5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction are
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

5.2 Exception Priority

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 111

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the WB stage, the exception flag causes it to write various CP0 registers
with the exception state, change the current program counter (PC) to the appropriate exception vector address, and
clear the exception bits of earlier pipeline stages.

For most exception types this implementation allows all preceding instructions to complete execution and prevents all
subsequent instructions from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug excep-
tions) is sufficient to restart execution. It also ensures that exceptions are taken in the order of execution; an instruc-
tion taking an exception may itself be killed by an instruction further down the pipeline that takes an exception in a
later cycle.

A number of exceptions can be taken imprecisely - that is, they are taken after the instruction that caused them has
completed and potentially after following instructions have completed.

5.2 Exception Priority

Table 5.1 lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptions
can happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 5.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by
setting the EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store Imprecise

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

TLBL Fetch TLB miss
Fetch TLB hit to page with V=0

ICache Error Parity error on ICache access

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction modifying local state when CorExtend is not
enabled.

RI Execution of a Reserved Instruction.

 Exceptions and Interrupts in the 24K® Core

112 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.3 Interrupts

Older 32-bit cores available from MIPS that implemented Release 1 of the Architecture included support for two soft-
ware interrupts, six hardware interrupts, and a special-purpose timer interrupt. The timer interrupt was provided
external to the core and typically combined with hardware interrupt 5 in an system-dependent manner. Interrupts
were handled either through the general exception vector (offset 16#180) or the special interrupt vector (16#200),
based on the value of CauseIV. Software was required to prioritize interrupts as a function of the CauseIP bits in the
interrupt handler prologue.

Release 2 of the Architecture, implemented by the 24K core, adds an upward-compatible extension to the Release 1
interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports
the use of an external interrupt controller by changing the interrupt architecture.

Additionally, internal performance counters were added to the 24K core. These counters can be set up to count vari-
ous events within the core. When the MSB of the counter gets set, it can trigger a performance counter interrupt. This
is handled like the timer interrupt - it is an output of the core and can be brought back into the core’s interrupt pins in
a system dependent manner.

5.3.1 Interrupt Modes

The 24K core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture.

FPE Floating Point exception

C2E Coprocessor2 Exception

IS1 Implementation specific Coprocessor2 exception

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only)

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.
Load reference to protected address.

AdES Store address alignment error.
Store to protected address.

TLBL Load TLB miss.
Load TLB hit to page with V=0

TLBS Store TLB miss.
Store TLB hit to page with V=0

TLB Mod Store to TLB page with D=0.

DCache Error Cache parity error - imprecise

L2 Cache Error L2 Cache ECC error - imprecise

DBE Load or store bus error - imprecise

Table 5.1 Priority of Exceptions (Continued)

Exception Description

5.3 Interrupts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 113

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is always present on
the 24K core, so the VInt bit will always read as a 1 for the 24K core.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
24K core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate the
presence of an external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the 24K core, is fully compatible with implementations of Release 1 of the Architecture.

Table 5.2 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

5.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if CauseIV = 0) or vector offset
16#200 (if CauseIV = 1). This mode is in effect if any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to

Table 5.2 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0 Can’t happen - IntCtlVS can not be non-zero if neither

Vectored Interrupt nor External Interrupt Controller mode
is implemented.

“x” denotes don’t care

 Exceptions and Interrupts in the 24K® Core

114 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simple return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only

5.3 Interrupts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 115

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

5.3.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt mode is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

 Exceptions and Interrupts in the 24K® Core

116 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
and performance counter interrupts are combined in a system-dependent way (external to the core) with the hardware
interrupts (the interrupt with which they are combined is indicated by the IntCtlIPTI/IPCI fields) to provide the appro-
priate relative priority of the those interrupts with that of the hardware interrupts. The processor interrupt logic ANDs
each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the values in
the order shown in Table 5.3.

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs
an encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 5.1.

Table 5.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt
Request

Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0

5.3 Interrupts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 117

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 5.1 Interrupt Generation for Vectored Interrupt Mode

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the IVexcep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt
handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */

IP7

IP6

IP5

IP4

IP3

IP2

IP1

IP0

IM7

IM6

IM5

IM4

IM3

IM2

IM1

IM0

Pr
io

rit
y

En
co

de

HW5

HW4

HW3

HW2

HW1

HW0

C
om

bi
ne

CauseTI

StatusIE

Interrupt
Request

Vector
Number

Latch Mask Encode

Any Request

O
ffs

et
 G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

SRSMap

Shadow Set
Number

IntCtlIPTI

CausePCI

IntCtlIPPCI

 Exceptions and Interrupts in the 24K® Core

118 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.3.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide sup-
port for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
number of the highest priority interrupt. EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer
and performance counter interrupt requests (CauseTI/PCI) to the external interrupt controller, where it prioritizes these
interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be a hard-wired
logic block, or it can be configurable based on control and status registers. This allows the interrupt controller to be
more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-
ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit
encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values

5.3 Interrupts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 119

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes this
value on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. The interrupt exception uses the value of CauseRIPL

as the vector number. Because CauseRIPL is only loaded by the processor when an interrupt exception is signaled, it
is available to software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 5.2.

Figure 5.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the IVexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may

CauseTI
CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch CompareEncode

Any Request

O
ffs

et
 G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

Shadow Set
Number

Ex
te

rn
al

 In
te

rru
pt

 C
on

tro
lle

r

In
te

rru
pt

 S
ou

rc
es

Sh
ad

ow
 S

et
M

ap
pi

ng

StatusIP1
StatusIP0

Requested
IPL

C
au

se
R

IP
L

St
at

us
IP

L

SR
SC

tl E
IC

SS

RIPL
>

IPL?

Load
Fields

Interrupt
Exception

Interrupt Service
Started

 Exceptions and Interrupts in the 24K® Core

120 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt code shown
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
CauseRIPL to StatusIPL to prevent lower priority interrupts from interrupting the handler. Such a routine might look
as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

5.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 16#200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt
mode, the vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field
specifies the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero

5.4 GPR Shadow Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 121

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

and the processor reverts to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, and Table
5.4 shows the exception vector offset for a representative subset of the vector numbers and values of the IntCtlVS field.

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 16#200 + (vectorNumber × (IntCtlVS || 2#00000))

5.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the 24K core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, or four shadow sets. The highest
number actually implemented is indicated by the SRSCtlHSS field. If this field is zero, only the normal GPRs are
implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides the
number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific

Table 5.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

•
•
•

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000

 Exceptions and Interrupts in the 24K® Core

122 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to
restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

• The exception is one that sets StatusERL: Reset or NMI.

• The exception causes entry into EJTAG Debug Mode

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1.
These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.

• A DERET is executed

• An ERET is executed with StatusERL = 1

2. SRSCtlPSS is copied to SRSCtlCSS

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialized (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

5.5 Exception Vector Locations

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 123

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.5 Exception Vector Locations

The Reset, Soft Reset, NMI and EJTAG Debug exceptions are vectored to a specific location as shown in Table 5.5
and Table 5.6. Addresses for all other exceptions are a combination of a vector offset and a vector base address. In
Release 1 of the architecture, the vector base address was fixed. In Release 2 of the architecture, software is allowed
to specify the vector base address via the EBase register for exceptions that occur when StatusBEV equals 0. Another
degree of flexibility in the selection of the vector base address, for use when StatusBEV equals 1, is provided via a set
of input pins, SI_UseExceptionBase and SI_ExceptionBase[29:12]. Table 5.5 gives the vector base address when
SI_UseExceptionBase equals 0, as a function of the exception and whether the BEV bit is set in the Status register.
Table 5.6 gives the vector base addresses when SI_UseExceptionBase equals 1. As can be seen in Table 5.6, when
SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV equals 0 are not affected.

Table 5.7 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 5.4 gives the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. Table 5.8 com-
bines these two tables into one that contains all possible vector addresses as a function of the state that can affect the
vector selection. To avoid complexity in the table, it is assumed that IntCtlVS is 0.

Table 5.6 Exception Vector Base Addresses when SI_UseExceptionBase equals 1

Table 5.5 Exception Vector Base Addresses when SI_UseExceptionBase equals 0

Exception

StatusBEV

0 1

Reset, NMI 16#BFC0.0000

EJTAG Debug (with ProbEn = 0 in
the EJTAG_Control_register)

16#BFC0.0480

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register)

16#FF20.0200

Cache Error EBase31..30 || 1 ||
EBase28..12 || 16#000

Note that EBase31..30 have the fixed

value 2#10

16#BFC0.0300

Other EBase31..12 || 16#000
Note that EBase31..30 have the fixed

value 2#10

16#BFC0.0200

‘||’ denotes bit string concatenation

Exception

StatusBEV

0 1

Reset, NMI 2#10 || SI_ExceptionBase[29:12] || 16#000

EJTAG Debug (with ProbEn =
0
in the EJTAG_Control_register)

 2#10 ||SI_ExceptionBase[29:12] || 16#480

 Exceptions and Interrupts in the 24K® Core

124 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug (with ProbEn =
1
in the EJTAG_Control_register)

16#FF20.0200

Cache Error EBase31..30 || 1 ||
EBase28..12 || 16#000

Note that EBase31..30 have the fixed

value 2#10

2#101 || SI_ExceptionBase[28:12] || 16#300

Other EBase31..12 || 16#000
Note that EBase31..30 have the fixed

value 2#10

2#10 || SI_ExceptionBase[29:12] || 16#200

‘||’ denotes bit string concatenation

Table 5.7 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 16#000

General Exception 16#180

Interrupt, CauseIV = 1 16#200 (this is the base of the vectored inter-
rupt table when StatusBEV = 0)

Reset, NMI None (Uses Reset Base Address)

Table 5.8 Exception Vectors

Exception S
I_

U
se

E
xc

ep
ti

o
n

B
as

e

S
ta

tu
s B

E
V

S
ta

tu
s E

X
L

C
au

se
IV

E
JT

A
G

 P
ro

b
E

n

Vector

Assumes that IntCtlVS = 0

Reset, NMI 0 x x x x 16#BFC0.0000

Reset, NMI 1 x x x x 2#10 || SI_ExceptionBase[29:12] || 16#000

EJTAG
Debug

0 x x x 0 16#BFC0.0480

EJTAG
Debug

1 x x x 0 2#10 || SI_ExceptionBase[29:12] || 16#480

EJTAG
Debug

x x x x 1 16#FF20.0200

TLB Refill 0 0 1 x x 16#EBase[31:12] || 16#180

TLB Refill 0 1 0 x x 16#BFC0.0200

TLB Refill 1 1 0 x x 2#10 || SI_ExceptionBase[29:12] || 16#200

TLB Refill 0 1 1 x x 16#BFC0.0380

Exception

StatusBEV

0 1

5.6 General Exception Processing

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 125

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 6.24). The value loaded into the EPC
register is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is in
the delay slot of a branch or jump which has delay slots. Table 5.9 shows the value stored in each of the CP0 PC
registers, including EPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS field in
the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

TLB Refill 1 1 1 x x 2#10 || SI_ExceptionBase[29:12] || 16#380

Cache Error 0 0 x x x 16#EBase[31:30] || 2#1 || EBase[28:12] || 16#100

Cache Error 0 1 x x x 16#BFC0.0300

Cache Error 1 1 x x x 2#101 || SI_ExceptionBase[28:12] || 16#300

Interrupt x 0 0 0 x 16#EBase[31:12] || 16#180

Interrupt x 0 0 1 x 16#EBase[31:12] || 16#200

Interrupt 0 1 0 0 x 16#BFC0.0380

Interrupt 1 1 0 0 x 2#10 || SI_ExceptionBase[29:12] || 16#380

Interrupt 0 1 0 1 x 16#BFC0.0400

Interrupt 1 1 0 1 x 2#10 || SI_ExceptionBase[29:12] || 16#400

All others 0 0 x x x 16#EBase[31:12] || 16#180

All others 0 1 x x x 16#BFC0.0380

All others 1 1 x x x 2#10 || SI_ExceptionBase[29:12] || 16#380

‘x’ denotes don’t care, ‘||’ denotes bit string concatenation

Table 5.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Table 5.8 Exception Vectors (Continued)

Exception S
I_

U
se

E
xc

ep
ti

o
n

B
as

e

S
ta

tu
s B

E
V

S
ta

tu
s E

X
L

C
au

se
IV

E
JT

A
G

 P
ro

b
E

n

Vector

Assumes that IntCtlVS = 0

 Exceptions and Interrupts in the 24K® Core

126 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 16#180
else

/* For implementations that include the MIPS16e ASE, calculate potential */
/* PC adjustment for exceptions in the delay slot */
if Config1CA = 0 then

restartPC ← PC
branchAdjust ← 4 /* Possible adjustment for delay slot */

else
restartPC ← PC31..1 || ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust ← 4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust ← 2 /* Possible adjustment for MIPS16 delay slot */
endif

endif
if InstructionInBranchDelaySlot then

EPC ← restartPC - branchAdjust/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 16#000

Yes No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the ISA Mode bit

Table 5.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

5.7 Debug Exception Processing

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 127

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

elseif (ExceptionType = Interrupt) then
if (CauseIV = 0) then

vectorOffset ← 16#180
else

if (StatusBEV = 1) or (IntCtlVS = 0) then
vectorOffset ← 16#200

else
if Config3VEIC = 1 then

VecNum ← CauseRIPL
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3..IPL×4

endif
vectorOffset ← 16#200 + (VecNum × (IntCtlVS || 2#00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if ((ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) and

(StatusERL = 0)) then
SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

if Config1CA = 1 then
ISAMode ← 0

endif

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 16#BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 16#000

else
vectorBase ← 16#8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase31..30 || (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

5.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

 Exceptions and Interrupts in the 24K® Core

128 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if
the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot
of a branch.

• The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in the Debug register are updated appropri-
ately depending on the debug exception type.

• Halt and Doze bits in the Debug register are updated appropriately.

• DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0])
in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugD* bits at at [5:0] ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegisterProbTrap = 1 then

PC ← 0xFF20_0200
else

PC ← 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the EJTAG Control register (ECR), as shown in Table 5.10.

Table 5.10 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg

5.8 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 129

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 5.1.

5.8.1 Reset Exception

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When
a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, estab-
lishing critical state, and generally placing the processor in a state in which it can execute instructions from uncached,
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

• The Random register is initialized to the number of TLB entries - 1.

• The Wired register is initialized to zero.

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The I, R, and W fields of the WatchLo register are initialized to 0.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or
may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 0
StatusERL ← 1
WatchLoI ← 0
WatchLoR ← 0
WatchLoW ← 0
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4

 Exceptions and Interrupts in the 24K® Core

130 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

else
ErrorEPC ← PC

endif
PC ← 0xBFC0_0000

5.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to an instruc-
tion without a delay slot, otherwise two instructions are allowed to execute since the jump/branch and the instruction
in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one
step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP
instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

5.8 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 131

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

5.8.5 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
causes a machine check exception:

• The detection of multiple matching entries in the TLB. The core detects this condition on a TLB write and pre-
vents the write from being completed. The TS bit in the Status register is set to indicate this condition. This bit is
only a status flag and does not affect the operation of the device. Software clears this bit at the appropriate time.
This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be completed.

 Exceptions and Interrupts in the 24K® Core

132 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Cause Register ExcCode Value:

MCheck

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.6 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is
enabled by the Status register and the interrupt input is asserted. See Section 5.3 “Interrupts” for more details about
the processing of interrupts.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

See Section 5.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts” for the entry vector used,
depending on the interrupt mode the processor is operating in.

5.8.7 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.8 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug is also zero. If

Table 5.11 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.

5.8 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 133

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in the Cause
register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the Cause reg-
ister to determine if the EPC register points at the instruction that caused the watch exception, or if the exception
actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:

WATCH

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.9 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Table 5.12 Register States on a Watch Exception

Register State Value

CauseWP Indicates that the watch exception was deferred until after
StatusEXL, StatusERL, and DebugDM were zero. This bit

directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler execution.

WatchHiI,R,W Set for the watch channel that matched, and indicates
which type of match there was.

 Exceptions and Interrupts in the 24K® Core

134 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.10 TLB Refill Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a
mapped address space and the EXL bit is 0 in the Status register. Note that this is distinct from the case in which an
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

general exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

5.8.11 TLB Invalid Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

Table 5.13 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.14 CP0 Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address.

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

5.8 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 135

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception
is not maskable. To avoid disturbing the error in the cache array the exception vector is to an unmapped, uncached
address. This exception can be imprecise and the ErrorEPC may not point to the instruction that saw the errorL2
cache errors are considered to be imprecise. An L2 cache error on a data load operation can potentially corrupt the
target GPR.

Cause Register ExcCode Value

N/A

Additional State Saved

Entry Vector Used

Cache error vector (offset 16#100)

5.8.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an instruc-

Table 5.15 CP0 Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.16 CP0 Register States on a Cache Error Exception

Register State Value

CacheErr Error state

ErrorEPC Restart PC

 Exceptions and Interrupts in the 24K® Core

136 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

tion fetch or a data read. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on
an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus Error exceptions on instruction fetch (IBE) are precise. Bus errors on data load operations (DBE) are considered
to be imprecise. These errors are taken when the ERR code is returned on the OC_SResp input. Bus errors on data
load operations can potentially corrupt the target GPR.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.15 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A sys-
tem call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.16 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

5.8 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 137

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

Table 5.17 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE unit number of the coprocessor being referenced

 Exceptions and Interrupts in the 24K® Core

138 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8.19 Execution Exception — CorExtend block Unusable

The CorExtend block unusable exception is one of the execution exceptions. All of these exceptions have the same
priority. A CEU exception occurs when an attempt is made to execute a CorExtend instruction when the CEE bit in
the Status register is not set. It is dependent on the implementation of the CorExtend block, but this exception should
be taken on any CorExtend instruction that modifies local state within the CorExtend block and can optionally be
taken on other CorExtend instructions.

Cause Register ExcCode Value:

CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.20 Execution Exception — Floating Point Exception

A floating point exception is initiated by the floating point coprocessor.

Cause Register ExcCode Value:

FPE

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.21 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

Table 5.18 Register States on a Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception

5.8 Exceptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 139

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8.22 Execution Exception — Trap

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap excep-
tion occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.23 Execution Exception — C2E

A C2E exception is signalled from the optional coprocessor2 block on a coprocessor instruction.

Cause Register ExcCode Value:

C2E

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.24 Execution Exception — IS1

An IS1 exception is signalled from the optional coprocessor2 block on a coprocessor instruction.

Cause Register ExcCode Value:

IS1

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.25 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

 Exceptions and Interrupts in the 24K® Core

140 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.26 TLB Modified Exception — Data Access

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
dition is true:

• The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:

Mod

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions and their exception handler

• TLB miss exception and their exception handler

• Reset and NMI exceptions, and a guideline to their handler.

• Debug exceptions

Table 5.19 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31:13 of the failing

address.

EntryHi The VPN2 field contains VA31:13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

5.9 Exception Handling and Servicing Flowcharts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 141

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Generally speaking, the exceptions are handled by hardware; the exceptions are then serviced by software. Note that
unexpected debug exceptions to the debug exception vector at 0xBFC0_0200 may be viewed as a reserved instruction
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at
return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET
instruction returns to the address in the DEPC register.

Figure 5.3 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)=0 (normal)
Status.BEV

Comments

PC ← 0x8000_0000 + 180
(unmapped, cached)

PC ← 0xBFC0_0200 + 180
(unmapped, uncached)

EXL ← 1

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Instr. in Br.Dly.
Slot?

Yes

Processor forced to Kernel Mode
&interrupt disabled

=0

=1
Check if exception within another

exception EXL

EnHi and Context are set only for TLB- Invalid,
Modified, & Refill exceptions. BadVA is set only
for TLB- Invalid, Modified, Refill- and VCED/I
exceptions. Note: not set if it is a Bus Error

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Exceptions other than Reset, NMI, or first-level TLB missNote: Interrupts can be masked by IE or
IMs and Watch is masked if EXL = 1

No

 Exceptions and Interrupts in the 24K® Core

142 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 5.4 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

Check Cause value & Jump to appropriate
Service Code

* After EXL=0, all exceptions allowed. (except
interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
Set Status bits:

UM ← 0, EXL ←0, IE←1

MFC0 -
Context, EPC, Status, Cause

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

Comments

5.9 Exception Handling and Servicing Flowcharts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 143

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 5.5 TLB Miss Exception Handler (HW)

To TLB Exception Servicing Guidelines

Vec. Off. = 0x180

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Vec. Off. = 0x000

EXL ← 1

Points to General Exception

Processor forced to Kernel Mode
&interrupt disabled

=0

=1 (bootstrap)=0 (normal)

PC ← 0x8000_0000 + Vec.Off.(unmapped.
cached)

PC ← 0xBFC0_0200 + Vec.Off.(unmapped.
uncached)

Status.BEV

Check if exception within another
exception=1=1

=0

EXL EXL

EntryHi ← VPN2, ASID
Context ← VPN2

Set Cause EXCCode,CE
BadVA ← VA

Instr. in Br.Dly.
Slot?

NoYes

 Exceptions and Interrupts in the 24K® Core

144 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 5.6 TLB Exception Servicing Guidelines (SW)

Comments

ERET

Service Code

MFC0 -CONTEXT

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

* Load the mapping of the virtual address in Context Reg. Move
it to EntryLo and write into the TLB
* There could be a TLB miss again during the mapping of the data
or instruction address. The processor will jump to the general
exception vector since the EXL is 1. (Option to complete the first
level refill in the general exception handler or ERET to the original
instruction and take the exception again)

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

5.9 Exception Handling and Servicing Flowcharts

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 145

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 5.7 Reset and NMI Exception Handling and Servicing Guidelines

Status:
BEV ← 1
TS ← 0
SR ← 0
NMI ← 1
ERL ← 1

(Optional)

Reset Service Code

NMI Service Code

ERET

=0

=1

PC ← 0xBFC0_0000

ErrorEPC ← PC

Random ← TLBENTRIES - 1
Wired ← 0
Config ← Reset state
Status:

RP ← 0
BEV ← 1
TS ← 0
SR ← 0
NMI ← 0
ERL ← 1

WatchLo:
I, R,W ← 0

Reset Exception

NMI Exception
R

es
et

, S
of

t R
es

et
 &

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (S
W

)

Chapter 6

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 146

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CP0 Registers of the 24K® Core

The System Control Coprocessor (CP0) provides the register interface to the 24K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CP0 register has a
unique number that identifies it; this number is referred to as the register number. For instance, the PageMask register
is register number 5. All registers also have a select number from 0-7, if none is specified, it is 0. After updating a
CP0 register there is a hazard period of zero or more instructions from the update instruction (MTC0) and until the
effect of the update has taken place in the core.

This chapter contains the following sections:

• Section 6.1 “CP0 Register Summary”

• Section 6.2 “CP0 Register Descriptions”

6.1 CP0 Register Summary

Table 6.1 lists the CP0 registers in numerical order and gives a brief description. The individual registers are
described throughout this chapter.

Table 6.1 CP0 Registers

Register

Function

Per

Number Select Name VPE TC Proc

0 0 Index1 Index into the TLB array. This register is reserved if the TLB is not
implemented.

X

1 0 Random1 Randomly generated index into the TLB array. This register is
reserved if the TLB is not implemented.

X

2 0 EntryLo01 Low-order portion of the TLB entry for even-numbered virtual
pages. This register is reserved if the TLB is not implemented.

3 0 EntryLo11 Low-order portion of the TLB entry for odd-numbered virtual pages.
This register is reserved if the TLB is not implemented.

X

4 0 Context2 Pointer to page table entry in memory. This register is reserved if the
TLB is not implemented.

X

4 2 UserLocal User information that can be written by privileged software and read
via RDHWR register 29

X

5 0 PageMask PageMask controls the variable page sizes in TLB entries. This reg-
ister is reserved if the TLB is not implemented.

X

6 0 Wired1 Controls the number of fixed (“wired”) TLB entries. This register is
reserved if the TLB is not implemented.

X

7 0 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode.

X

6.1 CP0 Register Summary

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 147

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8 0 BadVAddr2 Reports the address for the most recent address-related exception. X

9 0 Count2 Processor cycle count. X

10 0 EntryHi1 High-order portion of the TLB entry. This register is reserved if the
TLB is not implemented.

X X3

11 0 Compare2 Timer interrupt control. X

12 0 Status2 Processor status and control. X X4

12 1 IntCtl2 Setup for interrupt vector and interrupt priority features. X

12 2 SRSCtl2 Shadow register set selectors X

12 3 SRSMap2 In vectored interrupt mode, determines which shadow set is used for
each interrupt source.

X

13 0 Cause2 Cause of last exception. X

14 0 EPC2 Program counter at last exception. X

15 0 PRId Processor identification and revision. X

15 1 EBase Exception base address. X

16 0 Config Configuration register. X

16 1-2 Config1-2 Configuration for MMU, caches etc. X

16 3 Config3 Interrupt and ASE capabilities X

16 7 Config7 24K family-specific configuration register. X

18 0-1 WatchLo0-12 Low-order watchpoint address associated with instruction watch-
points.

X

18 2-3 WatchLo2-32 Low-order watchpoint address associated with data watchpoints. X

19 0-1 WatchHi0-12 High-order watchpoint address used for instruction watchpoints. X

19 2-3 WatchHi2-32 High-order watchpoint address used for data watchpoints. X

23 0 Debug5 EJTAG Debug register. X

24 0 DEPC5 Restart address from last EJTAG debug exception. X

25 0 PerfCtl0 Performance counter 0 control. X

25 1 PerfCnt0 Performance counter 0. X

25 2 PerfCtl1 Performance counter 1 control. X

25 3 PerfCnt1 Performance counter 1. X

26 0 ErrCtl Software test enable of way-select and Data RAM arrays for I-Cache
and D-Cache.

X

27 0 CacheErr Records information about cache parity errors X

28 0 ITagLo Cache tag read/write interface for I-cache. X

28 1 IDataLo Low-order data read/write interface for I-cache. X

28 2 DTagLo Cache tag read/write interface for D-cache. X

Table 6.1 CP0 Registers (Continued)

Register

Function

Per

Number Select Name VPE TC Proc

 CP0 Registers of the 24K® Core

148 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Register Descriptions

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below, with
the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For single bit fields, the name is truncated to a single character which is then shown outside brackets in
the Fields|Name column; for example, (TLB)S for the TLB Sharable bit in the MVPConf0 register. For the read/write
properties of the field, the following notation is used:

28 3 DDataLo Low-order data read/write interface for D-cache. X

28 4 L23TagLo Cache tag read/write interface for L2-cache. X

28 5 L23DataLo Low-order data read/write interface for L2-cache. X

29 1 IDataHi High-order data read/write interface for I-cache. X

29 5 L23DataHi High-order data read/write interface for L2-cache. X

30 0 ErrorEPC2 Program counter at last error. X

31 0 DeSAVE5 Debug handler scratchpad register. X

1. Registers used in memory management.
2. Registers used in exception processing.
3. ASID per-TC. See Section 6.2.11 “EntryHi Register (CP0 Register 10, Select 0)”.
4. KSU and CU0-3 per-TC. See Section 6.2.13 “Status Register (CP0 Register 12, Select 0)”.
5. Registers used in debug.

Table 6.2 CP0 Register Field Types

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED
behavior.

R A field that is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Preset”,
hardware initializes this field to zero or to the appropri-
ate state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hardware
updates this field only under those conditions specified
in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value to
this field without affecting hardware behavior. Software
reads of this field return the last value updated by hard-
ware.
If the Reset State of this field is “Undefined,” software
reads of this field result in an UNPREDICTABLE
value except after a hardware update done under the
conditions specified in the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

Table 6.1 CP0 Registers (Continued)

Register

Function

Per

Number Select Name VPE TC Proc

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 149

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.1 Index Register (CP0 Register 0, Select 0)

The Index register is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 6.1 Index Register Format

6.2.2 Random Register (CP0 Register 1, Select 0)

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

0 A field that hardware does not update, and for which
hardware can assume a zero value.

A field to which the value written by software must be
zero. Software writes of non-zero values to this field
may result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.

31 30 6 5 0

P 0 Index

Table 6.3 Index Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

P 31 Probe Failure. Set to 1by hardware when the previous TLBProbe
(TLBP) instruction failed to find a match in the TLB.

R/W Undefined

0 30:6 Must be written as zeros; returns zeros on reads. 0 0

Index 5:0 Index to the TLB entry affected by the TLBRead and TLBWrite
instructions.
For 16 or 32 entry TLBs, behavior is undefined if index points to a
non-existent entry.

R/W Undefined

Table 6.2 CP0 Register Field Types (Continued)

Notation Hardware Interpretation Software Interpretation

 CP0 Registers of the 24K® Core

150 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register is the first entry available to be written by a
TLB Write Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

The Random register is decremented by one almost every clock, wrapping after the value in the Wired register is
reached. To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is
used which prevents the decrement pseudo-randomly.

The processor initializes the Random register to the upper bound on a Reset exception and when the Wired register is
written.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 6.2 Random Register Format

6.2.3 EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions.
For a TLB-based MMU, EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages. The
contents of the EntryLo0 and EntryLo1 registers are undefined after an address error, TLB invalid, TLB modified, or
TLB refill exception. These registers are only valid when the TLB-based memory management unit is present. They
are reserved if the FM-style MMU is present.

Figure 6.3 EntryLo0, EntryLo1 Register Format

31 6 5 0

0 Random

Table 6.4 Random Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on reads. 0 0

Random 5:0 TLB Random Index R TLB Entries - 1

31 30 29 26 25 6 5 3 2 1 0

R 0 PFN C D V G

Table 6.5 EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero on reads. R 0

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 151

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.6 lists the encoding of the C field of the EntryLo0 and EntryLo1 registers and the K0 field of the Config regis-
ter.

6.2.4 Context Register (CP0 Register 4, Select 0)

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVAddr register but is organized in such a way that the operating system can
directly reference an 8-byte page table entry (PTE) in memory.

0 29:26 These 4 bits are normally part of the PFN, however, since the
24k supports only 32 bits of physical address, the PFN is only
20 bits wide; therefore, bits 29:26 of this register must be writ-
ten with zeros.

R 0

PFN 25:6 Page Frame Number: Contributes to the definition of the high-
order bits of the physical address. The PFN field corresponds to
bits 31..12 of the physical address.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 6.6. R/W Undefined

D 2 “Dirty” or write-enable bit: Indicates that the page has been
written, and/or is writable. If this bit is a one, then stores to the
page are permitted. If this bit is a zero, then stores to the page
cause a TLB Modified exception.

R/W Undefined

V 1 Valid bit: Indicates that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, then accesses to the
page are permitted. If this bit is a zero, then accesses to the page
cause a TLB Invalid exception

R/W Undefined

G 0 Global bit: On a TLB write, the logical AND of the G bits in
both the EntryLo0 and EntryLo1 registers become the G bit in
the TLB entry. If the TLB entry G bit is a one, then the ASID
comparisons are ignored during TLB matches. On a read from
a TLB entry, the G bits of both EntryLo0 and EntryLo1 reflect
the state of the TLB G bit.

R/W Undefined

Table 6.6 Cache Coherency Attributes

C[5:3] Value Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Reserved

2 Uncached

3 Cacheable, noncoherent, write-back, write allocate

4,5,6 Reserved

7 Uncached Accelerated

Table 6.5 EntryLo0, EntryLo1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

 CP0 Registers of the 24K® Core

152 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception.

Figure 6.4 Context Register Format

6.2.5 UserLocal Register (CP0 Register 4, Select 2)

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

Figure 6.5 shows the format of the UserLocal register; Table 6.8 describes the UserLocal register fields.

Figure 6.5 UserLocal Register Format

Programming Notes

Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to enable
unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

31 23 22 4 3 0

PTEBase BadVPN2 0

Table 6.7 Context Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

PTEBase 31:23 This field is for use by the operating system and is normally written
with a value that allows the operating system to use the Context
Register as a pointer into the current PTE array in memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss. It contains bits
VA31:13 of the virtual address that missed.

R Undefined

0 3:0 Must be written as zero; returns zero on reads. 0 0

31 0

UserLocal

Table 6.8 UserLocal Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

UserLocal 31:0 This field contains software information that is not interpreted by
hardware.

R/W Undefined

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 153

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.6 PageMask Register (CP0 Register 5, Select 0)

The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 6.10.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 6.6 PageMask Register Format

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 6.10, even
if the hardware returns a different value on read. Hardware may depend on this requirement in implementing hard-
ware structures.

31 29 28 13 12 0

0 Mask 0

Table 6.9 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
12:0

Ignored on write; returns zero on read. R 0

Mask 28:13 The Mask field is a bit mask in which a “1” bit indicates that the cor-
responding bit of the virtual address should not participate in the
TLB match.

R/W Undefined

Table 6.10 Values for the Mask Field of the PageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 CP0 Registers of the 24K® Core

154 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.7 Wired Register (CP0 Register 6, Select 0)

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 6.7. The width of the Wired field is calculated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

The Wired register is reset to zero by a Reset exception. Writing the Wired register causes the Random register to
reset to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written to
the Wired register.

This register is only valid with a TLB. It is reserved when the FM is implemented.

Figure 6.7 Wired and Random Entries in the TLB

Figure 6.8 Wired Register Format

6.2.8 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction when that instruction is executed in a mode in which coprocessor 0 is not enabled.

31 6 5 0

0 Wired

Table 6.11 Wired Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on reads. 0 0

Wired 5:0 TLB wired boundary.
For 16 and 32 entry TLBs, behavior is undefined if value is set to a
value larger than last TLB entry.

R/W 0

R
an

do
m

W
ire

d

Entry 0

Entry 10

Entry n-1

Wired Register 10

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 155

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 6.9 shows the format of the HWREna Register; Table 6.12 describes the HWREna register fields.

Figure 6.9 HWREna Register Format
31 30 29 0

0 Mask

Table 6.12 HWREna Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31..30 Reserved 0 0

Mask 29..0 Each bit in this field enables access by the RDHWR instruction to a
particular hardware register (which may not be an actual register). If
bit ‘n’ in this field is a 1, access is enabled to hardware register ‘n’.
If bit ‘n’ of this field is a 0, access is disabled.
Table 6.13 lists the RDHWR registers, and register number ‘n’ cor-
responds to bit ‘n’ in this field.

R/W 0

Table 6.13 RDHWR Register Numbers

Register
Number Mnemonic Description

0 CPUNum This register provides read access to the coprocessor 0 EBaseCPUNum field.

1 SYNCI_Step Address step size to be used with the SYNCI instruction. See that instruction’s
description for the use of this value. In the typical implementation, this value should
be zero if there are no caches in the system which must be synchronized (either
because there are no caches, or because the instruction cache tracks writes to the data
cache). In other cases, the return value should be the smallest line size of the caches
that must be synchronized.
For the 24K 24k, the SYNCI_Step value is 32 since the line size is 32 bytes.

2 CC High-resolution cycle counter. This register provides read access to the coprocessor 0
Count Register.

3 CCRes Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

In the 24K 24k, the CCRes value is 2 to indicate that the CC register increments every
second core cycle.

4-28
These registers numbers are reserved for future architecture use. Access results in a
Reserved Instruction Exception.

CCRes Value Meaning

1 CC register increments every cycle

2 CC register increments every second cycle

3 CC register increments every third cycle

etc.

 CP0 Registers of the 24K® Core

156 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If a bit reads back as a one, the processor implements that hardware register.

6.2.9 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid

• TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
errors.

Figure 6.10 BadVAddr Register Format

29 ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register. In some operating environments, the UserLocal register is a
pointer to a thread-specific storage block.

30-31
These register numbers are reserved for future implementation-dependent use. Access
results in a Reserved Instruction Exception.

31 0

BadVAddr

Table 6.14 BadVAddr Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Bad-
VAddr

31:0 Bad virtual address. R Undefined

Table 6.13 RDHWR Register Numbers

Register
Number Mnemonic Description

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 157

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.10 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. If enabled, the counter increments every other clock. Setting
the DC bit in the Cause register to 0 enables counting.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 6.11 Count Register Format

6.2.11 EntryHi Register (CP0 Register 10, Select 0)

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of the EntryHi register. A TLBR instruction writes the EntryHi register with the corresponding
fields from the selected TLB entry. The ASID field is written by software with the current address space identifier
value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence. Software writes of the EntryHi register (via MTC0) do not
cause the implicit write of address-related fields in the BadVAddr, Context registers.

This register is only valid with the TLB. It is reserved if the FM is implemented.

Figure 6.12 EntryHi Register Format

31 0

Count

Table 6.15 Count Register Field Description

Fields

Description
Read /
Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

31 13 12 8 7 0

VPN2 0 ASID

 CP0 Registers of the 24K® Core

158 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.12 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on its
own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware
interrupt 5 to set interrupt bit IP(7) in the Cause register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure 6.13 Compare Register Format

6.2.13 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to Section
4.2 “Modes of Operation” for a discussion of operating modes, and Section 5.3 “Interrupts” for a discussion of inter-
rupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

Table 6.16 EntryHi Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

VPN2 31..13 VA31..13 of the virtual address (virtual page number / 2). This field is

written by hardware on a TLB exception or on a TLB read, and is
written by software before a TLB write.

R/W Undefined

0 12..8 Must be written as zero; returns zero on read. 0 0

ASID 7..0 Address space identifier. This field is written by hardware on a TLB
read and by software to establish the current ASID value for TLB
write and against which TLB references match each entry’s TLB
ASID field.

R/W Undefined

31 0

Compare

Table 6.17 Compare Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 159

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

6.2.13.1 Operating Modes

Debug Mode

The processor is operating in Debug Mode if the DM bit in the CP0 Debug register is a one. If the processor is running
in Debug Mode, it has full access to all resources that are available to Kernel Mode operation.

Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero and any of the following
three conditions is true:

• The KSU field in the CP0 Status register contains 2#00

• The EXL bit in the Status register is one

• The ERL bit in the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

Supervisor Mode

The processor is operating in Supervisor Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero

• The KSU field in the Status register contains 2#01

• The EXL and ERL bits in the Status register are both zero

Supervisor mode is not supported with the Fixed Mapping MMU.

User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero

• The KSU field in the Status register contains 2#10

• The EXL and ERL bits in the Status register are both zero

 CP0 Registers of the 24K® Core

160 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.13.2 Coprocessor Accessibility

The Status register CU bits control coprocessor accessibility. If any coprocessor is unusable, then an instruction that
accesses it generates an exception.

Figure 6.14 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX R BEV TS SR NMI 0 CEE R IM7..IM2 IM1..IM0 R KSU ERL EXL IE

IPL

Table 6.18 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

CU3 31 Reserved. R 0

CU2 30 Controls access to Coprocessor 2

This bit can only be written when a coprocessor 2 unit is present.
This bit cannot be written and will read as 0 if coprocessor 2 unit is
not presen.

R/W Undefined

CU1 29 Controls access to Coprocessor 1

This bit can only be written when the Floating Point Unit is present
(24Kf core); in the 24Kc core, this bit cannot be written and will
read as 0.

R/W Undefined

CU0 28 Controls access to coprocessor 0

Coprocessor 0 is always usable when the processor is running in ker-
nel mode, independent of the state of the CU0 bit.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is available on
the external 24k interface as the SI_RP signal.

R/W 0

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Access not allowed

1 Access allowed

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 161

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

FR 26 This bit is used to control the floating point register mode for 64-bit
floating point units:

This bit must be ignored on write and read as zero under the follow-
ing conditions
• No floating point unit is implemented
• 64-bit floating point unit is not implemented

R/W 0

RE 25 Used to enable reverse-endian memory references while the proces-
sor is running in user mode
Not supported

R 0

MX 24 Enables access to DSP ASE resources. An attempt to execute any
DSP ASE instruction before this bit has been set to 1 will cause a
DSP State Disabled exception.
Since the DSP ASE is not present on the 24K core, this field is
always 0.

R 0

R 23 Reserved. This field is ignored on write and read as 0. R 0

BEV 22 Controls the location of exception vectors: R/W 1

TS 21 TLB shutdown. Indicates that a machine check exception was taken
due to a TLBWI or TLBWR that would have created conflicting
TLB entries. This bit is reserved if the TLB is not implemented.
Software can only write a 0 to this bit to clear it and cannot force a
0-1 transition.

R/W0 0

SR 20 Indicates that the entry through the reset exception vector was due to
a Soft Reset. Soft Reset is not supported on this processor and this
bit is not writeable and will always read as 0

R 0

NMI 19 Indicates that the entry through the reset exception vector was due to
an NMI:

Software can only write a 0 to this bit to clear it and cannot force a
0-1 transition.

R/W0 1 for NMI; 0 oth-
erwise

0 18 Must be written as zero; returns zero on read. 0 0

Table 6.18 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Floating point registers can contain any 32-bit
datatype. 64-bit datatypes are stored in even-odd
pairs of registers

1 Floating point registers can contain any datatype

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not NMI (Reset)

1 NMI

 CP0 Registers of the 24K® Core

162 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CEE 17 CorExtend Enable: This bit is sent to the CorExtend block to be used
to enable the CorExtend block. The usage of this signal by a CorEx-
tend block is implementation dependent.
This bit is reserved if CorExtend is not present.

R/W Undefined

R 16 Reserved. Ignored on write and read as zero. R 0

IM7..IM2 15..10 Interrupt Mask: Controls the enabling of each of the hardware inter-
rupts. Refer to Section 5.3 “Interrupts” for a complete discussion of
enabled interrupts.
An interrupt is taken if interrupts are enabled and the corresponding
bits are set in both the Interrupt Mask field of the Status register and
the Interrupt Pending field of the Cause register and the IE bit is set
in the Status register.

In implementations of Release 2 of the Architecture in which EIC
interrupt mode is enabled (Config3VEIC = 1), these bits take on a

different meaning and are interpreted as the IPL field, described
below.

R/W Undefined

IPL 15..10 Interrupt Priority Level: In implementations of Release 2 of the
Architecture in which EIC interrupt mode is enabled (Config3VEIC
= 1), this field is the encoded (0..63) value of the current IPL. An
interrupt will be signaled only if the requested IPL is higher than this
value.
If EIC interrupt mode is not enabled (Config3VEIC = 0), these bits

take on a different meaning and are interpreted as the IM7..IM2 bits,
described above.

R/W Undefined

IM1..IM0 9..8 Interrupt Mask: Controls the enabling of each of the software inter-
rupts. Refer to Section 5.3 “Interrupts” for a complete discussion of
enabled interrupts.

In implementations of Release 2 of the Architecture in which EIC
interrupt mode is enabled (Config3VEIC = 1), these bits are writable,

but have no effect on the interrupt system.

R/W Undefined

R 7..5 Reserved. This field is ignored on write and read as 0. R 0

Table 6.18 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 163

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

KSU 4..3 This field denotes the base operating mode of the processor. See
Section 4.2 “Modes of Operation” for a full discussion of operating
modes. The encoding of this field is:

Note that the processor can also be in kernel mode if ERL or EXL is
set, regardless of the state of the KSU field.

R/W Undefined

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset, NMI or
Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped and
uncached region. See Chapter 4, “Memory Management of the
24K® Core” on page 87. This allows main memory to be
accessed in the presence of cache errors. The operation of the pro-
cessor is UNDEFINED if the ERL bit is set while the processor is
executing instructions from kuseg.

R/W 1

EXL 1 Exception Level; Set by the processor when any exception other
than Reset, Soft Reset, or NMI exceptions is taken.

When EXL is set:
• The processor is running in Kernel Mode
• Interrupts are disabled.
• TLB Refill exceptions use the general exception vector instead of

the TLB Refill vector.
• EPC, CauseBD and SRSCtl (implementations of Release 2 of

the Architecture only) will not be updated if another exception is
taken

R/W Undefined

Table 6.18 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

00 Base mode is Kernel Mode

01 Base mode is Supervisor Mode

10 Base mode is User Mode

11 Reserved

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level

 CP0 Registers of the 24K® Core

164 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.14 IntCtl Register (CP0 Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 6.15 IntCtl Register Format

IE 0 Interrupt Enable: Acts as the master enable for software and hard-
ware interrupts:

In Release 2 of the Architecture, this bit may be modified separately
via the DI and EI instructions.

R/W Undefined

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0

Table 6.19 IntCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Timer Interrupt request is
merged, and allows software to determine whether to consider
CauseTI for a potential interrupt.

The value of this bit is set by the static input, SI_IPTI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_TimerInt signal is attached.
The value of this field is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide this information for that interrupt mode.

R Externally Set

Table 6.18 Status Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 165

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.15 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Figure 6.16 SRSCtl Register Format

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt modes, this field
specifies the IP number to which the Performance Counter Interrupt
request is merged, and allows software to determine whether to con-
sider CausePCI for a potential interrupt.

The value of this bit is set by the static input, SI_IPPCI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_PCInt signal is attached.
The value of this field is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide this information for that interrupt mode.

R Externally Set

VS 9:5 Vector Spacing. If vectored interrupts are implemented (as denoted
by Config3VInt or Config3VEIC), this field specifies the spacing

between vectored interrupts.

All other values are reserved. The operation of the processor is
UNDEFINED if a reserved value is written to this field.

R/W 0

0 25:10, 4:0 Must be written as zero; returns zero on read. 0 0

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

Table 6.19 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding IP bit Hardware Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding
Spacing Between

Vectors (hex)
Spacing Between
Vectors (decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512

 CP0 Registers of the 24K® Core

166 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.20 SRSCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

HSS 29:26 Highest Shadow Set. This field contains the highest shadow set
number that is implemented by this processor. A value of zero in this
field indicates that only the normal GPRs are implemented.
Possible values of this field for the 24K processor are:

The value in this field also represents the highest value that can be
written to the ESS, EICSS, PSS, and CSS fields of this register, or
to any of the fields of the SRSMap register. The operation of the
processor is UNDEFINED if a value larger than the one in this field
is written to any of these other fields.

R Preset

EICSS 21:18 EIC interrupt mode shadow set. If Config3VEIC is 1 (EIC interrupt

mode is enabled), this field is loaded from the external interrupt con-
troller for each interrupt request and is used in place of the SRSMap
register to select the current shadow set for the interrupt.
See Section 5.3.1.3 “External Interrupt Controller Mode” for a dis-
cussion of EIC interrupt mode. If Config3VEIC is 0, this field returns

zero on read.

R Undefined

ESS 15:12 Exception Shadow Set. This field specifies the shadow set to use on
entry to Kernel Mode caused by any exception other than a vectored
interrupt.
The operation of the processor is UNDEFINED if software writes a
value into this field that is greater than the value in the HSS field.

R/W 0

PSS 9:6 Previous Shadow Set. If GPR shadow registers are implemented,
and with the exclusions noted in the next paragraph, this field is cop-
ied from the CSS field when an exception or interrupt occurs. An
ERET instruction copies this value back into the CSS field if
StatusBEV = 0.

This field is not updated on any exception which sets StatusERL to 1

(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG
Debug mode, or any exception or interrupt that occurs with
StatusEXL = 1, or StatusBEV = 1. This field is not updated on an

exception that occurs while StatusERL = 1.

The operation of the processor is UNDEFINED if software writes a
value into this field that is greater than the value in the HSS field.

R/W 0

Encoding Meaning

0 One shadow set (normal GPR set) is present.

1 Two shadow sets are present.

3 Four shadow sets are present.

2, 3-15 Reserved

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 167

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.16 SRSMap Register (CP0 Register 12, Select 3)

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

CSS 3:0 Current Shadow Set. If GPR shadow registers are implemented, this
field is the number of the current GPR set. With the exclusions noted
in the next paragraph, this field is updated with a new value on any
interrupt or exception, and restored from the PSS field on an ERET.
Table 6.21 describes the various sources from which the CSS field is
updated on an exception or interrupt.
This field is not updated on any exception which sets StatusERL to
1 (i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG
Debug mode, or any exception or interrupt that occurs with
StatusEXL = 1, or StatusBEV = 1. Neither is it updated on an ERET

with StatusERL = 1 or StatusBEV = 1. This field is not updated on

an exception that occurs while StatusERL = 1.

The value of CSS can be changed directly by software only by writ-
ing the PSS field and executing an ERET instruction.

R 0

0 31:30,
25:22,
17:16,

11:10, 5:4

Must be written as zeros; returns zero on read. 0 0

Table 6.21 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Interrupt CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and

Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map regis-
ter.
(for VECTNUM see Table 5.4)

Vectored EIC Interrupt CauseIV = 1 and

Config3VEIC = 1

SRSCtlEICSS Source is external interrupt
controller.

Table 6.20 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 24K® Core

168 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 6.17 SRSMap Register Format

6.2.17 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 6.18 Cause Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 6.22 SRSMap Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 169

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.23 Cause Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

BD 31 Indicates whether the last exception taken occurred in a branch delay
slot:

The processor updates BD only if StatusEXL was zero when the

exception occurred.

R Undefined

TI 30 Timer Interrupt. This bit denotes whether a timer interrupt is pend-
ing (analogous to the IP bits for other interrupt types):

The state of the TI bit is available on the external core interface as
the SI_TimerInt signal.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken. This field is loaded by hardware on every excep-
tion, but is UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

R Undefined

DC 27 Disable Count register. In some power-sensitive applications, the
Count register is not used and is the source of meaningful power
dissipation. This bit allows the Count register to be stopped in such
situations.

R/W 0

PCI 26 Performance Counter Interrupt: This bit denotes whether a perfor-
mance counter interrupt is pending (analogous to the IP bits for
other interrupt types):

The state of the PCI bit is available on the external core interface as
the SI_PCInt signal.

R Undefined

IV 23 Indicates whether an interrupt exception uses the general exception
vector or a special interrupt vector:

If the CauseIV is 1 and StatusBEV is 0, the special interrupt vector

represents the base of the vectored interrupt table.

R/W Undefined

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

Encoding Meaning

0 No performance counter interrupt is pending

1 Performance counter interrupt is pending

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200)

 CP0 Registers of the 24K® Core

170 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

WP 22 Indicates that a watch exception was deferred because StatusEXL or

StatusERL were a one at the time the watch exception was detected.

This bit both indicates that the watch exception was deferred, and
causes the exception to be initiated once StatusEXL and StatusERL
are both zero. As such, software must clear this bit as part of the
watch exception handler to prevent a watch exception loop.
Software should not write a 1 to this bit when its value is a 0, thereby
causing a 0-to-1 transition. If such a transition is caused by software,
it is UNPREDICTABLE whether hardware ignores the write,
accepts the write with no side effects, or accepts the write and ini-
tiates a watch exception once StatusEXL and StatusERL are both

zero.

R/W Undefined

IP7..IP2 15:10 Indicates an interrupt is pending:

If EIC interrupt mode is not enabled (Config3VEIC = 0), timer inter-

rupts are combined in a system-dependent way with any hardware
interrupt. If EIC interrupt mode is enabled (Config3VEIC = 1), these

bits take on a different meaning and are interpreted as the RIPL
field, described below.
See Section 5.3 “Interrupts” for a general description of interrupt
processing.

R Undefined

RIPL 15:10 Requested Interrupt Priority Level: If EIC interrupt mode is enabled
(Config3VEIC = 1), this field is the encoded (0..63) value of the

requested interrupt. A value of zero indicates that no interrupt is
requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0), these bits

take on a different meaning and are interpreted as the IP7..IP2 bits,
described above.

R Undefined

IP1..IP0 9:8 Controls the request for software interrupts:

These bits are exported to an external interrupt controller for prioriti-
zation in EIC interrupt mode with other interrupt sources. The state
of these bits is available on the external core interface as the
SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6:2 Exception code - see Table 6.24 R Undefined

Table 6.23 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 171

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

0 25:24,
21:16, 7,

1:0

Must be written as zero; returns zero on read. 0 0

Table 6.24 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception

2 16#02 TLBL TLB exception (load or instruction fetch)

3 16#03 TLBS TLB exception (store)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception. If an SDBBP instruction is executed while the pro-
cessor is running in EJTAG Debug Mode, this value is written to the
DebugDExcCode field to denote an SDBBP in Debug Mode.

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14 16#0e - Reserved

15 16#0f FPE Floating point exception

16 16#10 IS1 Coprocessor 2 implementation specific exception

17 16#11 CEU CorExtend Unusable

18 16#12 C2E Precise Coprocessor 2 exception

19-22 16#13-16#16 - Reserved

23 16#17 WATCH Reference to WatchHi/WatchLo address

24 16#18 MCheck Machine checkcore

25-29 16#19-16#1d - Reserved

30 16#1e CacheErr Cache error. In normal mode, a cache error exception has a dedicated
vector and the Cause register is not updated. If a cache error occurs while
in Debug Mode, this code is written to the DebugDExcCode field to indi-

cate that re-entry to Debug Mode was caused by a cache error.

Table 6.23 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 24K® Core

172 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.18 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set,
however, the register can still be written via the MTC0 instruction.

In processors that implement the MIPS16 ASE, a read of the EPC register (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field of DEPC7 and
written to the GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows

ExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower bit of
the GPR.

Figure 6.19 EPC Register Format

31 16#1f - Reserved

31 0

EPC

Table 6.25 EPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

Table 6.24 Cause Register ExcCode Field (Continued)

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 173

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.19 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 6.20 PRId Register Format

6.2.20 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see Section
5.5 “Exception Vector Locations”) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits

31 24 23 16 15 8 7 0

CompanyOption Company ID Processor ID Revision

Table 6.26 PRId Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Company
Option

31:24 Implementation specific values R Preset

Company
ID

23:16 Identifies the company that designed or manufactured the processor.
In the 24K this field contains a value of 1 to indicate MIPS Technol-
ogies, Inc.

R 1

Processor
ID

15:8 Identifies the type of processor. This field allows software to distin-
guish between the various types of MIPS Technologies processors.

R 0x93

Revision 7:0 Specifies the revision number of the processor. This field allows
software to distinguish between one revision and another of the
same processor type.
This field is broken up into the following three subfields:

R Preset

Bit(s) Name Meaning

7:5 Major
Revision

This number is increased on major revisions
of the processor 24k

4:2 Minor
Revision

This number is increased on each incremen-
tal revision of the processor and reset on
each new major revision

1:0 Patch
Level

If a patch is made to modify an older revi-
sion of the processor, this field will be
incremented

 CP0 Registers of the 24K® Core

174 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

31:12 of the EBase register initialize the exception base register to 16#8000.0000, providing backward compati-
bility with Release 1 implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or kseg1 unmapped virtual address segments. Bit 29 of exception base address will be forced to 1 on Cache Error
exceptions so the exception handler will be executed from the uncached kseg1 segment.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KBbyte page boundary.

Figure 6.21 EBase Register Format

6.2.21 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant. The K0, KU, and K23 fields must
be initialized by software in the Reset exception handler, if the reset value is not desired.

Figure 6.22 Config Register Format — Select 0

31 30 29 12 11 10 9 0

1 0 Exception Base 0 CPUNum

Table 6.27 EBase Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

1 31 This bit is ignored on write and returns one on read. R 1

Exception
Base

29:12 In conjunction with bits 31..30, this field specifies the base address
of the exception vectors when StatusBEV is zero.

R/W 0

CPUNum 9:0 This field contains an identifier that will be unique among the CPUs
in a multi-processor system. This can be used by software to distin-
guish where it is running. The value in this field is set by the
SI_CPUNum[9:0] static input pins to the core. .

R Externally Set

0 30, 11:10 Must be written as zero; returns zero on read. 0 0

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU ISP DSP UDI SB 0 MM 0 BM BE AT AR MT 0 K0

Table 6.28 Config Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config1
register.

R 1

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 175

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

K23 30:28 This field controls the cacheability of the kseg2 and kseg3 address
segments in FM implementations.
Refer to Table 6.29 for the field encoding.

FM: R/W
TLB: R

FM: 010
TLB: 000

KU 27:25 This field controls the cacheability of the kuseg and useg address
segments in FM implementations.
Refer to Table 6.29 for the field encoding.

FM: R/W
TLB: R

FM: 010
TLB: 000

ISP 24 I-side ScratchPad RAM present R Preset

DSP 23 D-side ScratchPad RAM present R Preset

UDI 22 This bit indicates that CorExtend User Defined Instructions have
been implemented.

R Preset

SB 21 Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE input pin.

R Externally Set

MM 18 This bit indicates whether write-through merging is enabled in the
32-byte collapsing write buffer.

R/W 1

BM 16 Burst order. Set via SI_SBlock input pin. R Externally Set

BE 15 Indicates the endian mode in which the processor is running. Set via
SI_Endian input pin.

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field is always
00 to indicate the MIPS32 architecture.

R 00

Table 6.28 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No User Defined Instructions are implemented

1 User Defined Instructions are implemented

Encoding Description

0 No reserved byte enables on OCP interface

1 Only simple byte enables allowed on OCP interface

Encoding Description

0 No Merging

1 Merging allowed

Encoding Description

0 Sequential

1 SubBlock

Encoding Description

0 Little endian

1 Big endian

 CP0 Registers of the 24K® Core

176 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.22 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities present
on the core. All fields in the Config1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the line
size, and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

AR 12:10 Architecture revision level. This field is always 001 to indicate
MIPS32 Release 2.

R 001

MT 9:7 MMU Type: R Preset

K0 2:0 Kseg0 coherency algorithm. Refer to Table 6.29 for the field encod-
ing.

R/W 010

0 20:19, 17,
6:3

Must be written as zeros; returns zeros on reads. 0 0

Table 6.29 Cache Coherency Attributes

K0(2:0) Value Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Reserved

2 Uncached

3 Cacheable, noncoherent, write-back, write allocate

4,5,6 Reserved

7 Uncached Accelerated

Table 6.28 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 Release 1

1 Release 2

2:7 Reserved

Encoding Description

1 Standard TLB

3 Fixed Mapping

0, 2, 4:7 Reserved

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 177

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

If the line size is zero, no cache is implemented.

Figure 6.23 Config1 Register Format
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 6.30 Config1 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config2
register.

R 1

MMU
Size

30:25 This field contains the number of entries in the TLB minus one. The
field is read as 0 decimal if the TLB is not implemented

R Preset

IS 24:22 This field contains the number of instruction cache sets per way. The
corresponding total instruction cache size is shown in parentheses

R Preset

IL 21:19 This field contains the instruction cache line size The cache line size
is fixed at 32 bytes when the I-Cache is present. A value of 0 indi-
cates no ICache.

R Preset

IA 18:16 This field contains the level of instruction cache associativity This
field is fixed at 4-way set associative

R 0x3

DS 15:13 This field contains the number of data cache sets per way. The corre-
sponding total data cache size is shown in parentheses

R Preset

Encoding Description

0x0 64 (8KB)

0x1 128 (16KB)

0x2 256 (32KB)

0x3 512 (64KB)

0x4:0x7 Reserved

Encoding Description

0x0 No ICache present

0x1:0x3 Reserved

0x4 32 bytes

0x5:0x7 Reserved

Encoding Description

0x0:0x2 Reserved

0x3 4-way

0x4:0x7 Reserved

Encoding Description

0x0 64 (8KB)

0x1 128 (16KB)

0x2 256 (32KB)

0x3 512 (64KB)

0x4:0x7 Reserved

 CP0 Registers of the 24K® Core

178 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.23 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities information.
Config2 is allocated for showing the configuration of level 2/3 caches. L2 values reflect the configuration information

DL 12:10 This field contains the data cache line size. The cache line size is
fixed at 32 bytes when a D-cache is present. This field reads 0 when
a D-cache is not present.

R Preset

DA 9:7 This field contains the type of set associativity for the data cache
The associativity is fixed at 4-way.

R 0x3

C2 6 Coprocessor 2 present. R Preset

MD 5 MDMX implemented. R 0

PC 4 Performance Counter registers implemented. R 1

WR 3 Watch registers implemented. R 1

CA 2 Code compression (MIPS16) implemented. R 1

EP 1 EJTAG present: This bit is always set to indicate that the core imple-
ments EJTAG.

R 1

FP 0 FPU implemented. R Preset

Table 6.30 Config1 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0x0 No DCache present

0x1:0x3 Reserved

0x4 32 bytes

0x5:0x7 Reserved

Encoding Description

0x0:0x2 Reserved

0x3 4-way

0x4:0x7 Reserved

Encoding Description

0 Coprocessor2 not present

1 Coprocessor2 present

Encoding Description

0 No Watch registers are present

1 One or more Watch registers are present

Encoding Description

0 No MIPS16 present

1 MIPS16 is implemented

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 179

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

input from the L2 module. L3 fields are reset to 0 because L3 caches are not supported by the 24K core. All fields in
the Config2 register are read-only.

Figure 6.24 Config2 Register Format
31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

Table 6.31 Config2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config3
register.

R 1

TU 30:28 Implementation specific tertiary cache control. Tertiary cache not
supported

R 0

TS 27:24 Tertiary cache sets per way. Tertiary cache not supported R 0

TL 23:20 Tertiary cache line size. Tertiary cache not supported R 0

TA 19:16 Tertiary cache associativity. Tertiary cache not supported R 0

SU 15:13 Reserved R 0

L2B 12 L2 Bypass/L2_Bypassed. In systems which include an L2 cache,
writing a 1 to this bit, will set the L2_Bypass output from the core.
Setting the L2_Bypass output, directs the L2 cache to go into
bypass mode. L2 responds by asserting its L2_Bypassed output
pin. The value of L2_Bypassed is returned when L2B is read.
Since this involves a communication between CPU and L2, reading
this bit will reflect the new value with some implementation- and
clock ratio- dependent delay.

R/W 0

SS 11:8 Secondary cache sets per way R Preset

Encoding Description

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved

 CP0 Registers of the 24K® Core

180 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.24 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities of the 24K core. All fields in the Config3 register are read-only.

Figure 6.25 Config3 Register Format

SL 7:4 Secondary cache line size R Preset

SA 3:0 Secondary cache associativity R Preset

31 30 13 12 11 10 9 7 6 5 4 3 2 1 0

M 0 ULRI 0 DSPP 0 VEIC VInt SP 0 MT SM TL

Table 6.32 Config3 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

M 31 This bit is reserved to indicate if a Config4 register is present. R 0

ULRI 13 User Local Register Implemented: Indicates that the Cop0
UserLocal register is present.

R 1

Table 6.31 Config2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No cache present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Description

0 Direct mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 181

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

DSPP 10 DSP Present. Indicates whether support for the DSP ASE is imple-
mented.
On the 24K core, this bit is always 0, because the DSP ASE is not
implemented.

R 0

VEIC 6 Support for an external interrupt controller is implemented.

The value of this bit is set by the static input, SI_EICPresent. This
allows external logic to communicate whether an external interrupt
controller is attached to the processor or not.

R Externally Set

VInt 5 Vectored interrupts implemented. This bit indicates whether vec-
tored interrupts are implemented.

On the 24K core, this bit is always a 1 since vectored interrupts are
implemented.

R 1

SP 4 Small (1KByte) page support is implemented, and the PageGrain
register exists. This bit will always be 0 since small pages are not
supported.

R 0

MT 2 This bit indicates if the MIPS MT (multi-threading) ASE imple-
mented.

R 0

SM 1 This bit indicates whether the SmartMIPS™ ASE is implemented.
Since SmartMIPS is not present on the 24K core, this bit will always
be 0.

R 0

Table 6.32 Config3 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Description

0 Support for EIC interrupt mode is not implemented

1 Support for EIC interrupt mode is implemented

Encoding Description

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

Encoding Description

0 Small page support is not implemented

1 Small page support is implemented

Encoding Description

0 MIPS MT ASE is not implemented

1 MIPS MT ASE is implemented

Encoding Description

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

 CP0 Registers of the 24K® Core

182 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.25 Config7 Register (CP0 Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are write-
able to disable certain performance enhancing features within the core.

Figure 6.26 Config7 Register Format

TL 0 Trace Logic implemented. This bit indicates whether MIPS trace
support is implemented.

R Preset

0 30:11, 9:7,
3

Must be written as zeros; returns zeros on read 0 0

31 30 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

WII 0 0 HCI FPR AR 0 IAR IVA ES 0 CPOOO NBLSU ULB BP RPS BHT SL

Table 6.33 Config7 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

WII 31 Wait IE Ignore: Indicates that this processor will allow an interrupt
to unblock a WAIT instruction even if IE is preventing the interrupt
from being taken.
This avoids problems using the WAIT instruction for ‘bottom half’
interrupt servicing.

R 1

0 30:19,
15:11, 7

These bits are unused and should be written as 0. R 0

HCI 18 Hardware Cache Initialization: Indicates that a cache does not
require initialization by software. This bit will most likely only be
set on simulation-only cache models and not on real hardware.

R Based on HW
present

FPR 17 Floating Point Ratio: Indicates clock ratio between integer core and
floating point unit on 24Kf cores. Reads as 0 on 24Kc cores.

R Based on HW
present

AR 16 Alias removed: This bit indicates that the data cache is organized to
avoid virtual aliasing problems. This bit is only set if the data cache
config and MMU type would normally cause aliasing - i.e., only for
the 32KB and larger data cache and TLB-based MMU.

R Based on HW
present

Table 6.32 Config3 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Description

0 Trace logic is not implemented

1 Trace logic is implemented

Encoding Description

0 FP clock frequency is the same as the integer clock

1 FP clock frequency is one-half the integer clock

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 183

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

External interventions are also checked against the LLAddr registers.

6.2.26 WatchLo Register (CP0 Register 18, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are both zero in the

IAR 10 Instruction Alias Removed: Indicates that this processor has hard-
ware support to remove instruction cache alias. This hardware is
only present when the core is configured with a TLB and cache sizes
32KB and larger. The hardware is disabled via the IVA bit.

R Based on HW
present

IVA 9 Instruction Virtual Aliasing fix disable: Setting this bit will disable
the HW alias removal on the I-Cache. If this bit is cleared, CACHE
Hit Invalidate and SYNCI instructions will look up all possible
aliased locations and invalidate the given cache line in all of them.
This bit is Read-only if IAR=0

R/W
or
R

0

ES 8 Externalize Sync: If this bit is set, and if the downstream device is
capable of accepting SYNC’s (indicated via the pin SI_SyncTxEn),
the SYNC instruction will cause a SYNC specific transaction to go
out on the external bus. If this bit is cleared or if SI_SyncTxEn is
deasserted, no transaction will go out, but all SYNC handling inter-
nal to the core will still be performed. When this bit is read, the
value returned depends on the state of the SI_SyncTxEn pin. If
SI_SyncTxEn is 0, a value of 0 is returned. If SI_SyncTxEn is 1,
the value returned is the last value that was written to this bit. Refer
to SYNC instruction description for more information.

R/W 0

CPOOO 6 Out-of-order data return on the Coprocessor interfaces: Writing 1 to
this bit disables the out-of-order data return for the FPU and COP2.

R/W 0

NBLSU 5 Non-Blocking LSU: Writing 1 to this field will lock the LSU and
ALU pipelines together. This forces LSU pipeline stalls to also stall
the ALU pipeline.

R/W 0

ULB 4 Uncached Loads Blocking: Writing 1 to this field will make all
uncached loads blocking.

R/W 0

BP 3 Branch Prediction: Writing 1 to this field will disable all speculative
branch prediction. The fetch unit will wait for a branch to be
resolved before fetching the target or fall-through path.

R/W 0

RPS 2 Return Prediction Stack: Writing 1 to this field will disable the use
of the Return Prediction Stack. Returns (JR ra) will stall instruction
fetch until the destination is calculated.

R/W 0

BHT 1 Branch History Table: Writing 1 to this field will disable the
dynamic branch prediction. Branches will be statically predicted
taken.

R/W 0

SL 0 Scheduled Loads: Writing 1 to this field will make load misses
blocking.

R/W 0

Table 6.33 Config7 Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 24K® Core

184 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

There are 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with instruction
addresses only. Thus, only the I bit is writeable, and the R and W bits are tied to 0. The other two (select 2, 3) are asso-
ciated with data addresses and can only be used for R or W watchpoints.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match.

Figure 6.27 WatchLo Register Format

6.2.27 WatchHi Register (CP0 Register 19, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, then the WP bit is set in the Cause register, and the watch exception is deferred
until both the EXL and ERL bits are zero.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, a Global (G) bit, and an optional address mask. If the G bit is 1, then any virtual address reference that matches
the specified address will cause a watch exception. If the G bit is a 0, only those virtual address references for which
the ASID value in the WatchHi register matches the ASID value in the EntryHi register cause a watch exception. The
optional mask field provides address masking to qualify the address specified in WatchLo.

There are 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with instruction
addresses only. Thus, only the I bit is meaningful, and the R and W bits are tied to 0. The other two (select 2, 3) are
associated with data addresses and can only be used for R or W watchpoints.

Figure 6.28 WatchHi Register Format

31 3 2 1 0

VAddr I R W

Table 6.34 WatchLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

VAddr 31:3 This field specifies the virtual address to match. Note that this is a
doubleword address, since bits [2:0] are used to control the type of
match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for instruction fetches
that match the address.

R/W 0

R 1 If this bit is set, watch exceptions are enabled for loads that match
the address.

R/W 0

W 0 If this bit is set, watch exceptions are enabled for stores that match
the address.

R/W 0

31 30 29 24 23 16 15 12 11 3 2 0

M G 0 ASID 0 Mask I R W

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 185

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.28 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read
only information bits are updated every time the debug exception is taken or when a normal exception is taken when
already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

Table 6.35 WatchHi Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

M 31 Indicates the presence of additional Watch registers. R Preset

G 30 If this bit is one, any address that matches that specified in the
WatchLo register causes a watch exception. If this bit is zero, the
ASID field of the WatchHi register must match the ASID field of the
EntryHi register to cause a watch exception.

R/W Undefined

ASID 23:16 ASID value which is required to match that in the EntryHi register if
the G bit is zero in the WatchHi register.

R/W Undefined

Mask 11:3 Bit mask that qualifies the address in the WatchLo register. Any bit
in this field that is a set inhibits the corresponding address bit from
participating in the address match.

R/W Undefined

I 2 This bit is set by hardware when an instruction fetch condition
matches the values in this watch register pair. When set, the bit
remains set until cleared by software, which is accomplished by
writing a 1 to the bit.

W1C Undefined

R 1 This bit is set by hardware when a load condition matches the values
in this watch register pair. When set, the bit remains set until cleared
by software, which is accomplished by writing a 1 to the bit.

W1C Undefined

W 0 This bit is set by hardware when a store condition matches the val-
ues in this watch register pair. When set, the bit remains set until
cleared by software, which is accomplished by writing a 1 to the bit.

W1C Undefined

0 29:24,
15:12

Must be written as zero; returns zero on read. 0 0

 CP0 Registers of the 24K® Core

186 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 6.29 Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI DDBSImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLImpr EJTAGver DExcCode NoSSt SSt R R DINT DIB DDBS DDBL DBp DSS

Table 6.36 Debug Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBD 31 Indicates whether the last debug exception or exception in debug
mode, occurred in a branch delay slot:

R Undefined

DM 30 Indicates that the processor is operating in debug mode: R 0

NoDCR 29 Indicates whether the dseg memory segment is present: R 0

LSNM 28 Controls access of load/store between dseg and main memory: R/W 0

Doze 27 Indicates that the processor was in any kind of low power mode
when a debug exception occurred:

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped when the
debug exception occurred:

R Undefined

Encoding Description

0 Not in delay slot

1 In delay slot

Encoding Description

0 Processor is operating in non-debug mode

1 Processor is operating in debug mode

Encoding Description

0 dseg is present

1 No dseg present

Encoding Description

0 Load/stores in dseg address range goes to dseg

1 Load/stores in dseg address range goes to main
memory

Encoding Description

0 Processor not in low power mode when debug
exception occurred

1 Processor in low power mode when debug excep-
tion occurred

Encoding Description

0 Internal system bus clock running

1 Internal system bus clock stopped

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 187

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CountDM 25 Indicates the Count register behavior in debug mode. R/W 1

IBusEP 24 Imprecise instruction fetch Bus Error exception Pending: All
instruction bus errors are precise on the 24K core so this bit will
always read as 0.
Set when an instruction fetch bus error event occurs or if a 1 is writ-
ten to the bit by software. Cleared when a Bus Error exception on
instruction fetch is taken by the processor, and by reset. If IBusEP is
set when IEXI is cleared, a Bus Error exception on instruction fetch
is taken by the processor, and IBusEP is cleared.

R 0

MCheckP 23 Indicates that an imprecise Machine Check exception is pend-
ing.Machine check exceptions are preciseon 24K core, so this bit is
read only and tied to 0.

R 0

CacheEP 22 Indicates that an imprecise Cache Error is pending. R/W1 0

DBusEP 21 Data access Bus Error exception Pending: Set when an data bus
error event occurs or if a 1 is written to the bit by software. Cleared
when a Data Bus Error exception is taken by the processor, and by
reset. If DBusEP is set when IEXI is cleared, a Data Bus Error
exception is taken by the processor, and DBusEP is cleared.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit: Controls exceptions taken due to
imprecise error indications. Set when the processor takes a debug
exception or exception in debug mode. Cleared by execution of the
DERET instruction; otherwise modifiable by debug mode software.
When IEXI is set, the imprecise error exception from a bus error on
an instruction fetch or data access, cache error, or machine check is
inhibited and deferred until the bit is cleared.

R/W 0

DDBSImpr 19 Indicates that an imprecise Debug Data Break Store exception was
taken.

R 0

DDBLImpr 18 Indicates that an imprecise Debug Data Break Load exception was
taken.

R 0

EJTAGver 17:15 EJTAG version. R 011

DExcCode 14:10 Indicates the cause of the latest exception in debug mode. See Table
6.24 for a list of values.
Value is undefined after a debug exception.

R Undefined

NoSST 9 Indicates whether the single-step feature controllable by the SSt bit
is available in this implementation:

R 0

Table 6.36 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 Count register stopped in debug mode

1 Count register is running in debug mode

Encoding Description

3 Version 3.x

Encoding Description

0 Single-step feature available

1 No single-step feature available

 CP0 Registers of the 24K® Core

188 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SSt 8 Controls if debug single step exception is enabled: R/W 0

R 7 Reserved. Must be written as zeros; returns zeros on reads. R 0

R 6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception occurred. Cleared on
exception in debug mode.

R Undefined

DIB 4 Indicates that a debug instruction break exception occurred. Cleared
on exception in debug mode.

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on a store.
Cleared on exception in debug mode.

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on a load.
Cleared on exception in debug mode.

R Undefined

DBp 1 Indicates that a debug software breakpoint exception occurred.
Cleared on exception in debug mode.

R Undefined

Table 6.36 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No debug single-step exception enabled

1 Debug single step exception enabled

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Description

0 No debug data exception on a store

1 Debug instruction exception on a store

Encoding Description

0 No debug data exception on a load

1 Debug instruction exception on a load

Encoding Description

0 No debug software breakpoint exception

1 Debug software breakpoint exception

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 189

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.29 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

Figure 6.30 TraceControl Register Format

DSS 0 Indicates that a debug single-step exception occurred. Cleared on
exception in debug mode.

R Undefined

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

Table 6.37 TraceControl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hardware and the
software trace control bits. A value of zero selects the external hard-
ware trace block signals, and a value of one selects the trace control
bits in the TraceControl register.

R/W 0

UT 30 This bit is used to indicate the type of user-triggered trace record. A
value of zero implies a user type 1 and a value of one implies a user
type 2.
The actual triggering of a user trace record happens on a write to the
UserTraceData register. This is a 32-bit register for 32-bit proces-
sors and a 64-bit register for 64-bit processors.

R/W Undefined

0 29:28 Reserved for future use; Must be written as zero; returns zero on
read.

0 0

TB 27 Trace All Branch. When set to 1, this tells the processor to trace the
PC value for all taken branches, not just the ones whose branch tar-
get address is statically unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the core trace
logic that slow but complete tracing is desired. Hence, the core trac-
ing logic must not allow a FIFO overflow and discard trace data.
This is achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are ever lost.

R/W Undefined

Table 6.36 Debug Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

Encoding Description

0 No debug single-step exception

1 Debug single-step exception

 CP0 Registers of the 24K® Core

190 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

D 25 When set to one, this enables tracing in Debug Mode. For trace to be
enabled in Debug mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in Debug Mode, irrespective of
other bits.

R/W Undefined

E 24 When set to one, this enables tracing in Exception Mode. For trace
to be enabled in Exception mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in Exception Mode, irrespective
of other bits.

R/W Undefined

K 23 When set to one, this enables tracing in Kernel Mode. For trace to be
enabled in Kernel mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in Kernel Mode, irrespective of
other bits.

R/W Undefined

S 22 When set to one, this enables tracing in Supervisor Mode.For trace
to be enabled in Supervisor mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.
When set to zero, trace is disabled in Supervisor Mode, irrespective
of other bits.
If the processor does not implement Supervisor Mode, this bit is
ignored on write and returns zero on read.

R/W Undefined

U 21 When set to one, this enables tracing in User Mode. For trace to be
enabled in User mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.
When set to zero, trace is disabled in User Mode, irrespective of
other bits.

R/W Undefined

ASID_M 20:13 This is a mask value applied to the ASID comparison (done when
the G bit is zero). A “1” in any bit in this field inhibits the corre-
sponding ASID bit from participating in the match. As such, a value
of zero in this field compares all bits of ASID. Note that the ability
to mask the ASID value is not available in the hardware signal bit; it
is only available via the software control register.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on write and returns zero on read.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is
one, this field is ignored.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on write and returns zero on read.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes,
provided that other enabling functions (like U, S, etc.,) are also true.
If the processor does not implement the standard TLB-based MMU,
this field is ignored on write and returns 1 on read. This causes all
match equations to work correctly in the absence of an ASID.

R/W Undefined

Table 6.37 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 191

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.30 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 11.9 “Trace Control Block (TCB) Registers (Hardware Control)”).
As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these values.

This register is only implemented if the MIPS Trace capability is present.

Figure 6.31 TraceControl2 Register Format

TFCR 3 When asserted, used to trace function call and return instructions
with full PC values.

R/W Undefined

TLSM 2 When asserted, used to trace data cache load and store misses with
full PC values, and potentially the data address and value as well.

R/W Undefined

TIM 1 When asserted, used to trace instruction miss with full PC values. R/W Undefined

On 0 This is the master trace enable switch in software control. When
zero, tracing is always disabled. When set to one, tracing is enabled
whenever the other enabling functions are also true.

R/W 0

31 30 29 28 21 20 19 12 11 7 6 5 4 3 2

0 CPUIdV CPUId TCV TCNum Mode ValidModes TBI TBU SyP

Table 6.38 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:30 Reserved for future use; Must be written as zero; returns zero on
read.

0 0

CPUIdV,
CPUId,
TCV,

TCNum

29:12 Used on processors implementing the MT ASE R 0

Table 6.37 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 24K® Core

192 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Mode 11:7 These 5 bits provide the same trace mode functions as the
PDI_TraceMode[4:0] signal, and is described here again.
When tracing is turned on, this signal specifies what information is
to be traced by the core. It uses 5 bits, where each bit turns on trac-
ing of a specific tracing mode when that bit value is a 1. If the corre-
sponding bit is 0, then the Trace Value shown in column two is not
traced by the processor.
On the 24K core, PC tracing is always enabled, regardless of the
value on bit 7. The table shows what trace value is turned on:

R/W Undefined

Valid-
Modes

6:5 This field specifies the subset of tracing that is supported by the pro-
cessor.

R Preset

TBI 4 This bit indicates how many trace buffers are implemented by the
TCB, as follows:

This bit is loaded from the PDI_TBImpl signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

TBU 3 This bit denotes to which trace buffer the trace is currently being
written and is used to select the appropriate interpretation of the
TraceControl2SyP field.

This bit is loaded from the PDI_OffChipTB signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

Table 6.38 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Bit Trace the Following

7 PC

8 Load address

9 Store address

10 Load data

11 Store data

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and store data

11 Reserved

Encoding Meaning

0 Only one trace buffer is implemented, and the TBU
bit of this register indicates which trace buffer is
implemented

1 Both on-chip and off-chip trace buffers are imple-
mented by the TCB and the TBU bit of this register
indicates to which trace buffer the traces is cur-
rently written.

Encoding Meaning

0 Trace data is being sent to an on-chip trace buffer

1 Trace Data is being sent to an off-chip trace buffer

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 193

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.31 User Trace Data Register (CP0 Register 23, Select 3)

A software write to any bits in the UserTraceData register will trigger a trace record to be written indicating a type 1
or type 2 user format. The type is based on the UT bit in the TraceControl register. This register cannot be written in
consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.

This register is only implemented if the MIPS Trace capability is present.

Figure 6.32 User Trace Data Register Format

6.2.32 TraceIBPC Register (CP0 Register 23, Select 4)

The TraceIBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception
breakpoint.

SyP 2:0 The period (in cycles) to which the internal synchronization counter
is reset when tracing is started, or when the synchronization counter
has overflowed.

This field is loaded from the PDI_SyncPeriod signal when the
PDI_SyncOffEn signal is asserted.

R Undefined

31 0

Data

Table 6.39 UserTraceData Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user
format trace record out of the PDtrace interface that transmits the
Data field to trace memory.

R/W 0

Table 6.38 TraceControl2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212

 CP0 Registers of the 24K® Core

194 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 6.33 TraceIBPC Register Format

6.2.33 TraceDBPC Register (CP0 Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 6.34 TraceDBPC Register Format

31 29 28 27 12 11 9 8 6 5 3 2 0

0 IE 0 IBPC3 IBPC2 IBPC1 IBPC0

Table 6.40 TraceIBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
27:12

Reserved for future implementation. R 0/1

IE 28 Used to specify whether the trigger signal from EJTAG instruction
breakpoint should trigger tracing functions or not:

R/W 0

IBPCn 3n+2:3n The three bits are decoded to enable different tracing modes. Table
6.42 shows the possible interpretations. Each set of 3 bits represents
the encoding for the instruction breakpoint n in the EJTAG imple-
mentation, if it exists. If the breakpoint does not exist, then the bits
are reserved, read as zero, and writes are ignored.

R/W 0

31 29 28 27 6 5 3 2 0

0 DE 0 DBPC1 DBPC0

Table 6.41 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:29,
27:6

Reserved for future implementation R 0/1

Encoding Meaning

0 Disables trigger signals from instruction break-
points

1 Enables trigger signals from instruction break-
points

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 195

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.34 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the instruction where
execution should resume after the debug handler code is executed.

In processors that implement the MIPS16 ASE, a read of the DEPC register (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

DE 28 Used to specify whether the trigger signal from EJTAG data break-
point should trigger tracing functions or not:

R/W 0

DBPCn 3n+2:3n The three bits are decoded to enable different tracing modes. Table
6.42 shows the possible interpretations. Each set of 3 bits represents
the encoding for the data breakpoint n in the EJTAG implementa-
tion, if it exists. If the breakpoint does not exist then the bits are
reserved, read as zero and writes are ignored.

R/W 0

Table 6.42 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is
already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is
already turned on, then there is no effect.

010 to 111 Not used Reserved for future implementation

Table 6.41 TraceDBPC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Disables trigger signals from data breakpoints

1 Enables trigger signals from data breakpoints

 CP0 Registers of the 24K® Core

196 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
debug exception PC and the ISA Mode field, as follows

DebugExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 6.35 DEPC Register Format

6.2.35 Performance Counter Register (CP0 Register 25, select 0-3)

The 24K processor defines two performance counters and two associated control registers, which are mapped to CP0
register 25. The select field of the MTC0/MFC0 instructions are used to select the specific register accessed by the
instruction, as shown in Table 6.44.

Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the counters are AND’ed with an interrupt enable bit, IE, of their respective control register to deter-
mine if a performance counter interrupt should be signalled. The two values are then OR’ed together to create the
SI_PCI output. This signal is combined with one of the SI_Int pins to signal an interrupt to the core. Counting is not
affected by the interrupt indication. This output is cleared when the counter wraps to zero, and may be cleared in soft-
ware by writing a value with bit 31 = 0 to the Performance Counter Count registers.

31 0

DEPC

Table 6.43 DEPC Register Formats

Fields

Description
Read /
Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of the instruc-
tion that caused the debug exception. If the instruction is in the
branch delay slot, then the virtual address of the immediately pre-
ceding branch or jump instruction is placed in this register.
Execution of the DERET instruction causes a jump to the address in
the DEPC.

 R/W Undefined

Table 6.44 Performance Counter Register Selects

Select[2:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 197

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

NOTE: the performance counter registers are connected to a clock that is stopped when the processor is in sleep mode
(if the top level clock gater is present). Most events would not be active during that time, but others would be, notably
the cycle count. This behavior should be considered when analyzing measurements taken on a system. Further, note
that FPGA implementations of the core would generally not have the clock gater present and thus would have differ-
ent behavior than a typical ASIC implementation.

For a more detailed description of performance counter events, refer to Programming the 24K Core Family [7].

Figure 6.36 Performance Counter Control Register

Table 6.46 describes the events countable with the two performance counters. The mode column indicates whether
the event counting is influenced by the mode bits (U,S,K,EXL) The operation of a counter is UNPREDICTABLE for
events which are specified as Reserved. The performance counter resets to a low-power state, in which none of the

31 12 11 5 4 3 2 1 0

M 0 Event IE U S K EXL

Table 6.45 Performance Counter Control Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

M 31 If this bit is one, another pair of Performance Control and Counter
registers is implemented at a MTC0 or MFC0 select field value of
‘n+2’ and ‘n+3’.

R Preset

Event 11:5 Counter event enabled for this counter. Possible events are listed in
Table 6.46.

R/W Undefined

IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated
count register from the interrupt exception request output.

R/W 0

U 3 Count in User Mode. When this bit is set, the specified event is
counted in User Mode.

R/W Undefined

S 2 Count in Supervisor Mode. When this bit is set, the specified event
is counted in Supervisor Mode.

R/W Undefined

K 1 Count in Kernel Mode. When this bit is set, count the event in Ker-
nel Mode when EXL and ERL both are 0.

R/W Undefined

EXL 0 Count when EXL. When this bit is set, count the event when EXL =
1 and ERL = 0.

R/W Undefined

0 30, 15:12 Must be written as zeroes; returns zeroes when read. 0 0

Table 6.46 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Counter 1 Mode

0 Cycles No Cycles No

1 Instructions completed Yes Instructions completed Yes

2 branch instructions Yes Branch mispredictions Yes

3 JR r31 (return) instructions Yes JR r31 mispredictions Yes

4 JR (not r31) instructions Yes JR r31 not predicted Yes

 CP0 Registers of the 24K® Core

198 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5 ITLB accesses Yes ITLB misses Yes

6 DTLB accesses Yes DTLB misses Yes

7 JTLB instruction accesses Yes JTLB instruction misses Yes

8 JTLB data accesses Yes JTLB data misses Yes

9 Instruction Cache accesses Yes Instruction cache misses Yes

10 Data cache accesses Yes Data cache writebacks Yes

11 Data cache misses Yes Data cache misses Yes

12 Reserved Yes Reserved Yes

13 Store Misses Yes Load Misses Yes

14 integer instructions completed Yes FPU instructions completed Yes

15 loads completed Yes stores completed Yes

16 J/JAL completed Yes MIPS16 instructions completed Yes

17 no-ops completed Yes integer multiply/divide completed Yes

18 Stall cycles No replay traps (other than uTLB) Yes

19 SC instructions completed Yes SC instructions failed Yes

20 Prefetch instructions completed Yes Prefetch instructions completed with cache
hit

Yes

21 L2 cache writebacks No L2 cache accesses No

22 L2 cache misses No L2 cache single bit errors corrected No

23 Exceptions taken Yes Reserved Yes

24 cache fixup Yes Reserved Yes

25 IFU stall cycles No ALU stall cycles No

26 Reserved Yes Reserved Yes

27 Reserved Yes Reserved Yes

28 Reserved Yes Impl. specific Cp2 event Yes

29 Impl. specific ISPRAM event Yes Impl. specific DSPRAM event Yes

30 Impl. specific CorExtend event Yes Reserved Yes

31 Reserved Yes Reserved Yes

32 Reserved Yes Reserved Yes

33 Uncached Loads Yes Uncached Stores Yes

34 Reserved Yes Reserved Yes

35 CP2 Arithmetic Instns Completed No CP2 To/From Instns completed Yes

Table 6.46 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Counter 1 Mode

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 199

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

36 Reserved

37 I$ Miss stall cycles Yes D$ miss stall cycles Yes

38 SYNC stalls Yes FSB Index Conflicts Yes

39 D$ miss cycles No L2 miss cycles No

40 Uncached stall cycles Yes Reserved Yes

41 MDU stall cycles Yes FPU stall cycles Yes

42 CP2 stall cycles Yes CorExtend stall cycles Yes

43 ISPRAM stall cycles Yes DSPRAM stall cycles Yes

44 CACHE Instn stall cycles No Reserved Yes

45 Load to Use stall cycles Yes ALU to AGEN stall cycles Yes

46 Other interlock stall cycles Yes Branch mispredict stall cycles No

47 Reserved Yes Reserved Yes

48 IFU FB full refetches Yes FB entry allocated No

49 EJTAG Instruction Triggerpoints Yes EJTAG Data Triggerpoints Yes

50 FSB < 1/4 full No FSB 1/4-1/2 full No

51 FSB > 1/2 full No FSB full pipeline stall cycles No

52 LDQ < 1/4 full No LDQ 1/4-1/2 full No

53 LDQ > 1/2 full No LDQ full pipeline stall cycles No

54 WBB < 1/4 full No WBB 1/4-1/2 full No

55 WBB > 1/2 full No WBB full pipeline stall cycles No

56-63 Reserved

64 SI_PCEvent[0] - System specific event 0 No SI_PCEvent[1] - System specific event 1 No

65 SI_PCEvent[2] - System specific event 2 No SI_PCEvent[3] - System specific event 3 No

66 SI_PCEvent[4] - System specific event 4 No SI_PCEvent[5] - System specific event 5 No

67 SI_PCEvent[6] - System specific event 6 No SI_PCEvent[7] - System specific event 7 No

68-127 Reserved

56-63 Reserved

Table 6.46 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Counter 1 Mode

 CP0 Registers of the 24K® Core

200 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.47 Event Descriptions

Event Name Counter
Event

Number Description

Cycles 0/1 0 Total number of cycles.
The performance counters are clocked by the top-level gated clock. If
the core is built with that clock gater present, none of the counters will
increment while the clock is stopped - due to a WAIT instruction.

Instruction Completion: The following events indicate completion of various types of instructions

Instructions 0/1 1 Total number of instructions completed.

Branch instns 0 2 Counts all branch instructions that completed.

JR R31 (return) instns 0 3 Counts all JR R31 instructions that completed.

JR (not R31) 0 4 Counts all JR $xx (not $31) and JALR instructions (indirect jumps).

Integer instns 0 14 Non-floating point, non-Coprocessor 2 instructions.

FPU instns 1 14 Floating point instructions.

Loads 0 15 Includes both integer and coprocessor loads.

Stores 1 15 Includes both integer and coprocessor stores.

J/JAL 0 16 Direct Jump (And Link) instruction.

MIPS16e 1 16 All MIPS16e instruction.

no-ops 0 17 This includes all instructions that normally write to a GPR, but where
the destination register was set to r0.

Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions (MULxx, DIVx,
MADDx, MSUBx).

SC 0 19 Counts conditional stores regardless of whether they succeeded.

PREF 0 20 Note that this only counts PREFs that are actually attempted. PREFs
to uncached addresses or ones with translation errors are not counted

Uncached Loads 0 33 Include both Uncached and Uncached Accelerated CCAs.

Uncached Stores 1 33

Cp2 Arithmetic instns 0 35 Counts Coprocessor 2 register-to-register instructions.

Cp2 To/From instns 1 35 Includes move to/from, control to/from, and cop2 loads and stores.

Instruction execution events

Branch mispredicts 1 2 Counts all branch instructions which completed, but were mispre-
dicted.

JR r31 mispredicts 1 3 Counts all JR $31 instructions which completed, used the RPS for a
prediction, but were mispredicted.

JR r31 not-predicted 1 4 If RPS use is disabled, JR $31 will not be predicted.

ITLB accesses 0 5 Counts ITLB accesses that are due to fetches showing up in IF stage of
the pipe and do not use fixed mapping or are not in unmapped space.
If an address is fetched twice down the pipe (as in the case of a cache
miss), that instruction will count 2 ITLB accesses. Also, since each
fetch gets us 2 instructions, there is one access marked per double
word.

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 201

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

ITLB misses 1 5 Counts all misses in ITLB except ones that are on the back of another
miss. We cannot process back to back misses and thus those are
ignored for this purpose. Also ignored if there is some form of address
error.

DTLB accesses 0 6 Counts DTLB access including those in unmapped address spaces.

DTLB misses 1 6 Counts DTLB misses. Back to back misses that result in only one
DTLB entry getting refilled are counted as a single miss.

 JTLB instruction accesses 0 7 Instruction JTLB accesses are counted exactly the same as ITLB
misses.

JTLB instruction misses 1 7 Counts instruction JTLB accesses that result in no match or a match
on an invalid translation.

JTLB data accesses 0 8 Data JTLB accesses.

JTLB data misses 1 8 Counts data JTLB accesses that result in no match or a match on an
invalid translation.

I$ accesses 0 9 Counts every time the instruction cache is accessed. All replays,
wasted fetches etc. are counted. For example, following a branch,
even the prediction is taken, the fall through access is counted.

I$ misses 1 9 Counts all instruction cache misses that result in a bus request.

D$ accesses 0 10 Counts cached loads and stores.

D$ writebacks 1 10 Counts cache lines written back to memory due to replacement or
cacheops.

D$ misses 0/1 11 Counts loads and stores that miss in the cache

Load Misses 0 13 Counts number of cacheable loads that miss in the cache.

Store Misses 1 13 Counts number of cacheable stores that miss in the cache.

SC instructons failed 1 19 SC instruction that did not update memory
Note: While this event and the SC instruction count event can be con-
figured to count in specific operating modes, the timing of the events
is much different and the observed operating mode could change
between them, causing some inaccuracy in the measured ratio.

PREF completed with cache hit 1 20 Counts PREF instructions that hit in the cache

L2 Cache Writebacks 0 21 Counts cache lines written back to memory due to replacement or
cacheops

L2 Cache Accesses 1 21 Number of accesses to L2 Cache

L2 Cache Misses 0 22 Number of accesses that missed in the L2 cache

L2 Cache Single Bit Errors Corrected 1 22 Single bit errors in L2 Cache that were detected and corrected

Exceptions Taken 0 23 Any type of exception taken

EJTAG instruction triggers 0 49 Number of times an EJTAG Instruction Trigger Point condition
matched

EJTAG data triggers 1 49 Number of times an EJTAG Data Trigger Point condition matched

Pipeline Fun

Table 6.47 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

 CP0 Registers of the 24K® Core

202 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Cache fixup 0 24 Counts cycles where the LSU is in fixup and cannot accept a new
instruction from the ALU. Fixups are replays within the LSU that
occur when an instruction needs to re-access the cache or the DTLB

General Stalls

IFU stall cycles 0 25 Counts the number of cycles where the fetch unit is not providing a
valid instruction to the ALU.

ALU stall cycles 1 25 Counts the number of cycles where the ALU pipeline cannot advance.

Stall cycles 0 18 Counts the total number of cycles where no instructions are issued by
IFU to ALU (the RF stage does not advance). This includes both of
the previous two events. This is different than the sum of them though
because cycles when both stalls are active will only be counted once.

Specific stalls - these events will count the number of cycles lost due to this. This will include bubbles introduced by replays within the
pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be incremented.

SYNC stall cycles 0 38 Cycles where the main pipeline is stalled waiting for a SYNC to com-
plete

FSB index conflict stall cycles 1 38 Cycles where the main pipeline is stalled because of an index conflict
in the Fill Store Buffer.

I$ miss stall cycles 0 37 Cycles when IFU stalls because an I$ miss caused the IFU not to have
any runnable instructions. Ignores the stalls due to ITLB misses as
well as the 4 cycles following a redirect.

D$ miss stall cycles 1 37 Counts all cycles where integer pipeline waits on Load return data due
to a D-cache miss. The LSU can signal a “long stall” on a D-cache
misses, in which case the waiting TC might be rescheduled so other
TCs can execute instructions till the data returns.

D$ miss cycle cycles 0 39 D$ miss is outstanding, but not necessarily stalling the pipeline. The
difference between this and D$ miss stall cycles can show the gain
from non-blocking cache misses.

L2 miss cycles 1 39 L2 miss is outstanding, but not necessarily stalling the pipeline.

Uncached stall cycles 0 40 Cycles where the processor is stalled on an uncached fetch, load, or
store.

MDU stall cycles 0 41 Counts all cycles where integer pipeline waits on MDU return data.

FPU stall cycles 1 41 Counts all cycles where integer pipeline waits on FPU return data.

Cp2 stall cycles 0 42 Counts all cycles where integer pipeline waits on CP2 return data.

CorExtend stall cycles 1 42 Counts all cycles where integer pipeline waits on CorExtend return
data.

ISPRAM stall cycles 0 43 Count all pipeline bubbles that are a result of multicycle ISPRAM
access. Pipeline bubbles are defined as all cycles that IFU doesn’t
present an instruction to ALU. The four cycles after a redirect are not
counted.

DSPRAM stall cycles 1 43 Counts stall cycles created by an instruction waiting for access to
DSPRAM.

Table 6.47 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 203

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CACHE instn stall cycles 0 44 Counts all cycles where pipeline is stalled due to CACHE instructions.
Includes cycles where CACHE instructions themselves are stalled in
the ALU, and cycles where CACHE instructions cause subsequent
instructions to be stalled.

Load to Use stall cycles 0 45 Counts all cycles where integer pipeline waits on Load return data.

ALU to AGEN stall cycles 1 45 Counts stall cycles due to skewed ALU where the bypass to the
address generation takes an extra cycle.

Other interlocks stall cycles 0 46 Counts all cycles where integer pipeline waits on return data from
MFC0, RDHWR instructions.

Branch mispredict stalls cycles 1 46 This counts the number of cycles from a mispredicted branch until the
next non-delay slot instruction executes.

FSB full pipeline stall cycles 1 51 Cycles where the pipeline is stalled because the Fill-Store Buffer in
LSU is full.

LDQ full pipeline stall cycles 1 53 Cycles where the pipeline is stalled because the Load Data Queue in
the LSU is full.

Write Back Buffer full stall cycles 1 55 Cycles where the pipeline is stalled because the WriteBack Buffer in
the BIU is full.

Latency Events - These events provide a statistical sampling of latencies within the system. One particular FSB entry is monitored. The
latency event increments each cycle from the time a request is generated until response is seen. The count events are incremented once for
each request that we are counting the latency for.

Request Latency to Read Response 0 61 Measures latency from miss detection until critical dword of response
is returned, Only counts for cacheable reads.

Request Count for RR Latency 1 61 Counts number of cacheable read requests used for previous latency
counter.

Implementation specific events - Modules that can be replaced by the customer will have an event signal associated with them.

Cp2 1 28

ISPRAM 0 29

DSPRAM 1 29

CorExtend 0 30

SI_PCEvent[7:0] 0/1 64-67

Buffer usage events - These count the number of cycles that buffers within the core spend at various levels of fullness.

Fill Store Buffer < 1/4 full 0 50 Buffer Occupancy:
The following table shows what values fall into each of the bins for
the different buffer sizes that can be chosen.Fill Store Buffer 1/4 to 1/2 full 1 50

Fill Store Buffer > 1/2 full 0 51

Load Data Queue < 1/4 full 0 52

Load Data Queue 1/4 to 1/2 full 1 52

Load Data Queue > 1/2 full 0 53

Write Back Buffer < 1/4 full 0 54

Write Back Buffer 1/4 to 1/2 full 1 54

Write Back Buffer > 1/2 full 0 55

Table 6.47 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

State 4 Entry Buffer 8/9 Entry Buffer

< 1/4 0 0-1

1/4-1/2 1-2 2-4

> 1/2 3+ 5+

 CP0 Registers of the 24K® Core

204 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

counters will start counting events until software has enabled event counting, using an MTC0 instruction to the Per-
formance Counter Control Registers.

Figure 6.37 Performance Counter Count Register

6.2.36 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register controls parity protection of data and instruction caches and provides for software testing of the
way-selection and scratchpad RAMs.

Parity protection can be enabled or disabled using the PE bit. When parity is enabled and the PO bit is deasserted, the
CACHE Index Store Tag and Index Store Data operations will internally generate parity to be written into the RAM
arrays. However, when the PO bit is asserted, tag array parity is written using the P bit of the TagLo register and data
array parity is written using the PI/PD bits of ErrCtl.

ECC protection for the secondary cache is controlled by a combination of PE and the L2P bits.

A CACHE Index Load Tag operation to the instruction cache will update the PCI field with the instruction precode
bits from the data array and the PI field with the parity bits from the data array if parity is supported. A CACHE Index
Load Tag operation to the data cache will cause the PD bits to be updated with the byte parity for the selected word of
the data array if parity is implemented. If parity is disabled or not implemented, the contents of the PI and PD fields
after a CACHE Index Load Tag operation will be 0.

The PCO field can be used for testing the precode bits of the instruction cache data array. When the PCO bit is
cleared, the CACHE Index Store Data instruction will internally generate the precode bits to be written into the
instruction cache data array. However, when the PCO bit is set, the CACHE Index Store Data instruction will write
the value in the PCI field to the precode bits in the data array. Setting an illegal value in the precode bits will cause
unpredictable behavior. This mechanism should only be used for software testing of the cache arrays. Furthermore,
the cache should be flushed after testing.

The way- selection RAM test mode is enabled by setting the WST bit. This mode is intended for software testing of
the way-selection RAM and data RAM. It modifies the functionality of the CACHE Index Load Tag and Index Store

IFU Fill buffer allocated 1 48 Number of cycles where at least one of the IFU fill buffers is allocated
(miss pending)

Refetches due to all IFU Fill Buff-
ers allocated

0 48 Counts the number of times an instruction cache miss was detected,
but both fill buffers were already allocated.

31 0

Counter

Table 6.48 Performance Counter Count Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined

Table 6.47 Event Descriptions (Continued)

Event Name Counter
Event

Number Description

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 205

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Tag operations so that they modify the way-selection RAM instead of the TAG RAMs. In addition, when the WST bit
is set, the CACHE Index Store Data can be used for testing the data RAM.

Setting the SPR bit enables scratchpad test mode. This mode allows reading and writing of the scratchpad pseudo-
tags as well the scratchpad data array.

At most one of the WST and SPR bits should be set. Setting multiple bits will lead to unpredictable behavior. Refer to
“CACHE” on page 329 for a description of CACHE instruction operation for the different values of these bits.

Figure 6.38 ErrCtl Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 13 12 4 3 0

PE PO WST SPR PCO 0 LBE WABE L2P 0 SE FE PCI PI PD

Table 6.49 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

PE 31 Parity Enable. This bit enables or disables the cache parity protec-
tion for both the instruction cache and the data cache.

This field is only write-able if the cache parity option was imple-
mented when the core was built. If cache parity is not supported, this
field is always read as 0. Software can test for cache parity support
by attempting to write a 1 to this field, then read back the value.

R or R/W 0

PO 30 Parity Overwrite. If set, the PI/PD fields of this register overwrites
calculated parity for the data array. In addition, the P field of the
TagLo register overwrites calculated parity for the tag array. This
bit only has significance during CACHE Index Store Tag and
CACHE Index Store Data operations.

R/W 0

WST 29 Way Selection Test. If set, way-selection RAM test mode is enabled.
This affects only the CACHE instruction operation. CACHE instruc-
tion behavior is undefined if this bit is set at the same time as SPR.

R/W 0

SPR 28 ScratchPadRAM test. If set, indexed CACHE instructions operate
on the ScratchPad RAM. Undefined behavior if ScratchPad RAM is
not present or if this bit is set at the same time as WST.

R/W 0

Encoding Meaning

0 Parity disabled

1 Parity enabled

Encoding Meaning

0 Use calculated parity

1 Override calculated parity

Encoding Meaning

0 Test mode disabled

1 Test mode enabled

 CP0 Registers of the 24K® Core

206 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

PCO 27 Precode override. If set, the contents of the PCI field overwrite the
calculated precode bits when data is written to the instruction cache
for CACHE IndexStoreData operations.

R/W 0

ITC 26 InterThread Communication. If set, Index Load Tag and Index Store
Tag CACHE instructions operate on the ITC tag.
CACHE instruction behavior is undefined if this bit is set at the
same time as WST or SPR.

R/W 0

LBE 25 Bit indicating that the most recent Data Bus Error was involved a
load instruction. A Per-TC BE bit will indicate which TCs were
impacted.

R Undefined

WABE 24 Bit indicating that the most recent Data Bus Error was due to a write
allocate and that store data was lost. There is no indication of which
TC(s) the store request came from.
It is possible for both LBE and WABE to be set if the bus error was
on a line being used for both loads and stores.

R Undefined

L2P 23 L2 ECC Enable. This bit can be set only if the L2 is ECC-capable.
This bit in conjunction with the PE bit enables or disables the ECC
protection for the L2 cache:

R/W 0

0 26,22:21 Must be written as zeroes; returns zeroes when read. 0 0

SE 20 Indicates that a second cache error was detected before the first error
was processed. This is an unrecoverable error. This bit is set when a
cache error is detected while the FE bit is set. This bit is cleared on
reset or when a cache error is detected with FE cleared.

R 0

FE 19 Indicates that this is the first cache error and therefore potentially
recoverable. Error handling software should clear this bit when the
error has been processed. This bit is cleared on reset. Refer to SE bit
description for implications of this bit.

R/W 0

PCI 18:13 Instruction precode bits read from or written to the instruction cache
data RAM.

R/W Undefined

PI 12:4 Parity bit read from or written to instruction cache data RAM. R/W Undefined

Table 6.49 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Use calculated precode

1 Override calculated precode

PE L2P L2 check

1 0 1

1 1 0

0 0 0

0 1 1

Bits Meaning

12 Even parity bit for the pre-code bits

11:4 Per-byte even parity bits for the 64b of data

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 207

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.37 CacheErr Register (CP0 Register 27, Select 0)

The CacheErr register provides an interface with the cache error-detection logic. When a Cache Error exception is
signaled, the fields of this register are set accordingly. The format of the CacheErr register is different for Primary
caches and the Secondary Cache. The EC bit ([30]) indicates the format to be used for decoding the contents of the
CacheErr register.

Figure 6.39 CacheErr Register (Primary Caches)

PD 3:0 Parity bits read from or written to data cache data RAM. PD[0] is
even parity for the least-significant byte of the requested data.

R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 0

ER EC ED ET ES EE EB EF SP EW Way Index

Table 6.50 CacheErr Register Field Descriptions (Primary Caches)

Fields

Description
Read /
Write Reset StateName Bits

ER 31 Error Reference. Indicates the type of reference that encountered an
error.

R Undefined

EC 30 Indicates the cache level at which the error was detected: R Undefined

ED 29 Error Data. Indicates a data RAM error. R Undefined

ET 28 Error Tag. Indicates a tag RAM error. R Undefined

Table 6.49 ErrCtl Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Instruction

1 Data

Encoding Meaning

0 Primary

1 Non-primary

Encoding Meaning

0 No data RAM error detected

1 Data RAM error detected

Encoding Meaning

0 No tag RAM error detected

1 Tag RAM error detected

 CP0 Registers of the 24K® Core

208 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

ES 27 Error source. Indicates whether error was caused by internal proces-
sor or external snoop request.

R Undefined

EE 26 Error external: Not supported. R 0

EB 25 Error Both. Indicates that a data cache error occurred in addition to
an instruction cache error.

In the case of an additional data cache error, the remainder of the
bits in this register are set according to the instruction cache error.

R Undefined

EF 24 Error Fatal. Indicates that a fatal cache error has occurred.
There are a few situations where software will not be able to get all
information about a cache error from the CacheErr register. These
situations are fatal because software cannot determine which mem-
ory locations have been affected by the error. To enable software to
detect these cases, the EF bit (bit 24) has been added to the
CacheErr register.
The following 6 cases are indicated as fatal cache errors by the EF
bit:
1 Dirty parity error in dirty victim (dirty bit cleared)
2 Tag parity error in dirty victim
3 Data parity error in dirty victim
4 WB store miss and EW error at the requested index
5 Dual/Triple errors from different transactions, e.g. scheduled

and non-scheduled load.
6 Multiple data cache errors detected before the first instruction

of the cache error handler is issued.
In addition to the above, simultaneous instruction and data cache
errors as indicated by CacheErrEB will cause information about the

data cache error to be unavailable. However, that situation is not
indicated by CacheErrEF.

R Undefined

SP 23 Scratchpad. Indicates Scratchpad RAM parity error. R 0

Table 6.50 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Error on internal request

1 Error on external request

Encoding Meaning

0 No additional data cache error

1 Additional data cache error

Encoding Meaning

0 No Scratchpad RAM error detected

1 Scratchpad RAM error detected

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 209

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 6.40 CacheErr Register (Secondary Cache)

EW 22 Error Way. Indicates a parity error on the dirty bits that are stored in
the way selection RAM array..

R Undefined

Way 21:20 Way. Specifies the cache way in which the error was detected. It is
not valid if a Tag RAM error is detected (ET=1) or Scratchpad RAM
error is detected (SP=1).

R Undefined

Index 19:0 Index. Specifies the cache or Scratchpad RAM index of the double
word in which the error was detected. The way of the faulty cache is
written by hardware in the Way field. Software must combine the
Way and Index read in this register with cache configuration infor-
mation in the Config1 register in order to obtain an index which can
be used in an indexed CACHE instruction to access the faulty cache
data or tag. Note that Index is aligned as a byte index, so it does not
need to be shifted by software before it is used in an indexed
CACHE instruction. Index bits [4:3] are undefined upon tag RAM
errors, and Index bits above the MSB actually used for cache index-
ing will also be undefined.
Bits [19:16] are only used used for errors in the Scratchpad RAM.

R Undefined

31 30 29 28 27 26 25 24 23 22 21 19 18 0

EC ED ET EM EF EW Way Index

Table 6.51 CacheErr Register Field Descriptions (Secondary Cache)

Fields

Description
Read /
Write Reset StateName Bits

Reserved 31 Reserved R Undefined

EC 30 Indicates the cache level at which the error was detected: R Undefined

ED 29 Error Data. Indicates a data RAM error. R Undefined

Table 6.50 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No way selection RAM error detected

1 Way selection RAM error detected

Encoding Meaning

0 Primary

1 Non-primary

Encoding Meaning

0 No data RAM error detected

1 Data RAM error detected

 CP0 Registers of the 24K® Core

210 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

ET 28 Error Tag. Indicates a tag RAM error. R Undefined

Reserved 27 Reserved R Undefined

Reserved 26 Reserved R Undefined

EM 25 Error Multi. Indicates that a cache error occurred in multiple L2
arrays.

In the case of multiple errors, the Tag ram error has the highest pri-
ority, followed by the Data ram error, followed by the Way Select
ram. Only the highest priority error information is recorded in the
CacheErr register.

R Undefined

EF 24 Error Fatal. Indicates that a fatal cache error has occurred.
There are a few situations where software will not be able to get all
information about a cache error from the CacheErr register. These
situations are fatal because software cannot determine which mem-
ory locations have been affected by the error. To enable software to
detect these cases, the EF bit (bit 24) has been added to the
CacheErr register.

This bit is set when a second L2 error occurs before taking the
exception for the first L2 error.

R Undefined

Reserved 23 Reserved R Undefined

EW 22 Error Way. Indicates a way-selection RAM error. R Undefined

Way 21:19 Way. Specifies the cache way in which the error was detected. It is
not valid if a Tag RAM error is detected (ET=1) or Scratchpad RAM
error is detected (SP=1).

R Undefined

Table 6.51 CacheErr Register Field Descriptions (Secondary Cache) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No tag RAM error detected

1 Tag RAM error detected

Encoding Meaning

0 No multi error

1 Multi error

Encoding Meaning

0 No way-selection RAM error detected

1 Way-selection RAM error detected

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 211

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.38 ITagLo Register (CP0 Register 28, Select 0)

The ITagLo register acts as the interface to the instruction cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the ITagLo register as the source of tag information. Note that the 24K core
does not implement the ITagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.
Refer to Figure 8.2 for the layout of the way-selection RAM.

Figure 6.41 ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0)

Figure 6.42 ITagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0)

Figure 6.43 ITagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1)

Index 18:0 Index. Specifies the cache index of the double word in which the
error was detected. The way of the faulty cache is written by hard-
ware in the Way field. Software must combine the Way and Index
read in this register with cache configuration information in the
Config2 register in order to obtain an index which can be used in an
indexed CACHE instruction to access the faulty cache data or tag.
Note that Index is aligned as a byte index, so it does not need to be
shifted by software before it is used in an indexed CACHE instruc-
tion. Index bits [4:3] are undefined upon tag RAM errors and Index
bits above the MSB actually used for cache indexing will also be
undefined.

R Undefined

31 11 10 9 8 7 6 5 4 1 0

PTagLo U R V R L R P

31 24 23 20 19 15 10 9 8 7 5 4 1 0

Unused WSLRU R Unused R U

tag 31 20 19 12 11 8 7 6 0

0 BasePA 0 E 0

1 0 Size 0

Table 6.52 ITagLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Unused/U various Not used in certain modes of operation. R/W Undefined

Table 6.51 CacheErr Register Field Descriptions (Secondary Cache) (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 CP0 Registers of the 24K® Core

212 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.39 DTagLo Register (CP0 Register 28, Select 2

The DTagLo register acts as the interface to the data cache tag array. The Index Store Tag and Index Load Tag opera-
tions of the CACHE instruction use the DTagLo register as the source of tag information. Note that the 24K core does
not implement the DTagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.
Refer to Figure 8.2 for the layout of the way-selection RAM.

Figure 6.44 DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=0)

Figure 6.45 DTagLo Register Format (ErrCtlWST=1, ErrCtlSPR=0)

PTagLo 31:11 This field contains the physical address of the cache line. Bit 31 cor-
responds to bit 31 of the PA and bit 11 corresponds to bit 11 of the
PA.
Bit 11 is only used when 8KB caches are implemented. For other
cache sizes, this bit will not exist in the tag and will be written as a 0
on IndexLoadTag operations.

R/W Undefined

R 9:8, 4:1 Must be written as zero; returns zero on read. 0 0

V 7 This field indicates whether the cache line is valid. R/W Undefined

L 5 Specifies the lock bit for the cache tag. When this bit is set, and the
valid bit is set, the corresponding cache line will not be replaced by
the cache replacement algorithm.

R/W Undefined

P 0 Parity. Specifies the parity bit for the cache tag. This bit is updated
with tag array parity on CACHE Index Load Tag operations and
used as tag array parity on Index Store Tag operations when the PO
bit of the ErrCtl register is set.

R/W Undefined

WSLRU 15:10 LRU bits. This field contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

R/W Undefined

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field will
contain bits [31:12] of the base address of the scratchpad region

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indi-
cate whether the scratchpad is enabled

R/W Undefined

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field indi-
cates the size of the scratchpad array. This field is the number of
4KB sections it contains. (Combined with the 0’s in 11:0, the regis-
ter will contain the number of bytes in the scratchpad region.)

R/W Undefined

31 11 10 9 8 7 6 5 4 3 2 1 0

PTagLo U R V D L R U P

31 24 23 20 19 15 10 9 8 7 5 4 3 2 1 0

Unused WSDP WSD WSLRU R Unused R U

Table 6.52 ITagLo Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 213

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 6.46 DTagLo Register Format (ErrCtlWST=0, ErrCtlSPR=1)
tag 31 20 19 12 11 8 7 6 2 1 0

0 BasePA 0 E 0 U 0

1 0 Size 0 U 0

Table 6.53 DTagLo Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Unused/U various Not used in certain modes of operation. R/W Undefined

PTagLo 31:11 This field contains the physical address of the cache line. Bit 31 cor-
responds to bit 31 of the PA and bit 11 corresponds to bit 11 of the
PA.
Bit 11 is only used when 8KB caches are implemented. For other
cache sizes, this bit will not exist in the tag and will be written as a 0
on IndexLoadTag operations.

R/W Undefined

R 9:8, 4:1 Must be written as zero; returns zero on read. 0 0

V 7 This field indicates whether the cache line is valid. R/W Undefined

D 6 This field indicates whether the cache line is dirty. It will only be set
if bit 7 (valid) is also set. For L1 I-cache, this field must be written
as zero and returns zero on read.

R/W Undefined

L 5 Specifies the lock bit for the cache tag. When this bit is set, and the
valid bit is set, the corresponding cache line will not be replaced by
the cache replacement algorithm.

R/W Undefined

P 0 Parity. Specifies the parity bit for the cache tag. This bit is updated
with tag array parity on CACHE Index Load Tag operations and
used as tag array parity on Index Store Tag operations when the PO
bit of the ErrCtl register is set.
This parity does not cover the dirty bit; the dirty bit has a separate
parity bit placed in the way selection RAM.

R/W Undefined

WSDP 23:20 Dirty Parity (Optional). This field contains the value read from the
WS array during a CACHE Index Load WS operation.
If the PO field of the ErrCtl register is asserted, then this field is
used to store the dirty parity bits during a CACHE Index Store WS
operation.

R/W Undefined

WSD 19:16 Dirty bits. This field contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

R/W Undefined

WSLRU 15:10 LRU bits. This field contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

R/W Undefined

BasePA 31:12 When reading pseudo-tag 0 of a scratchpad RAM, this field will
contain bits [31:12] of the base address of the scratchpad region

R/W Undefined

E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indi-
cate whether the scratchpad is enabled

R/W Undefined

Size 19:12 When reading pseudo-tag 1 of a scratchpad RAM, this field indi-
cates the size of the scratchpad array. This field is the number of
4KB sections it contains. (Combined with the 0’s in 11:0, the regis-
ter will contain the number of bytes in the scratchpad region.)

R/W Undefined

 CP0 Registers of the 24K® Core

214 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

In addition to the three uses of the DTagLo register specified above, there is a fourth application where DTagLo is
used to access the pseudo-tags (control registers) of the ITC block. This is done by executing the Index Store Tag or
Index Load Tag operation of the CACHE instruction with the ErrCtlITC set to 1 (and ErrCtlSPR/ErrCtlWST set to 0).

6.2.40 L23TagLo Register (CP0 Register 28, Select 4)

The L23TagLo register acts as the interface to the L2 or L3 cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the L23TagLo register as the source of tag information. Note that the 24K
core does not implement the L23TagHi register.

The definition of this register is dependent on the L2/L3 implementation. The core implements this as a general 32b
R/W register.

6.2.41 IDataLo Register (CP0 Register 28, Select 1)

The IDataLo register is a register that acts as the interface to the instruction cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the IDataLo register. If the WST bit in the ErrCtl register is set, then the contents of IDataLo can be written to the
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the
contents of IDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-
tion.

Figure 6.47 IDataLo Register Format

6.2.42 DDataLo Register (CP0 Register 28, Select 3)

The DDataLo register is a register that acts as the interface to the data cache data array and is intended for diagnostic
operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into
the DDataLo register. If the WST bit in the ErrCtl register is set, then the contents of DDataLo can be written to the
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the
contents of DDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-
tion.

Figure 6.48 DDataLo Register Format

31 0

DATA

Table 6.54 IDataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 215

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.43 L23DataLo Register (CP0 Register 28, Select 5)

The L23DataLo register is a register that acts as the interface to the L2 or L3 cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the L23DataLo register. If the WST bit in the ErrCtl register is set, then the contents of L23DataLo can be written
to the cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set,
then the contents of L23DataLo can be written to the scratchpad RAM data array by doing an Index Store Data
CACHE instruction.

Figure 6.49 L23DataLo Register Format

6.2.44 IDataHi Register (CP0 Register 29, Select 1)

The IDataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the
IDataHi register. If the WST bit in the ErrCtl register is set, then the contents of IDataHi can be written to the cache
data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the con-
tents of IDataHi can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

The interface to the I-cache only operates on pairs of instructions - the high instruction will be written into the IDataHi
register. Note that IDataHi and IDataLo reflect the memory ordering of the instructions. Depending on the endianness
of the system, Instruction0 belongs in either IDataHi (BigEndian) or IDataLo (LittleEndian) and vice versa for
Instruction1.

Figure 6.50 IDataHi Register Format

Table 6.55 DDataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

Table 6.56 L23DataLo Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

31 0

DATA

 CP0 Registers of the 24K® Core

216 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.45 L23DataHi Register (CP0 Register 29, Select 5)

The L23DataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic
operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into
the L23DataHi register. If the WST bit in the ErrCtl register is set, then the contents of L23DataHi can be written to the
cache data array by doing an Index Store Data CACHE instruction.

Figure 6.51 L23DataHi Register Format

6.2.46 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
This address can be:

• The virtual address of the instruction that caused the exception, or

• the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement the MIPS16 ASE, a read of the ErrorEPC register (via MFC0) returns the following
value in the destination GPR:

GPR[rt] ← ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Table 6.57 IDataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

31 0

DATA

Table 6.58 L23DataHi Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

6.2 CP0 Register Descriptions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 217

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
bit of the GPR.

Figure 6.52 ErrorEPC Register Format

6.2.47 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs, which is then used to save the rest of the con-
text to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of excep-
tion handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 6.53 DeSave Register Format

31 0

ErrorEPC

Table 6.59 ErrorEPC Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

Table 6.60 DeSave Register Field Description

Fields

Description
Read /
Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined

Chapter 7

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 218

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Hardware and Software Initialization of the 24K® Core

A 24K processor core contains only a minimal amount of hardware initialization and relies on software to fully ini-
tialize the device.

This chapter contains the following sections:

• Section 7.1 “Hardware-Initialized Processor State”

• Section 7.2 “Software Initialized Processor State”

7.1 Hardware-Initialized Processor State

A 24K processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal
subset of the processor state is cleared. This is enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. Unlike previous MIPS processors, there is no
distinction between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft
reset.

7.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0.

• Random - cleared to maximum value on Reset (TLB MMU only)

• Wired - cleared to 0 on Reset (TLB MMU only)

• StatusBEV - set to 1 on Reset

• StatusTS - cleared to 0 on Reset

• StatusNMI - cleared to 0 on Reset

• StatusERL - set to 1 on Reset

• StatusRP - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset

• ConfigKU - set to 010 (uncached) on Reset (FM MMU only)

7.2 Software Initialized Processor State

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 219

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• ConfigK23 - set to 010 (uncached) on Reset (FM MMU only)

• DebugDM - cleared to 0 on Reset (unless EJTAGBOOT option is used to boot into DebugMode, see Chapter 11,
“EJTAG Debug Support in the 24K® Core” on page 240 for details)

• DebugLSNM - cleared to 0 on Reset

• DebugIBusEP - cleared to 0 on Reset

• DebugDBusEP - cleared to 0 on Reset

• DebugIEXI - cleared to 0 on Reset

• DebugSSt - cleared to 0 on Reset

7.1.2 TLB Initialization

Each TLB entry has a “hidden” state bit, which is set by Reset and is cleared when the TLB entry is written. This bit
disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up values in the TLB
array (when two or more TLB entries match on a single address). This bit is not visible to software.

7.1.3 Bus State Machines

When a Reset exception is taken, all pending bus transactions are aborted, and the state machines in the bus interface
unit are reset.

7.1.4 Static Configuration Inputs

All static configuration inputs (for example, defining the bus mode and cache size) should only be changed during
Reset.

7.1.5 Fetch Address

By default, the fetch is directed to VA 0xBFC00000 (PA 0x1FC00000) upon Reset. This address is in kseg1,which is
unmapped and uncached, so that the TLB and caches do not require hardware initialization.

This initial fetch address can be overridden via core inputs. See Section 5.5 “Exception Vector Locations” for addi-
tional details.

If EJTAGBOOT is active (see Section 11.3.3.8 “EJTAGBOOT Instruction”), the processor will begin fetching
instructions directly from the EJTAG probe rather than from memory.

7.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

 Hardware and Software Initialization of the 24K® Core

220 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

7.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest of the
register file is not required for proper operation. Good code will generally not read a register before writing to it, but
the boot code can initialize the register file for added safety.

7.2.2 TLB

Because of the hidden bit indicating initialization, the core does not initialize the TLB upon Reset. This is an imple-
mentation specific feature of the 24K core and cannot be relied upon if writing generic code for MIPS32/64 proces-
sors.

7.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function).
This can be a long process, especially since the instruction cache initialization needs to be run in an uncached address
region.

7.2.4 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: K0 (kseg0 Coherency Algorithm) should be set to the desired Cache Coherency Algorithm (CCA) prior
to accessing kseg0.

• Config: (FM MMU only) KU and K23 should be set to the desired CCA for USeg/KUSeg and kseg2/3 respec-
tively prior to accessing those regions.

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (and thus, Count should be set before Compare, to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
be masked off after reading these registers.

Chapter 8

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 221

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Caches of the 24K® Core

This chapter describes the caches present in a 24K processor core. It contains the following sections:

• Section 8.1 “Cache Configurations”

• Section 8.2 “Instruction Cache”

• Section 8.3 “Data Cache”

• Section 8.4 “Write Back Buffer”

• Section 8.5 “Cache Protocols”

• Section 8.6 “CACHE Instruction”

• Section 8.7 “Software Cache Testing”

• Section 8.8 “Memory Coherence Issues”

8.1 Cache Configurations

A 24K processor core has separate instruction and data caches which allows instruction and data references to pro-
ceed simultaneously. Each of the caches is 4-way set associative and they can be independently configured at build
time to be 8, 16, 32, or 64KB. Both caches use a 32B line size and support locking on a per line basis. Parity protec-
tion of the cache arrays is an optional feature.

8.2 Instruction Cache

Table 8.1 shows the key characteristics of the instruction cache. Figure 8.1 shows the format of an entry in the three
arrays comprising the instruction cache: tag, data, and way-select. Note that for 8KB caches, there is one extra tag bit
needed.

Table 8.1 Instruction Cache Attributes

Attribute With Parity Without Parity

Size 0, 8, 16, 32, 64KB

Line Size 32B

Number of Cache Sets 64, 128, 256, 512

Associativity 4 way

Replacement LRU

Cache Locking per line

 Caches of the 24K® Core

222 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 8.1 Instruction Cache Organization

8.2.1 Virtual Aliasing

The instruction cache on the 24K processor core is virtually indexed and physically tagged. The lower bits of the vir-
tual address are used to access the cache arrays and the physical address is used in the tags. Because the way size can
be larger than the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical
address can exist in multiple indices within the cache if it is accessed with different virtual addresses.

This reduces the cache efficiency somewhat, but is generally not a problem unless the instruction stream is being
written to. When instructions are written, software must ensure that the store data is written out to memory and the
old data is invalidated in the instruction cache (via the CACHE or SYNCI instruction). For this to work correctly, the
address must be invalidated from each of the possible alias locations. The 24K processor includes a feature to sim-
plify this task and automatically invalidate the physical address from all of the alias locations. The presence of this
feature and the enable for it are located in the Config7 register. Config7IAR =1 indicates that aliases are possible (cache
> 16KB and TLB-based MMU) and this feature is present. This feature is enabled by default, but Config7IVA can be
set to 1 to disable it. Looking up the other alias locations does slow down the invalidate slightly, so software can dis-
able it when aliases are known not to be present, for example, when using an OS with 16KB TLB pages,

Data Array

Read Unit 79b x 4 70b x 4

Write Unit 79b 70b

Tag Array

Read Unit (8KB) 24b x 4 23b x 4

Read Unit (non-8KB) 23b x 4 22b x 4

Write Unit (8KB) 24b 23b

Write Unit (non-8KB) 23b 22b

Way-Select Array

Read Unit 6b

Write Unit 1-6b

Table 8.1 Instruction Cache Attributes

Attribute With Parity Without Parity

Tag (per way):

Data (per way)1:

Way-Select:

1 1 1 20/21

Parity Valid Lock PA[31:12/11]

9 6 64 9 6 64 9 6 64 9 6 64

Parity Precode dword3 Parity Precode dword2 Parity Precode dword1 Parity Precode dword0

6

LRU

1. Parity Bits in data array will be interleaved with precode and data bytes

8.3 Data Cache

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 223

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.2.2 Precode Bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bits indicate the type and location of branch or jump instructions within a
64b fetch bundle. These precode bits are not used when executing MIPS16e code.

8.2.3 Parity

Parity protection of the instruction cache arrays can optionally be included. The data array has a 9 parity bits - one for
the 6 precode bits and one for each byte of the 64b data. The tag array has a single parity bit for each tag. The LRU
array does not have any parity.

8.3 Data Cache

The data cache is similar to the instruction cache, with a few key differences:

• The data cache does not contain any precode information.

• To handle store bytes, the data array is byte accessible and the optional data parity is 1 bit per byte.

• The way-select array for the data cache also holds the dirty bits (and optional dirty parity bits) for each cache
line, in addition to the LRU information.

• Virtual aliases must be handled differently

Table 8.2 shows the key characteristics of the data cache. Figure 8.2 shows the format of an entry in the three arrays
comprising the data cache: tag, data, and way-select.

Table 8.2 Data Cache Attributes

Attribute With Parity Without Parity

Size 0, 8, 16, 32, 64KB

Line Size 32B

Number of Cache Sets 64, 128, 256, 512

Associativity 4 way

Replacement LRU

Cache Locking per line

Data Array

Read Unit 72b x 4 64b x 4

Write Unit 9b 8b

Tag Array

Read Unit (8KB) 24b x 4 23b x 4

Read Unit (non-8KB) 23b x 4 22b x 4

Write Unit (8KB) 24b 23b

Write Unit (non-8KB) 23b 22b

Way-Select Array

 Caches of the 24K® Core

224 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 8.2 Data Cache Organization

8.3.1 Virtual Aliasing

Since the data cache is virtually indexed and physically tagged, a potential issue referred to as virtual aliasing might
exist. Virtual aliasing occurs if the virtual bits used to index a cache array are not consistent with the overlapping
physical bits, after the virtual address has been translated to a physical address. The possibility of virtual aliasing only
occurs in address regions which are mapped through a TLB-based memory management unit.

In TLB-mapped address regions, virtual aliasing may occur if the cache size per way is greater than the page size. For
example, consider a 32KB cache organized as 4-way set associative. The size per way is then 8 KB, so virtual address
bits [12:0] are used to index the array. If the address is in a translated region with a page size of 4 KB, then address
bits [11:0] are untranslated but address bits [31:12] will be mapped and for these bits the virtual and physical
addresses may be different. In this example, bit [12] could pose a potential problem due to virtual aliasing. Imagine
two virtual addresses, VA0 and VA1, whose only difference is the value of bit [12], which map to the same physical
address. These two virtual addresses would be indexed to two different lines by the cache, even though they were
intended to represent the same physical address. Then if a program does a load using VA0 and a store using VA1, or
vice-versa, the cache may not return the expected data.

Table 8.3 shows the overlapped virtual/physical address bits which could potentially be involved in virtual aliasing,
given the possible minimum page sizes and cache way sizes supported by a 24K core. Virtual aliasing is generally
only a problem for the D-cache, since stores don’t happen to the I-cache. A special hardware mechanism is available
to prevent the possibility of virtual aliasing in 32KB and 64KB data caches. In cores not configured with this mecha-
nism, virtual aliasing must be handled by software. The software solution must ensure that the mapping of virtual

Read Unit 14b 10b

Write Unit 1-14b

Table 8.2 Data Cache Attributes (Continued)

Attribute With Parity Without Parity

Tag (per way):

Data (per way):

Way-Select:

1 1 1 20/21

Parity Valid Lock PA[31:12/11]

1 8 9x30 1 8

Parity Data31 ... Parity Data0

6 1 1 1 1 1 1 1 1

LRU Parity Dirty3 Parity Dirty2 Parity Dirty1 Parity Dirty0

8.4 Write Back Buffer

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 225

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

address bits which overlap with physical address bits be handled consistently. The simplest approach is to ensure that
the overlapping bits are unity-mapped (VA equals PA).

A related issue can occur in virtually indexed, physically tagged caches if the number of physical bits stored in the tag
array does not fully overlap the physically translated bits for the smallest page size. For a 24K core, there are always
at least 20 address bits stored in the cache tag, representing bits [31:12] of the physical address. Since the minimum
page size is 4KB with bits [31:12] physically translated by the TLB, the cache tag size does overlap the translated bits
and this issue will not occur.

8.3.2 Parity

Parity protection of the data cache arrays can optionally be included. The data array requires a parity bit for each byte,
to correspond to the minimum write quantum for a store. The tag array has a single parity bit for each tag. The
way-select array has separate parity bits to cover each dirty bit, but the LRU bits are not covered by parity.

8.4 Write Back Buffer

The BIU includes a Write Back Buffer (WBB) that holds writes going to memory. This includes evictions from the
data cache, as well as write-through stores, uncached stores, and uncached accelerated stores. The WBB consists of 4
entries, each of which is capable of holding 32B of data. The WBB also holds L2 CACHE instructions that are to be
sent out on the bus.

The WBB will attempt to gather uncached accelerated (UCA)stores to allow full line burst writes. UCA behavior is
described in Section 8.4.1 “Uncached Accelerated Stores”. Write through stores can also be gathered in a WBB entry
if ConfigMM= 1.

WBB entries are ‘flushed’ under a variety of conditions. When a buffer is flushed, the write command is queued in
the BIU and the WBB entry will not accept any more activity until the data has been written to the bus and the buffer
is freed up. UCA flush conditions are described in the next section. Flush conditions for other types are shown here:

• Uncached (non-accelerated) stores flush immediately

• L2 CACHE instruction commands are also flushed immediately

• Entries for D$ evictions are flushed when all 4 dwords (32B) of data have been gathered

• Write-through entries are flushed under the following conditions:

• A full 32B line has been gathered

• A read request matches the address of the WT line. The write command will be ordered ahead of the read
command. There is no direct bypass of the WBB data to the read—the read gets the data from memory.

Table 8.3 Potential Virtual Aliasing Bits

Minimum Page Size
(KB) Cache Way Size (KB)

Overlapped address
bits with possible

aliasing

4 8 [12]

16 [13:12]

8 16 [13]

 Caches of the 24K® Core

226 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• A WT request to a different 32B line is seen. Only 1 WT merge can be active at any time.

8.4.1 Uncached Accelerated Stores

Uncached Accelerated gathering is supported for word and double word stores only.

Gathering of uncached accelerated stores will start on cache-line aligned addresses, i.e. 32 byte aligned addresses.
Uncached accelerated word or double word stores that do not meet that condition will be treated like regular
uncached stores.

An uncached accelerated store to the start of a new line will reserve a write-back buffer entry for gathering. Subse-
quent uncached accelerated word or double word stores to the same cache line will write sequentially into this buffer,
independent of the word address associated with these stores. The uncached accelerated buffer is tagged with the
address of the first store.

An uncached accelerated buffer is written to memory (flushed) if:

1. The last word in the entry being gathered is written. (Implicit flush)

2. A PREF Nudge which match the address associated with the gather buffer (Explicit flush).

3. A SYNC instruction is executed. (Explicit flush)

4. Bits <31:5> of the address of a Load instruction match the address associated with the gather buffer. (Implicit
flush)

5. Uncached Accelerated store to a different 32B line (Implicit flush)

6. An exception occurs. (Implicit flush)

When an uncached accelerated buffer is flushed, the address sent out on the system interface is the address associated
with the gather buffer.

Caveats:

• Uncached Accelerated stores are not ordered with respect to uncached accesses. Any uncached stores and any
uncached loads to unrelated addresses that occur between uncached accelerated stores that are part of a gather
sequence may occur out of order.

• The only constraint imposed on the gathering is that doubleword stores are only allowed to write to double word
aligned locations in the buffer. For example if uncached accelerated gathering starts with a Store Word (SW), it
may not immediately be followed by a Store Double (SDC1).

• Uncached accelerated stores of the following types are not intended to be used by software and may generate
unpredictable results:

1. Sub-word (byte, halfword, tri-byte) Stores

2. Unaligned Stores

3. Store conditionals

8.5 Cache Protocols

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 227

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• In order for software to be able to run functionally correct on implementations without uncached accelerated
stores, software should always generate accesses starting on a cache-line aligned address, proceed to generate
correctly incremented sequential addresses and observe the restrictions for uncached accelerated stores.

8.5 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data caches.
This section also discusses issues relating to virtual aliasing.

8.5.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data and way-select. The caches are virtually
indexed, since a virtual address is used to select the appropriate line within each of the three arrays. The caches are
physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache.
The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the data
cache.

Figure 8.1 (instruction cache) and Figure 8.2 (data cache) show the format of each line in the tag, data and way-select
arrays.

A tag entry consists of the upper 20 or 21 bits of the physical address (bits [31:12/11]) (bit 11 is only used for 8KB
caches), one valid bit for the line, and a lock bit. A data entry contains the four 64-bit doublewords in the line, for a
total of 32 bytes. All four words in the line are present or not in the data array together, hence the single valid bit
stored with the tag. Once a valid line is resident in the cache, byte, halfword, triple-byte or full word stores can update
all or a portion of the words in that line. The tag and data entries are repeated for each of the 4 lines in the set.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The array
with way-select entries for the data cache also holds dirty bits for the lines. One dirty bit is required per line, as shown
in Figure 8.2. The instruction cache only supports reads, hence only LRU entries are stored in the instruction
way-select array.

8.5.2 Cacheability Attributes

A 24K core supports the following cacheability attributes:

• Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without changing cache contents.

• Write-back with write allocation: Loads and instruction fetches first search the cache, reading main memory only
if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the cache contents are updated, but main memory is not written.
If the cache lookup misses on a store, main memory is read to bring the line into the cache and merge it with the
new store data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data stores will update the
appropriate dirty bit in the way-select array to indicate that the line contains modified data. When a line with
dirty data is displaced from the cache, it is written back to memory.

• Write-through with no write allocation: Loads and instruction fetches first search the cache, reading main mem-
ory only if the desired data does not reside in the cache. On data store operations, the cache is first searched to

 Caches of the 24K® Core

228 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

see if the target address is cache resident. If it is resident, the cache contents are updated, and main memory is
also written. If the cache lookup misses on a store, only main memory is written. Hence, the allocation policy on
a cache miss is read-allocate only.
NOTE: The instruction cache always uses a writeback CCA for its bus requests even when the TLB page is
mapped as write-through.

• Uncached Accelerated: Uncached stores are gathered together for more efficient bus utilization. See Section
8.4.1 “Uncached Accelerated Stores” for more details

Some segments of memory employ a fixed caching policy; for example kseg1 is always uncacheable. Other segments
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programmable
regions is defined by a cacheability attribute field associated with that region of memory. See Chapter 4, “Memory
Management of the 24K® Core” on page 87 for further details.

8.5.3 Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a
cache fill. The replacement policy is least recently used (LRU), but excluding any locked ways. The LRU bit(s) in the
way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST=0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used
if valid bit is cleared in TagLo CP0 register.

• Index Store Tag, WST=1: Update the field with the contents of the TagLo CP0 register (refer to Table 8.4
for the valid values of this field).

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

8.6 CACHE Instruction

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 229

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
ways, the LRU bits are used to identify the way which has been used least recently, and that way is selected for
replacement.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

8.5.4 Line Locking

• The 24K core supports line locking in both caches. A line can be locked by either Fetch and Lock or Index Store
Tag CACHE instructions.The core does not support the locking of all 4 ways of either cache at a particular index.
If all 4 ways of the cache at a given index are locked, subsequent cache misses at that cache index will displace
one of the locked lines.

8.6 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag
arrays, including the locking of individual cache lines. These instructions are described in detail in Chapter 12,
“24K® Processor Core Instructions” on page 303.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the WS- RAM by setting
the WST bit in the ErrCtl register. (The ErrCtl register is described in Section 6.2.36 “ErrCtl Register (CP0 Register
26, Select 0)”.) Similarly, the SPR bit in the ErrCtl register will cause Index Load Tag and Index Store Tag instruc-
tions to access the pseudo-tags associated with the scratchpad RAM array. Note that when the WST and SPR bits are
zero, the CACHE index instructions access the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue,
however, if the WS-RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings
for way selection order is shown in Table 8.4.

Table 8.4 Way Selection Encoding, 4 Ways

Selection Order1

1. The order is indicated by listing the least-recently used way to the left and the
most-recently used way to the right, etc.

WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010

0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

 Caches of the 24K® Core

230 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.7 Software Cache Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with
interrupts disabled in order to maintain the cache contents. There are multiple methods for testing these arrays in soft-
ware, only one is presented here.

8.7.1 I-Cache and D-cache Tag Arrays

These arrays can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. Index
Store Tag will write the contents of the TagLo register into the selected tag entry. Index Load Tag will read the
selected tag entry into the TagLo.

If parity is implemented, the parity bits can be tested as a normal bit by setting the PO bit in the ErrCtl register. This
will override the parity calculation and write P bit in TagLo as the parity value.

8.7.2 I-Cache Data Array

This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The precode bits in the array can be tested by setting the PCO bit in the ErrCtl register. This will write the PCI field in
the ErrCtl register instead of calculating the precode bits on a write.

The parity bits in the array can be tested by setting the PO bit in the ErrCtl register. This will use the PI field in ErrCtl
instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the DataLo and DataHi registers.

8.7.3 I-Cache WS Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

8.7.4 D-Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to
set the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to
the PAs that are resident in the cache. The value can then be read using LW instructions and compared to the
expected data.

The parity bits can be implicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used and only 32b of data is
read/written per operation.

8.7.5 D-cache WS Array

The dirty bits in this array will be tested when the data tag is tested. The LRU bits can be tested using the same mech-
anism as the I-cache WS array.

8.8 Memory Coherence Issues

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 231

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.8 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system design.
Since a cache holds a copy of memory data, it is possible for another memory master to modify a memory location,
thus making other copies of that location stale if those copies are still in use. A detailed discussion of memory coher-
ence is beyond the scope of this document, but following are a few related comments.

A24K processor contains no direct hardware support for managing coherency with respect to its caches, so it must be
handled via system design or software. The data cache supports either write-back or write-through protocols.

In write-through mode, all data writes will eventually be sent to memory. Due to write buffers, however, there could
be a delay in how long it takes for the write to memory to actually occur. If another memory master updates cacheable
memory which could also be in the cores caches, then those locations may need to be flushed from the cache. The
only way to accomplish this invalidation is by use of the CACHE instruction.

In write-back mode, data writes only go to the cache and not to memory. So the processor cache may contain the only
copy of data in the system until that data is written to main memory. Dirty lines are only written to memory when dis-
placed from the cache as a new line is filled or if explicitly forced by certain flavors of the CACHE or PREF instruc-
tions.

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the core’s write buff-
ers.

Chapter 9

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 232

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Power Management in the 24K® Core

A 24K processor core offers a number of power management features, including low-power design, active power
management and power-down modes of operation. The core is a static design that supports changing the clock fre-
quency or even stopping the clocks to manage power. The WAIT instruction suspends execution until an interrupt is
detected and can put the core into a low power mode.

The core provides two basic mechanisms for system level low-power support discussed in the following sections.

• Section 9.1 “Register-Controlled Power Management”

• Section 9.2 “Instruction-Controlled Power Management”

9.1 Register-Controlled Power Management

The RP bit in the CP0 Status register enables a standard software mechanism for placing the system into a low power
state. The state of the RP bit is available externally via the SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the core is in a low power state.

Setting the RP bit of the CP0 Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At this time the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared. The fourth pin indicates that the processor is in debug
mode:

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

9.2 Instruction-Controlled Power Management

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 233

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• The EJ_DebugM signal indicates that the processor has entered debug mode.

9.2 Instruction-Controlled Power Management

A second mechanism for invoking power down mode is through execution of the WAIT instruction. The WAIT
instruction brings the processor into a low power state where the internal clocks are suspended and the pipeline is fro-
zen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset, and EJ_DINT) continue to
run. The clocks are not shut down until all bus and coprocessor transactions have completed. Once the CPU is in
instruction controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition
causes the CPU to exit this mode and resume normal operation. While the is in this low-power mode, the SI_SLEEP
signal is asserted to indicate to external agents what the state of the chip is.

9.2.1 Wait IE Ignore

A feature is included in the core that simplifies the task of using the WAIT instruction in the idle loop of an OS. The
WAIT instruction is typically in block of code where the OS first checks to see if there is any pending work and if
there is not, it will execute the WAIT as shown below.

if (!pending)
{

wait();
}

There is a tricky race condition present in this code. If an interrupt arrives between the pending check and the WAIT
instruction, the service routine will return and execute the WAIT and go to sleep. However, the interrupt may have
been enabling some pending work to be done in the ‘bottom-half’ processing. If the core goes back to sleep, this
pending work will not be done until the next interrupt arrives.

The OS can check to see if the interrupt was signalled in this window and adjust the EPC value to before the pending
check, but this involves a fair amount of work. The Wait IE Ignore feature enables a simpler solution for the race con-
dition. With this feature, a WAIT condition will be terminated by an active interrupt signal, even if that signal is pre-
vented from causing an interrupt by StatusIE being clear or TCStatusIXMT being set. This allows interrupts to be
disabled in this section of code while still allowing the WAIT to complete.

An example of the assembly code for making use of this feature follows:

LEAF(r4k_wait)
.set push
.set noreorder
di t4 # Clear Status.IE and preserve old value in t4
LONG_L t0, ti_flags($28) # Get flag bits
andi t0, _TIF_NEED_RESCHED # Isolate reschedule flag
bnez t0, 1f # branch around wait if pending work
nop
wait
1: mtc0t4, C0_Status # restore status register
.set pop
jr ra
nop
END(r4k_wait)

 Power Management in the 24K® Core

234 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Note that this sequence would not be safe to execute on a core without this feature. In that case, a normal interrupt
will generally not wake up the core if StatusIE=0. The Config7WII bit indicates whether this feature is present on the
core.

Chapter 10

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 235

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 12, “24K® Processor Core Instructions” on page 303 for a complete listing
and description of instructions.

This chapter discusses the following topics

• Section 10.1 “CPU Instruction Formats”

• Section 10.2 “Load and Store Instructions”

• Section 10.3 “Computational Instructions”

• Section 10.4 “Jump and Branch Instructions”

• Section 10.5 “Control Instructions”

• Section 10.6 “Coprocessor Instructions”

10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction for-
mats immediate (I-type), jump (J-type), and register (R-type)—as shown in Figure 10.1. The use of a small number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

 Instruction Set Overview

236 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 10.1 Instruction Formats

10.2 Load and Store Instructions

Load and store instructions are immediate (I-type) instructions that move data between memory and the general reg-
isters. The only addressing mode that integer load and store instructions directly support is base register plus 16-bit
signed immediate offset. Floating point load and store instructions can use either that addressing mode or register plus
register indexed addressing.

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a delayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the load
delay slot.

In a 24K core, the instruction immediately following a load instruction can use the contents of the loaded register;
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay slots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode.

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch
condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

I-Type (Immediate)

R-Type (Register)

J-Type (Jump)

immediate

015

rt

1620

op

2631

rs

2125

target

015

op

2631

rt

1620

op

2631

rs

2125

sa

610

rd

1115

funct

05

target

025

op

2631

10.3 Computational Instructions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 237

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian
configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 10.1. Only the combinations shown in Table 10.1 are permissible; other combinations cause
address error exceptions.

Instruction fetches are either halfword accesses (MIPS16e™ code) or word accesses (32b code). These references
will be impacted by endianness the same as load/store references of those sizes.

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

• Arithmetic

Table 10.1 Byte Access Within a Doubleword

Access Type

Low-Order
Address Bits

Bytes Accessed

Big Endian
(63----------------31-------------------0)

Little Endian
(63----------------31-------------------0)

2 1 0 Byte Byte

Doubleword 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Word 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

 Instruction Set Overview

238 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Logical

• Shift

• Count Leading Zeros/Ones

• Multiply

• Divide

These operations fit in the following four categories of computational instructions:

• ALU Immediate instructions

• Three-operand Register-type Instructions

• Shift Instructions

• Multiply And Divide Instructions

10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the 24K® Core” on page 31 for more information on instruc-
tion latency and repeat rates.

10.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructions in MIPS32® Architecture Refer-
ence Manual, Volume II: The MIPS32® Instruction Set.

10.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

10.5 Control Instructions

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 239

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

10.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

10.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 12, “24K® Processor Core Instructions” on
page 303 for a listing of CP0 instructions.

Chapter 11

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 240

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

The EJTAG debug logic in the 24K processor core is compliant with EJTAG Specification 3.20 and includes:

1. Standard core debug features

2. Optional hardware breakpoints

3. Standard Test Access Port (TAP) for a dedicated connection to a debug host

4. Optional MIPS Trace capability for program counter/data address/data value trace to On-chip memory or to
Trace probe

This chapter contains the following sections:

• Section 11.1 “Debug Control Register”

• Section 11.2 “Hardware Breakpoints”

• Section 11.3 “Test Access Port (TAP)”

• Section 11.4 “EJTAG TAP Registers”

• Section 11.5 “TAP Processor Accesses”

• Section 11.6 “PC Sampling”

• Section 11.7 “MIPS® Trace”

• Section 11.8 “PDtrace™ Registers (Software Control)”

• Section 11.9 “Trace Control Block (TCB) Registers (Hardware Control)”

• Section 11.10 “Enabling MIPS Trace”

• Section 11.11 “TCB Trigger Logic”

• Section 11.12 “MIPS Trace Cycle-by-Cycle Behavior”

• Section 11.13 “TCB On-Chip Trace Memory”

11.1 Debug Control Register

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 241

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always pro-
vided with the 24K core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of some sources for reset. The 24K core does not distinguish
between soft and hard reset, but typically only soft reset sources in the system would be maskable and hard sources
such as the reset switch would not be. The soft reset masking should only be applied to a soft reset source if that
source can be efficiently masked in the system, thus resulting in no reset at all. If that is not possible, then that soft
reset source should not be masked, since a partial soft reset may cause the system to fail or hang. There is no auto-
matic indication of whether the SRE is effective, so the user must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software that the probe will service dmseg accesses. The reset value in the table below takes effect on any CPU
reset.

Figure 11.1 Debug Control Register
31 30 29 28 18 17 16 15 14 13 11 10 9 8 6 5 4 3 2 1 0

Res ENM Res DB IB IVM DVM Res CBT PCS PCR PCSe INTE NMIE NMIP SRE PE

Table 11.1 Debug Control Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:30 Reserved R 0

ENM 29 Endianess in Kernel and Debug mode
0: Little Endian
1: Big Endian

R Preset

Res 28:18 Reserved R 0

DB 17 Data Break Implemented
0: No Data Break feature implemented
1: Data Break feature is implemented

R Preset

IB 16 Instruction Break Implemented
0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

R Preset

IVM 15 Inverted Value Match
0: Feature is not supported
1: Feature is supported

R 0

DVM 14 Data Value Match Storage
0: Feature is not supported
1: Feature is supported

R 0

Res 13:11 Reserved R 0

 EJTAG Debug Support in the 24K® Core

242 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area,. Data breakpoints can be set to
cause a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 24K core; Instruction breakpoints and Data
breakpoints.

A core may be configured with the following breakpoint options:

CBT 10 Complex Break and Trigger
0: Feature is not implemented
1: Feature is implemented

R 0

PCS 9 Program Counter Sampling Implemented
0: No PC Sampling implemented
1: PC Sampling implemented

R 1

PCR 8:6 PC Sampling Rate: Values from 0 to 7 map to 25 to 212 respectively.
That is, a PC sample is written out every 32, 64, 128, 256, 512,
1024, 2048, or 4096 cycles. The external probe or software is
allowed to set this value to the desired sample rate

R/W 7

PCSe 5 PC Sampling Enable. Set to 1 to enable PC sampling R 0

INTE 4 Interrupt Enable in Normal Mode. This bit provides the hardware
and software interrupt enable for non-debug mode, in addition to
other masking mechanisms:
0: Interrupts disabled.
1: Interrupts enabled (depending on other enabling mechanisms).

R/W 1

NMIE 3 Non-Maskable Interrupt Enable for non-debug mode
0: NMI disabled.
1: NMI enabled.

R/W 1

NMIP 2 NMI Pending Indication.
0: No NMI pending.
1: NMI pending.

R 0

SRE 1 Soft Reset Enable
This bit allows the system to mask soft resets. The core does not
internally mask resets. Rather the state of this bit appears on the
EJ_SRstE external output signal, allowing the system to mask soft
resets if desired.

R/W 1

PE 0 Probe Enable
This bit reflects the ProbEn bit in the EJTAG Control register.
0: No accesses to dmseg allowed
1: EJTAG probe services accesses to dmseg

R Same value as
ProbEn in ECR

(see Table 11.25)

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

11.2 Hardware Breakpoints

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 243

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

• Zero or four instruction breakpoints

• Zero or two data breakpoints

11.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the TLB-based MMU. Finally, a mask
can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a
debug exception and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate
that the match occurred.

11.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data
breakpoint including masking or qualification on the transaction properties. When a data breakpoint matches, a debug
exception and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the
match occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the
breakpoint to match.

11.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown in Table 11.2.

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by n.
The registers for each breakpoint are shown in Table 11.3.

Table 11.2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 11.3 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n

 EJTAG Debug Support in the 24K® Core

244 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shown in Table 11.4.

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by n. The
registers for each breakpoint are shown in Table 11.5.

11.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE
bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

11.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level,
and match also can include an optional compare of ASID. The registers for each instruction breakpoint have the val-
ues and mask used in the compare, and the equation that determines the match is shown below in C-like notation.

IB_match =
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAnIBA) &&
((IBMnISAM | ~(ISAMode ^ IBAnISA))))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

Table 11.4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 11.5 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBVn Data Breakpoint Value n

11.2 Hardware Breakpoints

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 245

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including load/store for coprocessor and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||
((TYPE == store) && ! DBCnNoSB)) &&

DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the ASID
value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown
below.

DB_addr_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword
floating point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 8 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not considered in these
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for
setup of the breakpoint corresponding with endianess.

DB_value_match =
((DATA[7:0] == DBVnDBV[7:0]) || !BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] == DBVnDBV[15:8]) || !BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
((DATA[23:16] == DBVnDBV[23:16]) || !BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2])&&
((DATA[31:24] == DBVnDBV[31:24]) || !BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3])&&
((DATA[39:32] == DBVnDBV[39:32]) || !BYTELANE[4] || DBCnBLM[4] || DBCnBAI[4])&&
((DATA[47:40] == DBVnDBV[47:40]) || !BYTELANE[5] || DBCnBLM[5] || DBCnBAI[5])&&
((DATA[55:48] == DBVnDBV[55:48]) || !BYTELANE[6] || DBCnBLM[6] || DBCnBAI[6])&&
((DATA[63:56] == DBVnDBV[63:56]) || !BYTELANE[7] || DBCnBLM[7] || DBCnBAI[7]))

 EJTAG Debug Support in the 24K® Core

246 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always imprecise.

11.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

11.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions
receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

11.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
dition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion. A matching data breakpoint generates either a precise or imprecise debug exception

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates a match. In this
case the DEPC register and DBD bit in the Debug register points to the instruction that caused the DB_match equa-
tion to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, is not
allowed to complete the load.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed.

11.2 Hardware Breakpoints

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 247

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the rules shown in Table 11.6 apply with respect to updating the BS[n] bits.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise
the debug data break exception will reoccur.

Debug Data Break Load/Store Exception as a Imprecise Debug Exception

An Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match.
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the
Debug register point to an instruction later in the execution flow rather than at the load/store instruction that caused
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruc-
tion.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding BS
bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches because the
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug
Mode.

The SYNC instruction, followed by appropriate spacing must be executed before the BS bits and DDBLImpr/DDB-
SImpr bits are accessed for read or write. This delay ensures that these bits are fully updated.

Table 11.6 Rules for Update of BS Bits on Data Breakpoint Exceptions

Instruction

Breakpoints that Match
Update of BS Bits for Matching Data

Breakpoints

Without Value
Compare With Value Compare

Without Value
Compare With Value Compare

Load/Store One or more None BS bits set for all (No matching break-
points)

Load One or more One or more BS bits set for all Unchanged BS bits since
load of data value does

not occur so match of the
breakpoint cannot be

determined

Load None One or more (No matching break-
points)

BS bits set for all

Store One or more One or more BS bits set for all BS bits set for all

Store None One or more (No matching break-
points)

BS bits set for all

 EJTAG Debug Support in the 24K® Core

248 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Any BS bit set prior to the match and debug exception are kept set, because only debug software can clear the BS
bits.

11.2.7 Breakpoint used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate
a debug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register controls if
an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com-
pared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracing. See Section 11.10 “Enabling MIPS Trace” for details.

11.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 11.7.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

11.2.8.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the instruction breakpoints.

Figure 11.2 IBS Register Format

Table 11.7 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number in range 0 to 3

31 30 29 28 27 24 23 4 3 0

Res ASIDsup Res BCN Res BS

11.2 Hardware Breakpoints

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 249

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.8.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n.

Figure 11.3 IBAn Register Format

11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n.

Table 11.8 IBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Indicates that ASID compare is supported in instruction breakpoints.
0: No ASID compare.
1: ASID compare (IBASIDn register implemented).

1: Supported
0: Not supported

R Fixed MMU - 0
TLB - 1

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 4

Res 23:4 Must be written as zero; returns zero on read. R 0

BS 3:0 Break status for breakpoint n is at BS[n], with n from 0 to 3. The bit
is set to 1 when the condition for the corresponding breakpoint has
matched.

R/W Undefined

31 1 0

IBA ISA

Table 11.9 IBAn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

IBA 31:1 Instruction breakpoint address for condition. R/W Undefined

ISA 0 Instruction breakpoint ISA mode for condition R/W Undefined

 EJTAG Debug Support in the 24K® Core

250 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 11.4 IBMn Register Format

11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with a FM MMU, this register is reserved and reads as 0.

Figure 11.5 IBASIDn Register Format

11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

Figure 11.6 IBCn Register Format

31 1 0

IBM ISAM

Table 11.10 IBMn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

IBM 31:1 Instruction breakpoint address mask for condition:
0: Corresponding address bit not masked.
1: Corresponding address bit masked.

R/W Undefined

ISAM 0 Instruction breakpoint ISA mode mask for condition:
0: ISA mode considered for match condition
1: ISA mode masked

R/W Undefined

31 8 7 0

Res ASID

Table 11.11 IBASIDn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R/W Undefined

31 24 23 22 21 3 2 1 0

Res
ASIDuse

Res
Res TE Res BE

11.2 Hardware Breakpoints

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 251

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 11.13.

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

11.2.9.1 Data Breakpoint Status (DBS) Register

Compliance Level: Implemented if data breakpoints are implemented.

Table 11.12 IBCn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n:
0: Don’t use ASID value in compare
1: Use ASID value in compare

R/W Undefined

Res 22 Must be written as zero; returns zero on read R 0

Res 21:3 Must be written as zero; returns zero on read. R 0

TE 2 Use instruction breakpoint n as triggerpoint:
0: Don’t use it as triggerpoint
1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Use instruction breakpoint n as breakpoint:
0: Don’t use it as breakpoint
1: Use it as breakpoint

R/W 0

Table 11.13 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2124 + 0x100*n DBVHn Data Breakpoint Value High n

n is breakpoint number as 0 or 1

 EJTAG Debug Support in the 24K® Core

252 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

The ASIDsup field indicates whether ASID compares are supported.

Figure 11.7 DBS Register Format

11.2.9.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.

Figure 11.8 DBAn Register Format

11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for
data breakpoint n.

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 11.14 DBS Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data breakpoints.
0: Not supported
1: Supported

R TLB MMU - 1
FM MMU - 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 2

Res 23:2 Must be written as zero; returns zero on read. R 0

BS 1:0 Break status for breakpoint n is at BS[n], with n from 0 to 1. The bit
is set to 1 when the condition for the corresponding breakpoint has
matched.

R/W0 Undefined

31 0

DBA

Table 11.15 DBAn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

11.2 Hardware Breakpoints

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 253

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 11.9 DBMn Register Format

11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with the FM MMU, this register is reserved and reads as 0.

Figure 11.10 DBASIDn Register Format

11.2.9.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

Figure 11.11 DBCn Register Format

31 0

DBM

Table 11.16 DBMn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition:
0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

31 8 7 0

Res ASID

Table 11.17 DBASIDn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined

31 24 23 22 21 14 13 12 11 4 3 2 1 0

Res
ASIDuse

Res
BAI NoSB NoLB BLM Res TE Res BE

 EJTAG Debug Support in the 24K® Core

254 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.9.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

Figure 11.12 DBVn Register Format

Table 11.18 DBCn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n:
0: Don’t use ASID value in compare
1: Use ASID value in compare

R/W Undefined

Res 22 Must be written as zero; returns zero on reads R 0

BAI 21:14 Byte access ignore controls ignore of access to a specific byte.
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1]
ignores access to byte at bits [15:8], etc.
0: Condition depends on access to corresponding byte
1: Access for corresponding byte is ignored

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is not fulfilled on a store
transaction:
0: Condition may be fulfilled on store transaction
1: Condition is never fulfilled on store transaction

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is not fulfilled on a load
transaction:
0: Condition may be fulfilled on load transaction
1: Condition is never fulfilled on load transaction

R/W Undefined

BLM 11:4 Byte lane mask for value compare on data breakpoint. BLM[0]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:
0: Compare corresponding byte lane
1: Mask corresponding byte lane

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Use data breakpoint n as triggerpoint:
0: Don’t use it as triggerpoint
1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on reads. R 0

BE 0 Use data breakpoint n as breakpoint:
0: Don’t use it as breakpoint
1: Use it as breakpoint

R/W 0

31 0

DBV

11.3 Test Access Port (TAP)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 255

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.9.7 Data Breakpoint Value High n (DBVHn) Register

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value High n (DBVHn) register has the value used in the condition for data breakpoint n.

Figure 11.13 DBVHn Register Format

11.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

Table 11.19 DBVn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

31 0

DBVH

Table 11.20 DBVHn Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

DBVH 31:0 Data breakpoint value high for condition. This register provides the
high order bits [63:32] for data value on double-word floating point
loads and stores.

R/W Undefined

 EJTAG Debug Support in the 24K® Core

256 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

11.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 11.14.
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on
the falling edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 11.14.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers,
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction
register, the Capture-IR state is used to capture status information into the Instruction register.

Table 11.21 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is
independent of the processor clock, so the EJTAG probe can drive TCK independently of the
processor clock frequency.
The core signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is
sampled on the rising edge of TCK.
The core signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising
edge of the TCK clock, depending on the TAP controller state.
The core signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The core signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and
instruction in the TAP module, independent of the processor logic. The processor is not reset
by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on
and then leave it high, in case the signal is not available as a pin on the chip. If available on
the chip, then it must be low on the board when the EJTAG debug features are unused by the
probe.

11.3 Test Access Port (TAP)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 257

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

Figure 11.14 TAP Controller State Diagram

11.3.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state as long as
TMS is HIGH.

11.3.2.2 Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot
change when the TAP controller is in this state.

Shift_IR

Select_IR_Scan

Capture_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

1

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Shift_DR

Select_DR_Scan

Capture_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Test-Logic-Reset

Run-Test/Idle

0

1

0

 EJTAG Debug Support in the 24K® Core

258 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

11.3.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state.
A HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the
TAP controller is in this state.

11.3.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller is in this state.

11.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state.

11.3.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The
instruction cannot change while the TAP controller is in this state.

11.3.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

11.3.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in
this state.

11.3.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state.

11.3 Test Access Port (TAP)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 259

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

11.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in
this state.

11.3.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

11.3.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition
to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-
ler is in this state and the instruction register retains its previous state.

11.3.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller is in this state.

11.3.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

11.3.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state.

 EJTAG Debug Support in the 24K® Core

260 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

11.3.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

11.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

11.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

Table 11.22 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selects the TCBTCONTROLC register in the Trace Control Block

0x14 PCSAMPLE Selects the PCSAMPLE register

0x1F BYPASS Bypass mode

11.3 Test Access Port (TAP)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 261

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

11.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shifts 32
bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

11.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG
Probe shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via
TDO.

11.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control regis-
ter(ECR) between TDI and TDO. It can be used in particular to minimize the overhead in switching the instruction in
the instruction register. The first bit shifted out is bit 0 of the ECR.

Figure 11.15 Concatenation of the EJTAG Address, Data and Control Registers

11.3.3.8 EJTAGBOOT Instruction

EJTAGBOOT provides a means to enter debug mode just after a reset, without fetching or executing any instructions
from the normal memory area. This can be used for download of code to a system which has no code in ROM.

When the EJTAGBOOT instruction is given and the Update-IR state is left, the EJTAGBOOT indication will become
active. When EJTAGBOOT is active, a core reset will set the ProbTrap, ProbEn and EjtagBrk bits in the EJTAG Con-
trol register to 1. This will cause a debug exception that is serviced by the probe immediately after reset is deasserted.

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is given, TRST_N is asserted or a ris-
ing edge of TCK occurs when the TAP controller is in Test-Logic-Reset state.

The Bypass register is selected when the EJTAGBOOT instruction is given.

11.3.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left, then the EJTAGBOOT indication will
be cleared. When NORMALBOOT is active (EJTAGBOOT is not active), a core reset will set the ProbTrap, ProbEn
and EjtagBrk bits in the EJTAG Control register to 0.

The Bypass register is selected when the NORMALBOOT instruction is given.

Address 0

Data 0

EJTAG Control 0 TDO

TDI

 EJTAG Debug Support in the 24K® Core

262 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 11.16.

Figure 11.16 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

11.3.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.13 TCBCONTROLC Instruction

This instruction is used to select the TCBCONTROLC register to be connected between TDI and TDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.14 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

11.3.3.15 PCSAMPLE Instruction

This instruction is used to select the PCSAMPLE register to be connected between TDI and TDO. This register is
always implemented.

11.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

11.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TDI to
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the
TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is

TDI Data TDOFastdata0

11.4 EJTAG TAP Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 263

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data regis-
ter scan operation. A list of the implemented instructions are listed in Table 11.22.

11.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control sig-
nals to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the
output of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the
write bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

• FastData Register

11.4.2.1 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to
satisfy the IEEE 1149.1 Bypass instruction requirement.

11.4.2.2 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 11.23 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out of the ID
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE instruc-
tion.

Figure 11.17 Device Identification Register Format
31 28 27 12 11 1 0

Version PartNumber ManufID R

 EJTAG Debug Support in the 24K® Core

264 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE
instruction.

Figure 11.18 Implementation Register Format

Table 11.23 Device Identification Register

Fields

Description
Read /
Write Reset StateName Bit(s)

Version 31:28 Version (4 bits)
This field identifies the version number of the processor
derivative.

 R EJ_Version[3:0]

PartNumber 27:12 Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A.

 R EJ_ManufID[10:0]

R 0 reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 0

EJTAGver reserved DINTsup ASIDsize reserved MIPS16 0 NoDMA reserved

Table 11.24 Implementation Register Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

EJTAGver 31:29 EJTAG Version.
3: Version 3.1

R 3

reserved 28:25 reserved R 0

DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported:
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation:
0: No ASID in implementation
2: 8-bit ASID
1,3: Reserved

R TLB MMU- 2
FM MMU- 0

reserved 20:17 reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented
0: No MIPS16 support
1: MIPS16 implemented

R 1

reserved 15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0

11.4 EJTAG TAP Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 265

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets by
e.g. TRST_N. TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value
when the TCK applies. The first 5 TCK clocks after CPU resets may result in reset of the bits, due to synchronization
between clock domains.

Figure 11.19 EJTAG Control Register Format
31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res Res Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk Res DM Res

Table 11.25 EJTAG Control Register Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CPU reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.
The Rocc bit will keep the 1 value as long as reset is applied.
This bit must be cleared by the probe, t Ô(knowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state
unless Rocc is 0, or written to 0. This is in order to ensure proper
handling of processor access.

R/W 1

 EJTAG Debug Support in the 24K® Core

266 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two address bits
of the Address register to determine the size of a processor access
transaction. The bits are only valid when processor access is pend-
ing.

Note: LE=little endian, BE=big endian, the byte# refers to the byte
number in a 32-bit register, where byte 3 = bits 31:24; byte 2 = bits
23:16; byte 1 = bits 15:8; byte 0=bits 7:0, independently of the endi-
aness.

R Undefined

Res 28:24 reserved R 0

Res 23 reserved R 0

Doze 22 Doze state
The Doze bit indicates any kind of low power mode. The value is
sampled in the Capture-DR state of the TAP controller:
0: CPU not in low power mode.
1: CPU is in low power mode
Doze includes the Reduced Power (RP) and WAIT power-reduction
modes.

R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or
stopped. The value is sampled in the Capture-DR state of the TAP
controller:
0: Internal system clock is running
1: Internal system clock is stopped

R 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)

00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1, 0)

00 11 Triple (LE, bytes 2, 1, 0; BE, bytes 3,
2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,
0)

All others Reserved

11.4 EJTAG TAP Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 267

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

PerRst 20 Peripheral Reset
When the bit is set to 1, it is only guaranteed that the peripheral reset
has occurred in the system when the read value of this bit is also 1.
This is to ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be read as 0
before it is guaranteed that the indication is cleared in the CPU clock
domain also.
This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a read or
write transaction, and the bit is only valid while PrAcc is set:
0: Read transaction
1: Write transaction

R Undefined

PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA) to the
EJTAG memory is pending:
0: No pending processor access
1: Pending processor access
The probe’s software must clear this bit to 0 to indicate the end of
the PA. Write of 1 is ignored.
A pending Processor Access is cleared when Rocc is set, but another
PA may occur just after the reset if a debug exception occurs.
Finishing a Processor Access is not accepted while the Rocc bit is
set. This is to avoid that a Processor Access occurring after the reset
is finished due to indication of a Processor Access that occurred
before the reset.
The FASTDATA access can clear this bit.

R/W0 0

Res 17 reserved R 0

PrRst 16 Processor Reset (Implementation dependent behavior)
When the bit is set to 1, then it is only guaranteed that this setting
has taken effect in the system when the read value of this bit is also
1. This is to ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be read as 0
before it is guaranteed that the indication is cleared in the CPU clock
domain also.
This bit controls the EJ_PrRst signal. If the signal is used in the
system, then it must be ensured that both the processor and all
devices required for a reset are properly reset. Otherwise the system
may fail or hang. The bit resets itself, since the EJTAG Control reg-
ister is reset by a reset.

R/W 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

 EJTAG Debug Support in the 24K® Core

268 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is handled by
the probe so processor accesses are answered:
0: The probe does not handle EJTAG memory transactions
1: The probe does handle EJTAG memory transactions
It is an error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the proces-
sor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the ProbEn bit, bit 0,
in the Debug Control Register (DCR).
The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it is ensured that change of the ProbEn prior to setting the
EjtagBrk bit will have effect for the debug handler executed due to
the debug exception.
The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

ProbTrap 14 Probe Trap
This bit controls the location of the debug exception vector:
0: In normal memory 0xBFC0.0480
1: In EJTAG memory at 0xFF20.0200 in dmseg
Valid setting of the ProbTrap bit depends on the setting of the
ProbEn bit, see comment under ProbEn bit.
The ProbTrap should not be set to 1, for debug exception vector in
EJTAG memory, unless the ProbEn bit is also set to 1 to indicate
that the EJTAG memory may be accessed.
The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it is ensured that change of the ProbTrap bit prior to setting the
EjtagBrk bit will have effect for the EjtagBrk.
The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

Res 13 reserved R 0

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the processor, unless
the CPU was in debug mode or another debug exception occurred.
When the debug exception occurs, the processor core clock is
restarted if the CPU was in low power mode. This bit is cleared by
hardware when the debug exception is taken.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

Res 11:4 reserved R 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

11.4 EJTAG TAP Registers

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 269

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

11.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
this register is only valid when a processor access write is pending. The register is used to provide the data value for a
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure 11.20. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

Figure 11.20 Endian Formats for the PAD Register

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode
1: Processor is in debug mode
The bit is sampled in the Capture-DR state of the TAP controller.

R 0

Res 2:0 Reserved R 0

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit(s)

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

 EJTAG Debug Support in the 24K® Core

270 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

11.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

Figure 11.21 Fastdata Register Format

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to
see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

0

SPrAcc

Table 11.26 Fastdata Register Field Description

Fields

Description
Read /
Write

Power-up
StateName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fastdata access.
The PrAcc bit in the EJTAG Control register is overwritten with
zero when the access succeeds. (The access succeeds if PrAcc is
one and the operation address is in the legal dmseg Fastdata area.)
When successful, a one is shifted out. Shifting out a zero indicates
a Fastdata access failure.
Shifting in a one does not complete the Fastdata access and the
PrAcc bit is unchanged. Shifting out a one indicates that the access
would have been successful if allowed to complete and a zero indi-
cates the access would not have successfully completed.

R/W Undefined

11.5 TAP Processor Accesses

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 271

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 11.27 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access. .

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

11.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken from
the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs in a
serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a reset.

11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug excep-
tion: 0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)

Table 11.27 Operation of the FASTDATA Access

Probe
Operation

Address
Match
Check

PrAcc in
the Control

Register

LSB
(SPrAcc)
Shifted In

Action in
the Data
Register

PrAcc
Changes to

Lsb Shifted
Out

Data
Shifted Out

Download
using FAST-
DATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

 EJTAG Debug Support in the 24K® Core

272 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to
the processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor has to
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to
the processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

11.6 PC Sampling

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 273

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

11.6 PC Sampling

The PC sampling feature enables sampling of the PC value periodically. This information can be used for statistical
profiling of the program akin to gprof. This information is also very useful for detecting hot-spots in the code. PC
sampling cannot be turned on or off, that is, the PC value is continually sampled.

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 9(PCS).The sam-
pled PC values are written into a TAP register. The old value in the TAP register is overwritten by a new value even
if this register has not be read out by the debug probe. The sample rate is specified in a manner similar to the PDtrace
synchronization period, with three bits. These bits in the Debug Control register are 8:6 and called PCSR (PC Sample

Rate). These three bits take the value 25 to 212 similar to SyncPeriod. Note that the processor samples PC even when
it is asleep, that is, in a WAIT state. This permits an analysis of the amount of time spent by a processor in WAIT
state which may be used for example to revert to a low power mode during the non-execution phase of a real-time
application.

The sampled values includes a new data bit, the PC, the ASID of the sampled PC as well as the Thread Context id if
the processor implements the MIPS MT ASE. Figure shows the format of the sampled values in the TAP register
PCsample. The new data bit is used by the probe to determine if the PCsample register data just read out is new or
already been read and must be discarded.

Figure 11.22 TAP Register PCsample Format

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

11.6.1 PC Sampling in Wait State

When the processor is in a WAIT state to save power for example, an external agent might want to know how long it
stays in the WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, when in a
WAIT state, the processor must simply switch the New bit to 1 every time it is set to 0 by the probe hardware. Hence,
the external agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains
in the WAIT state. When the processor leaves the WAIT state, then counting is resumed as before.

11.7 MIPS® Trace

MIPS Trace enables the ability to trace program flow, load/store addresses and load/store data. Several run-time
options exist for the level of information which is traced, including tracing only when in specific processor modes
(e.g., UserMode or KernelMode). MIPS Trace is an optional block in the 24K core. If MIPS Trace is not imple-
mented, the rest of this chapter is irrelevant. If MIPS Trace is implemented, the CP0 Config3TL bit is set.

48 41 40 33 32 1 0

TC (for MIPS MT
processors only)

ASID PC New

 EJTAG Debug Support in the 24K® Core

274 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

There are two primary blocks involved in the MIPS Trace solution. The pipeline specific part of MIPS Trace is called
the PDtrace module. It extracts the trace information from the processor pipeline, and presents it to a pipeline-inde-
pendent module called the Trace Control Block (TCB). The TCB and the interface between the two blocks (PDtrace
interface) are described in The PDtrace™ Interface and Trace Control Block Specification [9] While working closely
together, the two parts of MIPS Trace are controlled separately by software. Figure 11.23 shows an overview of the
MIPS Trace modules within the core.

Figure 11.23 MIPS® Trace Modules in the 24K® Core

To some extent, the two modules both provide similar trace control features, but the access to these features is quite
different. The PDtrace controls can only be reached through access to CP0 registers. The TCB controls can only be
reached through EJTAG TAP access. The TCB can then control what is traced through the PDtrace™ Interface.

Before describing the MIPS Trace implemented in the 24K core, some common terminology and basic features are
explained. The remaining sections of this chapter will then provide a more thorough explanation.

11.7.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes.
The terminology is then used elsewhere in the document.

DebugMode ← (DebugDM = 1)
ExceptionMode ← (not DebugMode) and ((StatusEXL = 1) or (StatusERL = 1))
KernelMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#00)
SupervisorMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#01)
UserMode ← (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#10)

11.7.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms “software control” and “hardware control” are used to refer to
the method for how trace is controlled. Software control is when the CP0 register TraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCB, via the PDtrace inter-
face, is used to select the trace modes. The TraceControlTS bit determines whether software or hardware control is
active. Even in Software control mode, Trace logic will need TCK to toggle atleast once before it is turned on. It is
assumed that EJTAG probe will be connected while using Trace and probe reset sequence would toggle TCK. In
order to extract Trace data out of TCB, TCBCONTROLB.En should be set to 1 even in “software control” mode.

Pipeline specific PDtrace™
module

Pipeline independant
Trace Contol Block (TCB) modulePDtrace™ Interface

Control pathCP0 control bus EJTAG TAP access

Extracted Pipeline
information

Back-stall to
pipeline

On-chip Trace
Memory (optional)

Trace
Probe

24K boundary
(tpz_top)

Trace
compression and

alignment
Trace

extraction

TAP
Probe

11.7 MIPS® Trace

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 275

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.7.3 Trace Information

The main object of trace is to show the exact program flow from a specific program execution or just a small window
of the execution. In MIPS Trace this is done by providing the minimal cycle-by-cycle information necessary on the
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the type of
information traced:

• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag.
The PC is implicitly pointing to the next instruction.

• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static program
image.

• When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is
traced.

• When a completing instruction is executed in a different processor mode from the previous one, the new
processor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and
full PC.

All the instruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possi-
ble processor modes are explained in Section 11.7.1 “Processor Modes”.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the
dynamic flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used.
Physical memory location will typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a
safety check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this syn-
chronization is cycle based and programmable.

1. A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.

 EJTAG Debug Support in the 24K® Core

276 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.7.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace.

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to
compress the information which must be sent.

• When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full address if load/store address tracing is enabled.

11.7.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 11.7.1 “Processor Modes”. In addition to this, trace can be
turned on globally for all process, or only for specific processes by tracing only specific masked values of the ASID
found in EntryHiASID.

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn
them all on. Another trigger point can disable this override again.

11.7.6 Programmable Trace Information Options

The processor mode changes are always traced:

• On the first instruction.

• On any synchronization instruction.

• When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:

• PC information only.

• PC and cross product of load/store address/data

If the full internal state of the processor is known prior to trace start, PC and load data are the only information
needed to recreate all register values on an instruction by instruction basis.

11.7 MIPS® Trace

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 277

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.7.6.1 User Data Trace

In addition to the above, a special CP0 register, UserTraceData, can generate a data trace. When this register is writ-
ten, and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data information.

Remark: The User Data is sent even if the processor is operating in an un-traced processor mode.

11.7.7 Enable Trace to Probe On-chip Memory

When trace is On, based on the options listed in Section 11.7.5 “Programmable Processor Trace Mode Options”, the
trace information is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to
transmit the trace information to the Trace probe or to on-chip trace memory, by having the TCBCONTROLBEN bit
set. It is possible to enable and disable the TCB in two ways:

• Set/clear the TCBCONTROLBEN bit via an EJTAG TAP operation.

• Initialize a TCB trigger to set/clear the TCBCONTROLBEN bit.

11.7.8 TCB Trigger

The TCB can optionally include 0 to 8 triggers. A TCB trigger can be programmed to fire from any combination of:

• Probe Trigger Input to the TCB.

• Chip-level Trigger Input to the TCB.

• Processor entry into DebugMode.

When a trigger fires it can be programmed to have any combination of actions:

• Create Probe Trigger Output from TCB.

• Create Chip-level Trigger Output from TCB.

• Set, clear, or start countdown to clear the TCBCONTROLBEN bit (start/end/about trigger).

• Put an information byte into the trace stream.

11.7.9 Cycle-by-Cycle Information

All of the trace information listed in Section 11.7.3 “Trace Information” and Section 11.7.4 “Load/Store Address
and Data Trace Information”, will be collected from the PDtrace™ interface by the TCB. The trace will then be com-
pressed and aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact
cycle-by-cycle relationship between each instruction. If excluded, the number of bits required in the trace information
from the TCB is reduced, and each trace word will only contain information from completing instructions.

11.7.10 Instruction and Data Cache Miss Tracing

It is possible to embed information about Instruction and/or Data cache misses into the trace. There are limitations in
the core’s ability to track this and put useful information into the trace.

 EJTAG Debug Support in the 24K® Core

278 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

For the instruction cache miss indicator

• The instruction cache miss indicator is based on whether the instruction is pulled from the cache or the fill buffer.
On a cache miss, the fetch is restarted when the data comes back from the BIU and the instructions will come
from the Fill Buffer. The miss flag is only set for the first fetch that hits out of the FB to avoid marking every
fetch from the line a miss. However, two instructions can be fetched per cycle and both will be marked as a miss.
If branching to the middle of a dword though, only 1 miss will be seen.

• The IFU can prefetch down a speculative path which might not be immediately executed. These speculative
fetches are filled into the cache. Subsequently, when the code accesses the same address, it is possible that the
instruction will hit in the cache even if that instruction was being executed for the very first time.

For the data cache miss indicator:

• The ALU and LSU pipelines can run out of sync with each other. PDtrace instruction capture is done at the end
of the ALU pipe, but if the LSU pipe had been stalled, the cache miss info will not yet be known. Thus, this miss
indicator is instead sent with the data value.

• For loads, this allows an accurate miss indication as the miss state must be resolved before we have the data.

• This does not help for stores though as the store data value is captured with the instruction execution

11.7.11 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. This information is collected into six
different Trace Formats (TF1 to TF6). One important feature is that all Trace Formats have at least one non-zero bit.

11.7.12 Trace Word Format

After the PDtrace data has been converted into Trace Formats, the trace information must be streamed to either
on-chip trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates
how to store this information into an on-chip memory of fixed width without too much wasted space. It also compli-
cates how to transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory
overhead and or bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW is built of all zeros. A TW which contains
one or more valid TF’s is guaranteed to have a non-zero value on one of the four least significant bits [3:0]. During
operation of the TCB, each TW is built from the TF’s generated each clock cycle. When all 64 bits are used, the TW
is full and can be sent to either on-chip trace memory or to the trace probe.

11.8 PDtrace™ Registers (Software Control)

The CP0 registers associated with PDtrace are listed in Table 11.28 and described in Chapter 6, “CP0 Registers of the
24K® Core” on page 146

Table 11.28 A List of Coprocessor 0 Trace Registers

Register
Number Sel

Register
Name Reference

23 1 TraceControl Section 6.2.29 “Trace Control Register (CP0 Register 23, Select 1)”

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 279

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation are listed in Table 11.29 and Table 11.30. These registers are accessed
via the EJTAG TAP interface.

11.9.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
core’s tracing logic. Most of the control is done using the TCBCONTROLA register.

23 2 TraceControl2 Section 6.2.30 “Trace Control2 Register (CP0 Register 23, Select 2)”

23 3 UserTraceData Section 6.2.31 “User Trace Data Register (CP0 Register 23, Select 3)”

23 4 TraceBPC Section 6.2.32 “TraceIBPC Register (CP0 Register 23, Select 4)”

Table 11.29 TCB EJTAG Registers

EJTAG
Register Name Description Implemented

0x10 TCBCONTROLA Control register in the TCB mainly used for controlling the trace input
signals to the core on the PDtrace interface. See Section
11.9.1 “TCBCONTROLA Register”.

Yes

0x11 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with
the trace information. The REG [25:21] field in this register specifies the
number of the TCB internal register accessed by the TCBDATA register.
A list of all the registers that can be accessed by the TCBDATA register
is shown in Table 11.30. See Section 11.9.2 “TCBCONTROLB
Register”.

Yes

0x12 TCBDATA This is used to access registers specified by the REG field in the
TCBCONTROLB register. See Section 11.9.3 “TCBDATA Register”.

Yes

0x13 TCBCONTROLC Control Register in the TCB used to control and hold tracing information.
See Section 11.9.4 “TCBCONTROLC Register”.

Yes

Table 11.30 Registers Selected by TCBCONTROLBREG

TCBCONTROLBREG field Name Reference Implemented

0 TCBCONFIG Section 11.9.5 “TCBCONFIG Register (Reg 0)” Yes

4 TCBTW Section 11.9.6 “TCBTW Register (Reg 4)” Yes
if on-chip memory

exists.
Otherwise No

5 TCBRDP Section 11.9.7 “TCBRDP Register (Reg 5)”

6 TCBWRP Section 11.9.8 “TCBWRP Register (Reg 6)”

7 TCBSTP Section 11.9.9 “TCBSTP Register (Reg 7)”

16-23 TCBTRIGx Section 11.9.10 “TCBTRIGx Register (Reg 16-23)” Only the number
indicated by

TCBCONFIGTRIG

are implemented.

Table 11.28 A List of Coprocessor 0 Trace Registers (Continued)

Register
Number Sel

Register
Name Reference

 EJTAG Debug Support in the 24K® Core

280 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The TCBCONTROLA register is written by an EJTAG TAP controller instruction, TCBCONTROLA (0x10).

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 11.31.

Figure 11.24 TCBCONTROLA Register Format
31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

0 VModes ADW SyP TB IO D E S K U ASID G TFCR TLSM TIM On

Table 11.31 TCBCONTROLA Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:26 Reserved. Must be written as zero; returns zero on read. R 0

VModes 25:24 This field specifies the type of tracing that is supported by the pro-
cessor, as follows:

This field is preset to the value of PDO_ValidModes.

R 10

ADW 23 PDO_AD bus width.
0: The PDO_AD bus is 16 bits wide.
1: The PDO_AD bus is 32 bits wide.

R 1

SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchronization
information is to be sent is defined as shown in the table below.

This field defines the value on the PDI_SyncPeriod signal.

R/W 000

TB 19 Trace All Branches. When set to one, this field indicates that the
core must trace either full or incremental PC values for all branches.
When set to zero, only the unpredictable branches are traced.
This field defines the value on the PDI_TraceAllBranch signal.

R/W Undefined

Encoding Meaning

00 PC tracing only

01 PC and Load and store address tracing only

10 PC, load and store address, and load and store data.

11 Reserved

SyP Sync Period

000 25

001 26

010 27

011 28

100 29

101 210

110 211

111 212

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 281

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

IO 18 Inhibit Overflow. This bit is used to indicate to the core trace logic
that slow but complete tracing is desired. Hence, the core tracing
logic must not allow a FIFO overflow and discard trace data. This is
achieved by stalling the pipeline when the FIFO is nearly full so that
no trace records are ever lost.
This field defines the value on the PDI_InhibitOverflow signal.

R/W Undefined

D 17 When set to one, this enables tracing in Debug mode, i.e., when the
DM bit is one in the Debug register. For trace to be enabled in
Debug mode, the On bit must be one, and either the G bit must be
one, or the current process must match the ASID field in this regis-
ter.
When set to zero, trace is disabled in Debug mode, irrespective of
other bits.
This field defines the value on the PDI_DM signal.

R/W Undefined

E 16 This controls when tracing is enabled. When set, tracing is enabled
when either of the EXL or ERL bits in the Status register is one,
provided that the On bit (bit 0) is also set, and either the G bit is set,
or the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_E signal.

R/W Undefined

S 15 When set, this enables tracing when the core is in Supervisor mode
as defined in the MIPS32 or MIPS64 architecture specification. This
is provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_S signal.

R/W Undefined

K 14 When set, this enables tracing when the On bit is set and the core is
in Kernel mode. Unlike the usual definition of Kernel Mode, this bit
enables tracing only when the ERL and EXL bits in the Status reg-
ister are zero. This is provided the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matches the ASID
field in this register.
This field defines the value on the PDI_K signal.

R/W Undefined

U 13 When set, this enables tracing when the core is in User mode as
defined in the MIPS32 or MIPS64 architecture specification. This is
provided the On bit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.
This field defines the value on the PDI_U signal.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is
one, this field is ignored.
This field defines the value on the PDI_ASID signal.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes,
provided that other enabling functions (like U, S, etc.,) are also true.
This field defines the value on the PDI_G signal.

R/W Undefined

TFCR 3 When set, this indicates to the PDtrace interface that complete infor-
mation about instruction if it can be a function call or return should
be traced, that is signal PDI_TraceFuncCR is asserted as long as
this value is set to 1. It also indicates to the TCB that the optional Fcr
bit must be traced in the appropriate trace formats

R/W Undefined

Table 11.31 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 EJTAG Debug Support in the 24K® Core

282 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do with
the trace information received.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 11.32.

Figure 11.25 TCBCONTROLB Register Format

TLSM 2 When set, this indicates to the PDtrace interface that complete infor-
mation about Load and Store data cache miss should be traced, that
is signal PDI_TraceLSMiss is asserted as long as this value is set to
1. It also indicates to the TCB that the optional LSm bit must be
traced in the appropriate trace formats.

R/W Undefined

TIM 1 When set, this indicates to the PDtrace interface that complete infor-
mation about instruction cache miss should be traced, that is signal
PDI_TraceIMiss is asserted as long as this value is set to 1. It also
indicates to the TCB that the optional Im bit must be traced in the
appropriate trace formats.

R/W Undefined

On 0 This is the global trace enable switch to the core. When zero, tracing
from the core is always disabled, unless enabled by core internal
software override of the PDI_* input pins.
When set to one, tracing is enabled whenever the other enabling
functions are also true.
This field defines the value on the PDI_TraceOn signal.

R/W 0

31 30 28 27 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 RM TR BF TM TLSIF CR Cal TWSrcVal CA OfC EN

Table 11.32 TCBCONTROLB Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

0 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrc-
Width

27:26 Used to indicate the number of bits used in the source field of the Trace Word,
this is a configuration option of the core that cannot be modified by software.
00 - zero source field width
01 - two bit source field width
10 - four bit source field width
11 - reserved for future use
This field can either be 00 or 01 for the 24K core.

R Preset

REG 25:21 Register select: This field select the registers accessible through the
TCBDATA register. Legal values are shown in Table 11.30.

R/W 0

Table 11.31 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 283

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

WR 20 Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register is only read.

R/W 0

0 19:17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip memory is set to
point to the oldest memory location written since the last reset of pointers.
Subsequent access to the TCBTW register (through the TCBDATA register),
will automatically increment the read pointer (TCBRDP register) after each
read. [Note: The read pointer does not auto-increment if the WR field is one.]
When the write pointer is reached, this bit is automatically reset to 0, and the
TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by setting the
TR bit or by reading the last Trace word in TCBTW.
This bit is reserved if on-chip memory is not implemented.

R/W1 0

TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace memory are
reset to zero. Also the RM bit is reset to 0.
This bit is automatically de-asserted back to 0, when the reset is completed.
This bit is reserved if on-chip memory is not implemented.

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to external software in
the situation that the on-chip trace memory is being deployed in the
trace-from and trace-to mode. (See Section 11.13 “TCB On-Chip Trace
Memory”)
This bit is cleared when writing 1 to the TR bit.
This bit is reserved if on-chip memory is not implemented.

R 0

TM 13:12 Trace Mode. This field determines how the trace memory is filled when using
the simple-break control in the PDtrace interface to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled, continuously wrapping
around and overwriting older Trace Words, as long as there is trace data com-
ing from the core.
In Trace-From mode, the on-chip trace memory is filled from the point that
PDO_IamTracing is asserted, and until the on-chip trace memory is full.
In both cases, de-asserting the EN bit in this register will also stop fill to the
trace memory.
If a TCBTRIGx trigger control register is used to start/stop tracing, then this
field should be set to Trace-To mode.
This bit is reserved if on-chip memory is not implemented.

R/W 0

TLSIF 11 When set, this indicates to the TCB that information about Load and Store
data cache miss, instruction cache miss, and function call are to be taken from
the PDtrace interface and trace them out in the appropriate trace formats as the
three optional bits LSm, Im, and Fcr.

R/W 0

Table 11.32 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved

 EJTAG Debug Support in the 24K® Core

284 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encoding is shown in
Table 11.33.
Remark: As the Probe interface works in double data rate (DDR) mode, a 1:2
ratio indicates one data packet sent per core clock rising edge.
This bit is reserved if off-chip trace option is not implemented.

R/W 100

Cal 7 Calibrate off-chip trace interface.
If set to one, the off-chip trace pins will produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern is repli-
cated for each set of 4 pins. The pattern repeats from top to bottom until the
Cal bit is de-asserted.

Note: The clock source of the TCB and PIB must be running.
This bit is reserved if off-chip trace option is not implemented.

R/W 0

TWSrcVal 6:3 These bits are used to indicate the value of the TW source field that will be
traced if TWSrcWidth indicates a source bit field width of 2 or 4 bits. Note
that if the field is 2 bits, then only bits 4:3 of this field will be used in the TW.

R Preset

CA 2 Cycle accurate trace.
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and remove bit zero
from all transmitted TF’s.
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats.

R/W 0

Table 11.32 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Calibrations pattern

3 2 1 0

T
hi

s
pa

tte
rn

 is
 r

ep
lic

at
ed

 fo
r

ev
er

y
4

bi
ts

of
T

R
_D

AT
A

 p
in

s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 285

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table
11.30. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLBWR bit is set. For read-only registers, TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 11.34. The width of
TCBDATA is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 11.26 TCBDATA Register Format

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If set to 0, trace info is sent to on-chip memory.
This bit is read only if a single memory option exists (either off-chip or
on-chip only).

R/W Preset

EN 0 Enable trace.
This is the master enable for trace to be generated from the TCB. This bit can
be set or cleared, either by writing this register or from a start/stop/about trig-
ger.
When set to 1, trace information is sampled on the PDO_* pins. Trace Words
are generated and sent to either on-chip memory or to the Trace Probe. The
target of the trace is selected by the OfC bit.
When set to 0, trace information on the PDO_* pins is ignored. A potential
TF6-stop (from a stop trigger) is generated as the last information, the TCB
pipe-line is flushed, and trace output is stopped.

R/W 0

Table 11.33 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of core clock)

001 4:1 (Trace clock is four times that of core clock)

010 2:1 (Trace clock is double that of core clock)

011 1:1 (Trace clock is same as core clock)

100 1:2 (Trace clock is one half of core clock)

101 1:4 (Trace clock is one fourth of core clock)

110 1:6 (Trace clock is one sixth of core clock)

111 1:8 (Trace clock is one eighth of core clock)

31(63) 0

Data

Table 11.32 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 EJTAG Debug Support in the 24K® Core

286 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger) can therefore manipulate the trace output by
writing to this register.

The TCBCONTROLC register is written by the EJTAG TAP controller instruction, TCBCONTROLC (0x13).

The format of the TCBCONTROLC register is shown below, and the fields are described in Table 11.35.

Figure 11.27 TCBCONTROLC Register Format

Table 11.34 TCBDATA Register Field Descriptions

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the
TCBCONTROLBREG field

Only writable if
TCBCONTROLBWR

is set

0

31 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0

Res Mode Res Res Res Res Res Res Res Res Res

Table 11.35 TCBCONTROLC Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Res 31:28 Reserved for future use. Must be written as zero; returns zero on
read.

0 0

Mode 27:23 When tracing is turned on, this signal specifies what information is
to be traced by the core. It uses 5 bits, where each bit turns on a trac-
ing of a specific tracing mode.

The table shows what trace value is turned on when that bit value is
a 1. If the corresponding bit is 0, then the Trace Value shown in col-
umn two is not traced by the processor.
On the 24K core PC tracing is always enabled, regardless of the
value on bit 23.
This field defines the value on the PDI_TraceMode signal.

R/W 0

Res 22:0 Reserved for future use. Must be written as zero; returns zero on
read.

0 0

Bit # Set Trace The Following

0 PC

1 Load address

2 Store address

3 Load data

4 Store data

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 287

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9.5 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the field is described in Table 11.36.

Figure 11.28 TCBCONFIG Register Format
31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

Table 11.36 TCBCONFIG Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision,
TCBCONFIG1 does not exist and this bit always reads zero.

R 0

0 30:25 Reserved. Must be written as zero; returns zero on read. R 0

TRIG 24:21 Number of triggers implemented. This also indicates the number of
TCBTRIGx registers that exist.

R Preset
Legal values are 0

- 8

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the
on-chip trace memory.

The size in bytes is given by 2(SZ+8), implying that the minimum
size is 256 bytes and the largest is 8Mb.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encoding is
shown in Table 11.33.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio encoding is
shown in Table 11.33.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace inter-
face TR_DATA pins. The number of TR_DATA pins is encoded, as
shown in the table.

This field is preset based on input signals to the TCB and the actual
capability of the TCB.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

PW Number of bits used on TR_DATA

00 4 bits

01 8 bits

10 16 bits

11 reserved

 EJTAG Debug Support in the 24K® Core

288 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9.6 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to the
next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBTW register is shown below, and the field is described in Table 11.37.

Figure 11.29 TCBTW Register Format

11.9.7 TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 11.38. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

OnT 5 When set, this bit indicates that on-chip trace memory is present.
This bit is preset based on the selected option when the TCB is
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present.
This bit is preset based on the selected option when the TCB is
implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

R Preset

REV 3:0 Revision of TCB. An implementation that conforms to PDtrace ver-
sion 4.x must has a value of 1 for this field.

R 1

63 0

Data

Table 11.37 TCBTW Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 63:0 Trace Word R/W 0

Table 11.36 TCBCONFIG Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 289

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 11.30 TCBRDP Register Format

11.9.8 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBWRP register is shown below, and the fields are described in Table 11.39. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always
zero.

Figure 11.31 TCBWRP Register Format

11.9.9 TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This register points to the on-chip trace memory address at which
the oldest TW is located. This pointer is reset to zero when the TCBCONTROLBTR bit is written to 1. If a continuous
trace to on-chip memory wraps around the on-chip memory, TSBSTP will have the same value as TCBWRP.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBSTP register is shown below, and the fields are described in Table 11.40. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

31 n+1 n 0

Address

Table 11.38 TCBRDP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Address

Table 11.39 TCBWRP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

 EJTAG Debug Support in the 24K® Core

290 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 11.32 TCBSTP Register Format

11.9.10 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x is a single digit number
from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger
occurs. Please also read Section 11.11 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 11.41.

Figure 11.33 TCBTRIGx Register Format

31 n+1 n 0

Address

Table 11.40 TCBSTP Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro PDTro 0 DM CHTri PDTri Type FO TR

Table 11.41 TCBTRIGx Register Field Descriptions

Fields

Description
Read /
Write Reset StateNames Bits

TCBinfo 31:24 This field is to be used in a possible TF6 trace format when this trig-
ger fires.

R/W 0

Trace 23 When set, generate TF6 trace information when this trigger fires.
Use TCBinfo field for the TCBinfo of TF6 and use Type field for
the two MSB of the TCBtype of TF6. The two LSB of TCBtype are
00.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by a simultaneous trigger. If so, the
read value will be 0. If the write value was 0, the read value is
always 0. This special read value is valid until the TCBTRIGx regis-
ter is written.

R/W 0

0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

CHTro 15 When set, generate a single cycle strobe on TC_ChipTrigOut when
this trigger fires.

R/W 0

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut
when this trigger fires.

R/W 0

11.9 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 291

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6 When set, this Trigger will fire when a rising edge on the Debug
mode indication from the core is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

CHTri 5 When set, this Trigger will fire when a rising edge on
TC_ChipTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

PDTri 4 When set, this Trigger will fire when a rising edge on
TC_ProbeTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

Table 11.41 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateNames Bits

 EJTAG Debug Support in the 24K® Core

292 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9.11 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

Type 3:2 Trigger Type: The Type indicates the action to take when this trigger
fires. The table below show the Type values and the Trigger action.

The actual action is to set or clear the TCBCONTROLBEN bit. A

Start trigger will set TCBCONTROLBEN, a End trigger will clear

TCBCONTROLBEN. The About trigger will clear

TCBCONTROLBEN half way through the trace memory, from the

trigger. The size determined by the TCBCONFIGSZ field for

on-chip memory. Or from the TCBCONTROLASyP field for

off-chip trace.
If Trace is set, then a TF6 format is added to the trace words. For
Start and Info triggers this is done before any other TF’s in that same
cycle. For End and About triggers, the TF6 format is added after any
other TF’s in that same cycle.
If the TCBCONTROLBTM field is implemented it must be set to

Trace-To mode (00), for the Type field to control on-chip trace fill.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11. If
the write value was 11 the read value is always 11. This special read
value is valid until the TCBTRIGx register is written.

R/W 0

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is
de-asserted. When de-asserted this trigger will fire each time one of
the trigger sources indicates trigger.

R/W 0

TR 0 Trigger happened. When set, this trigger fired since the TR bit was
last written 0.
This bit is used to inspect whether the trigger fired since this bit was
last written zero.
When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but more
than one is possible.
Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

R/W0 0

Table 11.41 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of trace.

01 Trigger End: Trigger end-point of trace.

10 Trigger About: Trigger center-point of trace.

11 Trigger Info: No action trigger, only for trace info.

11.10 Enabling MIPS Trace

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 293

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2. EJ_TRST_N input is asserted low.

11.10 Enabling MIPS Trace

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

11.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 24K core, then these breakpoint can be used
as triggers to start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are
capable of only generating an internal trigger to the trace logic. This is done by only setting the TE bit and not the BE
bit in the Breakpoint Control register. Please see Section 11.2.8.5 “Instruction Breakpoint Control n (IBCn)
Register” and Section 11.2.9.5 “Data Breakpoint Control n (DBCn) Register”, for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace
action when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a
start or a stop trigger to the trace logic. Please see Section 6.2.32 “TraceIBPC Register (CP0 Register 23, Select 4)”
for detail in how to define a start/stop trigger.

11.10.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the
control register are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether
hardware (via the TCB), or software (via the TraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControlTS and TraceControlOn) or
((not TraceControlTS) and TCBCONTROLAOn)

)
and
(MatchEnable or TriggerEnable)

)

where,

MatchEnable ←
(

TraceControlTS
and
(

TraceControlG or
(((TraceControlASID xor EntryHiASID) and (not TraceControlASID_M)) = 0)

)
and
(

(TraceControlU and UserMode) or
(TraceControlS and SupervisorMode) or
(TraceControlK and KernelMode) or
(TraceControlE and ExceptionMode) or
(TraceControlD and DebugMode)

 EJTAG Debug Support in the 24K® Core

294 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

)
)
or
(

(not TraceControlTS)
and
(TCBCONTROLAG or (TCBCONTROLAASID = EntryHiASID))
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAS and SupervisorMode) or
(TCBCONTROLAK and KernelMode) or
(TCBCONTROLAE and ExceptionMode) or
(TCBCONTROLADM and DebugMode)

)
)

and where,

TriggerEnable ←
(

DBCiTE and
DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 1)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlOn or
TCBCONTROLAOn is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signals from the TCB or the bits in the TraceControl register. This tracing is done over general program areas.
For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the TriggerEnable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method
enables finer grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControlTS=0, i.e., hardware controlled tracing, assert
TCBCONTROLAOn, TCBCONTROLAG, and all the other signals in the second part of expression MatchEnable. To
only trace when a particular process with a known ASID is executing, assert TCBCONTROLAOn, the correct
TCBCONTROLAASID value, and all of TCBCONTROLAU, TCBCONTROLAK, TCBCONTROLAE, and
TCBCONTROLADM. (If it is known that the particular process is a user-level process, then it would be sufficient to
only assert TCBCONTROLAU for example). When using the EJTAG hardware triggers to turn trace on and off, it is
best if TCBCONTROLAOn is asserted and all the other processor mode selection bits in TCBCONTROLA are turned

11.10 Enabling MIPS Trace

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 295

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

off. This would be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via
software with the TraceControl register in a similar manner.

11.10.3 Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControlTS and (not TraceControlOn))) or
((not TraceControlTS) and (not TCBCONTROLAOn))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable

)

where,

TriggerDisable ←
(

DBCiTE and
DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 0)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlOn bit or the TCBCONTROLAOn signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective of the
TraceControlG bit (TCBCONTROLAG) and TraceControlASID (TCBCONTROLAASID) values. EJTAG hardware
breakpoints can be used to trigger trace off as well. Note that if simultaneous triggers are generated, and even one of
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

11.10.4 TCB Trace Enabling

The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information is
sent on the PDtrace™ interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will send
trace information to either on-chip trace memory or to the Trace Probe, controlled by the setting of the
TCBCONTROLBOfC bit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEN bit. Please see Section
11.11 “TCB Trigger Logic” for details.

 EJTAG Debug Support in the 24K® Core

296 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.10.5 Tracing a Reset Exception

Tracing a reset exception is possible. However, the TraceControlTS bit is reset to 0 at core reset, so all the trace control
must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB are reset
based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then reset
the processor core.

11.11 TCB Trigger Logic

The TCB is optionally implemented with trigger unit. If this is the case, then the TCBCONFIGTRIG field is non-zero.
This section will explain some of the issues around triggers in the TCB.

11.11.1 Trigger Units Overview

TCB trigger logic features three main parts:

1. A common Trigger Source detection unit.

2. 1 to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 11.34 show the functional overview of the trigger flow in the TCB.

11.11 TCB Trigger Logic

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 297

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 11.34 TCB Trigger Processing Overview

11.11.2 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigIn).

2. Probe trigger input (TR_TRIGIN).

3. Debug Mode (DM) entry indication from the processor core.

The input triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into a single cycle strobe
to the Trigger Control Units.

Trigger Control Logic 7

Trigger Control Logic 1

Trigger Control Logic 0

Trigger Control Unit 7

Trigger Control Unit 1

Trigger Control Unit 0

Trigger Action Unit

Trigger sources

Trigger strobes

Priority/
OR-function

Priority/
OR-function

Priority/
OR-function

Trigger Source Unit

Trigger control Unit 1 to 7
are optional, when trigger
logic is implemented.

Depending on the trigger action,
the Action strobes must pass
through a priority function or an
OR-gate

 EJTAG Debug Support in the 24K® Core

298 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.11.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has its own Trigger Control Register (TCBTRIGx,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trig-
ger Control register TCBTRIGx (see Section 11.9.10 “TCBTRIGx Register (Reg 16-23)”).

11.11.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probe trigger output (TR_TRIGOUT).

3. Trace information. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of the TCBCONTROLBEN bit.

The basic function of the trigger actions is explained in Section 11.9.10 “TCBTRIGx Register (Reg 16-23)”. Please
also read the next Section 11.11.5 “Simultaneous Triggers”.

11.11.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

11.11.5.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence
over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEN bit. The About trigger is delayed and will always change TCBCONTROLBEN because it
is the oldest trigger when it de-asserts TCBCONTROLBEN. An About trigger will not start the countdown if an
even older About trigger is using the Trace Word counter.

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires. This is so even if a trigger action is sup-
pressed by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the
suppressed trigger action will not happen until after TCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the TCBTRIGxType

field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is sticky. If any of the

11.12 MIPS Trace Cycle-by-Cycle Behavior

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 299

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

two actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is zero), then the read
values in Trace and/or Type are set to indicate any suppressed action.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBEN bit is always executed, regardless of priority from
another Start trigger at the time of the TCBCONTROLBEN change. This means that if a simultaneous About trigger
action on the TCBCONTROLBEN bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger,
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11 in
the TCBTRIGxType field. But, if the TCBTRIGxTrace bit is set, a TF6 trace information will still go in the trace.

11.11.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the
final trigger. One or more expected trigger strobes on i.e. TC_ChipTrigOut can thus disappear. External logic should
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

11.12 MIPS Trace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

11.12.1 FIFO Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there are good
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data informa-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on
the same 32-bit data bus to the TCB on the internal PDtrace™ interface. When an instruction requires more than 32
bits of information to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock
cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock speed.
In this case the fifo is not needed. For off-chip trace through the Trace Probe, the fifo comes into play, because only a
limited number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or
slower) from that of the 24K core. So for off-chip tracing, a specific TCB TW fifo is needed.

11.12.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 32-bit data inter-
face is needed, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core, until the fifo has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControlIO or the TCBCONTROLAIO bit, depending on the set-
ting of TraceControlTS bit.

 EJTAG Debug Support in the 24K® Core

300 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is
traced as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced fifo information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved
by back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace
information from a new instruction. This option can obviously change the real-time behavior of the core when tracing
is turned on.

If PC trace information is the only thing enabled (in TraceControl2MODE or TCBCONTROLCMODE, depending on the
setting of TraceControlTS), and Trace of all branches is turned off (via TraceControlTB or TCBCONTROLATB, depend-
ing on the setting of TraceControlTS), then the fifo is unlikely to overflow very often, if at all. This is of course very
dependent on the code executed, and the frequency of exception handler jumps, but with this setting there is very little
information overhead.

11.12.3 Handling of FIFO Overflow in the TCB

The TCB also holds a fifo, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data width
of the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1/4
of the core clock (the trace probe clock always runs at a double data rate multiple to the core-clock). See Section
11.12.3.1 “Probe Width and Clock-ratio Settings” for a description of probe width and clock-ratio options. The com-
bination between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from
256 bits per core-clock cycle down to only 1 bit per core-clock cycle. The high extreme is not likely to be supported
in any implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce one full 64-bit TW per core-clock cycle. This is true for any selection of trace mode in
TraceControl2MODE or TCBCONTROLCMODE. The PDtrace module will guarantee the limited amount of data. If the
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. Similar to the PDtrace module FIFO, this can be handled in two ways:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). This will in turn stall the
core pipeline.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding
any cycle accurate information. This is explained in Section 11.12.2 “Handling of FIFO Overflow in the PDtrace
Module” and below in Section 11.12.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data
rate of 8-bits per core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt
activity can increase the number of unpredictable jumps considerably.

11.12.3.1 Probe Width and Clock-ratio Settings

The actual number of data pins (4, 8 or 16) is defined by the TCBCONFIGPW field. Furthermore, the frequency of the
Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is a double data rate clock.
This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock is
running at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock frequency. The
clock ratio is set in the TCBCONTROLBCR field. The legal range for the clock ratio is defined in TCBCONFIGCRMax

and TCBCONFIGCRMin (both values inclusive). If TCBCONTROLBCR is set to an unsupported value, the result is
UNPREDICABLE. The maximum possible value for TCBCONFIGCRMax is 8:1 (TR_CLK is running 8 times faster

11.13 TCB On-Chip Trace Memory

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 301

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

than core-clock). The minimum possible value for TCBCONFIGCRMin is 1:8 (TR_CLK is running at one eighth of the
core-clock). See Table 11.33 for a description of the encoding of the clock ratio fields.

11.12.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. This information is added to the trace, when the TCBCONTROLBCA bit is set. The overhead
on the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB fifo overflowing.

11.13 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIGOnT is set) the memory is typically of smaller size than if it
were external in a trace probe. The assumption is that it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using the TCBCONTROLBTM field. If one or more trigger control registers
(TCBTRIGx) are implemented, and they are using Start, End or About triggers, then the trace mode in
TCBCONTROLBTM should be set to Trace-To mode.

11.13.1 On-Chip Trace Memory Size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actual size is
shown in the TCBCONFIGSZ field.

11.13.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value which is
defined to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is
stopped when the buffer is full. The TCB then signals buffer full using TCBCONTROLBBF. When external software
polling this register finds the TCBCONTROLBBF bit set, it can then read out the internal trace memory. Saving the
trace into the internal buffer will re-commence again only when the TCBCONTROLBBF bit is reset and if the core is
sending valid trace data (i.e., PDO_IamTracing not equal 0).

11.13.3 Trace-To Mode

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the old-
est information, until the processor is reaches an end of trace condition. End of trace is reached by leaving the proces-
sor mode/ASID value which is traced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this

 EJTAG Debug Support in the 24K® Core

302 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

point, the on-chip trace buffer is then dumped out in a manner similar to that described above in Section
11.13.2 “Trace-From Mode”.

Chapter 12

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 303

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is spe-
cific to a 24K processor core. The chapter is divided into the following sections:

• Section 12.1 “Understanding the Instruction Descriptions”

• Section 12.2 “24K® Opcode Map”

• Section 12.3 “Floating Point Unit Instruction Format Encodings”

• Section 12.4 “MIPS32® Instruction Set for the 24K® Core”

The 24K processor core also supports the MIPS16e ASE to the MIPS32 architecture. The MIPS16e ASE instruction
set is described in Chapter 13, “MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set” on
page 349.

12.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32 Architecture Reference Manual [2] for more information about the instruction
descriptions. There is a description of the instruction fields, definition of terms, and a description function notation
available in that document.

12.2 24K® Opcode Map

Table 12.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use, are valid encodings
for a higher-order MIPS ISA level, or are part of an application specific extension not imple-
mented on this core. Executing such an instruction will cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

∇ Operation or field codes marked with this symbol represent instructions which are only legal if
64-bit floating point operations are enabled. In other cases, executing such an instruction will
cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor instruction
encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable Exception
(coprocessor instruction encodings for a coprocessor to which access is not allowed).

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

 24K® Processor Core Instructions

304 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 δ COP1 δ COP2 δ COP1X BEQL φ BNEL φ BLEZL φ BGTZL φ
3 011 ∗ ∗ ∗ ∗ SPECIAL2

δ
JALX ∗ SPECIAL3

δ
4 100 LB LH LWL LW LBU LHU LWR ∗
5 101 SB SH SWL SW ∗ ∗ SWR CACHE

6 110 LL LWC1 LWC2 PREF ∗ LDC1 LDC2 ∗
7 111 SC SWC1 SWC2 * ∗ SDC1 SDC2 ∗

Table 12.3 MIPS32 SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL1

1. Specific encodings of the rt, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, and EHB func-
tions.

MOVCI δ SRL δ SRA SLLV * SRLV δ SRAV

1 001 JR2

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

JALR2 MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO ∗ * ∗ ∗
3 011 MULT MULTU DIV DIVU ∗ ∗ ∗ ∗
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU ∗ ∗ ∗ ∗
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 ∗ * ∗ ∗ ∗ * ∗ ∗

Table 12.4 MIPS32 REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ * * * *

3 11 * * * * * * * SYNCI

12.2 24K® Opcode Map

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 305

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.5 MIPS32 SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL ∗ MSUB MSUBU * *

1 001 * * * * * * * *

2 010 CorExtend

3 011

4 100 CLZ CLO * * ∗ ∗ * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * SDBBP

Table 12.6 MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT ∗ ∗ ∗ INS ∗ ∗ ∗
1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 BSHFL δ * * * ∗ * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * RDHWR * * * *

Table 12.7 MIPS32 MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table 12.8 MIPS32 SRL Encoding of Shift/Rotate

tf bit 21

0 1

SRL ROTR

Table 12.9 MIPS32 SRLV Encoding of Shift/Rotate

tf bit 6

0 1

SRLV ROTRV

 24K® Processor Core Instructions

306 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.10 MIPS32 BSHFLEncoding of sa Field1

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.

sa bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 WSBH

1 01

2 10 SEB

3 11 SEH

Table 12.11 MIPS32 COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 ∗ * * MTC0 ∗ * *

1 01 * * RDPGPR MFMC01 δ

1. Release 2 of the Architecture added the MFMC0 function, which is further decoded as the DI and EI instructions.

* * WRPGPR *

2 10 C0 δ
3 11

Table 12.12 MIPS32COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET

4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

12.2 24K® Opcode Map

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 307

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.13 MIPS32 COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 ∗ CFC1 MFHC1 MTC1 ∗ CTC1 MTHC1

1 01 BC1 δ ∗ ∗ * * * * *

2 10 S δ D δ * * W δ L δ * *

3 11 * * * * * * * *

Table 12.14 MIPS32 COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 * CVT.D * * CVT.W CVT.L ∇ ∗ *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 12.15 MIPS32 COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 CVT.S * * * CVT.W CVT.L ∇ * *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 24K® Processor Core Instructions

308 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.16 MIPS32 COP1 Encoding of Function Field When rs=W or L1

1. Format type L is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * ∗ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 12.17 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt

Table 12.18 MIPS64 COP1X Encoding of Function Field1

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 ∇ LDXC1 ∇ * * * LUXC1 ∇ * *

1 001 SWXC1 ∇ SDXC1 ∇ * * * SUXC1 ∇ * PREFX ∇
2 010 * * * * * * * *

3 011 * * * * * * ∗ *

4 100 MADD.S ∇ MADD.D ∇ * * * * ∗ *

5 101 MSUB.S ∇ MSUB.D ∇ * * * * ∗ *

6 110 NMADD.S
∇

NMADD.D
∇

* * 24k
*

* ∗ *

7 111 NMSUB.S ∇NMSUB.D ∇ * * * * ∗ *

Table 12.19 MIPS32 COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 ∗ CFC2 MFHC2 MTC2 ∗ CTC2 MTHC2

1 01 BC2δ ∗ ∗ * * * * *

2 10 C2

3 11

12.3 Floating Point Unit Instruction Format Encodings

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 309

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabular pre-
sentation of the encodings described in tables Table 12.13 and Table 12.18 above.

12.4 MIPS32® Instruction Set for the 24K® Core

This section describes the MIPS32 instructions for the 24K cores. Table 12.21 lists the instructions in alphabetical
order. Instructions that have implementation dependent behavior are described afterwards. The descriptions for other
instructions exist in the architecture reference manual and are not duplicated here.

Table 12.20 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of COP1

opcode)

fmt3 field
(bits 2..0 of COP1X

opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

16 10 0 0 S Single 32 Floating Point

17 11 1 1 D Double 64 Floating Point

18..19 12..13 2..3 2..3 Reserved for future use by the architecture.

20 14 4 4 W Word 32 Fixed Point

21 15 5 5 L Long 64 Fixed Point

22 16 6 6 PS Paired Single 2 × 32 Floating Point

23 17 7 7 Reserved for future use by the architecture.

24..31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

Table 12.21 24K™ Core Instruction Set

Instruction Description Function

ABS.fmt Floating Point Absolute Value
fmt = s,d

Fd = abs(Fs)

ADD Integer Add Rd = Rs + Rt

ADD.fmt Floating Point Add
fmt = s,d

Fd = Fs + Ft

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDIUPC Unsigned Integer Add Immediate to PC (MIPS16 only) Rt = PC +u Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

 24K® Processor Core Instructions

310 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC1F Branch On Floating Point False if (cc[i] == 0) then
 PC += (int)offset

BC1FL Branch On Floating Point False Likely if (cc[i] == 0)then
PC += (int)offset

else
Ignore Next Instruction

BC1T Branch On Floating Point True if(cc[i] == 1) then
PC += (int)offset

BC1TL Branch On Floating Point True Likely if (cc[i] == 1) then
PC += (int)offset

else
Ignore Next Instruction

BC2F Branch On CP2 False if (cc[i] == 0) then
 PC += (int)offset

BC2FL Branch On CP2 False Likely if (cc[i] == 0)then
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On CP2 True if(cc[i] == 1) then
PC += (int)offset

BC2TL Branch On CP2 True Likely if (cc[i] == 1) then
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And Link
Likely

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset
else

Ignore Next Instruction

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 311

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

BGEZL Branch on Greater Than or Equal To Zero Likely if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

C.cond.fmt Floating Point Compare
fmt = s,d

cc[i] = Fs compare_cond Ft

CACHE Cache Operation See Below

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point Fd = convert_and_round(Fs)

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point Fd = convert_and_round(Fs)

CFC1 Move Control Word From Floating Point Rt = FP_Control[Fs]

CFC2 Move Control Word From CP2 Rt = CP2_Control[Fs]

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

 24K® Processor Core Instructions

312 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP2 Coprocessor 2 Operation Implementation dependent

CTC1 Move Control Word To Floating Point FP_Control[Fs] = Rt

CTC2 Move Control Word to CP2 CP2 Control[Fs] = Rt

CVT.D.fmt Floating Point Convert to Double Floating Point
fmt = S,W,L

Fd = convert_and_round(Fs)

CVT.D.fmt Floating Point Convert to Double Floating Point
fmt = S,W,L

Fd = convert_and_round(Fs)

CVT.L.fmt Floating Point Convert to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

CVT.S.fmt Floating Point Convert to Single Floating Point
fmt = W,D,L

Fd = convert_and_round(Fs)

CVT.W.fmt Floating Point Convert to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; StatusIE = 0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIV.fmt Floating Point Divide
fmt = S,D

Fd = Fs/Ft

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stop instruction execution until execution
hazards are cleared

EI Atomically Enable Interrupts Rt = Status; StatusIE = 1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC
SR[1] = 0

SR[2] = 0
LL = 0

EXT Extract Bit Field Rt = ExtractField(Rs, pos, size)

FLOOR.L.fmt Floating Point Floor to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

FLOOR.W.fmt Floating Point Floor to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 313

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

INS Insert Bit Field Rt = InsertField(Rs, Rt, pos,
size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution and
instruction hazards

JALRC Jump and Link Register Compact - do not execute
instruction in jump delay slot(MIPS16 only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and
instruction hazards

JRC Jump Register Compact - do not execute instruction in
jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[base+offset]

LBU Unsigned Load Byte Rt = (ubyte)Mem[base+offset]

LDC1 Load Doubleword to Floating Point Ft = memory[base+offset]

LDC2 Load Doubleword to CP2 Ft = memory[base+offset]

LDXC1 Load Doubleword Indexed to Floating Point Fd = memory[base+index]

LH Load Halfword Rt = (half)Mem[base+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[base+offset]

LL Load Linked Word Rt = Mem[base+offset]
LL = 1

LUI Load Upper Immediate Rt = immediate << 16

LUXC1 Load Doubleword Indexed Unaligned to Floating Point Fd =
memory[(base+index)psize-1..3

LW Load Word Rt = Mem[Rs+offset]

LWC1 Load Word to Floating Point Ft = memory[base+offset]

LWC2 Load Word to CP2 Ft = memory[base+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

LWXC1 Load Word Indexed to Floating Point Fd = memory[base+index]

LWL Load Word Left See Architecture Reference Manual

LWR Load Word Right See Architecture Reference Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

 24K® Processor Core Instructions

314 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MADD.fmt Floating Point Multiply Add
fmt = S,D

Fd = Fs * Ft + Fr

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC1 Move From FPR Rt = Fs31..0

MFC2 Move From CP2 Register Rt = Fs31..0

MFHC1 Move From High Half of FPR Rt = Fs63..32

MFHC2 Move From High Half of CP2 Register Rt = Fs63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOV.fmt Floating Point Move Fd = Fs

MOVF GPR Conditional Move on Floating Point False if (cc[i] == 0) then Rd = Rs

MOVF.fmt FPR Conditional Move on Floating Point False if (cc[i] == 0) then Fd = Fs

MOVN GPR Conditional Move on Not Zero if Rt ≠ 0 then
Rd = Rs

MOVN.fmt FPR Conditional Move on Not Zero if Rt ≠ 0 then
Fd = Fs

MOVT GPR Conditional Move on Floating Point True if (cc[i] == 1) then Rd = Rs

MOVT.fmt FPR Conditional Move on Floating Point True if (cc[i] == 1) then Fd = Fs

MOVZ GPR Conditional Move on Zero if Rt = 0 then
Rd = Rs

MOVZ.fmt FPR Conditional Move on Zero if (Rt == 0) then Fd = Fs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUB.fmt Floating Point Multiply Subtract
fmt = S,D

Fd = Fs * Ft - Fr

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTC1 Move To FPR Fs = Rt

MTC2 Move to CP2 register Fs = Rt

MTHC1 Move To High Half of FPR Fd = Rt || Fs31..0

MTHC2 Move to High Half of CP2 register Fd = Rt || Fs31..0

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 315

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0

MUL.fmt Floating Point Multiply
fmt = S,D

Fd = Fs * Ft

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NEG.fmt Floating Point Negate
fmt = S,D

Fd = neg(Fs)

NMADD.fmt Floating Point Negative Multiply Add
fmt = S,D

Fd = neg(Fs * Ft + Fr)

NMSUB.fmt Floating Point Negative Multiply Subtract
fmt = S,D

Fd = neg(Fs * Ft - Fr)

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

PREFX Prefetch Indexed Load Specified Line into Cache

RDHWR Read Hardware Register Allows unprivileged access to registers
enabled by HWREna register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RECIP.fmt Floating Point Reciprocal Approximation
fmt = S,D

Fd = recip(Fs)

RESTORE Restore registers and deallocate stack frame (MIPS16
only)

See Architecture Reference Manual

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

ROUND.L.fmt Floating Point Round to Long Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

ROUND.W.fmt Floating Point Round to Word Fixed Point
fmt = S,D

Fd = convert_and_round(Fs)

RSQRT.fmt Floating Point Reciprocal Square Root Approximation
fmt = S,D

Fd = rsqrt(Fs)

SAVE Save registers and allocate stack frame (MIPS16 only) See Architecture Reference Manual

SB Store Byte (byte)Mem[base+offset] = Rt

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

 24K® Processor Core Instructions

316 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SC Store Conditional Word if LL = 1
 mem[base+offset] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SDC1 Store Doubleword from Floating Point memory[base+offset] = Ft

SDC2 Store Doubleword from CP2 memory[base+offset] = Ft

SDXC1 Store Word Indexed from Floating Point memory[base+index] = Fs

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[base+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SQRT.fmt Floating Point Square Root
fmt = S,D

Fd = sqrt(Fs)

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUB.fmt Floating Point Subtract
fmt = S,D

Fd = Fs - Ft

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 317

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SUXC1 Store Doubleword Indexed Unaligned from Floating
Point

memory[(base+index)psize-1..3]
= Fs

SW Store Word Mem[base+offset] = Rt

SWC1 Store Word From Floating Point Mem[base+offset] = Fs

SWC2 Store Word From CP2 Register Mem[base+offset] = Fs

SWL Store Word Left See Architecture Reference Manual

SWR Store Word Right See Architecture Reference Manual

SWXC1 Store Word Indexed to Floating Point memory[base+index] = Fs

SYNC Synchronize See Below

SYNCI Synchronize Caches to Make Instruction Writes Effec-
tive

For D-cache writeback and I-cache
invalidate on specified address

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
 TrapException

TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
 TrapException

TLBWI Write Indexed TLB Entry See Below

TLBWR Write Random TLB Entry See Below

TLBP Probe TLB for Matching Entry See Architecture Reference Manual

TLBR Read Index for TLB Entry See Below

TLT Trap if Less Than if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal if Rs != Rt
 TrapException

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

 24K® Processor Core Instructions

318 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

.

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
 TrapException

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point Fd = convert_and_round(Fs)

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point Fd = convert_and_round(Fs)

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

WSBH Word Swap Bytes Within HalfWords Rd = Rt23..16 || Rt31..24 || Rt7..0
|| Rt15..8

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 12.22 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

ADDQ.PH rd,rs,rt
ADDQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP
SoftM

Element-wise addition of two vectors of Q15
fractional values, with optional saturation.

ADDQ_S.W rd,rs,rt Q31 Q31 GPR Audio Add two Q31 fractional values with saturation.

ADDU.QB rd,rs,rt
ADDU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise addition of vectors of four
unsigned byte values. Results may be option-
ally saturated to 255.

SUBQ.PH rd,rs,rt
SUBQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP Element-wise subtraction of two vectors of
Q15 fractional values, with optional satura-
tion.

SUBQ_S.W rd,rs,rt Q31 Q31 GPR Audio Subtraction with Q31 fractional values, with
saturation.

SUBU.QB rd,rs,rt
SUBU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise subtraction of unsigned byte
values, with optional unsigned saturation.

ADDSC rd,rs,rt Signed
Word

Signed
Word

GPR &
DSPControl

Audio Add two signed words and set the carry bit in
the DSPControl register.

ADDWC rd,rs,rt Signed
Word

Signed
Word

GPR Audio Add two signed words with the carry bit from
the DSPControl register.

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 319

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MODSUB rd,rs,rt Signed
Word

Signed
Word

GPR Misc Modulo addressing support: update a byte
index into a circular buffer by subtracting a
specified decrement (in bytes) from the index,
resetting the index to a specified value if the
subtraction results in underflow.

RADDU.W.QB rd,rs Quad
Unsigned
Byte

Unsigned
Word

GPR Misc Reduce (add together) the 4 unsigned byte val-
ues in rs, zero-extending the sum to 32 bits
before writing to the destination register. For
example, if all 4 input values are 0x80 (deci-
mal 128), then the result in rd is 0x200 (deci-
mal 512).

ABSQ_S.PH rd,rt Pair Q15 Pair Q15 GPR Misc Find the absolute value of each of two Q15
fractional halfword elements in the source reg-
ister, saturating values of -1.0 to the maximum
positive Q15 fractional value.

ABSQ_S.W rd,rt Q31 Q31 GPR Misc Find the absolute value of the Q31 fractional
element in the source register, saturating the
value -1.0 to the maximum positive Q31 frac-
tional value.

PRECRQ.QB.PH rd,rs,rt 2 Pair Q15 Quad Byte GPR Misc Reduce the precision of four Q15 fractional
input values by truncation to create four Q7
fractional output values. The two Q15 values
from register rs are written to the two
left-most byte results, allowing an
endian-agnostic implementation.

PRECR_SRA.PH.W
rt,rs,sa
PRECR_SRA_R.PH.W
rt,rs,sa

Two Inte-
ger Words

Pair Integer
Halfword

GPR Misc Reduce the precision of two integer word val-
ues to create a pair of integer halfword values.
Each word value is first shifted right arithmeti-
cally by sa bit positions, and optionally
rounded up by adding 1 at the most-significant
discard bit position. The 16 least-significant
bits of each word are then written to the corre-
sponding halfword elements of destination
register rt.

PRECRQ.PH.W rd,rs,rt
PRECRQ_RS.PH.W
rd,rs,rt

2 Q31 Pair half-
word

GPR Misc Reduce the precision of two Q31 fractional
input values by truncation to create two Q15
fractional output values. The Q15 value
obtained from register rs creates the left-most
result, allowing an endian-agnostic implemen-
tation. Results may be optionally rounded up
and saturated before being written to the desti-
nation.

PRECRQU_S.QB.PH
rd,rs,rt

2 Pair Q15 Quad
Unsigned
Byte

GPR Misc Reduce the precision of four Q15 fractional
values by saturating and truncating to create
four unsigned byte values.

Table 12.22 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 24K® Processor Core Instructions

320 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

PRECEQ.W.PHL rd,rt
PRECEQ.W.PHR rd,rt

Q15 Q31 GPR Misc Expand the precision of a Q15 fractional value
to create a Q31 fractional value by adding 16
least-significant bits to the input value.

PRECEQU.PH.QBL rd,rt
PRECEQU.PH.QBR rd,rt
PRECEQU.PH.QBLA
rd,rt
PRECEQU.PH.QBRA
rd,rt

Unsigned
Byte

Q15 GPR Video Expand the precision of two unsigned byte
values by prepending a sign bit and adding
seven least-significant bits to each to create
two Q15 fractional values.

PRECEU.PH.QBL rd,rt
PRECEU.PH.QBR rd,rt
PRECEU.PH.QBLA rd,rt
PRECEU.PH.QBRA rd,rt

Unsigned
Byte

Unsigned
halfword

GPR Video Expand the precision of two unsigned byte
values by adding eight least-significant bits to
each to create two unsigned halfword values.

Table 12.23 List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

SHLL.QB rd, rt, sa
SHLLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Misc Element-wise left shift of eight signed bytes.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the three
least-significant bits of sa or rs.

SHLL.PH rd, rt, sa
SHLLV.PH rd, rt, rs
SHLL_S.PH rd, rt, sa
SHLLV_S.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise left shift of two signed half-
words, with optional saturation on overflow.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the four
least-significant bits of sa or rs.

SHLL_S.W rd, rt, sa
SHLLV_S.W rd, rt, rs

Signed
Word

Signed
Word

GPR Misc Left shift of a signed word, with saturation on
overflow. Zeros are inserted into the bits emp-
tied by the shift. The shift amount is specified
by the five least-significant bits of sa or rs.
Use the MIPS32 instructions SLL or SLLV for
non-saturating shift operations.

SHRL.QB rd, rt, sa
SHRLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise logical right shift of four byte
values. Zeros are inserted into the bits emptied
by the shift. The shift amount is specified by
the three least-significant bits of sa or rs.

SHRA.PH rd, rt, sa
SHRAV.PH rd, rt, rs
SHRA_R.PH rd, rt, sa
SHRAV_R.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise arithmetic (sign preserving)
right shift of two halfword values. Optionally,
rounding may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the four least-signifi-
cant bits of rs or by the argument sa.

Table 12.22 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 321

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SHRA_R.W rd, rt, sa
SHRAV_R.W rd, rt, rs

Signed
Word

Signed
Word

GPR Video Arithmetic (sign preserving) right shift of a
word value. Optionally, rounding may be per-
formed, adding 1 at the most-significant dis-
card bit position. The shift amount is specified
by the five least-significant bits of rs or the
argument sa.

Table 12.24 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MULEU_S.PH.QBL
rd,rs,rt
MULEU_S.PH.QBR
rd,rs,rt

Pair
Unsigned
Byte, Pair
Unsigned
Halfword,

Pair
Unsigned
Halfword

GPR Still
Image

Element-wise multiplication of two unsigned
byte values from register rs with two unsigned
halfword values from register rt. Each 24-bit
product is truncated to 16 bits, with saturation
if the product exceeds 0xFFFF, and written to
the corresponding element in the destination
register.

MULQ_RS.PH rd,rs,rt Pair Q15 Pair Q15 GPR Misc Element-wise multiplication of two Q15 frac-
tional values to create two Q15 fractional
results, with rounding and saturation. After
multiplication, each 32-bit product is rounded
up by adding 0x00008000, then truncated to
create a Q15 fractional value that is written to
the destination register. If both multiplicands
are -1.0, the result is saturated to the maximum
positive Q15 fractional value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP ASE accumulators ac1-ac3 are
untouched.

MULEQ_S.W.PHL
rd,rs,rt
MULEQ_S.W.PHR
rd,rs,rt

Pair Q15 Q31 GPR VoIP Multiplication of two Q15 fractional values,
shifting the product left by 1 bit to create a
Q31 fractional result. If both multiplicands are
-1.0 the result is saturated to the maximum
positive Q31 value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP ASE accumulators ac1-ac3 must
be untouched.

Table 12.23 List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 24K® Processor Core Instructions

322 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

DPAU.H.QBL
DPAU.H.QBR

Pair Bytes Halfword Acc Image Dot-product accumulation. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then added
to the accumulator.

DPSU.H.QBL
DPSU.H.QBR

Pair Bytes Halfword Acc Image Dot-product subtraction. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then sub-
tracted from the accumulator.

DPAQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product accumulation. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied
and left-shifted 1 bit to create two Q31 frac-
tional products. For each product, if both mul-
tiplicands are equal to -1.0 the product is
clamped to the maximum positive Q31 frac-
tional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and accumulated into the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPSQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product subtraction. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied
and left-shifted 1 bit to create two Q31 frac-
tional products. For each product, if both mul-
tiplicands are equal to -1.0 the product is
clamped to the maximum positive Q31 frac-
tional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and subtracted from the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

Table 12.24 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 323

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MULSAQ_S.W.PH
ac,rs,rt

Pair Q15 Q32.31 ac SoftM Complex multiplication step. Performs ele-
ment-wise fractional multiplication of the two
Q15 fractional values from registers rt and rs,
subtracting one product from the other to cre-
ate a Q31 fractional result that is added to
accumulator ac. The intermediate products are
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

DPAQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 frac-
tional values to produce a Q63 fractional prod-
uct. If both multiplicands are -1.0 the product
is saturated to the maximum positive Q63 frac-
tional value. The product is then added to
accumulator ac. If the addition results in over-
flow or underflow, the accumulator is saturated
to the maximum positive or minimum negative
value.

DPSQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 frac-
tional values to produce a Q63 fractional prod-
uct. If both multiplicands are -1.0 the product
is saturated to the maximum positive Q63 frac-
tional value. The product is then subtracted
from accumulator ac. If the addition results in
overflow or underflow, the accumulator is sat-
urated to the maximum positive or minimum
negative value.

MAQ_S.W.PHL ac,rs,rt
MAQ_S.W.PHR ac,rs,rt

Q15 Q32.31 ac SoftM Fractional multiply-accumulate. The product
of two Q15 fractional values is sign extended
to the width of the accumulator and added to
accumulator ac. The intermediate product is
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

MAQ_SA.W.PHL ac,rs,rt
MAQ_SA.W.PHR ac,rs,rt

Q15 Q31 ac speech Fractional multiply-accumulate with satura-
tion after accumulation. The product of two
Q15 fractional values is sign extended to the
width of the accumulator and added to accu-
mulator ac. The intermediate product is satu-
rated to the maximum positive Q31 fractional
value if both multiplicands are equal to -1.0.
If the accumulation results in overflow or
underflow, the accumulator value is saturated
to the maximum positive or minimum negative
Q31 fractional value.

MADD, MADDU,
MSUB, MSUBU, MULT,
MULTU

Word Double-
Word

ac Misc Allows these instructions to target accumula-
tors ac1, ac2, and ac3 (in addition to the origi-
nal ac0 destination).

Table 12.24 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 24K® Processor Core Instructions

324 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.25 List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

BITREV rd,rt Unsigned
Word

Unsigned
Word

GPR Audio /
FFT

Reverse the order of the 16 least-significant
bits of register rt, writing the result to register
rd. The 16 most-significant bits are set to zero.

INSV rt,rs Unsigned
Word

Unsigned
Word

GPR Misc Like the Release 2 INS instruction, except that
the 5 bits for pos and size values are obtained
from the DSPControl register. size =
scount[14:10], and pos = pos[20:16].

REPL.QB rd,imm
REPLV.QB rd,rt

Byte Quad Byte GPR Video /
Misc

Replicate a signed byte value into the four byte
elements of register rd. The byte value is given
by the 8 least-significant bits of the specified
10-bit immediate constant or by the 8
least-significant bits of register rt.

REPL.PH rd,imm
REPLV.PH rd,rt

Signed
halfword

Pair Signed
halfword

GPR Misc Replicate a signed halfword value into the two
halfword elements of register rd. The halfword
value is given by the 16 least-significant bits of
register rt, or by the value of the 10-bit imme-
diate constant, sign-extended to 16 bits.

Table 12.26 List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

CMPU.EQ.QB rs,rt
CMPU.LT.QB rs,rt
CMPU.LE.QB rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

DSPControl Video Element-wise unsigned comparison of the four
unsigned byte elements of rs and rt, recording
the boolean comparison results to the four
right-most bits in the ccond field of the
DSPControl register.

CMPGU.EQ.QB rd,rs,rt
CMPGU.LT.QB rd,rs,rt
CMPGU.LE.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four least-significant bits of register rd.

CMP.EQ.PH rs,rt
CMP.LT.PH rs,rt
CMP.LE.PH rs,rt

Pair Signed
halfword

Pair Signed
halfword

DSPControl Misc Element-wise signed comparison of the two
halfword elements of rs and rt, recording the
boolean comparison results to the two
right-most bits in the ccond field of the
DSPControl register.

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 325

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

PICK.QB rd,rs,rt Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise selection of unsigned bytes
from the four bytes of registers rs and rt into
the corresponding elements of register rd,
based on the value of the four right-most bits
of the ccond field in the DSPControl register.
If the corresponding ccond bit is 1, the byte
value is copied from register rs, otherwise it is
copied from rt.

PICK.PH rd,rs,rt Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise selection of signed halfwords
from the two halfwords in registers rs and rt
into the corresponding elements of register rd,
based on the value of the two right-most bits of
the ccond field in the DSPControl register. If
the corresponding ccond bit is 1, the halfword
value is copied from register rs, otherwise it is
copied from rt.

PACKRL.PH rd,rs,rt Pair Signed
Halfwords

Pair Signed
Halfword

GPR Misc Pack two halfwords taken from registers rs
and rt into destination register rd.

Table 12.27 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

EXTR.W rt,ac,shift
EXTR_R.W rt,ac,shift
EXTR_RS.W rt,ac,shift

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value ranges from 0 to 31.
The optional rounding step adds 1 at the
most-significant bit position discarded by the
shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.

Table 12.26 List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 24K® Processor Core Instructions

326 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EXTR_S.H rt,ac,shift Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.
The shift argument value ranges from 0 to 31.
The saturation clamps the extracted value to
the maximum positive or minimum negative
Q15 value if the shifted accumulator value
cannot be represented accurately as a Q15 for-
mat value.

EXTRV_S.H rt,ac,rs Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.
The shift argument ranges from 0 to 31 and is
given by the five least-significant bits of regis-
ter rs. The saturation clamps the extracted
value to the maximum positive or minimum
negative Q15 value if the shifted accumulator
value cannot be represented accurately as a
Q15 format value.

EXTRV.W rt,ac,rs
EXTRV_R.W rt,ac,rs
EXTRV_RS.W rt,ac,rs

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value is provided by the
five least-significant bits of rs and ranges from
0 to 31. The optional rounding step adds 1 at
the most-significant bit position discarded by
the shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.

Table 12.27 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

12.4 MIPS32® Instruction Set for the 24K® Core

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 327

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EXTP rt,ac,size
EXTPV rt,ac,rs
EXTPDP rt,ac,size
EXTPDPV rt,ac,rs

Unsigned
DWord

Unsigned
Word

GPR /
DSPControl

Audio /
Video

Extract a set of size+1 contiguous bits from
accumulator ac, right-justifying and
sign-extending the result to 32 bits before
writing the result to register rt.
The position of the left-most bit to extract is
given by the value of the pos field in the
DSPControl register (see Appendix C,
“Endian-Agnostic Reference to Register
Elements” on page 427 for details). The num-
ber of bits (less one) to extract is provided
either by the size immediate operand or by the
five least-significant bits of rs.
The EXTPDP and EXTPDPV instructions
also decrement the pos field by size+1 to facil-
itate sequential bit field extraction operations.

SHILO ac,shift
SHILOV ac,rs

Unsigned
DWord

Unsigned
DWord

ac Misc Shift accumulator ac left or right by the speci-
fied number of bits, writing the shifted value
back to the accumulator. The signed shift argu-
ment is specified either by the immediate oper-
and shift or by the six least-significant bits of
register rs. A negative shift argument results in
a right shift of up to 32 bits, and a positive
shift argument results in a left shift of up to 31
bits.

MTHLIP rs, ac Unsigned
Word

Unsigned
Word

ac /
DSPControl

Audio /
Video

Copy the LO register of the specified accumu-
lator to the HI register, copy rs to LO, and
increment the pos field in DSPcontrol by 32.

MFHI/MFLO/MTHI/MT
LO

Unsigned
Word

Unsigned
Word

GPR/ac Misc Copy an unsigned word to or from the speci-
fied accumulator HI or LO register to the spec-
ified GPR.

WRDSP rt,mask Unsigned
Word

Unsigned
Word

DSPControl Misc Overwrite specific fields in the DSPControl
register using the corresponding bits from the
specified GPR. Bits in the mask argument cor-
respond to specific fields in DSPControl; a
value of 1 causes the corresponding
DSPControl field to be overwritten using the
corresponding bits in rt, otherwise the field is
unchanged.

RDDSP rt,mask Unsigned
Word

Unsigned
Word

GPR Misc Copy the values of specific fields in the
DSPControl register to the specified GPR.
Bits in the mask argument correspond to spe-
cific fields in DSPControl; a value of 1 causes
the corresponding DSPControl field to be
copied to the corresponding bits in rt, other-
wise the bits in rt are unchanged.

Table 12.27 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

 24K® Processor Core Instructions

328 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.28 List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

LBUX rd,index(base) - Unsigned
byte

GPR Misc Index byte load from address base+(index).
Loads the byte in the low-order bits of the des-
tination register and zero-extends the result.

LHX rd,index(base) - Signed
halfword

GPR Misc Index halfword load from address
base+(index). Loads the halfword in the
low-order bits of the register and sign-extends
the result.

LWX rd, index(base) - Signed
Word

GPR Misc Indexed word load from address base+(index).

Table 12.29 List of instructions in the MIPS32® DSP ASE in the Branch sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

BPOSGE32 offset - - - Audio /
Video

Branch if the pos value is greater than or equal
to integer 32.

Perform Cache Operation CACHE

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 329

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: CACHE op, offset(base) MIPS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Figure 12.1 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions should not be triggered by an Index Load Tag or Index Store

31 26 25 21 20 16 15 0

CACHE
101111

base op offset

6 5 5 16

Table 12.1 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← AddrWayBit-1..IndexBit
Index ← AddrIndexBit-1..OffsetBit

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index

Perform Cache Operation CACHE

330 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a portion of the
kernel address space which would normally result in such an exception.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Some of the operations use coprocessor0 registers as either sources or destinations. Each of the caches has a separate
set of Tag and Data registers. The last column in Table 12.4 lists which registers are used by operations to each cache.
In the description of the operations, these may be explicitly listed or referred to in general, such as xTagLo, which
would refer to the TagLo register corresponding to that cache.

Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag and Index Store Data operations,
the specific word (primary D) or double-word (primary I, secondary) that is addressed is loaded into / read from the
DDataLo (primary D), L23DataLo and L23DataHi (secondary), or IDataLo and IDataHi (primary I) registers. All
other cache instructions are line-based and the word and byte indexes will not affect their operation.

Table 12.2 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache Cop0 Registers Used

2#00 I Primary Instruction ITagLo, IDataLo, IDataHi, ErrCtl

2#01 D Primary Data DTagLo, DDataLo, ErrCtl

2#10 T Tertiary - Not supported

2#11 S Secondary L23TagLo, L23DataLo, L23DataHi

Table 12.3 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#000 I Index Invalidate Index Set the state of the cache line at the specified
index to invalid.
This encoding may be used by software to
invalidate the entire instruction cache by step-
ping through all valid indices.

Yes

D, S, T Index Writeback
Invalidate

Index If the state of the cache line at the specified
index is valid and dirty, write the line back to
the memory address specified by the cache tag.
After that operation is completed, set the state
of the cache line to invalid. If the line is valid
but not dirty, set the state of the line to invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

Yes

Perform Cache Operation CACHE

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 331

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2#001 I Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the TagLo0 Coprocessor 0
register.

• Read the data corresponding to the dword
index into the DataLo0 and DataHi0 regis-
ters.

• Precode bits and data array parity bits are
also read into the ErrCtl register.

Yes

2#001 D Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the TagLo0 Coprocessor 0
register.

• Read the data corresponding to the word
index into the DataLo1 register.

• Data array parity bits are also read into the
ErrCtl register.

Yes

2#001 S Index Load Tag Index • Read the tag for the cache line at the speci-
fied index into the TagLo2 Coprocessor 0
register.

• Read the data corresponding to the dword
index into the L23DataLo and L23DataHi
registers.

Yes

2#010 All Index Store Tag Index Write the tag for the cache line at the specified
index from the associated TagLoN
Coprocessor 0 register.

By default, the tag parity value will be
automatically calculated. For test purposes, the
parity/ECC bits from the TagLoN register will
be used if ErrCtlPO is set.

This encoding may be used by software to ini-
tialize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo register associated
with the cache be initialized first.

Yes

2#011 I,D,T Reserved Unspecified Executed as a no-op No

2#011 S Index Store Data Index Write the L23DataHi and L23DataLo
Coprocessor 0 register contents at the way and
dword index specified.

The ECC bits are always generated by the
hardware (if present)

Yes

Table 12.3 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

Perform Cache Operation CACHE

332 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2#100 All Hit Invalidate Address If the cache line contains the specified address,
set the state of the cache line to invalid.
This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

Yes

2#101 I Fill Address Fill the cache from the specified address.

The cache line is refetched even if it is already
in the cache.

Yes

D, S, T Hit WriteBack
Invalidate

Address If the cache line contains the specified address
and it is valid and dirty, write the contents back
to memory. After that operation is completed,
set the state of the cache line to invalid. If the
line is valid but not dirty, set the state of the line
to invalid.

This encoding may be used by software to
invalidate a range of addresses from the data
cache by stepping through the address range
by the line size of the cache.

Yes

2#110 D, S, T Hit WriteBack Address If the cache line contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state.

Yes

2#111 All Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory is the least
recently used.

The lock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation with the lock bit reset in
the xTagLo register.

It is illegal to lock all ways at a given cache
index. If all ways are locked, subsequent
references to that index will displace one of the
locked lines.

Yes

Table 12.3 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST,SPR] Cleared (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

Perform Cache Operation CACHE

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 333

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 0-1 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[WST] Set. ErrCtl[SPR] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#001 All Index Load WS Index Read the WS RAM at the specified index into
the xTagLo Coprocessor 0 register. Yes

2#010 I Index Store WS Index Update the WS RAM at the specified index
from the ITagLo Coprocessor 0 register. Yes

2#010 D Index Store WS Index Update the WS RAM at the specified index
from the DTagLo Coprocessor 0 register.

If ErrCtlPO is set, the dirty parity values in the
DTagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#010 S Index Store WS Index Update the WS RAM at the specified index
from the L23TagLo Coprocessor 0 register.

If ErrCtlPO is set, the dirty parity values in the
L23TagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#011 I Index Store Data Index Write the IDataHi and IDataLo Coprocessor 0
register contents at the way and dword index
specified.

If ErrCtlPO is set, ErrCtlPI is used for the parity
value. Otherwise, the parity value is calculated
for the write data.

If ErrCtlPCO is set, ErrCtlPCI is used for the
precode values. Otherwise, the precode values
will be calculated based on the write data.

Yes

2#011 D Index Store Data Index Write the DDataLo Coprocessor 0 register
contents at the way and word index specified.

If ErrCtlPO is set, ErrCtlPD is used for the parity
value. Otherwise, the parity value is calculated
for the write data.

Yes

2#011 S Index Store ECC Index Write the DDataLo Coprocessor 0 register
contents to the ECC bits at the way and dword
index specified.

Yes

All Oth-
ers

All Other codes should not be used while
ErrCtlWST is set.

Perform Cache Operation CACHE

334 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Table 12.4 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set, ErrCtl[WST] Cleared

Code Caches Name

Effective
Address
Operand

Type Operation Implemented?

2#001 I Index Load Tag Index Read the SPRAM tag at the specified index
into the ITagLo Coprocessor 0 register. Also
read the instruction data and precode
information corresponding to the byte index
into the IDataHi,IDataLo, and ErrCtl registers

Yes

2#001 D Index Load Tag Index Read the SPRAM tag at the specified index
into the DTagLo Coprocessor 0 register.

Yes

2#010 I, D Index Store Tag Index Update the SPRAM tag at the specified index
from the xTagLo Coprocessor 0 register.

Yes

2#011 I Index Store Data Index Write the IDataLo and IDataHi Coprocessor 0
register contents into the SPRAM at the dword
index specified.

Yes

2#011 D Index Store Data Index Write the DDataLo Coprocessor 0 register
contents into the SPRAM at the word index
specified.

Yes

All Oth-
ers

I,D Other codes should not be used while
ErrCtlSPR is set.

All S,T Secondary and Tertiary operations should not
be performed while ErrCtlSPR is set.

Load Linked Word ILL

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 335

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

31 26 25 21 20 16 15 0

LL
110000

base rt offset

6 5 5 16

Prefetch PREF

336 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: PREF hint,offset(base) MIPS32

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. However, for all hint values except
for PrepareForStore, and all effective addresses, it neither changes the architecturally visible state nor does it alter the
meaning of the program.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation-dependent whether a Bus Error or Cache Error exception is reported, when such an error is
detected as a by-product of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed coherency
attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by a load or store to the effective address.

Any of the following conditions causes the core to treat a PREF instruction as a NOP.

• A reserved hint value is used

• The address has a translation error

• The address maps to an uncacheable page

In all other cases, except when hint equals 25, execution of the PREF instruction initiates an external bus read trans-
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data to be
returned.

31 26 25 21 20 16 15 0

PREF
110011

base hint offset

6 5 5 16

Table 12.1 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

Prefetch IPREF

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 337

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)

2-3 Reserved Reserved - treated as a NOP.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a store. LRU replacement information is ignored
and data is placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 is locked,
the prefetch will be dropped.

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a store. LRU replacement information is ignored
and data is placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 is locked,
the prefetch will be dropped.

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load. LRU replacement information is used, but
way 0 of the cache is specifically excluded. This prevents streamed
prefetches from displacing the line.

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store. LRU replacement information is used, but
way 0 of the cache is specifically excluded. This prevents streamed
prefetches from displacing the line.

8-24 Reserved Reserved - treated as a NOP.

25 writeback_invalidate (also
known as “nudge”)

Use: Data is no longer expected to be used.
Action: Schedule a writeback of any dirty data. The cache line is marked as
invalid upon completion of the writeback. If cache line is clean or locked, no
action is taken.

26-29 Reserved Reserved - treated as a NOP.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty
victim is written back to memory, the entire line is filled with zero data, and
the state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data only on a
cache miss, software must not assume that this action, in and of itself, can be
used as a fast bzero-type function.

31 Reserved Reserved - treated as a NOP.

Table 12.1 Values of hint Field for PREF Instruction

Prefetch PREF

338 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a by-product of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Store Conditional Word ISC

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 339

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If any of the following events occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]

31 26 25 21 20 16 15 0

SC
111000

base rt offset

6 5 5 16

Store Conditional Word SC

340 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

if vAddr1..0 ≠ 02 then
SignalException(AddressError)

endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

ISYNC

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 341

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: SYNC (stype = 0 implied) MIPS32

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers

Simple Description for Completion Barrier:

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable specified
memory instruction that occurs after the SYNC are allowed to be performed, with respect to any other pro-
cessor or coherent I/O module.

• The barrier does not guarantee the order in which instruction fetches are performed.

• A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior , then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with a lighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

• A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on entry to and exit from Debug
Mode to guarantee that memory affects are handled correctly.

Completion Barrier Types:

All completion barrier types will flush any pending writes and potentially generate an external SYNC request. An

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0

stype
SYNC
001111

6 15 5 6

SYNC

342 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

external SYNC request will be sent if Config7ES = 1 and SI_SyncTxEn = 1. The first term is a software enable for
externalizing SYNCs and the second term is a hardware enable, indicating that the next level device (L2 or system)
supports SYNC transactions. The core will wait for all pending reads to complete as well as the SYNC response if it
was externalized.

• 0x2 - Implementation specific stype. Intervention SYNC. When coherence is enabled, this SYNC will gen-
erate a CoherentSync request. The CoherenceManager will respond to the SYNC when the interventions for
all older coherent requests have been completed. If coherence is not enabled, will default to stype 0x0.

• 0x3 - Implementation specific style. Memory SYNC. When coherence is enabled, this SYNC will also gen-
erate a CoherentSync request. When interventions for all older coherent requests have completed, the sync
will be sent to memory interface unit. All pending transactions will be sent out. If the next level device (L2
or system) supports legacy SYNC transactions, as indicated by SyncTxEn = 1, an external SYNC request
will also be generated. The CM will send a response to the core when all prior requests have completed and
a SYNC response is received (if it was externalized).

• 0x0 - If coherence is enabled, this will be mapped to either a type 0x2 or 0x3 based on the value of the SYN-
CCTL bit in the CM Control GCR. If coherence is not enabled, a legacy SYNC request will be generated.
This will bypass the intervention pipeline in the CM and go directly to the memory unit. If SyncTxEn = 1,
an external SYNC request will be generated.

Simple Description for Ordering Barrier:

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

• The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

ISYNC

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 343

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Because the core processes loads and stores in order, ordering barriers are much lighter weight. The core handles all
ordering barriers identically. The LSU will complete any pending evictions and the BIU will stop merging on all
WBB entries. No external request will be generated and the core will not wait for pending transactions to complete.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

Table 12.1 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype
field..

Table 12.1 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes

0x0 SYNC
or

SYNC(0)

Loads, Stores Loads, Stores Loads, Stores

0x2 SYNC(2)
Intervention Sync

Load,Stores Loads, Stores Loads, Stores

0x3 SYNC(3)
Memory Sync

Load,Stores Loads, Stores Loads, Stores

0x4 SYNC_WMB
or

SYNC(4)

Stores Stores

0x10 SYNC_MB
or

SYNC(16)

Loads, Stores Loads, Stores

0x11 SYNC_ACQUIRE
or

SYNC(17)

Loads Loads, Stores

0x12 SYNC_RELEASE
or

SYNC(18)

Loads, Stores Stores

0x13 SYNC_RMB
or

SYNC(19)

Loads Loads

0x1,0x5-0xF,0x14 -
0x1F

RESERVED

SYNC

344 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

SyncOperation(stype)

Exceptions:

None

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the hard-
ware does not perform the barrier behavior expected by the software, the system may fail.

processorprocessor

Read Indexed TLB Entry ITLBR

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 345

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
Note that the value written to the EntryHi, EntryLo0, and EntryLo1 registers may be different from that originally
written to the TLB via these registers in that:

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i]Mask
EntryHi ←

TLB[i]VPN2 ||
05 || TLB[i]ASID

EntryLo1 ← 02 ||
TLB[i]PFN1 ||
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 02 ||
TLB[i]PFN0 ||
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBR
000001

6 1 19 6

Write Indexed TLB Entry TLBWI

346 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry

To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. See Section 4.4.1 “Hits, Misses, and Multiple Matches”
for the cases in which a 24K core will signal a Machine Check. The information written to the TLB entry may be dif-
ferent from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWI
000010

6 1 19 6

Write Random TLB Entry ITLBWR

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 347

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: TLBWR MIPS32

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR. In
such an instance, a Machine Check Exception is signaled. See Section 4.4.1 “Hits, Misses, and Multiple Matches”
for the cases in which a 24K core will signal a Machine Check. The information written to the TLB entry may be dif-
ferent from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Random
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWR
000110

6 1 19 6

Enter Standby Mode WAIT

348 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Format: WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset) is signaled, or a
non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the core does not use the code field in this
instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction). Note that it
is also possible for an interrupt to be taken on the WAIT instruction itself (before the WAIT instruction has halted the
pipeline). Software should be aware of this possibility and take appropriate actions to avoid returning to the WAIT if
there is additional work to be done.This is the case for ‘bottom half’ interrupt processing that exists in Linux and
other OSes. To facilitate this, the core implements a feature where the pipeline will be unfrozen by an interrupt even
if StatusIE=0. The idle loop can thus disable interrupts prior to executing the WAIT and know that processing will
resume after the WAIT when an interrupt is signaled. On a processor that does not support this feature, this sequence
would prevent the core from waking up without a reset or NMI, so it should be verified that the feature is present.
This core indicates that the feature is present by a value of 1 for Config7WII

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

Implementation-Dependent Code
WAIT

100000

6 1 19 6

Chapter 13

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 349

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e ASE as implemented in the 24K core. Refer to Volume IV-a of the MIPS32®
Architecture Reference Manual [3] for a general description of the MIPS16e ASE and descriptions of the instructions.

 This chapter covers the following topics:

• Section 13.1 “Instruction Bit Encoding”

• Section 13.2 “Instruction Listing”

13.1 Instruction Bit Encoding

Table 13.2 through Table 13.9 describe the encoding used for the MIPS16e ASE. Table 13.1 describes the meaning
of the symbols used in the tables.

Table 13.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc.
when one of these encodings is used. If no instruction is encoded with this value, executing such an
instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

350 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 13.2 MIPS16e Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X) δ BEQZ BNEZ SHIFT δ β

1 01 RRI-A δ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β

2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

β

3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRR δ RR δ EXTEND δ β

Table 13.3 MIPS16e JAL(X) Encoding of the x Field

x bit 26

0 1

JAL JALX

Table 13.4 MIPS16e SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL β SRL SRA

Table 13.5 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1

ADDIU1

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

β

13.1 Instruction Bit Encoding

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 351

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 13.6 MIPS16e I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2

2. The ADJSP function is used by the ADDIU sp, immediate instruction

SVRS δ MOV32R3

3. The MOV32R function is used by the MOVE r32, rz instruction

* MOVR324

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 13.7 MIPS16e RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

β ADDU β SUBU

Table 13.8 MIPS16e RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C) δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV

1 01 β * CMP NEG AND OR XOR NOT

2 10 MFHI CNVT δ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 13.9 MIPS16e I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 13.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx JR ra JALR * JRC rx JRC ra JALRC *

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

352 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

13.2 Instruction Listing

Table 13.12 through 13.19 list the MIPS16e instruction set.

Table 13.11 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ZEH β * SEB SEH β *

Table 13.12 MIPS16e Load and Store Instructions

Mnemonic Instruction
Extensible
Instruction

LB Load Byte Yes

LBU Load Byte Unsigned Yes

LH Load Halfword Yes

LHU Load Halfword Unsigned Yes

LW Load Word Yes

SB Store Byte Yes

SH Store Halfword Yes

SW Store Word Yes

Table 13.13 MIPS16e Save and Restore Instructions

Mnemonic Instruction
Extensible
Instruction

RESTORE Restore Registers and Deallocate Stack Frame Yes

SAVE Save Registers and Setup Stack Frame Yes

Table 13.14 MIPS16e ALU Immediate Instructions

Mnemonic Instruction
Extensible
Instruction

ADDIU Add Immediate Unsigned Yes

CMPI Compare Immediate Yes

LI Load Immediate Yes

SLTI Set on Less Than Immediate Yes

SLTIU Set on Less Than Immediate Unsigned Yes

13.2 Instruction Listing

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 353

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 13.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

ADDU Add Unsigned No

AND AND No

CMP Compare No

MOVE Move No

NEG Negate No

NOT Not No

OR OR No

SEB Sign-Extend Byte No

SEH Sign-Extend Halfword No

SLT Set on Less Than No

SLTU Set on Less Than Unsigned No

SUBU Subtract Unsigned No

XOR Exclusive OR No

ZEB Zero-Extend Byte No

ZEH Zero-Extend Halfword No

Table 13.16 MIPS16e Special Instructions

Mnemonic Instruction
Extensible
Instruction

BREAK Breakpoint No

SDBBP Software Debug Breakpoint No

EXTEND Extend No

Table 13.17 MIPS16e Multiply and Divide Instructions

Mnemonic Instruction
Extensible
Instruction

DIV Divide No

DIVU Divide Unsigned No

MFHI Move From HI No

MFLO Move From LO No

MULT Multiply No

MULTU Multiply Unsigned No

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

354 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 13.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction

B Branch Unconditional Yes

BEQZ Branch on Equal to Zero Yes

BNEZ Branch on Not Equal to Zero Yes

BTEQZ Branch on T Equal to Zero Yes

BTNEZ Branch on T Not Equal to Zero Yes

JAL Jump and Link No

JALR Jump and Link Register No

JALRC Jump and Link Register Compact No

JALX Jump and Link Exchange No

JR Jump Register No

JRC Jump Register Compact No

Table 13.19 MIPS16e Shift Instructions

Mnemonic Instruction
Extensible
Instruction

SRA Shift Right Arithmetic Yes

SRAV Shift Right Arithmetic Variable No

SLL Shift Left Logical Yes

SLLV Shift Left Logical Variable No

SRL Shift Right Logical Yes

SRLV Shift Right Logical Variable No

Appendix A

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 355

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

References

This appendix lists other documents available from MIPS Technologies, Inc. that are referenced elsewhere in this
document. These documents may be included in the $MIPS_HOME/$MIPS_CORE/doc area of a typical 24K soft
or hard core release, or in some cases may be available on the MIPS web site, http://www.mips.com.

1. MIPS32® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS document: MD0082

2. MIPS32® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
MIPS document: MD0082

3. MIPS32® Architecture For Programmers, Volume IV-a: The MIPS16e™ Application-Specific Extension to the
MIPS32® Architecture
MIPS document: MD00074

4. MIPS32® Architecture For Programmers, Volume IV-e: The MIPS® DSP Application-Specific Extension to the
MIPS32® Architecture
MIPS document: MD00374

5. MIPS32® 24K® and 24KE™ Processor Core Family Integrator’s Guide
MIPS document: MD00344

6. MIPS32® 24K® and 24KE™ Processor Core Family Implementor’s Guide
MIPS document: MD00347

7. Programming the MIPS32® 24K® Processor Core Family
MIPS document: MD00355

8. CoreExtend® Instruction Integrator's Guide for MIPS32® Cores
MIPS document: MD00348

9. PDtrace™ Interface and Trace Control Block Specification
MIPS document: MD00439

10. Open Core Protocol Specification
Available from the OCP International Partnership at http://www.ocpip.org

11. EJTAG Specification
MIPS document: MD00047

http://www.ocpip.org/
http://www.mips.com/publications/index.html

Appendix B

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 356

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

Revision Date Description

0.90 July 17, 2003 • Initial version.

0.91 July 31, 2003 • Updates based on early feedback

0.92 August 8, 2003 • Preliminary external release

0.93 August 22, 2003 • Added note on Cache Error handling to EBase description

• Added StatusCEE bit.

• Define writeability/reset state of ErrCtlPCO bit

• Added MTHI/LO to MDU op latency, fixed MDU repeat rate
table

• Removed DMTC1 and DMFC1 references from FPU chapter
• Updated PREF description to include special handling of

streamed and retained types

0.94 September 15, 2003 • formatting changes to appendix, table of contents, list of figures,
and list of tables

• minor clarification to ConfigMM description.

• Changed DebugMCheckP and DebugIBusEP to reflect imprecise

exceptions that the core can take.

0.95 September 30, 2003 • Added Config7AR and Config7ES fields

0.96 November 4, 2003 • Misc. cleanup

0.97 December 3, 2003 • Fix text to reflect 4I/2D as only EJTAG breakpoint option
• changed description of Config7 fields
• Added WS=1 table to CACHE description
• update trademarks

01.00 December 10, 2003 • Updated EJTAG chapter - describe imprecise breakpoint han-
dling, add 64b data compare for FP load/store

01.01 December 19, 2003 • Updated COP0 registers chapter - improved description for Errctl
and TagLo. ALso, made minor updates to the CACHE instruc-
tion description accordingly.

1.02 December 23, 2003 • Updated Table 2.7 Execution Hazards to reflect the actual
instruction spacing

1.03 January 27, 2004 • Fixed config2 description - L2 cache is supported
• Add Config7.FPR bit indicating FPU clock ratio
• Changed EB_SBlock to SI_SBlock in Config.BM description

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 357

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

02.00 March 5, 2004 • Clarified possible of number of hardware breakpoints.
• Added CEU exception type to table of CauseExcCode values.

• Clarify special exception type values for EJTAG.
• Removed TBD of fatal conditions in CacheErr
• Redefined ErrCtl to reflect additional I$ parity bits
• Removed SI_ColdReset reference in WAIT description
• Updated MDU latencies
• Removed DataLo register for L2 cache
• Update description of 64b data value register for EJTAG data

value breaks
• Change reset state of Config7ES

• Change priority of imprecise DDBL/DDBS breakpoints

02.01 May 28, 2004 • Add Cache Error description to exception chapter
• Fix Bus Error description in exception chapter
• Clarified description of ErrCtlPE field based on cache parity sup-

port
• Add Machine Check Exception table to MMU Chapter

02.02 September 10, 2004 • Review draft for MR1 release
• Add details on coprocessor2 and scratchpad RAM interfaces

03.00 September 24, 2004 • MR1 release

03.01 November 10, 2004 • MIP16e pipe stages clarified

3.02 March 15,2005 • MIPS Trace capability described
• Update hazard from TLBP

3.03 March 24,2005 • Updated the CacheErr register description

3.04 April 29, 2005 • Added details on Instruction ScratchPad RAM

3.05 June 30, 2005 • Added new performance counter events
• Clarified handling of CACHE instruction to Data ScratchPad

RAM
• Added EJTAG PC Sampling capability and compliance to

EJTAG specification version 3.1.
• Updates to comply with PDtrace and TCB Specification version

4.1; added TCBCONTROLC register.

3.06 December 21, 2005 • Removed use of undefined ‘cache block’ term from CACHE
instruction description

• Clarified which coprocessor0 registers were used by CACHE
instructions

• Remove description of non-way select or spram CACHE instruc-
tions when ErrCtlWST/SPR bits are set

• Update Config1 and TagLo descriptions to reflect 8KB cache
option

• Update description of debug control register to reflect PC Sam-
pling

• Added Config7.NBLSU

3.07 June 23, 2006 • Removed duplicate write buffer full stall perfcount event
• Enabled support for TCBCONTROLBTWSrcWidth

• Added exception vector address for Cache Error in Section 5.5,
"Exception Vector Base Addresses when SI_UseExceptionBase
equals 0"

• Update description of StatusRE field.

• Added descriptions for new registers SDataHi and SDataLo.
• Added descriptions for CacheErr register for L2 cache errors.

Revision Date Description

 Revision History

358 MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.08 December 19, 2006 • Added ability to modify exception base when StatusBEV is 1

• Added descriptions of perfcounter events
• Updated implementation-dependent instruction descriptions
• Updated description for L2 bypass bit in Config2
• Enhanced description for External SYNC indication in Config7

3.10 November 1, 2007 • Removed MT exception descriptions
• Fix StatusRE description

• Update document template to nB1.03
• Added FE and SE bits to CP0 ErrCtl register
• Added CP0 UserLocal register with conditional access via

RDHWR instruction. Config3.ULRI indicates presence of User-
Local.

• Added hardware support to avoid virtual aliases in the Instruc-
tion Cache.

• Allow interrupt to unblock WAIT instruction even if Status.IE
is disabled.

3.11 December 19, 2008 • Fixed position of HWREnaCCRes bit

• Remove ErrCtlITC since it is not present on this core

• Made performance counter event names more consistent
• Added Mode column to performance counter event table
• Added system specific performance counter events
• Clarified IntCtl.IPPCI description
• Removed self-referential notes for some instructions in the Core

Instruction Set table.
• Added missing DebugControlRegisterPCSe bit as well as

other DCR bits for unsupported debug features

Revision Date Description

	MIPS32® 24K® Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32® 24K® Processor Core Family
	1.1 24K® Core Features
	1.2 24K® Core Block Diagram
	1.2.1 Logic Blocks
	1.2.1.1 Execution Unit
	1.2.1.2 Multiply/Divide Unit (MDU)
	1.2.1.3 System Control Coprocessor (CP0)
	1.2.1.4 Memory Management Unit (MMU)
	1.2.1.5 Fetch Unit
	1.2.1.6 Instruction Cache
	1.2.1.7 Load/Store Unit
	1.2.1.8 Data Cache
	1.2.1.9 Bus Interface Unit (BIU)
	1.2.1.10 Power Management
	1.2.1.11 MIPS16e™ Application Specific Extension
	1.2.1.12 EJTAG Debug
	1.2.1.13 CorExtend® User Defined Instructions

	Pipeline of the 24K® Core
	2.1 Pipeline Stages
	2.1.1 IF Stage: Instruction Fetch First
	2.1.2 IS - Instruction Fetch Second
	2.1.3 IR - Instruction Recode (MIPS16e only)
	2.1.4 IK - Instruction Kill (MIPS16e only)
	2.1.5 IT - Instruction Fetch Third
	2.1.6 RF - Register File Access
	2.1.7 AG - Address Generation
	2.1.8 EX - Execute/Memory Access
	2.1.9 MS - Memory Access Second
	2.1.10 ER- Exception Resolution
	2.1.11 WB - Writeback

	2.2 Instruction Fetch
	2.2.1 Branch History Table
	2.2.1.1 Branch Target Calculation

	2.2.2 Return Prediction Stack
	2.2.3 ITLB
	2.2.4 Cache Miss Timing
	2.2.5 MIPS16e™

	2.3 Load Store Unit
	2.3.1 DTLB
	2.3.2 Data Cache Access
	2.3.3 Outstanding misses
	2.3.4 Uncached Accesses

	2.4 MDU Pipeline
	2.4.1 Multiply Pipeline Stages
	2.4.2 Divide Operations

	2.5 Skewed ALU
	2.6 Interlock Handling
	2.7 Instruction Interlocks
	2.8 Hazards
	2.8.1 Types of Hazards
	2.8.1.1 Execution Hazards
	2.8.1.2 Instruction Hazards

	2.8.2 Instruction Listing
	2.8.2.1 Instruction Encoding

	2.8.3 Eliminating Hazards

	Floating-Point Unit of the 24Kf™ Core
	3.1 Features Overview
	3.1.1 IEEE Standard 754

	3.2 Enabling the Floating-Point Coprocessor
	3.3 Data Formats
	3.3.1 Floating-Point Formats
	3.3.1.1 Normalized and Denormalized Numbers
	3.3.1.2 Reserved Operand Values-Infinity and NaN
	3.3.1.3 Infinity and Beyond
	3.3.1.4 Signalling Non-Number (SNaN)
	3.3.1.5 Quiet Non-Number (QNaN)

	3.3.2 Fixed-Point Formats

	3.4 Floating-Point General Registers
	3.4.1 FPRs and Formatted Operand Layout
	3.4.2 Formats of Values Used in FP Registers
	3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

	3.5 Floating-Point Control Registers
	3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)
	3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)
	3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)
	3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)
	3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)
	3.5.6 Operation of the FS/FO/FN Bits
	3.5.6.1 Flush To Zero Bit
	3.5.6.2 Flush Override Bit
	3.5.6.3 Flush to Nearest
	3.5.6.4 Recommended FS/FO/FN Settings

	3.5.7 FCSR Cause Bit Update Flow
	3.5.7.1 Exceptions Triggered by CTC1
	3.5.7.2 Generic Flow
	3.5.7.3 Multiply-Add Flow
	3.5.7.4 Cause Update Flow for Input Operands
	3.5.7.5 Cause Update Flow for Unimplemented Operations

	3.6 Instruction Overview
	3.6.1 Data Transfer Instructions
	3.6.1.1 Data Alignment in Loads, Stores, and Moves
	3.6.1.2 Addressing Used in Data Transfer Instructions

	3.6.2 Arithmetic Instructions
	3.6.3 Conversion Instructions
	3.6.4 Formatted Operand-Value Move Instructions
	3.6.5 Conditional Branch Instructions
	3.6.6 Miscellaneous Instructions

	3.7 Exceptions
	3.7.1 Precise Exception Mode
	3.7.2 Exception Conditions
	3.7.2.1 Invalid Operation Exception
	3.7.2.2 Division By Zero Exception
	3.7.2.3 Underflow Exception
	3.7.2.4 Overflow Exception
	3.7.2.5 Inexact Exception
	3.7.2.6 Unimplemented Operation Exception

	3.8 Pipeline and Performance
	3.8.1 Pipeline Overview
	3.8.1.1 FR Stage - Decode, Register Read, and Unpack
	3.8.1.2 M1 Stage - Multiply Tree
	3.8.1.3 M2 Stage - Multiply Complete
	3.8.1.4 A1 Stage - Addition First Step
	3.8.1.5 A2 Stage - Addition Second and Final Step
	3.8.1.6 FP Stage - Result Pack
	3.8.1.7 FW Stage - Register Write

	3.8.2 Bypassing
	3.8.3 Repeat Rate and Latency

	Memory Management of the 24K® Core
	4.1 Introduction
	4.2 Modes of Operation
	4.2.1 Virtual Memory Segments
	4.2.1.1 Unmapped Segments
	4.2.1.2 Mapped Segments

	4.2.2 User Mode
	4.2.3 Supervisor Mode
	4.2.4 Kernel Mode
	4.2.4.1 Kernel Mode, User Space (kuseg)
	4.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)
	4.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)
	4.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)
	4.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

	4.2.5 Debug Mode
	4.2.5.1 Conditions and Behavior for Access to drseg, EJTAG Registers
	4.2.5.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

	4.3 Translation Lookaside Buffer
	4.3.1 Joint TLB
	4.3.2 Instruction TLB
	4.3.3 Data TLB

	4.4 Virtual-to-Physical Address Translation
	4.4.1 Hits, Misses, and Multiple Matches
	4.4.2 Memory Space
	4.4.2.1 Page Sizes
	4.4.2.2 Replacement Algorithm

	4.4.3 TLB Instructions

	4.5 Fixed Mapping MMU
	4.6 System Control Coprocessor

	Exceptions and Interrupts in the 24K® Core
	5.1 Exception Conditions
	5.2 Exception Priority
	5.3 Interrupts
	5.3.1 Interrupt Modes
	5.3.1.1 Interrupt Compatibility Mode
	5.3.1.2 Vectored Interrupt Mode
	5.3.1.3 External Interrupt Controller Mode

	5.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

	5.4 GPR Shadow Registers
	5.5 Exception Vector Locations
	5.6 General Exception Processing
	5.7 Debug Exception Processing
	5.8 Exceptions
	5.8.1 Reset Exception
	5.8.2 Debug Single Step Exception
	5.8.3 Debug Interrupt Exception
	5.8.4 Non-Maskable Interrupt (NMI) Exception
	5.8.5 Machine Check Exception
	5.8.6 Interrupt Exception
	5.8.7 Debug Instruction Break Exception
	5.8.8 Watch Exception - Instruction Fetch or Data Access
	5.8.9 Address Error Exception - Instruction Fetch/Data Access
	5.8.10 TLB Refill Exception - Instruction Fetch or Data Access
	5.8.11 TLB Invalid Exception - Instruction Fetch or Data Access
	5.8.12 Cache Error Exception
	5.8.13 Bus Error Exception - Instruction Fetch or Data Access
	5.8.14 Debug Software Breakpoint Exception
	5.8.15 Execution Exception - System Call
	5.8.16 Execution Exception - Breakpoint
	5.8.17 Execution Exception - Reserved Instruction
	5.8.18 Execution Exception - Coprocessor Unusable
	5.8.19 Execution Exception - CorExtend block Unusable
	5.8.20 Execution Exception - Floating Point Exception
	5.8.21 Execution Exception - Integer Overflow
	5.8.22 Execution Exception - Trap
	5.8.23 Execution Exception - C2E
	5.8.24 Execution Exception - IS1
	5.8.25 Debug Data Break Exception
	5.8.26 TLB Modified Exception - Data Access

	5.9 Exception Handling and Servicing Flowcharts

	CP0 Registers of the 24K® Core
	6.1 CP0 Register Summary
	6.2 CP0 Register Descriptions
	6.2.1 Index Register (CP0 Register 0, Select 0)
	6.2.2 Random Register (CP0 Register 1, Select 0)
	6.2.3 EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)
	6.2.4 Context Register (CP0 Register 4, Select 0)
	6.2.5 UserLocal Register (CP0 Register 4, Select 2)
	6.2.6 PageMask Register (CP0 Register 5, Select 0)
	6.2.7 Wired Register (CP0 Register 6, Select 0)
	6.2.8 HWREna Register (CP0 Register 7, Select 0)
	6.2.9 BadVAddr Register (CP0 Register 8, Select 0)
	6.2.10 Count Register (CP0 Register 9, Select 0)
	6.2.11 EntryHi Register (CP0 Register 10, Select 0)
	6.2.12 Compare Register (CP0 Register 11, Select 0)
	6.2.13 Status Register (CP0 Register 12, Select 0)
	6.2.13.1 Operating Modes
	6.2.13.2 Coprocessor Accessibility

	6.2.14 IntCtl Register (CP0 Register 12, Select 1)
	6.2.15 SRSCtl Register (CP0 Register 12, Select 2)
	6.2.16 SRSMap Register (CP0 Register 12, Select 3)
	6.2.17 Cause Register (CP0 Register 13, Select 0)
	6.2.18 Exception Program Counter (CP0 Register 14, Select 0)
	6.2.19 Processor Identification (CP0 Register 15, Select 0)
	6.2.20 EBase Register (CP0 Register 15, Select 1)
	6.2.21 Config Register (CP0 Register 16, Select 0)
	6.2.22 Config1 Register (CP0 Register 16, Select 1)
	6.2.23 Config2 Register (CP0 Register 16, Select 2)
	6.2.24 Config3 Register (CP0 Register 16, Select 3)
	6.2.25 Config7 Register (CP0 Register 16, Select 7)
	6.2.26 WatchLo Register (CP0 Register 18, Select 0-3)
	6.2.27 WatchHi Register (CP0 Register 19, Select 0-3)
	6.2.28 Debug Register (CP0 Register 23, Select 0)
	6.2.29 Trace Control Register (CP0 Register 23, Select 1)
	6.2.30 Trace Control2 Register (CP0 Register 23, Select 2)
	6.2.31 User Trace Data Register (CP0 Register 23, Select 3)
	6.2.32 TraceIBPC Register (CP0 Register 23, Select 4)
	6.2.33 TraceDBPC Register (CP0 Register 23, Select 5)
	6.2.34 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	6.2.35 Performance Counter Register (CP0 Register 25, select 0-3)
	6.2.36 ErrCtl Register (CP0 Register 26, Select 0)
	6.2.37 CacheErr Register (CP0 Register 27, Select 0)
	6.2.38 ITagLo Register (CP0 Register 28, Select 0)
	6.2.39 DTagLo Register (CP0 Register 28, Select 2
	6.2.40 L23TagLo Register (CP0 Register 28, Select 4)
	6.2.41 IDataLo Register (CP0 Register 28, Select 1)
	6.2.42 DDataLo Register (CP0 Register 28, Select 3)
	6.2.43 L23DataLo Register (CP0 Register 28, Select 5)
	6.2.44 IDataHi Register (CP0 Register 29, Select 1)
	6.2.45 L23DataHi Register (CP0 Register 29, Select 5)
	6.2.46 ErrorEPC (CP0 Register 30, Select 0)
	6.2.47 DeSave Register (CP0 Register 31, Select 0)

	Hardware and Software Initialization of the 24K® Core
	7.1 Hardware-Initialized Processor State
	7.1.1 Coprocessor 0 State
	7.1.2 TLB Initialization
	7.1.3 Bus State Machines
	7.1.4 Static Configuration Inputs
	7.1.5 Fetch Address

	7.2 Software Initialized Processor State
	7.2.1 Register File
	7.2.2 TLB
	7.2.3 Caches
	7.2.4 Coprocessor 0 State

	Caches of the 24K® Core
	8.1 Cache Configurations
	8.2 Instruction Cache
	8.2.1 Virtual Aliasing
	8.2.2 Precode Bits
	8.2.3 Parity

	8.3 Data Cache
	8.3.1 Virtual Aliasing
	8.3.2 Parity

	8.4 Write Back Buffer
	8.4.1 Uncached Accelerated Stores

	8.5 Cache Protocols
	8.5.1 Cache Organization
	8.5.2 Cacheability Attributes
	8.5.3 Replacement Policy
	8.5.4 Line Locking

	8.6 CACHE Instruction
	8.7 Software Cache Testing
	8.7.1 I-Cache and D-cache Tag Arrays
	8.7.2 I-Cache Data Array
	8.7.3 I-Cache WS Array
	8.7.4 D-Cache Data Array
	8.7.5 D-cache WS Array

	8.8 Memory Coherence Issues

	Power Management in the 24K® Core
	9.1 Register-Controlled Power Management
	9.2 Instruction-Controlled Power Management
	9.2.1 Wait IE Ignore

	Instruction Set Overview
	10.1 CPU Instruction Formats
	10.2 Load and Store Instructions
	10.2.1 Scheduling a Load Delay Slot
	10.2.2 Defining Access Types

	10.3 Computational Instructions
	10.3.1 Cycle Timing for Multiply and Divide Instructions

	10.4 Jump and Branch Instructions
	10.4.1 Overview of Jump Instructions
	10.4.2 Overview of Branch Instructions

	10.5 Control Instructions
	10.6 Coprocessor Instructions

	EJTAG Debug Support in the 24K® Core
	11.1 Debug Control Register
	11.2 Hardware Breakpoints
	11.2.1 Features of Instruction Breakpoint
	11.2.2 Features of Data Breakpoint
	11.2.3 Instruction Breakpoint Registers Overview
	11.2.4 Data Breakpoint Registers Overview
	11.2.5 Conditions for Matching Breakpoints
	11.2.5.1 Conditions for Matching Instruction Breakpoints
	11.2.5.2 Conditions for Matching Data Breakpoints

	11.2.6 Debug Exceptions from Breakpoints
	11.2.6.1 Debug Exception by Instruction Breakpoint
	11.2.6.2 Debug Exception by Data Breakpoint

	11.2.7 Breakpoint used as TriggerPoint
	11.2.8 Instruction Breakpoint Registers
	11.2.8.1 Instruction Breakpoint Status (IBS) Register
	11.2.8.2 Instruction Breakpoint Address n (IBAn) Register
	11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
	11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
	11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

	11.2.9 Data Breakpoint Registers
	11.2.9.1 Data Breakpoint Status (DBS) Register
	11.2.9.2 Data Breakpoint Address n (DBAn) Register
	11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
	11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
	11.2.9.5 Data Breakpoint Control n (DBCn) Register
	11.2.9.6 Data Breakpoint Value n (DBVn) Register
	11.2.9.7 Data Breakpoint Value High n (DBVHn) Register

	11.3 Test Access Port (TAP)
	11.3.1 EJTAG Internal and External Interfaces
	11.3.2 Test Access Port Operation
	11.3.2.1 Test-Logic-Reset State
	11.3.2.2 Run-Test/Idle State
	11.3.2.3 Select_DR_Scan State
	11.3.2.4 Select_IR_Scan State
	11.3.2.5 Capture_DR State
	11.3.2.6 Shift_DR State
	11.3.2.7 Exit1_DR State
	11.3.2.8 Pause_DR State
	11.3.2.9 Exit2_DR State
	11.3.2.10 Update_DR State
	11.3.2.11 Capture_IR State
	11.3.2.12 Shift_IR State
	11.3.2.13 Exit1_IR State
	11.3.2.14 Pause_IR State
	11.3.2.15 Exit2_IR State
	11.3.2.16 Update_IR State

	11.3.3 Test Access Port (TAP) Instructions
	11.3.3.1 BYPASS Instruction
	11.3.3.2 IDCODE Instruction
	11.3.3.3 IMPCODE Instruction
	11.3.3.4 ADDRESS Instruction
	11.3.3.5 DATA Instruction
	11.3.3.6 CONTROL Instruction
	11.3.3.7 ALL Instruction
	11.3.3.8 EJTAGBOOT Instruction
	11.3.3.9 NORMALBOOT Instruction
	11.3.3.10 FASTDATA Instruction
	11.3.3.11 TCBCONTROLA Instruction
	11.3.3.12 TCBCONTROLB Instruction
	11.3.3.13 TCBCONTROLC Instruction
	11.3.3.14 TCBDATA Instruction
	11.3.3.15 PCSAMPLE Instruction

	11.4 EJTAG TAP Registers
	11.4.1 Instruction Register
	11.4.2 Data Registers Overview
	11.4.2.1 Bypass Register
	11.4.2.2 Device Identification (ID) Register
	11.4.2.3 Implementation Register
	11.4.2.4 EJTAG Control Register

	11.4.3 Processor Access Address Register
	11.4.3.1 Processor Access Data Register

	11.4.4 Fastdata Register (TAP Instruction FASTDATA)

	11.5 TAP Processor Accesses
	11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

	11.6 PC Sampling
	11.6.1 PC Sampling in Wait State

	11.7 MIPS® Trace
	11.7.1 Processor Modes
	11.7.2 Software Versus Hardware Control
	11.7.3 Trace Information
	11.7.4 Load/Store Address and Data Trace Information
	11.7.5 Programmable Processor Trace Mode Options
	11.7.6 Programmable Trace Information Options
	11.7.6.1 User Data Trace

	11.7.7 Enable Trace to Probe On-chip Memory
	11.7.8 TCB Trigger
	11.7.9 Cycle-by-Cycle Information
	11.7.10 Instruction and Data Cache Miss Tracing
	11.7.11 Trace Message Format
	11.7.12 Trace Word Format

	11.8 PDtrace™ Registers (Software Control)
	11.9 Trace Control Block (TCB) Registers (Hardware Control)
	11.9.1 TCBCONTROLA Register
	11.9.2 TCBCONTROLB Register
	11.9.3 TCBDATA Register
	11.9.4 TCBCONTROLC Register
	11.9.5 TCBCONFIG Register (Reg 0)
	11.9.6 TCBTW Register (Reg 4)
	11.9.7 TCBRDP Register (Reg 5)
	11.9.8 TCBWRP Register (Reg 6)
	11.9.9 TCBSTP Register (Reg 7)
	11.9.10 TCBTRIGx Register (Reg 16-23)
	11.9.11 Register Reset State

	11.10 Enabling MIPS Trace
	11.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	11.10.2 Turning On PDtrace™ Trace
	11.10.3 Turning Off PDtrace™ Trace
	11.10.4 TCB Trace Enabling
	11.10.5 Tracing a Reset Exception

	11.11 TCB Trigger Logic
	11.11.1 Trigger Units Overview
	11.11.2 Trigger Source Unit
	11.11.3 Trigger Control Units
	11.11.4 Trigger Action Unit
	11.11.5 Simultaneous Triggers
	11.11.5.1 Prioritized Trigger Actions
	11.11.5.2 OR’ed Trigger Actions

	11.12 MIPS Trace Cycle-by-Cycle Behavior
	11.12.1 FIFO Logic in PDtrace and TCB Modules
	11.12.2 Handling of FIFO Overflow in the PDtrace Module
	11.12.3 Handling of FIFO Overflow in the TCB
	11.12.3.1 Probe Width and Clock-ratio Settings

	11.12.4 Adding Cycle Accurate Information to the Trace

	11.13 TCB On-Chip Trace Memory
	11.13.1 On-Chip Trace Memory Size
	11.13.2 Trace-From Mode
	11.13.3 Trace-To Mode

	24K® Processor Core Instructions
	12.1 Understanding the Instruction Descriptions
	12.2 24K® Opcode Map
	12.3 Floating Point Unit Instruction Format Encodings
	12.4 MIPS32® Instruction Set for the 24K® Core
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	TLBWR
	WAIT

	MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set
	13.1 Instruction Bit Encoding
	13.2 Instruction Listing

	References
	Revision History

