MIIFPPS

MIPS32® 24K® Processor Core Family
Software User’s Manual

Document Number: M D00343
Revision 03.11
December 19, 2008

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2004-2008 M 1 PS Technologies Inc. All rightsreserved.

MIPS;Y

Copyright © 2004-2008 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24K c, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B M1PS32 PROC

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Introduction to the MIPS32® 24K® Processor Core Familycccccoeeei, 21
1.1 24K® COrE FEAIUMNES. ...ciiiiiiiiiiitttt ettt e e e e e e e e e et e et e e e e e e s s e e e e e ae s 22
1.2: 24K® COre BIOCK DIBGIAM ...ttt e ettt e e e e e ettt et e e e e e e e e e s e bbb bt et e e e e e e e e e e e aaannnbbsbreeeaaaans 25

2 I o o (ol =1 (o o3 TP TR PPPRPRPRR 26
1.2, 0.1 EXECULION UNIT .ottt e e et e e s e e e s as 26
1.2.1.2: Multiply/Divide URNit (IMDU)uuiiiiiiiiiiea et e ettt e e e e e e e e e e s annnbebeeeeaaaaaeeaaaanns 27
1.2.1.3: System Control CoproCeSSOr (CPO)coiiiiiiiiitiiie ittt e e e e et e e e e e e e e e e aan 27
1.2.1.4: Memory Management UnNit (MMU)oooiiiiiiiiii e e e e e e e e 27
1.2, 0.5 FOICH UNIt ..ttt e ekt e et e n e e 28
1.2.2.6: INSTUCTION CACNE......eiiiiiiiiiii ettt e e 28
1.2.0.7: LOAA/STONE UNIT......iiiiieeiiiiiii ettt e e skt et e e s e e e s s 29
2 I I B T - W 2= 1o o[PP PPPPPURTRR 29
1.2.1.9: Bus Interface UNIt (BIU) ...ttt e e e e e e et eee e e e e e e e e e anns 29
1.2.1.10: POWET MBNAGEIMENT ...ttt e e e e e e e et ettt et eeeaetebe bbb e s s e s e e e e e e e eeaeaaaeeeeeeesessssnbnbnnnnns 29
1.2.1.11: MIPS16e™ Application Specific EXIENSIONueiiiiiiiiiiiiiiiiiiiiie it 30
1.2.1.12: EJTAG DEIUG ...ttt ettt et 30
1.2.1.13: CorExtend® User Defined INSIIUCIONS...........uiiiiiiiiiieeiiieee et 30

Chapter 2: Pipeling of the 24K® COr@ccoo oot e e e e e e e e e e an e e eees 31

P 1o 1= [T TR =T [T RO RPOOPPPRPOTPPPR 31
2.1.1: IF Stage: INSrUCtiON FEICH FiFSt......oiiiiiiiiiiiiiie et 32
2.1.2: 1S - INSLruCtion FECN SECONM.......ciiiiiiiiiiie ittt anae s 32
2.1.3: IR - Instruction Recode (MIPSL16E ONIY).....ccuuuiiiiiiiiiiiieiiiiiie ettt 33
2.1.4: 1K - Instruction Kill (MIPSLEE ONIY)eveiiiiiiiiiiie ittt ettt e s 33
2.1.5: 1T - INStruction FELCH TRIFGcoiueiiiiiii et 33
2.1.6: RF - REQISIET FlE ACCESS ...oiiiiiiiiiiie ittt et e st e et e e aanneeas 33
2.1.7: AG - AAIESS GENEIALIONcceiitiiiti ettt ettt ettt e ettt e e s sttt e s ettt e e st et e e s annneeas 33
2.1.8: EX - EXECULE/MEIMOIY ACCESS.eetieiitietee ettt e ettt e ettt e e ekttt e s ekttt e e e s bttt e e e bbbt e e e s st b e e e e annne s 33
2.1.9: MS - MEMOIY ACCESS SECONTeeiiiiiiiiiie ittt ettt e ettt e ettt e ettt e e s st e e e e bbbt e e e s anbbe e e s annneeas 33
2.1.10: ER- EXCEPLON RESOIULION ...ttt ettt et e e as 34
2,100 WB - WIHEEDACK ...ttt et e e as 34

2.2: INSEIUCTION FEICK ...ttt ekt e e ekt e e e e h b bt e e e e bb et e e e e aaba e e e e e abbeeeeeaas 34
2.2.1: BrancCh HiStOrY TabIe. ...ttt ettt et e st e e aaaneeas 37

2.2.1.1: Branch Target CalCUIALIONciuuiiiiiiii et 38

2.2.2: REtUIN PrediClioN STACKcoiitiiiiieiiiie ettt ettt e ettt e et e e anneeas 38

e S 8 T TP PRPT 38

A S O 1ol o[1RSSR T 0111V PR TOTT PR 39

2. 2.5 MIP S LB ™ ettt E et e oo Rttt e e et et nnne s 39

PR M o - To IS (o1 1= 210 [o | SO RO RPPOOPPPRPPOTPPPR 40
P2 B0 B b I I = S RSP PPPTPP 41
2.3.2: DALA CACNE ACCESS. ...ttt ittt e ettt e ookttt a4 e s bbbt e e e sttt e e e et e et s 42
2.3.3: OULSTANING MISSES. .. et e tiutttiteee ittt ettt ettt e ettt e e 4 ettt e o4kt e e e e e s b b et e e e s st bttt e e s bbbt e e e s st et e e s annnneeas 43
2.3.4: UNCACKNET ACCESSES. ...ttt ittt ettt et e ottt e ookttt e 4 e s bt e o4 n bttt e e e bbbt e e s sttt e e e ennne s 43

PV 1 W T o= 1 o = PO RPPOOUPPRPOTPPPR 43
2.4.1: MUILIPIY PIPEING STAGESeeeieiitiiit ettt ettt e e s sttt e e et e e ettt e e s aanneeas 45
o D 1AV (o [@] o L= =1 (o] o T PRSP PRPTPP 47

2.5 SKEWED ALU ...ttt et e e ettt e oo h e o4 E e e e b e e e e et e e e b e e e e a b e e e e 48

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 3

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

A T 11 (=15 (o Yo 2 = =T o | 1 T P 49

2.7 INSTUCTION INTEIIOCKS. ...t ei etttk e et e e e et e e e ettt e e e asr e e e e e annreeeeens 50
2,81 HAZANUS ... e e et e e et e e e e e e e e e e 51
2.8. 1 TYPES OF HAZAIUS ...ttt e e e e e e e bbbt et e e e e e e e e e e e et eba e eeeeeeas 51
2.8.1.1: EXECULION HAZANMSoeiiiiiiiiiie ettt ettt e e e e e e 51
2.8.1.2: INSIIUCHION HAZAITUS......eiiiiiiiiiieeie ettt ettt e s e e e e e e 52

2.8.2: INSIIUCTION LISHING ... e et e e e e e e e e e e e ettt e ettt e e e e e e e e eaeaeeaaaeaaeeseeeesesesnsnranes 53

P2 < T2 Il [1S3 £ T o T T =1 oo To |1V S 53

2.8.3: ElIMINAtiNG HAZAIS ..ottt ettt e e e e e e e e e e e e e aeaeaeeeeeeeeeesnesraranes 54
Chapter 3: Floating-Point Unit of the 24KTf™ COre.........cco oo, 55
3.1 FEALUIES OVEIVIEW ...iiieiieei ittt etttk e o4kt e e 4o a bttt e 44k b et e o4 4a ket e e o4k b bt e e e e e kb et e e e e anbb e e e e e sbbreee e 55
.11 IEEE STANUANT 754 ...ttt ettt ettt ekttt 56
3.2: Enabling the Floating-POINt COPIrOCESSONcciitiiiiieiiiiii ettt ettt aneeee e 56
3.3 DALA FOMMALS ...ttt e e e e e oottt e e e e e e e et e e e e e et a s 57
3.3.1: FloAting-POINT FOMMIALSeiiiiiiiiii ettt ettt e st e e s e e e s as 57
3.3.1.1: Normalized and Denormalized NUMDEIS...........iiiiiiiii e 59
3.3.1.2: Reserved Operand Values—Infinity and NaNccccooiiiiiiiiiiii e 59

3.3.1.3: INfINItY QNG BEYONTeeiiiiiiiiit ettt e e 59
3.3.1.4: Signalling Non-NUMDBEr (SNAN)oiiiiiiiiieii e 59
3.3.1.5: Quiet NoN-NUMBEr (QNAN)ciiiiiiiei it e e 59

3.3.2: FIXEA-POINE FOIMMALSeittiiiieiitee ettt ettt ettt e e skt e e s e et e e et e e e s annne s 60
3.4: Floating-Point GENEIal REGISTEISeiiiiiieiiiieiitei ettt e et e e e st e e e s b e e e e e anbreee e 61
3.4.1: FPRs and Formatted Operand LAYOULuuiiiiiiriieeiiiiie ettt 61
3.4.2: Formats of Values USed iN FP REJISIEISuiiiiiiiiiii ettt 61
3.4.3: Binary Data Transfers (32-Bit and 64-Bit)coiiuuiiiiiiiiiieeiiiiie et 63
3.5: Floating-Point CONLrol REGISTEIS.........eiiiiiiit ettt e e st e e e s e e e e e s nbreee e 64
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control RegiSter 0).........cccveevriirireeiniiieeeeiine, 65
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25).........cccccveeviiviieerinnnn. 66
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control RegiSter 26)ccceeviiiiieeeiniinieeeiiine. 67
3.5.4: Floating-Point Enables Register (FENR, CP1 Control RegiSter 28)coccvvieeiiiiiiieeiiiiiee e, 67
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31).......cccccceevivvveernnnnn. 68
3.5.6: Operation Of the FS/FO/FN BitS........cuuiiiiiiiiiiie ettt ettt e s 70
3.5.6.1: FIUSN TO ZEIO Bl ...ttt ettt e e e e e e 71

3.5.6.2: FIUSN OVEITIAE Bil......eeeiiiiiiiiiieeiieee ettt ettt et e e e e e e 72
3.5.6.3: FIUSN 10 NEAIEST ...ttt ettt e et e et e e et e e e nnes 72
3.5.6.4: Recommended FS/FO/FN SEttNUSuviiiiiiiiiiee ettt 73

3.5.7: FCSR Cause Bit UPAAte FIOW.cciiuiiiiiiiiiiiii ettt ettt 73
3.5.7.1: Exceptions Triggered DY CTCL ...ttt 73

3.5.7.27 GENEIIC FIOW ..ttt ettt e et e e et e e e e e e e 73
3.5.7.3: MUIIPIY=AAT FIOW ...ttt ettt e e e e e 74
3.5.7.4: Cause Update FIow for INPUL OPEIrandSuviiiiiiiiiiieeiiiiiee et 74
3.5.7.5: Cause Update Flow for Unimplemented OPerationscoouiiirieeiiiiiieeeiiiiie e 74

3.6: INSTIUCTION OVEIVIEW ...tttk e oo ettt e o4kt e e oo 4a ket e e a4 e a b bt e e e e e bt et e e e e aabe e e e e e abbr e e e e e 74
3.6.1: Data TranSTer INSIIUCTIONSveiiiieiiie ettt et e st e e s anneeas 75
3.6.1.1: Data Alignment in Loads, Stores, and MOVESuiiiiiiieaiiiiiiiiiiiieeeee e e 75
3.6.1.2: Addressing Used in Data Transfer INSIrUCHIONSeviiiiiiiiieiiiiieeeie e 75

3.6.2: AFTNMETIC INSTIUCTIONS ... ettt ettt ekt e st e e st e e as 76
3.6.3: CONVEISION INSIIUCTIONS.eeieiiitieit ettt ettt e e st e e e e e e e st e e e s e as 77
3.6.4: Formatted Operand-Value MOVE INSIIUCTIONSc.uveiiiiiiiiiieeiiiee e 78
3.6.5: Conditional Branch INSITUCLIONSc.uuiiiiiiiiiiie ettt e e 79
3.6.6: MiISCEllaNE@OUS INSIIUCTIONSueiiiiieiiieee ettt ettt e st e s e e e s anne s 79

I A = (1= o 1[0 1 £SO TP PP PPPPPPPTOPPPPPN 80
4 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.7.1: Precise EXCEPLION IMOTEuuiiiiiiiieeeii ittt et e e e e e bbbt ettt e e e e e e e e e et e baeeeeeeaeas 80

3.7.2: EXCEPLION CONITIONS ...ttt ettt et e e e e e e e e e bbb et et e e e e e e e s e aanbbbbaeeeeeeeeas 80
3.7.2.1: Invalid Operation EXCEPLION........ccc.uiiiiieiie ettt e e e e e e e e e e s 81
3.7.2.2: DIVISION BY ZEI0 EXCEPLION ..ottt ettt e e e e e e e e e e as 82
3.7.2.3: UNAEITIOW EXCEPLION ...ttt ettt e ettt et e e e e e e e et eeeeeeeas 82
3.7.2.4: OVEITIOW EXCEPLIONttt ettt et e e e e e e e e b e e e eeeeas 82
3.7.2.5: INEXACT EXCEPLIONutiiiiiiettiee ettt e e e e e e e ettt e et e e e e e e e e bbb eeeeeaeas 82
3.7.2.6: Unimplemented Operation EXCEPLIONccoi ittt 83

3.8: Pipeline @and PeIfOIMANCEoooiiiiiiiiieii ettt e e e e e ettt e e e e e e e e e s bbbt e e eeeaaeas 83

3.8.1: PIPEINE OVEIVIEW ...ttt ettt e e oottt ettt e e e e e e oo o e kbbbt et ettt e e e e e e e e e ennbbebneeeeeeeeas 83
3.8.1.1: FR Stage - Decode, Register Read, and UNPacK...........ccccoviiiiiiiiiiiiiiiiiiiieiieeeee e 84
3.8.1.2: M1 Stage - MUIIPIY TTEE ..ottt e e e e e e e e e e as 84
3.8.1.3: M2 Stage - Multiply COMPIELEuiiiiiiiiiiiie et 84
3.8.1.4: Al Stage - AAditioN FirSt STEP ...ocoueiiiiiiiii ittt e e e e e e eeeeeas 84
3.8.1.5: A2 Stage - Addition Second and FiNal STEPuuuiiiiiiiiiiiiii e 84
3.8.1.6: FP Stage - RESUIL PACKccoii ittt 84
3.8.1.7: FW Stage - ReQISIEr WOcccc e e e e e e e e e e e e e et e e e 84

O S Il =)V o = L1 o TP PP PPPPPPP 85

3.8.3: Repeat RAE @NT LALENCYueiiiiiiiiiiiiiiiite ettt e e e e e e e bbbt e et e e e e e e e s e e b b e e e e e eeeeas 85

Chapter 4: Memory Management of the 24K® COre ..o, 87
I Vo 1 0o [8 [t 110 o R PRUORRRRPRIN 87
Y (oo [T o] @ o =T = 11 [o] o I PO P PP PP PPP 89

4.2.1: ViIrtual MEMOTY SEOMIENTSeeiiiiiiiiitie ittt ettt e et e e e bbb et e e e et e e e e st e e e e e anbreeeeanees 89
4.2.1.2: UNMAPPEA SEOIMENES ...eieiiitiiiee ettt e ettt e ettt e ettt e ettt e e e e e bt e e e et bt e e e e e bb et e e e e anbbeeeeenees 90
N A V- T o =To IR ST=To 01 1T o £ PP TP TP PP P PPPPPP 91

A.2.2: USEI IMOUE.......eeeeti ettt ettt o4t e o4t e e et e e e e e e e e 91

4.2.3: SUPEIVISON IMOUE ...ttt e et e oot e e et e e s e e e e et e e e e nees 92

S (=14 0 [=T I 1Y oo [T PP TP PPPPPPP 94
4.2.4.1: Kernel Mode, USEr SPACE (KUSEQ) ...vieeiiutiiieeiiitiiee ettt ettt e b e 96
4.2.4.2: Kernel Mode, Kernel SpPace 0 (KSEG0)......uueiiiiiriiieeiiiiiie ettt e et e s e e 96
4.2.4.3: Kernel Mode, Kernel SPace 1 (KSEOL)......uueiiiiiiieeeiiiiiieee ettt e s ee e e 96
4.2.4.4: Kernel Mode, Kernel/Supervisor Space 2 (KSSEQ/KSEU2)uuveeiiiureiieiiiiiieee it 97
4.2.4.5: Kernel Mode, Kernel SPace 3 (KSEO3)uuuiiiiiiiiiieeiiiiiiie ettt e s e e 97

A.2.5: DEDUQY IMOUE. ...ttt o4t e o4t e e et e e e e e e e e 97
4.2.5.1: Conditions and Behavior for Access to drseg, EJTAG ReQISErSccovvvriieeiiiiiiieeiiiiiieeenans 98
4.2.5.2: Conditions and Behavior for Access to dmseg, EJTAG MEMOIYc.ocuvrieeiiiiieieeiiiiieeeenans 98

4.3: Translation LOOKASIAE BUTTEIioiiiiiiiieiii ettt 99

R I N (o | A I O PP U PP T T PPPPPP 99

4.3.2: INSTIUCTION TLB ..otttk e oot e ekt e e e e ettt e e e e be e e e e e antbe e e e e nnes 101

A.3.3: DALA TLB ..ttt e e e e e e 102

4.4: Virtual-to-Physical Address TranSIatioN............uiiiiiiiii e 102

4.4.1: Hits, Misses, and MUItIPIE MAECHES.........oooi it a e 104

4.4, 2 MEIMOIY SPBCEtteeiiiiieeeee ettt e e e e et e ettt et e e e e e e 1a b e ettt e et e e e e e e st bbb e e e et e e e e e e s e e aeenr e e 105
A.4.2.07 PAQE SIZES .ottt h et e et e e e e e e 105
4.4.2.2: Replacement AlGOITRIM ... 105

A.4.3: TLB INSTIUCTIONS ...ttt ee ettt ettt e e ekt e e e ekt e e e e et e e e e s e e e e et be e e e e nnes 106

4.5 Fixed MapPiNg MIMU ...ttt e e e e st e e e e st e e et e e et 107
4.6: SYSLEM CONIIOI COPIOCESSONeeiteiiuittette ettt e ettt e e ettt e e ekt e e e kbt e e oo st e e e e st et e e e e bt e e e e st e e e e e annees 109
Chapter 5: Exceptions and Interrupts in the 24K® COre......ccoiiiiiiiiiiiiiieeeeee e 110
N I o= 1110 @0 T o 11 1 1SR 110
A o =T o110 T = T] 2SS 111
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 5

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

RS T 1 1 (=T 4 (] o] £ T PP PP P TP PP TP 112

5.3, L INTEITUPE IMOAES ...ttt ettt e e e e e e e e e okttt e et e e e e e e e et e br e e e e e aeeas 112
5.3.1.1: Interrupt Compatibility MOOE...........uuiiiiiiiiiiiae e 113
5.3.1.2: Vectored INTErrUuPt IMOUEcooi ittt e e e e et eeeeae s 115
5.3.1.3: External Interrupt Controller MOcooiiiiiiiiie s 118

5.3.2: Generation of Exception Vector Offsets for Vectored INterrupts..........cccvvveeiiieiiiiiiiiiiiiiiiieeeeeeenn 120

R S] o o = o (oA =T 1S3 =T = 121
5.5: EXCEPLION VECION LOCALIONS ...ttt ettt e e e ekttt et e e e e e e e e e s bbb et et e e e e e e e e e e aannebeeeees 123
5.6: General EXCEPLION PrOCESSINGuuuutiiiiiiiiiiea ettt e e e e e ettt et e e e e e e e s e s bbb bt reeta e e e e e s e e annebebeees 125
5.7: Debug EXCEPLION PrOCESSINGoiiiiiitieiieiiee e e ee ettt e e e e e e et bbbttt et e e e e e e e s e s bbb b et e e et e e e e e e s e e annnbbnbeees 127
S o= 1[0 [ST UPUP PR 129

S I N =TT (ot =T o] 1o o TP T TP TP OTOPPPPPPPI 129

5.8.2: Debug SiNgle STEP EXCEPLION ...coviiiiiiiii ittt e e e e e e e e e e et eeeeae s 130

5.8.3: Debug INTEITUPTE EXCEPLIONveiiiiiiiiee ittt e ettt e e e e e e e e bbb e e e eaeaeeas 130

5.8.4: Non-Maskable Interrupt (NMI) EXCEPLIONuiiiiiiiieiiiiiieee ettt 131

5.8.5: MAChIiNE ChECK EXCEPLION.eiiiiiiiiiiiiiittt ettt e e e et e e e e e e e e e e e e bbb eeeeeaeeas 131

5.8.6: INTEITUPL EXCEPLION ...ttt ettt et e e e e e e e okt e et e e e e e e e e e st b b beeeeeeaeeas 132

5.8.7: Debug INStruction Break EXCEPLIONo..iiiiieiiiiiee ettt e e 132

5.8.8: Watch Exception — Instruction Fetch or Data ACCESS........uuuiiiiiiiiaiiiiiiiiie e 132

5.8.9: Address Error Exception — Instruction Fetch/Data ACCESS.......ccooeaiiiiiiiiiiiiiiiiie e 133

5.8.10: TLB Refill Exception — Instruction Fetch or Data ACCESSccoeeeiiiiiiiiiiiiiiiiieeee e 134

5.8.11: TLB Invalid Exception — Instruction Fetch or Data ACCESS........ccovviiiiiiiiiiiiiiieeee e 134

5.8.12: CACE EITOIr EXCEPLIONuitiiiiiiiieie ettt e e e e ettt e e e e e e e e et a b e e e e e e aeeas 135

5.8.13: Bus Error Exception — Instruction Fetch or Data ACCESS........coueiiiiiiiiiiiiiiiiiie e 135

5.8.14: Debug Software Breakpoint EXCEPLIONciiiiiiiiiiiiiiii et 136

5.8.15: Execution EXception — SYStEM Call...........ueiiiiiiiiiiiiiiiii e 136

5.8.16: Execution EXCeption — BreakpPOiNt...........uiiiiiiiiieei ittt 136

5.8.17: Execution Exception — Reserved INStIUCTIONc.oiiiiiiiiiiiiii e 137

5.8.18: Execution Exception — Coprocessor UNUSADIEc.uuiiiiiiiiiiiiaiii e 137

5.8.19: Execution Exception — CorExtend block Unusable ... 138

5.8.20: Execution Exception — Floating POINt EXCEPLIONocueiiiiiiiiiiiieeeee e 138

5.8.21: Execution Exception — INteger OVEITIOW.cooiiiiiiiiiii e 138

5.8.22: EXECULION EXCEPTION —— THaP .. ttttiieiaiiiiiiitttte ettt e e ettt e e e e e e e e e sttt e e e e e e e e e e annbb e e eeeeeaeeas 139

5.8.23: EXECULION EXCEPLION — C2E ...coiiiiiiiiiiiit ittt ettt e e e e e e e eeeeaeeas 139

5.8.24: EXECULION EXCEPLION — ISL....oiiiiiiiiiiiiiitetee ettt ettt e e e e e e e e bbb eeeeeee s 139

5.8.25: Debug Data Break EXCEPLION........cooi ittt ettt e e e et e e e e e e as 139

5.8.26: TLB Modified EXCEPUION — DAtA ACCESSeeiiiiiiiaiiiiiiiiiteite et e ettt e e e e e eeeeeeeas 140

5.9: Exception Handling and Servicing FIOWCHAITSuuiiiiiiiiiiiiiii e 140
Chapter 6: CP0 Registers 0f the 24K® COTecooooeiiiiiii e 146
6.1: CPO REQISIEI SUMMAIY ...ceiiiitiiiiee ittt e ettt ettt e s ettt e e ekttt e 4 aa b ettt e o4k bt e e e ek b e et e s nbb e et e e anbbn e e e e s annnne e s 146
6.2: CPO REQISLEr DESCIIPLIONSttiiiieiiieei ettt ettt ettt ettt e okt e e e ek e e e e st e e e et e e s e eas 148

6.2.1: Index Register (CPO Register 0, SEIECt 0)ouiiiiiriiieiiiiii e 149

6.2.2: Random Register (CPO RegiSter 1, SEIECE 0)ocuuiiiiiiiiiiieeiiiiie e 149

6.2.3: EntryLoO and EntryLol Registers (CPO Registers 2 and 3, SeleCt 0).......cooccvvveeiiiiiireiiiiiiieeeee 150

6.2.4: Context Register (CPO RegiSter 4, SEIECT 0).....uiiiiuuriiieiiiiiiie ettt 151

6.2.5: UserLocal Register (CPO RegiSter 4, SEIECT 2)uuuiiiiiiiiiie ittt 152

6.2.6: PageMask Register (CPO Register 5, SElECt 0)uuvviiiiiiiiiieiiiiie et 153

6.2.7: Wired Register (CPO Register 6, SEIECT 0).......cuiiiiiiiieiiiiiiie et 154

6.2.8: HWREnNa Register (CPO RegiSter 7, SEIECE 0)c.uuriieiiiiiiiieiiiiee et 154

6.2.9: BadVAddr Register (CPO Register 8, SelEeCt 0)........uuviiiiiiiiiiiiiiiite et 156

6.2.10: Count Register (CPO RegiSter 9, SEIECE 0)ccoiiuuriiieiiiiiiie ettt 157

6.2.11: EntryHi Register (CPO Register 10, SEIECE 0)iuurriieiiiiiiieeiiiiee et 157

6 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2.12: Compare Register (CP0O Register 11, SeleCt 0)ooiiiuiiiiiiiiiieeeee e 158

6.2.13: Status Register (CPO Register 12, SeleCt 0).......cccceiiiiiiiiiieiieeiess s e e e e e e e e e e e 158
6.2.13.1: OPEratiNG MOUESeeeeiiiiieeiii ettt e e e e e e e bbbttt e et e e e e e e e et e b e e eeaeeeas 159
6.2.13.2: COProCesSOr ACCESSIDIIITYoiiiiiiiiee ettt e e 160

6.2.14: IntCtl Register (CPO Register 12, SEIECE 1)......cccceiiiiiiiiieeeeeee s e e e e e e 164

6.2.15: SRSCtl Register (CPO Register 12, SEIECE 2)ccooeiiiiiiieeeeeeere e e e e 165

6.2.16: SRSMap Register (CPO Register 12, SEIECT 3).....cooiiiiiiiiiiiiiiieeee e 167

6.2.17: Cause Register (CPO Register 13, SeIECt 0).......cccciiiiiiiiiiiiieierees e e e e e e e e e e e e 168

6.2.18: Exception Program Counter (CPO Register 14, SeleCt 0) ...t 172

6.2.19: Processor ldentification (CPO Register 15, SelIeCt 0)ccvvvvriiiiiiiiiiiiiiiiii e eeeeee e 173

6.2.20: EBase Register (CPO Register 15, SEleCt 1)ccoeiiiiiiiiieeeeeeee e 173

6.2.21: Config Register (CPO Register 16, SeIECt 0)........cccciiiiiiiiiieieiiire s e e e e e e e e e e 174

6.2.22: Configl Register (CPO Register 16, SEIECt 1).......cccciiiiiiiiiiieeere e e e e 176

6.2.23: Config2 Register (CPO Register 16, SEIECt 2).......cccoiiiiiiiiieiere e 178

6.2.24: Config3 Register (CPO Register 16, SEIECt 3)......cccciiiiiiiiiiiieeerers e e e e 180

6.2.25: Config7 Register (CPO Register 16, SEIECE 7).....cccoeiiiiiiiieeeere e 182

6.2.26: WatchLo Register (CPO Register 18, Select 0-3).......ccoviiiiiiiiiiiiiiiiiiiis s e e e ee e e e e eeeeeaeanennns 183

6.2.27: WatchHi Register (CPO Register 19, Select 0-3)cooiiiiiiiiiiiiiiiees s 184

6.2.28: Debug Register (CPO Register 23, SeleCt 0)coooiiiiiiiiieeeeeers e e e e e e 185

6.2.29: Trace Control Register (CPO Register 23, SEIECt 1)ovvviiviiiiiiiiiiiiiie i 189

6.2.30: Trace Control2 Register (CPO Register 23, SEleCt 2)ovvvveiiiiiiiiiiiiiiiie e 191

6.2.31: User Trace Data Register (CPO Register 23, SeleCt 3)........cuuruuiiieiiiiiiiiiie e 193

6.2.32: TracelBPC Register (CPO Register 23, SEIECT 4)coovviiieieiiieiiiiee s 193

6.2.33: TraceDBPC Register (CPO Register 23, SEleCt 5).......oovvviiiiiiiiiiiiiiiiiie e 194

6.2.34: Debug Exception Program Counter Register (CPO Register 24, Select 0)ccccovvviivviviinneenenn. 195

6.2.35: Performance Counter Register (CPO Register 25, select 0-3)cceeiiiiiiiiiiiiieeieiieeeeeeeeeeiiis 196

6.2.36: ErrCtl Register (CPO Register 26, SEleCt 0)........cccoiiiiiiiiiiieieerers s e e e e e e e e e e 204

6.2.37: CacheErr Register (CPO Register 27, SelecCt 0).........covviiiiiiiiiiiiiiiiiee e 207

6.2.38: ITagLo Register (CPO Register 28, SeleCt 0)........cccoiiiiiiiiiieeiire e e e e e 211

6.2.39: DTagLo Register (CPO Register 28, SEIECL 2cooiiiiiiiieeeeee e 212

6.2.40: L23TagLo Register (CPO Register 28, SEIEC 4)........covviiieiieeiieeieee et 214

6.2.41: IDatal.o Register (CPO Register 28, SEIECt 1)ccccoiiiiiiiieieeeeeerire e 214

6.2.42: DDatalo Register (CPO Register 28, SeleCt 3)........cooiiiiiiiiiiiiiiees e 214

6.2.43: L23DatalLo Register (CPO Register 28, SEIECE 5)ooviiiiiiiiiiiiiiciiee i 215

6.2.44: IDataHi Register (CPO Register 29, SEIECE 1)ccciiiiiiiiiiieieeersre e e 215

6.2.45: L23DataHi Register (CPO Register 29, SEIECE5)ciiiiiiiiiiiiiieiiiiiee it 216

6.2.46: ErrorEPC (CPO Register 30, SEIECE Q) ...uuiiiiiiiiii i e e e e e e e e e e e e e e e aaeananrnees 216

6.2.47: DeSave Register (CP0O Register 31, SeleCt 0)cccoiiiiiiiiiiiieiere s e e e e e e 217

Chapter 7: Hardware and Software Initialization of the 24K® COre.........ccoooeeeeeiieeiiec e 218
7.1: Hardware-Initialized ProCESSOr STALEeuiiiiii ettt e e e e e e e e e e e e e s e e aeneeeeeees 218

7.1.1: COPrOCESSOr O STALEiiiiiiiiiie ettt e e e e e e e et e e e e e e s e r e e e ee s 218

% I I g1 F= 2= U1 T o TSP 219

7.1.3: BUS State MaCRINESttt e e e e e e et e e e e e e e e e e e e st eaeeaeeas 219

7.1.4: Static CONfIGUIALION INPULS ...ttt e e e e e e 219

A T = o] 1N (o TSRO 219

7.2: Software INitialiZed ProCESSOr STALEuiiiiiii ettt e e e e e e e e e et eaeaaaee e s e e anneeeeeees 219

720 REGISIET FIlE ..ttt e et e et e e et e e et e e 220

A N TSRS 220

R T - (ol 1= RSP 220

7.2.4: COPIOCESSOr O STALE ...ttt et e e e e e e et e e e e e e s e r e e e eee s 220

Chapter 8: Caches 0f the 24K® COT@ ..o e 221
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 7

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

ST R = ol o =T @ a1 e [U] =Y 1o o 1O 221

8.2 INSIIUCTION CACNE ...ttt et e e e e e e e e e bbbt e e et e e e e e e s e e aanbbeeee e 221
oI YT (U F= |1 = 13T o PP PPPRPTPRRPSRPN 222
I o (= ToTo o [= £ TP OTOPPPPPPPR 223
S T - 1RO 223

R DT 1= I O Tl o L= T TP R P TP PR 223
G T YT (0 F= | 1= 13T o PP PPPRPTRRRPRTPRN 224
S B - RO 225

8.4 WILE BACK BUITEI ...ttt ettt e e e e e e e s e e bbbt e e e e e e e e e e e e annbbebee s 225
8.4.1: Uncached ACCEIEIALEA STOMES.......coii ittt ettt e e e e e e bbb eeeaeeas 226

8.5: CACNE PrOLOCOIS ...ttt oo ettt ettt e e e e e e e s e s bbbttt e et e e e e e e e e e annnbbebee e 227
8.5.1: CaChe OrganiZatiONcoeiiiiiiiiiiiii s s e s e e e e e e e e e e e e et et ettt et aaae e b e e e s e s e eaeaeaaaaaaeaeeeeeeeseenernrnnas 227
8.5.2: Cacheability AMIDULESoooiiiiieeee e e e e e e e e e e e e e e e e e e eeeeeeeeeneanrnnas 227
8.5.3: REPIACEMENT POIICY ...ttt et e e e e e e et eeeeae s 228
TR TR S [= o od (] o PP PPPRPTRRRPRRPN 229

N O O o | = | 11 10T 1o OO PR PUP PR 229

IS0 1Yz U O Tod aT=T I = 1] 1] o SO 230
8.7.1: 1-Cache and D-CaCh@ TaQ AITAYS.....coiiiiiiitiiiiiie et e ettt e e e e e e et e e e e e e e e e e bb e e eaaeeeeas 230
8.7.2: 1-CACNE DALA AITAY ..ottt e oottt e e e e e e e e et bbb ettt e e e e e e e e e e e aanbbbbbeeeeeeaaeas 230
8.7.3: 1-CACNE WS AITAY ... ittt ettt e ettt e e e e e o4 e e o bbb bttt et e e e e e e e e e aan bbb bbreeaeeaeeas 230
8.7.4: D-CAChE DALA AITAYciiiititieiee et e ettt e oo e oottt e e e e e e e e e o bbb ettt e e e e e e e e e e e e anbbbbbeeeeaeaeeas 230
8.7.5: D-CACNE WS AITAY .. ittt ettt oottt et e e e e e a4 e oo bbb b e e et e et e e e e e e e e e aanbbbbbeeeaeeaeeas 230

8.8: MEMOIY CONEBIEINCE ISSUES.... .ottt ettt e e oottt et e e e e e e e s e s bbbttt e e e e e e e e s e e aannbbebee e 231

Chapter 9: Power Management in the 24K® COTecoooiiiiiiii e 232

9.1: Register-Controlled POWEr MaNAGEMENTciiiiiiiiiiiiiiee ettt e st e e e e e annnees 232

9.2: Instruction-Controlled POWEr MaNAGEIMENTuuiiiiiiiiiiiiee ittt e et e s aneneeas 233
S VL T | = o o] = PP P PR OPPPPRN 233

Chapter 10: INSTrUCTION SEE OVEIVIEWcoiiiiiiiiiiiie ettt e e e e e e e e e e e 235

10.2: CPU INSIIUCLION FOMMALS .. .ueiiiiiiiiiiie ettt ettt e e e sttt e e e aa bt e e e e st b e e e e e e anbb e e e e anbbneeeesanbaeeeeean 235

10.2: Load and StOre INSIIUCIONS.iuiiiiieiiiiiee ettt e ettt e e ettt e e e e sttt e e e s anbb e e e e e anbeeeeesanbaeeeeeans 236
10.2.1: Scheduling a Load Delay SIOt..........cccuiiiiiiiiieieee et e e e e e e e e e e e e e e e s e nnnsrn e eeneeeees 236
10.2.2: DEFINING ACCESS TYPES. .ututititiitieeeteiiiiittttteerteteeeaaesaaasreeaaeerteaaaaaaasaaasssrsarearaeeeeeesssaaassssrnnrraraeeeees 236

MO N @ToTaq] o101 = Ui o] o = I 1) 10 [1o PR 237
10.3.1: Cycle Timing for Multiply and Divide INStrUCIONS...........uuuiiiiiiieeeeee e 238

10.4: Jump and BranCh INSIIUCHIONSueviieeieees s s ittt e e e e s e s et e e e e e e e e s s s st eaeaaeeeeessnsnnnsannnnneeeeees 238
10.4.1: Overview Of JUMP INSITUCHIONScoii it e e e e e e e e e e e e e e e e e e s e eeeeeeeas 238
10.4.2: Overview of BranCh INSLIUCHIONSoiiiiiiiiiie ittt e e 238

10.5: CONIOI INSEIUCTIONSetei ettt ettt e e ettt e e e sttt e e e e aa bt e e e e e bbbt e e e e anbb e e e e e anbbeeeeesanbaeeeeeans 239

MO GO0 o] o ToT TSt o) gl 1 1S 1 (1 ox 1 o] o S PR 239

Chapter 11: EJTAG Debug Support in the 24K® COTeuuiiiiiiiiiiiiiiieee e 240

R B T o U o R @0 T)i (o] I =0 1S = O S 241

11.2: Hardware BreaKpPOintSottt e e e e e e et et e e e e e e eaaaaa s 242
11.2.1: Features of INStruCtion BreakPOiNt ettt e e e e e e 243
11.2.2: Features of Data BreakpOintot 243
11.2.3: Instruction Breakpoint REQISIErS OVEIVIEWccoiiiiiiiiiiiiiiie ettt e e 243
11.2.4: Data Breakpoint REQISIEIS OVEIVIEWceiiiiiiiiiiiiiiiiiiiii ettt e e e e e e e e st eeeeeee s 244
11.2.5: Conditions for Matching BreakpOintsSccu it e e e 244

11.2.5.1: Conditions for Matching Instruction Breakpointscoooouiiiiiiiiiiiiiniiiiiieeeee e 244
11.2.5.2: Conditions for Matching Data Breakpoints ... 245
8 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2.6: Debug Exceptions from Bre@kPOiNTS.......... e ittt e e e e e e 246

11.2.6.1: Debug Exception by Instruction Breakpoint. ...ttt 246
11.2.6.2: Debug Exception by Data Breakpoint..............ueeiiiiiiiiiiiiiiiieeieecee e 246
11.2.7: Breakpoint USed as TrHGQEIPOINT..........uiiiiiiiii et e e e e e e e eeeeae s 248
11.2.8: Instruction Breakpoint REGISIEISuiiiiiiiiiiiee ettt e e e e e e e as 248
11.2.8.1: Instruction Breakpoint Status (IBS) REQISTENcooiiiiiiiiiiiiiiiiiiicce e 248
11.2.8.2: Instruction Breakpoint Address n (IBAN) REQISTENooiiiiiiiiiiiiiiieeeeee e 249
11.2.8.3: Instruction Breakpoint Address Mask n (IBMN) RegiSter............ciiiiiiiiiiiiiiiiiiiiiiiiieeeeeees 249
11.2.8.4: Instruction Breakpoint ASID n (IBASIDN) REQISIENcooiiiiiiiiiiiiiiieee e 250
11.2.8.5: Instruction Breakpoint Control n (IBCn) REQISLErcooiiiiiiiiiiiiiiiiieeeee e 250
11.2.9: Data Breakpoint REQJISIEIScooii ittt ettt et e e e e e bbb e e e e e ae s 251
11.2.9.1: Data Breakpoint Status (DBS) REQISIENuuuiiiiiiiiiiiiiiiiiiiiiee e 251
11.2.9.2: Data Breakpoint Address n (DBAN) REQISIENccoiiiiiiiiiiiiiiiiiiieeee e 252
11.2.9.3: Data Breakpoint Address Mask n (DBMnN) REQISIENcuuuiiiiiiiiiiieaiiiiiiiiiiiieeee e 252
11.2.9.4: Data Breakpoint ASID n (DBASIDN) REJISIENcviiiiiiiiiiiiiiiiiieiee et 253
11.2.9.5: Data Breakpoint Control N (DBCN) REQISTENuiiiiiiiiiiiiiiiiiieiieeee e 253
11.2.9.6: Data Breakpoint Value n (DBVN) REQISTENeuiiiiiiiiiiiiiiiiiiieite e 254
11.2.9.7: Data Breakpoint Value High n (DBVHN) REQISIErccooiiiiiiiiiiiiiiiieeee e 255
R S I Ty ot o =TT o T (1Y . IS 255
11.3.1: EJTAG Internal and EXternal INTEIrfaCES.uuui it 256
11.3.2: TeSt ACCESS POIT OPEIALIONcceeiiiiiiiiiii ittt ettt e e ettt e e e e e e e e e e et reeeeaeeeeas 256
11.3.2.1: TeSt-LOQIC-RESEL STALEuuuuiiiiiiiie i e e e e e e e e e e e e e e e e e e e aeeenaernrnnes 257
11.3.2.2: RUN-TESHIAIE STALE.....ccei ittt ettt e e e et e e e e e e e e e e 257
11.3.2.3: SEleCt_DR_SCAN StALEuuuuiiiiiiiii i e e e et s e e e e e e e e e e e aeaeaeeeeeeeseeanrnannes 258
11.3.2.4: SeleCt_IR_SCAN SEALE ...uvvvuriiiiiiiiii i et e s e e e e e e e e e e e aeaeeeeeeeaeaeranrnrnna 258
11.3.2.5: CAPLUIE_DR STALE ..ottt e e e e e e e e e e e e eeeeeeennnnrnrnnes 258
11.3.2.6: SNIft_DR STALEeeiiieiiee ettt e et e e e e e e s et b e e e e e e e e e e e 258
11.3.2.7: EXITL_ DR SEALE ...eeiiiiiieeiiiiiiitte ettt e ettt e e e e e e e e e s e bbb b e e e e e e e e e e e e ann 258
11.3.2.8: PAUSE_DR SEAle .. iiiiiiiiiiiiiiii e e et e e e e et r e e e e e et e e e e anraaas 258
11.3.2.9: EXIT2_ DR SEALE ...eiiiiiiieeii ittt ettt e et ettt et e e e e e e e r et e e e e e e e 258
11.3.2.20: UPAate DR STALE ...coeeiiiiiiiiieee ettt ettt e et e e e e e e s e bbbt r e e e e e e e e e e ana 259
11.3.2.170: CAPLUIE_TR STALEeeeieiiititieiei ettt e e e e e e e e e e e e e aeeeeeneennnennrnnes 259
11.3.2.22: SHIFE_TR STALE ..eeeiiiiieeiii ittt ettt e e ettt e et e e e e e e s e bbbt e e e e e e e e e e e e anns 259
11.3.2.230 EXIEL_ IR SEALE....eeiiiiieeiiii ittt ettt ettt e et e e e e e e s e bbbt b e e e e e e e e e e e e annns 259
11.3.2.24: PAUSE IR STALE ...oiiiiieiiiiiiit ettt ettt ettt e et e e e e e e s e bbb b e e e e e e e e e e e 259
11.3.2.15: EXIT2_TR SEALE....ceiiiiieeiiii ittt ettt ettt e e e e e e e e e s e bbb b e et e e e e e e e e anns 259
11.3.2.26: UPAAE TR STALEceeeeiiiiiiitiee ettt ettt et et e e e e e e e bbbt e e e e e e e e e e e annas 259
11.3.3: Test AcCeSS POrt (TAP) INSLIUCLIONSvvvviiiiiiiiieis e a e e e e e e e e e aeaees 260
11.3.3.1: BYPASS INSIIUCTIONcciiiiiiiiitete ettt ettt et e e e e e e et e e e e e e e e e e e e annns 260
11.3.3.2: IDCODE INSIIUCTION .ttt e ettt e et e e e e e e s e bbbt e e e e e e e e e e e e annns 260
11.3.3.3: IMPCODE INSIIUCTION ...ttt e e e e e e e e et e e e e e e e e e e e e aanas 260
11.3.3.4: ADDRESS INSITUCHION ...ttt ettt et e e e e e e e e e e e e e e e e e e annas 261
11.3.3.5: DATA INSIFUCTION ..eiiiiiieiiiiiitte ettt ettt e et e e e e e e s e bbb e e e e e e e e e e e e e annns 261
11.3.3.6: CONTROL INSTIUCTION ...ttt ettt e e e e e e e e e et e e e e e e e e e e e e anas 261
L1.3.3.7: ALL INSEIUCTION ...ttt ettt e e e e e ettt et e e e e e e e s e ab bbb be e et e e e e e e e e e annns 261
11.3.3.8: EJTAGBOOT INSIIUCTION ...ttt ettt e e e e et e e e e e e e e e e e annns 261
11.3.3.9: NORMALBOOT INSIIUCTIONttvitieitieeeeeiee ittt e e e e e e e et e e e e e e e e e e e e anns 261
11.3.3.20: FASTDATA INSIIUCHION ...ttt ettt et e e e e e e e e e e e e e e e e aanas 262
11.3.3.11: TCBCONTROLA INSIFUCTIONtiiitiiieeeiee ittt ettt e e et e e e e e e e e e e e 262
11.3.3.12: TCBCONTROLB INSIFUCTIONceieiiiiieeeiiiiiieie ettt e et e e e e e e e e e e e 262
11.3.3.13: TCBCONTROLC INSIIUCTIONctttitiiieeeiaiiititie ettt e e e e e e e e e e e e e e e e e e e anns 262
11.3.3.14: TCBDATA INSIIUCTION ...ttt ettt et e e e e e e e bbb r e e e e e e e e e e e aanas 262
11.3.3.15: PCSAMPLE INSIIUCTION ...ttt ettt e e e e e bbb e et e e e e e e e e e annas 262
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 9

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

R S e Y i I ol =T £ (= SO 262

I 1 1S3 (B o 1o =0 £ = SR 262
11.4.2: Data REQISIEIS OVEIVIEWccciiiiiiiiieieeeee et s e e s e e e e e e e e e e e e e e e e e et e e eeeeeae et e s s s e e e e e e e aaeaaaaaeaeaeees 263
11.4.2.0: BYPASS REQISTEI ...ceiiiieeiiiiiiiitte ettt e e ettt e e e e e e e e e e e b bbbt e e e e e e e e e e e e anns 263
11.4.2.2: Device Identification (ID) REQISIEIcccooiiiiiii s e e e e e e e e e 263
11.4.2.3: IMplementation REGISTENuuu ittt e e e e e e e e e e e e 264
11.4.2.4: EJTAG CONrOI REQISTEI ..uvutiiiiiiiieie ettt e e e e e e e e e e e e e e e e e aeeeaeeeeeeanrnannes 265

11.4.3: Processor ACCESS AQAIrESS REQISIENuuuiuiiiiriiiiiis et e ee e e et e et a e e e e e e e e e aeaeaeees 269
11.4.3.1: Processor ACCESS Data ReQISIErcccciiiiiiiii e e e e e e e e e 269

11.4.4: Fastdata Register (TAP INStruction FASTDATA) ...iiiiii i e e e e e e 270
L11.5: TAP PrOCESSON ACCESSES ...cetitititiiiiiia et et e e e e e e e e ettt ettt eeeae e b e bbb a s e oo 1o e e e e e e e e eeteteeeeeeeeees e bbbbb st es 271
11.5.1: Fetch/Load and Store From/To the EJTAG Probe Through dmseg.........ccccevevveiiiiiiiiiiiieeeeeeeee, 271
G o O Y= 10] o] 1T PP P PP 273
11.6.1: PC Sampling iN WAL STALEccoiiiiiiiiiiiii ittt e e e e e e e e eeeaae s 273
R A Y S O I = (o TP PP TPPPPP 273
L11.7.0: PrOCESSON MOOES ...ttt ettt ettt e e e e e e s o bbbt ettt et e e e e e e e e bbb e beeeeeeeaeas 274
11.7.2: Software Versus Hardware CONIOL............ it e e e e e 274
11.7.3: TracCe INFOMMIELION ...ttt e e e e ettt e e e e e e e e e s e bbb e b e e e e e eaeeas 275
11.7.4: Load/Store Address and Data Trace INfOrmation...............ceeviiiiiiiiiiiiiiiiiiie e 276
11.7.5: Programmable Processor Trace Mode OPLIONS........cc.uuuiiiiiiiiiieeieeiiiiiii et 276
11.7.6: Programmable Trace Information OPLIONScooiiiiiiiiiiiiiiiie e 276
11.7.6.0: USEI DALA TIECE ..oeeeiieeiiiiitititii ettt ettt e e e e e e e e e e e e e e e e eeeeeeeeennrnnnnes 277

11.7.7: Enable Trace to Probe ONn-Chip MEMIOIY........coouiiiiiiiiiiiiiee et 277
A S I = T I o T T OSSR 277
11.7.9: Cycle-by-Cycle INfOrMatiONcooiiiiieeeee et e e e e e e e e e e eaeaeees 277
11.7.10: Instruction and Data Cache MiISS TIaCiNgu.uiiiieieiei et a e e e e e e aeaees 277
11.7.11: Trace MeESSAQE FOIMIALt iiiiiiiiiie ettt e e e e et e e e e e e tb i n e e e e es b e e eeeaentnnns 278
11.7.22: TraCe WOIA FOIMMIAL uueieiiiiiiie ettt ettt e e e e e ettt e e e e e e e e e e et en e e e e aeeeeas 278
11.8: PDtrace™ Registers (SOftware CONIIOI)........cccoiiiiiiiieeeeee e e e e 278
11.9: Trace Control Block (TCB) Registers (Hardware COoNntrol)...........ccceeeeiiiiiiiiieieiiiiceeeeeeeee e 279
11.9.1: TCBCONTROLA REQISIEI...cciitiieeiiiiiitt ettt ettt e e e e ettt e e e e e e e e e s et ereeeaeeaeeas 279
11.9.2: TCBCONTROLB REQISIEI....ciitiieiiiiiiiitt ettt ettt e e e e e e e e e eeeeeaaeas 282
11.9.3: TCOBDATA REQISTEI ...ttt e ettt e e e ettt e et e e e e e e oo b e bbbt ettt e e e e e e e e e s e annnbbnseeeaeeaeeas 285
11.9.4: TCBCONTROLC REQISIEL ..ceitieeeiiiiiiittet ettt e e e ettt e e e e e e e e e s e ab e eeeaeaeeas 286
11.9.5: TCBCONFIG REQIStEr (REQ 0)....ciiiiiiiitiiiieit ettt e ettt e e e e e e e e e e bbb e e eeeeeeas 287
11.9.6: TCBTW REQISIEN (REQO 4) ... eeiiiiieeeeeeeeee et st e e e e e e e e e e et e ettt e e e e e e e e e e e e aaeaeaeees 288
11.9.7: TCBRDP REQISIEN (REQO 5) .. ceiiiiiiiiiiiieeeee st e e e e e e e e e ettt e e e e e e e e e e e e aaaaeaeees 288
11.9.8: TCBWRP REQISLEI (REU B) ...ceeiiiiiiiiieieeeeeiti e s s e e et e e e e e e e e e et e e e e ettt e s e e e e e e e e e e aaaaeaeaeees 289
11.9.9: TCBSTP REQISIEN (REO 7). . cieeieiiiiiieeeeeeeee et e e e e e e e e e e e e e e et et e ettt e e e s e e e e e e aaaaeaeaeees 289
11.9.10: TCBTRIGX RegISter (REQO L16-23)uuuiiiiiiiiiiiaeeaee ittt e e e ettt e e e e e e e e e s eeeeeeeeas 290
11.9.11: ReQIStEr RESEE SEALEccci e e e e e e e e e e e e e e e aeaaeaeees 292
0 =t F= o T o T Y L S T I = Lo = PSS 293
11.10.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints..........ccccccoeviiiiiiiiiiiieeneenenn. 293
11.10.2: TUrNiNG ON PDIFACE™ TTACEccveiiieeeeitiiiitiiies e s e s e e e e e e e e e e e e e e e et et ee e et b s e e e s e e aaaaaaaaeaeaeees 293
11.10.3: TUurning Off PDIFAGCE™ TTACEceeeeeiiiiiiiiiiiiiiiee e s e e e e e e e e e e e e e e e e e e et et e ettt e e e e s e e e aeaeaaaaaeaeees 295
11.10.4: TCB Trace ENADIING.......ccooo it e e e e e e e e e e e e e aaaeaes 295
11.10.5: Tracing @ RESEt EXCEPLION ...coiiiiiiiiiiit ettt ettt e et e e e e e e et eeeeeee s 296
0 I 4 = B T T 1= o o o 296
11.11.7: Trigger UNILS OVEIVIEW.cccciiiiiiiieieeeeeee e s s e e e e e e e e e e e e e e e e e et et e e e et e e bbb e s e e e e e e e e aaaeaaaaeaeees 296

0 I I T T = S Yo U o= o | SRR 297
0 I S I T T = g @ o U OSSP 298
0 e e I T T = 1 o T o SR 298
11.11.5: SIMUIENEOUS THIQOEIS ... eieeieiiee et s e e e e e e e e e e e e e e e e e et e e e e ee e e e et et s e e e e e e e e aaeaaaeaeaeaeees 298

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.11.5.1: Prioritized Trigger ACHONSuu i e et e e e e e e e e e e e e e aeaeeeeeeeseeaernannes 298

11.11.5.2: OR’€d THQQEN ACLONS ...uuutuiiiiieieie i e e e e e e e e e e ettt s e e s e e e e e e e e e aeaeaaaeeeeeeesesanenrnnes 299

11.12: MIPS Trace Cycle-by-CycCle BENAVIONccooiiiiiiie e s 299
11.12.1: FIFO Logic in PDtrace and TCB MOAUIESciiiiiiiiii i a e 299
11.12.2: Handling of FIFO Overflow in the PDtrace Module...............oooiiiiiiiiiiiiiccr e 299
11.12.3: Handling of FIFO OVerflow in the TCB.......uuuuiiiiie et a e e e e e e aea e 300
11.12.3.1: Probe Width and Clock-ratio SettingsS...........cooviiiiiiiiiiiicee e 300

11.12.4: Adding Cycle Accurate Information t0 the Trace............ccoooviiiiiiiiiie e 301

11.13: TCB ON-ChiIP TrACE IMEIMOIYeeeeiiiiiee ettt ettt et e e e e e e e e e e bbbt e e e et a e e e e e s e e nnbbebeeeeaeeaeas 301
11.13.1: ON-Chip Trace MEMOIY SIZE.....coiiiiiiiiiiiiiee ettt bbbttt e e e e e e e e e et eeeeeeeeas 301
11.13.2: TraCe-FrOM IMOGE ...ttt ettt e e e e e e e e bbbttt e e e e e e e e e e et r e e e e eeaeeas 301
L11.03.3: TrACE-TO IMOUE. ...ttt ettt oottt et e e e e e e s o bbb bbb ettt et e e e e e e e e anbb b b e e eeaeeeeeas 301
Chapter 12: 24K® Processor Core INSTTUCLIONSooooiiiiiii i 303
12.1: Understanding the INStruction DESCIHPLIONSceiiiiiiiiiieiiiiii ettt ee e 303
12.2: 24K® OPCOUE IMBP ...ttt etttk e o4kttt e e o1ttt e o4k b et e e o4kt e e e e aa b bt e e e e bt e e e e e nnbbeeeeean 303
12.3: Floating Point Unit Instruction FOrmat ENCOTINGScoiiiiiiiiiiiiiiiiicei e 309
12.4: MIPS32® Instruction Set fOr the 24K® COIEuuuuiiiiiiiee ettt e e e e e e e eeaaeeens 309

(O X O . | SO OPPEPR 329
SO OPPRPR 335

P R .. ettt e e oo —— e e e e — it e e e e o —— et e e e o nt— et e e e a bt e e e e e ntae e e e e e nrreeeeannrraeaeeenres 336

ST SO OPPRPR 339

S SO OPPRPR 341
I 2] PRSPPI 345

I 2 PRSPPI 346

LI 2T PRSPPI 347
LA I PRSPPI 348
Chapter 13: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set 349
R 0 OO 1 1S3 1 0 oo i T = = g oo o [T PP 349

R T 1) 10 T 1T T £ 4 o PR 352
APPENTIX A: REFEBIENCES ...ttt e e e e e ettt e e e e e e s et r et e e e e s s e nnbareeeeeas 355
APPENIX B: REVISION HISTOTIY ..uviiiiiiiiiiiiiiiiiirisiisiisssssessssssssesssserseessreessassessrrse.ae..——..——.—————————————————————. 356
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:

12

24K® Processor Core BIOCK DIAQIamccioieii oot s e s e e e e e e e e e e e e ae e e e e eeaeaeaeeeannennnaas 26
Address Translation DUring @ CAChE ACCESSuuuuuviiiiiiiiiieie i e et e e e as 28
24K® COre PIPIINE STAGES ..ciiiiiiiiiiei ittt e e e et e et e e e e e e s e e st e e e e e e e e e e e e e e e annnaee 32
1L O = 0Tl QI Vo | = s o 35
Timing of 32-bit Mode Sequential FEICNES ... 36
Timing of 32-bit Mode Branch Taken Path ... e 36
Fetch Timing of 32-bit Mode Branch MISPrediClcoouiiiiiiiiiiiiii e 37
Execution Timing of 32-bit Mode Branch MiISPrediCtccciiiiiiiiiiiiee e 37
TIMING Of AN TTLB IMISS ..eeeiiiiitiiiiii i e ettt e e e e e e e e e e e e e e e e e et e et aeeeeeaeseseatar e e e eeas 39
TIMING Of @ CACNE IMISS ...eviiiiiiiici et e e e e aaaesesearar e e e eeas 39
LSU PPN .ttt e oo oo oottt e e e e e e e e e ettt et et e e e e e e e e naba e 41
DTLB MISS TITHNG ©euuieieieiei e e e e et e e e s e e e e e e e e e e e e e eeeeeeeeeeeesae b et s ta s e e e e e e s e aaeaeaaeaeaeeeees 42
L0 Tod o 1= 1Y/ 11 T2 11 o PSPPSR 43
MUITIPIY PIPEIINE ..ttt e ettt e e e e e e e e e e bbb e bt e e e e e e e e e e e e aanbeneees 45
Multiply With Dependency From ALU ...ttt e e e e e e 45
Multiply With Dependency From LOad Hitccuuuiiiiiiiiiieieeii et 46
Multiply With Dependency From LOAA MISScc.uuiiiiiiiiiiieeeeei ittt e e 46
MUL Bypassing Result to Integer INSIIUCLIONSuuiiiiiiiiiiiiiiiiiie e 46
MDU Pipeline Flow During a 8-bit Divide (DIV) OPErationcccuuviieiiiiiiiaeiiiiiiiiiiiie e e 47
MDU Pipeline Flow During a 16-bit Divide (DIV) OPErationuueeeeeiiieeiiiiiiiiiiiiiieeee e e e a7
MDU Pipeline Flow During a 24-bit Divide (DIV) OPErationc..uueeeeeiieeaaiiiiiiiiiiiieee e e e e a7
MDU Pipeline Flow During a 32-bit Divide (DIV) OPErationuueeeeiieiiaaiiiiiiiiiieiieee e e e 48
LOGA DALA BYPASS ...teeetteiiiaaiiiiiiiitttt ettt e e e et ettt ettt e e e e et e et e e e e e e e bbbt e ettt e e e e e e e e anbabee e 48
ALU DA BYPBSS ..ttt e e et et e e n s 49
[U =] (oo S D = To | = o USSP PPP 56
Single-Precision Floating-Point FOrmMat (S)ccooiiiiiiiiii e 58
Double-Precision Floating-Point FOrmMat (D)ciiiiiiiiiiiiciececececee e e e e e e e e e e aaaaaees 58
Word FiXed-Point FOrMAL (W) ..o e e e e e e e e e e e e e e e e e ettt e e e e e e e eaas 60
Longword FiXxed-Point FOrMAL (L)oeviiriiiiiiiiiiiei et s s e s e e e e e e e e e e e aaaaaaeaaees 60
Single Floating-Point or Word Fixed-Point Operand in an FPRc.oooiiiieee s 61
Double Floating-Point or Longword Fixed-Point Operand in an FPR ... 61
Effect of FPU Operations on the Format of Values Held iIn FPRS ...t 62
FPU Word Load and MOVE-t0 OPEIALIONSuuuiiiiiiiiieaeiaiiiiiiite ettt e e e e e et e e e e e e e e e seebeeaeeeeeeas 63
FPU Doubleword Load and Move-t0 OPEIraAtiONScuieiiiiiiiiiiiiiiiiiiiete e et e e e e e e e 63
FIR FOIMIAL ..o oo e e e e e et ettt ettt e e e et e b e bbb e e e e e e e e e e e e e eeeeeeees 65
O 01 2 g 0 11 1 F= | TP UPURPPPPPPPPPPI 66
FEXR FOMMAL ...t e e e e et et ettt et et e ettt e e e e e e e e e e e e e e eeeeeees 67
FENR FOIMMEL ...t e e oo e et ettt et et e e ettt bbb e e e e e e e e e e e e e e e eeeees 67
FCSR FOIMMIAL ..o e oo e e et et e ettt et et e e e e et e b et e e e r e e e e e e e e e e e eeeeees 68
FS/FO/FN Bits Influence on Multiply and Addition ReSUILSc..evviiiiiiiiiiiiiieee e 71
Flushing to Nearest when Rounding Mode is Round to Nearestviiiiiiiiieiiiiieeeeeeeeeeeeeeeieeens 72
FPU PIPEIINE .ottt oo e e oo bbbttt et e e e e e e e e e e b bbb et e e e e e e e e e e e e e nnbnbee e 83
Arithmetic Pipelineg BYPass PatiS ...ttt 85
Address Translation During a Cache Access With TLB MMU ... 88
Address Translation During a Cache Access With FM MMU ... 88
24K® Processor Core Virtual MEmMOIY MaApcoooiiiiiiiiiiiiie ettt e e e e e e e 90
User Mode Virtual ADArESS SPACEcciiiiiiiiiiiiiiiiie ittt e e e et e e e e e e e e e st reeeeeeas 91

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.5: Supervisor Mode Virtual AQAIrESS SPACEc.uuiiiiiiiiiieee ettt e e e e e e e e eas 93
Figure 4.6: Kernel Mode Virtual AQArESS SPACEccoiiiiiiiiiiiiiiiiii ettt e e e e e e e eeeeeas 95
Figure 4.7: Debug Mode Virtual ADAreSS SPACEcooiiiiiiiiiiiiiiiii et e e e e e e e eeas 97
Figure 4.8: JTLB ENtry (Tag and DAta)cooiiiiiiiiiiiiiiiiiiieesis e e e e e e e e e e e e e et et e e e ae et s e s e aeaeeaaeaeaaaaaaeaaneees 99
Figure 4.9: Overview of a Virtual-to-Physical Address Translation ... 103
Figure 4.10: 32-bit Virtual Address TranSIAtioNuuuuuereiiiiiiiiee e e e e e e e e e e aaeaeaeees 104
Figure 4.11: TLB Address Translation Flow in the 24K® ProCessor COIeouuvvvurvrruruiiiiiiiinieaeeeeaeaeeaaaaaaeaens 106
Figure 4.12: FM Memory Map (ERL=0) in the 24K® ProCceSSOr COIEccuuueiriiiiieaiaiiiiiiiiiiiieeeee e e e e e 108
Figure 4.13: FM Memory Map (ERL=1) in the 24K® ProCeSSOr COIEcccuuuririiiiiaaiiiiaiiiiiiiiiieete e e e e e 109
Figure 5.1: Interrupt Generation for Vectored INterrupt MOUEcoooiiiiiiiiiiiie e 117
Figure 5.2: Interrupt Generation for External Interrupt Controller Interrupt Modeoocciiiiiiiieiieieie 119
Figure 5.3: General EXception HandIer (HW) ...t e e 141
Figure 5.4: General Exception Servicing GUIAEIINES (SW) ...uuuiiiiiiiiiiiiiii et 142
Figure 5.5: TLB Miss Exception HanAIEr (HW) ...t 143
Figure 5.6: TLB Exception Servicing GUIAEINES (SW) ...ttt 144
Figure 5.7: Reset and NMI Exception Handling and Servicing GUIdEIINESccoooiiiiiiiiiiiiiiiiiiiee e 145
Figure 6.1: INdeX REQISIEr FOIMALccciiiiiiiii e e e e e e e e e e e et et et e e e e et s e e e e e e e eaaeaaaaeaeees 149
Figure 6.2: Random RegISIEr FOIMMIALccooiiiiiiiieieeeee e e e e e e e e e e e e e et e et e e e e et e s e e e e e e e e e e eaeaaaaaeaeees 150
Figure 6.3: EntryLo0, EntryLOL ReQISIEr FOMMALovvviiiiiiiiiiieii e e e e e e e e e e e e e e e e aeaees 150
Figure 6.4: Context ReQISEr FOIMALcccoiiiiiiiieeeeeee e e e e e e e e e e et e et a e e e e e e e e aaaaaeaaaeees 152
Figure 6.5: UserLocal REgISIEr FOMMALcooiiiiiiieieeeee s e e e e e e e e e et e e e s e e e e e e e e aaeaaeaaaeees 152
Figure 6.6: PageMask RegiSter FOIMALooiiiiiiiiiiiiiie e et e s a e e e e e e e e aaaaeaeees 153
Figure 6.7: Wired and Random ENtrieS iN the TLBviiiiiiiiiiii e a e 154
Figure 6.8: Wired ReQISTEr FOIMALccooiiiiiiiiieeee e s e e e e e e e e et ettt s e e e e e e e e aaeaaaaeaeees 154
Figure 6.9: HWRENA ReQISIEr FOIMALccooiiiiiiiiieeeeeee st e e e e e ettt e s e e e e e e e e aaeaaaaaaeees 155
Figure 6.10: BadVAdAr REQISIEr FOIMALcoiiiiiiiiieeiee s e e e e e e e e et et e e e e e e e e e e aaeaaaaeaeees 156
Figure 6.11: CouNt REQISIEr FOIMMIALccoiiiiiiiiiieee e e e e e e e e e e e e e e et e et e e e e et e e et a s e s e e e e e eaeeaaaaeaeees 157
Figure 6.12: EntryHi ReQISIEr FOIMALccooiiiiiiiiieeeeee s e e e e e e e e e e e e e e aaeaaaaeaeees 157
Figure 6.13: Compare ReQISIEr FOMMIALuuuiiiiiiiiiiii ittt e e e e e e r e et e e e e e e s e annbeeeeees 158
Figure 6.14: Status RegISIEr FOIMMALccooiiiiiiiieeee e e e e e e e e e e et et e e et a e e e e e e e e aaeaaaaeaeees 160
Figure 6.15: INtCtl ReQISTEr FOIMALccoiiiiiiiiie et e e e e e e e e e et et et e et a e e e e e e e e aeeaaaaeaeees 164
Figure 6.16: SRSCtI ReQISIEr FOIMALccoiiiiiiiiiieee e e e e e e e et et e et e s e e e e e e e e aaeaaaaaeeees 165
Figure 6.17: SRSMap REQISIEI FOIMMIALuiiiiiiiiiiiie et e e e et r e et e e e e e e s s naebee e e 168
Figure 6.18: Cause ReQIStEr FOIMALcoooiiiiiiiii e e e e e e e e e et et e e e e s e e e e e e e e aaaaaaaeaeees 168
Figure 6.19: EPC REQISTEI FOMMALccciiiiiiiii e s et e s e e e e e e e eaeeaaeaeaeees 172
Figure 6.20: PRI ReQISIEr FOMMALccooiiiiiiiiiieie e e e s et e et a s e e e e e e e eaeaaaaaeaeees 173
Figure 6.21: EBase ReQISIEr FOMMIALccooiiiiiiiiieieeeee s e e s e e e e e e e e e et e e e e e e e et e et a s e e e e e e e eaaeaaaaeaeees 174
Figure 6.22: Config Register FOrmat — SEIECT Ooovvviiiiiiiiiiiie e a e e e e e e e e e aeaeees 174
Figure 6.23: Configl REQISIEr FOIMALcoooiiiiiiiie e e e e e e e e e et et e e a e e e e e e e e aaaaaaaeaeees 177
Figure 6.24: Config2 REQIStEr FOIMALccooiiiiiiiieeeeee e e e e e e e e e et et a e e e e e e e e aaaaeaaeaeees 179
Figure 6.25: Config3 REQISIEr FOIMALccooiiiiiiiiieeeeee e e e e e e e ettt a e e e e e e e aaeaaaaeaeees 180
Figure 6.26: Config7 REQIStEr FOIMALccooiiiiiiiieeeeeee e e e e e e e e e et et a e e e e e e e e aaeaaaaeaeees 182
Figure 6.27: WatChLO ReQISIEr FOIMALcooiiiiiii e aaeaaaaaaeees 184
Figure 6.28: WatChHi ReQISIEr FOIMMIALcooiiiiiiieeieeee s e e e e e e e e e e e e e et s e e e e e e e e e aaeaaaaeaeees 184
Figure 6.29: Debug ReQISIEr FOIMIALccooiiiiiiiiee e e e e e e e e e e e et et et e e a e e e e e e e e aaeaaaaaaeees 186
Figure 6.30: TraceControl REgISIEr FOIMMALovviiiiiiiiiiei e e e e e e e e e e e e e e aaaaeaeees 189
Figure 6.31: TraceControl2 RegISIEr FOIMMALoovvviiiiiiiiiiee e e e e e e e e e e e e aaaaeaeees 191
Figure 6.32: User Trace Data RegiStEr FOIMMALeuviiiiiiiiiiiiiiie et ea e e e e e e e e aaaaeaeees 193
Figure 6.33: TracelBPC RegQISter FOMMALooiiiiiiiiiiiiiiiise s e s e e e e e e e e e e e e e e e e e e s e e e e e e e e aaeaaaaeaeees 194
Figure 6.34: TraceDBPC ReEQISIEr FOIMMIALcoiiiiiiiiiiieiei e s e e e e e e e e e e ettt e s e e e e e e e e aaeaaeaeaeees 194
Figure 6.35: DEPC ReQISIEr FOIMALcccoiiiiiiiiiieeeeeeee s s e e e e e e e e e e e e e e e e e st e e s e e e e e e e e aaaaaeaeaeees 196
Figure 6.36: Performance Counter CONtrol REQISIETuuuuueiiiiiiiie e e e e e e e e e aeaees 197
Figure 6.37: Performance Counter COUNt REQISIETuuuiuieiiiiiiiie i e a e e e e e e e e e e e aeaeees 204
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 13

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

FIQUIE 6.38: EITCH REQISIEI ..uuuiiiiiiii it e e e e e e e e e e e e e e e et et e et et et et aee et s e e e e e e e eaeeaaeaeaeees 205
Figure 6.39: CacheErr Register (Primary CACRES)uuuuiiiiiiiiiiii i e e e e e e e aeaeas 207
Figure 6.40: CacheErr Register (Secondary CaCh@)uuuuuuuuiiiiiiiiie i e e e e e e e aeaee s 209
Figure 6.41: ITagLo Register Format (ErrCtlygt=0, ErfCtlgpr=0)......c0coiiiiiiiiiiiiiiiiii 211
Figure 6.42: ITagLo Register Format (ErrCtlygt=1, ErfCtlgpr=0)......c0coeiiiiiiiiiiiiiiiii 211
Figure 6.43: ITagLo Register Format (ErrCtlygt=0, ErfCtlgpr=1)cccooiiiiiiiiiiiiiiiic 211
Figure 6.44: DTagLo Register Format (ErrCtlyygt=0, ErrCtlgpr=0)cociiiiiiiiiiiiiiiii 212
Figure 6.45: DTagLo Register Format (ErrCtlyygt=1, ErfCtlgpr=0)cooiiiiiiiiiiiiiiiiicc 212
Figure 6.46: DTagLo Register Format (ErrCtlyygt=0, ErfCtlgpr=1) ...ccccooiiiiiiiiiiiiiiiic 213
Figure 6.47: IDatalo ReQISIEr FOMMIALcccoiiiiiie e e e e e e e e e e e et et e e e e e e et e s e s e e e e e e e eaeeaaeaeaeees 214
Figure 6.48: DDatal.o ReQISIEr FOMMALccooiiiiiieeeeeeee e e e e e e e e e e s e e e e e e e e e e aaeaeaaaaeees 214
Figure 6.49: L23Datalo ReQISter FOIMALooiiiiiiiiiiieiei e e e e e e e et s e e e e e e e e aaeaaaaeaeees 215
Figure 6.50: IDataHi ReQISTEr FOIMALccooiiiiiiiiieeeee e e e e e e e et a e e e e e e e e aaeaaaaeaeees 215
Figure 6.51: L23DataHi ReQISter FOIMALooiiiiiiiiiiiii s e e e e e e e e e e aaaaeaeees 216
Figure 6.52: ErfOrEPC REQISIEr FOIMALccoiiiiiiiieieiieee e e e e e e e e e e et et et e e a e e e e e e e e e e aeaaaaaeaeees 217
Figure 6.53: DeSave RegIStEr FOIMMALccoiiiiiiiieieeee s e e e e e e e et et e e s e e e e e e e e aeeaaaaeaeees 217
Figure 8.1: Instruction Cache OrganiZationeuuuueuuiiieiiiaies e e e e e e e e et et e e a e s e e e e e aeaaeaaeaeees 222
Figure 8.2: Data Cache OrganiZationoiiiiiiiiiiei e e e e e e e e e e e e e e e et e e et e e s s e e e e e e e eaaaaaaaaaeees 224
Figure 10.1: INSEIUCHION FOIMALSiiii i e e e e e e e e e e e e e e e e et e e e e e e e ae et et a et s e e e e e e e eaeaaaaaeaeees 236
Figure 11.1: Debug CoNtrol REQISIENcccci i e e e e e e e e e e e e et et e et e e et e et e s e e e e e e e eaeeaaaaeaeees 241
Figure 11.2: IBS REQISIEr FOIMALcciiii i e e e e e e e e e e e e e e et e e e e e e e e e et e bt a s e e e e e e e eaeeaaaaeaeees 248
Figure 11.3: IBAN REQISIEr FOIMALcciii i e e e e e e e e e e e e e et e et e e e e et e e a s e e e e e e e eaeeaaaaeaeees 249
Figure 11.4: IBMN REQISTEI FOIMALccoiiiiiiiiieeee e e e e e e e e e e et et e e e e e e e e e e s e e e e e e e eaaeaaaaeaeees 250
Figure 11.5: IBASIDN REQISIEr FOIMALccooiiiiiiii e s s e e e e e e e e e e e e e ettt e e e e e e e e e e e aeeaaaaeaeees 250
Figure 11.6: IBCN REeQISIEr FOMMALcccce e e e e e e e e e e e e e e et e e e e e e e e e e et e s e e e e e e e eaaeaaaaeaeees 250
Figure 11.7: DBS REQISIEI FOMMALcccoiiiiiiiiiieieee e e e e e e e e e e e e e e et e e e e et e e a s e e e e e e e e aeeaaaaeaeees 252
Figure 11.8: DBAN REQISTEr FOMMALcccoiiiiiiiiiieee s e e e e e e e e e e et et e e et e e s e e e e e e e eaeeaaaaeaeees 252
Figure 11.9: DBMN ReQISIEr FOMMALcccoiiiiiiiiiiie s e e e e e e e e e e e e e e e e e et e e e e e et e et e e s e e e e e e e eaaaaaaaeaeees 253
Figure 11.10: DBASIDN REQISIEr FOIMALccoiiiiiiiieeeiieei e s s e e e e e e e e e e e e e e et e et e e e e e a e e e e e aaeaeaaeaeees 253
Figure 11.11: DBCN ReEQISIEr FOIMIALcccei ittt s s ee et e et a e s e e e e e e e eaaeaeaaeaeees 253
Figure 11.12: DBVN REQISEr FOIMALccoiiiiiiiiiiieeeeeee e s e e e e e e e e e e et e et e et e e s e e e e e e e e aaeaaaaeaeees 254
Figure 11.13: DBVHN REeQISTEr FOIMALcooiiiiiiiiieieeeeee s e e e e e e e et ettt s e e e e e e e e e aaeaaaaeaeees 255
Figure 11.14: TAP Controller State DIAgramcceeiieiiiiiiiiiiiees e e e e e e e e e e e et ettt a e e e e e aaaaaaaaaeaeees 257
Figure 11.15: Concatenation of the EJTAG Address, Data and Control RegISters..........cccvvveeviiieiiiiiiiieeeeeeeeeeee, 261
Figure 11.16: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 262
Figure 11.17: Device ldentification RegISter FOIMALuuuiiiiiiiiii i a e e e e e e e ae e 263
Figure 11.18: Implementation ReQIStEr FOIMIALcooiiiiiiiiiee e e e 264
Figure 11.19: EJTAG Control RegIStEr FOMMALovviiiiiiiiiiiiieii e s i et s e a e e e e e e e e aaaaaaeees 265
Figure 11.20: Endian Formats for the PAD REQISIEN.........uuuiiiiiiiiei ittt a e e e e e e e e aaeaees 269
Figure 11.21: Fastdata RegiSter FOIMALoooiiiiiiiiiii s e e e e e et e e e e e e e e e aaeaaaaeaeees 270
Figure 11.22: TAP Register PCSampPle FOMMIAL........cooiiiiiiiiiii ettt e e 273
Figure 11.23: MIPS® Trace Modules in the 24K® COIEuuiiiiiiiiie i a e e e e e e e aeaee s 274
Figure 11.24: TCBCONTROLA ReQIStEr FOMMALcovviiiiiiiiiiiiieiie s e s e e et n e a e e e e e e aeaaaaeaeees 280
Figure 11.25: TCBCONTROLB ReQIStEr FOMMALcovviiiiiiiiiiiiieie e e s s e et e e e e e e e e aeaaeaeaees 282
Figure 11.26: TCBDATA REQISIEr FOIMMALcoiiiiiiiiieeiieiet e e e e e e e e et e a e e e e e e e e aaeaaaaeaeees 285
Figure 11.27: TCBCONTROLC REQISIEr FOIMMALoevviiiiiiiiiiiiiesi ettt a e e e e e e e e aaeaeaeees 286
Figure 11.28: TCBCONFIG ReQISIEr FOMMIALcceiiiiiiiiiiiiiiiiiies s e s s e e e e e e e e e e e e et ee et e s s e e e e e e e aaaaaaaeaeees 287
Figure 11.29: TCBTW REQISIEr FOIMMALcccoiiiiiiiieiieieee e e e e e e e e e e e e e e et e e s e e e e e e e e aaeaaaaeaeees 288
Figure 11.30: TCBRDP REQISIEr FOIMMALccciiiiiiieiieieiiiei e s s s e e e e e e e e e e et e et e e e e e e e e e e e aaaaaaaeaeees 289
Figure 11.31: TCBWRP ReQIStEr FOMMALciiiiiiiiiiiiiiiieii s s e e e e e e e e e e e et e et e e s e e e e e e e e aaeaaaaeaeees 289
Figure 11.32: TCBSTP REQISIEr FOMMALccooiiiiiiieieeiiee s s s e e e e e e e e e e e e e e e e e et e e e s e e e e e e e aeeaaeaeaeees 290
Figure 11.33: TCBTRIGX ReQISIEr FOIMALcciiiiiiiiiiiiiiieii e s e e e e e e e e et s e e e e e e e e aaeaaeaeaeees 290
Figure 11.34: TCB Trigger ProCeSSING OVEIVIEW.uuuuruuueriiaiaiaiesaaeeeaeaeaeteteteeeeeataesrsraras e aaaaaeaaaaaaaaeeees 297

14

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 12.1: Usage of Address Fields to Select IndeX and Waycooooiiiiiiiiiiiiice e

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

15

Listo

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 2.8:
Table 2.9:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table 3.9:

Table 3.10:
Table 3.11:
Table 3.12:
Table 3.13:
Table 3.14:
Table 3.15:
Table 3.16:
Table 3.17:
Table 3.18:
Table 3.19:
Table 3.20:
Table 3.21:
Table 3.22:
Table 3.23:
Table 3.24:
Table 3.25:
Table 3.26:
Table 3.27:
Table 3.28:
Table 3.29:
Table 3.30:
Table 3.31:
Table 3.32:
Table 3.33:

Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:

16

f Tables

ReECOAE DANAWITLN ...t e ettt e e e e e e e e bbbt e e e e e e e e e e e aann 40
MDU INSEIUCHION DEIAYSvvveiiiiiieieie oot e e e e e e e e e e e e e e e e et e ee e e e e e aeseeaaraa e e e e eeas 44
Multiply Instruction (updating HI/LO) Repeat RAtES............uuiiiiiiiiieeeii it 44
MUL REPEAL RALES ...ttt e e e e e e e e e e e et et et et e e e e e e e te bbb bbb ab e as 45
PIPEIINE INTEITOCKS ...ttt e e oottt et e e e e e e s e bbbt e e e e eaeeeaaaaan 49
INSTFUCTION INEEITOCKS ...ttt e e e e e e e ettt et e e e e e e e e e e ananeeeees 50
EXECULION HAZAIUS ...ttt ettt et oo e e e oo bbbttt et e e e e e e e e b bbbt et e e e eaeeeaaaanns 51
INSTFUCHION HAZAIAS ...ttt oo oottt et e e e e e e e s e bbbt e e e e e e e e e e e e aannnaenees 52
(o V4= 1o I [E (U ot o T N1 i o 53
Parameters of FIoating-PoiNt DAta TYPESuueeiiiiieeaeiiiiiteiie ettt e e e e e e e e eeeaeaeeeaaas 57
Value of Single or Double Floating-Point Data Type ENCOdiNg............uuuiiiiiiiiiiiiiiiiiieieeeee e 58
Value Supplied When a New Quiet NaN IS Createdccuuiiiiiiiiiiiiiiiiiiiiee e 60
COoprocesSor 1 REGISIEN SUMIMIBIYccuiiiiaiiiiiiitiite ettt e ettt et e e e e e e s e b b bbbt et e e aeeeeeeaaannebbebeeeeeeas 64
e (o AN (o e (0] 01T 1= TP OTOPPPPPPRPPPPPR 64
FIR Bit FI@lId DESCIIPIIONS. ...ttt ettt ettt e e e e e e ottt e e e e e e e e e e s bbb e e e e e e e eaeaeeaan 65
FCCR Bit FIEld DESCIIPLIONSeeeiiieieeiiaieitttt ettt ettt e e e e e e e s e bbbttt et e e e e e e e e e s nbbbbb e e e e eeaeaeaeaaan 66
FEXR Bit FIEIA DESCIIPIIONS.......eeetteieeeeieiitt ettt e e e e e ettt et e e e e e e e e e s bbbt e e e e et e e e aeeeeaan 67
FENR Bit Field DESCIIPIONS.eetiiieieiei ittt e e e e e ettt e e e e e e e e e s bbb e e e e e aeaeeeaaan 67

FCSR Bit Field DESCIIPLIONS.eetiiteee ettt e e e e e e ettt e e e e e e e e e e ae b bbb e e eeeaaaeesaaan 69
Cause, Enables, and Flags DefinitioNSuuuuiiiiiiiiie i e e e e e e e e e e e e aaaaaees 70
R (o]0 gTo [T o TN\YiToTo ST B 1= 1T 11 o] g P 70
Zero FIushing fOr TINY RESUILSoeiiiiiiiiiii sttt s s s e s e s e e e e e e e aeaeaeaeaaaeanes 71
Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting...................... 71
Handling of Tiny Intermediate Result Based on the FO and FS Bit SettingS...........ccccccvvvviiiiiiiiieneeeenn. 72
Handling of Tiny Final Result Based on FN and FS Bit Settingscccoooviiiiiiiiiiceceee e 72
Recommended FS/FO/FN SELNGSccoooiiiiiiieeeeeeee st e e e e e as 73
FPU Data Transfer INSIIUCTIONS.oiiiiiiiiii ettt e e e e e e e e e s bbb e e e e e aeeeeaaan 75
FPU Loads and Stores Using Register+Offset Adress Modecoooiiiiiiiiiiiiieciicee e 75
FPU Move To and From INSTIUCTIONSueiiiiiiieiiee ettt e e e e et e e e e e e e e e an 76
FPU IEEE ArithmetiC OPEIAtIONScoiiiiiiiiiiiiiiie et ettt e e e e et e e e e e e e s bbb e e e e e aaeeeaaan 76
FPU-Approximate Arithmetic OPEratiONSiiiiiiiiiiiiiiiiii ettt e e e e e e e e e 76
FPU Multiply-Accumulate Arithmetic OPErationsSoocuuiiiiiiiiiiee e a e 77
FPU Conversion Operations Using the FCSR Rounding Mode.............cccuviiiiiiiiiiiiiiiiiieeceeeee e 77
FPU Conversion Operations Using a Directed Rounding Modecccuiiiiiiiiiiiiiiniiiiieeeceeee e 77
FPU Formatted Operand MOVE INSIIUCTIONciiiiiiiiiiiiiiiiiee ettt e e e e e e 78
FPU Conditional Move on True/False INSIrUCHIONS.c.uuiiiiiiiiiee e 78
FPU Conditional Move on Zero/NON-Zero INSIIUCHIONSueiiiiiiiiaaiiiiiiiiiieiee e 78
FPU Conditional BranCh INSTIUCTIONSuuiiiiiiiiiie et e e e e e e e e e an 79
Deprecated FPU Conditional Branch Likely INStrUCHIONScooiiiiiiiiiiiiiiiiiiieecee e 79
CPU Conditional Move on FPU True/False INSIIUCHIONSuuiiiiiiiiiieeeeiee i 79
Result for EXCeptions NOt TraPPEocouiiiiiiiiieeeee ettt e e e e e e e e e e e e e e e e e e e s 81
24Kf Core FPU Latency and RePEat RALEuuuuiiiiiiiiiiiiiiiie ettt 85
(0T =T Y oTe LR =To o 4= (U 92
SUPEIVISOr MO SEOMENTSttt ettt e e e e e e et e s b bbbt e e et e e e e e e e s e e bbbt e e eeeaeaeas 94
T g LTI\ (oo (ST T =T [=T L 96
Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces.........cccccceeeeeennn. 98
ACCESSES t0 ArSEQ AQUIESS RABNGE . .uuuuiiiie i i ettt e e e e e e e e e e e e e e aeeeeeeeeeeeaeseaasanrnnanas 98

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 4.6: Accesses t0 dMSeg AdAreSS RANGEcccoiiiiiiiiie e e e e e e e e e e et et e e e aeeaeeeaas 98

=] (SN S I = B = To T = 0 V2 = (o £ 100
Table 4.8: TLB Data ENrY FIEIUSeviiiiiiiiiie e e e e e e e e e e e e e e e e e et e e e e e ae e s as 100
Table 4.9: Machine CheCK EXCEPLIONouiiiiiiiiiiiii ettt e et e et e e e e e e s e bbb e e br e e e e e e e e e e e e anas 105
Table 4.10: TLB INSIUCTIONStiiiieiitt ettt ettt e ettt e ek et e e ettt e e st e e s e e e e s eees 106
Table 4.11: Cache CONEIrENCY ALLIDULESu i e as 107
Table 4.12: Cacheability of Segments with Fixed Mapping Translation..............cccuuieiiiiiiiiii e 107
Table 5.1: Priority Of EXCEPLIONSiiiiiiiiiiie ettt e e e e e e e e bbbttt e e e e e e e e e aanb b bbb b e e e eaeaeeeaaeann 111
Table 5.2: INTEITUPE MOAES ...ttt et e e e oo oo ek bbbttt et e e e e e e e e bbb bbb b e e e e aeaeeeaaeannns 113
Table 5.3: Relative Interrupt Priority for Vectored INterrupt MOe...........cooooiiiiiiiiiiiiiiiieeee e 116
Table 5.4: Exception Vector Offsets for Vectored INTEITUPLS.......c.uuuiiiiiiieieeeee et 121
Table 5.5: Exception Vector Base Addresses when SI_UseExceptionBase equals O...........oooooiiiiiiiiiiiieieennnnnns 123
Table 5.6: Exception Vector Base Addresses when SI_UseExceptionBase equals 1.........cccooviiiiiiieiieiiennnnnnns 123
Table 5.8: EXCEPLION VECIOISttt et e e oo oo 4 ek bbbttt e e e e e e e e e e e bbb ba s b e e e eaaaeeeaaaana 124
Table 5.7: EXCEPLION VECIOr OFFSELSeiiiiiiiiiiiiiiiiie ettt e e e e ettt et e e e e e e e s e bbb bbb b e e e e e e aeeeaaeanns 124
Table 5.9: Value Stored in EPC, ErrorEPC, or DEPC 0n an EXCEPLiON........c.coiiiiiiiiiiiiiiiieeeeee e 125
Table 5.10: Debug EXCEPLioN VECIOr AQUIESSESuuiiiiiiiiiieiiiieiitt ettt e et e e e e e e e e e e s bbb e e e e e e e e e s e e aaas 128
Table 5.11: Register States an INterrupt EXCEPLIONooiii it e e 132
Table 5.12: Register States 0N a WatCh EXCEPLHION.cuiiiiiiiiiiiiiiie it e e e e e 133
Table 5.13: CP0 Register States on an Address EXCEPLION EITOr........uiiiiiiiiiiiiiiiiiiiie e 134
Table 5.14: CPO Register States on a TLB Refill EXCEPLIONc.eiiiiiiiiiiiieeee e 134
Table 5.15: CPO Register States on a TLB Invalid EXCEPLION...........uuiiiiiiiiiiiiiiiiiee e 135
Table 5.16: CP0O Register States on a Cache Error EXCEPLIONuuuiiiiiiiiiiiiiiiiiiiiie et 135
Table 5.17: Register States on a Coprocessor Unusable EXCEPLioNcoouiiiiiiiiiiiiiiiieeeei e 137
Table 5.18: Register States on a Floating Point EXCEPLION.........ccuuiiiiiiiiiiee et 138
Table 5.19: Register States on a TLB Modified EXCEPLION........cciuiiiiiiiiiiiiee et 140
BIE= o] (SR T A O o O Lo 1] (] = 146
Table 6.2: CPO REQISIEI FIEIA TYPES ...eeeeiiiiiiiii ittt e ettt e e e e e e e e e s e bbb e b e e e e e e e e e e e aaanas 148
Table 6.3: Index Register Field DESCIPLIONSuiiiiiiiiiiee ettt e aaas 149
Table 6.4: Random Register Field DESCHPLIONS.uu ittt e e e e e s e e e e e e e e e e e e e aaas 150
Table 6.5: EntryLo0, EntryLol Register Field DeSCIPLIONSooouuiiiiiiiiiiiee et e e 150
Table 6.6: Cache CONEIrENCY ALIDULESu.e i e e e e e e e e e et e e e e e e ee e as 151
Table 6.7: Context Register Field DeSCIIPLIONSuuuiiiiiiiie ettt e aaas 152
Table 6.8: UserLocal Register Field DESCIIPLIONSu ittt ettt e e e e e e e e e e e e e e e e e e e 152
Table 6.9: PageMask Register Field DESCHPIONSuiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e 153
Table 6.10: Values for the Mask Field of the PageMask ReQISIENuuuiiiiiiiiiiiiiie e 153
Table 6.11: Wired Register Field DeSCIIPLIONSuutiiiiiiiieeee ittt e aaas 154
Table 6.12: HWRENa Register Field DESCHPIONSuiiiiiiiaiiiiiiiiie ettt e e e e e e e e e e e e e 155
Table 6.13: RDHWR RegIStEr NUMDEISuuiiiiiiiiii s e e e e e e e e e e e e e et e e 155
Table 6.14: BadVAddr Register Field DESCHIPLION.uiiiiiiiiiiiiiiiie ettt e e e e e e e e e e 156
Table 6.15: Count Register Field DESCHIPIONuuiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e e e 157
Table 6.17: Compare Register Field DeSCIIPLIONuuiiiiiiiiieiiiiiie ettt e e e e e e e e e e e 158
Table 6.16: EntryHi Register Field DESCIIPLIONSuiiiiiiiiiieee ittt e e e e e e e s bbb e e e e e e e e e e e e aaas 158
Table 6.18: Status Register Field DeSCIPLIONSuuiiiiiiiieeeee ettt e e e e e e e e e bbb e e e e e e e e e e e e e aaas 160
Table 6.19: INtCtl Register Field DeSCIIPLIONSuiiiiiiiiiiee et e et e e e e e e e e e e bbb e e e e e e e e eeeeeaaaaa 164
Table 6.20: SRSCtl Register Field DESCIPLIONSuuiiiiiiiiiiee ittt e e e e e e e e e s bbb e e e e e e e e e e e e aaas 166
Table 6.21: Sources for new SRSCtlgg on an Exception or INterrupt..........cccccceeiiiiiiiiiiiii 167
Table 6.22: SRSMap Register Field DEeSCHIPLIONS.........uuiiiiiiieeiiiiitite ettt e e e e e e e e e e e e e e 168
Table 6.23: Cause Register Field DeSCIIPLIONSttt r e e e e e e e e e e bbb a e e e e e e e e e e e aaaans 169
Table 6.24: Cause Register EXCCOAE FIeIU........ccooi it e et 171
Table 6.25: EPC Register Field DEeSCIIPLION. ... ettt e ettt e e e e e e e e e e bbb e e e e e e e e e e e e e e aans 172
Table 6.26: PRId Register Field DeSCIIPUIONSuutiiiiiiiiee ettt e e e e e e e e et e e e e e e e e e e e e e aaas 173
Table 6.27: EBase Register Field DESCHPIIONS.uui ittt e e e e e e e e bbb e e e e e e e e e e e aaas 174
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 17

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.28: Config Register Field DeSCIIPLIONSuutiiiiiiiieiee ittt e anas 174

Table 6.29: Cache CONEIreNCY ALLIDULESuii i e as 176
Table 6.30: Configl Register Field DeSCIIPIIONSu ittt e et e e e e e e e e e e e e e e e e e e 177
Table 6.31: Config2 Register Field DeSCIIPIIONSu ittt e e e e e e e e e e e e e e e e e e e 179
Table 6.32: Config3 Register Field DeSCIIPIIONSu ittt e e e e e e e e e e e e e e e e e e e 180
Table 6.33: Config7 Register Field DeSCIIPIIONSuu ittt ettt e e e e e e e e e e e e e e e e 182
Table 6.34: WatchLo Register Field DESCIPLIONSuiiiiiiiieei ittt e e e e e e e e e e e e e e e 184
Table 6.35: WatchHi Register Field DESCIPLIONS.uu ittt e e e e e e e e e e e e e 185
Table 6.36: Debug Register Field DESCHPIIONS.uuu ittt e e e e e e e e e e e e e e e e e e aaas 186
Table 6.37: TraceControl Register Field DESCIIPLIONScoouiiiiiiiiiiii it e e e e e 189
Table 6.38: TraceControl2 Register Field DESCHPLIONSooiiiiiiiiiiiiiiie et e e e e e e 191
Table 6.39: UserTraceData Register Field DeSCIPIONS.......cooiiiiiiiiiiie ittt e e e e 193
Table 6.40: TracelBPC Register Field DESCIPLIONS.uuiii ittt e e e e e e e e e e e e e e e e 194
Table 6.41: TraceDBPC Register Field DeSCIIPLIONSciiiiiiiiiiiiie ettt e e e e e e e e e e e e 194
Table 6.42: BreakPoint Control Modes: IBPC and DBPC..........cuiiiiiiiiic ittt 195
Table 6.43: DEPC ReQISIEr FOMMALS.uuuuiiiiiiiiieie i e e e e e e et ettt s e s e e e e e e e e e e e e e e eeaeeeeeaeaeaeseeeaens e aas 196
Table 6.44: Performance Counter REQISIEr SEIECES.........ccooiiiiiiiieee e s 196
Table 6.45: Performance Counter Control Register Field DeSCrPLioNScooiiiiiiiiiiiiiiiiee e 197
Table 6.46: Performance Counter Count Register Field DeSCIPLIONScooiiiiiiiiiiiiiiiieeee e 197
Table 6.47: EVENT DESCIIPLIONSueitiieiiiteeeee ettt ettt et e e e e e e e s e e bbbttt et e e e e e e e e e aanbbbbasbeeeeeeaeeesaaanns 200
Table 6.48: Performance Counter Count Register Field DeSCIPLIONScooiiiiiiiiiiiiiiiecie e 204
Table 6.49: ErrCtl Register Field DeSCIPLIONSuuitiiiiiiiee ettt e aaas 205
Table 6.50: CacheErr Register Field Descriptions (Primary Caches)ccoouiiiiiiiiiiiiiiiiieeeeee e 207
Table 6.51: CacheErr Register Field Descriptions (Secondary Cache)oooiiiiiiiiiiiiiiii e 209
Table 6.52: ITagLo Register Field DESCIPLIONSuuuiiiiiiieeeee ettt e et e e e e e e s bbb e e e e e e e e e e e aaas 211
Table 6.53: DTagLo Register Field DESCIPLIONSuuitiiiiiiiaaiiiiiiit ettt e e e e e e e e e bbb e e e e e e e e e e e e e aaas 213
Table 6.54: IDatalLo Register Field DESCIPLIONuuiiiiiiiiieeiiiite ettt e aaas 214
Table 6.56: L23Datalo Register Field DESCIIPLIONiiiii ittt e e e e e e e e e e e e 215
Table 6.55: DDatalo Register Field DeSCIPLION........u i i ittt e e e e e e e e e e e e e e e 215
Table 6.58: L23DataHi Register Field DeSCIPLIONuiiiiii ittt e e e e e e e e e e e e 216
Table 6.57: IDataHi Register Field DESCHIPLIONuuiiiiiiiiieei ittt e e e e e e e e e e e e e e e 216
Table 6.59: ErrorEPC Register Field DESCIIPLION.uuiiiiiiieiiiiiiiite ettt e e e e e e e e e e e 217
Table 6.60: DeSave Register Field DEeSCIPLIONuuti ittt e e e e e e e e s bbb e e e e e e e e e e e e aaas 217
Table 8.1: INStruction Cache ALIHDULIESuiiiiii et 221
Table 8.2: Data Cache ALIDULIESviii et e s 223
Table 8.3: Potential Virtual AlIASING BILSuuiiiiiiiii e ae e as 225
Table 8.4: Way Selection ENCOUING, 4 WAYScoiiiiiii et s e ae e e s e as 229
Table 10.1: Byte Access Within @ DOUBIEWOId ..o s 237
Table 11.1: Debug Control Register Field DeSCIPLONScoiiiiiiiiiiiii ittt e e e e e e 241
Table 11.2: Overview of Status Register for InStruction BreakpoiNtS..........coooiiiiiiiiiiiiiiiee e 243
Table 11.3: Overview of Registers for Each Instruction Breakpoint.............ooouiiiiiiiiiiieiee e 243
Table 11.4: Overview of Status Register for Data BreakpOintS.............eeiiiiiaiiiiiiiiiieiieeee e 244
Table 11.5: Overview of Registers for Each Data Breakpoint.............eeeiiiiiiiiiiiiiiiece e 244
Table 11.6: Rules for Update of BS Bits on Data Breakpoint EXCEPLIONSccccuuviiiiiiiiiiieeiie e 247
Table 11.7: Addresses for Instruction Breakpoint REGISIEISuuuiiiiiiiiiieee it 248
Table 11.9: IBAN Register Field DESCIIPLIONSuiiiiiiiiiiie ettt e e e e e e e e e bbb e e e e e e e e e e e e aaas 249
Table 11.8: IBS Register Field DESCIPLIONS ...ttt ettt e e e e e e e e e s e e e e e e e e e e e e e e aans 249
Table 11.10: IBMn Register Field DeSCIIPLIONSuuutiiiiiiiieieee ittt et e e e e e e e e bb b e e e e e e e e e e e 250
Table 11.11: IBASIDN Register Field DEeSCIIPLIONSuiiiiiiiaiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e 250
Table 11.13: Addresses for Data Breakpoint REGISIEIScoiiiiiiiiiiiiie et e e 251
Table 11.12: IBCn Register Field DESCIIPLIONSuutiiiiiiieeieeiiieiittte ettt e e e e e e e e e s e e e e e e e e e e e e aans 251
Table 11.14: DBS Register Field DeSCIPLIONSuuttiiiiiiieeieee ittt e e e e e e e e e s e e e e e e e e e e e e anas 252
Table 11.15: DBAN Register Field DeSCIIPLIONSuut ittt ettt e et e e e e e e s bbb e e e e e e e e e e e aaas 252
18 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 11.16:
Table 11.17:
Table 11.18:
Table 11.20:
Table 11.19:
Table 11.21:
Table 11.22:
Table 11.24:
Table 11.23:
Table 11.25:
Table 11.26:
Table 11.27:
Table 11.28:
Table 11.29:
Table 11.30:
Table 11.31:
Table 11.32:
Table 11.33:
Table 11.35:
Table 11.34:
Table 11.36:
Table 11.37:
Table 11.38:
Table 11.39:
Table 11.40:
Table 11.41:

Table 12.1:
Table 12.2:
Table 12.3:
Table 12.4:
Table 12.5:
Table 12.6:
Table 12.7:
Table 12.8:
Table 12.9:

Table 12.10:
Table 12.11:
Table 12.12:
Table 12.13:
Table 12.14:
Table 12.15:
Table 12.16:
Table 12.17:
Table 12.18:
Table 12.19:
Table 12.20:
Table 12.21:
Table 12.22:
Table 12.23:
Table 12.24:
Table 12.25:
Table 12.26:
Table 12.27:

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

DBMn Register Field DEeSCIIPLIONSttt e e e e e e e e eeeeeae s 253
DBASIDN Register Field DeSCIIPUIONSttt ettt e e e e e e e eeeeeae s 253
DBCn Register Field DESCIIPLIONS.c...uiiiiiiiiiee ettt e e e e e eeeeaee s 254
DBVHN Register Field DEeSCHIPLIONSuiiiiiiiiiiiaee ettt e e e e e e et eeeeaeeeas 255
DBVN Register Field DESCIIPLIONSooiiiiiiiiieie ettt e e e e e e et eeeeeee s 255
EJTAG INLEITACE PINS ...ttt ettt e e e e e ettt e e e e e e e e s e bbb e e e eeaeeeas 256
Implemented EJTAG INSIIUCTIONS ..ottt e e e e e e et eeeeeeeeas 260
Implementation RegiSter DESCIIPLIONSuuiiiiiiiiee ettt e e e eeeaaeeas 264
Device 1dentifiCation REQISIEN........uuuueiieie ittt s e s e e e e e e e e e aeaeeeeeeeaeeeererarnnes 264
EJTAG Control RegiSter DESCIIPIIONSuutiiiiiiiieeeaie ittt e et a e e e e e e e eeeeeeeas 265
Fastdata Register Field DeSCHIPIIONuuiiiiiiiiieee ettt e e 270
Operation Of the FASTDATA ACCESScciiieiiiatee ettt ettt e s e annabebeees 271
A List of Coprocessor 0 TraCe REQISTEIScoeiiiiiiiiiiiiie ettt e e e e e e e e e 278
TCB EJTAG REQISIEIS ...ttt e s s e s e e e e e e e e e e e e et et e e e et e ae e et s s s e s e s e e eeaaeaeaaaeaeeeeeeesennernrnnes 279
Registers Selected by TCBCONTROLBREGcccoiiioooeeccoeeseeeeccceee oo 279
TCBCONTROLA Register Field DeSCHPLIONSccuiiiiiiiiiieie ettt e e e e e 280
TCBCONTROLB Register Field DeSCHPLIONScc.uiiiiiiiiiiieee ettt e e e e 282
Clock Ratio encoding of the CR fIelduuviiiiiiiiiiii e 285
TCBCONTROLC Register Field DeSCIPLIONS.......cc.uutiiiiiiiiieee ettt e e e e e e e e e 286
TCBDATA Register Field DESCIPLIONScuiiiiiiiiiiiiiiiiee ettt e e e e e e e e 286
TCBCONFIG Register Field DeSCHPLONScoiiiiiiiiiiieie ettt r e e e e e e e 287
TCBTW Register Field DEeSCIIPLIONSeiiiiiiaeiieiiiiiiite ettt e e e e e et e e e e e e e e e e aaas 288
TCBRDP Register Field DEeSCHIPLIONScuiiiiaeiiiiiiiiiitie ettt a e e e e e e e e e e e 289
TCBWRP Register Field DeSCIPLIONS.cuiiiii ittt ettt e e e e e e e e e 289
TCBSTP Register Field DESCIPLIONSetiiiiiee ittt et e e e e e e e e e e e e e e e e aaas 290
TCBTRIGX Register Field DEeSCIIPLIONS.cui ittt e e e e e e e e e e 290
Symbols Used in the Instruction ENcoding TableS.......cccoooiiiiiiiiiiiii e 303
MIPS32 Encoding of the Opcode FIeldeiiiiiiiiii e 304
MIPS32 SPECIAL Opcode Encoding of Function Fieldocoiiiiiiiiiiiiieeeeeee 304
MIPS32 REGIMM ENcoding Of rt FIEld.........cooiiiiiiieeee e 304
MIPS32 SPECIAL2 Encoding of FUNCLION FIeld..............uuuiiiiiiiiiei e 305
MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture ..., 305
MIPS32 MOVCI ENCOUING Of tF Bt ..ceiitiiiiiiiieiiiie ettt 305
MIPS32 SRL Encoding of Shift/ROIALEoooviiiiiiiiii e s 305
MIPS32 SRLV Encoding Of Shift/ROLAtEooiviiiiiiiic e s 305
MIPS32 BSHFLENCOAING Of S& FIEIAciiiiiiie e e e e e e e e e e eerenanees 306
MIPS32 COPO ENcoding Of IS FIEIA.......cooeiiiiiei e e e e e e e e e e e e e e e eeeaeanrnees 306
MIPS32COPO0 Encoding of Function Field When rS=COuuuiiiiiiiie e 306
MIPS32 COPL1 ENcoding Of IS FIEIA.......cooiiiieiie et e e e e e e e e e e e e e e e e eeeaeanrnees 307
MIPS32 COP1 Encoding of Function Field When rS=S............iiiiiiiie e 307
MIPS32 COP1 Encoding of Function Field WHhen rS=Duuviiiiiiiiie e 307
MIPS32 COP1 Encoding of Function Field When rS=W OF L..........ciiiiiiiiiiieieeeeeeeeeeeceeeeeeeeeeeia 308
MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF.................ccccccevvivivniiriniininnns 308
MIPS64 COP1X Encoding of FUNCHION FIeld...........cooiiiiiiiee e 308
MIPS32 COP2 ENcoding Of IS FIEIA.......cooiiiieiei e e e e e e e e e e e e e e e e eeeaaanaaees 308
Floating Point Unit Instruction Format ENCOAINGSoovvviiiiiiiiiiiiiiiiieeie s e e e e e e eeee e e e e e eeeeeeeannnnes 309
24K™ COre INSIIUCHION SETttt e e e e e e e e e et e et e e e e e e e e annnbeee e 309
List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-classccccoiiiiiiiiinnnnn. 318
List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class..........cccccccceeennn. 320
List of instructions in the MIPS32® DSP ASE in the Multiply Sub-Classccccccoiiiiiiiiiiinnnnn. 321
List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class.............ccccccceee.n. 324
List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class.............cccccvvvieenenn. 324

List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access sub-class.

19

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

325

Table 12.28: List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class...........ccccccceieeinnnns 328
Table 12.29: List of instructions in the MIPS32® DSP ASE in the Branch sub-classccccooiiiiiiiiis 328
Table 12.1: Usage Of EffECHVE AQUIESS e as 329
Table 12.2: Encoding of BitS[17:16] of CACHE INSTIUCTIONcoiiiiiiiiiiiiiiie ettt e e 330
Table 12.3: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[WST,SPR] Cleared...........cccccccveveeeinnnns 330
Table 0-1: Encoding of Bits [20:18] of the CACHE Instruction, ErrCt[WST] Set. ErrCtl[SPR] Cleared................ 333
Table 12.4: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[SPR] Set, ErrCtI|WST] Cleared 334
Table 12.1: Values of hint Field for PREF INSITUCHIONooiiiiiiiiiiiei et 336
Table 12.1: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field..........ccccccooiiiiiiiiiiii. 343
Table 13.1: Symbols Used in the Instruction ENncoding Tables..............iiiiiiiiiiii e 349
Table 13.2: MIPS16e Encoding Of the OpCOde FIeldcooiiiiiiiiii e 350
Table 13.3: MIPS16e JAL(X) Encoding of the X FIeld..........coooriiiiiiiicee e 350
Table 13.4: MIPS16e SHIFT Encoding of the f FIeldoooiiririiieee e 350
Table 13.5: MIPS16e RRI-A Encoding of the f Field...........oooiiririiiee e 350
Table 13.6: MIPS16e I8 Encoding of the fUNCE FIeld............oooriiiiirie e 351
Table 13.7: MIPS16e RRR Encoding of the f FIeld............ooiiiiririi e 351
Table 13.8: MIPS16e RR Encoding of the FUNCE Fieldooooriiiiiiicee e 351
Table 13.9: MIPS16e I8 Encoding of the s Field when funNCt=SVRS ... 351
Table 13.10: MIPS16e RR Encoding of the ry Field when funCt=J(AL)R(C)cceeeeeiriiiiiiiiee e 351
Table 13.11: MIPS16e RR Encoding of the ry Field when funCt=CNVT ... 352
Table 13.12: MIPS16€e Load and StOre INSTIUCTIONScuiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e 352
Table 13.13: MIPS16e Save and ReStore INSIIUCLIONSooiiiiiiiiiiiiii ettt e e e e e e e 352
Table 13.14: MIPS16e ALU IMMmediate INSIIUCTIONSceiiiiiiiiiiiiiitee ettt e e e e e e e e e 352
Table 13.15: MIPS16e Arithmetic Two or Three Operand Register INSTUCIONSooiviiiiiiiiiiiiiiiiiiiie e 353
Table 13.16: MIPS16€ Special INSIIUCTIONSoiiiiiiiiiieiie ettt ettt e e e e e e e e bbb r e e e e e e e e e e e e anas 353
Table 13.17: MIPS16e Multiply and Divide INSIIUCHIONScoiiiiiiiiiiiie it 353
Table 13.18: MIPS16e Jump and BranCh INSITUCHIONS..........ooiiiiiiiiiiiii et e e 354
Table 13.19: MIPS16€ Shift INSITUCTIONScoiiiiiiiiiie ettt ettt e e e e e e e e e e s bbb e e e e e e e e e e e e e aaas 354
20 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 1

Introduction to the MIPS32® 24K® Processor Core Family

The 24K® core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS® RISC processor core
family intended for custom system-on-silicon applications. The coreis designed for semiconductor manufacturing
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripher-
als with a high-performance RISC processor. A 24K coreis fully synthesizable to allow maximum flexibility; it is
highly portable across processes and can easily beintegrated into full system-on-silicon designs. This allows devel op-
ersto focus their attention on end-user specific characteristics of their product.

The 24K coreisideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 24K family has four members: the MIPS32® 24Kc™ core, the MIPS32 24Kc Pro™ core, the MIPS32 24Kf™
core, and the MIPS32 24Kf Pro™ core.

The 24K c is a 32-bit RISC core for high performance applications.

The 24Kf core adds an IEEE-754 compliant floating point unit.

* The 24Kc Pro core offers the CorExtend® capability.

The 24Kf Pro core has both the floating point unit and the CorExtend capability.

The term 24K core, as used in this document, generally refersto all coresin the 24K family. When referring to char-
acteristics unique to an individual family member, the specific core type isidentified.

On a24K core, instruction and data caches are configurable as 0, 8, 16, 32, or 64 KB in size. Each cacheis organized
as 4-way set associative. The data cache features non-blocking load misses. On a cache miss, the processor can con-
tinue executing instructions until a dependent instruction is reached. Both caches are virtually indexed and physically
tagged. Virtual indexing allows the cache to be indexed in the same clock in which the address is generated rather
than waiting for the virtual-to-physical address trandation in the TLB.

The core implements the M1PS32 Release 2 Instruction Set Architecture (1SA) and the M1PS16e™ Application Spe-
cific Extension (ASE) for code compression.

The MMU of the 24K core may be TLB-based or a simple fixed mapping translation mechanism. If TLB-based,
micro TLBsin the fetch and load/store units cache the latest address trandlations from the larger joint TLB.

The Multiply-Divide Unit (MDU) isfully pipelined and supports a maximum issue rate of one 32x32 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per
clock.

The basic Enhanced JTAG (EJTAG) features provide run control with stop, single stepping, and re-start, and with
software breakpoints through the SDBBP instruction. Support for connection to an external EJTAG probe through the
Test Access Port (TAP) isalso included. Instruction and data virtual address hardware breakpoints as well asthe
MIPS Trace mechanism can be optionally included.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 21

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® 24K® Processor Core Family

The bus interface implements the Open Core Protocol (OCP) [10], with 64-bit read and write data buses. The bus
interface may operate at the same or alower clock rate than the core itself.

Therest of this chapter provides an overview of the MIPS32 24K processor core and consists of the following sec-

tions:

e Section 1.1 “24K® Core Features’

e Section 1.2 “24K® Core Block Diagram”

1.1 24K® Core Features

e 8-stagepipeline

e 32-bit Address Paths

e 64-bit Data Pathsto Caches

* MIPS32-Compatible Instruction Set

Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
Targeted multiply instruction (MUL)

Zero and one detect instructions (CLZ, CLO)

Wait instruction (WAIT)

Conditional move instructions (MOVZ, MOVN)

Prefetch instruction (PREF)

e MIPS32 Enhanced Architecture (Release 2) Features

Vectored interrupts and support for an external interrupt controller
Programmable exception vector base

Atomic interrupt enable/disable

GPR shadow sets

Bit field manipulation instructions

» MIPS16e Application Specific Extension

22

16 hit encodings of 32-hit instructions to improve code density
Specia PC-relative instructions for efficient loading of addresses and constants

Data type conversion instructions (ZEB, SEB, ZEH, SEH)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

1.1 24K® Core Features

e Compact jumps (JRC, JALRC)
o Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)
e Programmable L1 Cache Sizes
* Individualy configurable instruction and data caches
* Sizesof 0, 8, 16, 32, or 64 KB
e 4-Way set associative
* Upto 9 non-blocking loads
» Data cache supports Write-back with write-allocation and Write-through without write-allocation
» 256-bit (32-byte) cache line size, doubleword sectored - suitable for standard single-port SRAM
» Cachelinelocking support
* Non-blocking prefetches
» Dataand Instruction ScratchPad RAMs
» Separate RAMsfor Instruction and Data
* Addressableupto 1IMB
* 64-bit OCP interfaces for external access
» R4000 Style Privileged Resource Architecture
» Count/compare registers for real-time timer interrupts
* Instruction and data watch registers for software breakpoints
e Standard Memory Management Unit
» 16/32/64 dua-entry MIPS32-style JTLB with variable page sizes
e 4entryinstruction TLB
e 8-entrydaaTLB
* Optiona Memory Management Unit
* Simple Fixed Mapping Trandation (FMT)
* Address spaces mapped using register bits
* OCP Bus Interface Unit (BIU)

e 32b address and 64b data

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

23

Introduction to the MIPS32® 24K® Processor Core Family

24

* Flexible core/bus clock ratios

* Supports bursts of 4x64b

» 4entry write buffer - handles eviction data, write-through, uncached, and uncached accelerated store data
» Simple Byte enable mode allows easier bridging to other bus standards

» Extensionsfor management of front side L2 cache

CorExtend® User Defined Instruction capability (24K c Pro and 24Kf Pro)

» Optional support for the CorExtend feature allows users to define and add instructions to the core (as a
build-time option)

e Single- or multi-cycle instructions

» Source operations from register, immediate field, or local state

» Dedtination to aregister or local state

» Interface to multiply-divide unit, allowing sharing of accumulation registers
Multiply-Divide Unit

* Maximum issue rate of one 32x32 multiply per clock

e Early-in divide control. Minimum 11, maximum 34 clock latency on divide
Floating Point Unit (24Kf and 24Kf Pro only)

* |EEE-754 compliant floating point unit

* Compliant to MIPS 64b FPU standards

» Supports single and double precision datatypes

Coprocessor2 Interface

* 64-bit interface to user designed coprocessor

Power Control

* No minimum frequency

» Power-down mode (triggered by WAIT instruction)

» Support for software-controlled clock divider

» Support for extensive use of fine-grain clock gating

EJTAG Debug Support

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

1.2 24K® Core Block Diagram

» Start, stop, and single stepping control
» Software breakpoints viathe SDBBP instruction
* Optiona hardware breakpoints on virtual addresses; O or 4 instruction and O or 2 data breakpoints

» Test Access Port (TAP) facilitates high speed download of application code

Optional MIPS Trace hardware to enable real-time tracing of executed code
1.2 24K® Core Block Diagram

The 24K core contains a number of blocks, as shown in the block diagram in Figure 1.1. The major blocks are asfol-
lows:

e Execution Unit (ALU)

e Multiply-Divide Unit (MDU)

e System Control Coprocessor (CP0)

* Memory Management Unit (MMU)

e Floating Point Unit (FPU) - only in 24Kf

» Cache Controller

» BuslInterface Unit (BIU)

* Power Management

e MIPS16e support

» Instruction Cache (I-cache)

» DataCache (D-cache)

e Enhanced JTAG (EJTAG) Controller

» CorExtend® User Defined Instructions (UDI)
Figure 1.1 shows a block diagram of a 24K core. The MMU can be implemented using either atrandation lookaside

buffer or afixed mapping (FMT). Refer to Chapter 4, “Memory Management of the 24K® Core” on page 87 for more
information.

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 25

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® 24K® Processor Core Family

26

Figure 1.1 24K® Processor Core Block Diagram

MDU

FPU <> Execution Unit

(RF/ALU/Shift

{

System Coprocessori

EJTAG
I-cache Trace i
TAP
i
Fetch Unit
BIU
MMU
Load/Store Unit
Power
D-cache Mt

On-Chip Bu!(es)

Only 24K core Coprocessor2 I/F - CorExtend I/F

1.2.1 Logic Blocks

The following subsections describe the various logic blocks of the 24K processor core.

1.2.1.1 Execution Unit

ScratchPad
RAM I/Fs

Off/On-Chip Trace
IIF

Off-Chip Debug
IIF

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera-
tions (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit gen-
eral-purpose registers (GPRs) used for scalar integer operations and address cal culation. Optionally, one or three
additional register file shadow sets (each containing thirty-two registers) can be added to minimize context switching
overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is
fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

e 32-bit adder used for calculating the data address

e Logic for branch determination and branch target address cal culation

e Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions
are followed closely by consumers of their results

e Zero/One detect unit for implementing the CLZ and CLO instructions

e ALU for performing bitwise logical operations

e Shifter and Store aligner

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

1.2 24K® Core Block Diagram

* Floating Point Unit Interface

» Coprocessor2 Interface

1.2.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations.The MDU consists of a pipelined 32x32 multi-
plier, result-accumulation registers (HI and L O), multiply and divide state machines, and all multiplexers and control
logic required to perform these functions. This pipelined MDU supports execution of a multiply or multiply-accumu-
late operation every clock cycle. Unlike previous cores, there is no dependence between operand size and issue rate
for multiplies. Divide operations are implemented with asimple 1 bit per clock iterative algorithm and require 35
clock cyclesin worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual
sizeis 24, 16 or 8 hit. the divider will skip 7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU
instruction while adivideis still active causes a pipeline stall until the divide operation is completed.

On Pro Series cores, the MDU accumulator is accessible from the CorExtend block. Many CorExtend instruction
types can make use of the HI/LO accumulation registers.

1.2.1.3 System Control Coprocessor (CPO)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and
the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and presence of
build-time options are available by accessing the CPO registers. Refer to Chapter 6, “ CPO Registers of the 24K®
Corée” on page 146 for more information on the CPO registers. Refer to Chapter 11, “EJTAG Debug Support in the
24K® Core” on page 240 for more information on EJTAG debug registers.

1.2.1.4 Memory Management Unit (MMU)

The 24K core containsan MMU that interfaces between the execution unit and the cache controllers, shown in Figure
1.2. Although the 24K core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled after
the MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

On the 24K core, by default the MMU is based on a Tranglation L ookaside Buffer (TLB). The TLB consists of three
trandation buffers: a configurable 16/32/64 dual-entry fully associative Joint TLB (JTLB), a4 entry fully associative
Instruction TLB (ITLB) and a 8-entry fully associative data TLB (DTLB). The ITLB and DTLB, also referred to as
the micro TLBs, are managed by the hardware and are not software visible. The micro TLBs contain subsets of the
JTLB. When translating addresses, the corresponding micro TLB (I or D) is accessed first. If thereis not a matching
entry, the JTLB is used to translate the address and refill the micro TLB. If the entry isnot found in the JTLB, then an
exception istaken.

The core optionally implements a FM T-based MMU instead of a TLB-based MMU. The FMT replacesthe ITLB and
DTLB and the JTLB isremoved. The FMT performs asimple translation to get the physical address from the virtual
address. Refer to Chapter 4, “Memory Management of the 24K® Core” on page 87 for moreinformation on the FMT.

Figure 1.2 shows how the address translation mechanism interacts with cache accesses.

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 27

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® 24K® Processor Core Family

28

Figure 1.2 Address Translation During a Cache Access

Virtual Address

o |-cache
L

Instruction ¢
Address ITLB/FMT | — | Comparator

Calculator Instruction
IVA Entry I—> Hit/Miss

JTLB
DVAT Entry Data Hit/Miss
Data Address
Calculator DTLB/FMT p| Comparator
A
Virtual Address - D-cache

1.2.1.5 Fetch Unit

The fetch unit is responsible for providing instructions to the execution unit. The fetch unit includes:

Control logic for the instruction cache

MIPS16e instruction recoder

Dynamic branch prediction

» 512-entry bimodal branch history table for predicting conditional branches
* 4-entry return prediction stack for predicting return addresses

8-entry instruction buffer to decouple the fetch and execution pipelines

Interface to Instruction ScratchPad RAM

1.2.1.6 Instruction Cache

Theinstruction cacheis an on-chip memory array of up to 64 KB. The cacheisvirtually indexed and physically
tagged, allowing the virtual-to-physical address trandlation to occur in parallel with the cache access rather than hav-
ing to wait for the physical address trandation. The tag holds 20 or 21 hits of the physical address, avalid bit, alock
bit, and optionally a parity bit. There is a separate 6b array which holds datafor all 4 waysto be used in the Least
Recently Used (L RU) replacement scheme. Some precode information isincluded in the instruction cache data array.
An additional 6b per pair of 32b instructionsis used to enable quick detection of branches and jumpsin the fetch unit.
If parity isimplemented, a single bit covers the 6b precode and 8b cover the 64b data.

The core supports instruction cache locking. Cache locking allows critical code to be locked into the cache on a
“per-lineg” basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

1.2 24K® Core Block Diagram

aways available on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing
the lock bit) on a per-entry basis using the CACHE instruction.

The LRU array must be bit-writable. The tag and data arrays only need to be word-writable.

1.2.1.7 Load/Store Unit
The Load/Store Unit is responsible for data loads and stores. It includes:
» Datacache control logic
* A4linefill/store buffer

e ScratchPad RAM interface

1.2.1.8 Data Cache

The data cache is an on-chip memory array of up to 64 KB. The cacheis virtually indexed and physically tagged,
allowing the virtual-to-physical address trandation to occur in parallel with the cache access. The tag holds 20 or 21
bits of the physical address, avalid bit, alock bit, and optionally a parity bit. A separate array holds the LRU bits
(6b), dirty bits (4b), and optionally, dirty parity bits (4b) for all 4 ways. The dataarray is optionally parity protected
with 1b per 8b of data.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the
instruction cache, with critical data segments to be locked into the cache on a“ per-line” basis. The locked contents
cannot be selected for replacement on a cache miss, but can be updated on a store hit.

Cachelocking is always available on all data cache entries. Entries can be marked as locked or unlocked on a
per-entry basis using the CACHE instruction.

The physical data cache memory must be byte writable to support sub-word store operations. The LRU/dirty bit array
must be bit-writable.

1.2.1.9 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation of a
collapsing write buffer. This buffer is used to merge Write-Through transactions as well as to gather multiple writes
together from dirty line evictions and uncached accel erated stores. The write buffer consists of 4 32B entries.

1.2.1.10 Power Management

The core offers anumber of power management features, including low-power design, active power management,
and power-down modes of operation. The coreis a static design that supports slowing or stopping the clocks to
reduce power.

A register-controlled power management mode in the core provides three bits in the CPO Status register for software
control of the power management function and allows interrupts to be serviced even when the core isin power-down
mode.

An instruction-controlled power-down mode is entered by execution of the WAIT instruction and is used to invoke
low-power mode.

coreRefer to Chapter 9, “Power Management in the 24K® Core” on page 232 for more information on power man-
agement.

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 29

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® 24K® Processor Core Family

30

1.2.1.11 MIPS16e™ Application Specific Extension

The 24K core includes support for the MIPS16e ASE. This ASE improves code density through the use of 16-hit
encodings of MIPS32 instructions plus some M1PS16e-specific instructions. PC relative loads allow quick access to
constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for efficient sub-
routine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

A decompressor converts the MIPS16e 16-bit instructions fetched from the instruction cache or external interface
back into 32-bit instructions for execution by the core.

Refer to the MIPS32® Architecture For Programmers, Volume IV-a: The MIPSL6e™ Application-Specific Extension
to the MIPS32® Architecture [3] and to Chapter 4, “The MIPS® DSP Application-Specific Extension to the
MIPS32® Instruction Set” on page 99 for more information on the features of the MIPS16e ASE.

1.2.1.12 EJTAG Debug

All cores provide basic EJTAG support with debug mode, run control, single step, and software breakpoint instruction
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code. A TAP con-
troller is aso included, enabling communication with an external EJTAG probe through a dedicated port. This pro-
videsthe possibility for debugging without debug codein the application, and for download of application codeto the
system.

An optiona EJTAG featureis hardware breakpoints. A 24K core may have four instruction breakpoints and two data
breakpoints, or no breakpoints. The hardware instruction breakpoints can be configured to generate a debug exception
when an instruction is executed anywhere in the virtual address space. Bit mask and Address Space Identifier (ASID)
values may apply in the address compare. These breakpoints are not limited to code in RAM like the software instruc-
tion breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on a data transac-
tion. The data transaction may be qualified with both virtual address, data value, size and |oad/store transaction type.
Bit mask and ASID values may apply in the address compare, and byte mask may apply in the value compare.

Another optional debug feature is support for M1PS Trace that enables real-time tracing capability. The trace infor-
mation can be stored to either an on-chip trace memory or an off-chip trace probe. The trace of program flow is
highly flexible and can include the instruction program counter as well as data addresses and data values. The trace
features can provide a powerful software debugging mechanism.

Refer to the EJTAG Specification [11] and to Chapter 11, “EJTAG Debug Support in the 24K® Core” on page 240
for more information on the EJTAG features.

1.2.1.13 CorExtend® User Defined Instructions

This optional module contains support for CorExtend user defined instructions. These instructions must be defined at
build-time for the 24K core. The CorExtend feature is a capability of the 24K c Pro and 24Kf Pro cores. This feature
makes 16 instructions in the opcode map available for customer usage, and each instruction can have single or
multi-cycle latency. A CorExtend instruction can operate on any one or two general-purpose registers or immediate
data contained within the instruction, and can write the result of each instruction back to ageneral purpose register or
alocal register. Implementation details for CorExtend can be found in the Cor Extend® Instruction Integrator's Guide
for MIPS32® Cores[8].

Refer to Section Table 12.5 “MIPS32 SPECIAL 2 Encoding of Function Field” for a specification of the opcode map
available for user defined instructions.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 2

Pipeline of the 24K® Core

The 24K processor core implements an 8-stage pipeline. The pipeline allows the processor to achieve high frequency
while minimizing device complexity, reducing both cost and power consumption. This chapter contains the following
sections:

e Section 2.1 “Pipeline Stages’

* Section 2.2 “Instruction Fetch”

» Section 2.3 “Load Store Unit”

e Section 2.4 “MDU Pipeline’

e Section2.5 “Skewed ALU”

e Section 2.6 “Interlock Handling”

e Section 2.7 “Instruction Interlocks’

e Section 2.8 “Hazards’

2.1 Pipeline Stages

The pipeline consists of eight stages:

* IF- Instruction fetch First

* IS- Instruction fetch Second

* IR - Ingtruction recode (MIPS16e only)
e |K - Instruction kill (MIPS16e only)

* RF- Register File

* AG - Address Generation

+ EX - EXecute

e MS- Memory Second

* ER - Exception Resolution

« WB - WriteBack

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 31

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core
Three additional stages are conditionally added to the fetch pipeline after the 1S stage when executing M1PS16e code.
The IR and IK stages are generally bypassed while executing 32-bit code.

Figure 2.1 shows the basic pipeline organization. The various parts of the pipeline are described in more detail in this
chapter.

Figure 2.1 24K® Core Pipeline Stages
/ \ / \ / \ / N\ / N\ / \ / \ / N\ / N\

IF IS IR/KAT RF AG EX MS ER WB
I-cache Array {32b mode branch| MIPS16e recode
Access, ITLB |predict, Hit detect,| and branch
Lookup way select, predict, instn . .) . i :)
buffer Register File Data Execution and Instruction Register File Write
Access, instn Address branch resolution completion,
decode Generation exception
processing, write
setup
D-cache Array |hit detection, way
Access, DTLB | select, load align
Lookup
IFU ALU LSu
2.1.1 IF Stage: Instruction Fetch First
» |-cache tag/data arrays accessed
» Branch History Table accessed
* |ITLB addresstrandation performed
» EJTAG break/watch compares done
2.1.2 IS - Instruction Fetch Second
* Detect I-cache hit
Way sdlect
e MIPS32 Branch prediction
32 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.1.3 IR - Instruction Recode (MIPS16e only)

* MIPS16 recode
e MIPS16 branch prediction
e Stageis bypassed when executing MI1PS32 code

2.1.4 IK - Instruction Kill (MIPS16e only)

» Kill MIPS16 instructions (due to branches as an exampl€)
e Stageis bypassed when executing MI1PS32 code

2.1.5 IT - Instruction Fetch Third

» Stageis bypassed when executing MIPS32 code and the instruction buffer is empty
* Instruction Buffer
e Branchtarget calculation

2.1.6 RF - Register File Access

» Register File access
* Instruction decoding/dispatch logic
e Bypass muxes

2.1.7 AG - Address Generation

» D-cache Address Generation
* Bypass muxes

2.1.8 EX - Execute/Memory Access

e Skewed ALU
« DTLB
e Start DCache access

e Branch Resolution

2.1.9 MS - Memory Access Second

e Complete DCache access

» DCache hit detection

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

33

Pipeline of the 24K® Core

e Way select mux
« Loaddign
2.1.10 ER- Exception Resolution
e Instruction completion
* Register file write setup
» Exception processing

2.1.11 WB - Writeback

» Register file writeback occurs on rising edge of this cycle

2.2 Instruction Fetch

34

TheIFU isresponsible for supplying instructions to the execution units and handling the results of all control transfer
instructions (branches, jumps, etc.). The IFU operation encompasses four pipe stages: IF (I nstruction fetch First), 1S
(Instruction fetch Second), IR (Instruction Recode) and IK (Instruction Kill). The instruction cache tags and data are
accessed in IF, and the hit determination and the first part of the 32-bit mode target calculation isdonein IS. The IR
and IK stage handle M1PS16e recoding. The remainder of the 32-bit mode target calculation as well asinstruction
buffering to the ALU isdoneinthe IT stage, but can be bypassed during 32-bit mode if the instruction buffer is
empty. Thisinstruction buffering decouples the IFU from the rest of the pipeline, allowing fetches to proceed even if
the processor execution is stalled for some reason. The fetch pipeline and cache bandwidth is 64 bits, supplying up to
two instructions per cycle in MIPS32 mode, which alows the IFU to get ahead of the ALU and shields the execution
pipeline from some |FU miss penalties.

Figure 2.2 shows the general datapath of the IFU along with major structures.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.2 IFU Block Diagram

IF : IS
|
| $data
WS WachEJTAG | [ecoption |20
| -
il but
[|
[: |
|-cache Tag : compare
Ml V¥
I~ |
| =
PC I PA >
e B T | &
B
" ' 71b datax5

- ; Early
. |-cache Data i - _

precode :
Fill buffers

2.2 Instruction Fetch

RPS

to mux

M 16 target calc.

JR $31

ALU

pred.

|
|
|
:
|
BHT (Target calc. :
1
+2/4l8 L | hiymiss
| _sequentid -, o :
new PC o | L
' I index | way
L . 5 WSATrray :
| MiGtaget— | tolfill Buffer
| b e e - == = > | :
| resumePC — ' new fetch PC |
| fill/cacheop — | , OITLB etc. !
| | |
| B | R L
! 3 I I b
I ElaLu ! 8 0 e 1Ofill buffer
, index/low PC , ° | ——
i I = |
' ! BIU| Lo-ooo- i

The following diagrams illustrate the timing of various |FU operations. The simplest of these is the sequential fetch
path, in which the next fetch PC isincremented by 8 bytesin parallel with the cache lookup. If each fetch hitsin the
cache, the IFU can provide two instructions per cycle and will quickly fill up the instruction buffer, after which it will

stall based on a buffer full signal.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

35

Pipeline of the 24K® Core

Figure 2.3 Timing of 32-bit Mode Sequential Fetches

Two inst/cycle

IF IS |IT
IF [IS | IT
pc+8k IF|1s [T
IF | 1S [IT
pesgiel IF [1S [T
IF [IS | IT

Another common situation is a control transfer instruction (branch/jump). The calculation of the target for 32-bit
mode instructions startsin the IS stage, but does not complete until the I T stage. For a predicted taken path this means
that if the delay slot of that branch isin the same fetch bundle, there will be a 2 cycle bubble since the sequential
fetches will not be used. If the delay dlot isin the next fetch bundle, there will be a1 cycle bubble.

Figure 2.4 Timing of 32-bit Mode Branch Taken Path

branch | 1F | 1s | i1 | Predicted taken
delayslot | |F | IS | IT
PC+8 k IF
killed
IF
PC+8 IF]
killed
IF
(> IF|I1s|IT
target
IF [1S | IT

For conditional branches, the control transfer is most likely speculative, based upon the branch history table. Theres-
olution of this branch by the ALU will be calculated in the EX stage and will be used by the IFU in the M S stage,
resulting in a several-cycle fetch bubble. The following figure illustrates one possibility assuming the instruction
buffer is empty and the delay slot isin the same fetch bundle.

36 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.2 Instruction Fetch

Figure 2.5 Fetch Timing of 32-bit Mode Branch Mispredict

branch IF | 1S | RF| AG| EX| MS|. predicted taken (wrong)

delayslot | |r | 1s | IT | RF| AG
PC+8 IF(IS | IT | RF

killed
IF) IS | IT | IT

target<’ IF | IS | IT)

killed

IF | IS |IT
redirect IF 1S RF AG

Thedelay slot and the I T stage bypass |essens the impact of a mispredict on the execution pipeline, though. Assuming
no stalls, the ALU sees afour-cycle bubble:

Figure 2.6 Execution Timing of 32-bit Mode Branch Mispredict

*** | RF| AG| EX|MS [ER |WB branch (mispredicted)
v | RF| AG]EX MS | ER |wB | delay slot
/ (bubble)
/ (bubble)
(bubble)
(bubble)
el s | RFI ... IT Bypassed
redirect
IF (1S | IT

2.2.1 Branch History Table

A branch history table (BHT) will be accessed in parallel with the cache in the IF stage. Thistableis a512-entry
bimodal predictor. The table isindexed with bits 11:3 of the VA and each entry contains a two bit saturating counter
that indicates whether a branch is taken or not. The indexing is down to bit 3 because in 32b code there can only be
one branch every 64b because of the branch delay slot. In MIPS16e code, the smaller instructions and lack of delay
dlots means that up to 4 branches can exist within a 64b fetch bundle and will share the same BHT entry. However, in
typical code, the branch density is lower than in 32b code and keeping the same 64b indexing maintains reasonable
prediction accuracy.

Unlike some previous MIPS processors, the 24K core usesthe BHT to predict branch likely instructions. Architectur-
ally, these are specified to only be used when a branch is taken > 95% of the time. However, the default settings of

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 37

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

38

many compilers use these even when that is not the case. The delay slot characteristics (the delay slot isonly executed
if the branch is taken) allow a useful instruction to be placed in the delay slot instead of a NOP. When used in this
fashion, dynamic prediction is much more accurate than statically predicting a branch likely as taken.

Unconditional branches (BEQ r0, rO and BGEZAL r0) are detected by the precode logic and will be statically pre-
dicted taken, bypassing the BHT.

The ALU verifies the correctness of the prediction when the branch reaches the EX stage. In the case of a mispredict,
the instructions on the mispredicted path will be killed and the fetch will be redirected to the correct instruction. This
will cause a4 cycle bubble in the pipeline.

2.2.1.1 Branch Target Calculation

Branch target calculationisdoneinthe I T stage. Thisalleviatesacritical timing path in the IFU and removes the need
for replicating the branch target logic on all 4 ways of the cache. In the case of ajump or a branch that is predicted
taken, subsequent fetcheswill be killed (after the fetch of the delay slot). This added cycleisgeneraly covered by the
instruction buffer. A string of taken branches will slowly drain the instruction buffer as only two instructions are
fetched every three cycles.

2.2.2 Return Prediction Stack

Thereturn prediction stack (RPS) isasimple stack to hold return addresses. Every timea JAL, JALR ra, or BGEZAL
is seen, the link address is pushed onto the stack. When a JR rais executed, alink address is popped off of the stack.
If calling convention is maintained and the stack doesn’t overflow, thiswill have very high prediction accuracy. The
RPS contains 4 entries.

The ALU will verify the correctness of the prediction in the EX stage. If the prediction was wrong, the fetch will be
redirected in the M S stage and there will be a4 cycle bubble from the misprediction.

JR that don’t use ra are not predicted. The IFU will stall until the ALU reads the register file. The timing on this will
be the same as for a return mispredict.

2.2.3 ITLB

TheIFU relieson asmall subset of TLB entries stored locally in afour-entry ITLB to trand ate the PC into a physical
address for tag comparison. The ITLB stores mappings for 4KB or IMB pages or sub-pages (i.e. if the JTLB pageis
64K B, only the 4K B sub-page containing the desired virtual address will be mapped into the ITLB). The I TLB access
occursin parallel with the primary cache lookup. If thereisamissin the ITLB, the BIU must look up the entry in the
main JTLB.

A missinthe ITLB will be detected in the IF stage, and the IFU will kill that fetch. The virtual address and the miss
indication will be sent to the BIU during IF, allowing the JTLB to start alookup in the next cycle. The latency of the
JTLB lookup can be impacted by several factors. The JTLB can be busy processing aDTLB missor aTLB operation,
delaying the start of the JTLB lookup. Also, the JTLB access time depends on how it isimplemented. An
SRAM-based PFN array will take an extracycle over aflop-based version, yielding a 3 cycle latency instead of 2. The
fetch will be restarted when the JTLB indicates that datais going to be returned.

The cache coherence attributes can be reduced to one bit (uncached/cached) for the instruction cache. An ITLB entry
will also record the associated JTLB entry, so that for aJTLB write, the ITLB can invalidate its copy if present. The
ITLB usesatrue LRU replacement algorithm.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.2 Instruction Fetch

Figure 2.7 Timing of an ITLB Miss

ITLB Miss Handling

2-3 cycle stall.

IF | IS* | IF | IF* | IS |
I I I I I
ITLB lookup - | Fetch killed | PTE read - 1 or 2 cycles | Fetch |
miss detected ' JTLB lookup depending on JTLB completes with
| begins | implemgntation | translated |

address
I I I
I I I
I I I

I

I

|
2.2.4 Cache Miss Timing

A missin theinstruction cache will be detected in the IS stage. The IFU will alocate one of the entriesin thefill
buffer and send the translated physical address and the missindication to the BIU during the next cycle. The IFU will
then enter an idle state and, assuming no redirect event, will replay the IF stage once the data returns from the BIU.
Prior to writing into the cache, the IFU precodes the instructions with some additional information about
branches/jumps that help speed up fetch unit processing of those instructions. Precoding the instructions and the write
into thefill buffer will happen in the cycle the BIU returns the data, and in the following | F stage the data can be
bypassed from thefill buffer. Thus, the IFU portion of the cache miss penalty is normally 4 cycles. The total miss
penalty could range from a minimum of 10-12 cyclesfor an L2 hit to 50 or more for an access to main memory.

Figure 2.8 Timing of a Cache Miss

N-cycle wait
|F IS PR pre IF 1S
IF | IS code| IF | IS
A Ca.;he fill data
miss (critical portion)
signalled
to BIU from BIU

2.2.5 MIPS16e™

The IFU isresponsible for recoding MIPS16e instructions. Before the MIPS16e instruction is sent to the ALU, it is
recoded into a 32b instruction. Some additional stateis used for the MIPS16e instructions that does not have a direct
counterpart in the MIPS32 instruction set (such as PC-relative loads and adds). This recoding step is handled in an
additional pipeline stage that is only active when executing MIPS16e code.

In each cycle, the recode logic processes 32b of the instruction stream and puts 1-2 instructions in the fetch buffer.
Many instructions can be generated two at atime, but there are two exceptions: JAL (X) and EXTENDED instruc-
tions are 32b. When the JAL (X) isin the 32b fetch window, it will be recoded in one cycle. If the JAL (X) startsin the
middle of afetch window, the first instruction will be recoded in the first cycle, and the fetch window will be shifted
so the JAL (X) can be recoded in the second cycle. EXTENDs are handled the same way—the EXTEND and the

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 39

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

instruction it is extending are only recoded when they are in the fetch window together. Since a single fetch of 64bits
can result in up to 4 MIPS16e instructions, in M1PS16e mode, the processor fetches every other cycle.

Table 2.1 Recode bandwidth

First 16b Second 16b 32b Instns generated
16b instruction 16b instruction 2
Extend 16 instruction 1
16b instruction Extend/JAL(X) 1
JAL(X) 1

2.3 Load Store Unit

The Load Store Unit (LSU) is responsible for loads and stores. This primarily includes the data cache control logic.

40 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.3 Load Store Unit

Figure 2.9 LSU Pipeline

AG EX MS
Isu_utb
()pA_» (] (! (!
DTLB
5y FAC | Tagie)— [[
opB—» |] - bypassy |
DTLB exception A
Data pa—e—> | Ij [:
) I I
. 1 |
index — D-cache | — I I
Tag — m | | Isu_cct
_>
f—3 5,” - '
[| indext>"D-cache
e | | * WS
index -cache |1~
| paa —| B N
— | [|
e fu_tda |
| »Vva | llsu_evc EIQII [
|
I : | Eviction Control | : :
T T
[| store [| [|
i datal | | | | lsu_fsb
Pl MERE Pa—» FsB
v
LF/SBE%_, = IZD 1
|‘- L
‘II'_agJ | F/SB_I | D-cache
I Data I Data
| | — | |
! | = |
[| [| — [llsu_ldg
X e -
N ILDQ ._D— LDQ
[=~ I
[from pa—» miss |p 10
|| I—BI—UJ WT/UNC BIU
| | write to
| | I Isu_dbg data BIU
I I J
[I | EJTAG/Watch [| [|
|| [[}
2.3.1 DTLB

The data cache access begins in the AG stage. The ALU generates the virtual addressin this stage. In paralel, the
source operands are passed to the LSU and the 8-entry DTLB is accessed. If thereisamissinthe DTLB, the LSU
will stall and give the addressto the BIU to lookup in the JTLB. If thereisahit in the JTLB, the page information will
be returned to the LSU and the access will continue. Sinceit is only the LSU pipe that stallson aDTLB miss, itis
possible for other non load-store instructions to keep progressing down the ALU pipe.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 41

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

42

Figure 2.10 DTLB Miss Timing

DTLB Miss Handling
2-3 cycle Isu pipe stall.

AG | EX* | EX* | EX* | EX |

I I I I I

DTLB lookup | Pipe Stalls | PTE read - { or 2 cycles | LSU p ipe |
miss detected ‘Address sentto depending on JTLB restarts with

| JTLBfor | implemgntation | translated |

lookup | | address |

I I I

I I I

The DTLB will only store mappings either for 4K or 1M pages or subpages of alarger JTLB entry. A DTLB entry
will also record the associated JTLB entry, so that for aJTLB write, the DTLB can invalidate its copy if present. The
DTLB uses a pseudo-L RU replacement algorithm. If the Fixed Mapping MMU is used instead of a TLB, the address
trandation will be done in the EX stage, and there will never be aDTLB miss.

2.3.2 Data Cache Access

The data cache access is done during the EX stage. The tag and data arrays are accessed and the values are saved in
flopsfor usein the MS stage. In parallel with the array lookup (in EX), the physical addressis used to do an early tag
compare on entriesin the Fill Store Buffer (FSB) and Store Buffer (SB).

The SB isasingle entry buffer that is used to stage store datainto the other structures. It isfully bypass-able, allowing
aload immediately after a store to the same address to execute without stalls. From the SB, the store data will move
into the FSB if the store hitsin the cache or it is an alocating miss. The store datais then written into the cache oppor-
tunistically.

During the M S stage, the data cache tags are compared to the physical address to determine whether areference hit in
the cache or not. If there is a hit, the way select (WS) array will be written to mark the most recently used way, and
load data will be bypassed back to the ALU. On a cache miss, an FSB entry is allocated to hold thefill data as it
returns from the BIU. The WS array is read and the replacement way is determined. If the line selected for replace-
ment is dirty, an eviction will begin and the dirty datawill be written back to memory. A load misswill also alocate
an entry in the Load Queue (LDQ). This buffer is used to hold the aligned load data while it is being staged back into
the ALU.

The core portion of aload mississhown in Figure 2.11. It takes one cycle to get from the LSU through the BIU and
out onto the OCP bus. It takes at least 1 cycle for the data to be returned. Then 2 more cycles are required to get the
data back to the ALU.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.4 MDU Pipeline

Figure 2.11 Cache Miss Timing

1
MS P P e
[[7 [
load [| [] [| [|
mSS| [l ocp [[]
&/;l | >0 |
| Request > ——p LD
toBIU | :_’ Queue Bl’IU | Q
[] (] [

2.3.3 Outstanding misses

The 24K core features non-blocking D-cache misses. In the cases where the following instructions are not dependent
on the load data, the core can continue executing instructions while the missis being processed. The core can handle
multiple outstanding misses.

» Upto 8independent cache lines - this includes cache refills requested for loads, stores, and prefetches aswell as
single uncached load requests. Multiple cacheable requests to the same line can be merged. This limit is depen-
dent on the number of Fill-Store Buffer (FSB) entries the core is configured with.

» Upto9load misses- Up to 9 separate |oads can be outstanding. The loads can be to different cache lines or mul-
tiple loads can be to the same cache line. Thislimit is dependent on the number of Load Data Queue (LDQ)
entries the core was built with.

2.3.4 Uncached Accesses

Uncached accesses are handled similarly to cached accesses. The cachesbility of the reference is not known until the
address trandlation has completed in the EX stage, so the cache access is performed anyway. On an uncached refer-
ence, amisswill be forced. Uncached loads will request the exact amount of data required and allocate an FSB and
LDQ entry. Uncached loads are non-blocking just like cached misses. Uncached stores will be sent to the BIU.

To the LSU, uncached accelerated stores look the same as uncached stores. In the BIU, however, they are handled
differently—the BIU will attempt to gather uncached accelerated stores and do a bursted write to improve bus effi-
ciency.

2.4 MDU Pipeline

The autonomous multiply/divide unit (MDU) has a separate pipeline for multiply and divide operations. This pipeline
operates in parallel with the integer unit (ALU) pipeline and does not stall when the ALU pipeline stalls. This allows
multi-cycle MDU operations, such as adivide, to be partially masked by system stalls and/or other integer unit
instructions.

The MDU consists of a 32x32 booth recoded multiplier array, separate carry-lookahead adders for multiply and
divide, result/accumulation registers (HI and LO), multiply and divide state machines, and all necessary multiplexers
and control logic.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 43

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

The MDU supports execution of a multiply operation every clock cycle. Divide operations are implemented with a
simple 1 bit per clock iterative algorithm with an early in detection of sign extension on the dividend (rs). An attempt
to issue a subsequent M DU instruction which would accessthe HI or LO register before the divide completes causes a
delay in starting the subsequent MDU instruction. Some concurrency is enabled by the separate adders for the multi-
ply and divide data paths. The MDU instruction may start executing once the divide is ensured of writing to the HI
and LO registers before the MDU instruction will access them. A MUL instruction, which does not access the HI or
LO register, may start executing anytime relative to a previous divide instruction.

Table 2.2 lists the delays (number of cycles until aresult isavailable) for multiply and divide instructions. The delays
arelisted in terms of pipeline clocks. In thistable ‘delay’ refersto the number of cycles the pipeline must stall the sec-
ond instruction to wait for the result of the first instruction.

Table 2.2 MDU Instruction Delays

Size of Operand Instruction Sequence Delay
1st Instruction!!] 1st Instruction 2nd Instruction Clocks
32 bit MULT/MULTU, MADD/MADDU, 0
MADD/MADDU, or MSUB/MSUBU, or MFHI/MFLO
MSUB/MSUBU
32 bit MUL Integer operation'! 4
8 it DIVU MFHI/MFLO 7
16 bit DIVU MFHI/MFLO 15
24 bit DIVU MFHI/MFLO 23
32 bit DIVU MFHI/MFLO 31
8 bit DIV MFHI/MFLO ol2
16 bit DIV MFHI/MFLO 172]
24 bit DIV MFHI/MFLO 25l2]
32 bit DIV MFHI/MFLO 334
any MFHI/MFLO Integer operation!™! 4
any MTHI/MTLO MADD/MADDU, 1
MSUB/MSUBU
any MTHI/MTLO MFHI/MFLO 0
[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[2] If both operands are positive, then the two Sign Adjust stages are bypassed. Delay is then the same as
for DIVU.

In Table 2.2 adelay of zero meansthat the first and second instructions can be issued back to back in the code without
the MDU causing any stallsinthe ALU pipeline. A delay of one means that if issued back to back, the ALU pipeline
will be stalled for one cycle.

Table 2.3 Multiply Instruction (updating HI/LO) Repeat Rates

Instruction Sequence
Repeat
1st Instruction 2nd Instruction Rate
MULT/MULTU, MADD/MADDU, 1
MADD/MADDU, MSUB/MSUBU
MSUB/MSUBU

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.4 MDU Pipeline

The repest rate of 1 for MULT/MULTU/MADD/MADDU/MSUB/MSUBU to MADD/MADDU/MSUB/MSUBU
are achieved by feeding the result of the M3, stage for the first instruction back into the M3,,p stage for the sec-

ond instruction.

Table 2.4 MUL Repeat Rates

Instruction Sequence

Repeat
1st Instruction 2nd Instruction Rate
MUL MUL (no data dependency) 1-3(12

repest rate is the same as for MUL to integer operationsin Figure 2.2

issued back to back, but afourth one would stall.

[1] Thereis no data dependency between first and second MUL. Otherwise, the

[2] MULSs can beissued at the maximum rate of 3 every 5 cycles. Three can be

2.4.1 Multiply Pipeline Stages

The multiply operation beginsin By,py stage, which would be the EX stage in the integer pipeline. The booth recod-
ing function occurs at this time. The multiply calculation requires three clocks and occursin the M1y py, M2ypu.
and M3,py stages. The carry-lookahead-add (CLA) function occurs at the end of the M3y,p stage. Inthe Ay py

stage, the result is selected from the multiply data path, HI register, and LO register to be returned to the ALU for the
MFHI, MFLO, and MUL instructions. If the MDU instruction is not one of these, the result is selected to be written
into the HI/LO registersinstead. The result is ready to be read from the HI/LO registersin the Wy, p Stage.

The following figuresillustrate a multiply (accumulate) instruction and the interaction with the main integer pipeline.
These figures are applicable to MUL, MULT, MULTU, MADD, MADDU, MSUB, and MSUBU instructions

Figure 2.12 Multiply Pipeline

RF AG BMDU M1MDU M2MDU M3MDU AMDU WMDU

(EX)

Figure 2.13 Multiply With Dependency From ALU

RF AG EX Result bypass

RF AG BMDU M1MDU MZMDU MBMDU AMDU WMDU

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

45

Pipeline of the 24K® Core

Figure 2.14 Multiply With Dependency From Load Hit

RF AG EX MS

Result bypass

RF | AG | EX

BMDU

M1MDU

M2MDU

MSMDU

AMDU

WMDU

Figure 2.15 Multiply With Dependency From Load Miss

* - MUL enters EX stage but stalls because data is not ready

The following figure shows the results of the GPR targeted MUL instruction being bypassed to alater instruction.
Independent instructions can execute while the multiply is happening. If a dependent instruction isfound, it will stall
until the result is available. When the MUL completes, it will arbitrate for access to the write port of the register file.
If the integer pipeis busy with other instructions, the MDU pipeline will stall until the result can be written.

If the MUL target is being used as the base address for aload or store instruction, it needs to be bypassed by the AG

stage, so one extra cycle will be required.

RF | ac | Ex | ms | ER | .. |.ER
4“'
RF AG EX EX L. BMDU M1MDU MZMDU MSMDU AMDU WMDU
/
/
Result bypass

Figure 2.16 MUL Bypassing Result to Integer Instructions

MUL 1 R | AG Bwou |[Mtwou [M2upu | M3ypy | Awou Result bypass
RF | AG | EX | MS | ER wB
RF | AG | Ex | MS" | ER WB
RF AG EX MS ER WB
RF AG EX MS ER WB
Earliest dependent ALU instn RF AG EX MS ER WB
Earliest dependent load/store base address RF AG EX MS ER WB

46

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.4 MDU Pipeline

2.4.2 Divide Operations

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence thefirst cycle of the My, Stageis used to negate the rs operand (RS Adjust) if needed. Note
that this cycleis spent even if the adjustment is not necessary. In cycle 2, the first add/subtract iteration is executed. In
cycle 3 an early-in detection is performed. The adjusted rs operand is detected to be zero extended on the upper most
8, 16 or 24 bits. If thisis the case the following 7, 15 or 23 cycles of the add/subtract iterations are skipped. During
the next maximum 31 cycles (4-34), the remaining iterative add/subtract loop is executed.

The remainder adjust (Rem Adjust) cycleisrequired if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
adjust stages are skipped if both operands are positive.

Figure 2.17, Figure 2.18, Figure 2.19 and Figure 2.20 show the worst case latencies for 8, 16, 24 and 32 bit divide
operations, respectively. The worst case repeat rate is either 14, 22, 30 or 38 cycles (two lessif the sign adjust stageis
skipped).

Figure 2.17 MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Clock 1 2 3 410 11 12 13 14

<« SGN2 Stage |

Sign Adjust 2 |

<« IDLE Stage —>|

Result Ready |

<4 RMD Stage |4~ SGN Stage P
| |

Rem. Adjust | Sign Adjust 1 |

<« ERLY Stage P

Early In

<« DIV Stages P
|

| Add/Subtrace |

<« DIV1Stage P

| Add/Subtract |

|4— IDLE Stage >

| RS Adjust

Figure 2.18 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Clock 1

|<— IDLE Stage >

2

< DIV1Stage P

3

< ERLY Stage -p|

4-18

<4 DIV Stages P|

19

<4 RMD Stage |

20

<4 SCN Stage P

21

<« SGN2 Stage P

22

<« IDLE Stage —>|

| RS Adjust

| Add/Subtract |

Early In

Add/Subtrace |

Rem. Adjust | Sign Adjust 1 |

Sign Adjust 2 |

Result Ready |

Figure 2.19 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Clock 1

|4— IDLE Stage

2

<« DIV1Stage P

3

<« ERLY Stage P

4-26

<« DIV Stages P

27

<4 RMD Stage P

28

<4 SCN Stage P

29

<4 SGN2 Stage P

30

<« IDLE Stage —>|

| RS Adjust

| Add/Subtract |

Early In

| Add/Subtrace |

Rem. Adjust | Sign Adjust 1 |

Sign Adjust 2 |

Result Ready |

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

Figure 2.20 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

Clock

1 2 3 434 35 36 37 38
|4— IDLE Stage | DIV1Stage | €- ERLY Stage |- DIV Stages |- RMD Stage |4~ SGN Stage | € SGN2 Stage | €= IDLE Stage ->|
Early In Result Ready |

| RSAdjust

| Add/Subtract |

| Add/Subtrace |

Rem. Adjust | Sign Adjust 1 |

Sign Adjust 2 |

2.5 Skewed ALU

The 24K core has a skewed ALU. Thisisreferring to the fact that the ALU islocated in the EX stage instead of the
AG stage. Thisallowsthe load to use delay to be two cycles, the same asit was in the shorter 4KE pipeline. Software
optimized for that pipeline can run without incurring additional stalls. Of course, this does not come for free - an
ALU instruction generating the base address for aload or store will have an additional cycle stall. Independent of the
ALU location, pointer chasing loads (loads generating the base address for following loads) will see the full 3 cycles
of cache accesstime.

Thisisshown in Figure 2.21. The earliest an ALU consumer of |oad data can issue istwo cycles after the load. The
earliest aload/store consumer can issue is three cycles after the load.

The bypass of datafrom the ALU is shown in Figure 2.22. For back to back ALU instructions, the result is bypassed
from the EX stageto the AG stage. For an ALU bypassing to the base address register of aload or store, the bypass-
ing isfrom the EX stage to the RF stage and the load cannot issue until two cycles after the ALU instruction. Note
that the data register for a store is not used in the AG stage and a dependency there will look like the ALU to ALU
bypass.

Figure 2.21 Load Data Bypass

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
Load Instruction —» RF AG EX MS ER
\ Data bypass from MS to AG/RF
- RF AG / EX MS ER

lks

ALU Consumer of Load Data Instruction . > RF \ AG EX MS

S,
Load/Store Consumer of Load Data Instruction > RF AG EX

48 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

ALU Instruction

ALU Consumer of ALU Data

Figure 2.22 ALU Data Bypass

2.6 Interlock Handling

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
—> RF AG EX MS ER
k Data bypass from EX to AG/RF
- RF AG ‘ EX MS ER
- RF AG EX MS

Load/Store Consumer of ALU Data

2.6 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referred to as interlocks. At each cycle, interlock conditions

are checked for all active instructions.

Table 2.5 lists the types of pipeline interlocks for the 24K processor core.

Table 2.5 Pipeline Interlocks

Interlock Type Sources Slip Stage

GPR dependency - |oad/store address Dest. register for any instruction in previ- AG

ouscycle
Dest. register for loadMFCx/MDU instns
in previous 2 cycles
MDU busy Previous MDU operation not completed AG
GPR dependency Dest. register for loadsyMFCx/MDU instns EX
in previous cycle
LDQ full Load in pipe while Load Queue isfull

Blocking load bubble

Blocking load immediately following
another blocking load

SYNC, I-Cache

Previous I-Cache not completed

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

49

Pipeline of the 24K® Core

Table 2.5 Pipeline Interlocks (Continued)

Interlock Type Sources Slip Stage
Destination GPR dependency Outstanding GPR write to same register MS
WBB full Store/CACHE instn in pipe while Write-
back Buffer isfull
SPRAM busy SPRAM load/store in pipe while SPRAM
is busy
FSB flush SYNC/CACHE/load/store instn requires
Fill Store Buffer to be flushed
DTLB miss L oad/Store address missin microTLB
CACHE CACHE instn needs to re-access data cache
L2 CACHE Previous L2 CACHE not completed
Blocking load miss Load misses with non-blocking loads dis- ER
abled

2.7 Instruction Interlocks

Most instructions can be issued at arate of one per clock cycle. In order to adhere to the sequential programming
model, the issue of an instruction must sometimes be delayed. Thisto ensure that the result of a prior instruction is
available. Table 2.6 details the instruction interactions that prevent an instruction from advancing in the processor

pipeline.
Table 2.6 Instruction Interlocks
Instruction Interlocks
Issue Delay (in
First Instruction Second Instruction Clock Cycles) Slip Stage
LB/LBU/LH/LHU/LL/LW/L | ALU Consumer of load data 1 EX stage
WLALWR L oad/Store consumer for base 2 AG stage
address register
MFCO ALU consumer of destination 2 EX stage
register
L oad/store consumer for base 3 AG stage
address
MULTx/MADDx/MSUBXx MFLO/MFHI
MUL/MFHI/MFLO ALU Consumer of target data EX stage
L oad/Store consumer of target AG stage
data for base address
MULTx/MADDx/MSUBXx MULT/MUL/MADD/MSUB 0 EX stage
MTHI/MTLO/DIV
DIV MUL/MULTx/MADDx/ See Figure 2.2 EX stage
MSUBX/MTHI/MTLO/
MFHI/MFLQO/DIV
TLBWR/TLBWI L oad/Store/PREF/CACHE/ 2 EX stage
TLBR COPOop 1 EX stage

50

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.8 Hazards

2.8 Hazards

In general, the 24K core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previousinstruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS32® Architecture, hazards (primarily CPO hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such away that they are back-
ward-compatible with existing MIPS processors.

2.8.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

2.8.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. These hazards should be resolved by executing an EHB instruction or an instruction hazard barrier (JR.HB,

JALR.HB, or ERET) between the two instructions. Table 2.7 lists execution hazards.

Table 2.7 Execution Hazards

Spacing
Producer - Consumer Hazard On (Instructions)
TLBWR, TLBWI — TLBRTLBR TLB entry 2
Load/store using new TLB entry TLB entry 3
MTCO - Load/store affected by new state WatchHi 2
WatchLo
MTCO - MFCO any cpO register 2
MTCO — EI/DI Status 2
MTCO — RDHWR$3 Count 2
MTCO — ERET EPC 2
DEPC
ErrorEPC
MTCO — ERET Status 2
El, DI — Interrupted instruction Status;g 2
MTCO - Interrupted instruction Status 2
MTCO - User-defined instruction (only for Pro core) StatusERL StatusEXL 4
MTCO — Interrupted Instruction Causep 2

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

51

Pipeline of the 24K® Core

Table 2.7 Execution Hazards

Spacing
Producer - Consumer Hazard On (Instructions)
TLBR — MFCO EntryHi, 2
EntryL o0,
EntryLol, Page-
Mask
TLBP — MFCO Index 2
MTCO — TLBR EntryHi 2
TLBWI
TLBWR
MTCO — TLBP EntryHiagp 2
Load/store affected by new state
MTCO - TLBWI EntryLoO 2
TLBWR EntryLol
MTCO — TLBWI Index 2
TLBWR
MTCO — RDPGPR SRSCtlpsg 1
WRPGPR
MTCO - Instruction not seeing a Timer Interrupt Compare update 4t
that clears Timer
Interrupt
MTCO — Load/Store affected by new state EntryHiagp 3
MTCO — Load/Store affected by new state Statusggr 3
MTCO - L oad/Store affected by new state Debug; snm 3
MTCO — Coprocessor instruction affected by new state Statuscy 4
MTCO — Coprocessor instruction affected by new state Statuser 4
MTCO — CorExtend instruction affected by new state Statuscge 3
MTCO - MFTR/MTTR VpeControltagrc 4
MTCO - Instruction affected by change Any other CPO 2
register

1. Thisisthe minimum value. Actual value is system-dependent since it is a function of the sequential logic between the
SI_TimerInt output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or afunction of the
method for handling SI_TimerInt in an external interrupt controller.

2.8.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.8 lists instruction hazards. Because the fetch unit is decoupled from the execution unit, these haz-
ardsarerather large. The use of ahazard barrier instruction is highly recommended for reliable clearing of instruction

hazards.
Table 2.8 Instruction Hazards
Spacing
Producer - Consumer Hazard On (Instructions)
TLBWR, TLBWI - Instruction fetch using new TLB entry TLB entry 10
52 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

2.8 Hazards

Table 2.8 Instruction Hazards

Spacing
Producer - Consumer Hazard On (Instructions)
MTCO - Instruction fetch seeing the new value including: Status 10
1 changeto ERL followed by an instruction fetch from
the useg segment and
2 changeto ERL or EXL followed by a Watch excep-
tion
MTCO — Instruction fetch seeing the new value EntryHiagp 10
MTCO - Instruction fetch seeing the new value WatchHi 10
WatchLo
Instruction stream - Instruction fetch seeing the new instruction stream Cache entries 10
write viaCACHE
Instruction stream - Instruction fetch seeing the new instruction stream Cache entries System-depen-
write via store dent!

1. This value depends on how long it takes for the store value to propagate through the system.

2.8.2 Instruction Listing

Table 2.9 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for Pro-
grammers Volume I1: The MIPS32 Instruction Set (MD00084) for amore detailed description of these instructions.

Table 2.9 Hazard Instruction Listing

Mnemonic Function
EHB Clear execution hazard
ERET Clears both execution and instruction hazards

JALR.HB | Clears both execution and instruction hazards

JR.HB Clears both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

2.8.2.1 Instruction Encoding

The EHB instruction is encoded using avariant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing M1PS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction. SYNCI
must be used in conjunction with an instruction hazard barrier to ensure that the updated value is seen.

SYNCI offset (base)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 53

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the 24K® Core

54

SYNC
JR.HB
NOP

2.8.3 Eliminating Hazards

The Spacing column shown in Table 2.7 and Table 2.8 indicates the number of unrelated instructions (such as NOPs
or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer
of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entriesin the
table that are listed as O are traditional M1PS hazards which are not hazards on the 24K core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazardsis to place
one of theinstructionslisted in Table 2.9 between the producer and consumer of the hazard. Execution hazards can be
removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 3

Floating-Point Unit of the 24Kf™ Core

This chapter describes the MIPS64® F oating-Point Unit (FPU) included in the 24Kf core. This chapter contains the
following sections:

Section 3.1 “Features Overview”

Section 3.2 “Enabling the Floating-Point Coprocessor”
Section 3.3 “Data Formats”

Section 3.4 “Floating-Point General Registers’
Section 3.5 “Floating-Point Control Registers”
Section 3.6 “Instruction Overview”

Section 3.7 “Exceptions’

Section 3.8 “Pipeline and Performance”

3.1 Features Overview

The FPU isprovided via Coprocessor 1. Together with its dedicated system software, the FPU fully complieswith the
ANSI/IEEE Standard 754-1985, |EEE Sandard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of |EEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below:

Full 64-bit operation isimplemented in both the register file and functional units.

A 32-hit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

Like the main processor core, Coprocessor 1 is programmed and operated using a L oad/Store instruction set. The
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer
does not have to worry about inserting delay dlots after |oads and between dependent instructions.

Additional arithmetic operations not specified by |EEE Standard 754 (for example, reciprocal and reciprocal
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE
accuracy specification where the result is numerically identical to an equivalent computation using multiply, add,
subtract, or negate instructions.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 55

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

Figure 3.1 depicts a block diagram of the FPU.

Figure 3.1 FPU Block Diagram

Register File

Bypass 7 Control <+>:

I

RN '

I

| Div/Sqrt Mul ;‘t’gfe/ . | Processor
: | | Core

I 1 Coprocessor |

I l—%# | Interface |

I I

: | |

| I I

| I I

The MIPS architecture is designed such that a combination of hardware and software can be used to implement the
architecture. The 24K core FPU can operate on numbers within a specific range (in general, the IEEE normalized
numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in general, the
| EEE denormalized numbers). Supported number ranges for different instructions are described later in this chapter.
A fast Flush To Zero mode is provided to optimize performance for cases where |EEE denormalized operands and
results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR register; use of
this mode is recommended for best performance.

3.1.1 IEEE Standard 754

The |EEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, isreferred to in this chapter as
“|EEE Standard 754" . |EEE Standard 754 defines the following:

* Floating-point data types

» Thebasic arithmetic, comparison, and conversion operations

* A computational model

|EEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, seethe IEEE web pageat http: //stdsbbs.ieee.org/.
3.2 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled through the CU1 bit in the CPO Status register. When Coprocessor 1 is not enabled, any
attempt to execute a floating-point instruction causes a Coprocessor Unusable exception.

56 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.3 Data Formats

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

* Thesingle- and double-precision floating-point data types are those specified by |EEE Standard 754.
* Thefixed-point types are signed integers provided by the MIPS architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:
* a32-bit single-precision floating point (type S, shown in Figure 3.2)

* a64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

* Twoinfinities, +e and -

e Signaling non-numbers (SNaNs)
e Quiet non-numbers (QNaNs)

« Numbers of the form: (-1)° 25 by.b; by..by, 1, where:

e s=0orl

e E=any integer between E_min and E_max, inclusive

» pisthe signed-magnitude precision

by = 0 or 1 (the high bit, by, isto the left of the binary point)

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes

arelisted in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double
Bits of mantissa precision, p 24 53
Maximum exponent, E_max +127 +1023
Minimum exponent, E_min -126 -1022
Exponent bias +127 +1023
Bitsin exponent field, e 8 11
Representation of by integer bit hidden hidden
Bitsin fraction field, f 23 52
Total format width in bits 32 64

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

57

Floating-Point Unit of the 24Kf™ Core

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single Double
Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308
Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

Layouts of these three fields are shown in Figure 3.2 and Figure 3.3 below. The fields are:
e 1l-bitsign,s

» Biased exponent, e = E + bias

* Binary fraction, f=.0y by..05.1 (the bo bit is hidden; it i not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

31 30 23 22 0
S| Exponent Fraction
1 8 23

Figure 3.3 Double-Precision Floating-Point Format (D)

63 62 52 51 0
S Exponent Fraction
1 11 52

Values are encoded in the specified format using the unbiased exponent, fraction, and sign valueslisted in Table 3.2.

The high-order bit of the Fraction field, identified as by, is also important for NaNs.

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased Typical Single Typical Double
E f |s|b1]| Vvaluev Type of Value Bit Pattern? Bit Pattern?
E max+1 | #0 1 SNaN Signaling NaN Ox7TEEEEEEE Ox7TfEfffff fEEfEFEE
0 QNaN Quiet NaN 0x7EbfEfEE Ox7E£E7£fff fEEEFEFE
E_max +1 0 - oo Minusinfinity 0x££800000 0x£££00000 00000000
0 + oo Plus infinity 0x7£800000 0x7££00000 00000000
E_max 1 - (25(1f) |Negativenormalized num- | 0x80800000 0x80100000 00000000
to ber through through
E min OxfE7EEEEE Oxffefffff fEEFffff
0 + (25)(1f) | Positive normalized number | 000800000 0x00100000 00000000
through through
O0x7E7EEEEE Ox7fefffff fEffffff
E mn-1 | #0 | 1 - (2B-Mm.f) | Negative denormalized 0x807fffff 0x800fffff fEFfffff
number
0 + (25-MmQ.f) | Positive denormalized num- | 0x007£££££ 0x000fffff FEEFFELF
ber
E min-1 0 -0 Negative zero 0x80000000 0x80000000 00000000
0 +0 positive zero 0x00000000 0x00000000 00000000

58

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.3 Data Formats

1. The“Typica” nature of the bit patterns for the NaN and denormalized val ues reflects the fact that the sign might have either
value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one valuein
aclass of potential values that represent these special values.

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which liesto the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent isin the range E_min to E_max, inclusive, the number
isnormalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min — 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal | EEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap |EEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+eo), minus infinity (-e), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents anumber with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed « is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

Once created as a default result, - can become an operand in a subsequent operation. The infinities are interpreted
such that - < (every finite number) < +e. Arithmetic with « isthe limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on « isregarded as exact, and exception
conditions do not arise. The out-of-range indication represented by is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting casein real arithmetic for operands of «. These cases raise the
Invalid Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful valuesto put in
uninitialized variables. An SNaN is never produced as aresult value.

|EEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOV.fmt, MOV T.fmt, MOVFEfmt, MOVN.fmt, MOV Z.fmt) non-arithmetic; they do not signal |EEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 59

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

60

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result isto be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is
one! of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), anew QNaN valueis created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. Thevalues listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 754
when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture
that detects or makes use of these “integer QNaN” values.

Table 3.3 Value Supplied When a New Quiet NaN is Created

Format New QNaN value

Single floating point 0x7fbf ffff

Doublefloating point | 0x7££7 ffff ffff ffff

Word fixed point 0x7fff ffff

Longword fixed point | 0x7£ff ffff ffff ffff

3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

* a32-bit Word fixed point (type W), shown in Figure 3.4

* a64-bit Longword fixed point (typeL), shown in Figure 3.5

The fixed-point values are held in 2's complement format, which is used for signed integers in the CPU. Unsigned
fixed-point data types are not provided by the architecture; application software can synthesize computations for

unsigned integers from the existing instructions and data types.

Figure 3.4 Word Fixed-Point Format (W)
31 0

Integer
32

Figure 3.5 Longword Fixed-Point Format (L)
63 0

Integer
64

1. Incaseof oneor more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.4 Floating-Point General Registers

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRS). The FPU isa 64b
FPU, but a 32b register mode for backwards compatibility is aso supported. The FR bit in the CPO Status register
determines which mode is selected:

* Whenthe FR bitisal, the 64b register model is selected, which defines 32 64-hit registers with all formats sup-
ported in aregister.

* WhentheFR bitisa0, the 32b register model is selected, which defines 32 32-bit registers with D-format values
stored in even-odd pairs of registers; thus the register file can also be viewed as having 16 64-bit registers.

These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU oper-
and values.

3.4.1 FPRs and Formatted Operand Layout

Reg 0 Undefined/Unused Data Word

Reg 0 Data Doubleword/L ongword

FPU instructions that operate on formatted operand val ues specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and Sformats) use only half the space in an FPR.

Figure 3.6 and Figure 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR
63 32 31 0

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR
63 0

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in afloating-point operand register (FPR) has aformat, or type, and it can
be used only by instructions that operate on that format. The format of avalue is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is aways set when avalueis written to the register as follows:

* When adatatransfer instruction writes binary datainto an FPR (aload), the FPR receives abinary value that is
uninterpreted.

* A computational or FP register move instruction that produces aresult of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires avalue of for-
mat fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changesto a
value of format fmt. The binary contents cannot be reinterpreted in a different format.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 61

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs, the value in the register becomes unknown, and the result of theinstructionisalso
avauethat is unknown. Using an FPR containing an unknown val ue as a source operand produces aresult that has an

unknown value.

The format of the value in the FPR isunchanged when it isread by adatatransfer instruction (astore). A datatransfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the

encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

Figure 3.8 Effect of FPU Operations on the Format of Values Held in FPRs

Load Store

Value
uninterpreted
(binary
encoding)

Rslt unknown
Rsit A

Src B (interpret

Src A (interpret)

Src ARsltA
Store

Value in
Format
B

Value in
Format
A

Rslt unknown

Rslt unknown

SrcASrcB
Store

Load

A, B: Example formats

Load: Destination of LWC1, LDC1, or MTC1 instructions.

Store: Source operand of SWC1, SDC1, or MFC1 instructions.

Src fmt: Source operand of computational instruction expecting format “fmt.”
Rslt fmt: Result of computational instruction producing value of format “fmt.”

62 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.4 Floating-Point General Registers

3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

The datatransfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 3.9 and Figure 3.10,
respectively.

The store and move-from instructions operate in reverse, reading data from the location that the corresponding load
or move-to instruction had written.

Reg 0
Reg 1

Reg 0
Reg 1

Reg 0
Reg 1

Reg 0
Reg 1

Reg 0
Reg 1

Reg 0
Reg 1

Figure 3.9 FPU Word Load and Move-to Operations

FRBIT =1 FRBIT=0
63 0 63 0
Initial value 1 I Reg 0 Initial value 1 I
Initial value 2 I Reg 2 Initial value 2 I
l Lwcl £0, O(r0) / MTC1l £fO0,r0 1
63 0 63 0
Undefined/Unused | Data word (0) | Reg 0 Undefined/Unused | Data word (0) I
Initial value 2 I Reg 2 Initial value 2 I
Lwcl f1, 4(x0) / MTCl f1,r4 1
63 0 63 0
Undefined/Unused Data word (0) I Reg 0 Data word (4) | Data word (0) I
Undefined/Unused Data word (4) Reg 2 Initial value 2 I
Figure 3.10 FPU Doubleword Load and Move-to Operations
FRBIT =1 FRBIT=0
63 0 63 0
Initial value 1 Reg 0 Initial value 1
Initial value 2 Reg 2 Initial value 2
- ——
l LDC1 £0, 0(r0) l
63 0 63 0
Data doubleword (0) Reg 0 Data doubleword (0)
Initial value 2 Reg 2 Initial value 2
—— - —
l LDC1 f1, 8(r0)
63 0
Data doubleword (0)
(Illegal when FR BIT = 0)
Data doubleword (8)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

63

Floating-Point Unit of the 24Kf™ Core

3.5 Floating-Point Control Registers

64

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wide:
FIR, FCCR, FEXR, FENR, FCSR. Three of these registers, FCCR, FEXR, and FENR, select subsets of the float-
ing-point Control/Status register, the FCSR. These registers are also denoted Coprocessor 1 (CPL) control registers.

CP1 control registers are summarized in Table 3.4 and are described individually in the foll owing subsections of this

chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.4 Coprocessor 1 Register Summary

Register Number | Register Name Function
0 FIR Floating-Point Implementation register. Contains information that identifies the
FPU.
25 FCCR Floating-Point Condition Codes register.
26 FEXR Floating-Point Exceptions register.
28 FENR Floating-Point Enables register.
31 FCSR Floating-Point Control and Status register.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W All bitsin thisfield are readable and writable by software and potentially by hardware.

Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visible by

hardware reads.

If the reset state of thisfield is“Undefined,” either software or hardware must initialize the value before the

first read returns a predictable value. This definition should not be confused with the formal definition of

UNDEFINED behavior.

R Thisfield is either static or is updated only by hard- | A field to which the value written by softwareis

ware. ignored by hardware. Software may write any value

If the Reset State of thisfield iseither “0” or “Pre- | to thisfield without affecting hardware behavior.

set”, hardwareinitializes thisfield to zero or tothe | Software reads of this field return the last value

appropriate state, respectively, on powerup. updated by hardware.

If the Reset State of thisfield is“Undefined”, hard- | If the Reset State of thisfield is“Undefined,” soft-

ware updates thisfield only under those conditions | ware reads of thisfield result in an UNPREDICT-

specified in the description of the field. ABLE value except after a hardware update done
under the conditions specified in the description of
thefield.

0 Hardware does not update thisfield. Hardware can | The value software writes to this field must be zero.

assume a zero value. Software writes of non-zero valuesto thisfield might
result in UNDEFINED behavior of the hardware.
Software reads of thisfield return zero aslong as all
previous software writes are zero.
If the Reset State of thisfield is“Undefined,” soft-
ware must write this field with zero beforeit is guar-
anteed to read as zero.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the FIR; Table 3.6 describes the FIR bit fields.

Figure 3.11 FIR Format
31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FC|O|F64|L |W|3D|PS|D|S Processor|D Revision

Table 3.6 FIR Bit Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

FC 24 Indicates that full convert ranges are implemented: R 1
0: Full convert ranges not implemented

1: Full convert ranges implemented

Thisbit isalways 1 to indicate that full convert ranges are
implemented. This means that all numbers can be con-
verted to another type by the FPU (If FSbitin FCSR isnot
set Unimplemented Operation exception can still happen
on denormal operands though).

F64 22 Indicates that thisis a 64-bit FPU: R 1
0: Not a 64-bit FPU

1: A 64-bit FPU.

Thisbit isaways 1 to indicate that thisis a 64-bit FPU.

L 21 Indicates that the long fixed point (L) data type and R 1
instructions are implemented:

0: Long type not implemented

1: Long implemented

Thisbit isalways 1 to indicate that long fixed point data
types are implemented.

W 20 Indicates that the word fixed point (W) data type and R 1
instructions are implemented:

0: Word type not implemented

1: Word implemented

Thisbit is always 1 to indicate that word fixed point data
types are implemented.

3D 19 Indicates that the MIPS-3D ASE isimplemented: R 0
0: MIPS-3D not implemented

1: MIPS-3D implemented

This bit isaways 0 to indicate that MIPS-3D is not imple-
mented.

PS 18 Indicates that the paired-single (PS) floating-point data R 0
type and instructions are implemented:

0: PS floating-point not implemented

1: PSfloating-point implemented

Thisbit is always 0 to indicate that paired-single float-
ing-point data types are not implemented.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 65

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State

D 17 Indicates that the double-precision (D) floating-point data R 1
type and instructions are implemented:

0: D floating-point not implemented

1: D floating-point implemented

Thisbit is aways 1 to indicate that double-precision float-
ing-point data types are implemented.

S 16 Indicates that the single-precision (S) floating-point data R 1
type and instructions are implemented:

0: Sfloating-point not implemented

1: Sfloating-point implemented

Thisbit isalways 1 to indicate that single-precision float-
ing-point data types are implemented.

Processor ID 15:8 I dentifies the floating-point processor. This value matches R 0x93
the corresponding field of the CPO PRId register.

Revision 7.0 Specifies the revision number of the FPU. Thisfield R Hardwired
allows software to distinguish between one revision and
another of the same floating-point processor type. This
value matches the corresponding field of the CPO PRId
register.

0 31:25, 23 | These bits must be written as zeros; they return zeros on 0 0
reads.

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, al eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR hit fields.

Figure 3.12 FCCR Format
31 8 7 0

0 FCC

Table 3.7 FCCR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
FCC 7:0 Floating-point condition code. Refer to the description of R/W Undefined
thisfield in Section 3.5.5 “Floating-Point Control and
Status Register (FCSR, CP1 Control Register 31)".
0 31:8 These bits must be written as zeros; they return zeros on 0 0
reads.
66 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) isan aternative way to read and write the Cause and Flags fields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR bit fields.

Figure 3.13 FEXR Format

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0
0 Cause 0 Flags 0
E|V|Z|O|U]|I V|Z|O|U|I

Table 3.8 FEXR Bit Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

Cause 17:12 Cause hits. Refer to the description of thisfield in Section R/W Undefined
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

Flags 6:2 Flag bits. Refer to the description of thisfield in Section R/W Undefined
3.5.5 “Foating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

0 31:18, 11:7, | These bits must be written as zeros; they return zeros on 0 0
1:0 reads.

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 Enables 0 FS| RM
V({Z|O|U|I

Table 3.9 FENR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Enables 11:7 Enable bits. Refer to the description of thisfield in Section R/W Undefined
3.5.5 “Hoating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 67

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

Table 3.9 FENR Bit Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
FS 2 Flush to Zero bit. Refer to the description of thisfieldin R/W Undefined

Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

RM 1.0 Rounding mode. Refer to the description of thisfield in R/W Undefined
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

0 31:12, 6:3 | These bits must be written as zeros; they return zeros on 0 0
reads.

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

» sdectsthe default rounding mode for FPU arithmetic operations

» selectively enables traps of FPU exception conditions

» controls some denormalized number handling options

* reports any |EEE exceptions that arose during the most recently executed instruction
* reports any |EEE exceptions that cumulatively arose in completed instructions

» indicatesthe condition code result of FP compare instructions

Accessto the FCSR is not privileged; it can be read or written by any program that has access to the FPU (viathe
coprocessor enablesin the Satusregister). Figure 3.15 showsthe format of the FCSR; Table 3.10 describesthe FCSR

bit fields.
Figure 3.15 FCSR Format
31 25 24 23 22 21 20 18 17 12 11 7 6 2 10
FCC FS|{FCC|FO|FN 0 Cause Enables Flags RM
71615141321 0 E(VIZ|O|U[I|V]|Z|O|U|[Il|V]|Z|O|U]|I
68 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

Table 3.10 FCSR Bit Field Descriptions

Fields

Name

Bit

Description

Read /
Write

Reset State

FCC

31:25, 23

Floating-point condition codes. These bits record the
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to useis specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS ISAs, the FCC hits are separated into
two non-contiguous fields.

Undefined

FS

24

Flush to Zero (FS). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits’ for more details on this hit.

Undefined

FO

22

Flush Override (FO). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits’ for more details on this bit.

Undefined

FN

21

Flush to Nearest (FN). Refer to Section 3.5.6 “Operation
of the FS/IFO/FN Bits” for more details on this bit.

Undefined

Cause

17:12

Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, itis cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.

Refer to Table 3.11 for the meaning of each cause bit.

Undefined

Enables

11:7

Enable bits. These bits control whether or not atrap is
taken when an | EEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving avalueto the
FCSR or one of its aternative representations. Note that
Cause hit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-1EEE Unimplemented
Operation exceptions as always enabled.

Refer to Table 3.11 for the meaning of each enable bit.

Undefined

Flags

6:2

Flag bits. Thisfield shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.

When an FPU arithmetic operation raises an | EEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Float-
ing-Point Exception (the enable bit was on) do not update
the Flagsfield.

Hardware never resets this field; software must explicitly
reset thisfield.

Refer to Table 3.11 for the meaning of each flag bit.

Undefined

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

69

Floating-Point Unit of the 24Kf™ Core

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Name

Bit

Description

Read /
Write

Reset State

RM

1.0

Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).

Refer to Table 3.12 for the encoding of thisfield.

R/W

Undefined

20:18

These hits must be written as zeros; they return zeros on
reads.

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name

Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

Invalid Operations

Divide by Zero

Overflow

ClO|N|I<

Underflow

I Inexact

Table 3.12 Rounding Mode Definitions

RM Field
Encoding

Meaning

0

RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (even).

RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the result.

RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bitsin the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.

nonzero result between +2E-M M), whereby the FPU can handle these cases right away instead of relying on the much
slower software handler. The trade-off is aloss of IEEE compliance and accuracy (except for use of the FO hit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result

that a software handler would give. The benefit is a significantly improved performance and precision.

70

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

FSand FN hit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,
RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG*
FO hit: MADD, MSUB, NMADD, and NMSUB

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions when
FS = 0. Flushing to zero nonetheless isimplemented when FS = 1 such that these operations return the same result as an
equivalent sequence of arithmetic FPU operations.

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbersin oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

Figure 3.16 FS/FO/FN Bits Influence on Multiply and Addition Results

Operand values Intermediate Multiply-Add result Final result

FS applies FS/FO applies FS/FN applies
J L L
> Mul |y it .
ply Addition
‘:_|_> N N

3.5.6.1 Flush To Zero Bit

When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either
zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settings. Table
3.13 lists the flushing behavior for tiny results..

Table 3.13 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result
RN (RM=0) -0 +0
RZ(RM=1) -0 +0
RP (RM=2) -0 +MinNorm
RM (RM=3) -MinNorm +0

The flushing of resultsis based on an intermediate result computed by rounding the mantissa using an unbounded

exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading
zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS hit setting as shown in Table 3.14.

Table 3.14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values
0 An Unimplemented Operation exception is taken.
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 71

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

Table 3.14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values

1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny
results are forced to zero or MinNorm.

3.5.6.2 Flush Override Bit
When the Flush Override (FO) bit is set, atiny intermediate result of any multiply-add type instruction is not flushed
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accuracy.
FO only appliesto the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown in Table 3.15.

Table 3.15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

0 An Unimplemented Operation exception is taken.

The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (see Table 3.32) instead of causing an Unimplemented Operation
exception.

1 Don’t care | The intermediate result iskept in an internal format, which can be perceived as having
the usual mantissa precision but with unlimited exponent precision and without forcing
to a specific value or taking an exception.

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), atiny final result is
flushed to zero or MinNorm. If atiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it
isflushed to MinNorm (see Figure 3.17). The flushed result has the same sign as the result prior to flushing. Note that
the FN bit takes precedence over the FS bit.

Figure 3.17 Flushing to Nearest when Rounding Mode is Round to Nearest
-MinNorm/2 MinNorm/2

R —

><

0 MinNorm

I I
I I
I I
I I
| . | . | >
I I
I I

-MinNorm

For all rounding modes other than Round to Nearest (RN), setting the FN bit causesfinal results to be flushed to zero
or MinNorm asiif the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown in Table 3.16.

Table 3.16 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit FS Bit Handling of Tiny Result Values
0 0 An Unimplemented Operation exception is taken.
72 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.5 Floating-Point Control Registers

Table 3.16 Handling of Tiny Final Result Based on FN and FS Bit Settings (Continued)

FN Bit FS Bit Handling of Tiny Result Values

0 1 Final result isforced to the value that would have been delivered for an untrapped under-
flow (see Table 3.32) rather than causing an Unimplemented Operation exception.

1 Don't care | Final result is rounded to either zero or 2E-™" (MinNorm), whichever is closest whenin

Round to Nearest (RN) rounding mode. For other rounding modes, afinal result is given
asif FSwasset to 1.

3.5.6.4 Recommended FS/FO/FN Settings

Table 3.17 summarizes the recommended FS/FO/FN settings.

Table 3.17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks
0 0 0 IEEE-compliant mode. Low performance on denormal operands and tiny results.
1 0 0 Regular embedded applications. High performance on denormal operands and
tiny results.
1 1 1 Highest accuracy and performance configuration.t

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD operation
sequence.

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTCL instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow
Computations are performed in two steps:
1. Compute rounded mantissa with unbound exponent range.

2. Flushto default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits 1, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thuswhen E, V, or Z is set in Step #1, no other cause bits can be set. However, note that | and V' both can be
set if adenormal operand was flushed (FS=1). I, U, and O can be set alone or in pairs (1U or 10). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized |EEE format.

Step #2 can set | if adefault result is generated.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 73

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

3.5.7.3 Multiply-Add Flow
For multiply-add type instructions, the computation is extended with two more steps:
1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flushto default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny resultsif
FO=1).

3. Compute rounded mantissa with unbounded exponent range for the add.
4. Flushto default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 and Step #3 can set a cause bit as described for Step #1 in Section 3.5.7.2 “Generic Flow”.
Step #2 and Step #4 can set | if adefault result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit | when FS = 1. For example, SNaN+DeNorm set
| (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN

propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations
Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E

to be set, any |, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:
» Section 3.6.1 “Data Transfer Instructions”

» Section 3.6.2 “Arithmetic Instructions”

* Section 3.6.3 “Conversion Instructions”

e Section 3.6.4 “Formatted Operand-Vaue Move Instructions’

e Section 3.6.5 “Conditiona Branch Instructions’

74 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Overview

e Section 3.6.6 “Miscellaneous Instructions’

The instructions are described in detail in Chapter 12, “ 24K® Processor Core Instructions” on page 303, including
descriptions of supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets. coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has aload/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Datais transferred between registers and the rest of the
system with dedicated |oad, store, and move instructions. The transferred datais treated as unformatted binary data;
no format conversions are performed, and therefore no |EEE floating-point exceptions can occur.

Table 3.18 lists the supported transfer operations.

Table 3.18 FPU Data Transfer Instructions

Transfer Direction Data Transferred
FPU general register > Memory Word/doubleword load/store
FPU genera register > CPU general register Word move
FPU control register > CPU general register Word move

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned dataitems. An attempt to load or store to an address that
isnot naturally aligned for the dataitem causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of aword or doubleword isthe smallest byte address in the object. For a big-endian machine, thisis
the most-significant byte; for alittle-endian machine, thisis the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.19 through 3.20 list the FPU data transfer instructions.

Table 3.19 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction
LDC1 Load Doubleword to Floating Point
LWC1 Load Word to Floating Point
SDC1 Store Doubleword to Floating Point
SWC1 Store Word to Floating Point
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 75

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction
CFC1 Move Control Word From Floating Point
CTC1 Move Control Word To Floating Point
MFC1 Move Word From Floating Point
MTC1 Move Word To Floating Point

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet |EEE Standard 754 for accuracy—aresult isidentical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bitsin
the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of the FS/FO/FN Bits’.

Table 3.21 lists the FPU |EEE compliant arithmetic operations.

Table 3.21 FPU IEEE Arithmetic Operations

Mnemonic Instruction
ABS.fmt Floating-Point Absolute Value
ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIV.fmt Floating-Point Divide
MUL.fmt Floating-Point Multiply
NEG.fmt Floating-Point Negate
SQRT.fmt Floating-Point Square Root
SUB.fmt Floating-Point Subtract

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the | EEE specification:

» Theresult of RECIP differs from the exact reciprocal by nho more than one ULP.
» Theresult of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.22 lists the FPU-approximate arithmetic operations.

Table 3.22 FPU-Approximate Arithmetic Operations

Mnemonic Instruction
RECIPfmt Floating-Point Reciprocal Approximation
76 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Overview

Table 3.22 FPU-Approximate Arithmetic Operations (Continued)

Mnemonic Instruction

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to athird operand, and produce aresult. These instructions are listed in Table 3.23.
The product isrounded according to the current rounding mode prior to the accumulation. This model meetsthe IEEE
accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,
or negate instructions.

Table 3.23 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction
MADD.fmt Floating-Point Multiply Add
MSUB.fmt Floating-Point Multiply Subtract

NMADD.fmt Floating-Point Negative Multiply Add
NMSUB.fmt Floating-Point Negative Multiply Subtract

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from anumber of operand formatsto a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.

The FS and FN bitsin the CP1 FCSR register can override this behavior as described in Section 3.5.6 “ Operation of
the FS/FO/FN Bits'.

Table 3.24 and Table 3.25 list the FPU conversion instructions according to their rounding mode.

Table 3.24 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction
CVT.D.fmt Floating-Point Convert to Double Floating Point
CVT.L.fmt Floating-Point Convert to Long Fixed Point
CVT.Sfmt Floating-Point Convert to Single Floating Point
CVT.W.fmt Floating-Point Convert to Word Fixed Point

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction
CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point
CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point
FLOOR.L.fmt Floating-Point Floor to Long Fixed Point
FLOOR.W.fmt Floating-Point Floor to Word Fixed Point
ROUND.L.fmt Floating-Point Round to Long Fixed Point
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 77

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode (Continued)

Mnemonic Instruction
ROUND.W.fmt Floating-Point Round to Word Fixed Point
TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point
TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

* Unconditional move

» Conditional move that tests an FPU true/false condition code

» Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in away that might be unexpected. They always force the value in the destina-
tion register to become avalue of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32 Architecture Refer-

ence Manual, Volume Il [2].)

Table 3.26 through Table 3.28 list the formatted operand-val ue move instructions.

Table 3.26 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV.fmt Floating-Point Move

Table 3.27 FPU Conditional Move on True/False Instructions

Mnemonic Instruction
MOVFEfmt Floating-Point Move Conditional on FP False
MOVT.fmt Floating-Point Move Conditional on FP True

Table 3.28 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction
MOVN.fmt Floating-Point Move Conditional on Nonzero
MOVZ.fmt Floating-Point Move Conditional on Zero
78 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Overview

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond.fmt).

All branches have an architectural delay of oneinstruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay dot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction
in the delay slot when the branch is not taken and execution falls through:

» Branchinstructions execute the instruction in the delay slot.

» Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, softwareis strongly encouraged to avoid the use of
the Branch Likely instructions, asthey will be removed from a futurerevision of the M1 PS Architecture.

The M1PS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in dis-
continuous fields in the FCSR.

Table 3.29 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.30 lists the deprecated
conditional branch likely instructions.

Table 3.29 FPU Conditional Branch Instructions

Mnemonic Instruction
BCI1F Branch on FP False
BC1T Branch on FP True

Table 3.30 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction
BC1FL Branch on FP False Likely
BC1TL Branch on FP True Likely

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.31 lists these conditional move instructions.

Table 3.31 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction
MOVN Move Conditiona on FP False
MOVZ Move Conditional on FP True
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 79

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. The flag bitsimplement | EEE exception status flags, and the cause and enabl e bits control exception trapping.
Each field has a bit for each of the five |EEE exception conditions. The Cause field has an additional exception hit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception typeis enabled through the
Enablesfield of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

3.7.1 Precise Exception Mode

In precise exception mode, atrap occurs before the instruction that causes the trap or any following instruction can
complete and writeitsresults. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit isset to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to O.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving avalue into the FCSR. Thereis no enable
bit for Unimplemented Operations; this exception always generates a trap.

In atrap handler, exception conditions that arise during any trapped fl oating-point operations are reported in the
Cause field. Before returning from afloating-point interrupt or exception, or before setting cause bits with amove to
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from
being erroneoudly retaken.

If afloating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.32). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flagsfield is a cumulative report of |EEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
the bits are unchanged. Thereis no flag bit for the MI1PS Unimplemented Operation exception. The flag bits are never

cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by |EEE Standard 754:
e Section 3.7.2.1 “Invalid Operation Exception”

* Section 3.7.2.2 “Division By Zero Exception”

* Section 3.7.2.3 “Underflow Exception”

* Section 3.7.2.4 “Overflow Exception”

e Section 3.7.2.5 “Inexact Exception”

80 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.7 Exceptions

Section 3.7.2.6 “Unimplemented Operation Exception” also describes a M1PS-specific exception condition, Unim-
plemented Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an
| EEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can occur
at the same time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an | EEE exception condition can either cause atrap or not cause atrap. |EEE Standard
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-
tion condition does not result in atrap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.32 summarizes the default results.

Table 3.32 Result for Exceptions Not Trapped

Bit Description Default Action

\% Invalid Operation | Supplies aquiet NaN.

z Divide by zero | Supplies a properly signed infinity.

U Underflow Depends on the rounding mode as shown bel ow:

0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.

2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative underflow
values, supplies a positive zero.

3 (RM): For positive underflow values, supplies a negative zero. For negative underflow val-
ues, supplies anegative 25-M" (MinNorm).

Note that this behavior is only valid if the FCSR gy bit is cleared.

I Inexact Supplies arounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result. If caused by an underflow without the underflow trap enabled,
supplies the underflowed result.

(0] Overflow Depends on the rounding mode, as shown below:

0 (RN): Supplies an infinity with the sign of the exact result.

1 (RZ): Suppliesthe format’s largest finite number with the sign of the exact result.

2 (RP): For positive overflow values, supplies positive infinity. For negative overflow values,
supplies the format’s most negative finite number.

3 (RM): For positive overflow vaues, supplies the format’s largest finite number. For nega-
tive overflow values, supplies minus infinity.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result isa quiet NaN.

The following operations are invalid:

* Oneor both operands are asignaling NaN (except for the non-arithmetic MOV.fmt, MOV T.fmt, MOV F.fmt,
MOV N.fmt, and MOV Z.fmt instructions).

» Addition or subtraction: magnitude subtraction of infinities, such as (+eo) + (—o) Or (—eo) — (—c0).
* Multiplication: 0 x e, with any signs.
» Division: 0/0 or /e, with any signs.

* Squareroot: An operand of lessthan O (-0 isavalid operand value).

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 81

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

» Conversion of afloating-point number to a fixed-point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

* Some comparison operations in which one or both of the operandsis a QNaN value.

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero
number. When no precise trap occurs, the result isacorrectly signed infinity. Divisions (0/0 and «/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of («/0) is a correctly
signed infinity.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

« Tininess: The creation of atiny, nonzero result between +25-M" which, because it is tiny, might catise some
other exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess
events. The MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed

as though the exponent range were unbounded would lie strictly between 2B min

* Lossof accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. |EEE Standard 754 allows choicesin detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

* When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have
been detected. The delivered result might be zero, denormalized, or +2E-MN,

* When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininessis
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent rangeis
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception
An Inexact exception is signaled when one of the following occurs:
* Therounded result of an operation is not exact.
» Therounded result of an operation overflows without an overflow trap.

* When adenormal operand is flushed to zero.

82 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.8 Pipeline and Performance

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support.
This exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture.
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

Thereis no enable bit for this condition; it always causes atrap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

» when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers
and where such are not handed by the FS/FO/FN bits.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

24K integer pipeline

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU pipeline runsin
parallel with the 24K integer pipeline. The FPU can be built to run at either the same frequency as the integer core or
at one-half the frequency of the integer core.

The FPU pipeis optimized for single-precision instructions, such that the basic multiply, ADD/SUB, and
MADD/MSUB instructions can be performed with single-cycle throughput and low latency. Executing double-preci-
sion multiply and MADD/M SUB instructions requires a second pass through the M1 stage to generate all 64 bits of
the product. Executing long latency instructions, such as DIV and RSQRT, extends the M1 stage. Figure 3.18 shows
the FPU pipeline.

Figure 3.18 FPU Pipeline

RF/AG EX MS ER| WB

Dispatch

FPU instruction in general e | FR M1 M2 A1 A2 FP FW
FPU double multiplication (for example, MUL, MADD) | FR M1 M1 M2 Al A2 FP FW

Second

Pass

FPU long instructions (for example, DIV, RSQRT) | FR M1 : M1 : : : : : M2 Al A2 FP FW

Multiple cycles

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 83

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

3.8.1.1 FR Stage - Decode, Register Read, and Unpack
The FR stage has the following functionality:
» Thedispatched instruction is decoded for register accesses.
» Dataisread from the register file.

* The operands are unpacked into an internal format.

3.8.1.2 M1 Stage - Multiply Tree
The M1 stage has the following functionality:

» A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

» Thelong instructions, such as divide and square root, iterate for several cyclesin this stage.

e Sum of exponentsis calculated.

3.8.1.3 M2 Stage - Multiply Complete
The M2 stage has the following functionality:
* Multiplication is complete when the carry-save encoded product is compressed into binary.
* Rounding is performed.

* Exponent difference for addition path is calcul ated.

3.8.1.4 Al Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.5 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

3.8.1.6 FP Stage - Result Pack
The FP stage has the following functionality:
* Theresult coming from the datapath is packed into | EEE 754 Standard format for the FPR register file.

» Overflow and underflow exceptiona conditions are resolved.

3.8.1.7 FW Stage - Register Write

The result is written to the FPR register file.

84 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

3.8 Pipeline and Performance

3.8.2 Bypassing

The FPU pipelineimplements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into the
register file and read back before they can be used, but can be forwarded directly to an instruction already in the pipe.
Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CPO Status register is 0, due
to the paired even-odd 32-hit registers that provide 64-bit registers.

Figure 3.19 Arithmetic Pipeline Bypass Paths

FR M1 M2 Al FW

A2 FP
k A2 bypass /
\ FP bypass
\ FW bypass

3.8.3 Repeat Rate and Latency

Table 3.33 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point opera-
tions are listed in terms of FPU clocks.

Table 3.33 24Kf Core FPU Latency and Repeat Rate

Latency Repeat Rate
Opcode?® (cycles) (cycles)
ABS[SD], NEG.[S,D], ADD.[S,D], SUB.[S,D], MUL.S, MADD.S, 4 1
MSUB.S, NMADD.S, NMSUB.S
MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2
RECIPS 13 10
RECIP.D 25 21
RSQRT.S 17 14
RSQRT.D 35 31
DIV.S, SQRT.S 17 14
DIV.D, SQRT.D 32 29
C.cond.[S,D] to MOVEfmt and MOV T.fmt instruction/ MOVT, MOVN, 1/2 1
BC1 instruction
CVT.D.S, CVT[SD].[W,L] 4 1
CVT.SD 6 1
CVT.[W,L].[SD], 5 1
CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D],
TRUNC.[W,L].[SD]
MOV.[S,D], MOVFE[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D] 4 1
LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1
MTC1, MFC1 2 1
1. Format: S= Single, D = Double, W = Word, L = Longword.
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 85

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Floating-Point Unit of the 24Kf™ Core

86 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 4

Memory Management of the 24K® Core

The 24K processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit and
the cache controller. The core contains either a Translation Lookaside Buffer (TLB) or a simpler Fixed Mapping
(FM) style MMU, specified as a build-time option when the core isimplemented.

This chapter contains the following sections:

e Section4.1 “Introduction”

e Section 4.2 “Modes of Operation”

* Section 4.3 “Translation Lookaside Buffer”

e Section 4.4 “Virtual-to-Physical Address Trandlation”

e Section 4.5 “Fixed Mapping MMU”

e Section 4.6 “System Control Coprocessor”
4.1 Introduction

The MMU ina24K processor core will tranglate any virtual address to a physical address before arequest is sent to
the cache controllersfor tag comparison or to the bus interface unit for an external memory reference. Thistrandation
isavery useful feature for operating systemswhen trying to manage physical memory to accommodate multiple tasks
active in the same memory, possibly on the same virtual address but of course in different locations in physical mem-
ory. Other features handled by the MMU are protection of memory areas and defining the cache protocoal.

By default, the MMU is TLB based. The TLB consists of three address trand ation buffers: a 16/32/64 dual-entry fully
associative Joint TLB (JTLB), a4-entry instruction micro TLB (ITLB), and an 8-entry datamicro TLB (DTLB).
When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the trandlation is not
found in the micro TLB, the JTLB is accessed. If thereisamissin the JTLB, an exception is taken.

Optionally, the MMU can be based on a simple algorithm to translate virtual addresses into physical addressesviaa
Fixed Mapping (FM) mechanism. These translations are different for various regions of the virtual address space
(useg/kuseg, kseg0, ksegl, kseg2/3).

Figure 4.1 shows how the memory management unit interacts with cache accesses with a TLB, while Figure 4.2
shows the equivalent for the FM MMU.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 87

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

Figure 4.1 Address Translation During a Cache Access with TLB MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

v

A 4

Comparator

L

l—b

Instruction
Hit/Miss

Data Hit/Miss

Comparator

Instruction
Cache Tag (IPA)
RAM Instruction
Physical Address
(IPA)
ITLB
IVA Entry
JTLB
4 Entry
v
DTLB Daa
Physical Address
(DPA)
Data Cache
RAM
Tag (DPA)

Figure 4.2 Address Translation During a Cache Access with FM MMU

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

v

A 4

Comparator

Instruction
Hit/Miss

l—b

Data Hit/Miss

Comparator

Instruction
Cache Tag (IPA)
RAM Instruction
Physical Address
(IPA)
FM MMU
Data
Physical Address
(DPA)
FM MMU
SEEEEEEE——
Data Cache Tag (DPA)
RAM

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2 Modes of Operation

4.2 Modes of Operation

A 24K processor core supports four modes of operation:
* User mode

* Supervisor mode (only w/ TLB)

* Kernel mode

» Debug mode

User mode is most often used for application programs. Supervisor mode has an intermediate privilege level with
access to an additional region of memory and is only supported with the TL B-based MMU. Kernel modeistypically
used for handling exceptions and privileged operating system functions, including CPO management and 1/0 device
accesses. Debug mode is used for software debugging and most likely occurs within a software development tool.

The address tranglation performed by the MMU depends on the mode in which the processor is operating.
4.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation. Figure 4.3 shows the segmentation

for the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the four modes of opera-
tion.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well asall CPO registers. User mode accesses are limited to a subset of the vir-
tual address space (0x0000_0000 to Ox7FFF_FFFF) and can be inhibited from accessing CPO functions. In User
mode, virtual addresses 0x8000_0000 to OxFFFF_FFFF areinvalid and cause an exception if accessed. Supervisor
mode adds access to sseg (0xC000_0000 to OXDFFF_FFFF). ksegO, ksegl, and kseg3 will still cause exceptions if
they are accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CPO registers as for Kernel mode. In addition, while in Debug mode the core has access to the
debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned
on or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 89

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

90

Figure 4.3 24K® Processor Core Virtual Memory Map

Virtual Address User Mode Kernel Mode Debug Mode Supervisor Mode
VXFFFF_FEFFF -
OXEFA0. 0000 | _...--tC ot = o
OxXFF3F_FFFF e —
0xFF20_0000 et
0XFF1F_FFFF e
0xE000_0000 Lo ksseg/kseg2 ksseg/kseg2 sseg
0xDFFF_FFFF o
0xC000_0000
0XBFFF_FFFF kseg1 kseg?
0xA000_0000 ___.-===""7777° .- ---
Ox9FFF_FFFF
kseg0 ksegO

0x8000_0000 o
0x7FFF_FFFF

useg kuseg kuseg suseg
0x0000_0000 o

Each of the segments shown in Figure 4.3 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections Section 4.2.2 “User Mode’, Section 4.2.4 “Kernel Mode”, and Section 4.2.5 “Debug
Mode” specify which segments are actually mapped and unmapped.

4.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB or the FM to trandate from virtual-to-physical addresses. Especialy
after reset, it isimportant to have unmapped memory segments, because the TLB is not yet programmed to perform
the trandation.

Unmapped segments have afixed simple trandation from virtual to physical address. Thisis much like the transla-
tions the FM provides for the core, but we will still make the distinction.

Except for ksegO, unmapped segments are always uncached. The cacheability of ksegO is set in the KO field of the
CPO register Config (see Section 6.2.21 “Config Register (CPO Register 16, Select 0)").

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2 Modes of Operation

4.2.1.2 Mapped Segments
A mapped segment does use the TLB or the FM to translate from virtual-to-physical addresses.

For the core with TLB, the translation of mapped segments is handled on a per-page basis. Included in thistranglation
isinformation defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the core with the FM MMU, the mapped segments have a fixed tranglation from virtual to physical address. The
cacheability of the segment is defined in the CPO register Config, fields K23 and KU (see Section 6.2.21 “Config
Register (CPO Register 16, Select 0)”). Write protection of segmentsis not possible during FM translation.

4.2.2 User Mode

In user mode, asingle 2 GByte (23! bytes) uniform virtual address space called the user segment (useg) is available.
Figure 4.4 shows the location of user mode virtual address space.

Figure 4.4 User Mode Virtual Address Space

32 bit

O0xXFFFF_FFFF

Address Error
0x8000_0000
0x7FFF_FFFF

2GB Mapped

useg

0x0000_0000

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. Accessesto all other addresses
cause an address error exception.

The processor operates in User mode when the Status register contains the following bit values:

e KSU=2#10
e EXL=0
* ERL=0

In addition to the above values, the DM bit in the Debug register must be 0.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 91

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

92

Table 4.1 lists the characteristics of the User mode segment.

Table 4.1 User Mode Segments

Status Register
) Bit Value
Address Bit Segment
Value EXL ERL KSU Name Address Range Segment Size
32-bit 0 0 2#10 useg 0x0000_0000 --> 2 GByte
A(B1) =0 Ox7FFF_FFFF (2% bytes)

All valid user mode virtual addresses have their most significant bit cleared to O, indicating that user mode can only
accessthe lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the TLB or FM. For coreswith aTLB, the virtual addressis extended
with the contents of the 8-bit ASID field to form a unique virtual address before translation. Also bit settings within
the TLB entry for the page determine the cacheability of areference. For FM MMU cores, the cacheability is set via
the KU field of the CPO Config register.

4.2.3 Supervisor Mode

In supervisor mode, two virtual address spaces are available. A 2 GByte (231 bytes) uniform virtual address space
called the user segment (useg) aswell asthe 512MB (ksseg) are available. Figure 4.5 shows the location of supervisor
mode virtual address space.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2 Modes of Operation

Figure 4.5 Supervisor Mode Virtual Address Space

OXFFFF_FFFF
Address Error kseg3

0xE000_0000

OxDFFF_FFFF

Supervisor virtual address space
Mapped, 512MB sseg

0xC000_0000

OXBFFF_FFFF
Address Error kseg

0xA000_0000

0x9FFF_FFFF
Address Error ksegO

0x8000_0000

0x7FFF_FFFF
Mapped, 2048MB suseg

0x0000_0000

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. The supervisor segment begins
at 0xC000_0000 and ends at OxDFFF_FFFF. Accessesto all other addresses cause an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

e KSU=2#01
e EXL=0
* ERL=0

In addition to the above values, the DM bit in the Debug register must be 0.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 93

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

94

Table 4.1 lists the characteristics of the Supervisor mode segments.

Table 4.2 Supervisor Mode Segments

Status Register
) Bit Value
Address Bit Segment
Value EXL ERL KSU Name Address Range Segment Size
32-bit 0 0 2#01 suseg 0x0000_0000 --> 2 GByte
A(B1) =0 Ox7FFF_FFFF (2% bytes)
32-bit 0 0 2#01 Sseg 0xC000_0000 -> 512MB
A(31:29) = 110, OxDFFF_FFFF (22 bytes)

The system maps all references to useg and ksseg through the TLB or FM. For cores with a TLB, the virtual address
is extended with the contents of the 8-bit ASID field to form aunique virtual address before translation. Also bit set-
tingswithin the TLB entry for the page determine the cacheability of areference. For FM MMU cores, the cacheabil-
ity of useg and ksseg is set viathe KU and K23 fields of the CPO Config register respectively.

4.2.4 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

* KSU=2#00
e ERL=1
e EXL=1

When anon-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address spaceis divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 4.6. Also, Table 4.3 lists the characteristics of the Kernel mode segments.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.6 Kernel Mode Virtual Address Space

O0xXFFFF_FFFF

0xE000_0000
0xDFFF_FFFF

0xC000_0000

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

O0xBFFF_FFFF

0xA000_0000
0x9FFF_FFFF

0x8000_0000
0x7FFF_FFFF

0x0000_0000

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Unmapped, 512MB

Mapped, 2048MB

kseg3

ksseglkseg2

kseg1

kseg0

kuseg

4.2 Modes of Operation

95

Memory Management of the 24K® Core

96

Table 4.3 Kernel Mode Segments

Status Register Is One
) of These Values
Address Bit Segment
Values KSU | EXL | ERL Name Address Range Segment Size
A(BL) =0 (KSU =00, kuseg 0x0000_0000 2 GBytes (23! bytes)
or through
EXL=1 Ox7FFF_FFFF
A(31:29) = 100 or kseg0 0x8000_0000 29
; ERL =1) through o Ntljstyet:f @
and OX9FFF_FFFF
DM =0
A(31:29) = 101, ksegl 0xA000_0000 512 MBytes (22
through bytes)
OxBFFF_FFFF
A(31:29) = 110, ksseg/kseg2 0xC000_0000 512 MBytes (22°
through bytes)
OXDFFF_FFFF
A(31:29) =111, kseg3 0xEO000_0000 512 MBytes (22
through bytes)
OXxFFFF_FFFF

4.2.4.1 Kernel Mode, User Space (kuseqg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address
space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - Ox7FFF_FFFF. For cores with TLBs, the virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a231-byte unmapped and uncached address
space. Whilein this setting, the kuseg virtual address maps directly to the same physical address, and does not include
the ASID field.

4.2.4.2 Kernel Mode, Kernel Space 0 (ksegO0)

In Kernel mode, when the most-significant three bits of the virtual address are 100,, 32-bit ksegO virtual address

space is selected; it is the 22°-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
Ox9FFF_FFFF. References to ksegO are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The KO field of the Config register controls cacheability.

4.2.4.3 Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 101, 32-bit ksegl virtual

address space is selected. ksegl isthe 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
OxBFFF_FFFF. Referencesto ksegl are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped 1/O device registers) are accessed directly.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.2 Modes of Operation

4.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg?2)

In Kernel mode, when KSU= 00,, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 110,, 32-bit kseg2 virtual address space is selected.

With the FM MMU, this 22%-byte (512-MByte) kernel virtual spaceislocated at physical addresses 0xC000_0000 -
OxDFFF_FFFF. Otherwise, this space is mapped through the TLB.

4.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 111, the kseg3 virtual address

space is selected. With the FM MMU, this 22%-byte (512-MByte) kernel virtual spaceislocated at physical addresses
O0xEO000_0000 - OXFFFF_FFFF. Otherwise, this space is mapped through the TLB.

4.2.5 Debug Mode

Debug mode address space isidentical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment, dseg, co-existsin the virtual address range OxFF20_0000 to

OxFF3F_FFFF. The layout is shown in Figure 4.7.

Figure 4.7 Debug Mode Virtual Address Space

O0xXFFFF_FFFF
0xFF40_0000

0xFF20_0000

kseg1

kseg0

0x0000_0000

Unmapped

Mapped if mapped in Kernel Mode

The dseg is subdivided into the dmseg segment at OxFF20 0000 to OxFF2F_FFFF, which is used when the probe ser-
vices the memory segment, and the drseg segment at OxFF30_0000 to OxFF3F_FFFF which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes for the segments are shown in Table 4.4.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-enter
debug mode via a debug mode exception. Thisincludes accesses usually causing a TL B exception, with the result that
such accesses are not handled by the usual memory management routines.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 97

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

The unmapped kseg0 and ksegl segments from kernel mode address space are available from debug mode, which
allows the debug handler to be executed from uncached and unmapped memory.

Table 4.4 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment | Sub-Segment Generates Physical Cache
Name Name Virtual Address Address Attribute
dseg dmseg OxFF20_0000 dmseg maps to addresses Uncached
through 0x0_0000 - OxF_FFFFin EJTAG
OXFF2F_FFFF probe memory space.
FF .
drseg O thi)?l_gor? 00 drseg maps to the breakpoint reg-
OXFF3F._FFFF isters 0x0_0000 - OxF_FFFF

4.2.5.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of accessto the drseg address range at OxFF30_0000 to OxFF3F_FFFF is determined as shown in Table
45

Table 4.5 Accesses to drseg Address Range

LSNM bit in Debug
Transaction Register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don't care drseg, see comments below
Load/ Store 0

Debug software is expected to read the debug control register (DCR) to determine which other memory mapped reg-
isters exist in drseg. The value returned in response to aread of any unimplemented memory mapped register is
unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 11, “EJTAG
Debug Support in the 24K® Core” on page 240 for more information on the DCR.

The allowed access sizeis limited for the drseg. Only word size transactions are alowed. Operation of the processor
is undefined for other transaction sizes.

4.2.5.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of access to the dmseg address range at OxFF20_0000 to OxFF2F_FFFF is determined by the table
shownin Table 4.6.

Table 4.6 Accesses to dmseg Address Range

ProbEn bit in LSNM bit in
Transaction DCR Register Debug Register Access
Load / Store Don't care 1 Kernel mode address space (kseg3)
Fetch 1 Don't care dmseg
Load / Store 1 0
Fetch 0 Don't care See comments below
Load / Store 0 0
98 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.3 Translation Lookaside Buffer

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is hot expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such areference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be areference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to O.

4.3 Translation Lookaside Buffer

The following subsections discuss the TLB memory management scheme used in the 24K ¢ processor core. The TLB
consists of the joint and micro address trandation buffers:

e 16-64 dud-entry fully associative Joint TLB (JTLB)
» 4-entry fully associative Instruction micro TLB (ITLB)

e 8-entry fully associative Datamicro TLB (DTLB)
4.3.1 Joint TLB

The 16-64 dua-entry, fully associative Joint TLB maps 32-128 virtual pagesto their corresponding physical
addresses. The purpose of the TLB isto trandlate virtual addresses and their corresponding ASID into a physical
memory address. The translation is performed by comparing the upper bits of the virtual address (along with the

ASID hits) against each of the entries in the tag portion of the JTLB structure. Because this structure is used to trans-
late both instruction and data virtual addresses, it isreferred to asa“joint” TLB.

The JTLB isorganized as 16-64 pairs of even and odd entries containing descriptions of pagesthat rangein size from
4-KBytesto 256M Bytes into the 4-GByte physical address space.

The JTLB isorganized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds to two
physical dataentries, an even page entry and an odd page entry. The highest order virtual address bit not participating
in the tag comparison is used to determine which of the two data entries is used. Since page size can vary on a
page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make
the even-odd selection must be done dynamically during the TLB lookup.

Figure 4.8 shows the contents of one of the dual-entriesin the JTLB. The bit range indication in the figure serves to
clarify which address bits are (or may be) affected during the trandlation process.

Figure 4.8 JTLB Entry (Tag and Data)

PageMask([28:13]
Tag Entry -
VPN2[31:13] G ASID[7:0]
19 K 8

PFNO[31:12] CO[2:0] E
Data Entries

PFN1[31:12] C1[2:0] Vi

20 3 1 1
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 99

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

100

Table 4.7 and Table 4.8 explain each of the fieldsin a JTLB entry.

Table 4.7 TLB Tag Entry Fields

Field Name Description
PageMask[28:13] Page Mask Value. The Page Mask defines the page size by masking the appropriate
VPNZ2 hits from being involved in a comparison. It is also used to determine which
address it is used to make the even-odd page (PFNO-PFN1) determination. Seethetable
below.

PageMask Page Size | Even/Odd Bank Select Bit
00_0000_0000_0000_00 4KB VAddr[12]
00_0000_0000_0000_11 16KB VAddr[14]
00_0000_0000_0011 11 64KB VAddr[16]
00_0000_0000 1111 11 256KB VAddr[18]
00_0000_0011 1111 11 1IMB VAddr[20]
00_0000_1111 1111 11 4MB VAddr[22]

00 0011 1111 1111 11 16MB VAddr[24]
00 1111 1111 1111 11 64MB VAddr[26]
11 1111 1111 1111 11 256MB VAddr[28]
The PageMask column above shows all the legal values for PageM ask. Because each
pair of bits can only have the same value, the physical entry in the JTLB will only save a
compressed version of the PageMask using only 8 bits. Thisis however transparent to
software, which will always work with a 16 bit field
VPN2[31:13] Virtual Page Number divided by 2. Thisfield contains the upper bits of the virtual page
number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:29 are
alwaysincluded in the TLB lookup comparison. Bits 28:13 are included depending on
the page size, defined by PageMask
G Global Bit. When set, indicates that this entry is global to all processes and/or threads
and thus disablesinclusion of the ASID in the comparison.
ASID[7:0] Address Space | dentifier. |dentifies which process or thread this TLB entry is associated
with.
Table 4.8 TLB Data Entry Fields
Field Name Description
PFNO[31:12], Physical Frame Number. Defines the upper bits of the physical address.
PFN1[31:12]

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.3 Translation Lookaside Buffer

Table 4.8 TLB Data Entry Fields (Continued)

Field Name Description
Co[2:0], Cacheability. Contains an encoded value of the cacheability attributes and determines
C1[2:0] whether the page should be placed in the cache or not. Thefield is encoded as follows:
C[2:0] Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Reserved
2 Uncached
3 Cacheable, noncoherent, write-back, write allocate
45,6 Reserved
7 Uncached Accelerated
DO, “Dirty” or Write-enable Bit. Indicates that the page has been written and/or iswritable. I
D1 this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page
cause a TLB Modified exception.
VO, Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping are vaid. If
V1 thisbit is set, accesses to the page are permitted. If the bit is cleared, accessesto the page
causea TLB Invalid exception.

In order to fill an entry in the JTLB, software executesa TLBWI or TLBWR instruction (See Section 4.4.3 “TLB
Instructions”). Prior to invoking one of theseinstructions, several CPO registers must be updated with the information
to bewrittento a TLB entry:

e PageMask is set in the CPO PageMask register.

e VPN2, and ASID are set in the CPO EntryHi register.

e PFNO, CO, DO, VO, and G hits are set in the CPO EntryLo0 register.

e PFN1,C1, D1, V1, and G bits are set in the CPO EntryLo1 register.

Note that the global bit “G” is part of both EntryLo0 and EntryLol. The resulting “G” bit inthe JTLB entry isthe log-
ical AND between the two fieldsin EntryLoO and EntryLol. Please refer to Chapter 6, “ CPO Registers of the 24K®
Core” on page 146 for further details.

The address spaceidentifier (ASID) hel psto reduce the frequency of TLB flushing on a context switch. The existence

of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID valueis stored in
the EntryHi register and is compared to the ASID value of each entry.

4.3.2 Instruction TLB

TheITLB isasmall, 4-entry fully associative TLB dedicated to perform translations for the instruction stream. The
ITLB only maps 4-Kbyte pages/sub-pages or 1-Mbyte pages/sub-pages.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 101

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

ThelTLB ismanaged by hardware and is transparent to software. If afetch address cannot be translated by the ITLB,
the JTLB is accessed trying to trandlate it in the following clock cycles. If successful, the trandation information is
copied into the ITLB and bypassed to the tag comparators. Thisresultsin an ITLB miss penalty of at least 2 cycles.
Depending on the JTLB implementation or if it is busy with other operations, it may take additional cycles.

4.3.3 Data TLB

The DTLB isasmall 8-entry, fully associative TLB which provides afaster trandation for Load/Store addresses than
is possible with the JTLB. The DTLB only maps 4-K byte pages/sub-pages or 1-Mbyte pages/sub-pages.

LikethelTLB, the DTLB is managed by hardware and is transparent to software. For simultaneous I TLB and DTLB
misses, the DTLB has priority and will access the JTLB first.

4.4 Virtual-to-Physical Address Translation

102

Converting avirtual addressto a physical address begins by comparing the virtual address from the processor with
the virtual addressesin the TLB. There is a match when the VPN of the address is the same asthe VPN field of the
entry, and either:

» TheGloba (G) hit of both the even and odd pages of the TLB entry are set, or

* TheASID field of the virtual addressis the same asthe ASID field of the TLB entry

Thismatch isreferred to asa TLB hit. If thereis no match, a TLB miss exception is taken by the processor and soft-
wareisalowed to refill the TLB from a page table of virtual/physical addressesin memory.

Figure 4.9 shows the logical trandation of avirtual addressinto a physical address.
In thisfigure the virtual address is extended with an 8-bit ASID, which reduces the frequency of TLB flushing during

acontext switch. This 8-bit ASID contains the number assigned to that process and is stored in the CPO EntryHi regis-
ter.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.4 Virtual-to-Physical Address Translation

Figure 4.9 Overview of a Virtual-to-Physical Address Translation

1.Virtual address (VA) represented by the virtual page
number (VPN) is compared with tag in TLB.

2. If there is a match, the page frame number
(PFNO or PFN1) representing the upper bits of the
physical address (PA) is output from the TLB the
TLB.

3. The Offset, which does not pass through the TLB, is
then concatenated with the PFN.

Virtual Address

G

ASID VPN | Offset I

ASID

TLB

Entry

PFN | Offset I

Physical Address

If there isavirtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and concat-
enated with the Offset, to form the physical address. The Offset represents an address within the page frame space. As
shown in Figure 4.9, the Offset does not pass through the TLB. Figure 4.10 shows aflow diagram of the addresstrans-
lation process for two page sizes. The top portion of the figure shows avirtual address for a4 KByte page size. The
width of the Offset is defined by the page size. The remaining 20 bits of the address represent the virtual page number
(VPN). The bottom portion of Figure 4.10 shows the virtual address for a 16 MByte page size. The remaining 8 bits

of the address represent the VPN.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

103

Memory Management of the 24K® Core

104

Figure 4.10 32-bit Virtual Address Translation

Virtual address with 1M (22%) 4-KByte pages
39 32 31 20 bits = 1M pages 12 1 0

ASID | VPN Offset

A J
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory.

Bit 31 of the virtual address

selects user and kernel address 32-hit Physical Address
spaces. 31 L
| PFNO/T | Offset I
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory.
A A
\Vl I
.
39 32 31 24 23 0
ASID VPN Offset

8 bits = 256 pages
Virtual Address with 256 (28)16-MByte pages

4.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two datafields. If amatch isfound, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The
granularity of JTLB mappingsis defined in terms of TLB pages. The JTLB supports pages of different sizes ranging
from 4KB to 256 MB in powers of 4. If amatch isfound, but the entry isinvalid (i.e., the V bit in the datafield is 0),
aTLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in
memory. Figure 4.11 shows the trand ation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into arandom entry. The
Random register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrap-
ping to the maximum onceits value is equal to the Wired register. Thus, TLB entries below the Wired value cannot be
replaced by a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for alivelock
situation, the Random register includes a 10-bit LFSR that introduces a pseudo-random perturbation into the decre-
ment.

The core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. On the
TLB write operation, the VPN2 field to be written is compared with all other entriesin the TLB. If amatch occurs, the
entry inthe TLB isvalid, and the entry being written is valid, the core takes a machine-check exception, setsthe TS
bit in the CPO Status register, and aborts the write operation. For further details on exceptions, please refer to Chapter
5, “Exceptions and Interrupts in the 24K® Core” on page 110. Thereisahidden bit in each TLB entry that is cleared
on aReset. This bit is set once the TLB entry iswritten and isincluded in the match detection. Therefore, uninitial-
ized TLB entrieswill not cause a TLB shutdown.

Compared with previous cores from MIPS Technologies, the 24K core uses a more relaxed check for multiple
matches in order to avoid machine check exceptions while flushing or initializing the TLB. On awrite, all matching
entries are disabled to prevent them from matching on future compares. A machine check isonly signaled if the entry

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.4 Virtual-to-Physical Address Translation

being written hasits valid bit set, the matching entry in the TLB hasitsvalid bit set, and the matching entry is not the
entry being written. The cases for the signalling of the machine check exception are enumerated in Table 4.9.

Table 4.9 Machine Check Exception

Existing Matching Entry equals | Existing Page | Written Page Machine
Match Written Entry Valid Bit Valid Bit Check?
No X X X No
Yes Yes X X No
Yes No 0 0 No
Yes No 0 1 No
Yes No 1 0 No
Yes No 1 1 Yes

4.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
regions, the 24K core provides two mechanisms.

4.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KByte to 256
MByte, in multiples of 4. The CPO PageMask register is|oaded with the desired page size, which is then entered into
the TLB when anew entry iswritten. Thus, operating systems can provide special-purpose maps. For example, atyp-
ical frame buffer can be memory mapped with only one TLB entry.

The 24K core implements the following page sizes:
4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M.

Software may determine which page sizes are supported by writing all onesto the CP0O PageMask register, then read-
ing the value back. For additional information, see Section 6.2.5 “UserLocal Register (CPO Register 4, Select 2)”.

4.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 24K core provides a random replacement al gorithm. However, the processor also
provides a mechanism whereby a programmable number of mappings can be locked into the TLB viathe CPO Wired
register, thus avoiding random replacement. Pleaserefer to Section 6.2.7 “Wired Register (CPO Register 6, Select 0)”
for further details.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 105
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

Figure 4.11 TLB Address Translation Flow in the 24K® Processor Core

For valid address space, Virtual Address (Input)

see the section describing
Modes of operation in this
chapter.

Exception

ksegO/kseg1
‘Address

Unmapped Ye
Address

No

<
-

Y

VPN
Match?

\

Y

Yes Y Y

Noncacheable TLB TLB Refil
Invalid

/

TLB
Modified

Access
Cache

Physical Address (Output)

4.4.3 TLB Instructions

Table 4.10 lists the TLB-related instructions. Refer to Chapter 12, “24K® Processor Core Instructions’ on page 303
for more information on these instructions.

Table 4.10 TLB Instructions

Op Code Description of Instruction
TLBP Trandation Lookaside Buffer Probe
TLBR Trandation Lookaside Buffer Read
106 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.5 Fixed Mapping MMU

Table 4.10 TLB Instructions (Continued)

Op Code Description of Instruction

TLBWI Trandation Lookaside Buffer Write Index
TLBWR Trandlation Lookaside Buffer Write Random

4.5 Fixed Mapping MMU

The 24K core optionally implements a simple Fixed Mapping (FM) memory management unit that is smaller than the
afull trandation lookaside buffer (TLB) and more easily synthesized. Likea TLB, the FM performs virtual-to-physi-
cal address trandation and provides attributes for the different memory segments. Those memory segmentswhich are
unmapped in a TLB implementation (kseg0 and ksegl) are trandated identically by the FM MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in the Config regis-
ter. Table 4.11 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) of the Config register.

Table 4.11 Cache Coherency Attributes

Config Register Fields
K23, KU, and KO Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate
1 Reserved
2 Uncached
3 Cacheable, noncoherent, write-back, write allocate

45,6 Reserved
7 Uncached Accelerated

With the FM MMU, no translation exceptions can be taken, although address errors are till possible.

Table 4.12 Cacheability of Segments with Fixed Mapping Translation

Virtual Address
Segment Range Cacheability
useg/kuseg 0x0000_0000- Controlled by the KU field (bits 27:25) of the Config register. Refer
OX7FFF_FFFF to Table 4.11 for the encoding.
ksegO 0x8000_0000- Controlled by the KO field (bits 2:0) of the Config register. See
OX9FFF_FFFF Table 4.11 for the encoding.
ksegl OxA000_0000- Always uncacheable
OxBFFF_FFFF
kseg2 0xC000_0000- Controlled by the K23 field (bits 30:28) of the Config register.
OxDFFF_FFFF Refer to Table 4.11 for the encoding.
kseg3 OxEO000_0000- Controlled by K23 field (bits 30:28) of the Config register. Refer to
OXFFFF_FFFF Table 4.11 for the encoding.

The FM performs a simple trandation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 4.12. When ERL=1, useg and kuseg become unmapped and uncached just like they do if thereisa TLB. The
ERL mapping is shown in Figure 4.13.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 107

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the 24K® Core

The ERL bit isusually never asserted by software. It is asserted by hardware after a Reset, NMI, or Cache Error. See
Section 5.8 “Exceptions’ for further information on exceptions.

Figure 4.12 FM Memory Map (ERL=0) in the 24K® Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 0xE000_0000
-
kseg2 kseg2
0xC000_0000 0xC000_0000
-
kseg1

0xA000_0000

kseg0
0x8000_0000

useg/kuseg

useg/kuseg 0x4000_0000
reserved

0x2000_0000
kseg0/kseg1

0x0000_0000 0x0000_0000

108 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

4.6 System Control Coprocessor

Figure 4.13 FM Memory Map (ERL=1) in the 24K® Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 OxE000_0000
-
kseg2 kseg2
0xC000_0000 0xC000_0000
-
kseg1
0xA000_0000 esEna)
kseg0
0x8000_0000 0x8000_0000
useg/kuseg
useg/kuseg
0x2000_0000
ksegO/kseg1
0x0000_0000 0x0000_0000

4.6 System Control Coprocessor

The System Control Coprocessor (CP0) isimplemented as an integral part of the 24K processor core and supports
memory management, address translation, exception handling, and other privileged operations. Certain CPO registers
are used to support memory management. Refer to Chapter 6, “ CPO Registers of the 24K® Core” on page 146 for
more information on the CPO register set.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 109

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 5

Exceptions and Interrupts in the 24K® Core

Programs executing on the 24K processor core receive exceptions from a number of sources, including translation
lookaside buffer (TLB) misses, arithmetic overflows, 1/O interrupts, and system calls. When one of these exceptions
is detected, the normal sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode interrupts are disabled and a software exception processor (also called ahandler), located at a specifici
address, is executed. The handler saves the context of the processor, including the contents of the program counter,
the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

When an exception occurs, the Exception Program Counter (EPC) register isloaded with alocation where execution
can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be used to
identify the instruction that caused the exception. For precise exceptions the restart location in the EPC register isthe
address of the instruction that caused the exception or, if the instruction was executing in a branch delay dot, the
address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software must
read the BD bit in the CPO Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For imprecise
exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

e Section 5.1 “Exception Conditions’

e Section 5.2 “Exception Priority”

e Section 5.3 “Interrupts’

e Section 5.4 “GPR Shadow Registers’

e Section 5.5 “Exception Vector Locations’

e Section 5.6 “General Exception Processing”

e Section 5.7 “Debug Exception Processing”

e Section 5.8 “Exceptions’

e Section 5.9 “Exception Handling and Servicing Flowcharts”
5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced thisinstruction are
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 110

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.2 Exception Priority

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the WB stage, the exception flag causes it to write various CPO registers
with the exception state, change the current program counter (PC) to the appropriate exception vector address, and
clear the exception bits of earlier pipeline stages.

For most exception types thisimplementation allows al preceding instructions to complete execution and prevents all
subsequent instructions from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug excep-
tions) is sufficient to restart execution. It also ensures that exceptions are taken in the order of execution; an instruc-
tion taking an exception may itself be killed by an instruction further down the pipeline that takes an exception in a
later cycle.

A number of exceptions can be taken imprecisely - that is, they are taken after the instruction that caused them has
completed and potentially after following instructions have compl eted.

5.2 Exception Priority

Table 5.1 lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptions
can happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 5.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by
setting the EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break L oad/Store Imprecise

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an addressin one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

TLBL Fetch TLB miss
Fetch TLB hit to page with V=0

ICache Error Parity error on |Cache access

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction modifying local state when CorExtend is not
enabled.

RI Execution of a Reserved Instruction.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 111

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Table 5.1 Priority of Exceptions (Continued)

Exception Description
FPE Floating Point exception
C2E Coprocessor2 Exception
I1S1 Implementation specific Coprocessor2 exception
Ov Execution of an arithmetic instruction that overflowed.
Tr Execution of atrap (when trap condition istrue).
DDBL / DDBS EJTAG Data Address Break (address only)
WATCH A reference to an addressin one of the watch registers (data).
AdEL Load address alignment error.
Load reference to protected address.
AdES Store address alignment error.
Store to protected address.
TLBL Load TLB miss.
Load TLB hit to page with V=0
TLBS Store TLB miss.
Store TLB hit to page with V=0
TLB Mod Storeto TLB page with D=0.
DCache Error Cache parity error - imprecise
L2 Cache Error L2 Cache ECC error - imprecise
DBE Load or store bus error - imprecise

5.3 Interrupts

112

Older 32-hit cores available from MIPS that implemented Release 1 of the Architecture included support for two soft-
ware interrupts, six hardware interrupts, and a special-purpose timer interrupt. The timer interrupt was provided
external to the core and typically combined with hardware interrupt 5 in an system-dependent manner. Interrupts
were handled either through the general exception vector (offset 16#180) or the special interrupt vector (16#200),
based on the value of Cause,. Software was required to prioritize interrupts as a function of the Causep bitsin the

interrupt handler prologue.

Release 2 of the Architecture, implemented by the 24K core, adds an upward-compatible extension to the Release 1
interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports
the use of an external interrupt controller by changing the interrupt architecture.

Additionally, internal performance counters were added to the 24K core. These counters can be set up to count vari-
ous events within the core. When the MSB of the counter gets set, it can trigger a performance counter interrupt. This
is handled like the timer interrupt - it is an output of the core and can be brought back into the core'sinterrupt pinsin
a system dependent manner.

5.3.1 Interrupt Modes

The 24K core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

e Interrupt compatibility mode, which actsidentically to that in an implementation of Release 1 of the Architec-
ture.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.3 Interrupts

* Vectored Interrupt (V1) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this modeis
denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is aways present on
the 24K core, so the VInt bit will alwaysread asa 1 for the 24K core.

» External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
24K core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate the
presence of an external interrupt controller.

The reset state of the processor isto interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the 24K core, is fully compatible with implementations of Release 1 of the Architecture.

Table 5.2 shows the current interrupt mode of the processor as a function of the coprocessor O register fields that can

affect the mode.
Table 5.2 Interrupt Modes
= (G]
0> o| 2| U
Sl = o? &?
2|2|C |22
SIS |E |5 |5
n 8 8 Interrupt Mode
1 |x X | x | x | Compatibility
x |0 X | x | x | Compatibility
X |X =0 | x | x | Compatibility
0|1 | #0| 1| O |Vectored Interrupt
0 (1 | #0 | x | 1 |Externa Interrupt Controller
0|1 |0 | O [O [Can'thappen - IntCtly,g can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller mode
isimplemented.
“X" denotesdon’t care

5.3.1.1 Interrupt Compatibility Mode

Thisis the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if Causey, = 0) or vector offset
16#200 (if Cause)y = 1). Thismodeisin effect if any of the following conditions are true:

* Causeyy =0

* Statusgpy =1

* IntCtl,g= 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/ *
* Assumptions:
* - Causery = 1 (if it were zero, the interrupt exception would have to
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 113

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

* be isolated from the general exception vector before getting
* here)

* - GPRs k0O and kl are available (no shadow register switches invoked in

* compatibility mode)

* - The software priority is IP7..IP0 (HW5..HWO, SWl..SwO0)

*

* Location: Offset 0x200 from exception base

*/
IVexception:
mfcO k0, CO_Cause /* Read Cause register for IP bits */
mfc0 k1, CO_Status /* and Status register for IM bits */
andi k0, kO, M_CauseIM /* Keep only IP bits from Cause */
and k0, kO, k1 /* and mask with IM bits */
beqg k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, kO /* Find first bit set, IP7..IP0; kO = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlyg */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu kO, kO, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop
/*
* Each interrupt processing routine processes a specific interrupt, analogous
* to those reached in VI or EIC interrupt mode. Since each processing routine
*

is dedicated to a particular interrupt line, it has the context to know

which line was asserted. Each processing routine may need to look further

to determine the actual source of the interrupt if multiple interrupt requests
are ORed together on a single IP line. Once that task is performed, the

*

*

*

* interrupt may be processed in one of two ways:
*
* - Completely at interrupt level (e.g., a simply UART interrupt). The
* SimpleInterrupt routine below is an example of this type.
* - By saving sufficient state and re-enabling other interrupts. In this
* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single
* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/

SimpleInterrupt:

/*

* Process the device interrupt here and clear the interupt request
* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor 0 state is such that an ERET
* will simple return to the interrupted code.
*/

eret /* Return to interrupted code */

NestedException:
/*

* Nested exceptions typically require saving the EPC and Status registers,
any GPRs that may be modified by the nested exception routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only

* X %

*

114 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.3 Interrupts

* to demonstrate the concepts.
*/

/* Save GPRs here, and setup software context */

mfcO k0, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfcO k0, CO_Status /* Get Status value */
sw k0O, StatusSave /* Save in memory */
1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and k0, kO, k1 /* Clear bits in copy of Status */
ins k0O, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0O, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of
* this example.

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0O, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtc0 k0O, CO_Status /* Restore the original value */
mtcO k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

5.3.1.2 Vectored Interrupt Mode
Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This

mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt modeisin effect if all of the following conditions are true:

* Config3y =1
* Config3ygc=0
e IntCtlyg#0

* Causey =1

* Statusggy =0

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 115

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

In V1 interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
and performance counter interrupts are combined in a system-dependent way (externa to the core) with the hardware
interrupts (the interrupt with which they are combined is indicated by the IntCtl,prpc) fi€lds) to provide the appro-
priate relative priority of the those interrupts with that of the hardware interrupts. The processor interrupt logic ANDs
each of the CauselP bitswith the corresponding Status,y, bits. If any of these valuesis 1, and if interrupts are enabled
(Status;g = 1, Statusgy = 0, and Statusgg, = 0), an interrupt is signaled and a priority encoder scans the valuesin
the order shown in Table 5.3.

Table 5.3 Relative Interrupt Priority for Vectored Interrupt Mode

Interrupt Vector Number
Relative Interrupt Interrupt Request Generated by
Priority Type Source Calculated From | Priority Encoder
Highest Priority | Hardware HW5 IP7 and IM7 7
HW4 IP6 and IM6 6
HW3 IP5 and IM5 5
HW2 IP4 and IM4 4
HW1 IP3and IM3 3
HWO IP2 and IM2 2
Software SW1 IP1and IM1 1
Lowest Priority SWO0 IPO and IMO 0

The priority order places arelative priority on each hardware interrupt and places the software interrupts at a priority
lower than al hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs
an encoded vector number that is used in the calculation of the handler for that interrupt, as described below. Thisis
shown pictorially in Figure 5.1.

116 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.3 Interrupts

Figure 5.1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate

—— IntClippg

IntCtI|p-|-|
- [p7 > Any Request Interrupt
HWS5 "‘4‘4‘jj::>444444jgﬂf§%.,
T/ — | IP6 B M6 L Status;e
o é p| IP5 P IM5 > 8 IntCtlyg
e ——1 8 p-| P4 | (M4 - UEJ }
HWA P | M3 - *g Vector 5 Exception
8 =
HWO —— L P2 - IM2 > n_I Number % Vector Offset
15] #
IP1 L IM1 L =
IPO -_IMO -l 5
Causer SRSMap
Causepg
Shadow Set
Number
-

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the | Vexcep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt
handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look asfollows:

NestedException:

/*

*

*

Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling

* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* below can not cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/
/* Use the current GPR shadow set, and setup software context */
mfcO k0O, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfcO k0, CO_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 117

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

118

/* for the current interrupt, and may include */
/* others */
and k0, k0, kil /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*
* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */
/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
1w k0O, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, CO_EPC /* and EPC */
mtcO k0O, CO_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.3.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide sup-
port for an external interrupt controller. Theinterrupt controller isresponsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
number of the highest priority interrupt. EIC interrupt modeisin effect if al of the following conditions are true:

* Config3ygc=1
¢ IntCtlyg#0

* Causey =1

* Statusggy =0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (Causepy_p) and the timer
and performance counter interrupt requests (Causery;pcy) to the external interrupt controller, where it prioritizes these

interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be a hard-wired
logic block, or it can be configurable based on control and status registers. This allows the interrupt controller to be
more specific or more general as afunction of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-
ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), isa6-bit
encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.3 Interrupts

1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes this
value on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

Status|p, (which overlays Status|p7. 1v2) iSinterpreted asthe Interrupt Priority Level (IPL) at which the processor is

currently operating (with avalue of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with Status|p_ to determineif the requested

interrupt has higher priority than the current IPL. If RIPL isstrictly greater than Status,p , and interrupts are enabled
(Status|g = 1, Statusgy = 0, and Statusgg, = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into Causeg,p. (Which overlays Cause|p; |pp) and signals the external
interrupt controller to notify it that the request is being serviced. The interrupt exception uses the value of Causegp.
as the vector number. Because Causeg,p,_ is only loaded by the processor when an interrupt exception is signaled, it
is available to software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
Causer,py , it aso loads the GPR shadow set number into SRSCtlgcgs, Which is copied to SRSCtlcgg When theinter-

rupt is serviced.
The operation of EIC interrupt mode is shown pictorially in Figure 5.2.

Figure 5.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Any Request
Cause
CauseTI g RIPL Interrupt
i g T Regue%
>
Slaluspy :_'; * IPL? Status”;«Di
Status;pg (7] !

4(%

Exception
Interrupt Service
e & | Started
E- Coad IntClys
S Fields
g' Requested o Vector % Exception
o —p & [IPL = Numb & Vector Offset
3 = » 8 umber 2
< 2
Rl C 5
2 2 — 2 Shadow Set
= - 3 adow Se
§ é' 5Lu Number
& 2 —
n

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the | Vexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 119
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

120

take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causeryp_ 0 Status,p_ to prevent lower priority interrupts from interrupting the handler. Such a routine might look
asfollows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
* getting up the appropriate GPR shadow set for the routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
* to demonstrate the concepts.

/* Use the current GPR shadow set, and setup software context */

mfcO k1, CO_Cause /* Read Cause to get RIPL value */

mfcO k0, CO_EPC /* Get restart address */

srl k1, k1, S_CauseRIPL /* Right justify RIPL field */

sw k0, EPCSave /* Save in memory */

mfcO k0O, CO_Status /* Get Status value */

sw k0O, StatusSave /* Save in memory */

ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */

mfcO k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

sw k1, SRSCtlSave

/* If switching shadow sets, write new value to SRSCtlpggq here */

ins k0O, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */

mtcO k0O, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */

/*

* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine

*/

/* Process interrupt here, including clearing device interrupt */
/*

* The interrupt completion code is identical to that shown for VI mode above.
*/

5.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtly, 5 to create the interrupt offset, which is added to 16#200 to create the

exception vector offset. For VI interrupt mode, the vector number isin the range 0..7, inclusive. For EIC interrupt
mode, the vector number isin the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtly, g field

specifies the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.4 GPR Shadow Registers

and the processor reverts to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, and Table
5.4 shows the exception vector offset for arepresentative subset of the vector numbers and values of the IntCtly, g field.

Table 5.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtlyg Field
Vector Number 2#00001 2#00010 2#00100 2#01000 2#10000
0 16#0200 16#0200 16#0200 16#0200 16#0200
1 16#0220 16#0240 16#0280 16#0300 16#0400
2 16#0240 16#0280 16#0300 16#0400 16#0600
3 16#0260 16#02C0 16#0380 16#0500 16#0800
4 16#0280 16#0300 16#0400 16#0600 16#0A00
5 16#02A0 16#0340 16#0480 16#0700 16#0C00
6 16#02C0 16#0380 16#0500 16#0800 16#0E00
7 16#02E0 16#03C0 16#0580 16#0900 16#1000

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00
62 16#09C0 16#1180 16#2100 16#4000 16#7EQ0
63 16#09E0 16#11C0 16#2180 16#4100 16#8000

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset <« 16#200 + (vectorNumber X (IntCtlyg || 2#00000))
5.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. Thisis done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the 24K core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core allows one (the normal GPRS), two, or four shadow sets. The highest
number actually implemented isindicated by the SRSCtlgg field. If thisfield is zero, only the normal GPRs are

implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode viaan
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRsin the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSSfield of the SRSCtl register providesthe
number of the current shadow register set, and the PSSfield of the SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in V1 interrupt mode, binding of avectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 121

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlcgg is copied to SRSCtlpgg, and SRSCtlcggis set

to the value taken from the appropriate source. On an ERET, the value of SRSCtlpggis copied back into SRSCtlcgg to

restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. Nofieldinthe SRSCtl register is updated if any of the following conditionsistrue. In this case, steps2 and 3 are
skipped.

* Theexception is one that sets Statusgg, : Reset or NMI.
e The exception causes entry into EJTAG Debug Mode
* Statusggy =1
* Statusgy =1
2. SRSCtlcgg iscopied to SRSCtlpgg
3. SRSCtlegg is updated from one of the following sources:

* Theappropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Cause)y = 1,
Config3ygc = 0, and Config3y, = 1. These are the conditions for a vectored interrupt.

* TheEICSSfield of the SRSCtl register if the exception is an interrupt, Causey, = 1, and Config3ygc = 1.
These are the conditions for a vectored EIC interrupt.

* TheESSfield of the SRSCtI register in any other case. Thisisthe condition for a non-interrupt exception, or
anon-vectored interrupt.

Similarly, therules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:
1. Nofieldinthe SRSCtl register is updated if any of the following conditionsistrue. In this case, step 2 is skipped.
* A DERET isexecuted

* AnERET isexecuted with Statusgg =1
2. SRSCtlpggis copied to SRSCtlcgg

These rules have the effect of preserving the SRSCtI register in any case of a nested exception or one which occurs
before the processor has been fully initialized (Statusggy = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlpgg, l0ading EPC with a
target address, and doing an ERET.

122 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.5 Exception Vector Locations

5.5 Exception Vector Locations

The Reset, Soft Reset, NMI and EJTAG Debug exceptions are vectored to a specific location as shown in Table 5.5
and Table 5.6. Addresses for all other exceptions are a combination of a vector offset and a vector base address. In
Release 1 of the architecture, the vector base address was fixed. In Release 2 of the architecture, softwareis allowed
to specify the vector base address via the EBase register for exceptions that occur when StatusBEV equals 0. Another
degree of flexibility in the selection of the vector base address, for use when StatusBEV equals 1, is provided viaa set
of input pins, SI_UseExceptionBase and SI_ExceptionBase[29:12]. Table 5.5 gives the vector base address when
SI_UseExceptionBase equals 0, as afunction of the exception and whether the BEV bit is set in the Status register.
Table 5.6 gives the vector base addresses when SI_UseExceptionBase equals 1. As can be seen in Table 5.6, when
SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV equals 0 are not affected.

Table 5.7 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 5.4 gives the offset from the base address in the case where StatusBEV = 0 and CauselV = 1. Table 5.8 com-
bines these two tables into one that contains all possible vector addresses as a function of the state that can affect the
vector selection. To avoid complexity in the table, it is assumed that IntCtIVS is 0.

Table 5.5 Exception Vector Base Addresses when SI_UseExceptionBase equals 0

StatUSBEV
Exception 0 1
Reset, NMI 16#BFC0.0000
EJTAG Debug (with ProbEn=0in 16#BFC0.0480
the EJTAG_Control_register)
EJTAG Debug (with ProbEn=1in 16#FF20.0200
the EJTAG_Control_register)
Cache Error EBases; 30| 1| 16#BFC0.0300
EB%ZS..]_Z ” 16#000
Note that EBases; 3q havethefixed
value2#10
Other EBasesy; 1o || 16#000 164BFC0.0200
Notethat EBases; 3q havethefixed
vaue2#10
‘|I' denotes hit string concatenation

Table 5.6 Exception Vector Base Addresses when SI_UseExceptionBase equals 1

StatUSBEV
Exception 0 1
Reset, NMI 2#10 || SI_ExceptionBase[29:12] || 16#000
EJTAG Debug (with ProbEn = 2#10 | |SI_ExceptionBase[29:12] || 16#480
0
inthe EJTAG_Control_register)
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 123

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

StatUSBEV
Exception 0 1
EJTAG Debug (with ProbEn = 16#FF20.0200
1
in the EJTAG_Control_register)
Cache Error EBases; 30| 1|
EBaseyg 15 || 16#000 2#101 || SI_ExceptionBase[28:12] || 16#300
Note that EBases; 3g have the fixed
value2#10
Other EBasesy; 1o || 16#000 2#10 || SI_ExceptionBase[29:12] || 16#200
Note that EBasez; 3g have the fixed
vaue2#10
‘|I' denotes hit string concatenation
Table 5.7 Exception Vector Offsets
Exception Vector Offset
TLB Refill, EXL =0 16#000
General Exception 16#180
Interrupt, Causeyy = 1 16#200 (thisisthe base of the vectored inter-
rupt table when Statusggy = 0)
Reset, NMI None (Uses Reset Base Address)
Table 5.8 Exception Vectors
Q
(]
@
= i
Sla|x|>|2
a | o w | o o
o |2 2] n (A
o2 |2 |3
x |8 |8 |® 9:
Lg o la |9 |2 Vector
n =
) Ll
Exception Gl Assumes that IntCtlyg =0
Reset, NMI 0 X X 16#BFC0.0000
Reset, NM| 1| x| x| x| X 2#10 || SI_ExceptionBase[29:12] || 16#000
EJTAG Ol x|x]|x|O 16#BFC0.0480
Debug
EJTAG 1| x| x|x]O 2#10 || SI_ExceptionBase[29:12] || 16#480
Debug
EJTAG X[x| x| x |1 16#FF20.0200
Debug
TLB Réfill 0|0 1 X X 16#EBase[31:12] || 16#180
TLB Refill O[1]0]| x|x 16#BFC0.0200
TLB Refill 1110 x|Xx 2#10 || SI_ExceptionBase[29:12] || 16#200
TLB Refill O[1] 1] x|x 16#BFC0.0380
124 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.6 General Exception Processing

Table 5.8 Exception Vectors (Continued)

()

0

©

= (T

c

slalx]=>]|8

"a m 1] [s

o |2 2} n (o

o |2 |2 |3

x |18 |8 |8 |9

Wig |o |[© |8 Vector

%) =

4 w
Exception | Assumes that IntCtlyg = 0
TLB Refill 1111 |x]|x 2#10 || SI_ExceptionBase[29:12] || 16#380
CacheError [0| O | x | x | x 16#EBase[31:30] || 2#1 || EBase[28:12] || 164100
Cache Error O 1] x| x|x 16#BFC0.0300
Cache Error 1] 1] x| x]|x 2#101 || SI_ExceptionBase[28:12] || 16#300
Interrupt x| 0| 0] 0]Xx l6#EBase[31:12] || 16#180
Interrupt x| 0l0o]1]x 16#EBase[31:12] || 16#200
Interrupt 0| 1(0f0]|x 16#BFC0.0380
Interrupt 1]1[0f0]|Xx 2#10 || SI_ExceptionBase[29:12] || 16#380
Interrupt O|1(0f1]|x 16#BFC0.0400
Interrupt 111]0|1]x 2#10 || SI_ExceptionBase[29:12] || 16#400
All others 00| x| x|x l6#EBase[31:12] || 16#180
All others O 1] x| x|x 16#BFC0.0380
All others 1] 1] x| x]|x 2#10 || SI_ExceptionBase[29:12] || 16#380

‘X" denotes don’t care, ‘|| denotes bit string concatenation

5.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

o If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 6.24). The value loaded into the EPC
register is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction isin
the delay slot of a branch or jJump which has delay dots. Table 5.9 shows the value stored in each of the CPO PC
registers, including EPC. For implementations of Release 2 of the Architectureif Statusgg, = 0, the CSSfield in

the SRSCtl register is copied to the PSS field, and the CSS value is |oaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD hit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtI register is not changed.

Table 5.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC
No No Address of the instruction
No Yes Address of the branch or jump instruction (PC-4)
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 125

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Table 5.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC
Yes No Upper 31 bits of the address of the instruction, combined
with the |SA Mode bit
Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the I1SA Mode bit

» TheCE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field isloaded, but not defined, for any exception type other than a coprocessor unusable exception.

* TheEXL bit isset in the Status register.
* Theprocessor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD hit in the Cause register unlessit wishesto
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. Thisis noted in the descrip-
tion of each exception type below.

Operation:

/* If Statusgy;, is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Causepp nor SRSCtl are modified */
if Statusgy;, = 1 then
vectorOffset « 16#180
else
/* For implementations that include the MIPSl6e ASE, calculate potential */
/* PC adjustment for exceptions in the delay slot */
if Configley = 0 then
restartPC <« PC
branchAdjust <« 4 /* Possible adjustment for delay slot */
else
restartPC <« PC3; 1 || ISAMode
if (ISAMode = 0) or ExtendedMIPSlé6Instruction
branchAdjust « 4 /* Possible adjustment for 32-bit MIPS delay slot */
else
branchAdjust <« 2 /* Possible adjustment for MIPS16 delay slot */
endif
endif
if InstructionInBranchDelaySlot then
EPC ¢« restartPC - branchAdjust/* PC of branch/jump */
Causegp « 1

else
EPC ¢« restartPC /* PC of instruction */
Causegp < 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet < SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset « 16#000

126 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.7 Debug Exception Processing

elseif (ExceptionType = Interrupt) then
if (Causery = 0) then
vectorOffset « 16#180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset « 16#200
else
if Config3ygre = 1 then
VecNum < Causegypr,
NewShadowSet < SRSCtlgicgs
else
VecNum ¢« VIntPriorityEncoder ()
NewShadowSet <« SRSMapiprX4+3..1p1.54
endif
vectorOffset <« 16#200 + (VecNum X (IntCtlyg || 2#00000))
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Causeyy = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */

/* Release 2 of the architecture */

if ((ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) and
(Statusgg, = 0)) then
SRSCtlpgg ¢ SRSCtlcgg
SRSCtlcgg ¢« NewShadowsSet

endif

endif /* if Statusgy, = 1 then */

Causeqy ¢ FaultingCoprocessorNumber
Causegyccoge < ExceptionType
Statusgy, < 1

if Configlyy = 1 then
ISAMode « O
endif

/* Calculate the vector base address */
if Statusggy = 1 then

vectorBase « 16#BFC0.0200
else

if ArchitectureRevision = 2 then

/* The fixed value of EBasej3; 37 forces the base to be in kseg0 or ksegl */
vectorBase ¢« EBase3; 15 || 16#000
else

vectorBase « 16#8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */

PC < vectorBases; 3g || (vectorBase,q o + vectorOffset,q)
/* No carry between bits 29 and 30 */

5.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

MIPS32® 24K® Processor Core Family Software User’s Manual, Revision 03.11 127

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

128

» TheDEPC register isloaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if
theinstruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction isin the delay slot

of abranch.

 TheDSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bitsat [5:0]) in the Debug register are updated appropri-

ately depending on the debug exception type.

» Halt and Doze hitsin the Debug register are updated appropriately.

e DM bitinthe Debug register isset to 1.

» The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unlessit wishesto identify the address of the instruction that actually caused the debug exception.

A unique debug exception isindicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bitsat [5:0])
in the Debug register.

No other CPO registers or fields are changed due to the debug exception, thus no additiona state is saved.

Operation:

if InstructionInBranchDelaySlot then

DEPC « PC-4
Debugppp ¢« 1
else
DEPC <« PC
Debugppp ¢« O
endif
Debudps pits at at [5:0] ¢ DebugExceptionType
Debugy,i: ¢ HaltStatusAtDebugException
Debugp,,. ¢ DozeStatusAtDebugException
Debugpy « 1
if EJTAGControlRegisterp, prrgp = 1 then
PC <« OxFF20_0200
else
PC « O0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-

Trap bit in the EJTAG Control register (ECR), as shown in Table 5.10.

Table 5.10 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register

Debug Exception Vector Address

0

OXBFCO_0480

1

O0xFF20_0200 in dmseg

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

5.8 Exceptions

5.8 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 5.1.

5.8.1 Reset Exception

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When
a Reset exception occurs, the processor performs afull reset initialization, including aborting state machines, estab-
lishing critical state, and generally placing the processor in a state in which it can execute instructions from uncached,
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

The Random register isinitialized to the number of TLB entries- 1.

» TheWired register isinitialized to zero.

» The Config register isinitialized with its boot state.

« TheRP BEV, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.
* Thel, R, and W fields of the WatchLo register areinitialized to 0.

» TheErrorEPC register isloaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of abranch. Otherwise, the ErrorEPC register isloaded with PC. Note that this value may or
may not be predictable.

* PCisloaded with OxBFCO_0000.

Cause Register ExcCode Value:

None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Random « TLBEntries - 1

Wired « 0

Config « ConfigurationState

Statusgp < O

Statusppy < 1

Statuspg < 0

Statusgg ¢« 0

Statusyyr < 0

Statusggp < 1

WatchLo; < 0

WatchLog < 0

WatchLoy < 0

if InstructionInBranchDelaySlot then
ErrorEPC <« PC - 4

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 129

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

130

else

ErrorEPC « PC
endif
PC <« 0xBFCO0_0000

5.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to an instruc-
tion without adelay slot, otherwise two instructions are allowed to execute since the jump/branch and the instruction
in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jJump/branch and the instruction in the delay slot is executed in one

step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For anormal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP
instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector

5.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler isthrough. The DBD hit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8 Exceptions

Additional State Saved
None

Entry Vector Used
Debug exception vector

5.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NM1 exception will be taken each timeit is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

« TheBEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

» TheErrorEPC register isloaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

* PCisloaded with OxBFCO_0000.

Cause Register ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Statusgpy < 1
Statuspg < 0
Statusgg < 0
Statusyyr < 1
Statusggp < 1
if InstructionInBranchDelaySlot then
ExrrorEPC « PC - 4
else
ErrorEPC <« PC
endif
PC « O0xBFCO0_0000

5.8.5 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
causes a machine check exception:

e The detection of multiple matching entriesin the TLB. The core detects this condition on a TLB write and pre-
vents the write from being completed. The TS bit in the Status register is set to indicate this condition. Thishitis
only a status flag and does not affect the operation of the device. Software clears this bit at the appropriate time.
This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be completed.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 131

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Cause Register ExcCode Value:
MCheck

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.6 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requestsis
enabled by the Status register and the interrupt input is asserted. See Section 5.3 “Interrupts’ for more details about
the processing of interrupts.

Register ExcCode Value:
Int

Additional State Saved:

Table 5.11 Register States an Interrupt Exception

Register State Value

Cause|p indicates the interrupts that are pending.

Entry Vector Used:

See Section 5.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts’ for the entry vector used,
depending on the interrupt mode the processor is operating in.

5.8.7 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

5.8.8 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug isaso zero. If

132 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8 Exceptions

any of those bitsis aone at the time that a watch exception would normally be taken, then the WP bit in the Cause
register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the Cause reg-
ister to determine if the EPC register points at the instruction that caused the watch exception, or if the exception
actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

Additional State Saved:

Table 5.12 Register States on a Watch Exception

Register State Value

Causeyp Indicates that the watch exception was deferred until after
Statusgy , Statusgg , and Debugpy, were zero. Thisbit
directly causes awatch exception, so software must clear

this bit as part of the exception handler to prevent awatch
exception loop at the end of the current handler execution.

WatchHij g | Set for the watch channel that matched, and indicates
which type of match there was.

Entry Vector Used:
General exception vector (offset 0x180)

5.8.9 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

e Fetchaninstruction, load aword, or store aword that is not aligned on aword boundary
e Load or store ahafword that is not aligned on a halfword boundary
» Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on aword boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exceptionistaken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by aload or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was aload or an instruction fetch

ADES: Reference was a store

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 133

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Additional State Saved:

Table 5.13 CPO Register States on an Address Exception Error

Register State Value

BadVAddr failing address
Contextypy2 | UNPREDICTABLE

EntryHiypy2 | UNPREDICTABLE

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

5.8.10 TLB Refill Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches areferenceto a
mapped address space and the EXL bit is 0 in the Status register. Note that thisis distinct from the case in which an
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:
TLBL: Reference was aload or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 5.14 CPO Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address.

Context The BadVPN2 field contains VA 3.3 of the failing
address.

EntryHi The VPN2 field contains VAg;.13 of the failing address;

the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:
TLB refill vector (offset 0x000) if Statusgy, = O at the time of exception;

general exception vector (offset 0x180) if Statusgy = 1 at the time of exception
5.8.11 TLB Invalid Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

* No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

134 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8 Exceptions

* A TLB entry matches areference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:
TLBL: Reference was aload or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 5.15 CPO Register States on a TLB Invalid Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA 3.3 0f the failing
address.

EntryHi The VPN2 field contains VA3, .13 of the failing address;

the ASID field containsthe ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

5.8.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception
is not maskable. To avoid disturbing the error in the cache array the exception vector is to an unmapped, uncached
address. This exception can be imprecise and the ErrorEPC may not point to the instruction that saw the errorL 2
cache errors are considered to be imprecise. An L2 cache error on adataload operation can potentially corrupt the
target GPR.

Cause Register ExcCode Value
N/A

Additional State Saved

Table 5.16 CPO Register States on a Cache Error Exception

Register State Value

CachekErr Error state
ErrorEPC Restart PC

Entry Vector Used
Cache error vector (offset 16#100)

5.8.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminatesin an error. The bus error exception can occur on either an instruc-

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 135

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

tion fetch or a dataread. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on
an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus Error exceptions on instruction fetch (IBE) are precise. Bus errors on data load operations (DBE) are considered
to be imprecise. These errors are taken when the ERR code is returned on the OC_SResp input. Bus errors on data
load operations can potentially corrupt the target GPR.

Cause Register ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on adatareference

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

5.8.15 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A sys-
tem call exception occurs when a SY SCALL instruction is executed.

Cause Register ExcCode Value:
Sys

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.16 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A bresk-
point exception occurs when a BREAK instruction is executed.

136 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8 Exceptions

Cause Register ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when areserved or undefined major opcode or function field is executed.
Thisincludes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:
RI

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

» acorresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

» CPOinstructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:
CpuU

Additional State Saved:

Table 5.17 Register States on a Coprocessor Unusable Exception

Register State Value
Causecg unit number of the coprocessor being referenced
Entry Vector Used:

General exception vector (offset 0x180)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 137

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

138

5.8.19 Execution Exception — CorExtend block Unusable

The CorExtend block unusable exception is one of the execution exceptions. All of these exceptions have the same
priority. A CEU exception occurs when an attempt is made to execute a CorExtend instruction when the CEE bitin
the Status register is not set. It is dependent on the implementation of the CorExtend block, but this exception should
be taken on any CorExtend instruction that modifies local state within the CorExtend block and can optionally be
taken on other CorExtend instructions.

Cause Register ExcCode Value:

CEU

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.20 Execution Exception — Floating Point Exception

A floating point exception isinitiated by the floating point coprocessor.

Cause Register ExcCode Value:
FPE

Additional State Saved:

Table 5.18 Register States on a Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception

Entry Vector Used:
General exception vector (offset 0x180)

5.8.21 Execution Exception — Integer Overflow

Theinteger overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2's complement overflow.

Cause Register ExcCode Value:
Ov

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.8 Exceptions

5.8.22 Execution Exception — Trap

Thetrap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap excep-
tion occurs when atrap instruction resultsin a TRUE value.

Cause Register ExcCode Value:
Tr

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.23 Execution Exception — C2E

A C2E exception is signalled from the optional coprocessor2 block on a coprocessor instruction.

Cause Register ExcCode Value:
C2E

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.24 Execution Exception — IS1

An ISl exception is signalled from the optional coprocessor2 block on a coprocessor instruction.

Cause Register ExcCode Value:
IS1

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

5.8.25 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the |oad/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception

has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 139

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Debug Register Debug Status Bit Set:
DDBL for aload instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.26 TLB Modified Exception — Data Access

During adata access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
ditionistrue:

The matching TLB entry isvalid, but not dirty.

Cause Register ExcCode Value:
Mod

Additional State Saved:

Table 5.19 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA 3.3 of thefailing
address.

EntryHi The VPN2 field contains VA3;.13 Of the failing address;

the ASID field containsthe ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)

5.9 Exception Handling and Servicing Flowcharts

140

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

General exceptions and their exception handler
TLB miss exception and their exception handler
Reset and NMI exceptions, and a guideline to their handler.

Debug exceptions

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.9 Exception Handling and Servicing Flowcharts

Generally speaking, the exceptions are handled by hardware; the exceptions are then serviced by software. Note that
unexpected debug exceptions to the debug exception vector at 0OXBFCO_0200 may be viewed as areserved instruction
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at
return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET
instruction returns to the addressin the DEPC register.

Figure 5.3 General Exception Handler (HW)

Exceptions other than Reset, NMI, or first-level TLB missNote: Interrupts can be masked by IE or
IMs and Watch is masked if EXL = 1

Comments
EnHi and Context are set only for TLB- Invalid,
EntryHi « VPN2, ASID Modified, & Refill exceptions. BadVA is set only
Context « VPN2 for TLB- Invalid, Modified, Refill- and VCED/I
Set Cause EXCCode,CE exceptions. Note: not set if it is a Bus Error

BadVA « VA

Check if exception within another
exception

EPC « (PC-4) EPC «PC
Cause.BD «1 Cause.BD «0

EXL 1 -

Processor forced to Kernel Mode
l &interrupt disabled

=1 (bootstrap)

=0 (normal)

PC « 0x8000_0000 + 180 PC « 0xBFC0_0200 + 180
(unmapped, cached) (unmapped, uncached)

I - I
l

To General Exception Servicing Guidelines

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 141
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Figure 5.4 General Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions

not possible
MFCO - * EXL=1 so Watch, Interrupt exceptions disabled
Context, EPC, Status, Cause < * 0S/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions possible.

Y

MTCO -

UM (S_etoyséiiuigftfé%1 (Optional - only to enable Interrupts while keeping Kernel Mode)

Check Cause value & Jump to appropriate * After EXL=0, all exceptions allowed. (except

Senvice Code interrupt if masked by |E)
l' _________________ |
| Service Code :
Lo e
EXL=1
MTCO -
EPC,STATUS
* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
ERET branch delay slot
*PC« EPC;EXL«0
*LLbit < 0
142 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.9 Exception Handling and Servicing Flowcharts

Figure 5.5 TLB Miss Exception Handler (HW)

/

EntryHi « VPN2, ASID
Context « VPN2
Set Cause EXCCode,CE
BadVA « VA

Check if exception within another
exception

EPC « (PC-4) EPC «PC
Cause.BD «1 Cause.BD «0

\ \
Vec. Off. = 0x000 Vec. Off. = 0x180

Points to General Exception

A

Processor forced to Kernel Mode
EXL 1 &interrupt disabled

=0 (normal) =1 (bootstrap)

Y
PC « 0x8000_0000 + Vec.Off.(unmapped. PC « 0xBFC0_0200 + Vec.Off.(unmapped.
cached) uncached)

[> |

To TLB Exception Servicing Guidelines

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 143

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the 24K® Core

Figure 5.6 TLB Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB Refill exceptions
not possible

* EXL=1 so Watch, Interrupt exceptions disabled

* 0S/System to avoid all other exceptions

MFCO-CONTEXT <
* Only Reset, Soft Reset, NMI exceptions possible.

: * Load the mapping of the virtual address in Context Reg. Move

\ it to EntryLo and write into the TLB

! * There could be a TLB miss again during the mapping of the data

: or instruction address. The processor will jump to the general

| exception vector since the EXL is 1. (Option to complete the first
Service Code : < level refill in the general exception handler or ERET to the original

\ instruction and take the exception again)

l

l

l

l

l

l

* ERET is not allowed in the branch delay slot of another Jump
Instruction

* Processor does not execute the instruction which is in the ERET’s
ERET < branch delay slot

*PC«— EPC;EXL«0

* LLbit < 0

144 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

5.9 Exception Handling and Servicing Flowcharts

Figure 5.7 Reset and NMI Exception Handling and Servicing Guidelines

Reset Exception

Random «— TLBENTRIES - 1
NMI Exception Wired «— 0
atus: Config < Reset state
— BEV « 1 Status:
% TS0 RP «0
= SR« 0 BEV « 1
= NMI « 1 TS«0
2 ERL 1 SR« 0
T NMI < 0
s ERL « 1
k= WatchLo:
5] L, RW 0
>
L
=
=
it >
@
(7]
[
o
3 ErrorEPC « PC
D
(7]
(5]
o

PC « 0xBFC0_0000

=

L

2

]

=s

] 28 F[———— " —-—=—=—==-- \

8 | \

n = \ . \

& § | NMI Service Code |

£SO -

D L !

3 !

wn

(&) Y

o« ERET

(Optional)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 145

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 6

CPO Registers of the 24K® Core

The System Control Coprocessor (CP0) provides the register interface to the 24K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CPO register has a
unique number that identifiesit; this number isreferred to as the register number. For instance, the PageMask register
isregister number 5. All registers also have a select number from 0-7, if noneis specified, it is0. After updating a
CPO register thereis ahazard period of zero or more instructions from the update instruction (MTCO0) and until the
effect of the update has taken place in the core.

This chapter contains the following sections:

Section 6.1 “CPO Register Summary”

Section 6.2 “CPO Register Descriptions’

6.1 CPO Register Summary

Table 6.1 lists the CPO registers in numerical order and gives a brief description. The individual registers are

described throughout this chapter.

Table 6.1 CPO Registers

Register Per
Number | Select Name Function VPE | TC |Proc

0 0 Indext Index into the TLB array. Thisregister isreserved if the TLB isnot | X
implemented.

1 0 Random? Randomly generated index into the TLB array. Thisregister is X
reserved if the TLB is not implemented.

2 0 EntryLo0* Low-order portion of the TLB entry for even-numbered virtual
pages. Thisregister isreserved if the TLB is not implemented.

3 0 EntryLo1t Low-order portion of the TLB entry for odd-numbered virtual pages. | X
Thisregister isreserved if the TLB is not implemented.

4 0 Context? Pointer to page table entry in memory. Thisregister isreservedif the | X
TLB is not implemented.

4 2 UserLocdl User information that can be written by privileged software and read X
viaRDHWR register 29

5 0 PageMask PageMask controls the variable page sizesin TLB entries. Thisreg- | X
ister isreserved if the TLB is not implemented.

6 0 Wired?! Controls the number of fixed (“wired”) TLB entries. Thisregisteris | X
reserved if the TLB is not implemented.

7 0 HWREna Enables access viathe RDHWR instruction to selected hardware X
registers in non-privileged mode.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 146

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.1 CPO Register Summary

Table 6.1 CPO Registers (Continued)

Register Per
Number | Select Name Function VPE | TC |Proc
8 0 BadVAddr2 Reports the address for the most recent address-related exception.
9 0 Count2 Processor cycle count. X
10 0 EntryHit High-order portion of the TLB entry. Thisregister isreserved if the | X X3
TLB is not implemented.
11 0 Compare? Timer interrupt control. X
12 0 Status? Processor status and control. X x4
12 1 IntCtl2 Setup for interrupt vector and interrupt priority features. X
12 2 SRSCH? Shadow register set selectors X
12 3 SRSM ap2 In vectored interrupt mode, determineswhich shadow setisused for | X
each interrupt source.
13 0 Cause? Cause of |ast exception. X
14 0 EPC2 Program counter at last exception. X
15 0 PRId Processor identification and revision. X
15 1 EBase Exception base address. X
16 0 Config Configuration register. X
16 1-2 | Configl-2 Configuration for MMU, caches etc. X
16 3 Config3 Interrupt and ASE capabilities X
16 7 Config7 24K family-specific configuration register. X
18 0-1 | wWatchLo0-12 Low-order watchpoint address associated with instruction watch- X
points.
18 2-3 | WatchLo2-32 L ow-order watchpoint address associated with data watchpoints. X
19 0-1 |wWatchHio-12 High-order watchpoint address used for instruction watchpoints. X
19 2-3 | WatchHi2-32 High-order watchpoint address used for data watchpoints. X
23 0 Debug® EJTAG Debug register. X
24 0 DEPC® Restart address from last EJTAG debug exception. X
25 0 PerfCtlO Performance counter O control. X
25 1 PerfCnt0 Performance counter O. X
25 2 PerfCtl1 Performance counter 1 control. X
25 3 PerfCntl Performance counter 1. X
26 0 ErrCtl Softwaretest enable of way-select and DataRAM arraysfor I-Cache | X
and D-Cache.
27 0 CacheErr Records information about cache parity errors X
28 0 ITagLo Cache tag read/write interface for |-cache. X
28 1 IDatalo Low-order data read/write interface for |-cache. X
28 2 DTagLo Cache tag read/write interface for D-cache. X
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 147

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.1 CPO Registers (Continued)

Register Per
Number | Select Name Function VPE | TC |Proc
28 3 DDatalo Low-order data read/write interface for D-cache. X
28 4 L23TagLo Cache tag read/write interface for L2-cache. X
28 5 L23Datalo Low-order data read/write interface for L2-cache. X
29 1 IDataHi High-order data read/write interface for I-cache. X
29 5 L23DataHi High-order data read/write interface for L2-cache. X
30 0 ErrorEPC2 Program counter at last error. X
31 0 DeSAVE® Debug handler scratchpad register. X

1. Registers used in memory management.

2. Registers used in exception processing.

3. ASID per-TC. See Section 6.2.11 “EntryHi Register (CPO Register 10, Select 0)”.

4. KU and CUO-3 per-TC. See Section 6.2.13 “ Status Register (CPO Register 12, Select 0)”.
5. Registers used in debug.

6.2 CPO Register Descriptions

The CPO registers provide the interface between the | SA and the architecture. Each register is discussed below, with
the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For single bit fields, the name is truncated to a single character which is then shown outside bracketsin
the Fields|Name column; for example, (TLB)S for the TLB Sharable bit in the MVPConfO register. For the read/write
properties of the field, the following notation is used:

Table 6.2 CPO Register Field Types

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visible by hardware
reads.

If the reset state of thisfield is“Undefined,” either software or hardware must initialize the value before the first
read will return a predictable value. This should not be confused with the formal definition of UNDEFINED

behavior.

R A field that is either static or is updated only by hard- | A field to which the value written by softwareis
ware. ignored by hardware. Software may write any value to
If the Reset State of thisfield iseither “0” or “Preset”, | thisfield without affecting hardware behavior. Software
hardware initializes this field to zero or to the appropri- | reads of thisfield return the last value updated by hard-
ate state, respectively, on powerup. ware.
If the Reset State of thisfield is“Undefined”, hardware | If the Reset State of thisfield is“Undefined,” software
updates this field only under those conditions specified | reads of thisfield result in an UNPREDICTABLE
in the description of thefield. value except after a hardware update done under the

conditions specified in the description of the field.
W A field that can be written by software but which can not be read by software.

Software reads of thisfield will return an UNDEFINED value.

148

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.2 CPO Register Field Types (Continued)

Notation Hardware Interpretation Software Interpretation
0 A field that hardware does not update, and for which A field to which the value written by software must be
hardware can assume a zero value. zero. Software writes of non-zero values to thisfield

may result in UNDEFINED behavior of the hardware.
Software reads of thisfield return zero aslong as all
previous software writes are zero.

If the Reset State of thisfield is“Undefined,” software
must write this field with zero before it is guaranteed to
read as zero.

6.2.1 Index Register (CPO Register 0, Select 0)

The Index register is a 32-bit read/write register that contains the index used to accessthe TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field isimplementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUsiis Ceiling(Log,(TLBERNtries)).

The operation of the processor isUNDEFINED if avalue greater than or equal to the number of TLB entriesis writ-
ten to the Index register.

Thisregister isonly valid with the TLB. It isreserved if the FM isimplemented.

Figure 6.1 Index Register Format
31 30 6 5 0

P 0 Index

Table 6.3 Index Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
P 31 Probe Failure. Set to 1by hardware when the previous TLBProbe R/W Undefined
(TLBP) instruction failed to find amatch in the TLB.
0 30:6 Must be written as zeros; returns zeros on reads. 0 0
Index 5:0 Index to the TLB entry affected by the TLBRead and TLBWrite R/W Undefined
instructions.
For 16 or 32 entry TLBs, behavior is undefined if index pointsto a
non-existent entry.

6.2.2 Random Register (CPO Register 1, Select 0)

The Random register is aread-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 149

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

* Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register isthefirst entry available to be written by a
TLB Write Random operation.

* Anupper bound is set by the total number of TLB entries minus 1.
The Random register is decremented by one almost every clock, wrapping after the value in the Wired register is
reached. To enhance the level of randomness and reduce the possibility of alive lock condition, an LFSR register is

used which prevents the decrement pseudo-randomly.

The processor initializes the Random register to the upper bound on a Reset exception and when the Wired register is
written.

Thisregister isonly valid with the TLB. It isreserved if the FM isimplemented.

Figure 6.2 Random Register Format
31 6 5 0

0 Random

Table 6.4 Random Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
0 31:6 Must be written as zero; returns zero on reads. 0 0
Random 5.0 TLB Random Index R TLB Entries- 1

6.2.3 EntryLoO and EntryLol Registers (CPO Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions.
For aTLB-based MMU, EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages. The
contents of the EntryLo0 and EntryLo1 registers are undefined after an address error, TLB invalid, TLB modified, or
TLB refill exception. These registers are only valid when the TLB-based memory management unit is present. They
arereserved if the FM-style MMU is present.

Figure 6.3 EntryLoO, EntryLol Register Format
31 30 29 26 25 6 5 3 2 1 O

R 0 PFN C DIVI|G

Table 6.5 EntryLo0O, EntryLol Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
R 31:30 | Reserved. Should be ignored on writes; returns zero on reads. R 0
150 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.5 EntryLoO, EntryLol Register Field Descriptions (Continued)

Fields

Read /
Name Bit(s) Description Write Reset State
0 29:26 | These 4 bits are normally part of the PFN, however, since the R 0

24k supports only 32 bits of physical address, the PFN is only
20 bits wide; therefore, bits 29:26 of this register must be writ-
ten with zeros.

PFN 25:6 Page Frame Number: Contributes to the definition of the high- R/W Undefined
order bits of the physical address. The PFN field correspondsto
bits 31..12 of the physical address.

C 53 Coherency attribute of the page. See Table 6.6. R/W Undefined

D 2 “Dirty” or write-enable bit: Indicates that the page has been R/W Undefined
written, and/or iswritable. If this bit is a one, then storesto the
page are permitted. If this bit is a zero, then stores to the page
cause a TLB Modified exception.

\Y 1 Valid bit: Indicates that the TLB entry, and thus the virtual R/W Undefined
page mapping are valid. If thishit is a one, then accesses to the
page are permitted. If thisbit isazero, then accessesto the page
cause a TLB Invalid exception

G 0 Global bit: On aTLB write, thelogical AND of the G hitsin R/W Undefined
both the EntryLo0O and EntryLo1 registers become the G hitin
the TLB entry. If the TLB entry G hit isa one, then the ASID
comparisons are ignored during TLB matches. On aread from
aTLB entry, the G bits of both EntryLoO and EntryLo1 reflect
the state of the TLB G bit.

Table 6.6 lists the encoding of the C field of the EntryLo0 and EntryLo1l registers and the KO field of the Config regis-
ter.

Table 6.6 Cache Coherency Attributes

C[5:3] Value Cache Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Reserved
2 Uncached
3 Cacheable, noncoherent, write-back, write allocate
45,6 Reserved
7 Uncached Accelerated

6.2.4 Context Register (CPO Register 4, Select 0)

The Context register is aread/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TL B with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVAddr register but is organized in such away that the operating system can
directly reference an 8-byte page table entry (PTE) in memory.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 151

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core
A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VVAg;.13 of the virtual address to be written
into the BadVPN2 field of the Context register. The PTEBase field iswritten and used by the operating system.
The BadVPNZ2 field of the Context register is not defined after an address error exception.

Figure 6.4 Context Register Format
31 23 22 4 3
PTEBase BadVPN2 0

Table 6.7 Context Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
PTEBase 31:23 | Thisfield isfor use by the operating system and is normally written R/W Undefined

with avalue that allows the operating system to use the Context
Register as a pointer into the current PTE array in memory.

BadVPN2 22:4 Thisfield iswritten by hardware on a TLB miss. It contains bits R Undefined
VAg1:13 Of the virtual address that missed.

0 3.0 Must be written as zero; returns zero on reads. 0 0

6.2.5 UserLocal Register (CPO Register 4, Select 2)

The UserLocal register is aread-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

Figure 6.5 shows the format of the UserLocal register; Table 6.8 describes the UserLocal register fields.

Figure 6.5 UserLocal Register Format

31
UserLocal
Table 6.8 UserLocal Register Field Descriptions
Fields
Read /

Name Bit(s) Description Write Reset State

UserLoca 31:0 Thisfield contains software information that is not interpreted by R/W Undefined
hardware.

Programming Notes

Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
viaregister 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a1 to enable
unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained viathe RDHWR register.

152 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

6.2.6 PageMask Register (CP0O Register 5, Select 0)

The PageMask register is aread/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 6.10.

Thisregister isonly valid with the TLB. It isreserved if the FM isimplemented.

Figure 6.6 PageMask Register Format

31 29 28 13 12 0
0 Mask 0
Table 6.9 PageMask Register Field Descriptions
Fields Read /
Name Bits Description Write Reset State
0 31:29, |lgnored on write; returns zero on read. R 0
12:0
Mask 28:13 | TheMaskfieldisabit mask inwhicha“1” bit indicates that the cor- R/W Undefined
responding bit of the virtual address should not participate in the
TLB match.
Table 6.10 Values for the Mask Field of the PageMask Register
Bit
Page Size 28 | 27 |1 26 |25 (24 (23|22 |21(20| 19|18 |17 | 16| 15| 14 | 13
4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 KBytes ojofo|jO|lO|J]O|lO|O|O|]O|JO|JO]JO|O0O] 1|1
64 KBytes ofofofofojofOofO|lO|lO|lO|O|1|21|1]|12
256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If apair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor isSUNDEFINED if softwareloads the Mask field with avalue other than one of those listed in Table 6.10, even
if the hardware returns a different value on read. Hardware may depend on this requirement in implementing hard-
ware structures.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 153

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

6.2.7 Wired Register (CPO Register 6, Select 0)

The Wired register is aread/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 6.7. The width of the Wired field is cal culated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

The Wired register isreset to zero by a Reset exception. Writing the Wired register causes the Random register to
reset to its upper bound.

The operation of the processor is undefined if avalue greater than or equal to the number of TLB entriesiswritten to
the Wired register.

Thisregister isonly valid with a TLB. It is reserved when the FM isimplemented.

Figure 6.7 Wired and Random Entries in the TLB

Entry n-1 A
: £
. 3
. 5
: o
Wired Register [10 |——] Entry 10 Y
: [y
: -
: e
! =
Ent.ryO Y
Figure 6.8 Wired Register Format
31 6 5 0
0 Wired

Table 6.11 Wired Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
0 316 Must be written as zero; returns zero on reads. 0 0
Wired 5:0 TLB wired boundary. R/W 0
For 16 and 32 entry TLBs, behavior is undefined if valueis set to a
value larger than last TLB entry.

6.2.8 HWREnNa Register (CP0O Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible viathe RDHWR
instruction when that instruction is executed in amode in which coprocessor 0 is not enabled.

154 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Figure 6.9 shows the format of the HWREna Register; Table 6.12 describes the HWREna register fields.

Figure 6.9 HWREnNa Register Format
31 30 29 0

0 Mask

Table 6.12 HWREna Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 31..30 |Reserved 0 0
Mask 29.0 Each bit in thisfield enables access by the RDHWR instruction to a R/W 0
particular hardware register (which may not be an actual register). If
bit ‘n" inthisfield isal, accessis enabled to hardware register ‘n’.
If bit ‘n’ of thisfieldisa0, accessis disabled.
Table 6.13 lists the RDHWR registers, and register number ‘n’ cor-
respondsto bit ‘n’ in thisfield.
Table 6.13 RDHWR Register Numbers
Register
Number | Mnemonic Description

0 CPUNum | Thisregister provides read access to the coprocessor 0 EBasecpynum field.

1 SYNCI_Step | Address step size to be used with the SYNCI instruction. See that instruction’s
description for the use of thisvalue. In the typical implementation, this value should
be zero if there are no cachesin the system which must be synchronized (either
because there are no caches, or because the instruction cache tracks writes to the data
cache). In other cases, the return value should be the smallest line size of the caches
that must be synchronized.

For the 24K 24k, the SYNCI_Step value is 32 since the line size is 32 bytes.

2 CcC High-resolution cycle counter. This register provides read access to the coprocessor 0
Count Register.

3 CCRes Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

CCRes Value Meaning
1 CC register increments every cycle
2 CC register increments every second cycle
3 CC register increments every third cycle
etc.
In the 24K 24k, the CCRes valueis 2 to indicate that the CC register increments every
second core cycle.
428 These registers numbers are reserved for future architecture use. Accessresultsin a
) Reserved | nstruction Exception.
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 155

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

156

Table 6.13 RDHWR Register Numbers

Register
Number | Mnemonic Description
29 ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register. In some operating environments, the UserLocal register isa
pointer to a thread-specific storage block.
30-31 These register numbers are reserved for future implementati on-dependent use. Access
resultsin a Reserved Instruction Exception.

Using the HWREna register, privileged software may select which of the hardware registers are accessible viathe
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If abit reads back as a one, the processor implements that hardware register.

6.2.9 BadVAddr Register (CPO Register 8, Select 0)

31

The BadVAddr register is aread-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

e Addresserror (AdEL or AdES)
¢ TLBRéfill

« TLBInvaid

¢ TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
errors.

Figure 6.10 BadVAddr Register Format

BadVAddr

Table 6.14 BadVAddr Register Field Description

Fields
Read /
Name Bits Description Write Reset State
Bad- 310 Bad virtual address. R Undefined
VAddr

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

6.2.10 Count Register (CPO Register 9, Select 0)

The Count register acts as atimer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. If enabled, the counter increments every other clock. Setting
the DC hit in the Cause register to 0 enables counting.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
SOrs.

By writing the Countp), bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor isin debug mode.

Figure 6.11 Count Register Format
31 0

Count

Table 6.15 Count Register Field Description

Fields
Read /
Name Bits Description Write Reset State
Count 310 Interval counter. R/W Undefined

6.2.11 EntryHi Register (CPO Register 10, Select 0)

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VAz; 13 of the virtual addressto be written

into the VPN2 field of the EntryHi register. A TLBR instruction writes the EntryHi register with the corresponding
fields from the selected TLB entry. The ASID field is written by software with the current address space identifier
value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. Thisis especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence. Software writes of the EntryHi register (via M TCO0) do not
cause the implicit write of address-related fields in the BadVAddr, Context registers.

Thisregister isonly valid with the TLB. It isreserved if the FM isimplemented.

Figure 6.12 EntryHi Register Format
31 13 12 8 7 0

VPN2 0 ASID

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 157
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

158

Table 6.16 EntryHi Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
VPN2 31.13 | VAg; 13 0f thevirtual address (virtual page number / 2). Thisfieldis RIW Undefined
written by hardware on a TLB exception or onaTLB read, and is
written by software before a TLB write.
0 12..8 [Must be written as zero; returns zero on read. 0 0
ASID 7.0 Address spaceidentifier. Thisfield iswritten by hardwareonaTLB R/W Undefined
read and by software to establish the current ASID value for TLB
write and against which TLB references match each entry’s TLB
ASID field.

6.2.12 Compare Register (CP0O Register 11, Select 0)

The Compare register actsin conjunction with the Count register to implement atimer and timer interrupt function.
Thetimer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on its
own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register iswritten. The SI_TimerInt pin can be fed back into the core on

one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware
interrupt 5 to set interrupt bit IP(7) in the Cause register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
iswrite-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure 6.13 Compare Register Format

Compare

Table 6.17 Compare Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
Compare 310 Interval count compare value. R/W Undefined

6.2.13 Status Register (CPO Register 12, Select 0)

The Status register is aread/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to Section
4.2 “Modes of Operation” for adiscussion of operating modes, and Section 5.3 “Interrupts’ for adiscussion of inter-
rupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

e IE=1

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

e EXL=0
* ERL=0
e DM=0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

6.2.13.1 Operating Modes
Debug Mode

The processor is operating in Debug Maodeif the DM bit in the CPO Debug register isaone. If the processor is running
in Debug Mode, it has full access to all resources that are available to Kernel Mode operation.

Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is azero and any of the following
three conditions is true:

» TheKsuU field in the CPO Status register contains 2#00

* TheEXL bit in the Status register isone

* TheERL hitin the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor

leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are fal se,
usually asthe result of an ERET instruction.

Supervisor Mode

The processor is operating in Supervisor Mode when all of the following conditions are true:
e TheDM hit inthe Debug register isazero

e TheKsSuU field in the Status register contains 2#01

e TheEXL and ERL bitsin the Status register are both zero

Supervisor mode is not supported with the Fixed Mapping MMU.

User Mode

The processor is operating in User Mode when all of the following conditions are true:
e TheDM bit inthe Debug register isazero

» TheKsSuU field in the Status register contains 2#10

» TheEXL and ERL bitsin the Status register are both zero

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 159

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

6.2.13.2 Coprocessor Accessibility

The Status register CU bits control coprocessor accessibility. If any coprocessor is unusable, then an instruction that
accesses it generates an exception.

Figure 6.14 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7654 3 2 1 0

CU3..CUO|RP|FR|RE|MX|R|BEV|TS|SR|NMI| 0 |CEE|R IM7..IM2 IM1..IMO| R |KSU|ERL|EXL|IE

IPL

Table 6.18 Status Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

Cu3 31 Reserved. R 0

Cu2 30 Controls access to Coprocessor 2 R/W Undefined

Encoding Meaning

0 Access not allowed
1 Access allowed

This bit can only be written when a coprocessor 2 unit is present.
This bit cannot be written and will read as 0 if coprocessor 2 unit is
not presen.

Cul 29 Controls access to Coprocessor 1 R/W Undefined

Encoding Meaning

0 Access not allowed
1 Access allowed

This bit can only be written when the Floating Point Unit is present
(24Kf core); in the 24K c core, this bit cannot be written and will
read as 0.

CuU0 28 Controls access to coprocessor 0 R/W Undefined

Encoding Meaning

0 Access not allowed
1 Access alowed

Coprocessor 0 is aways usable when the processor is running in ker-
nel mode, independent of the state of the CUO hit.

RP 27 Enables reduced power mode. The state of the RP bit is available on R/W 0
the external 24k interface asthe SI_RP signal.

160 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.18 Status Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

FR 26 This bit is used to control the floating point register mode for 64-bit R/W 0
floating point units:

Encoding Meaning

0 Floating point registers can contain any 32-bit
datatype. 64-bit datatypes are stored in even-odd
pairs of registers

1 Floating point registers can contain any datatype

This bit must be ignored on write and read as zero under the follow-
ing conditions

* No floating point unit isimplemented

* 64-bit floating point unit is not implemented

RE 25 Used to enable reverse-endian memory references while the proces- R 0
Sor is running in user mode
Not supported

MX 24 Enables access to DSP ASE resources. An attempt to execute any R 0
DSP ASE instruction before this bit has been set to 1 will cause a
DSP State Disabled exception.

Since the DSP ASE is not present on the 24K core, thisfieldis
aways 0.

R 23 Reserved. Thisfield isignored on write and read as 0. R 0
BEV 22 Controls the location of exception vectors: R/W

Encoding Meaning

0 Normal
1 Bootstrap

TS 21 TLB shutdown. Indicates that a machine check exception was taken R/WO 0
dueto a TLBWI or TLBWR that would have created conflicting
TLB entries. This bit isreserved if the TLB is not implemented.
Software can only write a0 to this bit to clear it and cannot force a
0-1 transition.

SR 20 Indicates that the entry through the reset exception vector was dueto R 0
a Soft Reset. Soft Reset is hot supported on this processor and this
bit is not writeable and will alwaysread as0

NMI 19 Indicates that the entry through the reset exception vector was dueto R/WO | 1for NMI; O oth-
an NMI: erwise

Encoding Meaning

0 |Not NMI (Reset)
1 |[NMI

Software can only write a0 to this bit to clear it and cannot force a
0-1 transition.

0 18 Must be written as zero; returns zero on read. 0 0

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 161

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.18 Status Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

CEE 17 CorExtend Enable: Thishit is sent to the CorExtend block to be used R/W Undefined
to enable the CorExtend block. The usage of thissignal by a CorEx-
tend block isimplementation dependent.

Thisbit isreserved if CorExtend is not present.

R 16 Reserved. Ignored on write and read as zero. R 0

IM7..IM2 | 15.10 |Interrupt Mask: Controls the enabling of each of the hardware inter- R/W Undefined
rupts. Refer to Section 5.3 “Interrupts’ for acomplete discussion of
enabled interrupts.

Aninterrupt istaken if interrupts are enabled and the corresponding
bitsare set in both the Interrupt Mask field of the Status register and
the Interrupt Pending field of the Cause register and the |E bit is set
in the Status register.

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

In implementations of Release 2 of the Architecturein which EIC
interrupt mode is enabled (Config3yg,c = 1), these bitstake on a
different meaning and are interpreted as the IPL field, described
below.

IPL 15..10 | Interrupt Priority Level: In implementations of Release 2 of the R/W Undefined
Architecture in which EIC interrupt mode is enabled (Config3y/gc
= 1), thisfield is the encoded (0..63) value of the current IPL. An
interrupt will be signaled only if the requested IPL is higher than this
value.

If EIC interrupt mode is not enabled (Config3y/g c = 0), these bits
take on adifferent meaning and are interpreted asthe IM7..IM2 bits,
described above.

IM1..IMO 9.8 Interrupt Mask: Controls the enabling of each of the software inter- R/W Undefined
rupts. Refer to Section 5.3 “Interrupts’ for acomplete discussion of
enabled interrupts.

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

In implementations of Release 2 of the Architecturein which EIC
interrupt mode is enabled (Config3y/g|c = 1), these bitsare writable,

but have no effect on the interrupt system.
R 7.5 Reserved. Thisfield isignored on write and read as 0. R 0

162 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.18 Status Register Field Descriptions

6.2 CPO Register Descriptions

Fields

Name

Bits

Description

Read /

Write Reset State

KSU

4.3

Thisfield denotes the base operating mode of the processor. See
Section 4.2 “Modes of Operation” for afull discussion of operating
modes. The encoding of thisfield is:

Encoding Meaning

00 Base mode is Kernel Mode

01 Base mode is Supervisor Mode

10 Base mode is User Mode
11 Reserved

Note that the processor can aso bein kernel modeif ERL or EXL is
set, regardless of the state of the KSU field.

R/W Undefined

ERL

Error Level; Set by the processor when a Reset, Soft Reset, NMI or
Cache Error exception are taken.

Encoding

0 Normal level
1 Error level

When ERL is set:

» The processor is running in kernel mode

* Interrupts are disabled

* The ERET instruction will use the return address held in
ErrorEPC instead of EPC

« Thelower 22° bytes of kuseg are treated as an unmapped and
uncached region. See Chapter 4, “Memory Management of the
24K® Core” on page 87. This allows main memory to be
accessed in the presence of cache errors. The operation of the pro-
cessor isUNDEFINED if the ERL bit is set whilethe processor is
executing instructions from kuseg.

Meaning

R/W 1

Exception Level; Set by the processor when any exception other
than Reset, Soft Reset, or NM| exceptionsis taken.

Encoding

0 Normal level
1 Exception level

Meaning

When EXL is set:

» The processor isrunning in Kernel Mode

* Interrupts are disabled.

» TLB Réfill exceptions use the general exception vector instead of
the TLB Réfill vector.

» EPC, CauseBD and SRSCtl (implementations of Release 2 of
the Architecture only) will not be updated if another exception is
taken

R/W Undefined

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

163

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.18 Status Register Field Descriptions

Fields

Read /
Name Bits Description Write Reset State
IE 0 Interrupt Enable: Acts as the master enable for software and hard- R/W Undefined
ware interrupts:
Encoding Meaning
0 Interrupts are disabled
1 Interrupts are enabled

In Release 2 of the Architecture, this bit may be modified separately
viathe DI and El instructions.

6.2.14 IntCtl Register (CPO Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 6.15 IntCtl Register Format
31 29 28 26 25 10 9 5 4 0

IPTI | PPCI 0 VS 0

Table 6.19 IntCtl Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

IPTI 31:29 | For Interrupt Compatibility and Vectored Interrupt modes, this field R Externally Set
specifies the | P number to which the Timer Interrupt request is
merged, and allows software to determine whether to consider
Causeq, for apotential interrupt.

Encoding| [P bit Hardware Interrupt Source

2 2 HWO
HW1
HW?2
HW3
HwW4
HW5

The value of thisbit is set by the static input, SI_IPTI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_TimerInt signal is attached.

The value of thisfield is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide thisinformation for that interrupt mode.

N oo b~ W
N oo~ W

164 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.19 IntCtl Register Field Descriptions (Continued)

Fields

Read /
Name Bits Description Write Reset State
IPPCI 28:26 | For Interrupt Compatibility and Vectored Interrupt modes, thisfield R Externally Set

specifies the IP number to which the Performance Counter Interrupt
request is merged, and allows software to determine whether to con-
sider Causepc, for apotential interrupt.

Encoding| [P bit Hardware Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW?2
5 5 HW3
6 6 HW4
7 7 HW5

The value of thisbit is set by the static input, SI_IPPCI[2:0]. This
allows external logic to communicate the specific SI_Int hardware
interrupt pin to which the SI_PClInt signal is attached.

The value of thisfield is not meaningful if External Interrupt Con-
troller Mode is enabled. The external interrupt controller is expected
to provide thisinformation for that interrupt mode.

VS 95 Vector Spacing. If vectored interrupts are implemented (as denoted R/W 0
by Config3,,,; or Config3ygc), thisfield specifies the spacing
between vectored interrupts.

Spacing Between Spacing Between
Encoding Vectors (hex) Vectors (decimal)
16#00 16#000 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512

All other values are reserved. The operation of the processor is
UNDEFINED if areserved value is written to thisfield.

0 25:10, 4:0 | Must be written as zero; returns zero on read. 0 0

6.2.15 SRSCtl Register (CPO Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Figure 6.16 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSs

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 165

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.20 SRSCtl Register Field Descriptions

Fields

Read /
Name Bits Description Write Reset State
HSS 29:26 | Highest Shadow Set. Thisfield contains the highest shadow set R Preset

number that isimplemented by this processor. A value of zero in this
field indicates that only the normal GPRs are implemented.
Possible values of thisfield for the 24K processor are:

Encoding Meaning
0 One shadow set (normal GPR set) is present.
1 Two shadow sets are present.

3 Four shadow sets are present.
2,315 |Reserved

The valuein thisfield al so represents the highest value that can be
writtentothe ESS, EICSS, PSS, and CSS fields of thisregister, or
to any of the fields of the SRSMap register. The operation of the
processor isUNDEFINED if avalue larger than the onein thisfield
iswritten to any of these other fields.

EICSS 21:18 | EIC interrupt mode shadow set. If Config3ygc is 1 (EIC interrupt R Undefined
modeis enabled), thisfield isloaded from the external interrupt con-
troller for each interrupt request and is used in place of the SRSMap
register to select the current shadow set for the interrupt.

See Section 5.3.1.3 “External Interrupt Controller Mode” for adis-

cussion of EIC interrupt mode. If Config3ygc is0, thisfield returns
zero on read.

ESS 15:12 | Exception Shadow Set. This field specifies the shadow set to use on R/W 0
entry to Kernel Mode caused by any exception other than a vectored
interrupt.

The operation of the processor is UNDEFINED if software writesa
valueinto thisfield that is greater than the value in the HSS field.

PSS 9:6 Previous Shadow Set. If GPR shadow registers are implemented, R/W 0
and with the exclusions noted in the next paragraph, thisfield is cop-
ied from the CSS field when an exception or interrupt occurs. An
ERET instruction copies this value back into the CSSfield if
StatUSBEV =0.

Thisfield isnot updated on any exception which sets Statusgg to 1
(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG
Debug mode, or any exception or interrupt that occurs with
Statusgy, =1, or Statusggy = 1. Thisfield is not updated on an
exception that occurs while Statusgg = 1.

The operation of the processor is UNDEFINED if software writesa
value into thisfield that is greater than the value in the HSSfield.

166 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.20 SRSCtl Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
Css 3.0 Current Shadow Set. If GPR shadow registers are implemented, this R 0
field isthe number of the current GPR set. With the exclusions noted
in the next paragraph, thisfield is updated with a new value on any
interrupt or exception, and restored from the PSS field on an ERET.
Table 6.21 describes the various sources from which the CSSfield is
updated on an exception or interrupt.
Thisfield is not updated on any exception which sets StatusERL to
1(i.e., Reset, Soft Reset, NMI, cache error), an entry into EJTAG
Debug mode, or any exception or interrupt that occurs with
Statusgy, = 1, or Statusggy = 1. Neither isit updated on an ERET
with Statusgg, = 1 or Statusggy = 1. Thisfield is not updated on
an exception that occurs while Statusgg, = 1.
The value of CSS can be changed directly by software only by writ-
ing the PSS field and executing an ERET instruction.
0 31:30, |Must be written as zeros; returns zero on read. 0 0
25:22,
17:16,
11:10, 5:4
Table 6.21 Sources for new SRSCtlcgg 0n an Exception or Interrupt
Exception Type Condition SRSCtlcss Source Comment
Exception All SRSCltlgsg
Non-Vectored Interrupt Cause, =0 SRSCtlggg Treat as exception
Vectored Interrupt Causejy = 1land SRSMapyecTnum Sourceisinternal map regis-
COﬂfigBVEC =0and ter.
Config3Vint = 1 (for VECTNUM see Table 5.4)
Vectored EIC Interrupt Cause)y=1and SRSCtlg|css Source is external interrupt
Config3ygic =1 controller.

6.2.16 SRSMap Register (CP0O Register 12, Select 3)

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or anon-vectored interrupt (Cause), = 0 or IntCtlyg = 0). In such cases, the shadow set number comes from
SRSCtlggs.

If SRSCtlyss is zero, the results of a software read or write of thisregister are UNPREDICTABLE.

The operation of the processor is UNDEFINED if avalueiswritten to any field in thisregister that is greater than the
value of SRSCtlygs.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 167

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to asingle
shadow register set number.

Figure 6.17 SRSMap Register Format
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSv7 SSv6 SSV5 SSv4 SSV3 SSv2 SSv1 SSVO0

Table 6.22 SRSMap Register Field Descriptions

Fields Read /
Name Bits Description Write Reset State
SSv7 31..28 | Shadow register set number for Vector Number 7 R/W 0
SSV6 27..24 | Shadow register set number for Vector Number 6 R/W 0
SSv5 23..20 | Shadow register set number for VVector Number 5 R/W 0
SSv4 19..16 | Shadow register set number for Vector Number 4 R/W 0
Ssv3 15..12 | Shadow register set number for Vector Number 3 R/W 0
SSv2 11..8 | Shadow register set number for Vector Number 2 R/W 0
SSvi 7.4 Shadow register set number for Vector Number 1 R/W 0
SSVO 3.0 Shadow register set number for Vector Number 0 R/W 0

6.2.17 Cause Register (CPO Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 6.18 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 16 15 0 9 8 7 6 2 1 0
BD|TI| CE |[DC|PCI| O [|IV|WP 0 IP7..1P2 IPL.IPO| O Exc Code 0
RIPL
168 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.23 Cause Register Field Descriptions

6.2 CPO Register Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

BD

31

Indicates whether the last exception taken occurred in abranch delay
slot:

Encoding Meaning
0 Not in delay slot
1 In delay slot

The processor updates BD only if Statusgy, was zero when the
exception occurred.

Undefined

TI

30

Timer Interrupt. This bit denotes whether atimer interrupt is pend-
ing (analogous to the IP bits for other interrupt types):

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

The state of the T1 bit is available on the external core interface as
the SI_Timerint signal.

Undefined

CE

29:28

Coprocessor unit number referenced when a Coprocessor Unusable
exception istaken. Thisfield isloaded by hardware on every excep-
tion, but is UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

Undefined

DC

27

Disable Count register. In some power-sensitive applications, the
Count register is not used and is the source of meaningful power
dissipation. This hit allows the Count register to be stopped in such
situations.

Encoding Meaning

0 Enable counting of Count register
1 Disable counting of Count register

RIW

26

Performance Counter Interrupt: This bit denotes whether a perfor-
mance counter interrupt is pending (anal ogous to the IP bits for
other interrupt types):

Encoding Meaning

0 No performance counter interrupt is pending
1 Performance counter interrupt is pending

The state of the PCI bit is available on the external coreinterface as
the SI_PClint signal.

Undefined

23

Indicates whether an interrupt exception uses the general exception
vector or a special interrupt vector:

Encoding Meaning
0 Use the general exception vector (16#180)
1 Use the special interrupt vector (16#200)

If the Cause)y, is 1 and Statusggy is 0, the special interrupt vector
represents the base of the vectored interrupt table.

R/W

Undefined

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

169

CPO Registers of the 24K® Core

Table 6.23 Cause Register Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State

WP 22 Indicates that a watch exception was deferred because Statusgy, or RIW Undefined
Statusgr, Were aone at the time the watch exception was detected.
This bit both indicates that the watch exception was deferred, and
causes the exception to be initiated once Statusgy, and Statusgg
are both zero. As such, software must clear this bit as part of the
watch exception handler to prevent a watch exception loop.
Software should not write a1 to thisbit whenitsvalueisaO, thereby
causing a0-to-1 transition. If such atransition is caused by software,
itis UNPREDICTABL E whether hardware ignores the write,
accepts the write with no side effects, or accepts the write and ini-
tiates a watch exception once Statusgy; and Statusgg, are both
zero.

IP7..1P2 15:10 | Indicates an interrupt is pending: R Undefined

Bit Name Meaning

15 IP7 |Hardware interrupt 5
14 IP6 |Hardware interrupt 4
13 IP5 |Hardware interrupt 3
12 IP4 |Hardware interrupt 2
11 IP3 |Hardware interrupt 1
10 IP2 |Hardware interrupt O
If EIC interrupt mode is not enabled (Config3yg c = 0), timer inter-

rupts are combined in a system-dependent way with any hardware
interrupt. If EIC interrupt mode is enabled (Config3yg c = 1), these
bits take on a different meaning and are interpreted as the RIPL
field, described bel ow.

See Section 5.3 “Interrupts’ for ageneral description of interrupt
processing.

RIPL 15:10 | Requested Interrupt Priority Level: If EIC interrupt modeis enabled R Undefined
(Config3yg|c = 1), thisfield isthe encoded (0..63) value of the
requested interrupt. A value of zero indicates that no interrupt is
requested.

If EIC interrupt mode is not enabled (Config3y/g c = 0), these bits
take on a different meaning and are interpreted as the IP7..1P2 hits,
described above.

IP1..1PO 9:8 Controls the request for software interrupts: R/W Undefined

Bit Name Meaning

9 IP1 |Request softwareinterrupt 1
8 IPO |Request software interrupt O

These bits are exported to an external interrupt controller for prioriti-
zation in EIC interrupt mode with other interrupt sources. The state
of these bitsis available on the external core interface asthe
SI_SWInt[1:0] bus.

ExcCode 6:2 Exception code - see Table 6.24 R Undefined

170 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.23 Cause Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
0 25:24, | Must be written as zero; returns zero on read. 0 0
21:16, 7,
1.0

Table 6.24 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal | Mnemonic Description

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception

2 16#02 TLBL TLB exception (load or instruction fetch)

3 16#03 TLBS TLB exception (store)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception. If an SDBBP instruction is executed while the pro-
cessor isrunning in EJTAG Debug Mode, this value is written to the
Debugpgxccode field to denote an SDBBP in Debug Mode.

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14 16#0e - Reserved

15 16#0f FPE Floating point exception

16 16#10 I1S1 Coprocessor 2 implementation specific exception

17 16#11 CEU CorExtend Unusable

18 16#12 C2E Precise Coprocessor 2 exception

19-22 16#13-16#16 - Reserved
23 16#17 WATCH Reference to WatchHi/WatchLo address
24 16#18 M Check Machine checkcore
25-29 16#19-16#1d - Reserved

30 16#1e CacheErr Cache error. In normal mode, a cache error exception has a dedicated
vector and the Cause register is not updated. If acache error occurs while
in Debug Mode, this code is written to the Debugpgyccode field to indi-
cate that re-entry to Debug Mode was caused by a cache error.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

171

CPO Registers of the 24K® Core

Table 6.24 Cause Register ExcCode Field (Continued)

Exception Code Value

Decimal Hexadecimal | Mnemonic Description

31 16#1f - Reserved

6.2.18 Exception Program Counter (CPO Register 14, Select 0)

The Exception Program Counter (EPC) is aread/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:
» Thevirtual address of the instruction that was the direct cause of the exception

» Thevirtual address of theimmediately preceding branch or jump instruction, when the exception causing
instruction isin abranch delay dot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set,
however, the register can still be written viathe MTCO instruction.

In processors that implement the MIPS16 ASE, aread of the EPC register (via MFCO) returns the following valuein
the destination GPR:

GPR[rt] « ExceptionPCz; ; || ISAModeg

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field of DEPC7 and
written to the GPR.

Similarly, awrite to the EPC register (via M TCO) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, asfollows

ExceptionPC ¢« GPR[rtls; 1 || O
ISAMode « 2#0 || GPR[rt],

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower hit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit isloaded from the lower bit of

the GPR.
Figure 6.19 EPC Register Format
31 0
EPC
Table 6.25 EPC Register Field Description
Fields
Read /
Name Bit(s) Description Write Reset State
EPC 31:.0 Exception Program Counter. R/W Undefined
172 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

6.2.19 Processor Identification (CPO Register 15, Select 0)

The Processor Identification (PRId) register isa 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 6.20 PRId Register Format
31 24 23 16 15 8 7 0

CompanyOption Company ID Processor ID Revision

Table 6.26 PRId Register Field Descriptions

Fields

Read /
Name Bit(s) Description Write Reset State
Company 31:24 | Implementation specific values R Preset
Option
Company 23:16 | Identifiesthe company that designed or manufactured the processor. R 1
ID In the 24K thisfield contains avalue of 1 to indicate MIPS Technol-
ogies, Inc.
Processor 15:8 Identifies the type of processor. Thisfield allows software to distin- R 0x93
ID guish between the various types of MIPS Technologies processors.
Revision 7.0 Specifies the revision number of the processor. Thisfield allows R Preset
software to distinguish between one revision and another of the
same processor type.

Thisfield is broken up into the following three subfields:

Bit(s) | Name Meaning

75 Major |Thisnumber isincreased on major revisions
Revision|of the processor 24k

4:2 Minor |Thisnumber isincreased on each incremen-
Revision|tal revision of the processor and reset on
each new major revision

1.0 Patch |If apatch is made to modify an older revi-
Level |[sion of the processor, thisfield will be
incremented

6.2.20 EBase Register (CPO Register 15, Select 1)

The EBase register isaread/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and aread-only CPU number value that may be used by software to distinguish different processorsin a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when Statusggy, 1S 0. The exception vector base address comes from the fixed defaults (see Section

5.5 “Exception Vector Locations’) when Statusggy, is 1, or for any EJTAG Debug exception. The reset state of bits

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 173

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core
31:12 of the EBase register initialize the exception base register to 16#8000 . 0000, providing backward compati-
bility with Release 1 implementations.
Bits 31:30 of the EBase Register are fixed with the value 2410 to force the exception base address to be in the kseg0
or ksegl unmapped virtual address segments. Bit 29 of exception base address will be forced to 1 on Cache Error

exceptions so the exception handler will be executed from the uncached ksegl segment.

If the value of the exception base register isto be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectorsto be placed at

any 4K Bbyte page boundary.
Figure 6.21 EBase Register Format
31 30 29 12 11 10 9 0
10 Exception Base 0 CPUNum
Table 6.27 EBase Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
1 31 Thisbit isignored on write and returns one on read. R
Exception 29:12 | Inconjunction with bits 31..30, this field specifies the base address R/W 0
Base of the exception vectors when Statusggy, iS zero.
CPUNum 9:0 Thisfield contains an identifier that will be unique among the CPUs R Externally Set
in amulti-processor system. This can be used by software to distin-
guish whereit isrunning. The valuein thisfield is set by the
SI_CPUNum[9:0] static input pins to the core. .
0 30, 11:10 | Must be written as zero; returns zero on read. 0 0

6.2.21 Config Register (CPO Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister areinitialized by hardware during the Reset exception process, or are constant. The K0, KU, and K23 fields must
beinitialized by software in the Reset exception handler, if the reset value is not desired.

Figure 6.22 Config Register Format — Select 0
31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M| K23 KU ISP|DSP|UDI|SB| O |MM|O0|BM|BE| AT AR MT 0 KO

Table 6.28 Config Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
M 31 Thisbit ishardwired to ‘1’ to indicate the presence of the Configl R 1
register.
174 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.28 Config Register Field Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
K23 30:28 | Thisfield controls the cacheability of the kseg2 and kseg3 address | FM: R/W FM: 010
segmentsin FM implementations. TLB:R TLB: 000
Refer to Table 6.29 for the field encoding.
KU 27:25 | Thisfield controls the cacheahility of the kuseg and useg address FM: R'W FM: 010
segments in FM implementations. TLB: R TLB: 000
Refer to Table 6.29 for the field encoding.
ISP 24 |-side ScratchPad RAM present R Preset
DSP 23 D-side ScratchPad RAM present R Preset
uDlI 22 This bit indicates that CorExtend User Defined Instructions have R Preset
been implemented.
Encoding Description
0 No User Defined Instructions are implemented
1 User Defined Instructions are implemented
SB 21 Indicates whether SimpleBE bus mode is enabled. Set via R Externally Set
SI_SimpleBE input pin.
Encoding Description
0 No reserved byte enables on OCP interface
1 Only simple byte enables allowed on OCP interface
MM 18 This bit indicates whether write-through merging is enabled in the R/W 1
32-byte collapsing write buffer.
Encoding Description
0 No Merging
1 Merging alowed
BM 16 Burst order. Set via SI_SBlock input pin. R Externally Set
Encoding Description
0 Sequential
1 SubBlock
BE 15 Indicates the endian mode in which the processor is running. Set via R Externally Set
SI_Endian input pin.
Encoding Description
0 Littleendian
1 Big endian
AT 14:13 | Architecture typeimplemented by the processor. Thisfield isalways R 00
00 to indicate the MIPS32 architecture.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

175

CPO Registers of the 24K® Core

Table 6.28 Config Register Field Descriptions (Continued)

Fields Read /
Name Bit(s) Description Write Reset State
AR 12:10 [Architecturerevision level. Thisfield is aways 001 to indicate R 001
MIPS32 Release 2.
Encoding Description
0 Release 1
1 Release 2
2:7 Reserved
MT 9:7 MMU Type: R Preset
Encoding Description
1 Standard TLB
3 Fixed Mapping
0,2, 4.7 |Reserved
KO 2:0 K'seg0 coherency algorithm. Refer to Table 6.29 for the field encod- R/W 010
ing.
0 20:19, 17, | Must be written as zeros; returns zeros on reads. 0 0
6:3

Table 6.29 Cache Coherency Attributes

K0(2:0) Value

Cache Coherency Attribute

0 Cacheable, noncoherent, write-through, no write alocate
1 Reserved
2 Uncached
3 Cacheable, noncoherent, write-back, write allocate
45,6 Reserved
7 Uncached Accelerated

6.2.22 Configl Register (CPO Register 16, Select 1)

The Configl register isan adjunct to the Config register and encodes additional information about capabilities present

on the core. All fieldsin the Configl register are read-only.

Theinstruction and data cache configuration parameters include encodings for the number of sets per way, the line

size, and the associativity. Thetotal cache size for acacheistherefore:

Associativity * Line Size * Sets Per Way

176

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

If theline sizeis zero, no cache isimplemented.

Figure 6.23 Configl Register Format
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL 1A DS DL DA C2|MD |PC|WR|CA |EP|FP

Table 6.30 Configl Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
M 31 Thisbit ishardwired to ‘1’ to indicate the presence of the Config2 R 1
register.
MMU 30:25 | Thisfield contains the number of entriesin the TLB minus one. The R Preset
Size field isread as 0 decimal if the TLB is not implemented
IS 24:22 | Thisfield contains the number of instruction cache sets per way. The R Preset
corresponding total instruction cache sizeis shown in parentheses
Encoding Description
0x0 64 (8KB)
0x1 128 (16KB)
0x2 256 (32K B)
0x3 512 (64K B)
0x4:0x7 |Reserved
IL 21:19 | Thisfield containsthe instruction cache line size The cacheline size R Preset
isfixed at 32 bytes when the |-Cacheis present. A value of 0 indi-
cates no ICache.
Encoding Description
0x0 No ICache present
0x1:0x3 |Reserved
0x4 32 bytes
0x5:0x7 |Reserved
1A 18:16 | Thisfield containsthe level of instruction cache associativity This R 0x3
field isfixed at 4-way set associative
Encoding Description
0x0:0x2 |Reserved
0x3 4-way
0x4:0x7 |Reserved
DS 15:13 | Thisfield contains the number of data cache sets per way. The corre- R Preset
sponding total data cache sizeis shown in parentheses
Encoding Description
0x0 64 (8KB)
Ox1 128 (16KB)
0x2 256 (32KB)
0x3 512 (64K B)
0x4:0x7 |Reserved
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 177

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.30 Configl Register Field Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

DL 12:10 | Thisfield contains the data cache line size. The cacheline sizeis R Preset
fixed at 32 bytes when a D-cache is present. Thisfield reads 0 when
aD-cacheis not present.

Encoding Description

0x0 No DCache present
0x1:0x3 |Reserved

0x4 32 bytes
0x5:0x7 |Reserved

DA 9:7 Thisfield contains the type of set associativity for the data cache R 0x3
The associativity isfixed at 4-way.

Encoding Description
0x0:0x2 |Reserved
0x3 4-way
0x4:0x7 |Reserved

Cc2 6 Coprocessor 2 present. R Preset

Encoding Description

0 Coprocessor2 not present

1 Coprocessor2 present

MD 5 MDMX implemented. R 0
PC 4 Performance Counter registers implemented. R 1
WR 3 Watch registers implemented. R 1

Encoding Description

0 No Watch registers are present
1 One or more Watch registers are present

CA 2 Code compression (M1PS16) implemented. R 1

Encoding Description

0 No MIPS16 present
1 MIPS16 isimplemented

EP 1 EJTAG present: This bit is aways set to indicate that the coreimple- R 1
ments EJTAG.

FP 0 FPU implemented. R Preset

6.2.23 Config2 Register (CPO Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilitiesinformation.
Config2 is allocated for showing the configuration of level 2/3 caches. L2 values reflect the configuration information

178 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

input from the L2 module. L3 fields are reset to 0 because L 3 caches are not supported by the 24K core. All fieldsin

the Config2 register are read-only.

Figure 6.24 Config2 Register Format

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 3
M TU TS TL TA S L2B SS SL SA
Table 6.31 Config2 Register Field Descriptions
Fields
Read /
Name Bit(s) Description Write Reset State
M 31 Thisbit ishardwired to ‘1’ to indicate the presence of the Config3 R 1
register.
TU 30:28 | Implementation specific tertiary cache control. Tertiary cache not R 0
supported
TS 27:24 | Tertiary cache sets per way. Tertiary cache not supported R 0
TL 23:20 | Tertiary cacheline size. Tertiary cache not supported R 0
TA 19:16 | Tertiary cache associativity. Tertiary cache not supported R 0
SU 15:13 | Reserved R 0
L2B 12 L2 Bypass/L2_Bypassed. In systems which include an L2 cache, R/W 0
writing a 1 to this bit, will set the L2_Bypass output from the core.
Setting the L2_Bypass output, directs the L2 cacheto go into
bypass mode. L2 responds by asserting its L2_Bypassed output
pin. Thevalue of L2_Bypassed isreturned when L2B is read.
Since this involves a communication between CPU and L2, reading
this bit will reflect the new value with some implementation- and
clock ratio- dependent delay.
SS 11:8 Secondary cache sets per way R Preset
Encoding Description
0 64
1 128
2 256
3 512
4 1024
5 2048
6 4096
7 8192
8-15 Reserved

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

179

CPO Registers of the 24K® Core

Table 6.31 Config2 Register Field Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
SL 74 Secondary cachelinesize R Preset
Encoding Description
0 No cache present
1 4
2 8
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
SA 3.0 Secondary cache associtivity R Preset
Encoding Description
0 Direct mapped
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8-15 Reserved

6.2.24 Config3 Register (CPO Register 16, Select 3)

The Config3 register encodes additional capabilities of the 24K core. All fields in the Config3 register are read-only.

Figure 6.25 Config3 Register Format

31 30 13 1211 10 9 7 6 5 4 3 2 1 0
M 0 ULRI| O |DSPP 0 VEIC|VInt|SP| 0 |[MT|SM|TL
Table 6.32 Config3 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
M 31 This bit isreserved to indicate if a Config4 register is present. R 0
ULRI 13 User Local Register Implemented: Indicates that the CopO R 1
UserLocal register is present.
180 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.32 Config3 Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

DSPP

10

DSP Present. Indicates whether support for the DSP ASE isimple-
mented.

On the 24K core, this bit is always 0, because the DSP ASE is not
implemented.

R

0

VEIC

Support for an external interrupt controller isimplemented.

Encoding Description

0 Support for EIC interrupt mode is not implemented
1 Support for EIC interrupt mode is implemented

The value of thisbit is set by the static input, SI_EICPresent. This
allows external logic to communicate whether an external interrupt
controller is attached to the processor or not.

Externally Set

Vint

Vectored interrupts implemented. This bit indicates whether vec-
tored interrupts are implemented.

Encoding Description

0 Vector interrupts are not implemented
1 Vectored interrupts are implemented

On the 24K core, thisbit is always a 1 since vectored interrupts are
implemented.

SP

Small (1KByte) page support is implemented, and the PageGrain
register exists. This bit will always be 0 since small pages are not
supported.

Encoding Description

0 Small page support is not implemented
1 Small page support isimplemented

MT

Thisbit indicates if the MIPS MT (multi-threading) ASE imple-
mented.

Encoding Description

0 MIPSMT ASE is not implemented
1 MIPSMT ASE isimplemented

This bit indicates whether the SmartMIPS™ ASE is implemented.
Since SmartMIPSis not present on the 24K core, thisbit will always
be 0.

Encoding Description

0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE isimplemented

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

181

CPO Registers of the 24K® Core

Table 6.32 Config3 Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
TL 0 Trace Logic implemented. This bit indicates whether MIPS trace R Preset
support isimplemented.
Encoding Description
0 Tracelogic is not implemented
1 Tracelogic isimplemented
0 30:11,9:7, | Must be written as zeros; returns zeros on read 0 0
3

6.2.25 Config7 Register (CPO Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are write-
able to disable certain performance enhancing features within the core.

Figure 6.26 Config7 Register Format

31 30 19 18 17 16 15 10 9 8 7 6 5 3 2 0
Wil 0 |HCI|FPR|AR 0 IAR |[IVA|ES| 0 |CPOOO|NBLSU |ULB|BP|RPS|BHT|SL
Table 6.33 Config7 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State

WII 31 Wait |E Ignore: Indicates that this processor will allow an interrupt R 1
to unblock a WAIT instruction even if |E is preventing the interrupt
from being taken.
This avoids problems using the WAIT instruction for ‘ bottom half’
interrupt servicing.

0 30:19, | These bits are unused and should be written as 0. R 0
15:11,7

HCI 18 Hardware Cache Initialization: Indicates that a cache does not R Based on HW
require initialization by software. This bit will most likely only be present
set on simulation-only cache models and not on real hardware.

FPR 17 Floating Point Ratio: Indicates clock ratio between integer core and R Based on HW
floating point unit on 24Kf cores. Reads as 0 on 24K c cores. present

Encoding Description
0 FP clock frequency is the same as the integer clock
1 FP clock frequency is one-half the integer clock

AR 16 Alias removed: This bit indicates that the data cache is organized to R Based on HW
avoid virtua aliasing problems. Thisbit is only set if the data cache present
config and MMU type would normally cause dliasing - i.e., only for
the 32KB and larger data cache and TLB-based MMU.

182 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.33 Config7 Register Field Descriptions (Continued)

Fields

Read /
Name Bits Description Write Reset State
IAR 10 Instruction Alias Removed: Indicates that this processor has hard- R Based on HW
ware support to remove instruction cache alias. This hardwareis present
only present when the core is configured with a TLB and cache sizes
32KB and larger. The hardware is disabled via the VA bit.
IVA 9 Instruction Virtual Aliasing fix disable: Setting this bit will disable R/W 0
the HW alias removal on the I-Cache. If thisbit is cleared, CACHE or
Hit Invalidate and SYNCI instructions will look up all possible R

aliased locations and invalidate the given cache linein al of them.
Thisbit is Read-only if IAR=0

ES 8 Externalize Sync: If thishit is set, and if the downstream device is R/W 0
capable of accepting SYNC's (indicated viathe pin SI_SyncTxEn),
the SYNC instruction will cause a SY NC specific transaction to go
out on the external bus. If thisbit is cleared or if SI_SyncTxEn is
deasserted, no transaction will go out, but all SYNC handling inter-
nal to the core will still be performed. When this bit is read, the
value returned depends on the state of the SI_SyncTxEn pin. If
SI_SyncTxEn is0, avalue of Oisreturned. If SI_SyncTxEnis1,
the value returned is the last value that was written to this bit. Refer
to SYNC instruction description for more information.

CPOOO 6 Out-of-order data return on the Coprocessor interfaces: Writing 1 to R/W 0
this bit disables the out-of-order data return for the FPU and COP2.
NBLSU 5 Non-Blocking LSU: Writing 1 to this field will lock the LSU and R/W 0

ALU pipelines together. Thisforces LSU pipeline stallsto also stall
the ALU pipeline.

uLB 4 Uncached Loads Blocking: Writing 1 to thisfield will make all R/W 0
uncached |oads blocking.
BP 3 Branch Prediction: Writing 1 to thisfield will disable al speculative R/W 0

branch prediction. The fetch unit will wait for a branch to be
resolved before fetching the target or fall-through path.

RPS 2 Return Prediction Stack: Writing 1 to this field will disable the use R/W 0
of the Return Prediction Stack. Returns (JR ra) will stall instruction
fetch until the destination is cal cul ated.

BHT 1 Branch History Table: Writing 1 to this field will disable the R/W 0
dynamic branch prediction. Branches will be statically predicted
taken.
SL 0 Scheduled Loads: Writing 1 to this field will make load misses R/W 0
blocking.

External interventions are also checked against the LLAddr registers.
6.2.26 WatchLo Register (CPO Register 18, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that initiates awatch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are both zero in the

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 183

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core
Status register. If either bit is aone, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.
There are 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with instruction
addresses only. Thus, only the | bit iswriteable, and the R and W bits aretied to 0. The other two (select 2, 3) are asso-

ciated with data addresses and can only be used for R or W watchpoints.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to

match.
Figure 6.27 WatchLo Register Format
31 3 2 1 0
VAddr I | R|W
Table 6.34 WatchLo Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
VAddr 31:3 Thisfield specifies the virtua address to match. Note that thisisa R/W Undefined
doubleword address, since bits [2:0] are used to control the type of
match.
2 If this bit is set, watch exceptions are enabled for instruction fetches R/W 0
that match the address.
R 1 If thisbit is set, watch exceptions are enabled for loads that match R/W 0
the address.
W 0 If this bit is set, watch exceptions are enabled for stores that match R/W 0
the address.

6.2.27 WatchHi Register (CP0O Register 19, Select 0-3)

The WatchLo and WatchHi registers together provide the interface to awatchpoint debug facility that initiates awatch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is aone, then the WP bit is set in the Cause register, and the watch exception is deferred
until both the EXL and ERL bits are zero.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, aGlobal (G) hit, and an optional address mask. If the G bit is 1, then any virtual address reference that matches
the specified address will cause awatch exception. If the G bit isa 0, only those virtual address references for which
the ASD value in the WatchHi register matches the ASID value in the EntryHi register cause awatch exception. The
optional mask field provides address masking to qualify the address specified in WatchLo.

There are 4 sets of Watch register pairs (WatchLo, WatchHi). Two of them (select 0, 1) are associated with instruction
addresses only. Thus, only the I bit is meaningful, and the R and W bits are tied to 0. The other two (select 2, 3) are
associated with data addresses and can only be used for R or W watchpoints.

Figure 6.28 WatchHi Register Format

31 30 29 24 23 16 15 12 11 3 2 0
M| G 0 ASID 0 Mask I |R|W
184 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 6.35 WatchHi Register Field Descriptions

6.2 CPO Register Descriptions

Fields
Read /

Name Bit(s) Description Write Reset State
M 31 Indicates the presence of additional Watch registers. R Preset
G 30 If thisbit is one, any address that matches that specified in the R/W Undefined

WatchLo register causes awatch exception. If this bit is zero, the
ASID field of the WatchHi register must match the AS D field of the
EntryHi register to cause a watch exception.
ASID 23:16 | ASD valuewhichisrequired to match that in the EntryHi register if R/W Undefined
the G bit is zero in the WatchHi register.
Mask 11:3 Bit mask that qualifies the address in the WatchLo register. Any bit R/W Undefined
inthisfield that is a set inhibits the corresponding address bit from
participating in the address match.
2 This bit is set by hardware when an instruction fetch condition wicC Undefined
matches the values in this watch register pair. When set, the bit
remains set until cleared by software, which is accomplished by
writing a 1 to the bit.
R 1 Thisbit is set by hardware when aload condition matchesthevalues | WI1C Undefined
in thiswatch register pair. When set, the bit remains set until cleared
by software, which is accomplished by writing a 1 to the bit.
W 0 This bit is set by hardware when a store condition matches the val- wiC Undefined
uesin this watch register pair. When set, the bit remains set until
cleared by software, which is accomplished by writing a1 to the bit.
0 29:24, | Must be written as zero; returns zero on read. 0 0
15:12

6.2.28 Debug Register (CPO Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug

exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read
only information bits are updated every time the debug exception is taken or when anormal exception is taken when
already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and

fields are UNPREDI CTABLE. Operation of the processor is UNDEFINED if the Debug register iswritten from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

* DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

» DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

» Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

» DBD isupdated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

185

CPO Registers of the 24K® Core

Figure 6.29 Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19

DBD | DM | NoDCR | LSNM | Doze | Halt | CountDM | IBUsEP | MCheckP | CacheEP | DBusEP | IEXI | DDBSImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLImpr | EJTAGver DExcCode NoSSt | SSt R R | DINT | DIB | DDBS | DDBL | DBp | DSS

Table 6.36 Debug Register Field Descriptions

Fields
Read /

Name Bit(s) Description Write Reset State

DBD 31 Indicates whether the last debug exception or exception in debug R Undefined
mode, occurred in a branch delay slot:

Encoding Description

0 Not in delay slot
1 In delay dlot

DM 30 Indicates that the processor is operating in debug mode: R 0

Encoding Description

0 Processor is operating in non-debug mode

1 Processor is operating in debug mode

NoDCR 29 Indicates whether the dseg memory segment is present: R 0

Encoding Description

0 dseg is present
1 No dseg present

LSNM 28 Controls access of load/store between dseg and main memory: R/W 0

Encoding Description

0 Load/stores in dseg address range goes to dseg

1 L oad/stores in dseg address range goes to main
memory

Doze 27 Indicates that the processor was in any kind of low power mode R Undefined
when a debug exception occurred:

Encoding Description

0 Processor not in low power mode when debug
exception occurred

1 Processor in low power mode when debug excep-
tion occurred

Halt 26 Indicates that the internal system bus clock was stopped when the R Undefined
debug exception occurred:

Encoding Description

0 Internal system bus clock running
1 Internal system bus clock stopped

186 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.36 Debug Register Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read /
Write

Reset State

CountDM

25

Indicates the Count register behavior in debug mode.

Encoding Description

0 Count register stopped in debug mode

1 Count register is running in debug mode

R/W

1

IBusEP

24

Imprecise instruction fetch Bus Error exception Pending: All
instruction bus errors are precise on the 24K core so this bit will
awaysread as 0.

Set when an instruction fetch bus error event occurs or if aliswrit-
ten to the bit by software. Cleared when a Bus Error exception on
instruction fetch istaken by the processor, and by reset. If IBUSEP is
set when IEXI is cleared, a Bus Error exception on instruction fetch
istaken by the processor, and IBUSEP is cleared.

M CheckP

23

Indicates that an imprecise Machine Check exception is pend-
ing.Machine check exceptions are preciseon 24K core, so thisbit is
read only and tied to 0.

CacheEP

22

Indicates that an imprecise Cache Error is pending.

R/W1

DBuUsEP

21

Data access Bus Error exception Pending: Set when an data bus
error event occurs or if a 1 iswritten to the bit by software. Cleared
when a Data Bus Error exception is taken by the processor, and by
reset. If DBUSEP is set when IEXI is cleared, a Data Bus Error
exception is taken by the processor, and DBUSEP is cleared.

R/W1

20

Imprecise Error eXception Inhibit: Controls exceptions taken due to
imprecise error indications. Set when the processor takes a debug
exception or exception in debug mode. Cleared by execution of the
DERET instruction; otherwise modifiable by debug mode software.
When IEXI| is set, the imprecise error exception from a bus error on
an instruction fetch or data access, cache error, or machine check is
inhibited and deferred until the bit is cleared.

DDBSImpr

19

Indicates that an imprecise Debug Data Break Store exception was
taken.

DDBLImpr

18

Indicates that an imprecise Debug Data Break Load exception was
taken.

EJTAGver

17:15

EJTAG version.

Encoding Description

3 Version 3.x

011

DExcCode

14:10

Indicates the cause of the latest exception in debug mode. See Table
6.24 for alist of values.
Value is undefined after a debug exception.

Undefined

NoSST

Indicates whether the single-step feature controllable by the SSt hit
is available in thisimplementation:

Encoding Description

0 Single-step feature available
1 No single-step feature available

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

187

CPO Registers of the 24K® Core

Table 6.36 Debug Register Field Descriptions (Continued)

Fields

Read /
Name Bit(s) Description Write Reset State

SSt 8 Controlsif debug single step exception is enabled: R/W 0

Encoding Description

0 No debug single-step exception enabled
1 Debug single step exception enabled

R 7 Reserved. Must be written as zeros; returns zeros on reads. R 0

R 6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception occurred. Cleared on R Undefined
exception in debug mode.

Encoding Description

0 No debug interrupt exception
1 Debug interrupt exception

DIB 4 Indicates that adebug instruction break exception occurred. Cleared R Undefined
on exception in debug mode.

Encoding Description

0 No debug interrupt exception
1 Debug interrupt exception

DDBS 3 Indicates that a debug data break exception occurred on a store. R Undefined
Cleared on exception in debug mode.

Encoding Description

0 No debug data exception on a store
1 Debug instruction exception on a store

DDBL 2 Indicates that a debug data break exception occurred on aload. R Undefined
Cleared on exception in debug mode.

Encoding Description

0 No debug data exception on aload
1 Debug instruction exception on aload

DBp 1 Indicates that a debug software breakpoint exception occurred. R Undefined
Cleared on exception in debug mode.

Encoding Description

0 No debug software breakpoint exception
1 Debug software breakpoint exception

188 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.36 Debug Register Field Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
DSS 0 Indicates that a debug single-step exception occurred. Cleared on R Undefined
exception in debug mode.
Encoding Description
0 No debug single-step exception
1 Debug single-step exception
6.2.29 Trace Control Register (CPO Register 23, Select 1)
The TraceControl register configuration is shown below.
Figure 6.30 TraceControl Register Format
31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0
TSUT| 0 |TB|IO|D|E|K|S|U ASID_M ASID G |[TFCRTLSM|TIM|On
Table 6.37 TraceControl Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
TS 31 The trace select bit is used to select between the hardware and the R/W 0
software trace control bits. A value of zero selects the external hard-
ware trace block signals, and a value of one selects the trace control
bitsin the TraceControl register.
uT 30 This bit is used to indicate the type of user-triggered trace record. A R/W Undefined
value of zero implies a user type 1 and avalue of one implies a user
type 2.
The actual triggering of a user trace record happens on awriteto the
UserTraceData register. Thisis a32-bit register for 32-bit proces-
sors and a 64-bit register for 64-bit processors.
0 29:28 | Reserved for future use; Must be written as zero; returns zero on 0 0
read.
B 27 Trace All Branch. When set to 1, this tells the processor to trace the R/W Undefined
PC valuefor all taken branches, not just the ones whose branch tar-
get addressis statically unpredictable.
10 26 Inhibit Overflow. Thissignal is used to indicate to the core trace R/W Undefined
logic that slow but complete tracing is desired. Hence, the core trac-
ing logic must not allow a FIFO overflow and discard trace data.
Thisis achieved by stalling the pipeline when the FIFO is nearly
full, so that no trace records are ever lost.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 189

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.37 TraceControl Register Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State

D 25 When set to one, this enablestracing in Debug Mode. For traceto be R/W Undefined
enabled in Debug mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in this register.

When set to zero, trace is disabled in Debug Mode, irrespective of
other hits.

E 24 When set to one, this enables tracing in Exception Mode. For trace R/W Undefined
to be enabled in Exception mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.

When set to zero, trace is disabled in Exception Mode, irrespective
of other bits.

K 23 When set to one, this enablestracing in Kernel Mode. For traceto be R/W Undefined
enabled in Kernel mode, the On bit must be one, and either the G bit
must be one, or the current process ASID must match the ASID field
in thisregister.

When set to zero, trace is disabled in Kernel Mode, irrespective of
other bits.

S 22 When set to one, this enables tracing in Supervisor Mode.For trace R/W Undefined
to be enabled in Supervisor mode, the On bit must be one, and either
the G bit must be one, or the current process ASID must match the
ASID field in this register.

When set to zero, trace is disabled in Supervisor Mode, irrespective
of other hits.

If the processor does not implement Supervisor Mode, thisbit is
ignored on write and returns zero on read.

U 21 When set to one, this enables tracing in User Mode. For trace to be R/W Undefined
enabled in User mode, the On bit must be one, and either the G hit
must be one, or the current process ASID must match the ASID field
in this register.

When set to zero, trace is disabled in User Mode, irrespective of
other bits.

ASID_M 20:13 | Thisisamask value applied to the ASID comparison (done when R/W Undefined
the G bit is zero). A “1” in any bit in thisfield inhibits the corre-
sponding ASID bit from participating in the match. As such, avalue
of zero in thisfield compares all bits of ASID. Note that the ability
to mask the ASID valueis not available in the hardware signal bit; it
isonly available viathe software control register.

If the processor does not implement the standard TLB-based MMU,
thisfield isignored on write and returns zero on read.

ASID 12:5 The ASID field to match when the G hit is zero. When the G hit is R/W Undefined
one, thisfield isignored.

If the processor does not implement the standard TLB-based MMU,
thisfield isignored on write and returns zero on read.

G 4 When set, thisimplies that tracing isto be enabled for all processes, R/W Undefined
provided that other enabling functions (like U, S, etc.,) are also true.
If the processor does not implement the standard TL B-based MMU,
thisfield isignored on write and returns 1 on read. This causes al
match equations to work correctly in the absence of an ASID.

190 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.37 TraceControl Register Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State

TFCR 3 When asserted, used to trace function call and return instructions R/W Undefined
with full PC values.

TLSM 2 When asserted, used to trace data cache load and store misses with R/IW Undefined
full PC values, and potentially the data address and value as well.

TIM When asserted, used to trace instruction miss with full PC values. R/W Undefined
On 0 Thisisthe master trace enable switch in software control. When R/W 0

zero, tracing is always disabled. When set to one, tracing is enabled
whenever the other enabling functions are also true.

6.2.30 Trace Control2 Register (CPO Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fieldsin the
TraceControl2 register are read-only, but have areset state of “Undefined”. Thisis because these values are loaded

from the Trace Control Block (TCB) (see Section 11.9 “Trace Control Block (TCB) Registers (Hardware Control)”).
As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these values.

Thisregister is only implemented if the MIPS Trace capability is present.

Figure 6.31 TraceControl2 Register Format

31 30 29 28 21 20 19 12 11 6 5 4 3 2
0 |CPUIdV CPUId TCV TCNum Mode ValidModes | TBI | TBU | SyP
Table 6.38 TraceControl2 Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
0 31:30 | Reserved for future use; Must be written as zero; returns zero on 0 0
read.
CPUIdV, 29:12 | Used on processors implementing the MT ASE R 0
CPUId,
TCV,
TCNum

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

191

CPO Registers of the 24K® Core

Table 6.38 TraceControl2 Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

Mode 11:7 These 5 bits provide the same trace mode functions as the R/W Undefined
PDI_TraceMode[4:0] signal, and is described here again.

When tracing is turned on, this signal specifies what information is
to be traced by the core. It uses 5 bits, where each bit turns on trac-
ing of a specific tracing mode when that bit valueisa 1. If the corre-
sponding bit is 0, then the Trace Value shown in column two is not
traced by the processor.

On the 24K core, PC tracing is always enabled, regardless of the
value on bit 7. The table shows what trace value is turned on:

Bit Trace the Following
7 PC

8 Load address
9 Store address

10 Load data

11 Store data

Valid- 6:5 his field specifies the subset of tracing that is supported by the pro- R Preset
Modes Cessor.

_|

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing only

10 PC, load and store address, and load and store data
11 Reserved

TBI 4 This bit indicates how many trace buffers are implemented by the R Undefined
TCB, asfollows:

Encoding Meaning

0 Only onetrace buffer isimplemented, and the TBU
bit of this register indicates which trace buffer is
implemented

1 Both on-chip and off-chip trace buffers are imple-
mented by the TCB and the TBU hit of thisregister
indicates to which trace buffer the tracesis cur-
rently written.

This bit isloaded from the PDI_TBImpl signal when the
PDI_SyncOffEn signal is asserted.

TBU 3 This bit denotes to which trace buffer the trace is currently being R Undefined
written and is used to select the appropriate interpretation of the
TraceControl2gyp field.

Encoding Meaning
0 Trace datais being sent to an on-chip trace buffer
1 Trace Datais being sent to an off-chip trace buffer

This bit isloaded from the PDI_OffChipTB signal when the
PDI_SyncOffEn signal is asserted.

192 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.38 TraceControl2 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
SyP 2.0 The period (in cycles) to which the internal synchronization counter R Undefined

isreset when tracing is started, or when the synchronization counter
has overflowed.

SyP Sync Period
000 25
001 26
010 o7
011 28
100 29
101 210
110 11
11 012

Thisfield isloaded from the PDI_SyncPeriod signa when the
PDI_SyncOffEn signal is asserted.

6.2.31 User Trace Data Register (CPO Register 23, Select 3)

A software write to any bitsin the UserTraceData register will trigger atrace record to be written indicating a type 1
or type 2 user format. The typeis based on the UT bit in the TraceControl register. This register cannot be written in
consecutive cycles. The trace output datais UNPREDICTABLE if thisregister is written in consecutive cycles.

Thisregister is only implemented if the MIPS Trace capability is present.

Figure 6.32 User Trace Data Register Format
31 0

Data

Table 6.39 UserTraceData Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Data 31.0 Software readable/writable data. When written, this triggers a user R/W 0
format trace record out of the PDtrace interface that transmits the
Datafield to trace memory.

6.2.32 TracelBPC Register (CPO Register 23, Select 4)

The TracelBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as atrigger source and optionally also as a Debug exception
breakpoint.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 193

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Thisregister is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 6.33 TracelBPC Register Format
31 29 28 27 12 11 9 8 6 5 3 2 0

o |IE 0 IBPC; | IBPC, | IBPC; | IBPC,

Table 6.40 TracelBPC Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

0 31:29, |Reserved for future implementation. R 0/1
27:12

IE 28 Used to specify whether the trigger signal from EJTAG instruction R/W 0
breakpoint should trigger tracing functions or not:

Encoding Meaning

0 Disables trigger signals from instruction break-
points
1 Enables trigger signals from instruction break-
points

IBPC, 3n+2:3n | The three bits are decoded to enable different tracing modes. Table R/W 0
6.42 shows the possible interpretations. Each set of 3 bits represents
the encoding for the instruction breskpoint n in the EJTAG imple-
mentation, if it exists. If the breakpoint does not exist, then the bits
arereserved, read as zero, and writes are ignored.

6.2.33 TraceDBPC Register (CP0O Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as atrigger source and optionally also as a Debug exception breakpoint.

Thisregister is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 6.34 TraceDBPC Register Format
31 29 28 27 6 5 3 2 0

0 |DE 0 DBPC, | DBPC,

Table 6.41 TraceDBPC Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 31:29, |Reserved for future implementation R 0/1
27:6
194 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.41 TraceDBPC Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

DE 28 Used to specify whether the trigger signal from EJTAG data break- R/W 0
point should trigger tracing functions or not:

Encoding Meaning

0 Disables trigger signals from data breakpoints
1 Enables trigger signals from data breakpoints

DBPC, | 3nt+2:3n | Thethree bits are decoded to enable different tracing modes. Table RIW 0
6.42 shows the possible interpretations. Each set of 3 bits represents
the encoding for the data breakpoint n in the EJTAG implementa-
tion, if it exists. If the breakpoint does not exist then the bits are
reserved, read as zero and writes are ignored.

Table 6.42 BreakPoint Control Modes: IBPC and DBPC

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is
already off, then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is
already turned on, then thereis no effect.

010to 111 Not used Reserved for future implementation

6.2.34 Debug Exception Program Counter Register (CPO Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:
» Thevirtual address of the instruction that was the direct cause of the debug exception, or

» Thevirtual address of theimmediately preceding branch or jump instruction, when the debug exception causing
instruction isin abranch delay dot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the instruction where
execution should resume after the debug handler code is executed.

In processors that implement the MIPS16 ASE, aread of the DEPC register (via MFCO) returns the following value
in the destination GPR:

GPR[rt] « DebugExceptionPCs; | || ISAModeq
That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 195

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

31

Similarly, awrite to the DEPC register (viaMTCO) takes the value from the GPR and distributes that value to the
debug exception PC and the ISA Mode field, as follows

DebugExceptionPC « GPR[rtls; 1 || O
ISAMode « 2#0 || GPR[rt],

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit isloaded from the
lower bit of the GPR.

Figure 6.35 DEPC Register Format

DEPC

Table 6.43 DEPC Register Formats

Fields
Read /
Name Bit(s) Description Write Reset
DEPC 31:0 The DEPC register is updated with the virtual address of the instruc- R/W Undefined

tion that caused the debug exception. If the instruction isin the
branch delay dlot, then the virtual address of the immediately pre-
ceding branch or jump instruction is placed in this register.
Execution of the DERET instruction causes ajump to the addressin
the DEPC.

6.2.35 Performance Counter Register (CPO Register 25, select 0-3)

196

The 24K processor defines two performance counters and two associated control registers, which are mapped to CPO
register 25. The select field of the MTCO/MFCO instructions are used to select the specific register accessed by the
instruction, as shown in Table 6.44.

Table 6.44 Performance Counter Register Selects

Select[2:0] Register
0 Register 0 Control
1 Register 0 Count
2 Register 1 Control
3 Register 1 Count

Each counter is a 32-bit read/write register and isincremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at atime.

Bit 31 of each of the counters are AND’ ed with an interrupt enable bit, |E, of their respective control register to deter-
mineif a performance counter interrupt should be signalled. The two values are then OR’ ed together to create the
SI_PCI output. Thissignal is combined with one of the SI_Int pinsto signal an interrupt to the core. Counting is not
affected by the interrupt indication. This output is cleared when the counter wraps to zero, and may be cleared in soft-
ware by writing a value with bit 31 = 0 to the Performance Counter Count registers.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

NOTE: the performance counter registers are connected to a clock that is stopped when the processor isin sleep mode
(if thetop level clock gater is present). Most events would not be active during that time, but others would be, notably
the cycle count. This behavior should be considered when analyzing measurements taken on a system. Further, note

that FPGA implementations of the core would generally not have the clock gater present and thus would have differ-
ent behavior than atypical ASIC implementation.

For amore detailed description of performance counter events, refer to Programming the 24K Core Family [7].

Figure 6.36 Performance Counter Control Register

31 12 11 5 4 3 2 1 0
M 0 Event IE|U| S|K|EXL
Table 6.45 Performance Counter Control Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State
M 31 If thisbit isone, another pair of Performance Control and Counter R Preset
registersisimplemented at aMTCO or MFCO select field value of
‘n+2" and ‘n+3'.
Event 11:5 Counter event enabled for this counter. Possible events are listed in R/W Undefined
Table 6.46.
IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated R/W 0
count register from the interrupt exception request output.
U 3 Count in User Mode. When this bit is set, the specified event is R/W Undefined
counted in User Mode.
S 2 Count in Supervisor Mode. When this bit is set, the specified event R/W Undefined
is counted in Supervisor Mode.
K 1 Count in Kernel Mode. When this bit is set, count the event in Ker- R/W Undefined
nel Mode when EXL and ERL both are 0.
EXL 0 Count when EXL. When this bit is set, count the event when EXL = R/W Undefined
land ERL =0.
0 30, 15:12 | Must be written as zeroes; returns zeroes when read. 0 0
Table 6.46 describes the events countable with the two performance counters. The mode column indicates whether
the event counting isinfluenced by the mode bits (U,S,K,EXL) The operation of acounterisUNPREDICTABLE for
events which are specified as Reserved. The performance counter resets to alow-power state, in which none of the
Table 6.46 Performance Counter Count Register Field Descriptions
Event Num Counter 0 Mode Counter 1 Mode
0 Cycles No Cycles No
1 Instructions completed Yes Instructions completed Yes
2 branch instructions Yes Branch mispredictions Yes
3 JR r31 (return) instructions Yes JR r31 mispredictions Yes
4 JR (not r31) instructions Yes JR r31 not predicted Yes
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 197

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.46 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Counter 1 Mode
5 ITLB accesses Yes ITLB misses Yes
6 DTLB accesses Yes DTLB misses Yes
7 JTLB instruction accesses Yes JTLB instruction misses Yes
8 JTLB data accesses Yes JTLB data misses Yes
9 Instruction Cache accesses Yes Instruction cache misses Yes
10 Data cache accesses Yes Data cache writebacks Yes
11 Data cache misses Yes Data cache misses Yes
12 Reserved Yes Reserved Yes
13 Store Misses Yes Load Misses Yes
14 integer instructions completed Yes FPU instructions completed Yes
15 loads completed Yes stores compl eted Yes
16 JJAL completed Yes MIPS16 instructions completed Yes
17 no-ops compl eted Yes integer multiply/divide completed Yes
18 Stall cycles No replay traps (other than uTLB) Yes
19 SC instructions compl eted Yes SCinstructions failed Yes
20 Prefetch instructions compl eted Yes Prefetch instructions completed with cache Yes
hit
21 L2 cache writebacks No L2 cache accesses No
22 L2 cache misses No L2 cache single bit errors corrected No
23 Exceptions taken Yes Reserved Yes
24 cache fixup Yes Reserved Yes
25 IFU stall cycles No ALU gall cycles No
26 Reserved Yes Reserved Yes
27 Reserved Yes Reserved Yes
28 Reserved Yes Impl. specific Cp2 event Yes
29 Impl. specific ISPRAM event Yes Impl. specific DSPRAM event Yes
30 Impl. specific CorExtend event Yes Reserved Yes
31 Reserved Yes Reserved Yes
32 Reserved Yes Reserved Yes
33 Uncached L oads Yes Uncached Stores Yes
34 Reserved Yes Reserved Yes
35 CP2 Arithmetic Instns Completed No CP2 To/From Instns completed Yes
198 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.46 Performance Counter Count Register Field Descriptions

Event Num Counter 0 Mode Counter 1 Mode
36 Reserved
37 I$ Miss stall cycles Yes D$ miss stall cycles Yes
38 SYNC stalls Yes FSB Index Conflicts Yes
39 D$ misscycles No L2 misscycles No
40 Uncached stall cycles Yes Reserved Yes
41 MDU stall cycles Yes FPU stall cycles Yes
42 CP2 stall cycles Yes CorExtend stall cycles Yes
43 ISPRAM stall cycles Yes DSPRAM stall cycles Yes
44 CACHE Instn stall cycles No Reserved Yes
45 Load to Use stall cycles Yes ALU to AGEN stall cycles Yes
46 Other interlock stall cycles Yes Branch mispredict stall cycles No
47 Reserved Yes Reserved Yes
48 IFU FB full refetches Yes FB entry allocated No
49 EJTAG Instruction Triggerpoints Yes EJTAG Data Triggerpoints Yes
50 FSB < 1/4 full No FSB 1/4-1/2 full No
51 FSB > 1/2 full No FSB full pipeline stall cycles No
52 LDQ < V4 full No LDQ 1/4-1/2 full No
53 LDQ > 1/2full No LDQ full pipeline stall cycles No
54 WBB < /4 full No WBB 1/4-1/2 full No
55 WBB > 1/2 full No WBB full pipeline stall cycles No
56-63 Reserved
64 SI_PCEvent[0Q] - System specific event O No SI_PCEvent[1] - System specific event 1 No
65 SI_PCEvent[2] - System specific event 2 No SI_PCEvent[3] - System specific event 3 No
66 SI_PCEvent[4] - System specific event 4 No SI_PCEvent[5] - System specific event 5 No
67 SI_PCEvent[6] - System specific event 6 No SI_PCEvent[7] - System specific event 7 No
68-127 Reserved
56-63 Reserved
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 199

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.47 Event Descriptions

Event
Event Name Counter | Number Description
Cycles 0/1 0 Total number of cycles.

The performance counters are clocked by the top-level gated clock. If
the coreisbuilt with that clock gater present, none of the counters will
increment while the clock is stopped - due to aWAIT instruction.

Instruction Completion: The following events indicate compl eti

on of various types of instructions

Instructions o1 1 Total number of instructions completed.
Branch instns 0 2 Counts all branch instructions that completed.
JR R31 (return) instns 0 3 Counts al JR R31 instructions that completed.
JR (not R31) 0 4 Counts al JR $xx (not $31) and JALR instructions (indirect jumps).
Integer instns 0 14 Non-floating point, non-Coprocessor 2 instructions.
FPU instns 1 14 Floating point instructions.
Loads 0 15 Includes both integer and coprocessor loads.
Stores 1 15 Includes both integer and coprocessor stores.
JJIAL 0 16 Direct Jump (And Link) instruction.
MIPS16e 1 16 All MIPS16e instruction.
no-ops 0 17 Thisincludes all instructions that normally write to a GPR, but where
the destination register was set to rO0.
Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions (MULxx, DIV,
MADDx, MSUBX).
SC 19 Counts conditional stores regardless of whether they succeeded.
PREF 20 Note that this only counts PREFs that are actually attempted. PREFs
to uncached addresses or ones with translation errors are not counted
Uncached Loads 0 33 Include both Uncached and Uncached Accelerated CCAs.
Uncached Stores 1 33
Cp2 Arithmetic instns 0 35 Counts Coprocessor 2 register-to-register instructions.
Cp2 To/From instns 1 35 Includes move to/from, control to/from, and cop2 loads and stores.
I nstruction execution events
Branch mispredicts 1 2 Counts al branch instructions which completed, but were mispre-
dicted.
JR r31 mispredicts 1 3 Counts all JR $31 instructions which completed, used the RPS for a

prediction, but were mispredicted.

JR r31 not-predicted

If RPSuseis disabled, JR $31 will not be predicted.

ITLB accesses

CountsITLB accessesthat are due to fetches showing up in I F stage of
the pipe and do not use fixed mapping or are not in unmapped space.
If an address is fetched twice down the pipe (asin the case of acache
miss), that instruction will count 2 ITLB accesses. Also, since each
fetch gets us 2 instructions, there is one access marked per double
word.

200

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.47 Event Descriptions (Continued)

Event
Event Name Counter Number Description
ITLB misses 1 5 Counts al missesin ITLB except ones that are on the back of another
miss. We cannot process back to back misses and thus those are
ignored for this purpose. Also ignored if thereis some form of address
error.
DTLB accesses 0 Counts DTLB access including those in unmapped address spaces.
DTLB misses Counts DTLB misses. Back to back misses that result in only one
DTLB entry getting refilled are counted as a single miss.
JTLB instruction accesses 0 7 Instruction JTLB accesses are counted exactly the same as ITLB
mi Sses.
JTLB instruction misses 1 7 Counts instruction JTLB accesses that result in no match or amatch
on an invalid trandlation.
JTLB data accesses 0 Data JTLB accesses.
JTLB datamisses Counts data JTL B accesses that result in no match or amatch on an
invalid trandlation.
1$ accesses 0 9 Counts every time the instruction cache is accessed. All replays,
wasted fetches etc. are counted. For example, following a branch,
even the prediction is taken, the fall through accessis counted.
1$ misses 9 Counts al instruction cache misses that result in a bus request.
D$ accesses 0 10 Counts cached loads and stores.
D$ writebacks 10 Counts cache lines written back to memory due to replacement or
cacheops.
D$ misses 0/1 11 Counts loads and stores that miss in the cache
Load Misses 0 13 Counts number of cacheable loads that missin the cache.
Store Misses 13 Counts number of cacheable stores that miss in the cache.
SC instructons failed 1 19 SC instruction that did not update memory
Note: While this event and the SC instruction count event can be con-
figured to count in specific operating modes, the timing of the events
is much different and the observed operating mode could change
between them, causing some inaccuracy in the measured ratio.
PREF completed with cache hit 20 Counts PREF instructions that hit in the cache
L2 Cache Writebacks 0 21 Counts cache lines written back to memory due to replacement or
cacheops
L2 Cache Accesses 1 21 Number of accessesto L2 Cache
L2 Cache Misses 0 22 Number of accesses that missed in the L2 cache
L2 Cache Single Bit Errors Corrected 1 22 Single bit errorsin L2 Cache that were detected and corrected
Exceptions Taken 0 23 Any type of exception taken
EJTAG instruction triggers 0 49 Number of times an EJTAG Instruction Trigger Point condition
matched
EJTAG datatriggers 1 49 Number of times an EJTAG Data Trigger Point condition matched

Pipeline Fun

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

201

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.47 Event Descriptions (Continued)

Event
Event Name Counter Number Description
Cache fixup 0 24 Counts cycles where the LSU isin fixup and cannot accept a new
instruction from the ALU. Fixups are replays within the LSU that
occur when an instruction needs to re-access the cache or the DTLB
General Stalls
IFU stall cycles 0 25 Counts the number of cycles where the fetch unit is not providing a
valid instruction to the ALU.
ALU stall cycles 25 Counts the number of cycles where the ALU pipeline cannot advance.
Stall cycles 18 Counts the total number of cycles where no instructions are issued by

IFU to ALU (the RF stage does not advance). Thisincludes both of
the previous two events. Thisis different than the sum of them though
because cycles when both stalls are active will only be counted once.

Specific stalls - these events will count the number of cycleslost due to this. Thiswill include bubbles introduced by replays within the
pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be incremented.

SYNC stall cycles 0 38 Cycles where the main pipelineis stalled waiting for a SYNC to com-
plete
FSB index conflict stall cycles 1 38 Cycles where the main pipeline is stalled because of an index conflict
inthe Fill Store Buffer.

I$ missstall cycles 0 37 Cycleswhen IFU stalls because an I$ miss caused the |FU not to have
any runnable instructions. Ignores the stallsdueto ITLB misses as
well asthe 4 cyclesfollowing aredirect.

D$ miss stall cycles 1 37 Countsal cycleswhereinteger pipeline waits on Load return data due
to aD-cache miss. The LSU can signal a“long stall” on a D-cache
misses, in which case the waiting TC might be rescheduled so other
TCs can execute instructions till the data returns.

D$ miss cycle cycles 0 39 D$ miss s outstanding, but not necessarily stalling the pipeline. The
difference between this and D$ miss stall cycles can show the gain
from non-blocking cache misses.

L2 misscycles 39 L2 missis outstanding, but not necessarily stalling the pipeline.
Uncached stall cycles 0 40 Cycles where the processor is stalled on an uncached fetch, load, or
store.
MDU stall cycles 0 41 Counts all cycles where integer pipeline waits on MDU return data.
FPU stall cycles 1 41 Counts all cycles where integer pipeline waits on FPU return data.
Cp2 stall cycles 0 42 Counts all cycles where integer pipeline waits on CP2 return data.
CorExtend stall cycles 1 42 Counts all cycles where integer pipeline waits on CorExtend return
data.

ISPRAM stall cycles 0 43 Count all pipeline bubblesthat are aresult of multicycle ISPRAM
access. Pipeline bubbles are defined as al cycles that IFU doesn’'t
present an instruction to ALU. The four cycles after aredirect are not
counted.

DSPRAM stdl cycles 1 43 Counts stall cycles created by an instruction waiting for access to

DSPRAM.

202

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.47 Event Descriptions (Continued)

Event
Event Name Counter Number Description
CACHE instn stall cycles 0 44 Countsall cycleswhere pipelineis stalled dueto CACHE instructions.
Includes cycles where CACHE instructions themselves are stalled in
the ALU, and cycles where CACHE instructions cause subsequent
instructions to be stalled.
Load to Use stall cycles 0 45 Counts all cycles where integer pipeline waits on Load return data.
ALU to AGEN stall cycles 45 Counts stall cycles due to skewed ALU where the bypass to the
address generation takes an extra cycle.
Other interlocks stall cycles 0 46 Counts all cycleswhereinteger pipeline waits on return data from
MFCO, RDHWR instructions.
Branch mispredict stalls cycles 1 46 This counts the number of cycles from a mispredicted branch until the
next non-delay slot instruction executes.
FSB full pipeline stall cycles 1 51 Cycles where the pipeline is stalled because the Fill-Store Buffer in
LSU isfull.
LDQ full pipeline stall cycles 1 53 Cycles where the pipelineis stalled because the Load Data Queuein
the LSU isfull.
Write Back Buffer full stall cycles 1 55 Cycles where the pipeline is stalled because the WriteBack Buffer in

the BIU isfull.

Latency Events - These events provide a statistical sampling of latencies within the system. One particular FSB entry is monitored. The
latency event increments each cycle from the time a request is generated until response is seen. The count events are incremented once for

each request that we are counting the latency for.

Request Latency to Read Response 0 61 Measures latency from miss detection until critical dword of response
isreturned, Only counts for cacheable reads.
Request Count for RR Latency 1 61 Counts number of cacheable read requests used for previous latency

counter.

Implementation specific events - Modules that can be replaced by

the customer will have an event signal associated with them.

Cp2 1 28

ISPRAM 0 29

DSPRAM 1 29

CorExtend 0 30
SI_PCEvent[7:0] 0/1 64-67

Buffer usage events - These count the number of cycles that buffers within the core spend at various levels of fullness.

Fill Store Buffer < 1/4 full 0 50 Buffer Occupancy:
- The following table shows what values fall into each of the bins for
Fill Store Buffer 1/4 to 1/2 full 1 50 the different buffer sizes that can be chosen.
Fill Store Buffer > 1/2 full 0 51
State 4 Entry Buffer 8/9 Entry Buffer
Load Data Queue < 1/4 full 0 52
<1/4 0 01
Load Data Queue 1/4 to 1/2 full 1 52 a2 12 >
Load Data Queue > 1/2 full 0 53 >1/2 3+ 5+
Write Back Buffer < 1/4 full 0 54
Write Back Buffer 1/4 to 1/2 full 1 54
Write Back Buffer > 1/2 full 0 55

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

203

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.47 Event Descriptions (Continued)

Event
Event Name Counter Number Description
IFU Fill buffer allocated 1 48 Number of cycleswhere at |east one of the IFU fill buffersisallocated
(miss pending)
Refetches dueto al IFU Fill Buff- 0 48 Counts the number of times an instruction cache miss was detected,
ers allocated but both fill buffers were already allocated.

204

counters will start counting events until software has enabled event counting, using an MTCO instruction to the Per-
formance Counter Control Registers.

Figure 6.37 Performance Counter Count Register
31 0

Counter

Table 6.48 Performance Counter Count Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Counter 31:.0 Counter R/W Undefined

6.2.36 ErrCtl Register (CPO Register 26, Select 0)

The ErrCtl register controls parity protection of data and instruction caches and provides for software testing of the
way-sel ection and scratchpad RAMs.

Parity protection can be enabled or disabled using the PE bit. When parity is enabled and the PO bit is deasserted, the
CACHE Index Store Tag and Index Store Data operations will internally generate parity to be written into the RAM
arrays. However, when the PO hit is asserted, tag array parity iswritten using the P bit of the TagLo register and data
array parity iswritten using the PI/PD bits of ErrCtl.

ECC protection for the secondary cache is controlled by a combination of PE and the L2P bits.

A CACHE Index Load Tag operation to the instruction cache will update the PCI field with the instruction precode
bits from the data array and the PI field with the parity bits from the data array if parity is supported. A CACHE Index
L oad Tag operation to the data cache will cause the PD bitsto be updated with the byte parity for the sel ected word of
the data array if parity isimplemented. If parity is disabled or not implemented, the contents of the P1 and PD fields
after a CACHE Index Load Tag operation will be 0.

The PCO field can be used for testing the precode bits of the instruction cache data array. When the PCO hit is
cleared, the CACHE Index Store Datainstruction will internally generate the precode bits to be written into the
instruction cache data array. However, when the PCO bit is set, the CACHE Index Store Data instruction will write
the value in the PCI field to the precode bits in the data array. Setting an illegal value in the precode bits will cause
unpredictable behavior. This mechanism should only be used for software testing of the cache arrays. Furthermore,
the cache should be flushed after testing.

The way- selection RAM test modeis enabled by setting the WST bit. This mode isintended for software testing of
the way-selection RAM and data RAM. It modifies the functionality of the CACHE Index Load Tag and Index Store

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

31

6.2 CPO Register Descriptions

Tag operations so that they modify the way-selection RAM instead of the TAG RAMSs. In addition, when the WST bit
is set, the CACHE Index Store Data can be used for testing the data RAM.

Setting the SPR bit enables scratchpad test mode. This mode allows reading and writing of the scratchpad pseudo-
tags as well the scratchpad data array.

At most one of the WST and SPR hits should be set. Setting multiple bitswill lead to unpredictable behavior. Refer to

“CACHE" on page 329 for a description of CACHE instruction operation for the different values of these hits.

30 29

28 27

Figure 6.38 ErrCtl Register
26 25 24 23 22 21 20 19 18 13 12

PE

PO |WST

SPR|PCO

0 [LBE|WABE|L2P| 0 |SE|FE PCI

P

Table 6.49 ErrCtl Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

PE

31

Parity Enable. This bit enables or disables the cache parity protec-
tion for both the instruction cache and the data cache.

Encoding Meaning
0 Perity disabled
1 Parity enabled

Thisfield is only write-able if the cache parity option was imple-
mented when the core was built. If cache parity is not supported, this
field is always read as 0. Software can test for cache parity support
by attempting to write a 1 to this field, then read back the value.

R or R'W

0

30

Parity Overwrite. If set, the PI/PD fields of this register overwrites
calculated parity for the data array. In addition, the P field of the
TagLo register overwrites calculated parity for the tag array. This
bit only has significance during CACHE Index Store Tag and
CACHE Index Store Data operations.

Encoding Meaning

0 Use calculated parity
1 Override calculated parity

RIW

WST

29

Way Selection Test. If set, way-selection RAM test mode is enabled.
This affects only the CACHE instruction operation. CACHE instruc-
tion behavior is undefined if this bit is set at the sametime as SPR.

Encoding Meaning

0 Test mode disabled
1 Test mode enabled

R/W

SPR

28

ScratchPadRAM test. If set, indexed CACHE instructions operate
on the ScratchPad RAM. Undefined behavior if ScratchPad RAM is
not present or if thisbit is set at the same time as WST.

R/W

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

205

CPO Registers of the 24K® Core

Table 6.49 ErrCtl Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
PCO 27 Precode override. If set, the contents of the PCI field overwrite the R/W 0
calculated precode bits when data is written to the instruction cache
for CACHE IndexStoreData operations.
Encoding Meaning
0 Use calculated precode
1 Override calculated precode
ITC 26 InterThread Communication. If set, Index Load Tag and Index Store R/W 0
Tag CACHE instructions operate on the ITC tag.
CACHE instruction behavior is undefined if this bit is set at the
sametime as WST or SPR.
LBE 25 Bit indicating that the most recent Data Bus Error was involved a R Undefined
load instruction. A Per-TC BE hit will indicate which TCswere
impacted.
WABE 24 Bit indicating that the most recent Data Bus Error was due to awrite R Undefined

allocate and that store datawas lost. There is no indication of which
TC(9) the store request came from.

Itis possible for both LBE and WABE to be set if the bus error was
on aline being used for both loads and stores.

L2P 23 L2 ECC Enable. Thisbit can be set only if the L2 is ECC-capable. R/W 0
This bit in conjunction with the PE bit enables or disables the ECC
protection for the L2 cache:

PE L2P L2 check
1 0 1
1 1 0
0 0 0
0 1 1
0 26,22:21 | Must be written as zeroes; returns zeroes when read. 0
SE 20 Indicates that a second cache error was detected before the first error R

was processed. Thisisan unrecoverable error. Thisbit is set when a
cache error is detected while the FE bit is set. Thisbit is cleared on
reset or when a cache error is detected with FE cleared.

FE 19 Indicates that thisis the first cache error and therefore potentially R/W 0
recoverable. Error handling software should clear this bit when the
error has been processed. Thishit is cleared on reset. Refer to SE bit
description for implications of this bit.

PCI 18:13 | Instruction precode bits read from or written to the instruction cache R/W Undefined
data RAM.
PI 12:.4 Parity bit read from or written to instruction cache data RAM. R/W Undefined
Bits Meaning

12 Even parity bit for the pre-code bits
11:4 Per-byte even parity bits for the 64b of data

206 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.49 ErrCtl Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
PD 3.0 Parity bits read from or written to data cache data RAM. PD[0] is R/W Undefined
even parity for the least-significant byte of the requested data.

6.2.37 CacheErr Register (CPO Register 27, Select 0)

The CacheErr register provides an interface with the cache error-detection logic. When a Cache Error exception is
signaled, the fields of this register are set accordingly. The format of the CacheErr register is different for Primary

caches and the Secondary Cache. The EC bit ([30]) indicates the format to be used for decoding the contents of the
CacheErr register.

Figure 6.39 CacheErr Register (Primary Caches)
31 30 29 28 27 26 25 24 23 22 21 20 19 0

ER|EC|ED |ET|ES|EE|EB|EF|SP|EW| Way Index

Table 6.50 CacheErr Register Field Descriptions (Primary Caches)

Fields
Read /

Name Bits Description Write Reset State

ER 31 Error Reference. Indicates the type of reference that encountered an R Undefined
error.

Encoding Meaning

0 Instruction
1 Data

EC 30 Indicates the cache level at which the error was detected: R Undefined

Encoding Meaning

0 Primary
1 Non-primary

ED 29 Error Data. Indicates adata RAM error. R Undefined

Encoding Meaning

0 No data RAM error detected
1 Data RAM error detected

ET 28 Error Tag. Indicates atag RAM error. R Undefined

Encoding Meaning

0 No tag RAM error detected
1 Tag RAM error detected

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 207

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.50 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields
Read /
Name Bits Description Write Reset State
ES 27 Error source. Indicates whether error was caused by internal proces- R Undefined
sor or externa snoop request.
Encoding Meaning

0 Error oninternal request

1 Error on external request
EE 26 Error external: Not supported. R 0
EB 25 Error Both. Indicates that a data cache error occurred in addition to R Undefined

an instruction cache error.

Encoding Meaning

0 No additional data cache error
1 Additional data cache error

In the case of an additional data cache error, the remainder of the
bitsin this register are set according to the instruction cache error.

EF 24 Error Fatal. Indicates that afatal cache error has occurred. R Undefined
There are afew situations where software will not be able to get all
information about a cache error from the CacheErr register. These
situations are fatal because software cannot determine which mem-
ory locations have been affected by the error. To enable software to
detect these cases, the EF bit (bit 24) has been added to the
CacheErr register.

Thefollowing 6 cases are indicated as fatal cache errors by the EF

Dirty parity error in dirty victim (dirty bit cleared)

Tag parity error in dirty victim

Data parity error in dirty victim

WB store miss and EW error at the requested index

Dual/Triple errors from different transactions, e.g. scheduled

and non-scheduled |oad.

6 Multiple data cache errors detected before the first instruction
of the cache error handler isissued.

In addition to the above, simultaneous instruction and data cache

errorsasindicated by CacheErrgg will cause information about the

data cache error to be unavailable. However, that situation is not

indicated by CacheErrgg.

OMWNPRDT
=

SP 23 Scratchpad. Indicates Scratchpad RAM parity error. R 0

Encoding Meaning

0 No Scratchpad RAM error detected
1 Scratchpad RAM error detected

208 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.50 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields
Read /
Name Bits Description Write Reset State
EW 22 Error Way. Indicates a parity error on the dirty bitsthat are stored in R Undefined
the way selection RAM array..
Encoding Meaning

0 No way selection RAM error detected

1 Way selection RAM error detected
Way 21:20 | Way. Specifies the cache way in which the error was detected. It is R Undefined

not valid if aTag RAM error isdetected (ET=1) or Scratchpad RAM
error is detected (SP=1).

Index 19:0 Index. Specifies the cache or Scratchpad RAM index of the double R Undefined
word in which the error was detected. The way of the faulty cacheis
written by hardware in the Way field. Software must combine the
Way and Index read in this register with cache configuration infor-
mation in the Configl register in order to obtain an index which can
be used in an indexed CACHE instruction to access the faulty cache
data or tag. Note that Index is aligned as a byte index, so it does not
need to be shifted by software beforeit is used in an indexed
CACHE instruction. Index bits [4:3] are undefined upon tag RAM
errors, and Index bits above the MSB actually used for cache index-
ing will also be undefined.

Bits[19:16] are only used used for errorsin the Scratchpad RAM.

Figure 6.40 CacheErr Register (Secondary Cache)

31 30 29 28 27 26 25 24 23 22 21 19 18 0
EC|ED ET EM | EF EW| Way Index
Table 6.51 CacheErr Register Field Descriptions (Secondary Cache)
Fields
Read /
Name Bits Description Write Reset State
Reserved 31 Reserved R Undefined
EC 30 Indicates the cache level at which the error was detected: R Undefined
Encoding Meaning
0 Primary
1 Non-primary
ED 29 Error Data. Indicates adata RAM error. R Undefined
Encoding Meaning
0 No data RAM error detected
1 Data RAM error detected
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 209

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

Table 6.51 CacheErr Register Field Descriptions (Secondary Cache) (Continued)

Fields
Read /

Name Bits Description Write Reset State

ET 28 Error Teg. Indicates atag RAM error. R Undefined

Encoding Meaning

0 No tag RAM error detected
1 Tag RAM error detected

Reserved 27 Reserved R Undefined
Reserved 26 Reserved R Undefined

EM 25 Error Multi. Indicates that a cache error occurred in multiple L2 R Undefined
arrays.

Encoding Meaning

0 No multi error

1 Multi error

In the case of multiple errors, the Tag ram error has the highest pri-
ority, followed by the Data ram error, followed by the Way Select
ram. Only the highest priority error information is recorded in the
CacheErr register.

EF 24 Error Fatal. Indicates that afatal cache error has occurred. R Undefined
There are afew situations where software will not be able to get all
information about a cache error from the CacheErr register. These
situations are fatal because software cannot determine which mem-
ory locations have been affected by the error. To enable software to
detect these cases, the EF bit (bit 24) has been added to the
CachekErr register.

This bit is set when a second L2 error occurs before taking the
exception for thefirst L2 error.

Reserved 23 Reserved R Undefined
EW 22 Error Way. Indicates a way-selection RAM error. R Undefined

Encoding Meaning

0 No way-selection RAM error detected
1 Way-selection RAM error detected

Way 21:19 | Way. Specifies the cache way in which the error was detected. It is R Undefined
not valid if aTag RAM error is detected (ET=1) or Scratchpad RAM
error is detected (SP=1).

210 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.51 CacheErr Register Field Descriptions (Secondary Cache) (Continued)

error was detected. The way of the faulty cache iswritten by hard-
warein the Way field. Software must combine the Way and Index
read in this register with cache configuration information in the
Config2 register in order to obtain an index which can beusedin an
indexed CACHE instruction to access the faulty cache data or tag.
Note that Index is aligned as a byte index, so it does not need to be
shifted by software beforeit is used in an indexed CACHE instruc-
tion. Index bits[4:3] are undefined upon tag RAM errors and Index
bits above the MSB actually used for cache indexing will also be
undefined.

Fields
Read /
Name Bits Description Write Reset State
Index 18:0 Index. Specifies the cache index of the double word in which the R Undefined

6.2.38 ITagLo Register (CPO Register 28, Select 0)

The ITagLo register acts as the interface to the instruction cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the ITagLo register as the source of tag information. Note that the 24K core

does not implement the ITagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.

Refer to Figure 8.2 for the layout of the way-selection RAM.

Figure 6.41 ITagLo Register Format (ErrCtly,st=0, ErrCtlgpg=0)

31 11 10 9 8 7 6 5 4 1 0
PTagLo U R |V|R|L R P

Figure 6.42 ITagLo Register Format (ErrCtly,st=1, ErrCtlgpg=0)
31 24 23 20 19 15 100 9 8 7 5 4 1 0
Unused WSLRU R Unused R U

Figure 6.43 ITagLo Register Format (ErrCtlyygt=0, ErrCtlgpr=1)

tag 31 20 19 12 11 8 7 6 0
0 BasePA 0 E 0
1 0 Size 0

Table 6.52 ITagLo Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Unused/U | various | Not used in certain modes of operation. R/W Undefined

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

211

CPO Registers of the 24K® Core

Table 6.52 ITagLo Register Field Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
PTagLo 31:11 | Thisfield contains the physical address of the cache line. Bit 31 cor- R/W Undefined
responds to bit 31 of the PA and bit 11 corresponds to bit 11 of the
PA.
Bit 11 isonly used when 8KB caches are implemented. For other
cache sizes, this bit will not exist in the tag and will bewritten asa0
on IndexL oadTag operations.
R 9:8,4:1 | Must be written as zero; returns zero on read. 0 0
\% 7 Thisfield indicates whether the cache lineisvalid. R/W Undefined
L 5 Specifies the lock hit for the cache tag. When this bit is set, and the R/W Undefined

valid bit is set, the corresponding cache line will not be replaced by
the cache replacement algorithm.

P 0 Parity. Specifies the parity bit for the cache tag. This bit is updated R/W Undefined
with tag array parity on CACHE Index Load Tag operations and
used as tag array parity on Index Store Tag operations when the PO
bit of the ErrCtl register is set.

WSLRU 15:10 [LRU bits. Thisfield contains the value read from the WS array after R/W Undefined
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

BasePA 31:12 | When reading pseudo-tag O of a scratchpad RAM, thisfield will R/W Undefined
contain bits [31:12] of the base address of the scratchpad region
E 7 When reading pseudo-tag 0 of a scratchpad RAM, this bit will indi- R/W Undefined
cate whether the scratchpad is enabled
Size 19:12 | When reading pseudo-tag 1 of a scratchpad RAM, thisfield indi- R/W Undefined

cates the size of the scratchpad array. Thisfield is the number of
4KB sections it contains. (Combined with the 0'sin 11:0, the regis-
ter will contain the number of bytesin the scratchpad region.)

6.2.39 DTagLo Register (CPO Register 28, Select 2

The DTagLo register acts as the interface to the data cache tag array. The Index Store Tag and Index Load Tag opera
tions of the CACHE instruction use the DTagLo register as the source of tag information. Note that the 24K core does
not implement the DTagHi register.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.
Refer to Figure 8.2 for the layout of the way-selection RAM.

Figure 6.44 DTagLo Register Format (ErrCtlyys7t=0, ErrCtlgpg=0)
31 11 10 9 8 7 6 5 4 3 2 1 0

PTagLo Ul R |V|D|L R U P

Figure 6.45 DTagLo Register Format (ErrCtlygt=1, ErrCtlgpg=0)

31 24 23 20 19 15 0 9 8 7 5 4 3 2 1 0
Unused WSDP WSD WSLRU R Unused R U
212 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

tag 31

20 19 12 11 8

6.2 CPO Register Descriptions

Figure 6.46 DTagLo Register Format (ErrCtlygt=0, ErrCtlgpg=1)

7 6

BasePA 0

E

Size

0

Table 6.53 DTagLo Register Field Descriptions

Fields

Name Bit(s)

Description

Read /
Write

Reset State

Unused/U | various

Not used in certain modes of operation.

R/W

Undefined

PTagLo

31:11

Thisfield contains the physical address of the cache line. Bit 31 cor-
responds to bit 31 of the PA and bit 11 corresponds to bit 11 of the
PA.

Bit 11 is only used when 8K B caches are implemented. For other
cache sizes, this bit will not exist in the tag and will bewritten asa0
on IndexLoadTag operations.

RIW

Undefined

R 98,41

Must be written as zero; returns zero on read.

0

Thisfield indicates whether the cache lineisvalid.

R/W

Undefined

Thisfield indicates whether the cache lineisdirty. It will only be set
if bit 7 (valid) isalso set. For L1 I-cache, this field must be written
as zero and returns zero on read.

RIW

Undefined

Specifies the lock bit for the cache tag. When this bit is set, and the
valid bit is set, the corresponding cache line will not be replaced by
the cache replacement al gorithm.

R/W

Undefined

Parity. Specifies the parity bit for the cache tag. This bit is updated
with tag array parity on CACHE Index Load Tag operations and
used astag array parity on Index Store Tag operations when the PO
bit of the ErrCtl register is set.

This parity does not cover the dirty bit; the dirty bit has a separate
parity bit placed in the way selection RAM.

RIW

Undefined

WSDP

23:20

Dirty Parity (Optional). Thisfield contains the value read from the
WS array during a CACHE Index Load WS operation.

If the PO field of the ErrCil register is asserted, then thisfield is
used to store the dirty parity bits during a CACHE Index Store WS
operation.

RIW

Undefined

WSD

19:16

Dirty bits. Thisfield contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

RIW

Undefined

WSLRU

15:10

LRU bhits. Thisfield contains the value read from the WS array after
a CACHE Index Load WS operation. It is used to store into the WS
array during CACHE Index Store WS operations.

RIW

Undefined

BasePA

31:12

When reading pseudo-tag 0 of a scratchpad RAM, thisfield will
contain bits[31:12] of the base address of the scratchpad region

R/W

Undefined

When reading pseudo-tag O of a scratchpad RAM, this bit will indi-
cate whether the scratchpad is enabled

RIW

Undefined

Size

19:12

When reading pseudo-tag 1 of a scratchpad RAM, thisfield indi-
cates the size of the scratchpad array. Thisfield is the number of
4KB sectionsit contains. (Combined with the 0'sin 11:0, the regis-
ter will contain the number of bytesin the scratchpad region.)

R/W

Undefined

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

213

CPO Registers of the 24K® Core

In addition to the three uses of the DTagLo register specified above, there is afourth application where DTagLo is
used to access the pseudo-tags (control registers) of the ITC block. Thisis done by executing the Index Store Tag or
Index Load Tag operation of the CACHE instruction with the ErrCtIITC set to 1 (and ErrCtISPR/ErrCtIWST set to 0).

6.2.40 L23TagLo Register (CPO Register 28, Select 4)

The L23TagLo register acts as the interface to the L2 or L3 cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the L23TagLo register as the source of tag information. Note that the 24K
core does not implement the L23TagHi register.

The definition of thisregister is dependent on the L2/L 3 implementation. The core implements this as a general 32b
R/W register.

6.2.41 IDataLo Register (CPO Register 28, Select 1)

The IDataLo register isaregister that acts as the interface to the instruction cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the IDatalLo register. If the WST bit in the ErrCtl register is set, then the contents of IDatalo can be written to the
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the
contents of IDataLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-

tion.
Figure 6.47 IDatalLo Register Format
31 0
DATA
Table 6.54 IDatalLo Register Field Description
Fields
Read /

Name Bit(s) Description Write Reset State
DATA 31:0 Low-order data read from the cache data array. R/W Undefined

6.2.42 DDatalLo Register (CPO Register 28, Select 3)

The DDatalo register is aregister that acts as the interface to the data cache data array and is intended for diagnostic
operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into
the DDataLo register. If the WST bit in the ErrCtl register is set, then the contents of DDatalo can be written to the
cache data array by doing an Index Store Data CACHE instruction. If the SPR bit in the ErrCtl register is set, then the
contents of DDatalLo can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruc-

tion.
Figure 6.48 DDatalLo Register Format
31 0
DATA
214 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Table 6.55 DDatal o Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31.0 Low-order data read from the cache data array. R/W Undefined

6.2.43 L23DatalLo Register (CPO Register 28, Select 5)

The L23Datalo register isaregister that acts astheinterface to the L2 or L3 cache dataarray and isintended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the L23Datalo register. If the WST bit in the ErrCtl register is set, then the contents of L23Datalo can be written
to the cache data array by doing an Index Store Data CACHE instruction. If the SPR hit in the ErrCtl register is set,
then the contents of L23Datalo can be written to the scratchpad RAM data array by doing an Index Store Data
CACHE instruction.

Figure 6.49 L23DatalLo Register Format

31 0

DATA

Table 6.56 L23DataLo Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 310 Low-order data read from the cache data array. R/W Undefined

6.2.44 |DataHi Register (CPO Register 29, Select 1)

The IDataHi register is aregister that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the
IDataHi register. If the WST bit in the ErrCtl register is set, then the contents of IDataHi can be written to the cache
data array by doing an Index Store Data CACHE instruction. If the SPR hit in the ErrCtl register is set, then the con-
tents of IDataHi can be written to the scratchpad RAM data array by doing an Index Store Data CACHE instruction.

Theinterface to the I-cache only operates on pairs of instructions - the high instruction will be written into the IDataHi
register. Note that IDataHi and IDataLo reflect the memory ordering of the instructions. Depending on the endianness
of the system, InstructionO belongsin either IDataHi (BigEndian) or IDataLo (LittleEndian) and vice versafor

Instructionl.
Figure 6.50 IDataHi Register Format
31 0
DATA
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 215

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the 24K® Core

216

Table 6.57 IDataHi Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 High-order dataread from the cache data array. R/W Undefined

6.2.45 L23DataHi Register (CPO Register 29, Select 5)

31

The L23DataHi register is aregister that acts as the interface to the cache data array and is intended for diagnostic
operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into
the L23DataHi register. If the WST bit in the ErrCtl register is set, then the contents of L23DataHi can be written to the
cache data array by doing an Index Store Data CACHE instruction.

Figure 6.51 L23DataHi Register Format

DATA

Table 6.58 L23DataHi Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 310 High-order data read from the cache data array. R/W Undefined

6.2.46 ErrorEPC (CPO Register 30, Select 0)

The ErrorEPC register is aread/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NM1) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
This address can be:

e Thevirtual address of the instruction that caused the exception, or

e thevirtual address of the immediately preceding branch or jump instruction when the error causing instructionis
in abranch delay dot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement the MIPS16 ASE, aread of the ErrorEPC register (via MFCO) returns the following
valuein the destination GPR:

GPR[rt] ¢« ErrorExceptionPCz; 4 || ISAMode,

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

6.2 CPO Register Descriptions

Similarly, awrite to the ErrorEPC register (via MTCO) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC < GPR[rtls; 41 || O
ISAMode « 2#0 || GPR[rt],

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit isloaded from the lower

bit of the GPR.
Figure 6.52 ErrorEPC Register Format
31 0
ErrorEPC
Table 6.59 ErrorEPC Register Field Description
Fields
Read /

Name Bit(s) Description Write Reset State

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

6.2.47 DeSave Register (CPO Register 31, Select 0)

The Debug Exception Save (DeSave) register isaread/write register that functions as asimple memory location. This
register is used by the debug exception handler to save one of the GPRs, which isthen used to save the rest of the con-
text to a pre-determined memory area (such asin the EJTAG Probe). Thisregister allows the safe debugging of excep-
tion handlers and other types of code where the existence of avalid stack for context saving cannot be assumed.

Figure 6.53 DeSave Register Format
31 0

DESAVE

Table 6.60 DeSave Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DESAVE 31.0 Debug exception save contents. R/W Undefined
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 217

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 7

Hardware and Software Initialization of the 24K® Core

A 24K processor core contains only aminimal amount of hardware initialization and relies on software to fully ini-
tialize the device.

This chapter contains the following sections:
e Section 7.1 “Hardware-Initialized Processor State”

e Section 7.2 “Software Initialized Processor State”

7.1 Hardware-Initialized Processor State

A 24K processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal
subset of the processor state is cleared. Thisis enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. Unlike previous MIPS processors, thereisno
distinction between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft
reset.

7.1.1 Coprocessor 0 State
Much of the hardware initialization occursin Coprocessor 0.
* Random - cleared to maximum value on Reset (TLB MMU only)

* Wired - cleared to 0 on Reset (TLB MMU only)

* Statusggy - Set to 1 on Reset

» Statustg - cleared to 0 on Reset

* Statusyy - Cleared to 0 on Reset

e Statusgg, - Setto 1 on Reset

* Statusgp - cleared to 0 on Reset

* WatchLo, gy - Cleared to 0 on Reset

* Config fields related to static inputs - set to input value by Reset

* Configkg - set to 010 (uncached) on Reset

* Configgy - set to 010 (uncached) on Reset (FM MMU only)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 218

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

7.2 Software Initialized Processor State

* Configkos - et to 010 (uncached) on Reset (FM MMU only)

* Debugpy - cleared to 0 on Reset (unless EITAGBOQOT option is used to boot into DebugMode, see Chapter 11,
“EJTAG Debug Support in the 24K® Core” on page 240 for details)

* Debug, gy - cleared to 0 on Reset
* Debugg,sgp - cleared to 0 on Reset
* Debugpgysep - Cleared to 0 on Reset
* Debuggy - cleared to 0 on Reset
* Debuggg; - cleared to 0 on Reset
7.1.2 TLB Initialization
Each TLB entry hasa“hidden” state bit, which is set by Reset and is cleared when the TLB entry iswritten. This bit
disables matches and prevents “ TLB Shutdown” conditions from being generated by the power-up valuesin the TLB
array (when two or more TLB entries match on a single address). This bit is not visible to software.

7.1.3 Bus State Machines

When a Reset exception istaken, all pending bus transactions are aborted, and the state machines in the bus interface
unit are reset.

7.1.4 Static Configuration Inputs

All static configuration inputs (for example, defining the bus mode and cache size) should only be changed during
Reset.

7.1.5 Fetch Address

By default, the fetch is directed to VA 0xBFCO00000 (PA 0x1FC00000) upon Reset. Thisaddressisin ksegl,whichis
unmapped and uncached, so that the TLB and caches do not require hardware initialization.

Thisinitial fetch address can be overridden via core inputs. See Section 5.5 “Exception Vector Locations’ for addi-
tional details.

If EJTAGBOQT is active (see Section 11.3.3.8 “EJTAGBOQT Instruction”), the processor will begin fetching
instructions directly from the EJTAG probe rather than from memory.

7.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 219

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Hardware and Software Initialization of the 24K® Core

7.2.1 Register File

The register file powers up in an unknown state with the exception of rO which isalways 0. Initializing the rest of the
register fileis not required for proper operation. Good code will generally not read aregister before writing to it, but
the boot code can initialize the register file for added safety.

7.2.2 TLB

Because of the hidden bit indicating initialization, the core does not initialize the TLB upon Reset. Thisisanimple-
mentation specific feature of the 24K core and cannot be relied upon if writing generic code for M1PS32/64 proces-
SOors.

7.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache
arrays should beinitialized to an invalid state using the CACHE instruction (typically the Index Invalidate function).
This can be along process, especially since the instruction cache initialization needsto be run in an uncached address
region.

7.2.4 Coprocessor 0 State

Miscellaneous COPO states need to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

* Cause: WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.

e Config: KO (ksegO Coherency Algorithm) should be set to the desired Cache Coherency Algorithm (CCA) prior
to accessing ksegO.

» Config: (FM MMU only) KU and K23 should be set to the desired CCA for USeg/KUSeg and kseg2/3 respec-
tively prior to accessing those regions.

e Count: Should be set to aknown value if Timer Interrupts are used.

e Compare: Should be set to aknown value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (and thus, Count should be set before Compare, to avoid any unexpected interrupts).

o Status: Desired state of the device should be set.
e Other COPO state: Other registers should be written before they are read. Some registers are not explicitly write-

able, and are only updated as a by-product of instruction execution or ataken exception. Uninitialized bits should
be masked off after reading these registers.

220 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 8

Caches of the 24K® Core

This chapter describes the caches present in a 24K processor core. It contains the following sections:

e Section 8.1 “Cache Configurations’

* Section 8.2 “Instruction Cache”

* Section 8.3 “Data Cache”

* Section 8.4 “Write Back Buffer”

» Section 8.5 “Cache Protocols’

* Section 8.6 “CACHE Instruction”

e Section 8.7 “Software Cache Testing”

e Section 8.8 “Memory Coherence Issues’

8.1 Cache Configurations

A 24K processor core has separate instruction and data caches which allows instruction and data references to pro-
ceed simultaneously. Each of the cachesis 4-way set associative and they can be independently configured at build
timeto be 8, 16, 32, or 64KB. Both caches use a 32B line size and support locking on a per line basis. Parity protec-

tion of the cache arraysis an optional feature.

8.2 Instruction Cache

Table 8.1 shows the key characteristics of the instruction cache. Figure 8.1 shows the format of an entry in the three
arrays comprising the instruction cache: tag, data, and way-select. Note that for 8K B caches, there is one extratag bit

needed.

Table 8.1 Instruction Cache Attributes

Attribute With Parity Without Parity
Size 0, 8, 16, 32, 64KB
Line Size 32B

Number of Cache Sets

64, 128, 256, 512

Associativity 4 way
Replacement LRU
Cache Locking per line

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

221

Caches of the 24K® Core

Table 8.1 Instruction Cache Attributes

Attribute With Parity Without Parity
Data Array
Read Unit 79 x4 70bx 4
Write Unit 79 70b
Tag Array
Read Unit (8KB) 24bx 4 23bx 4
Read Unit (non-8KB) 23bx 4 22bx 4
Write Unit (8KB) 24b 23b
Write Unit (non-8KB) 23b 22b
Way-Select Array
Read Unit 6b
Write Unit 1-6b

Figure 8.1 Instruction Cache Organization

1 1 1 20/21
T :
2g (per way) Parity | Valid | Lock PA[31:12/11]
9 6 64 9 6 64 9 6 64 9 6 64
Data (per way)':
Parity | Precode | dword3 | Parity | Precode | dword2 | Parity | Precode | dwordl | Parity | Precode | dwordO
6
Way-Select:

222

LRU

1. Parity Bits in data array will be interleaved with precode and data bytes

8.2.1 Virtual Aliasing

Theinstruction cache on the 24K processor coreis virtually indexed and physically tagged. The lower bits of the vir-
tual address are used to access the cache arrays and the physical addressis used in the tags. Because the way size can
be larger than the minimum TLB page size, there is apotential for virtual aiasing. This means that one physical
address can exist in multiple indices within the cacheiif it is accessed with different virtual addresses.

This reduces the cache efficiency somewhat, but is generally not a problem unless the instruction stream is being
written to. When instructions are written, software must ensure that the store data is written out to memory and the
old dataisinvalidated in the instruction cache (viathe CACHE or SYNCI instruction). For thisto work correctly, the
address must be invalidated from each of the possible aias locations. The 24K processor includes a feature to sim-
plify thistask and automatically invalidate the physical address from al of the alias locations. The presence of this
feature and the enablefor it are located in the Config7 register. Config7i,g =1 indicates that aliases are possible (cache
> 16KB and TLB-based MMU) and this feature is present. This feature is enabled by default, but Config71,,, can be
set to 1 to disableit. Looking up the other alias locations does slow down the invalidate dightly, so software can dis-
able it when aliases are known not to be present, for example, when using an OS with 16KB TLB pages,

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.3 Data Cache

8.2.2 Precode Bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bitsindicate the type and location of branch or jump instructions within a
64b fetch bundle. These precode bits are not used when executing M1PS16e code.

8.2.3 Parity

Parity protection of theinstruction cache arrays can optionally beincluded. The data array has a9 parity bits - one for
the 6 precode bits and one for each byte of the 64b data. The tag array has a single parity bit for each tag. The LRU
array does not have any parity.

8.3 Data Cache

The data cache is similar to the instruction cache, with afew key differences:

The data cache does not contain any precode information.
To handle store bytes, the data array is byte accessible and the optional data parity is 1 bit per byte.

The way-select array for the data cache also holds the dirty bits (and optional dirty parity bits) for each cache
line, in addition to the LRU information.

Virtual aliases must be handled differently

Table 8.2 shows the key characteristics of the data cache. Figure 8.2 shows the format of an entry in the three arrays
comprising the data cache: tag, data, and way-select.

Table 8.2 Data Cache Attributes

Attribute With Parity Without Parity
Size 0, 8, 16, 32, 64KB
LineSize 32B
Number of Cache Sets 64, 128, 256, 512
Associativity 4 way
Replacement LRU
Cache Locking per line
Data Array
Read Unit 72bx 4 64b x 4
Write Unit 9b 8b
Tag Array
Read Unit (8KB) 24bx 4 23bx 4
Read Unit (non-8KB) 23bx 4 22bx 4
Write Unit (8K B) 24b 23b
Write Unit (non-8KB) 23b 22b
Way-Select Array
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 223

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Caches of the 24K® Core

Table 8.2 Data Cache Attributes (Continued)

Attribute With Parity Without Parity
Read Unit 14b 10b
Write Unit 1-14b

Figure 8.2 Data Cache Organization

1 1 1 20/21
T :
2g (per way) Parity | Valid | Lock PA[31:12/11]

1 8 9x30 1 8
Data (per way):

Parity | Data3l Parity Data0
6 1 1 1 1 1 1 1 1

Way-Select:

LRU Parity | Dirty3| Parity | Dirty2 | Parity | Dirtyl| Parity | DirtyO

224

8.3.1 Virtual Aliasing

Since the data cache is virtually indexed and physically tagged, a potential issue referred to as virtual aliasing might
exist. Virtual aliasing occurs if the virtual bits used to index a cache array are not consistent with the overlapping
physical bits, after the virtual address has been tranglated to aphysical address. The possibility of virtual aliasing only
occursin address regions which are mapped through a TL B-based memory management unit.

In TLB-mapped address regions, virtual aliasing may occur if the cache size per way is greater than the page size. For
example, consider a 32K B cache organized as 4-way set associative. The size per way isthen 8 KB, so virtual address
bits [12:0] are used to index the array. If the addressisin atransated region with a page size of 4 KB, then address
bits [11:0] are untrandlated but address bits [31:12] will be mapped and for these bits the virtual and physical
addresses may be different. In this example, bit [12] could pose a potential problem due to virtual aiasing. Imagine
two virtual addresses, VAO and VA1, whose only difference is the value of bit [12], which map to the same physical
address. These two virtual addresses would be indexed to two different lines by the cache, even though they were
intended to represent the same physical address. Then if a program does aload using VAO and a store using VA1, or
vice-versa, the cache may not return the expected data.

Table 8.3 shows the overlapped virtual/physical address bits which could potentially be involved in virtual aliasing,
given the possible minimum page sizes and cache way sizes supported by a 24K core. Virtual aliasing is generally
only aproblem for the D-cache, since stores don’t happen to the |-cache. A special hardware mechanism is available
to prevent the possibility of virtual aliasing in 32KB and 64K B data caches. In cores not configured with this mecha
nism, virtual aliasing must be handled by software. The software solution must ensure that the mapping of virtual

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.4 Write Back Buffer

address bits which overlap with physical address bits be handled consistently. The simplest approach isto ensure that
the overlapping bits are unity-mapped (VA equals PA).

Table 8.3 Potential Virtual Aliasing Bits

Overlapped address
Minimum Page Size bits with possible
(KB) Cache Way Size (KB) aliasing
4 8 [12]
16 [13:12]
8 16 [13]

A related issue can occur in virtually indexed, physically tagged cachesif the number of physical bits stored in the tag
array does not fully overlap the physically translated bits for the smallest page size. For a 24K core, there are always
at least 20 address bits stored in the cache tag, representing bits [31:12] of the physical address. Since the minimum
page sizeis 4K B with bits[31:12] physically trandlated by the TL B, the cache tag size does overlap the trand ated bits
and thisissue will not occur.

8.3.2 Parity

Parity protection of the data cache arrays can optionally be included. The data array requires a parity bit for each byte,
to correspond to the minimum write quantum for a store. Thetag array has a single parity bit for each tag. The
way-select array has separate parity bits to cover each dirty bit, but the LRU bits are not covered by parity.

8.4 Write Back Buffer

The BIU includes a Write Back Buffer (WBB) that holds writes going to memory. This includes evictions from the
data cache, as well as write-through stores, uncached stores, and uncached accelerated stores. The WBB consists of 4
entries, each of which is capable of holding 32B of data. The WBB aso holds L2 CACHE instructions that are to be
sent out on the bus.

The WBB will attempt to gather uncached accelerated (UCA)storesto alow full line burst writes. UCA behavior is
described in Section 8.4.1 “Uncached Accelerated Stores’. Write through stores can also be gathered inaWBB entry
if ConfigMM= 1.

WBB entries are ‘flushed’ under avariety of conditions. When a buffer is flushed, the write command is queued in
the BIU and the WBB entry will not accept any more activity until the data has been written to the bus and the buffer
isfreed up. UCA flush conditions are described in the next section. Flush conditions for other types are shown here:
» Uncached (non-accelerated) stores flush immediately

e L2 CACHE instruction commands are also flushed immediately

» Entriesfor D$ evictions are flushed when all 4 dwords (32B) of data have been gathered

» Write-through entries are flushed under the following conditions:

e A full 32B line has been gathered

» A read request matches the address of the WT line. The write command will be ordered ahead of the read
command. Thereis no direct bypass of the WBB data to the read—the read gets the data from memory.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 225

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Caches of the 24K® Core

226

* A WT request to adifferent 32B lineis seen. Only 1 WT merge can be active at any time.

8.4.1 Uncached Accelerated Stores

Uncached Accelerated gathering is supported for word and double word stores only.

Gathering of uncached accelerated stores will start on cache-line aligned addresses, i.e. 32 byte aligned addresses.
Uncached accelerated word or double word stores that do not meet that condition will be treated like regular
uncached stores.

An uncached accelerated store to the start of anew line will reserve awrite-back buffer entry for gathering. Subse-
guent uncached accelerated word or double word stores to the same cache line will write sequentially into this buffer,
independent of the word address associated with these stores. The uncached accel erated buffer istagged with the
address of thefirst store.

An uncached accelerated buffer is written to memory (flushed) if:

1. Thelast word in the entry being gathered is written. (Implicit flush)

2. A PREF Nudge which match the address associated with the gather buffer (Explicit flush).

3. A SYNC instruction is executed. (Explicit flush)

4. Bits<31:5> of the address of a Load instruction match the address associated with the gather buffer. (Implicit
flush)

5. Uncached Accelerated store to a different 32B line (Implicit flush)
6. An exception occurs. (Implicit flush)

When an uncached accel erated buffer is flushed, the address sent out on the system interface is the address associated
with the gather buffer.

Cavests:

» Uncached Accelerated stores are not ordered with respect to uncached accesses. Any uncached stores and any
uncached loads to unrelated addresses that occur between uncached accel erated stores that are part of a gather
seguence may occur out of order.

» Theonly constraint imposed on the gathering is that doubleword stores are only allowed to write to double word
aligned locations in the buffer. For example if uncached accelerated gathering starts with a Store Word (SW), it
may not immediately be followed by a Store Double (SDC1).

» Uncached accelerated stores of the following types are not intended to be used by software and may generate
unpredictable results:

1. Sub-word (byte, halfword, tri-byte) Stores
2. Unaligned Stores

3. Store conditionas

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.5 Cache Protocols

* Inorder for software to be able to run functionally correct on implementations without uncached accelerated
stores, software should always generate accesses starting on a cache-line aligned address, proceed to generate
correctly incremented sequential addresses and observe the restrictions for uncached accelerated stores.

8.5 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data caches.
This section also discusses issues relating to virtual aliasing.

8.5.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data and way-select. The caches are virtually
indexed, since avirtual addressis used to select the appropriate line within each of the three arrays. The caches are
physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache.
The way-select array holds information to choose the way to befilled, aswell as dirty bitsin the case of the data
cache.

Figure 8.1 (instruction cache) and Figure 8.2 (data cache) show the format of each linein the tag, data and way-select
arrays.

A tag entry consists of the upper 20 or 21 bits of the physical address (bits[31:12/11]) (bit 11 isonly used for 8KB
caches), one valid bit for the line, and alock bit. A data entry contains the four 64-bit doublewordsin theline, for a
total of 32 bytes. All four wordsin the line are present or not in the data array together, hence the single valid bit
stored with the tag. Once avalid lineisresident in the cache, byte, halfword, triple-byte or full word stores can update
all or aportion of thewordsin that line. The tag and data entries are repeated for each of the 4 lines in the set.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information appliesto al the ways and there is one way-select entry for all the ways in the set. The array
with way-select entries for the data cache also holds dirty bitsfor thelines. One dirty bit isrequired per line, as shown
in Figure 8.2. The instruction cache only supports reads, hence only LRU entries are stored in the instruction
way-select array.

8.5.2 Cacheability Attributes

A 24K core supports the following cacheability attributes:

* Uncached: Addressesin amemory areaindicated as uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without changing cache contents.

« Write-back with write allocation: Loads and instruction fetchesfirst search the cache, reading main memory only
if the desired data does not reside in the cache. On data store operations, the cache isfirst searched to seeif the
target addressis cache resident. If it is resident, the cache contents are updated, but main memory is not written.
If the cache lookup misses on a store, main memory is read to bring the line into the cache and merge it with the
new store data. Hence, the allocation policy on acache missisread- or write-allocate. Data stores will update the
appropriate dirty bit in the way-select array to indicate that the line contains modified data. When aline with
dirty datais displaced from the cache, it iswritten back to memory.

« Write-through with no write allocation: Loads and instruction fetches first search the cache, reading main mem-
ory only if the desired data does not reside in the cache. On data store operations, the cache is first searched to

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 227

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Caches of the 24K® Core

228

seeif the target addressis cache resident. If it is resident, the cache contents are updated, and main memory is
also written. If the cache lookup misses on a store, only main memory iswritten. Hence, the allocation policy on
acache missis read-allocate only.

NOTE: Theinstruction cache always uses awriteback CCA for its bus requests even when the TLB pageis
mapped as write-through.

Uncached Accelerated: Uncached stores are gathered together for more efficient bus utilization. See Section
8.4.1 “Uncached Accelerated Stores’ for more details

Some segments of memory employ afixed caching policy; for example ksegl is always uncacheable. Other segments
of memory alow the caching policy to be selected by software. Generally, the cache policy for these programmable
regionsis defined by a cacheability attribute field associated with that region of memory. See Chapter 4, “Memory
Management of the 24K® Core” on page 87 for further details.

8.5.3 Replacement Policy

The replacement policy refersto how away is chosen to hold an incoming cache line on a miss which will result in a
cachefill. The replacement policy isleast recently used (LRU), but excluding any locked ways. The LRU bit(s) in the
way-select array encode the order in which ways on that line have been accessed.

On acache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

On acache hit, the associated way is updated to be the most recently used. The order of the other waysrelative to
each another is unchanged.

On acacherefill, thefilled way is updated to be the most recently used.

On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:
* Index (Writeback) Invalidate: Least-recently used.

* Index Load Tag: No update.

* Index Store Tag, WST=0: Most-recently used if valid bit is set in TagLo CPO register. L east-recently used
if valid bitis cleared in TagLo CPO register.

* Index Store Tag, WST=1: Update the field with the contents of the TagL.o CPO register (refer to Table 8.4
for the valid values of thisfield).

» Index Store Data: No update.

» HitInvalidate: Least-recently used if a hit is generated, otherwise unchanged.

e Fill: Most-recently used.

» Hit (Writeback) Invalidate: Least-recently used if ahit is generated, otherwise unchanged.
e Hit Writeback: No update.

» Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.6 CACHE Instruction

If al ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
ways, the LRU bits are used to identify the way which has been used least recently, and that way is selected for
replacement.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

8.5.4 Line Locking

e The 24K core supports line locking in both caches. A line can be locked by either Fetch and Lock or Index Store
Tag CACHE instructions.The core does not support the locking of all 4 ways of either cache at a particular index.
If al 4 ways of the cache at a given index are locked, subsequent cache misses at that cache index will displace
one of the locked lines.

8.6 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag
arrays, including the locking of individual cache lines. These instructions are described in detail in Chapter 12,
“24K® Processor Core Instructions’ on page 303.

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the WS- RAM by setting
the WST bit in the ErrCtl register. (The ErrCtl register is described in Section 6.2.36 “ErrCtl Register (CPO Register
26, Select 0)”.) Similarly, the SPR bit in the ErrCtl register will cause Index Load Tag and Index Store Tag instruc-
tions to access the pseudo-tags associated with the scratchpad RAM array. Note that when the WST and SPR bits are
zero, the CACHE index instructions access the cache Tag array.

Not all values of the WSfield are valid for defining the order in which the ways are selected. Thisis only an issue,
however, if the WS-RAM iswritten after the initialization (invalidation) of the Tag array. Valid WS field encodings
for way selection order is shown in Table 8.4.

Table 8.4 Way Selection Encoding, 4 Ways

Selection Order?! WSI[5:0] Selection Order WS[5:0]
0123 000000 2013 100010
0132 000001 2031 110010
0213 000010 2103 100110
0231 010010 2130 101110
0312 010001 2301 111010
0321 010011 2310 111110
1023 000100 3012 011001
1032 000101 3021 011011
1203 100100 3102 011101
1230 101100 3120 111101
1302 001101 3201 111011
1320 101101 3210 111111

1. The order isindicated by listing the least-recently used way to the left and the
most-recently used way to the right, etc.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 229

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Caches of the 24K® Core

8.7 Software Cache Testing

Typicaly, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with
interrupts disabled in order to maintain the cache contents. There are multiple methods for testing these arraysin soft-
ware, only oneis presented here.

8.7.1 I-Cache and D-cache Tag Arrays

These arrays can be tested viathe Index Load Tag and Index Store Tag varieties of the CACHE instruction. Index
Store Tag will write the contents of the TagLo register into the selected tag entry. Index Load Tag will read the
selected tag entry into the TagLo.

If parity isimplemented, the parity bits can be tested as a normal bit by setting the PO bit in the ErrCtl register. This
will override the parity calculation and write P bit in TagLo as the parity value.

8.7.2 I-Cache Data Array

Thisarray can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The precode bitsin the array can be tested by setting the PCO bit in the ErrCtl register. Thiswill writethe PCI field in
the ErrCtl register instead of calculating the precode bits on awrite.

The parity bitsin the array can be tested by setting the PO bit in the ErrCtl register. Thiswill usethe PI field in ErrCtl
instead of calculating the parity on awrite.

Therest of the data bits are read/written to/from the DataLo and DataHi registers.

8.7.3 I-Cache WS Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

8.7.4 D-Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to
set theinitial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to
the PAsthat are resident in the cache. The value can then be read using LW instructions and compared to the
expected data.

The parity bits can beimplicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used and only 32b of datais
read/written per operation.

8.7.5 D-cache WS Array

The dirty bitsin thisarray will be tested when the data tag is tested. The LRU bits can be tested using the same mech-
anism as the |-cache WS array.

230 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

8.8 Memory Coherence Issues

8.8 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system design.
Since a cache holds a copy of memory data, it is possible for another memory master to modify a memory location,
thus making other copies of that location stale if those copies are still in use. A detailed discussion of memory coher-
ence is beyond the scope of this document, but following are afew related comments.

A24K processor contains no direct hardware support for managing coherency with respect to its caches, so it must be
handled via system design or software. The data cache supports either write-back or write-through protocols.

In write-through mode, all data writes will eventually be sent to memory. Due to write buffers, however, there could
beadelay in how long it takes for the write to memory to actually occur. If another memory master updates cacheable
memory which could also be in the cores caches, then those |ocations may need to be flushed from the cache. The
only way to accomplish thisinvalidation is by use of the CACHE instruction.

In write-back mode, data writes only go to the cache and not to memory. So the processor cache may contain the only
copy of datain the system until that dataiswritten to main memory. Dirty lines are only written to memory when dis-
placed from the cache as anew lineisfilled or if explicitly forced by certain flavors of the CACHE or PREF instruc-

tions.

The SYNC instruction may also be useful to software enforcing memory coherence, asit flushes the core’s write buff-
ers.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 231

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 9

Power Management in the 24K® Core

A 24K processor core offers a number of power management features, including low-power design, active power
management and power-down modes of operation. The core is a static design that supports changing the clock fre-
guency or even stopping the clocks to manage power. The WAIT instruction suspends execution until an interrupt is
detected and can put the core into alow power mode.

The core provides two basic mechanisms for system level low-power support discussed in the following sections.
e Section 9.1 “Register-Controlled Power Management”

e Section 9.2 “Instruction-Controlled Power Management”
9.1 Register-Controlled Power Management

The RP bit in the CPO Status register enables a standard software mechanism for placing the system into alow power
state. The state of the RP bit is available externally viathe SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the coreisin alow power state.

Setting the RP bit of the CPO Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device isin power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At thistime the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor isin debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of thisis desired, the external agent can speed up the clocks.

The core provides four power down signalsthat are part of the system interface. Three of the pins change state asthe
corresponding bits in the CPO Status register are set or cleared. The fourth pin indicates that the processor isin debug
mode:

* TheSI_RP signal represents the state of the RP bit (27) in the CPO Status register.

e TheSI_EXL signa represents the state of the EXL bit (1) in the CPO Status register.

e TheSI_ERL signal represents the state of the ERL bit (2) in the CPO Status register.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 232

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

9.2 Instruction-Controlled Power Management

* TheEJ_DebugM signal indicates that the processor has entered debug mode.
9.2 Instruction-Controlled Power Management

A second mechanism for invoking power down mode is through execution of the WAIT instruction. The WAIT
instruction brings the processor into alow power state where the internal clocks are suspended and the pipelineis fro-
zen. However, the internal timer and some of theinput pins (SI_Int[5:0], SI_NMI, SI_Reset, and EJ_DINT) continueto
run. The clocks are not shut down until al bus and coprocessor transactions have completed. Once the CPU isin
instruction controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition
causes the CPU to exit this mode and resume normal operation. While the isin thislow-power mode, the SI_SLEEP
signal is asserted to indicate to external agents what the state of the chip is.

9.2.1 Wait IE Ignore

A feature isincluded in the core that simplifies the task of using the WAIT instruction in theidle loop of an OS. The
WAIT instruction istypically in block of code where the OS first checks to seeif there is any pending work and if
thereis not, it will execute the WAIT as shown below.

if (!pending)
{
wait () ;

}

There isatricky race condition present in this code. If an interrupt arrives between the pending check and the WAIT
instruction, the service routine will return and execute the WAIT and go to sleep. However, the interrupt may have
been enabling some pending work to be done in the * bottom-half’ processing. If the core goes back to sleep, this
pending work will not be done until the next interrupt arrives.

The OS can check to see if the interrupt was signalled in this window and adjust the EPC value to before the pending
check, but thisinvolves afair amount of work. The Wait | E Ignore feature enables a simpler solution for the race con-
dition. With this feature, a WAIT condition will be terminated by an active interrupt signal, even if that signal is pre-
vented from causing an interrupt by Status;g being clear or TCStatus,x 1 being set. This allows interrupts to be

disabled in this section of code while still allowing the WAIT to complete.

An example of the assembly code for making use of this feature follows:

LEAF (r4dk_wait)

.set push

.set noreorder

di t4 # Clear Status.IE and preserve old value in t4
LONG_L t0, ti_flags($28) # Get flag bits

andi t0, _TIF_NEED_RESCHED # Isolate reschedule flag

bnez t0, 1f # branch around wait if pending work
nop

wait

1: mtcOt4, CO_Status # restore status register

.set pop

jr ra

nop

END (r4k_wait)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 233
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Power Management in the 24K® Core

Note that this sequence would not be safe to execute on a core without this feature. In that case, anormal interrupt
will generally not wake up the core if Status,z=0. The Config7,y,, bit indicates whether this feature is present on the
core.

234 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 10

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 12, “24K® Processor Core Instructions’ on page 303 for a complete listing
and description of instructions.

This chapter discusses the following topics

e Section 10.1 “CPU Instruction Formats’

* Section 10.2 “Load and Store Instructions’

e Section 10.3 “Computational Instructions’

e Section 10.4 “Jump and Branch Instructions’

e Section 10.5 “Control Instructions’

e Section 10.6 “Coprocessor Instructions’
10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on aword boundary. There are three instruction for-
mats immediate (I-type), jump (Jtype), and register (R-type)—as shown in Figure 10.1. The use of asmall number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 235

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Instruction Set Overview

Figure 10.1 Instruction Formats

I-Type (Immediate)
31 26 25 2120 16 15 0
op rs rt immediate

J-Type (Jump)

31 26 25 0
op target
R-Type (Register)
31 26 25 2120 1615 1110 65 0
op rs it rd sa funct
op 6-bit operation code
rs 5-hit source register specifier
rt 5-bit target (source/destination) register or branch
condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-hit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

10.2 Load and Store Instructions

Load and store instructions are immediate (I-type) instructions that move data between memory and the general reg-
isters. The only addressing mode that integer load and store instructions directly support is base register plus 16-bit
signed immediate offset. Floating point load and store instructions can use either that addressing mode or register plus
register indexed addressing.

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called adelayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the load
delay dot.

Ina24K core, the instruction immediately following aload instruction can use the contents of the loaded register;
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay dots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

Access type indicates the size of a core dataitem to be loaded or stored, set by the load or store instruction opcode.

236 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

10.3 Computational Instructions

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for alittle-endian
configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 10.1. Only the combinations shown in Table 10.1 are permissible; other combinations cause
address error exceptions.

Instruction fetches are either halfword accesses (MIPS16e™ code) or word accesses (32b code). These references
will be impacted by endianness the same as |oad/store references of those sizes.

Table 10.1 Byte Access Within a Doubleword

Bytes Accessed
Low-Order Big Endian Little Endian
Address Bits (63 31 0) (63 31 0)
Access Type 2 1 0
Doubleword 0 0 0
Word 0 0 0
1 0 0
Triplebyte 0 0 0
0 0 1 3|2
oo o [5]4]
AEIE 5 6] 7| 7 65
Halfword 0 0 0
0 1 0
oo oa 5]3]
K o 7] 7o
Byte 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or inimme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:
e Arithmetic

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 237

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Instruction Set Overview

 Logica

e Shift

e Count Leading Zeros/Ones

e Multiply

» Divide

These operations fit in the following four categories of computational instructions:
* ALU Immediate instructions

» Three-operand Register-type Instructions

» Shift Instructions

* Multiply And Divide Instructions

10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipelineis transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction isfollowed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the 24K® Core” on page 31 for moreinformation on instruc-
tion latency and repeat rates.

10.4 Jump and Branch Instructions

238

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of oneinstruction: that is, the instruction immediately following the jump or branch (thisis known asthe
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine callsin high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are Jtypeinstructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructionsin MIPS32® Architecture Refer-
ence Manual, Volume I1: The MIPS32® Instruction Set.

10.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-hit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of oneinstruction.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

10.5 Control Instructions

If aconditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.
10.5 Control Instructions
Control instructions allow the software to initiate traps; they are always R-type.

10.6 Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 12, “24K® Processor Core Instructions” on
page 303 for alisting of CPO instructions.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 239

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 11

EJTAG Debug Support in the 24K® Core

The EJTAG debug logic in the 24K processor core is compliant with EJTAG Specification 3.20 and includes:

1. Standard core debug features

2.

3.

4.

Optional hardware breakpoints

Standard Test Access Port (TAP) for a dedicated connection to a debug host

Optional MIPS Trace capability for program counter/data address/data val ue trace to On-chip memory or to

Trace probe

This chapter contains the following sections:

Section 11.1

Section 11.2

Section 11.3

Section 11.4

Section 11.5

Section 11.6

Section 11.7

Section 11.8

Section 11.9

Section 11.10

Section 11.11

Section 11.12

Section 11.13

“Debug Control Register”
“Hardware Breakpoints’
“Test Access Port (TAP)”
“EJTAG TAP Registers’
“TAP Processor Accesses’
“PC Sampling”
“MIPS® Trace”
“PDtrace™ Registers (Software Control)”
“Trace Control Block (TCB) Registers (Hardware Control)”
“Enabling MIPS Trace”
“TCB Trigger Logic”
“MIPS Trace Cycle-by-Cycle Behavior”

“TCB On-Chip Trace Memory”

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

240

111

11.1 Debug Control Register

Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always pro-
vided with the 24K core. The register is memory-mapped in drseg at offset OxO.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which worksin addition to
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE hit,
and a pending NMI isindicated through the NMIP bit.

The SRE bit allows implementation dependent masking of some sources for reset. The 24K core does not distinguish
between soft and hard reset, but typically only soft reset sources in the system would be maskable and hard sources
such as the reset switch would not be. The soft reset masking should only be applied to a soft reset source if that
source can be efficiently masked in the system, thus resulting in no reset at al. If that is not possible, then that soft
reset source should not be masked, since a partial soft reset may cause the system to fail or hang. Thereis no auto-
matic indication of whether the SRE is effective, so the user must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software that the probe will service dmseg accesses. The reset valuein the table below takes effect on any CPU
reset.

Figure 11.1 Debug Control Register

3130 29 28 18 17 16 15 14 13 1 10 9 8 6 5 4 3 2 1 0
Res |ENM Res DB|IB|IVM [DVM Res CBT |PCS| PCR | PCSe |[INTE|NMIE|NMIP|SRE|PE
Table 11.1 Debug Control Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31:30 | Reserved R 0
ENM 29 Endianessin Kernel and Debug mode R Preset
0: Little Endian
1: Big Endian
Res 28:18 | Reserved R 0
DB 17 Data Break Implemented R Preset

0: No Data Bresk feature implemented
1: Data Break feature isimplemented

1B 16 Instruction Break Implemented R Preset
0: No Instruction Break feature implemented
1: Instruction Break feature isimplemented

IVM 15 Inverted Value Match R 0
0: Feature is not supported
1: Featureis supported

DVM 14 Data Value Match Storage R 0
0: Feature is not supported
1: Featureis supported

Res 13:11 Reserved R 0

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 241

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

Table 11.1 Debug Control Register Field Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

CBT 10 Complex Break and Trigger R 0
0: Feature is not implemented
1: Featureisimplemented

PCS 9 Program Counter Sampling Implemented R 1
0: No PC Sampling implemented
1: PC Sampling implemented

PCR 8:6 | pC Sampling Rate: Values from 0to 7 map to 2° to 212 respectively. | R/W 7
That is, a PC sampleiswritten out every 32, 64, 128, 256, 512,
1024, 2048, or 4096 cycles. The externa probe or softwareis
allowed to set this value to the desired sample rate

PCSe 5 PC Sampling Enable. Set to 1 to enable PC sampling R 0

INTE 4 Interrupt Enable in Normal Mode. This bit provides the hardware R/W
and software interrupt enable for non-debug mode, in addition to
other masking mechanisms:

0: Interrupts disabled.

1: Interrupts enabled (depending on other enabling mechanisms).

NMIE 3 Non-Maskable Interrupt Enable for non-debug mode R/W 1
0: NMI disabled.
1: NMI enabled.

NMIP 2 NMI Pending Indication. R 0
0: No NMI pending.
1: NMI pending.

SRE 1 Soft Reset Enable RIW 1
This bit alows the system to mask soft resets. The core does not
internally mask resets. Rather the state of this bit appears on the
EJ_SRSstE external output signal, allowing the system to mask soft
resetsif desired.

PE 0 Probe Enable R Same value as
This bit reflects the ProbEn bit in the EJTAG Control register. ProbEnin ECR
0: No accesses to dmseg allowed (see Table 11.25)
1: EJTAG probe services accesses to dmseg

11.2 Hardware Breakpoints

242

Hardware breakpoints provide for the comparison by hardware of executed instructions and data | oad/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area,. Data breakpoints can be set to
cause a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 24K core; Instruction breakpoints and Data
breakpoints.

A core may be configured with the following breakpoint options:

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

e Zero or four instruction breakpoints

* Zero or two data breakpoints
11.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the TLB-based MMU. Finally, amask
can be applied to the virtual addressto set breakpoints on arange of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a

debug exception and/or atrigger is generated. Aninternal bit in the instruction breakpoint registersis set to indicate

that the match occurred.

11.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to
the Instruction breakpoint. Data breakpoints can be set on aload, a store or both. Data breakpoints can also be set
based on the value of the |oad/store operation. Finally, masks can be applied to both the virtual address and the
load/store value.

Data breakpoints compare the transaction type (TY PE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BY TELANE) and data value (DATA), with the registers for each data
breakpoint including masking or qualification on the transaction properties. When a data breakpoint matches, a debug
exception and/or atrigger is generated, and an internal bit in the data breakpoint registersis set to indicate that the
match occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the
breakpoint to match.

11.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpointsin general is shownin Table 11.2.

Table 11.2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

The four instruction breakpoints are numbered O to 3 for registers and breakpoints, and the number isindicated by n.
Theregisters for each breakpoint are shown in Table 11.3.

Table 11.3 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description
IBAn Instruction Breakpoint Addressn
IBMn Instruction Breakpoint Address Mask n
IBASIDn Instruction Breakpoint ASID n
IBCn Instruction Breakpoint Control n
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 243

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

244

11.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shownin Table 11.4.

Table 11.4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number isindicated by n. The
registers for each breakpoint are shown in Table 11.5.

Table 11.5 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description
DBAN Data Breakpoint Addressn
DBMn Data Breakpoint Address Mask n
DBASIDn Data Breskpoint ASID n
DBCn Data Breakpoint Control n
DBVn Data Breakpoint Value n

11.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or adata trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or atrigger indication. The BE and/or TE
bitsin the IBCn or DBCn registers are used to enable the breakpoaints.

Debug software should not configure breakpoints to compare on an ASID value unlessa TLB is present in the imple-
mentation.

11.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level,
and match also can include an optional compare of ASID. The registers for each instruction breakpoint have the val-
ues and mask used in the compare, and the equation that determines the match is shown below in C-like notation.

IB_match =
(! IBChagrpuse || (ASID == IBASIDNagrp)) &&
(<all 1’s> == (IBMnggy | ~ (PC ~ IBANig,) &&
((IBMnigay | ~(ISAMode " IBAnig,))))

The match indication for instruction breakpointsis always precise, i.e. indicated on the instruction causing the
IB_match to be true.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

11.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to aload/store instruc-
tion executed in non-debug mode, including load/store for coprocessor and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit |oad/store source or
destination address.

A breakpoint match depends on the transaction type (TY PE) as load or store, the address, and optionally the data
value of atransaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation isthe DB_match.

DB_match =
(((TYPE == load) && ! DBCny,gp) ||
((TYPE == store) && ! DBCny,gg)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the ASID
value, and the accessed bytes (BY TELANE) where BY TELANEJ[Q] is 1 only if the byte at bits[7:0] on the busis
accessed, and BY TELANE[1] is1 only if the byte at bits[15:8] is accessed, etc. The DB_addr_match is shown

below.
DB_addr_match =
(' DBCnpgipuse || (ASID == DBASIDNagrp)) &&
(<all 1’s> == (DBMnpgy | ~ (ADDR ~ DBANpg,))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCngp and BY TELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword
floating point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare isincluded in the match condition for the data breakpoint depending on the bytes (BY TELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCngyy | DBCngar | ~ BYTELANE))

The size of DBC”BLM’ DBCI’]BA| and BYTELANE is 8 bits.

In case a data value compareisrequired, DB_no_value compareisfase, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The endianessis not considered in these
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for
setup of the breakpoint corresponding with endianess.

DB_value_match =

((DATA[7:0] == DBVnpgy(7.9;) || !BYTELANE[O] || DBCngpyig; || DBCngarrg;) &&
((DATA[15:8] == DBVnpgy[15.57) || !BYTELANE[1] || DBCngpy1; || DBCngarppy) &&
((DATA[23:16] == DBVnpgy(23.167) || !BYTELANE[2] || DBCngryiay || DBChngpriay) &&
((DATA[31:24] == DBVnNpgy(31.247) || !BYTELANE[3] || DBCngry3; || DBCngarsy)&&
((DATA[39:32] == DBVnNpgy(39.327) || !BYTELANE[4] || DBCngpypq; || DBCngarrg;)&&
((DATA[47:40] == DBVnNpgyr47.407) || !BYTELANE[5] || DBCngpy;s; || DBCngarrsy)&&
((DATA[55:48] == DBVnNpgy(ss.487) || !BYTELANE[6] || DBCngpys; || DBCngarrgy)&&
((DATA[63:56] == DBVnpgy(e3.567) || !BYTELANE[7] || DBCngpy7; || DBCngarr7y))
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 245

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

246

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always imprecise.

11.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition istrue, as
described below.

11.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occursif the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions
receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

11.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
ditionistrue. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion. A matching data breakpoint generates either a precise or imprecise debug exception

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates amatch. In this
case the DEPC register and DBD hit in the Debug register points to the instruction that caused the DB_match equa-
tion to be true.

Theinstruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

* A storetransaction is not allowed to complete the store to the memory system.

» A load transaction with no data value compare, i.e. wherethe DB_no_value_compare istrue for the match, is not
allowed to complete the load.

Theresult of thisisthat the load or store instruction causing the debug data break exception appears as not executed.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the rules shown in Table 11.6 apply with respect to updating the BS[n] bits.

Table 11.6 Rules for Update of BS Bits on Data Breakpoint Exceptions

Update of BS Bits for Matching Data

Breakpoints that Match Breakpoints
Without Value Without Value
Instruction Compare With Value Compare Compare With Value Compare
Load/Store One or more None BS hits set for all (No matching break-
points)
Load One or more One or more BS bits set for all Unchanged BS bits since

load of data value does
not occur so match of the
breakpoint cannot be

determined
Load None One or more (No matching break- BS bits set for all
points)
Store One or more One or more BS bits set for all BS bits set for al
Store None One or more (No matching break- BS bits set for al
points)

Any BS[n] hit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise
the debug data break exception will reoccur.

Debug Data Break Load/Store Exception as a Imprecise Debug Exception

An Debug Data Break L oad/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match.
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the
Debug register point to an instruction later in the execution flow rather than at the |oad/store instruction that caused
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break L oad/Store Imprecise exception always updates the destina
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruc-
tion.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break L oad/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding BS
bits and DDBL Impr/DDBSImpr to be set, but no debug exception is generated for succeeding matches because the
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug
Mode.

The SYNC instruction, followed by appropriate spacing must be executed before the BS bits and DDBLImpr/DDB-
Slmpr bits are accessed for read or write. This delay ensures that these bits are fully updated.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 247

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core
Any BS bit set prior to the match and debug exception are kept set, because only debug software can clear the BS
bits.

11.2.7 Breakpoint used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate
a debug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register controls if
an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com-
pared for instructions executed in non-debug mode.

The BY[n] bitinthe IBS or DBS register is set when the respective IB_match or DB_match bit istrue.

The triggerpoint feature can be used to start and stop tracing. See Section 11.10 “Enabling MIPS Trace” for details.
11.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 11.7.

Table 11.7 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status

0x1100 + n* 0x100 IBAn Instruction Breskpoint Address n

0x1108 + n* 0x100 IBMn Instruction Breakpoint Address Mask n
0x1110 + n* 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n* 0x100 IBCn Instruction Breakpoint Control n

n is breakpoint number inrange 0 to 3

An example of some of the registers; IBAO is at offset 0x1100 and IBC2 is at offset 0x1318.

11.2.8.1 Instruction Breakpoint Status (IBS) Register
Compliance L evel: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (1BS) register holds implementation and status information about the instruction
breakpoints.

The ASID appliesto all the instruction breakpoints.

Figure 11.2 IBS Register Format
31 30 29 28 27 24 23 4 3 0

Res|ASIDsup| Res BCN Res BS

248 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

Table 11.8 IBS Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31 Must be written as zero; returns zero on read. R 0
ASIDsup 30 Indicatesthat ASID compare is supported in instruction breakpoints. R Fixed MMU -0

0: No ASID compare. TLB-1
1: ASID compare (IBASIDn register implemented).
1: Supported
0: Not supported

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 | Number of instruction breakpoints implemented. R 4

Res 234 Must be written as zero; returns zero on read. R 0

BS 3.0 Break status for breakpoint nisat BS[n], with n from 0 to 3. The bit R/W Undefined

is set to 1 when the condition for the corresponding breakpoint has
matched.

11.2.8.2 Instruction Breakpoint Address n (IBAn) Register
Compliance L evel: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint

n.
Figure 11.3 IBAn Register Format
31 1 0
IBA ISA
Table 11.9 IBAn Register Field Descriptions
Fields
Read /
Name Bit(s) Description Write Reset State
IBA 311 Instruction breakpoint address for condition. R/W Undefined
ISA 0 Instruction breakpoint ISA mode for condition R/W Undefined

11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
Compliance L evel: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 249

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

Figure 11.4 IBMn Register Format
31 1 0

IBM ISAM

Table 11.10 IBMn Register Field Descriptions

Fields

Read /
Name Bit(s) Description Write Reset State
IBM 311 Instruction breakpoint address mask for condition: R/W Undefined

0: Corresponding address bit not masked.
1: Corresponding address bit masked.

ISAM 0 Instruction breakpoint ISA mode mask for condition: R/W Undefined
0: ISA mode considered for match condition
1: ISA mode masked

11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
Compliance Level: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For coreswith aFM MMU, thisregister isreserved and reads as 0.

Figure 11.5 IBASIDn Register Format
31 8 7 0

Res ASID

Table 11.11 IBASIDn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7.0 Instruction breakpoint ASID value for a compare. R/W Undefined

11.2.8.5 Instruction Breakpoint Control n (IBCn) Register
Compliance Level: Implemented only for implemented instruction breakpoints.
The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

Figure 11.6 IBCn Register Format

31 24 23 2 21 3 2 1 o0
Res ASiDuse| & Res TE|Res| BE
250 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

Table 11.12 IBCn Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Res 31:24 | Must be written as zero; returns zero on read. R 0
ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R/W Undefined
0: Don't use ASID vaue in compare
1: Use ASID valuein compare
Res 22 Must be written as zero; returns zero on read R 0
Res 21:3 Must be written as zero; returns zero on read. R
TE 2 Useinstruction breakpoint n as triggerpoint: R/W
0: Don't use it as triggerpoint
1: Useit astriggerpoint
Res Must be written as zero; returns zero on read. R
BE 0 Useinstruction breakpoint n as breakpoint: R/W
0: Don't use it as breakpoint
1: Useit as breakpoint

11.2.9 Data Breakpoint Registers

Theregistersfor data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers arein drseg, and the addresses are shown in Table 11.13.

Table 11.13 Addresses for Data Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAnN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n
0x2110 + 0x100* n DBASIDn Data Breakpoint ASID n
0x2118 + Ox100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Value n
0x2124 + 0x100*n DBVHN Data Breakpoint Value High n

nis breakpoint number asO or 1

An example of some of the registers; DBMO is at offset 0x2108 and DBV1 is at offset 0x2220.

11.2.9.1 Data Breakpoint Status (DBS) Register

Compliance L evel: Implemented if data breakpoints are implemented.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

251

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

The ASIDsup field indicates whether ASID compares are supported.

Figure 11.7 DBS Register Format

31 30 29 28 27 24 23 2 1 0

Res| ASIDsup| Res BCN Res BS

Table 11.14 DBS Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31 Must be written as zero; returns zero on read. R 0
ASID 30 Indicates that ASID compares are supported in data breakpoints. R TLBMMU -1
0: Not supported FM MMU -0
1: Supported
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 27:24 | Number of data breakpoints implemented. R 2
Res 23:2 Must be written as zero; returns zero on read. R 0
BS 1.0 Break status for breakpoint nisat BS[n], with n from 0 to 1. The bit R/WO Undefined
is set to 1 when the condition for the corresponding breakpoint has
matched.

11.2.9.2 Data Breakpoint Address n (DBAN) Register
Compliance L evel: Implemented only for implemented data breakpoints.
The Data Breakpoint Address n (DBAnN) register has the address used in the condition for data breakpoint n.

Figure 11.8 DBAnNn Register Format

31

DBA

Table 11.15 DBAnN Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBA 31:0 Data breakpoint address for condition. R/W Undefined

11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for
data breakpoint n.

252 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.2 Hardware Breakpoints

Figure 11.9 DBMn Register Format
31 0

DBM

Table 11.16 DBMn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBM 310 Data breakpoint address mask for condition: R/W Undefined

0: Corresponding address bit not masked
1: Corresponding address bit masked

11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
Compliance L evel: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. For cores with the FM MMU, thisregister is reserved and reads as 0.

Figure 11.10 DBASIDn Register Format
31 8 7 0
Res ASID

Table 11.17 DBASIDn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined

11.2.9.5 Data Breakpoint Control n (DBCn) Register
Compliance L evel: Implemented only for implemented data breakpoints.
The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.

Figure 11.11 DBCn Register Format

31 24 23 2 21 14 13 12 11 4 3 2 1 0
Res ASIDuse| R BAI NoSB | NoLB BLM Res| TE|Res|BE
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 253

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

Table 11.18 DBCn Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

Res 31:24 | Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n: R/W Undefined
0: Don't use ASID vaue in compare
1: Use ASID valuein compare

Res 22 Must be written as zero; returns zero on reads R 0

BAI 21:14 | Byte accessignore controlsignore of accessto a specific byte. R/W Undefined
BAI[0] ignores access to byte at bits[7:0] of the data bus, BAI[1]
ignores access to byte at bits[15:8], etc.

0: Condition depends on access to corresponding byte

1: Access for corresponding byte isignored

NoSB 13 Controlsif condition for data breakpoint is not fulfilled on a store R/W Undefined
transaction:

0: Condition may be fulfilled on store transaction
1: Condition is never fulfilled on store transaction

NoLB 12 Controlsif condition for data breakpoint is not fulfilled on aload R/W Undefined
transaction:

0: Condition may be fulfilled on load transaction
1: Condition is never fulfilled on load transaction

BLM 11:4 Byte lane mask for value compare on data breakpoint. BLM[Q] R/W Undefined
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

Res 3 Must be written as zero; returns zero on reads. R 0
TE 2 Use data breakpoint n as triggerpoint: R/W 0
0: Don't useit as triggerpoint
1: Useit astriggerpoint

Res 1 Must be written as zero; returns zero on reads. R 0

BE 0 Use data breakpoint n as breakpoint: R/W 0
0: Don't useit as breakpoint
1: Useit as breakpoint

11.2.9.6 Data Breakpoint Value n (DBVn) Register
Compliance L evel: Implemented only for implemented data breakpoints.
The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.
Figure 11.12 DBVn Register Format

31 0

DBV

254 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3 Test Access Port (TAP)

Table 11.19 DBVn Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBV 31:0 Data breakpoint value for condition. R/W Undefined

11.2.9.7 Data Breakpoint Value High n (DBVHnN) Register
Compliance Level: Implemented only for implemented data breakpoints.
The Data Breakpoint Value High n (DBVHn) register has the value used in the condition for data breakpoint n.

Figure 11.13 DBVHn Register Format

31

DBVH

Table 11.20 DBVHnN Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
DBVH 31:0 Data breakpoint value high for condition. This register provides the R/W Undefined
high order bits [63:32] for data value on double-word floating point
loads and stores.

11.3 Test Access Port (TAP)

The following main features are supported by the TAP module;

e 5-pinindustry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with |EEE Std. 1149.1.

e Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

e The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. Thisis
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

e Support for both ROM based debugger and debugging both through TAP.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 255

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

11.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the | EEE standard.

Table 11.21 EJTAG Interface Pins

Pin Type Description

TCK | Test Clock Input

Input clock used to shift datainto or out of the Instruction or dataregisters. The TCK clock is
independent of the processor clock, so the EJTAG probe can drive TCK independently of the
processor clock frequency.

The core signal for thisiscalled EJ_TCK

T™MS | Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is
sampled on the rising edge of TCK.
The core signal for thisiscalled EJ_TMS

TDI | Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data registers on therising
edge of the TCK clock, depending on the TAP controller state.
The core signal for thisis called EJ_TDI

TDO (0] Test Data Output

Serial output datais shifted from the Instruction or dataregister to the TDO pin on the falling
edge of the TCK clock. When no datais shifted out, the TDO is 3-stated.

The core signal for thisiscalled EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N | Test Reset Input (Optional pin)

The TRST_N pinisan active-low signal for asynchronous reset of the TAP controller and
instruction in the TAP module, independent of the processor logic. The processor is not reset
by the assertion of TRST_N.

The core signal for thisiscalled EJ_TRST_N

Thissignal is optional, but power-on reset must apply alow pulse on this signal at power-on
and then leaveit high, in case the signal is not available as a pin on the chip. If available on
the chip, then it must be low on the board when the EJTAG debug features are unused by the
probe.

11.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 11.14.
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on
the falling edge of TCK.

At power-up the TAP isforced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test accessis required, a protocol is applied viathe TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or adata register scan can be issued to transition the TAP through the appropriate states shown in Figure 11.14.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. Thefirst action that occurs when either block is entered is a capture operation. For the data registers,

the Capture-DR state is used to capture (or parallel |oad) the data into the selected serial data path. In the Instruction

register, the Capture-IR state is used to capture status information into the Instruction register.

256 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3 Test Access Port (TAP)

From the Capture states, the TAP transitions to either the Shift or Exitl states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exitl. Thereason for entering the Pause state is to temporarily suspend the shifting of datathrough either the
Data or Instruction Register while arequired operation, such asrefilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel 1oad) with the new data that has been shifted into the selected scan path.

Figure 11.14 TAP Controller State Diagram

Test-Logic-Reset

Select_IR_Scan
0

11.3.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BY PASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state aslong as
TMS isHIGH.

11.3.2.2 Run-Test/ldle State

The controller enters the Run-Test/I dle state between scan operations. The controller remainsin this state aslong as
TMS isheld LOW. Theinstruction register and all test data registersretain their previous state. The instruction cannot
change when the TAP controller isin this state.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 257
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

258

When TMS is sampled HIGH on the rising edge of TCK, the controller transitionsto the Select DR state.

11.3.2.3 Select_ DR_Scan State

Thisisatemporary controller statein which al test data registers selected by the current instruction retain their previ-
ous state. If TMS issampled LOW at the rising edge of TCK, then the controller transitions to the Capture DR state.
A HIGH on TMS causes the controller to transition to the Select IR state. The instruction cannot change while the
TAP controller isin this state.

11.3.2.4 Select_IR_Scan State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller isin this state.

11.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
valueisthen shifted out in the Shift. DR. If TMS issampled LOW at the rising edge of TCK, the controller transitions
to the Shift DR state. A HIGH on TMS causes the controller to transition to the Exitl DR state. The instruction can-
not change while the TAP controller isin this state.

11.3.2.6 Shift_ DR State

In this state the test data register connected between TDI and TDO as aresult of the current instruction shifts data one
stage toward its seria output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remainsin the Shift DR state. A HIGH on TMS causes the controller to transition to the Exitl DR state. The
instruction cannot change while the TAP controller isin this state.

11.3.2.7 Exitl_DR State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS issampled LOW at the rising edge of TCK, the controller transitionsto the Pause DR state. A
HIGH on TMS causes the controller to transition to the Update DR state which terminates the scanning process. The
instruction cannot change while the TAP controller isin this state.

11.3.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
seria path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller isin
this state.

11.3.2.9 Exit2_DR State

Thisisatemporary controller statein which al test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller isin this state.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3 Test Access Port (TAP)

11.3.2.10 Update_DR State

When the TAP controller isin this state the value shifted in during the Shift DR state takes effect on the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS issampled LOW at the rising edge of TCK, the controller transitionsto the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR_Scan state. The instruction cannot change while the TAP
controller isin this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

11.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (00001,) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exitl_|R state. The instruction cannot change while the TAP controller isin
this state.

11.3.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remainsin the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exitl IR state.

11.3.2.13 Exitl_IR State

Thisisatemporary controller statein which al registersretain their previous state. If TMS issampled LOW at theris-
ing edge of TCK, the controller transitions to the Pause IR state. A HIGH on TMS causes the controller to transition
to the Update IR state which terminates the scanning process. The instruction cannot change while the TAP control -
ler isin this state and the instruction register retains its previous state.

11.3.2.14 Pause_ IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remainsin the
Pause IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller isin this state.

11.3.2.15 Exit2_IR State

Thisisatemporary controller state in which the instruction register retainsits previous state. If TMS is sampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A
HIGH on TMS causes the controller to transition to the Update R state which terminates the scanning process. The
instruction cannot change while the TAP controller isin this state.

11.3.2.16 Update_IR State
Theinstruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 259

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

11.3.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller isin the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BY PASS instruction.

Table 11.22 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select |mplementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Dataregister

Ox0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

OxO0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block
Ox11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block
0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selects the TCBTCONTROLC register in the Trace Control Block
0x14 PCSAMPLE Selects the PCSAMPLE register

Ox1F BYPASS Bypass mode

11.3.3.1 BYPASS Instruction

Therequired BY PASS instruction allows the processor to remain in afunctional mode and sel ects the Bypass register
to be connected between TDI and TDO. The BY PASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of thisinstruction is defined to be all ones by the
|EEE 1149.1 standard. Any unused instruction is defaulted to the BY PASS instruction.

11.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device I dentification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register isimmediately available, viaa
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

11.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

260 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.3 Test Access Port (TAP)

11.3.3.4 ADDRESS Instruction

Thisinstruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 bits through the TDI pin into the Address register and shifts out the captured address viathe TDO pin.

11.3.3.5 DATA Instruction

Thisinstruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shifts 32
bits of TDI datainto the Data register and shifts out the captured data viathe TDO pin.

11.3.3.6 CONTROL Instruction
Thisinstruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG
Probe shifts 32 bits of TDI datainto the EJITAG Control register and shifts out the EJTAG Control register bitsvia
TDO.

11.3.3.7 ALL Instruction
Thisinstruction is used to select the concatenation of the Address and Data register, and the EJTAG Control regis-
ter(ECR) between TDI and TDO. It can be used in particular to minimize the overhead in switching the instruction in
the instruction register. Thefirst bit shifted out is bit 0 of the ECR.

Figure 11.15 Concatenation of the EJTAG Address, Data and Control Registers

TDI _;| Address 0 }_‘

;| Data 0 }‘

Ly EJTAG Control ol TDO

11.3.3.8 EJTAGBOOT Instruction

EJTAGBOOT provides a means to enter debug mode just after areset, without fetching or executing any instructions
from the normal memory area. This can be used for download of code to a system which has no code in ROM.

When the EJTAGBOOT instruction is given and the Update-IR state is | eft, the ETTAGBOQOT indication will become
active. When EJTAGBOOT is active, a core reset will set the ProbTrap, ProbEn and EjtagBrk bitsin the EJTAG Con-
trol register to 1. Thiswill cause a debug exception that is serviced by the probe immediately after reset is deasserted.

This EJTAGBOOT indication is effective until aNORMALBOOT instruction is given, TRST_N is asserted or aris-
ing edge of TCK occurs when the TAP controller isin Test-Logic-Reset state.

The Bypass register is selected when the EJTAGBOQT instruction is given.

11.3.3.9 NORMALBOOT Instruction
When the NORMALBOOT instruction is given and the Update-IR state is | eft, then the EJTAGBOQOT indication will
be cleared. When NORMALBOOT is active (EJTAGBOOT is not active), a core reset will set the ProbTrap, ProbEn
and EjtagBrk bitsin the EJTAG Control register to 0.

The Bypass register is selected when the NORMALBOQT instruction is given.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 261

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

11.3.3.10 FASTDATA Instruction
This selects the Data and the Fastdata registers at once, as shown in Figure 11.16.

Figure 11.16 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

TDI _;| Data OI_>| Fastdata |_> TDO

11.3.3.11 TCBCONTROLA Instruction

Thisinstruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register
isonly implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.12 TCBCONTROLB Instruction

Thisinstruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. Thisregister is
only implemented if the Trace Control Block is present. If no TCB is present, then thisinstruction will select the
Bypass register.

11.3.3.13 TCBCONTROLC Instruction

Thisinstruction isused to select the TCBCONTROL C register to be connected between TDI and TDO. Thisregister is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

11.3.3.14 TCBDATA Instruction

Thisinstruction is used to select the TCBDATA register to be connected between TDI and TDO. Thisregister isonly
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register isonly an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

11.3.3.15 PCSAMPLE Instruction

Thisinstruction is used to select the PCSAMPLE register to be connected between TDI and TDO. Thisregister is
always implemented.

11.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of dataregisters, all accessible through the TAP:

11.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift datafrom TDI to
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the
TDO occurs on the falling edge of TCK. In the Test-L ogic-Reset and Capture-IR state, the instruction shift register is

262 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4 EJTAG TAP Registers

set to 00001,, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device

ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data regis-
ter scan operation. A list of the implemented instructions are listed in Table 11.22.

11.4.2 Data Registers Overview

The EJTAG uses several dataregisters, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control sig-
nals to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the
output of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the
write bits.

This description appliesin general to the following data registers:
* Bypass Register

» Device Identification Register

* Implementation Register

» EJTAG Control Register (ECR)

* Processor Access Address Register

» Processor Access Data Register

» FastData Register

11.4.2.1 Bypass Register

The Bypass register consists of asingle scan register bit. When selected, the Bypass register provides asingle bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register isloaded with a pattern of all onesto
satisfy the IEEE 1149.1 Bypass instruction requirement.

11.4.2.2 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 11.23 shows the bit assignments defined for the read-only Device

| dentification Register, and inputs to the core determine the value of these bits. These bits can be scanned out of the D
register after being selected. The register is selected when the Instruction register isloaded with the IDCODE instruc-

tion.
Figure 11.17 Device Identification Register Format
31 28 27 12 11 10
Version PartNumber ManufID R
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 263

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

264

Table 11.23 Device ldentification Register

Fields
Read /
Name Bit(s) Description Write Reset State

Version 31:28 |Version (4 hits) R EJ_Version[3:0]
Thisfield identifies the version number of the processor
derivative.

PartNumber 27:12 | Part Number (16 hits) R EJ_PartNumber[15:0]

Thisfield identifies the part number of the processor
derivative.

ManufID 11:1 Manufacturer Identity (11 bits) R EJ_ManuflD[10:0]
Accordingly to |EEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A.

R 0 reserved R 1

11.4.2.3 Implementation Register
This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register is|oaded with the IMPCODE
instruction.

Figure 11.18 Implementation Register Format

31 29 28 25 24 23 21 20 17 16 15 14 13 0
EJTAGver | reserved |DINTsup| ASIDsize | reserved |MIPS16| 0 |NoDMA reserved
Table 11.24 Implementation Register Descriptions
Fields
Read /
Name Bit(s) Description Write Reset State
EJTAGver 31:29 | EJTAG Version. R 3
3: Version 3.1
reserved 28:25 |reserved R 0
DINTsup 24 DINT Signa Supported from Probe R EJ_DINTsup
Thisbit indicates if the DINT signal from the probe is supported:
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.
ASIDsize 23:21 | Size of ASID field in implementation: R TLB MMU- 2
0: No ASID inimplementation FM MMU- 0
2: 8-bit ASID
1,3: Reserved
reserved 20:17 | reserved R 0
MIPS16 16 Indicates whether MIPS16 isimplemented R
0: No MIPS16 support
1: MIPS16 implemented
reserved 15 reserved R 0
NoDMA 14 No EJTAG DMA Support R
reserved 13:0 reserved R 0

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4.2.4 EJTAG Control Register

31

11.4 EJTAG TAP Registers

This 32-bit register controls the various operations of the TAP modules. Thisregister is selected by shifting in the
CONTROL instruction. Bitsin the EJTAG Control register can be set/cleared by shifting in data; statusis read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register isnot updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, iseither O
or written to 0. Thisisin order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets by
e.g. TRST_N. TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value
when the TCK applies. Thefirst 5 TCK clocks after CPU resets may result in reset of the bits, due to synchronization
between clock domains.

30 29 28

24 23

Figure 11.19 EJTAG Control Register Format

22 21 20 19 18 17 16 15 14

13

12

11 4 3

Rocc

Psz

Res Res

Doze| Halt | PerRst| PRnW | PrAcc | Res| PrRst | ProbEn | ProbTrap

Res

EjtagBrk

Res DM

Res

Table 11.25 EJTAG Control Register Descriptions

Fields

Name

Bit(s)

Description

Read /
Write

Reset State

Rocc

31

Reset Occurred

The bit indicates if a CPU reset has occurred:

0: No reset occurred since bit last cleared.

1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value aslong as reset is applied.

This bit must be cleared by the probe, t O(knavledge that the inci-
dent was detected.

The EJTAG Control register is not updated in the Update-DR state
unless Rocc is 0, or written to 0. Thisisin order to ensure proper
handling of processor access.

R/W

1

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

265

EJTAG Debug Support in the 24K® Core

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields
Read /

Name Bit(s) Description Write Reset State

Psz[1:0] 30:29 | Processor Access Transfer Size R Undefined
These bits are used in combination with the lower two address bits
of the Address register to determine the size of a processor access

transaction. The bits are only valid when processor accessis pend-

ing.

PAA[1:0] | Psz[1:0] Transfer Size

00 00 Byte (LE, byte O; BE, byte 3)

01 00 Byte (LE, byte 1; BE, byte 2)

10 00 Byte (LE, byte 2; BE, byte 1)

11 00 Byte (LE, byte 3; BE, byte 0)
00 01 Halfword (LE, bytes 1:0; BE, bytes 3:2)
10 01 Halfword (LE, bytes 3:2; BE, bytes 1:0)
00 10 Word (LE, BE; bytes 3, 2, 1, 0)
00

11 Triple (LE, bytes 2, 1, O; BE, bytes 3,
2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,
0)
All others Reserved

Note: LE=little endian, BE=big endian, the byte# refers to the byte
number in a 32-bit register, where byte 3 = hits 31:24; byte 2 = hits
23:16; byte 1 = bits 15:8; byte O=bits 7:0, independently of the endi-
aness.

Res 28:24 | reserved R
Res 23 reserved R

Doze 22 Doze state R 0
The Doze bit indicates any kind of low power mode. The valueis
sampled in the Capture-DR state of the TAP controller:

0: CPU not in low power mode.

1: CPU isin low power mode

Doze includes the Reduced Power (RP) and WAIT power-reduction
modes.

Halt 21 Halt state R 0
The Halt bit indicatesif the internal system bus clock is running or
stopped. The value is sampled in the Capture-DR state of the TAP
controller:

0: Internal system clock isrunning

1: Internal system clock is stopped

266 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4 EJTAG TAP Registers

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read /
Write

Reset State

PerRst

20

Peripheral Reset

Whenthebitisset to 1, it isonly guaranteed that the peripheral reset
has occurred in the system when the read value of thisbit isalso 1.
Thisisto ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.

When the bit is written to O, then the bit must also be read as 0
beforeit isguaranteed that theindication is cleared in the CPU clock
domain also.

This bit controls the EJ_PerRst signal on the core.

RIW

0

PRnW

19

Processor Access Read and Write

Thisbit indicates if the pending processor accessisfor aread or
write transaction, and the bit is only valid while PrAcc is set:

0: Read transaction

1: Write transaction

Undefined

PrAcc

18

Processor Access (PA)

Read value of this bit indicatesif a Processor Access (PA) to the
EJTAG memory is pending:

0: No pending processor access

1: Pending processor access

The probe's software must clear thisbit to O to indicate the end of
the PA. Write of 1 isignored.

A pending Processor Accessis cleared when Rocc is set, but another
PA may occur just after the reset if a debug exception occurs.
Finishing a Processor Access is not accepted while the Rocc bit is
set. Thisisto avoid that a Processor Access occurring after the reset
isfinished due to indication of a Processor Access that occurred
before the reset.

The FASTDATA access can clear this bit.

R/WO

Res

17

reserved

PrRst

16

Processor Reset (Implementation dependent behavior)

When the bit is set to 1, then it is only guaranteed that this setting
has taken effect in the system when the read value of this bit is also
1. Thisisto ensure that the setting from the TCK clock domain gets
effect in the CPU clock domain, and in peripherals.

When the bit is written to 0, then the bit must also beread as0
beforeit is guaranteed that theindication is cleared in the CPU clock
domain also.

This bit controlsthe EJ_PrRst signdl. If the signal is used in the
system, then it must be ensured that both the processor and all
devices required for areset are properly reset. Otherwise the system
may fail or hang. The bit resetsitself, sincethe EJTAG Control reg-
ister isreset by areset.

R/W

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

267

EJTAG Debug Support in the 24K® Core

268

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read /
Write

Reset State

ProbEn

15

Probe Enable

This bit indicates to the CPU if the EJTAG memory is handled by
the probe so processor accesses are answered:

0: The probe does not handle EITAG memory transactions

1: The probe does handle EJTAG memory transactions

Itisan error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the proces-
sor is UNDEFINED in this case.

The ProbEn bit isreflected as aread-only bit in the ProbEn bit, bit O,
in the Debug Control Register (DCR).

The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it isensured that change of the ProbEn prior to setting the
EjtagBrk bit will have effect for the debug handler executed due to
the debug exception.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

No EJTAGBOQT indication given: 0

EJTAGBOOT indication given: 1

RIW

Oorl
from
EJTAGBOOT

ProbTrap

14

Probe Trap

This bit controls the location of the debug exception vector:

0: In norma memory 0xBFCO0.0480

1: In EJTAG memory at 0xFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting of the
ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug exception vector in
EJTAG memory, unless the ProbEn bit is also set to 1 to indicate
that the EJTAG memory may be accessed.

The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; how-
ever, it isensured that change of the ProbTrap bit prior to setting the
EjtagBrk bit will have effect for the EjtagBrk.

The reset value of the bit depends on whether the ETTAGBOOT
indication is given or not:

No EJTAGBOQT indication given: 0

EJTAGBOOT indication given: 1

R/W

Oorl
from
EJTAGBOOT

Res

13

reserved

0

EjtagBrk

12

EJTAG Break

Setting this bit to 1 causes a debug exception to the processor, unless
the CPU was in debug mode or another debug exception occurred.
When the debug exception occurs, the processor core clock is
restarted if the CPU wasin low power mode. Thisbit is cleared by
hardware when the debug exception is taken.

The reset value of the bit depends on whether the EJTAGBOOT
indication is given or not:

No EJTAGBOQT indication given: 0

EJTAGBOOT indication given: 1

RIW

Oorl
from
EJTAGBOOT

Res

11:4

reserved

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.4 EJTAG TAP Registers

Table 11.25 EJTAG Control Register Descriptions (Continued)

Fields
Read /
Name Bit(s) Description Write Reset State
DM 3 Debug Mode R 0
This bit indicates the debug or non-debug mode:
0: Processor isin non-debug mode
1: Processor isin debug mode
The bit is sampled in the Capture-DR state of the TAP controller.
Res 2.0 Reserved R 0

11.4.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

11.4.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Dataregister is 32 hits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
thisregister isonly valid when a processor access writeis pending. The register is used to provide the data value for a
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bitswide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read 0 (zero) must be
shifted in for the unused bytes.

The organization of bytesin the PAD register depends on the endianess of the core, as shown in Figure 11.20. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

Figure 11.20 Endian Formats for the PAD Register

MSB LSB
bit 31 24 23 16 15 87 0
BIG-ENDIAN Lano=4 || 5 || 6 || 7 | Anae
Lanoso || 1+ || 2 || s | An2eo
Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.
MSB LSB
bit 31 24 23 16 15 87 0
Greenoay LA |6 [s [4 | Am2e
Lanoss || 2 || 1+ || o | An2eo
Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 269

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

270

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

11.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdataregister is 1 bit. During a Fastdata access, the Fastdata register iswritten and read, i.e., abit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

Figure 11.21 Fastdata Register Format

0

Table 11.26 Fastdata Register Field Description

Fields
Read / Power-up
Name Bits Description Write State
SPrAcc 0 Shifting in azero value requests completion of the Fastdata access. R/W Undefined

The PrAcc bit in the EJTAG Control register is overwritten with
zero when the access succeeds. (The access succeeds if PrAccis
one and the operation addressisin the legal dmseg Fastdata area.)
When successful, aoneis shifted out. Shifting out a zero indicates
a Fastdata access failure.

Shifting in a one does not complete the Fastdata access and the
PrAcc bit isunchanged. Shifting out a one indicates that the access
would have been successful if allowed to complete and azero indi-
cates the access would not have successfully completed.

The FASTDATA accessis used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “ Fastdata area”’ specifies
the legal range of dmseg addresses (0xFF20.0000 - OxFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in azero SPrAcc value (to request access completion) and shifting out SPrAcc to
seeif the attempt will be successful (i.e., there was an access pending and alegal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg's Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:
* PrAcc must bel, i.e., there must be a pending processor access.

» The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to OxFF20.000F).

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.5 TAP Processor Accesses

Table 11.27 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access. .

Table 11.27 Operation of the FASTDATA Access

Address PrAcc in LSB Action in
Probe Match the Control (SPrAcc) the Data PrAcc Lsb Shifted Data
Operation Check Register Shifted In Register Changes to Out Shifted Out
Download Fails X X none unchanged 0 invalid
using FAST- . .
DATA Passes 1 1 none unchanged 1 invalid
1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data
0 X none unchanged 0 invalid
Upload using Fails X X none unchanged 0 invalid
FASTDATA
Passes 1 1 none unchanged 1 invalid
1 0 read data 0 (SPrAcc) 1 valid data
0 X none unchanged 0 invalid

Thereis no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between

the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

11.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like aslave unit connected to the on-chip bus. The core can then execute code taken from
the EJTAG Probe and it can access data (viaaload or store) which islocated on the EJTAG Probe. Thisoccursin a
serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an addressin the range
from OxFF20.0000 to OXFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM hit in the CPO Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by areset.

11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. Theinternal hardware latches the requested address into the PA Address register (in case of the Debug excep-
tion: OxFF20.0200).

2. Theinternal hardware sets the following bitsin the EJITAG Control register:
PrAcc = 1 (selects Processor Access operation)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 271

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

272

PRNW = 0O (selects processor read operation)
Psz[1:0] = value depending on the transfer size

The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit isfound 1, it means that the requested addressis available and
can be shifted out.

The EJTAG Probe checks the PRnW bit to determine the required access.

The EJTAG Probe selects the PA Address register and shifts out the requested address.

The EJTAG Probe selects the PA Dataregister and shiftsin the instruction corresponding to this address.

The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to
the processor that the instruction is available.

The instruction becomes available in the instruction register and the processor starts executing.

The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whol e sequence again.

Using the same protocol, the processor can also execute aload instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute aload instruction (e.g. aLW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: OxFF20.0000 to OxFF2F.FFFF, the ProbEn bit must be set and the processor hasto
be in debug mode (DM=1). The sequence of actionsis found below:

1.

2.

3.

Theinternal hardware latches the requested address into the PA Address register

The internal hardware |latches the data to be written into the PA Dataregister.

The interna hardware sets the following bits in the EJTAG Control register:

PrAcc = 1 (selects Processor Access operation)

PRNW = 1 (selects processor write operation)

Psz[1:0] = value depending on the transfer size

The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit isfound 1, it means that the requested addressis available and
can be shifted out.

The EJTAG Probe checks the PRnW bit to determine the required access.

The EJTAG Probe selects the PA Address register and shifts out the requested address.

The EJTAG Probe selects the PA Data register and shifts out the data to be written.

The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to
the processor that the write accessis finished.

The EJTAG Probe writes the data to the requested address in its memory.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.6 PC Sampling

10. The processor detects that PrAcc bit = 0, which meansthat it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.
11.6 PC Sampling

The PC sampling feature enables sampling of the PC value periodically. Thisinformation can be used for statistical
profiling of the program akin to gprof. Thisinformation is also very useful for detecting hot-spots in the code. PC
sampling cannot be turned on or off, that is, the PC value is continually sampled.

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 9(PCS).The sam-
pled PC values are written into a TAP register. The old value in the TAP register is overwritten by a new value even
if this register has not be read out by the debug probe. The samplerate is specified in amanner similar to the PDtrace
synchronization period, with three bits. These bitsin the Debug Control register are 8:6 and called PCSR (PC Sample
Rate). These three bits take the value 2° to 212 similar to SyncPeriod. Note that the processor samples PC even when
itisadeep, that is, in aWAIT state. This permits an analysis of the amount of time spent by a processor in WAIT
state which may be used for example to revert to alow power mode during the non-execution phase of area-time
application.

The sampled values includes a new data hit, the PC, the ASID of the sampled PC as well asthe Thread Context id if
the processor implements the MIPS MT ASE. Figure shows the format of the sampled values in the TAP register
PCsample. The new data bit is used by the probe to determine if the PCsample register data just read out is new or
already been read and must be discarded.

Figure 11.22 TAP Register PCsample Format

48 41 40 33 32 1 0

TC (for MIPSMT
processors only)

ASID PC New

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it isin Debug mode.

11.6.1 PC Sampling in Wait State

When the processor isin aWAIT state to save power for example, an external agent might want to know how long it
staysin the WAIT state. But counting cyclesto update the PC sample value is a waste of power. Hence, when in a
WAIT state, the processor must simply switch the New bit to 1 every timeit is set to O by the probe hardware. Hence,
the external agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains
inthe WAIT state. When the processor |eaves the WAIT state, then counting is resumed as before.

11.7 MIPS® Trace

MIPS Trace enables the ability to trace program flow, load/store addresses and load/store data. Severa run-time
options exist for the level of information which istraced, including tracing only when in specific processor modes
(e.g., UserMode or KernelMode). MIPS Traceis an optional block in the 24K core. If MIPS Traceis not imple-
mented, the rest of this chapter isirrelevant. If MIPS Trace isimplemented, the CPO Config3_ bit is set.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 273

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

274

There are two primary blocks involved in the MIPS Trace solution. The pipeline specific part of MIPS Traceis called
the PDtrace module. It extracts the trace information from the processor pipeline, and presentsit to a pipeline-inde-
pendent module called the Trace Control Block (TCB). The TCB and the interface between the two blocks (PDtrace
interface) are described in The PDtrace™ Interface and Trace Control Block Specification [9] While working closely
together, the two parts of MIPS Trace are controlled separately by software. Figure 11.23 shows an overview of the
MIPS Trace modules within the core.

Figure 11.23 MIPS® Trace Modules in the 24K® Core

CPO control bus EJTAG TAP access ! TAP
trol path
- - ‘ _Con rol pa 3 - I - Probe
- IR I
I
Pipeline specific PDtrace™ Pipeline independant |
module PDtrace™ Interfacq Trace Contol Block (TCB) module |
Trace
Back-stall to .] -
pipeline N [—_— Probe
- ' Trace On-chip Trace I‘
Extracted Pipeline Tracg < ' > compression and I\/Iemory (optionall |
information extraction alignment I I | 24K\bh d
oundary
P oo o ‘ I (th*tOp)
|

To some extent, the two modules both provide similar trace control features, but the access to these featuresis quite
different. The PDtrace controls can only be reached through access to CPO registers. The TCB controls can only be
reached through EJTAG TAP access. The TCB can then control what is traced through the PDtrace™ Interface.

Before describing the MIPS Trace implemented in the 24K core, some common terminology and basic features are
explained. The remaining sections of this chapter will then provide a more thorough explanation.

11.7.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes.
The terminology is then used elsewhere in the document.

DebugMode < (Debugpy = 1)

ExceptionMode <« (not DebugMode) and ((Statusgy;, = 1) or (Statusgg = 1))
KernelMode ¢ (not (DebugMode or ExceptionMode)) and (Statusggy = 2#00)
SupervisorMode <« (not (DebugMode or ExceptionMode)) and (Statusggy = 2#01)
UserMode < (not (DebugMode or ExceptionMode)) and (Statusggy = 2#10)

11.7.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms * software control” and “hardware control” are used to refer to
the method for how trace is controlled. Software control iswhen the CPO register TraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCB, viathe PDtrace inter-
face, is used to select the trace modes. The TraceControlrg bit determines whether software or hardware control is
active. Even in Software control mode, Trace logic will need TCK to toggle atleast once before it isturned on. Itis
assumed that EJTAG probe will be connected while using Trace and probe reset sequence would toggle TCK. In
order to extract Trace data out of TCB, TCBCONTROLB.En should be set to 1 even in “ software control” mode.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.7 MIPS® Trace

11.7.3 Trace Information

The main object of traceisto show the exact program flow from a specific program execution or just a small window
of the execution. In MIPS Trace this is done by providing the minimal cycle-by-cycle information necessary on the
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the type of
information traced:

» Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag.
The PC isimplicitly pointing to the next instruction.

e Load instructions are indicated with aload-flag.

« Storeinstructions are indicated with a store-flag™.
» Taken branches are indicated with a branch-taken-flag on the target instruction.

 New PCinformation for abranch is only traced if the branch target is unpredictable from the static program
image.

» When branch targets are unpredictable, only the delta value from current PC is traced, if it isdynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC valueis
traced.

» When acompleting instruction is executed in a different processor mode from the previous one, the new
processor modeis traced.

» Thefirst instruction is always traced as a branch target, with processor mode and full PC.

» Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and
full PC.

All theinstruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possi-
ble processor modes are explained in Section 11.7.1 “Processor Modes”.

Thetarget addressis statically predictable for al branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the
dynamic flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used.
Physical memory location will typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. Asa
safety check for trace regeneration software, a periodic synchronization with afull PC is sent. The period of this syn-
chronization is cycle based and programmable.

1. A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 275

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

276

11.7.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace.

» When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load addressis traced to
compress the information which must be sent.

» When store-addresstracing is on, the full store address of thefirst storeinstruction istraced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

» When load-datatracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

» When store-datatracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full addressif load/store address tracing is enabl ed.

11.7.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When traceis on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 11.7.1 “Processor Modes’. In addition to this, trace can be
turned on globally for all process, or only for specific processes by tracing only specific masked values of the ASID
found in EntryHia g p-

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn
them all on. Another trigger point can disable this override again.

11.7.6 Programmable Trace Information Options

The processor mode changes are always traced:

* Onthefirst instruction.

* On any synchronization instruction.

» When the mode changes and either the previous or the current processor mode is selected for trace.
The amount of extrainformation traced is programmable to include:

* PCinformation only.

e PC and cross product of load/store address/data

If the full internal state of the processor is known prior to trace start, PC and load data are the only information
needed to recreate all register values on an instruction by instruction basis.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.7 MIPS® Trace

11.7.6.1 User Data Trace

In addition to the above, a special CPO register, UserTraceData, can generate a data trace. When this register is writ-
ten, and the global Trace On is set, then the 32-bit datawritten is put in the trace as special User Data information.

Remark: The User Datais sent even if the processor is operating in an un-traced processor mode.
11.7.7 Enable Trace to Probe On-chip Memory

When trace is On, based on the optionslisted in Section 11.7.5 “Programmable Processor Trace Mode Options”’, the
traceinformation is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to
transmit the trace information to the Trace probe or to on-chip trace memory, by having the TCBCONTROLBgy bit

set. It is possible to enable and disable the TCB in two ways:

» Set/clear the TCBCONTROLBgy bit viaan EJTAG TAP operation.
* Initializea TCB trigger to set/clear the TCBCONTROLBgy bit.
11.7.8 TCB Trigger

The TCB can optionally include O to 8 triggers. A TCB trigger can be programmed to fire from any combination of:
* Probe Trigger Input to the TCB.
e Chip-level Trigger Input to the TCB.
* Processor entry into DebugMode.
When atrigger firesit can be programmed to have any combination of actions:
e Create Probe Trigger Output from TCB.
» Create Chip-level Trigger Output from TCB.

* Set, clear, or start countdown to clear the TCBCONTROLBgy bit (start/end/about trigger).
e Put aninformation byte into the trace stream.
11.7.9 Cycle-by-Cycle Information

All of the trace information listed in Section 11.7.3 “Trace Information” and Section 11.7.4 “Load/Store Address
and Data Trace Information”, will be collected from the PDtrace™ interface by the TCB. The trace will then be com-
pressed and aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact
cycle-by-cycle relationship between each instruction. If excluded, the number of bits required in the trace information
from the TCB isreduced, and each trace word will only contain information from completing instructions.

11.7.10 Instruction and Data Cache Miss Tracing

It is possible to embed information about Instruction and/or Data cache misses into the trace. There are limitationsin
the core's ability to track this and put useful information into the trace.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 277

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

For the instruction cache miss indicator

» Theinstruction cache missindicator is based on whether the instruction is pulled from the cache or thefill buffer.
On acache miss, the fetch is restarted when the data comes back from the BIU and the instructions will come
from the Fill Buffer. The missflag is only set for thefirst fetch that hits out of the FB to avoid marking every
fetch from the line a miss. However, two instructions can be fetched per cycle and both will be marked as a miss.
If branching to the middle of a dword though, only 1 misswill be seen.

» ThelFU can prefetch down a speculative path which might not be immediately executed. These speculative
fetches arefilled into the cache. Subsequently, when the code accesses the same address, it is possible that the
instruction will hit in the cache even if that instruction was being executed for the very first time.

For the data cache miss indicator:

* TheALU and LSU pipelines can run out of sync with each other. PDtrace instruction capture is done at the end
of the ALU pipe, but if the LSU pipe had been stalled, the cache missinfo will not yet be known. Thus, this miss
indicator isinstead sent with the data value.

* For loads, this allows an accurate miss indication as the miss state must be resolved before we have the data.

» Thisdoes not help for stores though as the store data value is captured with the instruction execution

11.7.11 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. Thisinformation is collected into six
different Trace Formats (TF1 to TF6). One important feature is that all Trace Formats have at least one non-zero hit.

11.7.12 Trace Word Format

After the PDtrace data has been converted into Trace Formats, the trace information must be streamed to either
on-chip trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates
how to store this information into an on-chip memory of fixed width without too much wasted space. It a'so compli-
cates how to transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory
overhead and or bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bitswide. An empty/invalid TW is built of al zeros. A TW which contains
one or more valid TF'sis guaranteed to have a non-zero value on one of the four least significant bits [3:0]. During
operation of the TCB, each TW is built from the TF's generated each clock cycle. When all 64 bits are used, the TW
isfull and can be sent to either on-chip trace memory or to the trace probe.

11.8 PDtrace™ Registers (Software Control)

278

The CPO registers associated with PDtrace are listed in Table 11.28 and described in Chapter 6, “ CPO Registers of the
24K® Core” on page 146

Table 11.28 A List of Coprocessor 0 Trace Registers

Register Register
Number Sel Name Reference
23 1 TraceControl Section 6.2.29 “Trace Control Register (CPO Register 23, Select 1)”

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.28 A List of Coprocessor 0 Trace Registers (Continued)

Register Register

Number Sel Name Reference
23 2 TraceControl2 | Section 6.2.30 “Trace Control2 Register (CPO Register 23, Select 2)”
23 3 UserTraceData | Section 6.2.31 “User Trace Data Register (CPO Register 23, Select 3)”
23 4 TraceBPC Section 6.2.32 “Tracel BPC Register (CPO Register 23, Select 4)”

11.9 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation arelisted in Table 11.29 and Table 11.30. These registers are accessed
viathe EJTAG TAP interface.

Table 11.29 TCB EJTAG Registers

EJTAG
Register Name Description Implemented
0x10 TCBCONTROLA | Control register in the TCB mainly used for controlling the trace input Yes

signals to the core on the PDtrace interface. See Section
11.9.1 “TCBCONTROLA Register”.

Ox11 TCBCONTROLB | Control register in the TCB that is mainly used to specify what to do with Yes
the trace information. The REG [25:21] field in this register specifiesthe
number of the TCB internal register accessed by the TCBDATA register.
A list of al the registers that can be accessed by the TCBDATA register
isshown in Table 11.30. See Section 11.9.2 “TCBCONTROLB

Register”.

0x12 TCBDATA Thisis used to access registers specified by the REG field in the Yes
TCBCONTROLB register. See Section 11.9.3 “TCBDATA Register”.

0x13 TCBCONTROLC | Control Register inthe TCB used to control and hold tracing information. Yes

See Section 11.9.4 “TCBCONTROLC Register”.

Table 11.30 Registers Selected by TCBCONTROLBRgg

TCBCONTROLBRgg field Name Reference Implemented
0 TCBCONFIG | Section 11.9.5 “TCBCONFIG Register (Reg 0)” Yes
4 TCBTW | Section 11.9.6 “TCBTW Register (Reg 4)" Yes
5 TCBRDP | Section 11.9.7 “TCBRDP Register (Reg 5)” i °”'°:>'(ipst’:em°ry
6 TCBWRP Section 11.9.8 “TCBWRP Register (Reg 6)” Otherwise No
7 TCBSTP | Section 11.9.9 “TCBSTP Register (Reg 7)"
16-23 TCBTRIGx Section 11.9.10 “TCBTRIGx Register (Reg 16-23)” Only the number
indicated by
TCBCONFIGTR(G
areimplemented.

11.9.1 TCBCONTROLA Register

The TCB isresponsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
core'stracing logic. Most of the control is done using the TCBCONTROLA register.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 279

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

The TCBCONTROLA register iswritten by an EJTAG TAP controller instruction, TCBCONTROLA (0x10).
The format of the TCBCONTROLA register is shown below, and the fields are described in Table 11.31.

Figure 11.24 TCBCONTROLA Register Format
31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

0 VModes | ADW | SyP |TB|IO|D|E|S|K|U ASID G| TFCR | TLSM | TIM [On

Table 11.31 TCBCONTROLA Register Field Descriptions

Fields

Read /
Name Bits Description Write Reset State
0 31:26 Reserved. Must be written as zero; returns zero on read. R 0
VModes 25:24 | Thisfield specifies the type of tracing that is supported by the pro- R 10
cessor, as follows:
Encoding Meaning
00 PC tracing only
01 PC and Load and store address tracing only
10 PC, load and store address, and load and store data.
11 Reserved
Thisfield is preset to the value of PDO_ValidModes.
ADW 23 PDO_AD buswidth. R 1

0: The PDO_AD busis 16 bitswide.
1: The PDO_AD busis 32 bitswide.

SyP 22:20 | Used to indicate the synchronization period. R/W 000
The period (in cycles) between which the periodic synchronization
information is to be sent is defined as shown in the table below.

SyP Sync Period
000 25
001 26
010 27
011 28
100 29
101 210
110 11
11 12

Thisfield defines the value on the PDI_SyncPeriod signal.

B 19 Trace All Branches. When set to one, this field indicates that the R/IW Undefined
core must trace either full or incremental PC valuesfor all branches.
When set to zero, only the unpredictable branches are traced.
Thisfield defines the value on the PDI_TraceAllBranch signal.

280 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.31 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Read /
Name Bits Description Write Reset State
10 18 Inhibit Overflow. Thisbit is used to indicate to the core trace logic R/W Undefined

that slow but complete tracing is desired. Hence, the core tracing
logic must not allow a FIFO overflow and discard trace data. Thisis
achieved by stalling the pipeline when the FIFO is nearly full so that
no trace records are ever lost.

Thisfield defines the value on the PDI_InhibitOverflow signal.

D 17 When set to one, this enables tracing in Debug mode, i.e., when the R/W Undefined
DM bit isonein the Debug register. For trace to be enabled in
Debug mode, the On bit must be one, and either the G bit must be
one, or the current process must match the ASID field in thisregis-
ter.

When set to zero, trace is disabled in Debug mode, irrespective of
other bits.

Thisfield defines the value on the PDI_DM signal.

E 16 This controls when tracing is enabled. When set, tracing is enabled R/W Undefined
when either of the EXL or ERL bitsin the Status register is one,
provided that the On bit (bit 0) isalso set, and either the G bit is set,
or the current process ASID matchesthe ASID field in this register.
Thisfield defines the value on the PDI_E signal.

S 15 When set, this enables tracing when the core isin Supervisor mode R/W Undefined
as defined in the MIPS32 or MIPS64 architecture specification. This
is provided the On bit (bit O) is also set, and either the G bit is set, or
the current process ASID matchesthe ASID field in this register.
Thisfield defines the value on the PDI_S signal.

K 14 When set, this enables tracing when the On bit is set and the coreis R/W Undefined
in Kernel mode. Unlike the usual definition of Kernel Mode, this bit
enables tracing only when the ERL and EXL bitsin the Status reg-
ister are zero. Thisis provided the On bit (bit 0) is also set, and
either the G bit is set, or the current process ASID matchesthe ASID
field in this register.

Thisfield defines the value on the PDI_K signal.

U 13 When set, this enables tracing when the coreisin User mode as R/W Undefined
defined in the MIPS32 or M1PS64 architecture specification. Thisis
provided the On hit (bit 0) is also set, and either the G bit is set, or
the current process ASID matches the ASID field in this register.
Thisfield defines the value on the PDI_U signal.

ASID 12:5 The ASID field to match when the G hit is zero. When the G bit is RIW Undefined
one, thisfield isignored.
Thisfield defines the value on the PDI_ASID signal.

G 4 When set, thisimplies that tracing is to be enabled for all processes, R/W Undefined
provided that other enabling functions (like U, S, etc.,) are also true.
Thisfield defines the value on the PDI_G signal.

TFCR 3 When set, thisindicates to the PDtrace interface that complete infor- R/W Undefined
mation about instruction if it can be afunction call or return should
be traced, that issignal PDI_TraceFuncCR is asserted aslong as
thisvalueissetto 1. It alsoindicatesto the TCB that the optional Fcr
bit must be traced in the appropriate trace formats

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 281

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

Table 11.31 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Read /
Name Bits Description Write Reset State
TLSM 2 When set, thisindicates to the PDtrace interface that complete infor- R/W Undefined

mation about Load and Store data cache miss should be traced, that
issignal PDI_TraceLSMiss is asserted aslong asthisvalueis set to
1. It also indicates to the TCB that the optional L Sm bit must be
traced in the appropriate trace formats.

TIM 1 When set, thisindicates to the PDtrace interface that complete infor- R/W Undefined
mation about instruction cache miss should be traced, that is signa
PDI_TracelMiss is asserted aslong asthisvalueisset to 1. It also
indicates to the TCB that the optional Im bit must be traced in the
appropriate trace formats.

On 0 Thisisthe global trace enable switch to the core. When zero, tracing R/W 0
from the core is always disabled, unless enabled by core internal
software override of the PDI_* input pins.

When set to one, tracing is enabled whenever the other enabling
functions are also true.

Thisfield defines the value on the PDI_TraceOn signal.

11.9.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). Thisregister generally controls what to do with
the trace information received.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 11.32.

Figure 11.25 TCBCONTROLB Register Format
31 30 28 27 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE| O TWSrcWidth REG WR 0 RM|TR|BF| TM |TLSIF| CR |Ca|TWSrcva |CA|OfC|EN

Table 11.32 TCBCONTROLB Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
WE 31 Write Enable. R 0
Only when set to 1 will the other bits be writtenin TCBCONTROLB.
This bit will alwaysread 0.
0 30:28 | Reserved. Must be written as zero; returns zero on read. R 0
TWSrc- 27:26 Used to indicate the number of bits used in the source field of the Trace Word, R Preset
Width thisis a configuration option of the core that cannot be modified by software.

00 - zero source field width

01 - two bit source field width

10 - four bit source field width

11 - reserved for future use

Thisfield can either be 00 or 01 for the 24K core.

REG 25:21 | Register select: Thisfield select the registers accessible through the R/W 0
TCBDATA register. Legal values are shown in Table 11.30.

282 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.32 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

WR

20

Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register isonly read.

RIW

0

19:17

Reserved. Must be written as zero; returns zero on read.

R

RM

16

Read on-chip trace memory.

When written to 1, the read address-pointer of the on-chip memory is set to
point to the oldest memory location written since the last reset of pointers.
Subsequent access to the TCBTW register (through the TCBDATA register),
will automatically increment the read pointer (TCBRDP register) after each
read. [Note: The read pointer does not auto-increment if the WR field isone]
When the write pointer is reached, this bit is automatically reset to 0, and the
TCBTW register will read all zeros.

Once set to 1, writing 1 again will have no effect. The bit isreset by setting the
TR bit or by reading the last Trace word in TCBTW.

Thisbit isreserved if on-chip memory is not implemented.

R/W1

TR

15

Trace memory reset.

When written to one, the address pointers for the on-chip trace memory are
reset to zero. Alsothe RM bitisreset to 0.

This bit is automatically de-asserted back to 0, when the reset is completed.
Thisbit isreserved if on-chip memory is not implemented.

R/W1

BF

14

Buffer Full indicator that the TCB usesto communicate to external softwarein
the situation that the on-chip trace memory is being deployed in the
trace-from and trace-to mode. (See Section 11.13 “TCB On-Chip Trace
Memory™)

This bit is cleared when writing 1 to the TR bit.

This bit isreserved if on-chip memory is not implemented.

™

13:12

Trace Mode. Thisfield determines how the trace memory is filled when using
the simple-break control in the PDtrace interface to start or stop trace.

™ Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved

In Trace-To mode, the on-chip trace memory isfilled, continuously wrapping
around and overwriting older Trace Words, as long as thereis trace data com-
ing from the core.

In Trace-From mode, the on-chip trace memory isfilled from the point that
PDO_lamTracing is asserted, and until the on-chip trace memory isfull.

In both cases, de-asserting the EN bit in this register will also stop fill to the
trace memory.

If aTCBTRIGKx trigger control register is used to start/stop tracing, then this
field should be set to Trace-To mode.

This bit isreserved if on-chip memory is not implemented.

RIW

TLSIF

11

When set, thisindicates to the TCB that information about L oad and Store
data cache miss, instruction cache miss, and function call are to be taken from
the PDtraceinterface and trace them out in the appropriate trace formats as the
three optional bits LSm, Im, and Fcr.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

283

EJTAG Debug Support in the 24K® Core

Table 11.32 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Read /
Name Bits Description Write Reset State
CR 10:8 Off-chip Clock Ratio. Writing thisfield, sets theratio of the core clock to the R/W 100
off-chip trace memory interface clock. The clock-ratio encoding is shown in
Table 11.33.

Remark: Asthe Probeinterface worksin double datarate (DDR) mode, a1:2
ratio indicates one data packet sent per core clock rising edge.
This bit isreserved if off-chip trace option is not implemented.

Cd 7 Calibrate off-chip trace interface. R/W 0
If set to one, the off-chip trace pinswill produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern is repli-
cated for each set of 4 pins. The pattern repeats from top to bottom until the
Cal bit is de-asserted.

Calibrations pattern
3 2 1 0
0|0]0]|O
111111
0|0]0]|O
j2}
s 0|1]0]|1
<
g |1|of1]o0
2w
g.g 1{0(0|O0
g
g§glo|1|0]o0
8o
z2F[0]O0|1]0
E o
2 0|0]0]|1
g
2 1112110
'_
1112101
11011
o111

Note: The clock source of the TCB and PIB must be running.
This bit isreserved if off-chip trace option is not implemented.

TWSrcva 6:3 These bits are used to indicate the value of the TW source field that will be R Preset
traced if TWSrcWidth indicates a source bit field width of 2 or 4 bits. Note
that if thefield is 2 bits, then only bits 4:3 of thisfield will be used in the TW.

CA 2 Cycle accurate trace. R/W 0
When set to 1, the trace will include stall information.

When set to 0, the trace will exclude stall information, and remove bit zero
from all transmitted TF's.

The stall information included/excluded is:

¢ TF6 formats with TCBcode 0001 and 0101.

¢ All TF1 formats.

284 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.32 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
ofC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins. R/W Preset
If set to O, trace info is sent to on-chip memory.
Thisbit isread only if asingle memory option exists (either off-chip or
on-chip only).
EN 0 Enable trace. RIW 0

Thisisthe master enable for trace to be generated from the TCB. This bit can
be set or cleared, either by writing this register or from a start/stop/about trig-
ger.

When set to 1, trace information is sampled on the PDO_* pins. Trace Words
are generated and sent to either on-chip memory or to the Trace Probe. The
target of the trace is selected by the OfC hit.

When set to 0, trace information on the PDO_* pinsisignored. A potential
TF6-stop (from a stop trigger) is generated as the last information, the TCB
pipe-lineis flushed, and trace output is stopped.

Table 11.33 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio
000 8:1 (Trace clock is eight times that of core clock)
001 4:1 (Trace clock isfour times that of core clock)
010 2:1 (Trace clock is double that of core clock)
011 1:1 (Trace clock is same as core clock)
100 1:2 (Trace clock is one half of core clock)
101 1:4 (Trace clock is one fourth of core clock)
110 1:6 (Trace clock is one sixth of core clock)
111 1:8 (Trace clock is one eighth of core clock)

11.9.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBRe field; see Table

11.30. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLBy bit is set. For read-only registers, TCBCONTROLB,,r iSadon’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 11.34. The width of
TCBDATA is 64 bits when on-chip trace words (TWSs) are accessed (TCBTW access).

Figure 11.26 TCBDATA Register Format
31(63) 0

Data

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 285

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

Table 11.34 TCBDATA Register Field Descriptions

Fields
Names Bits Description Read/Write Reset State
Data 31.0 Register fields or data as defined by the Only writableif 0
63.0 |TCBCONTROLBRgg field TCBCONTROLByr
isset

11.9.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signalsto the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger) can therefore manipulate the trace output by
writing to this register.

The TCBCONTROLC register iswritten by the EITAG TAP controller instruction, TCBCONTROLC (0x13).
The format of the TCBCONTROLC register is shown below, and the fields are described in Table 11.35.

Figure 11.27 TCBCONTROLC Register Format
31 28 27 23 22 21 15 14 13 12 9 8 5 4 2 1 0

Res Mode Res Res Res Res Res Res Res Res Res

Table 11.35 TCBCONTROLC Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State

Res 31:28 | Reserved for future use. Must be written as zero; returns zero on 0 0
read.

Mode 27:23 | When tracing isturned on, this signal specifies what information is R/W 0
to be traced by the core. It uses 5 bits, where each bit turns on atrac-
ing of a specific tracing mode.

Bit # Set Trace The Following
0 PC
1 Load address
2 Store address
3 Load data
4 Store data

The table shows what trace value is turned on when that bit valueis
al. If the corresponding bit is O, then the Trace Value shown in col-
umn two is not traced by the processor.

On the 24K core PC tracing is always enabled, regardless of the
value on bit 23.

Thisfield defines the value on the PDI_TraceMode signal.

Res 22:0 Reserved for future use. Must be written as zero; returns zero on 0 0
read.

286 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

11.9.5 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the field is described in Table 11.36.

31 30

Figure 11.28 TCBCONFIG Register Format
25 24 21 20 17 16 14 13 11 10 9 8

6 5

CF1

TRIG Sz CRMax CRMin | PW

PiN

onT

Of T REV

Table 11.36 TCBCONFIG Register Field Descriptions

Fields

Name

Bits

Description

Read /

Write

Reset State

CF1

31

Thishitisset if aTCBCONFIG1 register exists. In thisrevision,
TCBCONFIG1 does not exist and this bit always reads zero.

R

0

30:25

Reserved. Must be written as zero; returns zero on read.

R

0

TRIG

24:21

Number of triggers implemented. This also indicates the number of
TCBTRIGX registers that exist.

Preset
Legal valuesare0
-8

20:17

On-chip trace memory size. Thisfield holds the encoded size of the
on-chip trace memory.

The sizein bytesis given by 2(528) implying that the minimum
sizeis 256 bytes and the largest is 8Mb.

This bit isreserved if on-chip memory is not implemented.

Preset

CRMax

16:14

Off-chip Maximum Clock Ratio.

Thisfield indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encoding is
shownin Table 11.33.

This bit isreserved if off-chip trace option is not implemented.

Preset

CRMin

1311

Off-chip Minimum Clock Ratio.

Thisfield indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio encoding is
shownin Table 11.33.

This bit isreserved if off-chip trace option is not implemented.

Preset

10:9

Probe Width: Number of bits available on the off-chip trace inter-
face TR_DATA pins. The number of TR_DATA pinsis encoded, as
shown in the table.

PW Number of bits used on TR_DATA
00 4 bits

01 8 bits

10 16 hits

11 reserved

Thisfield is preset based on input signals to the TCB and the actual
capability of the TCB.
Thisbit isreserved if off-chip trace option is not implemented.

Preset

PiN

8.6

Pipe number.
Indicates the number of execution pipelines.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

287

EJTAG Debug Support in the 24K® Core

288

Table 11.36 TCBCONFIG Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State
onT 5 When set, this bit indicates that on-chip trace memory is present. R Preset
This bit is preset based on the selected option when the TCB is
implemented.
OfT 4 When set, this bit indicates that off-chip trace interface is present. R Preset

This bit is preset based on the selected option whenthe TCB is
implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

REV 3.0 Revision of TCB. An implementation that conforms to PDtrace ver- R 1
sion 4.x must has avalue of 1 for thisfield.

11.9.6 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to the
next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero.

Thisregister isreserved if on-chip trace memory is not implemented.
The format of the TCBTW register is shown below, and the field is described in Table 11.37.

Figure 11.29 TCBTW Register Format
63 0

Data

Table 11.37 TCBTW Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 63:0 Trace Word R/W 0

11.9.7 TCBRDP Register (Reg 5)

The TCBRDP register isthe address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBR), bit to 1, this pointer is reset to the current value of TCBSTP.

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 11.38. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

Figure 11.30 TCBRDP Register Format
31 n+1 n 0

Address

Table 11.38 TCBRDP Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

11.9.8 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written.

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBWRP register is shown below, and the fields are described in Table 11.39. The value of n
depends on the size of the on-chip trace memory. Asthe address pointsto a 64-bit TW, the lower three bits are always

zero.
Figure 11.31 TCBWRP Register Format
31 n+1 n 0
Address
Table 11.39 TCBWRP Register Field Descriptions
Fields
Read /

Names Bits Description Write Reset State

Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

11.9.9 TCBSTP Register (Reg 7)

The TCBSTP register isthe start pointer register. This register points to the on-chip trace memory address at which
the oldest TW islocated. This pointer is reset to zero when the TCBCONTROLB+R bit iswritten to 1. If a continuous

trace to on-chip memory wraps around the on-chip memory, TSBSTP will have the same value as TCBWRP.
Thisregister isreserved if on-chip trace memory is not implemented.
The format of the TCBSTP register is shown below, and the fields are described in Table 11.40. The value of n

depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 289

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

Figure 11.32 TCBSTP Register Format
31 n+1 n 0

Address

Table 11.40 TCBSTP Register Field Descriptions

Fields
Read /
Names Bits Description Write Reset State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

11.9.10 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x isasingle digit number
from0to 7 (TCBTRIGO is Reg 16). The actual number of trigger registersimplemented is defined in the
TCBCONFIGTR,g field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger isfired, and the action to be taken when the trigger
occurs. Please also read Section 11.11 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 11.41.

Figure 11.33 TCBTRIGx Register Format
31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro | PDTro 0 DM | CHTri | PDTri | Type| FO| TR

Table 11.41 TCBTRIGx Register Field Descriptions

Fields
Read /

Names Bits Description Write Reset State

TCBinfo 31:24 | Thisfieldisto beused in apossible TF6 trace format when thistrig- R/W 0
ger fires.

Trace 23 When set, generate TF6 trace information when this trigger fires. R/W 0
Use TCBinfo field for the TCBinfo of TF6 and use Type field for
the two M SB of the TCBtype of TF6. Thetwo LSB of TCBtype are
00.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by asimultaneous trigger. If so, the
read value will be 0. If the write value was 0, theread valueis
always 0. This special read valueisvalid until the TCBTRIGX regis-
ter iswritten.

0 22:16 | Reserved. Must be written as zero; returns zero on read. R

CHTro 15 When set, generate asingle cycle strobe on TC_ChipTrigOut when R/W
this trigger fires.

PDTro 14 When set, generate asingle cycle strobe on TC_ProbeTrigOut R/W 0
when thistrigger fires.

290 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.9 Trace Control Block (TCB) Registers (Hardware Control)

Table 11.41 TCBTRIGx Register Field Descriptions (Continued)

Fields

Names

Bits

Description

Read /
Write

Reset State

0

137

Reserved. Must be written as zero; returns zero on read.

R

DM

6

When set, this Trigger will fire when arising edge on the Debug
mode indication from the core is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread valueis always 0. This specia read valueisvalid until the
TCBTRIGX register iswritten.

R/W

CHTri

When set, this Trigger will fire when arising edge on
TC_ChipTrigln is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread valueis always 0. This specia read valueisvalid until the
TCBTRIGX register iswritten.

RIW

PDTri

When set, this Trigger will fire when arising edge on
TC_ProbeTrigln is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will changeto indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread valueis always 0. This specia read valueisvalid until the
TCBTRIGX register iswritten.

R/W

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

291

EJTAG Debug Support in the 24K® Core

Table 11.41 TCBTRIGx Register Field Descriptions (Continued)

Fields

Read /
Names Bits Description Write Reset State
Type 32 Trigger Type: The Typeindicates the action to take when thistrigger R/W 0

fires. The table below show the Type values and the Trigger action.

Type Trigger action

00 Trigger Start: Trigger start-point of trace.

01 Trigger End: Trigger end-point of trace.
10 Trigger About: Trigger center-point of trace.
11 Trigger Info: No action trigger, only for trace info.

The actual action isto set or clear the TCBCONTROLBEy bit. A
Start trigger will set TCBCONTROLBgy, aEnd trigger will clear
TCBCONTROLBEy. The About trigger will clear
TCBCONTROLBEy, half way through the trace memory, from the
trigger. The size determined by the TCBCONFIGg; field for
on-chip memory. Or from the TCBCONTROLAg,p field for
off-chip trace.

If Traceis set, then a TF6 format is added to the trace words. For
Start and Info triggersthisis done before any other TF'sin that same
cycle. For End and About triggers, the TF6 format is added after any
other TF'sin that same cycle.

If the TCBCONTROLB), field isimplemented it must be set to
Trace-To mode (00), for the Type field to control on-chip tracefill.
The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11. If
the write value was 11 the read value is always 11. This specia read
vaueisvalid until the TCBTRIGX register iswritten.

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is R/W 0
de-asserted. When de-asserted this trigger will fire each time one of
the trigger sources indicates trigger.

TR 0 Trigger happened. When set, this trigger fired since the TR bit was R/WO 0
last written O.

This bit is used to inspect whether the trigger fired since this bit was
last written zero.

When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but more
than oneis possible.

Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

11.9.11 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAPcontroller enters/isin Test-L ogic-Reset state.

292 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.10 Enabling MIPS Trace

2. EJ_TRST_Ninput is asserted low.
11.10 Enabling MIPS Trace

Asthere are several waysto enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

11.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 24K core, then these breakpoint can be used
astriggersto start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are
capable of only generating an internal trigger to the tracelogic. Thisis done by only setting the TE bit and not the BE
bit in the Breakpoint Control register. Please see Section 11.2.8.5 “Instruction Breakpoint Control n (IBCn)
Register” and Section 11.2.9.5 “Data Breakpoint Control n (DBCn) Register”, for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace
action when atrigger happens. When abreakpoint is enabled as atrigger (TE = 1), it can be selected to be either a
start or a stop trigger to the trace logic. Please see Section 6.2.32 “Tracel BPC Register (CPO Register 23, Select 4)”
for detail in how to define a start/stop trigger.

11.10.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bitsin the
control register are used instead of the input enable signals from the TCB. The TraceControl;g bit controls whether

hardware (viathe TCB), or software (viathe TraceControl register) controls tracing functionality.

Traceisturned on when the following expression eval uates true:
(

(TraceControlpg and TraceControly,) or
((not TraceControlgg) and TCBCONTROLAy,)
)
and
(MatchEnable or TriggerEnable)
)

where,

MatchEnable <«
(
TraceControlqg
and
(
TraceControlg or
(((TraceControlygrp xor EntryHigrp) and (not TraceControlpgrpy)) = 0)
)
and
(
(TraceControly and UserMode) or
(TraceControlg and SupervisorMode) or
(TraceControly and KernelMode) or
(TraceControly and ExceptionMode) or
(TraceControl, and DebugMode)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 293

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

294

or
(
(not TraceControlqg)
and
(TCBCONTROLA; or (TCBCONTROLAxgrp = EntryHigrp))
and
(
(TCBCONTROLA; and UserMode) or
(TCBCONTROLAg and SupervisorMode) or
(TCBCONTROLA; and KernelMode) or
(TCBCONTROLA; and ExceptionMode) or
(TCBCONTROLApy and DebugMode)
)
)
and where,

TriggerEnable <«
(

DBCigg and
DBSps[i] and
TraceBPCpg and
(TraceBPCpgponi] = 1)

)

or

(
IBCipg and
IBSgg[i] and
TraceBPCig and
(TraceBPCrgponi] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlg,, O
TCBCONTROLA,, isfirst asserted.

Once thisis asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signals from the TCB or the bitsin the TraceControl register. Thistracing is done over general program areas.
For example, al of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the Trigger Enable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG isimplemented, and hardware breakpoints can be set, then using this method
enablesfiner grain tracing control. It is possible to send atrigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace isto assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControls=0, i.e., hardware controlled tracing, assert
TCBCONTROLAG,,, TCBCONTROLA, and all the other signalsin the second part of expression MatchEnable. To
only trace when a particular process with aknown ASID is executing, assert TCBCONTROLA,, the correct
TCBCONTROLAgp Value, and all of TCBCONTROLA;, TCBCONTROLAy, TCBCONTROLAg, and
TCBCONTROLApy. (If it is known that the particular process is a user-level process, then it would be sufficient to
only assert TCBCONTROLA, for example). When using the EJTAG hardware triggers to turn trace on and off, it is
best if TCBCONTROLAG,, is asserted and all the other processor mode selection bitsin TCBCONTROLA are turned

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.10 Enabling MIPS Trace

off. Thiswould be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via
software with the TraceControl register in asimilar manner.

11.10.3 Turning Off PDtrace™ Trace

Traceisturned off when the following expression evaluates true:

(
(TraceControlpg and (not TraceControlg,))) or
((not TraceControlgg) and (not TCBCONTROLAy,))

or
(
(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable
)
where,

TriggerDisable «
(

DBCipg and
DBSps[i] and
TraceBPCpg and
(TraceBPCpgponi; = 0)

)

or

(
IBCiqg and
IBSgg[i] and
TraceBPCig and
(TraceBPCrgpon(i; = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlg, bit or the TCBCONTROLAG, signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective of the
TraceControl g bit (TCBCONTROLAG) and TraceControl o p (TCBCONTROLA,gp) Values. EJTAG hardware

breakpoints can be used to trigger trace off aswell. Note that if simultaneous triggers are generated, and even one of
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

11.10.4 TCB Trace Enabling

The TCB must be enabled in order to produce atrace on the probe or to on-chip memory, when trace information is
sent on the PDtrace™ interface. The main switch for thisisthe TCBCONTROLBgy bit. When set, the TCB will send

trace information to either on-chip trace memory or to the Trace Probe, controlled by the setting of the
TCBCONTROLB g bit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEgy bit. Please see Section
11.11 “TCB Trigger Logic” for details.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 295
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

11.10.5 Tracing a Reset Exception

Tracing areset exception is possible. However, the TraceControlrg bit isreset to O at core reset, so al the trace control

must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB are reset
based on an EJTAG reset. It isthus possible to set up the trace modes, etc., using the TAP controller, and then reset
the processor core.

11.11 TCB Trigger Logic

The TCB is optionally implemented with trigger unit. If thisis the case, then the TCBCONFIGtR, field is non-zero.
This section will explain some of the issues around triggersin the TCB.

11.11.1 Trigger Units Overview

TCB trigger logic features three main parts:

1. A common Trigger Source detection unit.
2. 1to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 11.34 show the functional overview of the trigger flow in the TCB.

296 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.11 TCB Trigger Logic

Figure 11.34 TCB Trigger Processing Overview

Trigger sources

YUY YUYy

Trigger Source Unit

Tr

=

gger strobes

y

Trigger control Unit 1 to 7 Trigger Control Unit 7
are optional, when trigger P
logic is implemented. Pis

,_v ~
Trigger Control Unit 1

Trigger Control Unit 0

Priority/
OR-function

Depending on the trigger action,
the Action strobes must pass
through a priority function or an
OR-gate

Priority/
OR-function

Trigger Action Unit

11.11.2 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigin).

2. Probetrigger input (TR_TRIGIN).

3. Debug Mode (DM) entry indication from the processor core.

Theinput triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into asingle cycle strobe
to the Trigger Control Units.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 297

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

298

11.11.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them hasits own Trigger Control Register (TCBTRIGX,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger event and they can fire one or more of the Trigger Actions. Thisis all defined in the Trig-
ger Control register TCBTRIGx (see Section 11.9.10 “TCBTRIGx Register (Reg 16-23)").

11.11.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probetrigger output (TR_TRIGOUT).

3. Traceinformation. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of the TCBCONTROLBgy hit.

The basic function of the trigger actionsis explained in Section 11.9.10 “TCBTRIGx Register (Reg 16-23)”. Please
also read the next Section 11.11.5 “Simultaneous Triggers’.

11.11.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ ed.

11.11.5.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence
over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

+ Trigger Start, End and About type triggers (TCBTRIGxyy,, field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEy, bit. The About trigger is delayed and will always change TCBCONTROLBgy because it
isthe oldest trigger when it de-asserts TCBCONTROLBgy. An About trigger will not start the countdown if an
even older About trigger is using the Trace Word counter.

e Triggerswhich produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxtR bit is set when the trigger fires. Thisis so even if atrigger action is sup-
pressed by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxgg bit is set), then the
suppressed trigger action will not happen until after TCBTRIGxg iSswritten O.

If aTrigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxtR bit is set, for
the TCBTRIGxac field will be O for suppressed TF6 trace information actions. The read value in the TCBTRIGxyype
field for suppressed Start/End/About triggerswill be 11. Thisindication of a suppressed action is sticky. If any of the

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.12 MIPS Trace Cycle-by-Cycle Behavior

two actions (Trace and Type) are ever suppressed for amulti-fire trigger (the TCBTRIGxgq bit is zero), then the read
valuesin Trace and/or Type are set to indicate any suppressed action.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBgy, bit is always executed, regardless of priority from
another Start trigger at the time of the TCBCONTROLBgy change. This means that if a simultaneous About trigger
action on the TCBCONTROLBg, bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then anew About trigger,
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11in
the TCBTRIGxyy, field. But, if the TCBTRIGx,ce bit is set, a TF6 trace information will still go in the trace.

11.11.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ ed together to produce the
final trigger. One or more expected trigger strobes oni.e. TC_ChipTrigOut can thus disappear. External logic should
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

11.12 MIPS Trace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

11.12.1 FIFO Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain afifo. This might seem like extra overhead, but there are good
reasons for this. The vast majority of the information compression happensin the PDtrace module. Any datainforma-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on
the same 32-bit data bus to the TCB on the internal PDtrace™ interface. When an instruction requires more than 32
bits of information to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock
cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock speed.
In this case thefifo is not needed. For off-chip trace through the Trace Probe, the fifo comesinto play, because only a

limited number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or
slower) from that of the 24K core. So for off-chip tracing, a specific TCB TW fifo is needed.

11.12.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 32-bit datainter-
faceis needed, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.
2. Prevent the overflow by back-stalling the core, until the fifo has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControl;g or the TCBCONTROLA bit, depending on the set-
ting of TraceControlg bit.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 299
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

300

Thefirst option is free of any cycle-by-cycle change whether trace isturned on or not. Thisis achieved at the cost of
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is
traced asif it was the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced fifo information islost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved
by back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace
information from anew instruction. This option can obviously change the real-time behavior of the core when tracing
isturned on.

If PC trace information is the only thing enabled (in TraceControl2y,opg 0f TCBCONTROLC)0pg, depending on the
setting of TraceControlys), and Trace of all branchesis turned off (via TraceControltg of TCBCONTROLAg, depend-
ing on the setting of TraceControltg), then the fifo is unlikely to overflow very often, if at al. Thisisof course very

dependent on the code executed, and the frequency of exception handler jumps, but with this setting there isvery little
information overhead.

11.12.3 Handling of FIFO Overflow in the TCB

The TCB also holds afifo, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data width
of the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1/4
of the core clock (the trace probe clock always runs at a double data rate multiple to the core-clock). See Section
11.12.3.1 “Probe Width and Clock-ratio Settings’ for adescription of probe width and clock-ratio options. The com-
bination between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from
256 bits per core-clock cycle down to only 1 bit per core-clock cycle. The high extremeis not likely to be supported
in any implementation, but the low one might be.

The datarate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce one full 64-bit TW per core-clock cycle. Thisistrue for any selection of trace modein
TraceControl2y;opg OFf TCBCONTROLCp0ope- The PDtrace module will guarantee the limited amount of data. If the
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. Similar to the PDtrace module FIFO, this can be handled in two ways:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). Thiswill in turn stall the
core pipeline.

Asapractical matter, the amount of datato the TCB can be minimized by only tracing PC information and excluding
any cycle accurate information. Thisisexplained in Section 11.12.2 “Handling of FIFO Overflow in the PDtrace
Module” and below in Section 11.12.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data
rate of 8-bits per core-clock cycleis usually sufficient. No guarantees can be given here, however, as heavy interrupt
activity can increase the number of unpredictable jumps considerably.

11.12.3.1 Probe Width and Clock-ratio Settings

The actual number of data pins (4, 8 or 16) is defined by the TCBCONFIGpy, field. Furthermore, the frequency of the

Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is adouble data rate clock.

This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock is
running at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock frequency. The
clock retio is set in the TCBCONTROLBR, field. The legal range for the clock ratio is defined in TCBCONFIG crpax

and TCBCONFIGcrwmin (both valuesinclusive). If TCBCONTROLBcg is Set to an unsupported value, the result is
UNPREDICABLE. The maximum possible value for TCBCONFIGcRrpax 1S 8:1 (TR_CLK isrunning 8 times faster

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

11.13 TCB On-Chip Trace Memory

than core-clock). The minimum possible value for TCBCONFIGcrpin iS 1:8 (TR_CLK isrunning at one eighth of the
core-clock). See Table 11.33 for a description of the encoding of the clock ratio fields.

11.12.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. This information is added to the trace, when the TCBCONTROLB, bit is set. The overhead
on the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB fifo overflowing.

11.13 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIG ot is set) the memory istypically of smaller size than if it
were external in atrace probe. The assumption isthat it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:
1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using the TCBCONTROLBy, field. If one or more trigger control registers

(TCBTRIGx) are implemented, and they are using Start, End or About triggers, then the trace mode in
TCBCONTROLBT) should be set to Trace-To mode.

11.13.1 On-Chip Trace Memory Size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actua sizeis
shown in the TCBCONFIGg; field.

11.13.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value which is
defined to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collectionis
stopped when the buffer isfull. The TCB then signals buffer full using TCBCONTROLBgg When external software

polling this register finds the TCBCONTROLBgE bit set, it can then read out the internal trace memory. Saving the
trace into the internal buffer will re-commence again only when the TCBCONTROLBRgg bit isreset and if the coreis
sending valid trace data (i.e., PDO_lamTracing not equal 0).

11.13.3 Trace-To Mode

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the old-
est information, until the processor is reaches an end of trace condition. End of trace is reached by |eaving the proces-
sor mode/ASID value which istraced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 301

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the 24K® Core

point, the on-chip trace buffer is then dumped out in a manner similar to that described above in Section
11.13.2 “Trace-From Mode".

302 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 12

24K® Processor Core Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is spe-
cific to a 24K processor core. The chapter is divided into the following sections:

e Section 12.1 “Understanding the Instruction Descriptions’

e Section 12.2 “24K® Opcode Map’

e Section 12.3 “Floating Point Unit Instruction Format Encodings’

e Section 12.4 “MIPS32® Instruction Set for the 24K® Core”

The 24K processor core also supports the MIPS16e ASE to the MIPS32 architecture. The MIPS16e ASE instruction

set isdescribed in Chapter 13, “MIPS16e™ A pplication-Specific Extension to the MIPS32® Instruction Set” on

page 349.

12.1 Understanding the Instruction Descriptions

Refer to Volume Il of the MIPS32 Architecture Reference Manual [2] for more information about the instruction

descriptions. There is a description of the instruction fields, definition of terms, and a description function notation
available in that document.

12.2 24K® Opcode Map

Table 12.1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

Operation or field codes marked with this symbol are reserved for future use, are valid encodings
for ahigher-order MIPS ISA level, or are part of an application specific extension not imple-
mented on this core. Executing such an instruction will cause a Reserved Instruction Exception.

(Alsoitalic field name.) Operation or field codes marked with this symbol denctes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

Operation or field codes marked with this symbol represent instructions which are only legal if
64-bit floating point operations are enabled. In other cases, executing such an instruction will
cause a Reserved Instruction Exception (non-coprocessor encodings or COprocessor instruction
encodings for a coprocessor to which accessis allowed) or a Coprocessor Unusable Exception
(coprocessor instruction encodings for a coprocessor to which accessis not allowed).

Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

303

24K® Processor Core Instructions

Table 12.2 MIPS32 Encoding of the Opcode Field

opcode | hits 28..26
0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0 | 000 |SPECIAL 6| REGIMM & J JAL BEQ BNE BLEZ BGTZ
1] 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
21010 | COPOd COP1 % COP2 % COP1X BEQL ¢ BNEL ¢ BLEZL ¢ | BGTZL ¢
3 (011 * * * ® SPECIAL2 JALX ® SPECIAL3
3 3
4 | 100 LB LH LWL LW LBU LHU LWR *
5| 101 SB SH SWL SW * ® SWR CACHE
6| 110 LL LWC1 LwC2 PREF * LDC1 LDC2 *
7| 111 SC SWC1 SWC2 * * SDC1 SDC2 *
Table 12.3 MIPS32 SPECIAL Opcode Encoding of Function Field
[function | bits 2.0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0/000| g1 MOVCI& | SRLS SRA SLLV * SRLV § SRAV
1| 001 IR? ALR? MOVZ MOVN | SYSCALL | BREAK * SYNC
2010 | MFHI MTHI MFLO MTLO * * * *
3| 011 MULT MULTU DIV DIVU * * * *
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5| 101 * * SLT SLTU * * ® *
6 | 110 TGE TGEU TLT TLTU TEQ * TNE *
7| 111 % * * * * * * %

1. Specific encodings of the rt, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, and EHB func-

tions.

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table 12.4 MIPS32 REGIMM Encoding of rt Field

rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL ¢ | BGEZL ¢ * * * *
1| 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2| 10 | BLTZAL | BGEZAL |BLTZALL ¢|BGEZALL 0| * * * *
3| 11 * * * * * * * SYNCI

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.2 24K® Opcode Map

Table 12.5 MIPS32 SPECIAL2 Encoding of Function Field

function | bits2..0
0 1 2 3 4 5 6 7

bits5..3 000 001 010 011 100 101 110 111
0| 000 MADD MADDU MUL * MSUB MSUBU * *
1 001 * * * * * * * *
2| 010 CorExtend

3| 011

4 | 100 CLz CLO * * * * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7| 111 * * * * * * * SDBBP

Table 12.6 MIPS32 Special3 Encoding of Function Field for Release 2 of the Architecture

function | hits2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 EXT * * ® INS * * *
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4| 100 | BSHFL & * * * % * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
71111 * * * RDHWR * * * *
Table 12.7 MIPS32 MOVCI Encoding of tf Bit
tf bit 16
0 1
MOVF MOVT
Table 12.8 MIPS32 SRL Encoding of Shift/Rotate
tf bit 21
0 1
SRL ROTR
Table 12.9 MIPS32 SRLV Encoding of Shift/Rotate
tf bit 6
0 1
SRLV ROTRV
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 305

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.10 MIPS32 BSHFLEncoding of sa Field?!

sa bits 8..6
0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0| 00 WSBH
1| 01
2| 10 SEB
3| 11 SEH

1. The sa field is sparsely decoded to identify the final instructions. Entriesin this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved I nstruction exception.

Table 12.11 MIPS32 COPO Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO * * * MTCO # * *
1] 01 * * RDPGPR | MEMCOL § * * WRPGPR *
2] 10 C0o
3| 11

1. Release 2 of the Architecture added the MFM CO function, which is further decoded as the DI and El instructions.

Table 12.12 MIPS32COPO Encoding of Function Field When rs=CO

function | bits2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0| 000 * TLBR TLBWI * * * TLBWR *
1] 001 TLBP * * * * * * *
2 010 * * * * * * * *
3| 011 ERET * * * * * * DERET

4 | 100 WAIT * * * * * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 111 * * * * * * * *

306

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Table 12.13 MIPS32 COPL1 Encoding of rs Field

12.2 24K® Opcode Map

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC1 * CFC1 MFHC1 MTC1 * CTC1 MTHC1
1| 01 BC1d * * * * * * *
2| 10 Sd D3d * * W3 Ld * *
3 11 * * * * * * * *
Table 12.14 MIPS32 COP1 Encoding of Function Field When rs=S
[function | bits 2.0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SOQRT ABS MOV NEG
1|00l |[ROUND.LV|TRUNCLV | CEILLV |FLOOR.LV| ROUND.W | TRUNCW CEIL.W FLOOR.W
2 (010 * MOVCF § MOvz MOVN * RECIPV RSQRT V *
3 (011 * * * * * * * *
4 | 100 * CVTD * * CVT.W CVTLV ® *
5 101 * * * * * * * *
6 | 110 * x * " " " " "
7 | 111 * * * * * * * *
Table 12.15 MIPS32 COP1 Encoding of Function Field When rs=D
[function | bhits2.0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1|001 |ROUND.LV|TRUNCLYV | CEILLV |FLOOR.LV| ROUND.W | TRUNCW CEIL.W FLOOR.W
2| 010 * MOVCF § MOVZ MOVN * RECIPV RSQRT V *
3| 011 * * * * * * * *
4 | 100 CVT.S * * * CVT.W CVTLV * *
5 101 * * * * * * * *
6 | 110 * * * * * # # #
7111 * * * " ¥ " " "

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

307

24K® Processor Core Instructions

Table 12.16 MIPS32 COP1 Encoding of Function Field When rs=W or L}

function bits2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
O OOO * * * * * * * *
1 001 * * * * * * * *
2 010 * * * * * * * *
3 oll * * * * * * * *
4 | 100 CVT.S CVTD * * * * * *
5 101 * * * * * * * *
6 110 * * * * * * * *
7 111 * * * * * * * *

1. Format type L islegal only if 64-bit floating point operations are enabled.

Table 12.17 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF

tf bit 16

0 1
MOVFEfmt | MOVT.fmt

Table 12.18 MIPS64 COP1X Encoding of Function Field!

function | bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0] 000 [LWXC1V | LDXC1V * * * LUXC1V * *
1001 | SWXCLV | SDXC1V * * * SUXC1V * PREFX V
2 010 * * * * * * * *
3 011 * * * * * * sk *
4| 100 | MADD.SV|MADD.D V * * * * ® *
51101 | MSUB.SV [MSUB.DV * * * * ® *
6 | 110 | NMADD.S|NMADD.D * * 24k * * *
\% \% *
7 | 111 NMSUB.SVINMSUB.D V| * * * * * *

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

Table 12.19 MIPS32 COP2 Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24, 000 001 010 011 100 101 110 111

0| 00 MFC2 * CFC2 MFHC2 MTC2 * CTC2 MTHC2

1] 01 BC26 * * * * * * *

2| 10 c2

3| 11

308 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.3 Floating Point Unit Instruction Format Encodings

12.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. Thisinformation is atabular pre-
sentation of the encodings described in tables Table 12.13 and Table 12.18 above.

Table 12.20 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of COP1 | (bits 2..0 of COP1X
opcode) opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.
16 10 0 0 S Single 32 Floating Point
17 11 1 1 D Double 64 Floating Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 W Word 32 Fixed Point
21 15 5 5 L Long 64 Fixed Point
22 16 6 6 PS Paired Single 2x 32 Floating Point
23 17 7 7 Reserved for future use by the architecture.
24.31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

12.4 MIPS32® Instruction Set for the 24K® Core

This section describes the M1PS32 instructions for the 24K cores. Table 12.21 lists the instructions in a phabetical
order. Instructions that have implementation dependent behavior are described afterwards. The descriptions for other
instructions exist in the architecture reference manual and are not duplicated here.

Table 12.21 24K™ Core Instruction Set

Instruction Description Function
ABS. fmt Floating Point Absolute Value Fd = abs(Fs)
fmt=sd
ADD Integer Add Rd = Rs + Rt
ADD. fmt Floating Point Add Fd = Fs + Ft
fmt=sd
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt = Rs +y Immed
ADDIUPC Unsigned Integer Add Immediate to PC (MIPS16 only) Rt = PC +, Immed
ADDU Unsigned Integer Add Rd = Rs +y Rt
AND Logical AND Rd = Rs & Rt
ANDI Logical AND Immediate Rt = Rs & (044 || Immed)
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 309

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
B Unconditional Branch PC += (int)offset
(Assembler idiom for: BEQ r0, r0, offset)
BAL Branch and Link GPR[31] = PC + 8
(Assembler idiom for: BGEZAL r0, offset) PC += (int)offset
BC1F Branch On Floating Point False if (ccl[i] == 0) then
PC += (int)offset
BC1FL Branch On Floating Point False Likely if (ccl[i] == 0)then
PC += (int)offset
else
Ignore Next Instruction
BC1T Branch On Floating Point True if(ccli] == 1) then
PC += (int)offset
BC1TL Branch On Floating Point True Likely if (ccl[i] == 1) then
PC += (int)offset
else
Ignore Next Instruction
BC2F Branch On CP2 False if (cc[i] == 0) then
PC += (int)offset
BC2FL Branch On CP2 False Likely if (ccli] == 0)then
PC += (int)offset
else
Ignore Next Instruction
BC2T Branch On CP2 True if(ccl[i] == 1) then
PC += (int)offset
BC2TL Branch On CP2 True Likely if (ccl[i] == 1) then
PC += (int)offset
else
Ignore Next Instruction
BEQ Branch On Equal if Rs == Rt
PC += (int)offset
BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction
BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset
BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !'Rs[31]
PC += (int)offset
BGEZALL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
Likely if !Rs[31]
PC += (int)offset
else
Ignore Next Instruction

310

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function

BGEZL Branch on Greater Than or Equal To Zero Likely if !Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset
BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset
else

Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset
BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else

Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]
PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset
BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset
else

Ignore Next Instruction

BREAK Breakpoint Break Exception
.cond. f i i .
C.cond. fmt Fl oail ng Point Compare odfi] = Fs compare_cond Ft
fmt=sd
CACHE Cache Operation See Below
CEIL.L.fmt Floating Point Ceiling to Long Fixed Point Fd = convert_and_round (Fs)
CEIL.W. fmt Floating Point Ceiling to Word Fixed Point Fd = convert_and_round (Fs)
CFC1 Move Control Word From Floating Point Rt = FP_Control[Fs]
CFC2 Move Control Word From CP2 Rt = CP2_Control[Fs]
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 311

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

312

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
CLO Count Leading Ones Rd = NumLeadingOnes (Rs)
CLZ Count Leading Zeroes Rd = NumLeadingZeroes (Rs)
COP2 Coprocessor 2 Operation Implementation dependent
CTC1 Move Control Word To Floating Point FP_Control[Fs] = Rt
CTC2 Move Control Word to CP2 CP2 Control[Fs] = Rt
CVT.D. fmt Floating Point Convert to Double Floating Point Fd = convert_and_round (Fs)
fmt = SW,L
CVT.D. fmt Floating Point Convert to Double Floating Point Fd = convert_and_round (Fs)
fmt = SW,L
CVT.L. fmt Floating Point Convert to Long Fixed Point Fd = convert_and_round (Fs)
fmt=SD
CVT.S.fmt Floating Point Convert to Single Floating Point Fd = convert_and_round (Fs)
fmt=W,D,L
CVT.W. fmt Floating Point Convert to Word Fixed Point Fd = convert_and_round(Fs)
fmt=SD
DERET Return from Debug Exception PC = DEPC
Exit Debug Mode
DI Atomically Disable Interrupts Rt = Status; Statusg = O
DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIV.fmt Floating Point Divide Fd = Fs/Ft
fmt=SD
DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
EHB Execution Hazard Barrier Stop instruction execution until execution
hazards are cleared
EI Atomically Enable Interrupts Rt = Status; Status;g = 1
ERET Return from Exception if SR[2]
PC = ErrorEPC
else
PC = EPC
SR[1] = 0
SR[2] = 0
LL = 0
EXT Extract Bit Field Rt = ExtractField(Rs, pos, size)

FLOOR.L. fmt

Floating Point Floor to Long Fixed Point
fmt=SD

Fd = convert_and_round(Fs)

FLOOR.W. fmt

Floating Point Floor to Word Fixed Point
fmt=SD

Fd = convert_and_round(Fs)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
INS Insert Bit Field Rt = InsertField(Rs, Rt, pos,
size)
J Unconditional Jump PC = PC[31:28] || offset<<2
JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2
JALR Jump and Link Register Rd = PC + 8
PC = Rs
JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution and
instruction hazards
JALRC Jump and Link Register Compact - do not execute Rd = PC + 2
instruction in jump delay sot(MIPS16 only) PC = Rs
JR Jump Register PC = Rs
JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and
instruction hazards
JRC Jump Register Compact - do not execute instruction in PC = Rs
jump delay slot (MIPS16 only)
LB Load Byte Rt = (byte)Mem[base+offset]
LBU Unsigned Load Byte Rt = (ubyte)Mem[base+offset]
LDC1 Load Doubleword to Floating Point Ft = memory[base+offset]
LDC2 Load Doubleword to CP2 Ft = memory[base+offset]
LDXC1 Load Doubleword Indexed to Floating Point Fd = memory[base+index]
LH Load Halfword Rt = (half)Mem[base+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[base+offset]
LL Load Linked Word Rt = Mem[base+offset]
LL =1
LUI Load Upper Immediate Rt = immediate << 16
LUXC1 Load Doubleword Indexed Unaligned to Floating Point Fd =
memory [(base+index)psize-1..3
w Load Word Rt = Mem[Rs+offset]
LwC1l Load Word to Floating Point Ft = memory[base+offset]
LWC2 Load Word to CP2 Ft = memory[base+offset]
LWPC Load Word, PC relative Rt = Mem[PC+offset]
LWXC1 Load Word Indexed to Floating Point Fd = memory[base+index]
LWL Load Word Left See Architecture Reference Manual
LWR Load Word Right See Architecture Reference Manual
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

313

24K® Processor Core Instructions

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
MADD. fmt Floating Point Multiply Add Fd = Fs * Ft + Fr
fmt=S,D
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPR[0, Rd, sel]
MFC1 Move From FPR Rt = Fs31. ¢
MFC2 Move From CP2 Register Rt = Fs31. .9
MFHC1 Move From High Half of FPR Rt = Fsg3..32
MFHC2 Move From High Half of CP2 Register Rt = Fsg3. .32
MFHI Move From HI Rd = HI
MFLO Move From LO Rd = LO
MOV . fmt Floating Point Move Fd = Fs
MOVF GPR Conditional Move on Floating Point False if (cc[i] == 0) then Rd = Rs
MOVF . fmt FPR Conditional Move on Floating Point False if (ccl[i] == 0) then Fd = Fs
MOVN GPR Conditional Move on Not Zero if Rt # 0 then
Rd = Rs
MOVN. fmt FPR Conditional Move on Not Zero if Rt # 0 then
Fd = Fs
MOVT GPR Conditional Move on Floating Point True if (ccl[i] == 1) then R4 = Rs
MOVT. fmt FPR Conditional Move on Floating Point True if (ccl[i] == 1) then Fd = Fs
MOVZ GPR Conditional Move on Zero if Rt = 0 then
Rd = Rs
MOVZ . fmt FPR Conditional Move on Zero if (Rt == 0) then Fd = Fs
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUB. fmt Floating Point Multiply Subtract Fd = Fs * Ft - Fr
fmt=SD
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPR[0, n, Sel] = Rt
MTC1 Move To FPR Fs = Rt
MTC2 Moveto CP2 register Fs = Rt
MTHC1 Move To High Half of FPR Fd = Rt || Fs3;
MTHC2 Move to High Half of CP2 register Fd = Rt || Fs31
MTHI Move To HI HI = Rs
MTLO Move To LO LO = Rs
314 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)s3; g
MUL. fmt Floating Point Multiply Fd = Fs * Ft
fmt=SD
MULT Integer Multiply HI | LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NEG. fmt Floating Point Negate Fd = neg(Fs)
fmt=SD
NMADD. fmt Floating Point Negative Multiply Add Fd = neg(Fs * Ft + Fr)
fmt=SD
NMSUB. fmt Floating Point Negative Multiply Subtract Fd = neg(Fs * Ft - Fr)
fmt=SD
NOP No Operation
(Assembler idiom for: SLL. r0, r0, r0)
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logica OR Rd = Rs | Rt
ORI Logical OR Immediate Rt = Rs | Immed
PREF Prefetch Load Specified Lineinto Cache
PREFX Prefetch Indexed Load Specified Line into Cache
RDHWR Read Hardware Register Allows unprivileged access to registers
enabled by HWREna register
RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlpgg, RA]
RECIP.fmt Floating Point Reciprocal Approximation o
fmt = SD Fd = recip(Fs)
RESTORE (F)erﬁ;)re registers and deallocate stack frame (MIPS16 See Architecture Reference Manual
ROTR Rotate Word Right Rd = Rtga1..0 || Rt31. ca
ROTRV Rotate Word Right Variable Rd = Rtge1. .o || Rt31. . Rrs
ROUND. L. fmt Floating Point Round to Long Fixed Point Fd = convert_and_round(Fs)
fmt=SD
ROUND.W. fmt Floating Point Round to Word Fixed Point Fd = convert_and_round (Fs)
fmt=SD
RSQRT. fmt Floating Point Reciprocal Square Root Approximation Fd = rsqrt(Fs)
fmt=SD
SAVE Save registers and allocate stack frame (MIPS16 only) See Architecture Reference Manual
SB Store Byte (byte)Mem[base+offset] = Rt

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

315

24K® Processor Core Instructions

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
sc Store Conditional Word if LL = 1
mem[base+offset] = Rt
Rt = LL
SDBBP Software Debug Break Point Trap to SW Debug Handler
SDC1 Store Doubleword from Floating Point memory [base+offset] = Ft
SDC2 Store Doubleword from CP2 memory [base+offset] = Ft
SDXC1 Store Word Indexed from Floating Point memory [base+index] = Fs
SEB Sign Extend Byte Rd = (byte)Rs
SEH Sign Extend Half Rd = (half)Rs
SH Store Half (half)Mem[base+offset] = Rt
SLL Shift Left Logical Rd = Rt << sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
SLT Set on Less Than if (int)Rs < (int)Rt
Rd =1
else
Rd = 0
SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt =1
else
Rt = 0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt =1
else
Rt = 0
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd =1
else
Rd = 0
SORT. fmt Floating Point Square Root Fd = sqgrt(Fs)
fmt=SD
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation NOP
SUB Integer Subtract Rt = (int)Rs - (int)Rd
SUB. fmt Floating Point Subtract Fd = Fs - Ft
fmt=SD
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

316

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
SUXC1 Store Doubleword Indexed Unaligned from Floating memory [(base+index)psize-1..3]
Point = Fs
sw Store Word Mem[base+offset] = Rt
swcl Store Word From Floating Point Mem[base+offset] = Fs
SWC2 Store Word From CP2 Register Mem[base+offset] = Fs
SWL Store Word Left See Architecture Reference Manual
SWR Store Word Right See Architecture Reference Manual
SWXC1 Store Word Indexed to Floating Point memory [base+index] = Fs
SYNC Synchronize See Below
SYNCI Synchronize Caches to Make I nstruction Writes Effec- For D-cache writeback and I-cache
tive invalidate on specified address
SYSCALL System Call SystemCallException
TEQ Trap if Equal if Rs == Rt
TrapException
TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException
TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException
TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLBWI Write Indexed TLB Entry See Below
TLBWR Write Random TLB Entry See Below
TLBP Probe TLB for Matching Entry See Architecture Reference Manual
TLBR Read Index for TLB Entry See Below
TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException
TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException
TNE Trap if Not Equal if Rs != Rt
TrapException

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

317

24K® Processor Core Instructions

Table 12.21 24K™ Core Instruction Set (Continued)

Instruction Description Function
TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException

TRUNC.L. fmt

Floating Point Truncate to Long Fixed Point

Fd = convert_and_round(Fs)

TRUNC.W. fmt

Floating Point Truncate to Word Fixed Point

Fd = convert_and_round(Fs)

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlpgg, RA] = Rt

WSBH Word Swap Bytes Within HalfWords Rd = Rty3. 16 || Rtz1. .22 || Rt o
|| Rtis. g

XOR Exclusive OR Rd = Rs ~ Rt

XORI Exclusive OR Immediate Rt = Rs ~ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend haf (MIPS16 only) Rt = (uhalf) Rs

Table 12.22 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description

ADDQ.PH rd,rs,rt Pair Q15 Pair Q15 GPR VolP Element-wise addition of two vectors of Q15

ADDQ_S.PH rd,rsrt SoftM fractional values, with optional saturation.

ADDQ_SW rd,rsrt Q31 Q31 GPR Audio | Addtwo Q31 fractional valueswith saturation.

ADDU.QB rd,rs,rt Quad Quad GPR Video Element-wise addition of vectors of four

ADDU_S.QB rd,rs,rt Unsigned Unsigned unsigned byte values. Results may be option-
Byte Byte ally saturated to 255.

SUBQ.PH rd,rsrt Pair Q15 Pair Q15 GPR VolP Element-wise subtraction of two vectors of

SUBQ_S.PH rd,rsrt Q15 fractional values, with optional satura-

tion.
SUBQ_SW rd,rsrt Q31 Q31 GPR Audio Subtraction with Q31 fractional values, with
saturation.

SUBU.QB rd,rs,rt Quad Quad GPR Video Element-wise subtraction of unsigned byte

SUBU_S.QB rd,rsrt Unsigned Unsigned values, with optional unsigned saturation.
Byte Byte

ADDSC rd,rs,rt Signed Signed GPR & Audio Add two signed words and set the carry bit in
Word Word DSPControl the DSPControl register.

ADDWC rd,rs,rt Signed Signed GPR Audio Add two signed words with the carry bit from
Word Word the DSPControl register.

318 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.22 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class (Continued)

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description

MODSUB rd,rs,rt Signed Signed GPR Misc Modulo addressing support: update a byte
Word Word index into acircular buffer by subtracting a
specified decrement (in bytes) from the index,
resetting the index to a specified value if the
subtraction results in underflow.

RADDU.W.QB rd,rs Quad Unsigned GPR Misc Reduce (add together) the 4 unsigned byte val-
Unsigned Word uesinrs, zero-extending the sum to 32 bits
Byte before writing to the destination register. For
example, if al 4 input values are 0x80 (deci-
mal 128), then theresult in rd is 0x200 (deci-
mal 512).

ABSQ _S.PH rd,rt Pair Q15 Pair Q15 GPR Misc Find the absolute value of each of two Q15
fractional halfword elements in the source reg-
ister, saturating values of -1.0 to the maximum
positive Q15 fractional value.

ABSQ_SW rd,rt Q31 Q31 GPR Misc Find the absolute value of the Q31 fractional
element in the source register, saturating the
value -1.0 to the maximum positive Q31 frac-
tional value.

PRECRQ.QB.PH rd,rs,rt 2Pair Q15 | QuadByte | GPR Misc Reduce the precision of four Q15 fractional
input values by truncation to create four Q7
fractional output values. The two Q15 values
from register rs are written to the two
left-most byte results, allowing an
endian-agnostic implementation.

PRECR_SRA.PH.W Two Inte- Pair Integer | GPR Misc Reduce the precision of two integer word val-
rt,rs,sa ger Words Halfword uesto create apair of integer halfword values.
PRECR_SRA R.PH.W Each word value isfirst shifted right arithmeti-
rt,rs,sa cally by sa hit positions, and optionally
rounded up by adding 1 at the most-significant
discard hit position. The 16 least-significant
bits of each word are then written to the corre-
sponding halfword elements of destination
register rt.

PRECRQ.PH.W rd,rs,rt 2Q31 Pair half- GPR Misc Reduce the precision of two Q31 fractional
PRECRQ_RS.PH.W word input values by truncation to create two Q15
rd,rs,rt fractional output values. The Q15 value
obtained from register rs creates the left-most
result, allowing an endian-agnostic implemen-
tation. Results may be optionally rounded up
and saturated before being written to the desti-
nation.

PRECRQU_S.QB.PH 2Pair Q15 | Quad GPR Misc Reduce the precision of four Q15 fractional
rd,rs,rt Unsigned values by saturating and truncating to create
Byte four unsigned byte values.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 319

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.22 List of instructions in the MIPS32® DSP ASE in the Arithmetic sub-class (Continued)

PRECEU.PH.QBLA rd,rt
PRECEU.PH.QBRA rd,rt

Input Output Writes

Instruction Data Data GPR/ac/

Mnemonics Type Type DSPControl App Description
PRECEQ.W.PHL rd,rt Q15 Q31 GPR Misc Expand the precision of aQ15 fractional value
PRECEQ.W.PHR rd,rt to create a Q31 fractional value by adding 16

least-significant bitsto the input value.
PRECEQU.PH.QBL rd,rt | Unsigned Q15 GPR Video Expand the precision of two unsigned byte
PRECEQU.PH.QBRrd,rt | Byte values by prepending asign bit and adding
PRECEQU.PH.QBLA seven least-significant bits to each to create
rd,rt two Q15 fractional values.
PRECEQU.PH.QBRA
rd,rt
PRECEU.PH.QBL rd,rt Unsigned Unsigned GPR Video Expand the precision of two unsigned byte
PRECEU.PH.QBR rd,rt Byte halfword values by adding eight least-significant bits to

each to create two unsigned halfword values.

Table 12.23 List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class

SHRA R.PHrd, rt, sa
SHRAV_R.PH rd, rt, rs

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
SHLL.QB rd, rt, sa Quad Quad GPR Misc Element-wise | eft shift of eight signed bytes.
SHLLV.QB rd, rt, rs Unsigned Unsigned Zeros are inserted into the bits emptied by the
Byte Byte shift. The shift amount is specified by the three

least-significant bits of saor rs.

SHLL.PH rd, rt, sa Pair Signed | PairSigned | GPR Misc Element-wise | eft shift of two signed half-

SHLLV.PH rd, rt, rs halfword halfword words, with optional saturation on overflow.

SHLL_S.PHrd, rt, sa Zeros are inserted into the bits emptied by the

SHLLV_SPHrd, rt, rs shift. The shift amount is specified by the four
least-significant bits of saor rs.

SHLL_SWrd, rt, sa Signed Signed GPR Misc L eft shift of a signed word, with saturation on

SHLLV_SWrd, rt, rs Word Word overflow. Zeros are inserted into the bits emp-
tied by the shift. The shift amount is specified
by the five least-significant bits of saor rs.
Usethe MIPS32 instructions SLL or SLLV for
non-saturating shift operations.

SHRL.QB rd, rt, sa Quad Quad GPR Video Element-wise logical right shift of four byte

SHRLV.QB rd, rt, rs Unsigned Unsigned values. Zeros are inserted into the bits emptied

Byte Byte by the shift. The shift amount is specified by

the three least-significant bits of saor rs.

SHRA.PH rd, rt, sa PairSigned | PairSigned | GPR Misc Element-wise arithmetic (sign preserving)

SHRAV.PH rd, rt, rs halfword halfword right shift of two halfword values. Optionally,

rounding may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the four least-signifi-
cant bits of rs or by the argument sa.

320

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.23 List of instructions in the MIPS32® DSP ASE in the GPR-Based Shift sub-class (Continued)

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
SHRA_RW rd, 11, sa Signed Signed GPR Video Arithmetic (sign preserving) right shift of a
SHRAV_RW rd, rt, rs Word Word word value. Optionally, rounding may be per-

formed, adding 1 at the most-significant dis-
card bit position. The shift amount is specified
by the five least-significant bits of rs or the
argument sa.

Table 12.24 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class

rd,rs,rt
MULEQ_SW.PHR
rd,rs,rt

Input Output Writes

Instruction Data Data GPR/ac/

Mnemonics Type Type DSPControl App Description
MULEU_SPH.QBL Pair Pair GPR Still Element-wise multiplication of two unsigned
rd,rs,rt Unsigned Unsigned Image byte values from register rs with two unsigned
MULEU_S.PH.QBR Byte, Pair Halfword halfword values from register rt. Each 24-bit
rd,rs,rt Unsigned product is truncated to 16 bits, with saturation

Halfword, if the product exceeds OxFFFF, and written to
the corresponding element in the destination
register.

MULQ _RS.PH rd,rs,rt Pair Q15 Pair Q15 GPR Misc Element-wise multiplication of two Q15 frac-
tional valuesto create two Q15 fractional
results, with rounding and saturation. After
multiplication, each 32-bit product is rounded
up by adding 0x00008000, then truncated to
create a Q15 fractional value that is written to
the destination register. If both multiplicands
are-1.0, theresult is saturated to the maximum
positive Q15 fractional value.

To stay compliant with the base architecture,
thisinstruction leaves the base HI-LO pair
UNPREDICTABLE &fter the operation. The
other DSP ASE accumulators acl-ac3 are
untouched.

MULEQ_SW.PHL Pair Q15 Q31 GPR Vol P Multiplication of two Q15 fractional values,

shifting the product left by 1 bit to create a
Q31 fractional result. If both multiplicands are
-1.0theresult is saturated to the maximum
positive Q31 value.

To stay compliant with the base architecture,
thisinstruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP ASE accumulators ac1-ac3 must
be untouched.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

321

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.24 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description

DPAU.H.QBL Pair Bytes | Halfword Acc Image Dot-product accumulation. Two pairs of corre-
DPAU.H.QBR sponding unsigned byte elements from source
registersrt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then added
to the accumul ator.

DPSU.H.QBL Pair Bytes | Halfword Acc Image Dot-product subtraction. Two pairs of corre-
DPSU.H.QBR sponding unsigned byte elements from source
registersrt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then sub-
tracted from the accumul ator.

DPAQ_SW.PH ac,rs,rt Pair Q15 Q32.31 ac VolP/ Dot-product accumulation. Two pairs of corre-
SoftM sponding Q15 fractional values from source
registersrt and rs are separately multiplied
and left-shifted 1 bit to create two Q31 frac-
tional products. For each product, if both mul-
tiplicands are equal to -1.0 the product is
clamped to the maximum positive Q31 frac-
tional value.

The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and accumulated into the specified accu-
mul ator.

Thisinstruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPSQ_S.W.PH acrsrt Pair Q15 Q32.31 ac VolP/ Dot-product subtraction. Two pairs of corre-
SoftM sponding Q15 fractional values from source
registersrt and rs are separately multiplied
and |eft-shifted 1 bit to create two Q31 frac-
tional products. For each product, if both mul-
tiplicands are equal to -1.0 the product is
clamped to the maximum positive Q31 frac-
tional value.

The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and subtracted from the specified accu-
mulator.

Thisinstruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

322 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.24 List of instructions in the MIPS32® DSP ASE in the Multiply sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data

Type

Writes
GPR/ac/
DSPControl

App

Description

MULSAQ_SW.PH
ac,rs,rt

Pair Q15

Q3231

ac

SoftM

Complex multiplication step. Performs ele-
ment-wise fractional multiplication of the two
Q15 fractional values from registersrt and rs,
subtracting one product from the other to cre-
ate a Q31 fractional result that is added to
accumulator ac. Theintermediate productsare
saturated to the maximum positive Q31 frac-
tiona value if both multiplicands are equal to
-1.0.

DPAQ _SA.L.W ac,rsrt

Q31

Q63

Audio

Fractional multiplication of two Q31 frac-
tional valuesto produce a Q63 fractional prod-
uct. If both multiplicands are -1.0 the product
is saturated to the maximum positive Q63 frac-
tional value. The product is then added to
accumulator ac. If the addition resultsin over-
flow or underflow, the accumulator is saturated
to the maximum positive or minimum negative
value.

DPSQ_SA.L.W ac,rsrt

Q31

Q63

Audio

Fractional multiplication of two Q31 frac-
tional valuesto produce a Q63 fractional prod-
uct. If both multiplicands are -1.0 the product
is saturated to the maximum positive Q63 frac-
tional value. The product is then subtracted
from accumulator ac. If the addition resultsin
overflow or underflow, the accumulator is sat-
urated to the maximum positive or minimum
negative value.

MAQ_SW.PHL ac,rsrt
MAQ_SW.PHR ac,rs,rt

Q15

Q3231

SoftM

Fractional multiply-accumulate. The product
of two Q15 fractional valuesis sign extended
to the width of the accumulator and added to
accumulator ac. The intermediate product is
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

MAQ_SA.W.PHL ac,rst
MAQ_SA.W.PHR ac,rsrt

Q15

Q31

speech

Fractional multiply-accumulate with satura-
tion after accumulation. The product of two
Q15 fractional valuesis sign extended to the
width of the accumulator and added to accu-
mulator ac. The intermediate product is satu-
rated to the maximum positive Q31 fractional
valueif both multiplicands are equal to -1.0.
If the accumulation results in overflow or
underflow, the accumulator value is saturated
to the maximum positive or minimum negative
Q31 fractional value.

MADD, MADDU,
MSUB, MSUBU, MULT,
MULTU

Word

Double-
Word

Misc

Allows these instructions to target accumula-
torsacl, ac2, and ac3 (in addition to the origi-
nal acO destination).

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

323

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.25 List of instructions in the MIPS32® DSP ASE in the Bit/ Manipulation sub-class

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
BITREV rd,rt Unsigned Unsigned GPR Audio/ | Reversethe order of the 16 |east-significant
Word Word FFT bits of register rt, writing the result to register

rd. The 16 most-significant bits are set to zero.

INSV rt,rs Unsigned Unsigned GPR Misc Like the Release 2 INSinstruction, except that

Word Word the 5 bits for pos and size values are obtained

from the DSPControl register. size =
scount[14:10], and pos = pos[20:16].

REPL.QB rd,imm Byte Quad Byte | GPR Video/ | Replicateasigned byte valueinto thefour byte

REPLV.QB rd,rt Misc elements of register rd. The byte valueisgiven
by the 8 least-significant bits of the specified
10-bit immediate constant or by the 8
|east-significant bits of register rt.

REPL.PH rd,imm Signed PairSigned | GPR Misc Replicate asigned halfword valueinto the two

REPLV.PH rd,rt halfword halfword halfword elements of register rd. The halfword
valueisgiven by the 16 least-significant bits of
register rt, or by the value of the 10-bit imme-
diate constant, sign-extended to 16 bhits.

Table 12.26 List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
CMPU.EQ.QB rs,rt Quad Quad DSPControl Video Element-wise unsigned comparison of the four
CMPU.LT.QB rsrt Unsigned Unsigned unsigned byte elements of rs and rt, recording
CMPU.LE.QB rs,rt Byte Byte the boolean comparison results to the four
right-most bitsin the ccond field of the
DSPControl register.
CMPGU.EQ.QB rd,rs,rt Quad Quad GPR Video Element-wise unsigned comparison of the four
CMPGU.LT.QB rd,rs,rt Unsigned Unsigned right-most unsigned byte elements of rs and rt,
CMPGU.LE.QB rd,rs,rt Byte Byte recording the boolean comparison results to
the four least-significant bits of register rd.
CMPEQ.PH rsrt Pair Signed | Pair Signed | DSPControl Misc Element-wise signed comparison of the two
CMPLT.PH rs,rt halfword halfword halfword elements of rs and rt, recording the
CMPLE.PH rs,rt boolean comparison results to the two
right-most bits in the ccond field of the
DSPControl register.
324 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.26 List of instructions in the MIPS32® DSP ASE in the Compare-Pick sub-class (Continued)

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
PICK.QB rd,rsrt Quad Quad GPR Video Element-wise selection of unsigned bytes
Unsigned Unsigned from the four bytes of registersrs and rt into
Byte Byte the corresponding elements of register rd,
based on the value of the four right-most bits
of the ccond field in the DSPControl register.
If the corresponding ccond bit is 1, the byte
valueis copied from register rs, otherwiseitis
copied fromrt.
PICK.PH rd,rsrt Pair Signed | PairSigned | GPR Misc Element-wise selection of signed halfwords
halfword halfword from the two halfwordsin registersrs and rt
into the corresponding elements of register rd,
based on the value of the two right-most bits of
the ccond field in the DSPControl register. If
the corresponding ccond bit is 1, the halfword
valueis copied from register rs, otherwiseitis
copied fromrt.
PACKRL.PH rd,rs,rt Pair Signed | PairSigned | GPR Misc Pack two halfwords taken from registersrs
Hafwords | Halfword and rt into destination register rd.

Table 12.27 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access

sub-class
Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
EXTR.W rt,ac,shift Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
EXTR_R.W rt,ac,shift least-significant bits of 64-bit accumulator ac.
EXTR_RS.W rt,ac,shift The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value ranges from 0 to 31.
The optional rounding step adds 1 at the
most-significant bit position discarded by the
shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step resultsin overflow.
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 325

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.27 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class (Continued)

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description

EXTR_S.H rt,ac,shift Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
|east-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.

The shift argument value ranges from 0 to 31.
The saturation clamps the extracted value to
the maximum positive or minimum negative
Q15 value if the shifted accumulator value
cannot be represented accurately as a Q15 for-
mat value.

EXTRV_SH rtacrs Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.

The shift argument ranges from Oto 31 and is
given by the five least-significant bits of regis-
ter rs. The saturation clamps the extracted
value to the maximum positive or minimum
negative Q15 value if the shifted accumulator
value cannot be represented accurately as a
Q15 format value.

EXTRV.W rt,ac,rs Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
EXTRV_RW rt,ac,rs least-significant bits of 64-bit accumulator ac.
EXTRV_RSW rt,ac,rs The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.

The shift argument value is provided by the
five least-significant bits of rs and rangesfrom
0to 31. The optional rounding step adds 1 at
the most-significant bit position discarded by
the shift. The optional saturation clamps the
extracted value to the maximum positive Q31
valueif the rounding step results in overflow.

326 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

12.4 MIPS32® Instruction Set for the 24K® Core

Table 12.27 List of instructions in the MIPS32® DSP ASE in the Accumulator and DSPControl Access
sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data

Type

Writes
GPR/ac/
DSPControl

App

Description

EXTPrt,ac,size
EXTPV rt,acrs
EXTPDP rt,ac,size
EXTPDPV rt,ac,rs

Unsigned
DWord

Unsigned
Word

GPR/
DSPControl

Audio/
Video

Extract a set of size+1 contiguous bits from
accumulator ac, right-justifying and
sign-extending the result to 32 hits before
writing the result to register rt.

The position of the left-most bit to extract is
given by the value of the posfield in the
DSPControl register (see Appendix C,
“Endian-Agnostic Reference to Register
Elements’ on page 427 for details). The num-
ber of bits (Iess one) to extract is provided
either by the sizeimmediate operand or by the
five least-significant bits of rs.

The EXTPDP and EXTPDPV instructions

a so decrement the posfield by size+1 to facil-
itate sequential bit field extraction operations.

SHILO ac,shift
SHILOV ac,rs

Unsigned
Dword

Unsigned
Dword

Misc

Shift accumulator ac left or right by the speci-
fied number of bits, writing the shifted value
back to the accumulator. The signed shift argu-
ment is specified either by theimmediate oper-
and shift or by the six least-significant bits of
register rs. A negative shift argument resultsin
aright shift of up to 32 bits, and a positive
shift argument resultsin aleft shift of up to 31
bits.

MTHLIPTs, ac

Unsigned
Word

Unsigned
Word

ac/
DSPControl

Audio/
Video

Copy the LO register of the specified accumu-
lator to the HI register, copy rs to LO, and
increment the pos field in DSPcontrol by 32.

MFHI/MFLO/MTHI/MT
LO

Unsigned
Word

Unsigned
Word

GPR/ac

Misc

Copy an unsigned word to or from the speci-
fied accumulator HI or LO register to the spec-
ified GPR.

WRDSP rt,mask

Unsigned
Word

Unsigned
Word

DSPControl

Misc

Overwrite specific fields in the DSPControl
register using the corresponding bits from the
specified GPR. Bits in the mask argument cor-
respond to specific fieldsin DSPControl; a
value of 1 causes the corresponding
DSPControl field to be overwritten using the
corresponding bitsin rt, otherwise thefield is
unchanged.

RDDSP rt,mask

Unsigned
Word

Unsigned
Word

GPR

Misc

Copy the values of specific fieldsin the
DSPControl register to the specified GPR.
Bits in the mask argument correspond to spe-
cificfieldsin DSPControl; avalue of 1 causes
the corresponding DSPControl field to be
copied to the corresponding bitsin rt, other-
wisethe bitsin rt are unchanged.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

327

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

24K® Processor Core Instructions

Table 12.28 List of instructions in the MIPS32™ DSP ASE in the Indexed-Load sub-class

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
LBUX rd,index(base) - Unsigned GPR Misc Index byte load from address base+(index).
byte Loads the byte in the low-order bits of the des-
tination register and zero-extends the resullt.
LHX rd,index(base) - Signed GPR Misc Index halfword load from address
halfword base+(index). Loads the halfword in the
low-order bits of the register and sign-extends
the resuilt.
LWX rd, index(base) - Signed GPR Misc Indexed word load from address base+(index).
Word

Table 12.29 List of instructions in the MIPS32® DSP ASE in the Branch sub-class

Input Output Writes
Instruction Data Data GPR/ac/
Mnemonics Type Type DSPControl App Description
BPOSGE32 offset - - - Audio/ | Branchif the posvalueis greater than or equal
Video to integer 32.
328 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Format: CACHE op, offset (base) M1PS32

Purpose: Perform Cache Operation
To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective addressis used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 12.1 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address
: The effective addressistranslated by the MM U to aphysical address. The physical
Address Physica address is then used to address the cache
Index N/A The effective address is used to index the cache.

Assuming that the total cache sizein bytesis CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)
IndexBit <« Log2(CS / A)
WayBit ¢ IndexBit + Ceiling(Log2 (A))

Way <« Addr&/\layBitfl..IndexBit
Index ¢« AddrijgexBit-1..0ffsetBit

Figure 12.1 Usage of Address Fields to Select Index and Way

’._ WayBit;._ IndexBit ’._ OffsetBit .
W

Unused ay Index byteindex

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions should not be triggered by an Index Load Tag or Index Store

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 329

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

Tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AdEL) occursiif the effective address references a portion of the
kernel address space which would normally result in such an exception.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 12.2 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache CopO0 Registers Used
2#00 | Primary Instruction ITagLo, |IDatal o, |DataHi, ErrCitl

2#01 D Primary Data DTagLo, DDatal o, ErrCtl

2#10 T Tertiary - Not supported

2#11 S Secondary L23TaglL o, L23Datal o, L23DataHi

Some of the operations use coprocessor0 registers as either sources or destinations. Each of the caches has a separate
set of Tag and Dataregisters. The last column in Table 12.4 lists which registers are used by operationsto each cache.
In the description of the operations, these may be explicitly listed or referred to in general, such as xTagLo, which
would refer to the TaglL o register corresponding to that cache.

Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag and Index Store Data operations,
the specific word (primary D) or double-word (primary |, secondary) that is addressed is loaded into / read from the
DDatalo (primary D), L23Datal.o and L23DataHi (secondary), or IDatalLo and IDataHi (primary) registers. All
other cache instructions are line-based and the word and byte indexes will not affect their operation.

Table 12.3 Encoding of Bits [20:18] of the CACHE Instruction, Err CtI[WST,SPR] Cleared

Code

Effective
Address
Operand
Caches Name Type Operation Implemented?

2#000

| Index Invalidate Index Set the state of the cache line at the specified Yes
index to invalid.

This encoding may be used by software to
invalidate the entire instruction cache by step-
ping through all valid indices.

D,ST Index Writeback Index If the state of the cache line at the specified Yes
Invalidate index isvalid and dirty, write the line back to
the memory address specified by the cachetag.
After that operation is completed, set the state
of the cache lineto invalid. If thelineisvalid
but not dirty, set the state of the line to invalid.

This encoding may be used by software to
invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
powerup.

330

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

CACHE

Table 12.3 Encoding of Bits [20:18] of the CACHE Instruction, Err CtI[WST,SPR] Cleared (Continued)

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Implemented?

2#001

Index Load Tag

Index

» Read the tag for the cache line at the speci-
fied index into the TagLoO Coprocessor 0
register.

* Read the data corresponding to the dword
index into the DatalL.oO and DataHiO regis-
ters.

 Precode bits and data array parity bits are
also read into the ErrCtl register.

Yes

2#001

Index Load Tag

Index

» Read the tag for the cache line at the speci-
fied index into the TagLoO Coprocessor 0
register.

* Read the data corresponding to the word
index into the Datalol register.

» Dataarray parity bits are also read into the
ErrCitl register.

Yes

2#001

Index Load Tag

Index

» Read the tag for the cache line at the speci-
fied index into the TagLo2 Coprocessor 0
register.

» Read the data corresponding to the dword
index into the L23Datal.o and L23DataHi
registers.

Yes

2#010

All

Index Store Tag

Index

Write the tag for the cache line at the specified
index from the associated TagLoN
Coprocessor 0 register.

By default, the tag parity value will be
automatically calculated. For test purposes, the
parity/ECC bitsfrom the TagLoN register will
be used if ErrCtlpg is set.

This encoding may be used by software to ini-
tidlize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo register associated
with the cache be initialized first.

Yes

24011

I,D,T

Reserved

Unspecified

Executed as a no-op

No

2#011

Index Store Data

Index

Write the L23DataHi and L23Datal o
Coprocessor 0 register contents at the way and
dword index specified.

The ECC hits are always generated by the
hardware (if present)

Yes

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

331

Perform Cache Operation CACHE

Table 12.3 Encoding of Bits [20:18] of the CACHE Instruction, Err CtI[WST,SPR] Cleared (Continued)

Effective
Address
Operand
Code Caches Name Type Operation Implemented?

2#100 All Hit Invalidate Address If the cache line contains the specified address, Yes
set the state of the cache line to invalid.
This encoding may be used by software to
invalidate arange of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

2#101 | Fill Address Fill the cache from the specified address. Yes

The cachelineisrefetched even if it isalready
in the cache.

D,ST Hit WriteBack Address If the cache line contains the specified address Yes
Invalidate anditisvalid and dirty, write the contents back
to memory. After that operation is completed,
set the state of the cache line to invalid. If the
lineisvalid but not dirty, set the state of theline
toinvalid.

This encoding may be used by software to
invalidate arange of addresses from the data
cache by stepping through the address range
by the line size of the cache.

2#110 D,ST Hit WriteBack Address If the cache line contains the specified address Yes
anditisvalid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state.

2#111 All Fetch and Lock Address If the cache does not contain the specified Yes
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already containsthe
specified address, set the state to locked. The
way selected on fill from memory is the least
recently used.

Thelock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or viaan Index
Store Tag operation with the lock bit reset in
the xTagLo register.

Itisillegal to lock all ways at a given cache
index. If al ways are locked, subsequent
referencesto that index will displace one of the
locked lines.

332 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

CACHE

Table 0-1 Encoding of Bits [20:18] of the CACHE Instruction, Err CtI{WST] Set. Err Ctl[SPR] Cleared

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Implemented?

2#001

All

Index Load WS

Index

Read the WS RAM at the specified index into
the xTagLo Coprocessor O register.

Yes

2#010

Index Store WS

Index

Update the WS RAM at the specified index
from the ITagLo Coprocessor O register.

Yes

2#010

Index Store WS

Index

Update the WS RAM at the specified index
from the DTagLo Coprocessor O register.

If ErrCtlpg is set, the dirty parity valuesin the
DTagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#010

Index Store WS

Index

Update the WS RAM at the specified index
from the L23TagLo Coprocessor O register.

If ErrCtlpg is set, the dirty parity valuesin the
L23TagLo register will be written to the WS
RAM. Otherwise, the parity will be calculated
for the write data.

Yes

2#011

Index Store Data

Index

Write the IDataHi and | Datal.o Coprocessor 0
register contents at the way and dword index
specified.

If ErrCtlpgisset, ErrCtlp, isused for the parity

value. Otherwise, the parity valueis calculated
for the write data.

If ErrCtlpco is set, ErrCtlpg isused for the
precode values. Otherwise, the precode values
will be calculated based on the write data.

Yes

2#011

Index Store Data

Index

Write the DDatalL.o Coprocessor O register
contents at the way and word index specified.

If ErrCtlpg isset, ErrCtlpp isused for the parity
value. Otherwise, the parity valueis calculated
for the write data.

Yes

2#011

Index Store ECC

Index

Write the DDatal.o Coprocessor O register
contents to the ECC bits at the way and dword
index specified.

Yes

All Cth-
ers

All

Other codes should not be used while
ErrCtl\ysy is Set.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

333

Perform Cache Operation CACHE

Table 12.4 Encoding of Bits [20:18] of the CACHE Instruction, Err CtI[SPR] Set, Err CtI[WST] Cleared

Effective
Address
Operand
Code Caches Name Type Operation Implemented?
2#001 | Index Load Tag Index Read the SPRAM tag at the specified index Yes
into the I TagLo Coprocessor O register. Also
read the instruction data and precode
information corresponding to the byte index
into the |DataHi,|Datal o, and ErrCtl registers
2#001 D Index Load Tag Index Read the SPRAM tag at the specified index Yes
into the DTagLo Coprocessor O register.
2#010 I,D Index Store Tag Index Update the SPRAM tag at the specified index Yes
from the xTagLo Coprocessor O register.
2#011 | Index Store Data Index Writethe IDatalo and | DataHi Coprocessor O Yes
register contentsinto the SPRAM at the dword
index specified.
2#011 D Index Store Data Index Write the DDatal.o Coprocessor O register Yes
contents into the SPRAM at the word index
specified.
All Oth- I,.D Other codes should not be used while
ers ErrCtlgpg is set.
All ST Secondary and Tertiary operations should not
be performed while ErrCtlgpg is set.

Restrictions:
The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr <« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation(vAddr, DataReadReference)
CacheOp (op, VvAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

334 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Load Linked Word LL

31 26 25 21 20 16 15 0
LL
110000 base rt offset
6 5 5 16
Format: L1LL rt, offset (base) M1PS32

Purpose: Load Linked Word
To load aword from memory for an atomic read-modify-write

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
seguence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
seguence without attempting a write.
Restrictions:

The addressed |ocation must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 |east-significant bits of the effective address is hon-
zero, an Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

Exceptions:

TLB R€fill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

Thereisno Load Linked Word Unsigned operation corresponding to L oad Word Unsigned.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 335

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

336

31 26 25 21 20 16 15 0
PREF .
110011 base hint offset
6 5 5 16
Format: PREF hint, offset (base) M1PS32

Purpose: Prefetch
To move data between memory and cache.

Description: prefetch_memory (GPR[base] + offset)

PREF adds the 16-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREF is an advisory instruction that may change the performance of the program. However, for all hint values except
for PrepareForStore, and al effective addresses, it neither changes the architecturally visible state nor doesit alter the
meaning of the program.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It is implementation-dependent whether a Bus Error or Cache Error exception is reported, when such an error is
detected as a by-product of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed coherency
attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by aload or store to the effective address.

Any of the following conditions causes the core to treat a PREF instruction as a NOP.
* Avreserved hint valueis used
* Theaddress has atrandlation error

» The address maps to an uncacheable page

In all other cases, except when hint equals 25, execution of the PREF instruction initiates an external bus read trans-
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data to be
returned.

Table 12.1 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asif for aload.

1 store Use: Prefetched datais expected to be stored or modified.
Action: Fetch data asif for astore.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

Table 12.1 Values of hint Field for PREF Instruction

2-3 Reserved Reserved - treated asa NOP.

4 load_streamed Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.

Action: Fetch data asif for astore. LRU replacement information isignored
and datais placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 islocked,
the prefetch will be dropped.

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused
extensively; it “streams” through cache.

Action: Fetch data asif for astore. LRU replacement information isignored
and datais placed in way 0 of the cache, so it will be displaced by other
streamed prefetches and not displace retained prefetches. If way 0 islocked,
the prefetch will be dropped.

6 load_retained Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for aload. LRU replacement information is used, but
way 0 of the cacheis specifically excluded. This prevents streamed
prefetches from displacing the line.

7 store_retained Use: Prefetched datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for astore. LRU replacement information is used, but
way 0 of the cacheis specifically excluded. This prevents streamed
prefetches from displacing the line.

8-24 Reserved Reserved - treated as a NOP.
25 writeback_invalidate (also Use: Datais no longer expected to be used.
known as “nudge”) Action: Schedule awriteback of any dirty data. The cache lineis marked as
invalid upon completion of the writeback. If cachelineis clean or locked, no
action is taken.
26-29 Reserved Reserved - treated asa NOP.
30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead

involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the reference
missesin the cache, aline is selected for replacement, any valid and dirty
victim is written back to memory, the entire lineisfilled with zero data, and
the state of the line is marked as valid and dirty.

Programming Note: Because the cache lineis filled with zero dataonly on a
cache miss, software must not assume that this action, in and of itself, can be
used as a fast bzero-type function.

31 Reserved Reserved - treated as a NOP.

Restrictions:

None

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

337

Prefetch PREF

338

Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a by-product of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Store Conditional Word SC

31 26 25 21 20 16 15 0
SC
111000 base rt offset
6 5 5 16
Format: sSC rt, offset (base) M1PS32

Purpose: Store Conditional Word

To store aword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] « GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding L L instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:
e The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

e A, indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a0, indicating failure, is written into GPR rt.
If any of the following events occurs between the execution of LL and SC, the SC fails:

* AnERET instruction is executed.
If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

* A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

» Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCis UNPREDICTABLE:
» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The addressis the same if the virtual address, physical address, and cache-coherence
algorithm areidentical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 339

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Store Conditional Word

340

if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

endif
GPR[rt] « 03! || LLbit
Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1, (T0) # load counter
ADDI T2, Tl, 1 # increment
scC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again

NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

|ation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 Stvpe SYNC
000000 00 0000 0000 0000 O yp 001111
15 5 6
Format: SYNC (stype = 0 implied) M1PS32

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SY NC instruction:

* Completion Barriers

* Ordering Barriers

Smple Description for Completion Barrier:

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

L oads are completed when the destination register is written. Stores are completed when the stored valueis
visible to every other processor in the system.

Detailed Description for Completion Barrier:

Every synchronizable specified memory instruction (loads or stores or both) that occursin the instruction
stream before the SY NC instruction must be already globally performed before any synchronizable specified
memory instruction that occurs after the SYNC are allowed to be performed, with respect to any other pro-
cessor or coherent 1/0O module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both |oads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less compl ete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior , then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with alighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, acompletion barrier is required on entry to and exit from Debug
Mode to guarantee that memory affects are handled correctly.

Completion Barrier Types:

All completion barrier types will flush any pending writes and potentially generate an external SYNC request. An

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 341

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

342

SYNC

external SYNC request will be sent if Config7gg = 1 and SI_SyncTxEn = 1. Thefirst term is a software enable for

externalizing SY NCs and the second term is a hardware enable, indicating that the next level device (L2 or system)
supports SYNC transactions. The core will wait for al pending reads to complete as well asthe SYNC response if it
was externalized.

* 0x2 - Implementation specific stype. Intervention SY NC. When coherence is enabled, this SYNC will gen-
erate a CoherentSync request. The CoherenceManager will respond to the SYNC when the interventions for
all older coherent requests have been completed. If coherence is not enabled, will default to stype 0xO.

* 0x3- Implementation specific style. Memory SYNC. When coherenceis enabled, this SYNC will also gen-
erate a CoherentSync request. When interventions for all older coherent requests have completed, the sync
will be sent to memory interface unit. All pending transactions will be sent out. If the next level device (L2
or system) supports legacy SYNC transactions, asindicated by SyncTxEn = 1, an external SY NC request
will also be generated. The CM will send aresponse to the core when all prior requests have completed and
aSYNC responseis received (if it was externalized).

* 0xO0- If coherenceis enabled, thiswill be mapped to either atype 0x2 or 0x3 based on the value of the SY N-
CCTL bit inthe CM Control GCR. If coherenceis not enabled, alegacy SYNC request will be generated.
Thiswill bypass the intervention pipeline in the CM and go directly to the memory unit. If SyncTxEn = 1,
an external SYNC request will be generated.

Smple Description for Ordering Barrier:

e The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

e Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

» Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SY NC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» |f any memory instruction before the SY NC instruction in program order, generates amemory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

* Thebarrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

SYNC

Because the core processes |oads and storesin order, ordering barriers are much lighter weight. The core handles al

ordering barriersidentically. The LSU will complete any pending evictions and the BIU will stop merging on all

WBB entries. No external request will be generated and the core will not wait for pending transactions to complete.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as |oads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

Table 12.1 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype

field..
Table 12.1 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field
Younger
Olderinstructions instructions Olderinstructions
which must reach | which must reach which must be
the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores
or
SYNC(0)
0x2 SYNC(2) Load,Stores Loads, Stores Loads, Stores
Intervention Sync
0x3 SYNC(3) Load,Stores Loads, Stores Loads, Stores
Memory Sync
0x4 SYNC WMB Stores Stores
or
SYNC(4)
0x10 SYNC_MB Loads, Stores Loads, Stores
or
SYNC(16)
0x11| SYNC_ACQUIRE Loads Loads, Stores
or
SYNC(17)
0x12| SYNC_RELEASE Loads, Stores Stores
or
SYNC(18)
0x13 SYNC_RMB Loads Loads
or
SYNC(19)
0x1,0x5-0xF,0x14 - RESERVED
Ox1F

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

343

344

SYNC

Restrictions:

None

Operation:

SyncOperation (stype)

Exceptions:
None

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the hard-
ware does not perform the barrier behavior expected by the software, the system may fail.

[orocessorprocessor

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO CcO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The EntryHi, EntryLoO, EntryLol, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
Note that the value written to the EntryHi, EntryLo0O, and EntryLo1l registers may be different from that originally
written to the TLB viathese registersin that:

» Thevaluereturned in the G bit in both the EntryLoO and EntryLo1l registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLo0 and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢« Index
if 1 > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskyssx ¢ TLB[1]lyask
EntryHi <«
TLB[ilypny ||
0° || TLBIilagrp

EntryLol « 02 ||

TLB[ilppy1 ||

TLB[ileq || TLBI[ilpy || TLBlilyy || TLBIilg
EntryLo0 < 02 ||

TLB[i]PFNO ||

TLB[ilgo || TLBI[ilpy || TLBI[ilyy || TLBIilg

Exceptions:

Coprocessor Unusable

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 345

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO CcO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry
To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register iswritten from the contents of the EntryHi, EntryLoO, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. See Section 4.4.1 “Hits, Misses, and Multiple Matches’
for the casesin which a24K corewill signal aMachine Check. The information written to the TLB entry may be dif-
ferent from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

* Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-
ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢ Index

TLB[1ilyask ¢ PageMasky,qx
TLB[ilypys ¢ EntryHiypys
TLB[i]agrp ¢ EntryHigrp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB[1i]ppy1 ¢ EntryLolppy
TLB[i]s; ¢ EntryLolg
TLB[i]lp; ¢ EntryLolp
TLB[il]y; ¢ EntryLoly
TLB[i]ppyo ¢ EntryLoOppy
TLB[i]lcp ¢ EntryLoO¢
TLB([i]py ¢« EntryLoOp
TLB[i]yo ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

346 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Write Random TLB Entry

TLBWR

31 26 25 24 6 0
COPO Co 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6

Format: TLBWR

Purpose: Write Random TLB Entry
To write a TLB entry indexed by the Random register.

Description:

MIPS32

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR. In
such an instance, a Machine Check Exception is signaled. See Section 4.4.1 “Hits, Misses, and Multiple Matches”
for the casesin which a 24K core will signal a Machine Check. The information written to the TLB entry may be dif-

ferent from that in the EntryHi, EntryLoO, and EntryLol registers, in that:

* Thesingle G hitinthe TLB entry is set from the logical AND of the G bitsin the EntryLo0 and EntryLol regis-

ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i < Random

TLB[i]yask ¢ PageMasky,qx
TLB[i]lypyy ¢ EntryHiypys
TLB[ilagrp ¢« EntryHigrp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB([i]ppy1 ¢ EntryLolppy
TLB[i]c; ¢« EntryLolg
TLB([i]lp; ¢ EntryLolp
TLB[i]y; ¢ EntryLoly
TLB[ilppyo & EntryLoOppy
TLB[i]lcp ¢ EntryLoOc
TLB([i]pgy ¢« EntryLoOp
TLB([i]yg ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

347

Enter Standby Mode WAIT

348

31 26 25 24 6 5 0
COPO CO . WAIT
010000 1 Implementation-Dependent Code 100000
6 1 19 6
Format: waAIT MIPS32

Purpose: Enter Standby Mode
Wit for Event

Description:

The WAIT instruction forces the core into low power mode. The pipelineis stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset) is signaled, or a
non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the core does not use the code field in this
instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction). Note that it
isalso possible for an interrupt to be taken on the WAIT instruction itself (before the WAIT instruction has halted the
pipeline). Software should be aware of this possibility and take appropriate actions to avoid returning to the WAIT if
there is additional work to be done.This is the case for ‘bottom half’ interrupt processing that exists in Linux and
other OSes. To facilitate this, the core implements a feature where the pipeline will be unfrozen by an interrupt even
if Status;z=0. The idle loop can thus disable interrupts prior to executing the WAIT and know that processing will

resume after the WAIT when an interrupt is signaled. On a processor that does not support this feature, this sequence
would prevent the core from waking up without a reset or NMI, so it should be verified that the feature is present.
This core indicates that the feature is present by avalue of 1 for Config7yy,

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Chapter 13

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e ASE asimplemented in the 24K core. Refer to Volume [V-a of the MIPS32®
Architecture Reference Manual [3] for ageneral description of the MIPS16e A SE and descriptions of the instructions.

This chapter covers the following topics:

e Section 13.1 “Instruction Bit Encoding”

e Section 13.2 “Instruction Listing”

13.1 Instruction Bit Encoding

Table 13.2 through Table 13.9 describe the encoding used for the MIPS16e ASE. Table 13.1 describes the meaning
of the symbols used in the tables.

Table 13.1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

*

Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction cause a Reserved Instruction Exception.

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

Operation or field codes marked with this symbol represent avalid encoding for a higher-order
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify M1PS Technologies, Inc.
when one of these encodingsis used. If no instruction is encoded with this value, executing such an
instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implementation
of thisencoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 | SA. Software should avoid using these operation or field codes.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

349

MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

Table 13.2 MIPS16e Encoding of the Opcode Field

opcode | hits13..11
0 1 2 3 4 5 6 7
bits 15..14 000 001 010 011 100 101 110 111
0| 00 | ADDIUSP! | ADDIUPC? B JAL(X) 6 BEQZ BNEZ SHIFT & B
1] 01| RRI-AS | aApDIUSS SLTI SLTIU 188 LI CMPI B
2| 10 LB LH LWSP* LW LBU LHU LWPC? B
3| 11 SB SH SWSPP Sw RRR S RR& EXTEND & B

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
3. The ADDIUS opcode is used by the ADDIU rx, immediate instruction

4. The LWSP opcodeis used by the LW rx, offset(sp) instruction

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

Table 13.3 MIPS16e JAL(X) Encoding of the x Field

X bit 26

0 1
JAL JALX

Table 13.4 MIPS16e SHIFT Encoding of the f Field

f bits1..0
0 1 2 3
00 01 10 11
SLL B SRL SRA

Table 13.5 MIPS16e RRI-A Encoding of the f Field
f bit 4

0 1

ADDIUY p

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

350 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11
Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

13.1 Instruction Bit Encoding

Table 13.6 MIPS16e I8 Encoding of the funct Field

funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ BTNEZ | sSwRASP! | ADJSP? SVRSS | MOV32R3 * MOVR32*

1. The SWRASP function is used by the SW ra, offset(sp) instruction

2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV 32R function is used by the MOVE r32, rz instruction

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 13.7 MIPS16e RRR Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
B ADDU B SUBU

Table 13.8 MIPS16e RR Encoding of the Funct Field

funct bits 2..0
0 1 2 3 4 5 6 7
bits4..3 000 001 010 011 100 101 110 111
0| 00 [JAL)R(C)6| SDBBP SLT SLTU SLLV BREAK SRLV SRAV
1| 01 B * CMP NEG AND OR XOR NOT
2| 10 MFHI CNVT 8 MFLO B B * B B
3| 11 MULT MULTU DIV DIVU B B B B

Table 13.9 MIPS16e I8 Encoding of the s Field when funct=SVRS

S bit 7

0 1
RESTORE SAVE

Table 13.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JR rx JRra JALR * JRC rx JRCra JALRC *
MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 351

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

Table 13.11 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ZEH B * SEB SEH B *
13.2 Instruction Listing
Table 13.12 through 13.19 list the MIPS16e instruction set.
Table 13.12 MIPS16e Load and Store Instructions
Extensible
Mnemonic Instruction Instruction
LB Load Byte Yes
LBU Load Byte Unsigned Yes
LH Load Halfword Yes
LHU Load Halfword Unsigned Yes
LW Load Word Yes
SB Store Byte Yes
SH Store Halfword Yes
S Store Word Yes
Table 13.13 MIPS16e Save and Restore Instructions
Extensible
Mnemonic Instruction Instruction
RESTORE Restore Registers and Deallocate Stack Frame Yes
SAVE Save Registers and Setup Stack Frame Yes
Table 13.14 MIPS16e ALU Immediate Instructions
Extensible
Mnemonic Instruction Instruction
ADDIU Add Immediate Unsigned Yes
CMPI Compare Immediate Yes
LI Load Immediate Yes
SLTI Set on Less Than Immediate Yes
SLTIU Set on Less Than Immediate Unsigned Yes

352

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

13.2 Instruction Listing

Table 13.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Extensible

Mnemonic Instruction Instruction
ADDU Add Unsigned No
AND AND No
CMP Compare No
MOVE Move No
NEG Negate No
NOT Not No
OR OR No
SEB Sign-Extend Byte No
SEH Sign-Extend Halfword No
SLT Set on Less Than No
SLTU Set on Less Than Unsigned No
SUBU Subtract Unsigned No
XOR Exclusive OR No
ZEB Zero-Extend Byte No
ZEH Zero-Extend Halfword No

Table 13.16 MIPS16e Special Instructions

Extensible

Mnemonic Instruction Instruction
BREAK Breakpoint No
SDBBP Software Debug Breakpoint No
EXTEND Extend No

Table 13.17 MIPS16e Multiply and Divide Instructions

Extensible

Mnemonic Instruction Instruction
DIV Divide No
DIVU Divide Unsigned No
MFHI Move From HI No
MFLO Move From LO No
MULT Multiply No
MULTU Multiply Unsigned No

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

353

MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

354

Table 13.18 MIPS16e Jump and Branch Instructions

Extensible

Mnemonic Instruction Instruction
B Branch Unconditional Yes
BEQZ Branch on Equal to Zero Yes
BNEZ Branch on Not Equal to Zero Yes
BTEQZ Branch on T Equal to Zero Yes
BTNEZ Branch on T Not Equal to Zero Yes
JAL Jump and Link No
JALR Jump and Link Register No
JALRC Jump and Link Register Compact No
JALX Jump and Link Exchange No
JR Jump Register No
JRC Jump Register Compact No

Table 13.19 MIPS16e Shift Instructions

Extensible

Mnemonic Instruction Instruction
SRA Shift Right Arithmetic Yes
SRAV Shift Right Arithmetic Variable No
SLL Shift Left Logical Yes
SLLV Shift Left Logical Variable No
SRL Shift Right Logical Yes
SRLV Shift Right Logical Variable No

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Appendix A

References

This appendix lists other documents available from MI1PS Technologies, Inc. that are referenced el sawherein this
document. These documents may be included in the $SMIPS_HOME/SMIPS_CORE/doc areaof atypical 24K soft

or hard core release, or in some cases may be available on the MIPS web site, http://www.mips.com.

1.

10.

11.

MIPS32® Architecture For Programmers, Volume |: Introduction to the MIPS32® Architecture

MIPS document: MD0082

MIPS32® Architecture For Programmers, Volume 11: The MIPS32® Instruction Set
MIPS document: MD0082

MIPS32® Architecture For Programmers, Volume IV-a: The M1PS16e™ A pplication-Specific Extension to the

MIPS32® Architecture
MIPS document: MD00074

MIPS32® Architecture For Programmers, Volume IV-e: The MIPS® DSP Application-Specific Extension to the

MIPS32® Architecture
MIPS document: MD00374

MIPS32® 24K® and 24KE™ Processor Core Family Integrator’'s Guide
MIPS document: MD00344

MIPS32® 24K® and 24KE™ Processor Core Family Implementor’s Guide
MIPS document: MD00347

Programming the MIPS32® 24K® Processor Core Family
MIPS document: MD00355

CoreExtend® Instruction Integrator's Guide for MIPS32® Cores
MIPS document: MD00348

PDtrace™ Interface and Trace Control Block Specification
MIPS document: MD00439

Open Core Protocol Specification
Available from the OCP International Partnership at http://www.ocpip.org

EJTAG Specification
MIPS document: MD00047

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

355

http://www.ocpip.org/
http://www.mips.com/publications/index.html

Appendix B

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document sinceitslast
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture

document.

Revision

Date

Description

0.90

July 17, 2003

Initial version.

0.91

July 31, 2003

Updates based on early feedback

0.92

August 8, 2003

Preliminary external release

0.93

August 22, 2003

Added note on Cache Error handling to EBase description
Define writeability/reset state of ErrCtlpcg bit

Added MTHI/LO to MDU op latency, fixed MDU repest rate
table

Removed DMTC1 and DMFCL references from FPU chapter
Updated PREF description to include special handling of
streamed and retained types

0.94

September 15, 2003

formatting changes to appendix, table of contents, list of figures,
and list of tables

minor clarification to Configy, description.
Changed Debugy; checkp and Debug, g sp to reflect imprecise
exceptions that the core can take.

0.95

September 30, 2003

Added Config7r and Config7gg fields

0.96

November 4, 2003

Misc. cleanup

0.97

December 3, 2003

Fix text to reflect 41/2D as only EJTAG breakpoint option
changed description of Config7 fields

Added WS=1 table to CACHE description

update trademarks

01.00

December 10, 2003

Updated EJTAG chapter - describe imprecise breakpoint han-
dling, add 64b data compare for FP load/store

01.01

December 19, 2003

Updated COPO registers chapter - improved description for Errctl
and TagLo. ALso, made minor updates to the CACHE instruc-
tion description accordingly.

1.02

December 23, 2003

Updated Table 2.7 Execution Hazards to reflect the actual
instruction spacing

1.03

January 27, 2004

Fixed config2 description - L2 cache is supported
Add Config7.FPR bit indicating FPU clock ratio
Changed EB_SBIlock to SI_SBlock in Config.BM description

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11 356

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

Revision

Date

Description

02.00

March 5, 2004

Clarified possible of number of hardware breakpoints.
Added CEU exception type to table of Causeg,ccoge Values.
Clarify special exception type values for EJTAG.

Removed TBD of fatal conditionsin CacheErr

Redefined ErrCil to reflect additional 1$ parity bits
Removed SI_ColdReset referencein WAIT description
Updated MDU latencies

Removed Datal o register for L2 cache

Update description of 64b data value register for EJTAG data
value breaks

Change reset state of Config7gg

Change priority of imprecise DDBL/DDBS breakpoints

02.01

May 28, 2004

Add Cache Error description to exception chapter

Fix Bus Error description in exception chapter

Clarified description of ErrCtlpg field based on cache parity sup-
port

Add Machine Check Exception table to MMU Chapter

02.02

September 10, 2004

Review draft for MR1 release
Add details on coprocessor2 and scratchpad RAM interfaces

03.00

September 24, 2004

MR1 release

03.01

November 10, 2004

MIP16e pipe stages clarified

3.02

March 15,2005

MIPS Trace capability described
Update hazard from TLBP

3.03

March 24,2005

Updated the CacheErr register description

3.04

April 29, 2005

Added details on Instruction ScratchPad RAM

3.05

June 30, 2005

Added new performance counter events

Clarified handling of CACHE instruction to Data ScratchPad
RAM

Added EJTAG PC Sampling capability and compliance to
EJTAG specification version 3.1.

Updates to comply with PDtrace and TCB Specification version
4.1; added TCBCONTROLC register.

3.06

December 21, 2005

Removed use of undefined ‘ cache block’ term from CACHE
instruction description

Clarified which coprocessor0 registers were used by CACHE
instructions

Remove description of non-way select or spram CACHE instruc-
tions when ErrCtl\ysr/spr bits are set

Update Configl and TagL o descriptions to reflect 8KB cache
option

Update description of debug control register to reflect PC Sam-
pling

Added Config7.NBLSU

3.07

June 23, 2006

Removed duplicate write buffer full stall perfcount event
Enabled support for TCBCONTROL By srewidth

Added exception vector address for Cache Error in Section 5.5,
"Exception Vector Base Addresses when S| _UseExceptionBase
equals 0"

Update description of Statusgg field.

Added descriptions for new registers SDataHi and SDatalo.
Added descriptions for CacheErr register for L2 cache errors.

MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

357

Revision History

Revision Date Description

3.08 December 19, 2006 + Added ability to modify exception base when Statusggy is 1
« Added descriptions of perfcounter events
» Updated implementation-dependent instruction descriptions
» Updated description for L2 bypass bit in Config2
» Enhanced description for External SYNC indication in Config7

3.10 November 1, 2007 « Removed MT exception descriptions

» Fix Statusgg description

» Update document template to nB1.03

« Added FE and SE bitsto CPO ErrCtl register

« Added CPO UserLocal register with conditional accessvia
RDHWR instruction. Config3.ULRI indicates presence of User-
Local.

» Added hardware support to avoid virtual aliasesin the Instruc-
tion Cache.

e Allow interrupt to unblock WAIT instruction even if Status.|E
isdisabled.

311 December 19, 2008 « Fixed position of HWRENaccRes bit

» Remove ErrCtlit¢ sinceit is not present on this core

» Made performance counter event names more consi stent

« Added Mode column to performance counter event table

» Added system specific performance counter events

¢ Clarified IntCtl.IPPCI description

» Removed self-referential notes for some instructionsin the Core
Instruction Set table.

« Added missing DebugControlRegisterPCSe bit aswell as
other DCR hits for unsupported debug features

358 MIPS32® 24K® Processor Core Family Software User’'s Manual, Revision 03.11

Copyright © 2004-2008 MIPS Technologies Inc. All rights reserved.

	MIPS32® 24K® Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32® 24K® Processor Core Family
	1.1 24K® Core Features
	1.2 24K® Core Block Diagram
	1.2.1 Logic Blocks
	1.2.1.1 Execution Unit
	1.2.1.2 Multiply/Divide Unit (MDU)
	1.2.1.3 System Control Coprocessor (CP0)
	1.2.1.4 Memory Management Unit (MMU)
	1.2.1.5 Fetch Unit
	1.2.1.6 Instruction Cache
	1.2.1.7 Load/Store Unit
	1.2.1.8 Data Cache
	1.2.1.9 Bus Interface Unit (BIU)
	1.2.1.10 Power Management
	1.2.1.11 MIPS16e™ Application Specific Extension
	1.2.1.12 EJTAG Debug
	1.2.1.13 CorExtend® User Defined Instructions

	Pipeline of the 24K® Core
	2.1 Pipeline Stages
	2.1.1 IF Stage: Instruction Fetch First
	2.1.2 IS - Instruction Fetch Second
	2.1.3 IR - Instruction Recode (MIPS16e only)
	2.1.4 IK - Instruction Kill (MIPS16e only)
	2.1.5 IT - Instruction Fetch Third
	2.1.6 RF - Register File Access
	2.1.7 AG - Address Generation
	2.1.8 EX - Execute/Memory Access
	2.1.9 MS - Memory Access Second
	2.1.10 ER- Exception Resolution
	2.1.11 WB - Writeback

	2.2 Instruction Fetch
	2.2.1 Branch History Table
	2.2.1.1 Branch Target Calculation

	2.2.2 Return Prediction Stack
	2.2.3 ITLB
	2.2.4 Cache Miss Timing
	2.2.5 MIPS16e™

	2.3 Load Store Unit
	2.3.1 DTLB
	2.3.2 Data Cache Access
	2.3.3 Outstanding misses
	2.3.4 Uncached Accesses

	2.4 MDU Pipeline
	2.4.1 Multiply Pipeline Stages
	2.4.2 Divide Operations

	2.5 Skewed ALU
	2.6 Interlock Handling
	2.7 Instruction Interlocks
	2.8 Hazards
	2.8.1 Types of Hazards
	2.8.1.1 Execution Hazards
	2.8.1.2 Instruction Hazards

	2.8.2 Instruction Listing
	2.8.2.1 Instruction Encoding

	2.8.3 Eliminating Hazards

	Floating-Point Unit of the 24Kf™ Core
	3.1 Features Overview
	3.1.1 IEEE Standard 754

	3.2 Enabling the Floating-Point Coprocessor
	3.3 Data Formats
	3.3.1 Floating-Point Formats
	3.3.1.1 Normalized and Denormalized Numbers
	3.3.1.2 Reserved Operand Values-Infinity and NaN
	3.3.1.3 Infinity and Beyond
	3.3.1.4 Signalling Non-Number (SNaN)
	3.3.1.5 Quiet Non-Number (QNaN)

	3.3.2 Fixed-Point Formats

	3.4 Floating-Point General Registers
	3.4.1 FPRs and Formatted Operand Layout
	3.4.2 Formats of Values Used in FP Registers
	3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

	3.5 Floating-Point Control Registers
	3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)
	3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)
	3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)
	3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)
	3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)
	3.5.6 Operation of the FS/FO/FN Bits
	3.5.6.1 Flush To Zero Bit
	3.5.6.2 Flush Override Bit
	3.5.6.3 Flush to Nearest
	3.5.6.4 Recommended FS/FO/FN Settings

	3.5.7 FCSR Cause Bit Update Flow
	3.5.7.1 Exceptions Triggered by CTC1
	3.5.7.2 Generic Flow
	3.5.7.3 Multiply-Add Flow
	3.5.7.4 Cause Update Flow for Input Operands
	3.5.7.5 Cause Update Flow for Unimplemented Operations

	3.6 Instruction Overview
	3.6.1 Data Transfer Instructions
	3.6.1.1 Data Alignment in Loads, Stores, and Moves
	3.6.1.2 Addressing Used in Data Transfer Instructions

	3.6.2 Arithmetic Instructions
	3.6.3 Conversion Instructions
	3.6.4 Formatted Operand-Value Move Instructions
	3.6.5 Conditional Branch Instructions
	3.6.6 Miscellaneous Instructions

	3.7 Exceptions
	3.7.1 Precise Exception Mode
	3.7.2 Exception Conditions
	3.7.2.1 Invalid Operation Exception
	3.7.2.2 Division By Zero Exception
	3.7.2.3 Underflow Exception
	3.7.2.4 Overflow Exception
	3.7.2.5 Inexact Exception
	3.7.2.6 Unimplemented Operation Exception

	3.8 Pipeline and Performance
	3.8.1 Pipeline Overview
	3.8.1.1 FR Stage - Decode, Register Read, and Unpack
	3.8.1.2 M1 Stage - Multiply Tree
	3.8.1.3 M2 Stage - Multiply Complete
	3.8.1.4 A1 Stage - Addition First Step
	3.8.1.5 A2 Stage - Addition Second and Final Step
	3.8.1.6 FP Stage - Result Pack
	3.8.1.7 FW Stage - Register Write

	3.8.2 Bypassing
	3.8.3 Repeat Rate and Latency

	Memory Management of the 24K® Core
	4.1 Introduction
	4.2 Modes of Operation
	4.2.1 Virtual Memory Segments
	4.2.1.1 Unmapped Segments
	4.2.1.2 Mapped Segments

	4.2.2 User Mode
	4.2.3 Supervisor Mode
	4.2.4 Kernel Mode
	4.2.4.1 Kernel Mode, User Space (kuseg)
	4.2.4.2 Kernel Mode, Kernel Space 0 (kseg0)
	4.2.4.3 Kernel Mode, Kernel Space 1 (kseg1)
	4.2.4.4 Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)
	4.2.4.5 Kernel Mode, Kernel Space 3 (kseg3)

	4.2.5 Debug Mode
	4.2.5.1 Conditions and Behavior for Access to drseg, EJTAG Registers
	4.2.5.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

	4.3 Translation Lookaside Buffer
	4.3.1 Joint TLB
	4.3.2 Instruction TLB
	4.3.3 Data TLB

	4.4 Virtual-to-Physical Address Translation
	4.4.1 Hits, Misses, and Multiple Matches
	4.4.2 Memory Space
	4.4.2.1 Page Sizes
	4.4.2.2 Replacement Algorithm

	4.4.3 TLB Instructions

	4.5 Fixed Mapping MMU
	4.6 System Control Coprocessor

	Exceptions and Interrupts in the 24K® Core
	5.1 Exception Conditions
	5.2 Exception Priority
	5.3 Interrupts
	5.3.1 Interrupt Modes
	5.3.1.1 Interrupt Compatibility Mode
	5.3.1.2 Vectored Interrupt Mode
	5.3.1.3 External Interrupt Controller Mode

	5.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

	5.4 GPR Shadow Registers
	5.5 Exception Vector Locations
	5.6 General Exception Processing
	5.7 Debug Exception Processing
	5.8 Exceptions
	5.8.1 Reset Exception
	5.8.2 Debug Single Step Exception
	5.8.3 Debug Interrupt Exception
	5.8.4 Non-Maskable Interrupt (NMI) Exception
	5.8.5 Machine Check Exception
	5.8.6 Interrupt Exception
	5.8.7 Debug Instruction Break Exception
	5.8.8 Watch Exception - Instruction Fetch or Data Access
	5.8.9 Address Error Exception - Instruction Fetch/Data Access
	5.8.10 TLB Refill Exception - Instruction Fetch or Data Access
	5.8.11 TLB Invalid Exception - Instruction Fetch or Data Access
	5.8.12 Cache Error Exception
	5.8.13 Bus Error Exception - Instruction Fetch or Data Access
	5.8.14 Debug Software Breakpoint Exception
	5.8.15 Execution Exception - System Call
	5.8.16 Execution Exception - Breakpoint
	5.8.17 Execution Exception - Reserved Instruction
	5.8.18 Execution Exception - Coprocessor Unusable
	5.8.19 Execution Exception - CorExtend block Unusable
	5.8.20 Execution Exception - Floating Point Exception
	5.8.21 Execution Exception - Integer Overflow
	5.8.22 Execution Exception - Trap
	5.8.23 Execution Exception - C2E
	5.8.24 Execution Exception - IS1
	5.8.25 Debug Data Break Exception
	5.8.26 TLB Modified Exception - Data Access

	5.9 Exception Handling and Servicing Flowcharts

	CP0 Registers of the 24K® Core
	6.1 CP0 Register Summary
	6.2 CP0 Register Descriptions
	6.2.1 Index Register (CP0 Register 0, Select 0)
	6.2.2 Random Register (CP0 Register 1, Select 0)
	6.2.3 EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)
	6.2.4 Context Register (CP0 Register 4, Select 0)
	6.2.5 UserLocal Register (CP0 Register 4, Select 2)
	6.2.6 PageMask Register (CP0 Register 5, Select 0)
	6.2.7 Wired Register (CP0 Register 6, Select 0)
	6.2.8 HWREna Register (CP0 Register 7, Select 0)
	6.2.9 BadVAddr Register (CP0 Register 8, Select 0)
	6.2.10 Count Register (CP0 Register 9, Select 0)
	6.2.11 EntryHi Register (CP0 Register 10, Select 0)
	6.2.12 Compare Register (CP0 Register 11, Select 0)
	6.2.13 Status Register (CP0 Register 12, Select 0)
	6.2.13.1 Operating Modes
	6.2.13.2 Coprocessor Accessibility

	6.2.14 IntCtl Register (CP0 Register 12, Select 1)
	6.2.15 SRSCtl Register (CP0 Register 12, Select 2)
	6.2.16 SRSMap Register (CP0 Register 12, Select 3)
	6.2.17 Cause Register (CP0 Register 13, Select 0)
	6.2.18 Exception Program Counter (CP0 Register 14, Select 0)
	6.2.19 Processor Identification (CP0 Register 15, Select 0)
	6.2.20 EBase Register (CP0 Register 15, Select 1)
	6.2.21 Config Register (CP0 Register 16, Select 0)
	6.2.22 Config1 Register (CP0 Register 16, Select 1)
	6.2.23 Config2 Register (CP0 Register 16, Select 2)
	6.2.24 Config3 Register (CP0 Register 16, Select 3)
	6.2.25 Config7 Register (CP0 Register 16, Select 7)
	6.2.26 WatchLo Register (CP0 Register 18, Select 0-3)
	6.2.27 WatchHi Register (CP0 Register 19, Select 0-3)
	6.2.28 Debug Register (CP0 Register 23, Select 0)
	6.2.29 Trace Control Register (CP0 Register 23, Select 1)
	6.2.30 Trace Control2 Register (CP0 Register 23, Select 2)
	6.2.31 User Trace Data Register (CP0 Register 23, Select 3)
	6.2.32 TraceIBPC Register (CP0 Register 23, Select 4)
	6.2.33 TraceDBPC Register (CP0 Register 23, Select 5)
	6.2.34 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	6.2.35 Performance Counter Register (CP0 Register 25, select 0-3)
	6.2.36 ErrCtl Register (CP0 Register 26, Select 0)
	6.2.37 CacheErr Register (CP0 Register 27, Select 0)
	6.2.38 ITagLo Register (CP0 Register 28, Select 0)
	6.2.39 DTagLo Register (CP0 Register 28, Select 2
	6.2.40 L23TagLo Register (CP0 Register 28, Select 4)
	6.2.41 IDataLo Register (CP0 Register 28, Select 1)
	6.2.42 DDataLo Register (CP0 Register 28, Select 3)
	6.2.43 L23DataLo Register (CP0 Register 28, Select 5)
	6.2.44 IDataHi Register (CP0 Register 29, Select 1)
	6.2.45 L23DataHi Register (CP0 Register 29, Select 5)
	6.2.46 ErrorEPC (CP0 Register 30, Select 0)
	6.2.47 DeSave Register (CP0 Register 31, Select 0)

	Hardware and Software Initialization of the 24K® Core
	7.1 Hardware-Initialized Processor State
	7.1.1 Coprocessor 0 State
	7.1.2 TLB Initialization
	7.1.3 Bus State Machines
	7.1.4 Static Configuration Inputs
	7.1.5 Fetch Address

	7.2 Software Initialized Processor State
	7.2.1 Register File
	7.2.2 TLB
	7.2.3 Caches
	7.2.4 Coprocessor 0 State

	Caches of the 24K® Core
	8.1 Cache Configurations
	8.2 Instruction Cache
	8.2.1 Virtual Aliasing
	8.2.2 Precode Bits
	8.2.3 Parity

	8.3 Data Cache
	8.3.1 Virtual Aliasing
	8.3.2 Parity

	8.4 Write Back Buffer
	8.4.1 Uncached Accelerated Stores

	8.5 Cache Protocols
	8.5.1 Cache Organization
	8.5.2 Cacheability Attributes
	8.5.3 Replacement Policy
	8.5.4 Line Locking

	8.6 CACHE Instruction
	8.7 Software Cache Testing
	8.7.1 I-Cache and D-cache Tag Arrays
	8.7.2 I-Cache Data Array
	8.7.3 I-Cache WS Array
	8.7.4 D-Cache Data Array
	8.7.5 D-cache WS Array

	8.8 Memory Coherence Issues

	Power Management in the 24K® Core
	9.1 Register-Controlled Power Management
	9.2 Instruction-Controlled Power Management
	9.2.1 Wait IE Ignore

	Instruction Set Overview
	10.1 CPU Instruction Formats
	10.2 Load and Store Instructions
	10.2.1 Scheduling a Load Delay Slot
	10.2.2 Defining Access Types

	10.3 Computational Instructions
	10.3.1 Cycle Timing for Multiply and Divide Instructions

	10.4 Jump and Branch Instructions
	10.4.1 Overview of Jump Instructions
	10.4.2 Overview of Branch Instructions

	10.5 Control Instructions
	10.6 Coprocessor Instructions

	EJTAG Debug Support in the 24K® Core
	11.1 Debug Control Register
	11.2 Hardware Breakpoints
	11.2.1 Features of Instruction Breakpoint
	11.2.2 Features of Data Breakpoint
	11.2.3 Instruction Breakpoint Registers Overview
	11.2.4 Data Breakpoint Registers Overview
	11.2.5 Conditions for Matching Breakpoints
	11.2.5.1 Conditions for Matching Instruction Breakpoints
	11.2.5.2 Conditions for Matching Data Breakpoints

	11.2.6 Debug Exceptions from Breakpoints
	11.2.6.1 Debug Exception by Instruction Breakpoint
	11.2.6.2 Debug Exception by Data Breakpoint

	11.2.7 Breakpoint used as TriggerPoint
	11.2.8 Instruction Breakpoint Registers
	11.2.8.1 Instruction Breakpoint Status (IBS) Register
	11.2.8.2 Instruction Breakpoint Address n (IBAn) Register
	11.2.8.3 Instruction Breakpoint Address Mask n (IBMn) Register
	11.2.8.4 Instruction Breakpoint ASID n (IBASIDn) Register
	11.2.8.5 Instruction Breakpoint Control n (IBCn) Register

	11.2.9 Data Breakpoint Registers
	11.2.9.1 Data Breakpoint Status (DBS) Register
	11.2.9.2 Data Breakpoint Address n (DBAn) Register
	11.2.9.3 Data Breakpoint Address Mask n (DBMn) Register
	11.2.9.4 Data Breakpoint ASID n (DBASIDn) Register
	11.2.9.5 Data Breakpoint Control n (DBCn) Register
	11.2.9.6 Data Breakpoint Value n (DBVn) Register
	11.2.9.7 Data Breakpoint Value High n (DBVHn) Register

	11.3 Test Access Port (TAP)
	11.3.1 EJTAG Internal and External Interfaces
	11.3.2 Test Access Port Operation
	11.3.2.1 Test-Logic-Reset State
	11.3.2.2 Run-Test/Idle State
	11.3.2.3 Select_DR_Scan State
	11.3.2.4 Select_IR_Scan State
	11.3.2.5 Capture_DR State
	11.3.2.6 Shift_DR State
	11.3.2.7 Exit1_DR State
	11.3.2.8 Pause_DR State
	11.3.2.9 Exit2_DR State
	11.3.2.10 Update_DR State
	11.3.2.11 Capture_IR State
	11.3.2.12 Shift_IR State
	11.3.2.13 Exit1_IR State
	11.3.2.14 Pause_IR State
	11.3.2.15 Exit2_IR State
	11.3.2.16 Update_IR State

	11.3.3 Test Access Port (TAP) Instructions
	11.3.3.1 BYPASS Instruction
	11.3.3.2 IDCODE Instruction
	11.3.3.3 IMPCODE Instruction
	11.3.3.4 ADDRESS Instruction
	11.3.3.5 DATA Instruction
	11.3.3.6 CONTROL Instruction
	11.3.3.7 ALL Instruction
	11.3.3.8 EJTAGBOOT Instruction
	11.3.3.9 NORMALBOOT Instruction
	11.3.3.10 FASTDATA Instruction
	11.3.3.11 TCBCONTROLA Instruction
	11.3.3.12 TCBCONTROLB Instruction
	11.3.3.13 TCBCONTROLC Instruction
	11.3.3.14 TCBDATA Instruction
	11.3.3.15 PCSAMPLE Instruction

	11.4 EJTAG TAP Registers
	11.4.1 Instruction Register
	11.4.2 Data Registers Overview
	11.4.2.1 Bypass Register
	11.4.2.2 Device Identification (ID) Register
	11.4.2.3 Implementation Register
	11.4.2.4 EJTAG Control Register

	11.4.3 Processor Access Address Register
	11.4.3.1 Processor Access Data Register

	11.4.4 Fastdata Register (TAP Instruction FASTDATA)

	11.5 TAP Processor Accesses
	11.5.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

	11.6 PC Sampling
	11.6.1 PC Sampling in Wait State

	11.7 MIPS® Trace
	11.7.1 Processor Modes
	11.7.2 Software Versus Hardware Control
	11.7.3 Trace Information
	11.7.4 Load/Store Address and Data Trace Information
	11.7.5 Programmable Processor Trace Mode Options
	11.7.6 Programmable Trace Information Options
	11.7.6.1 User Data Trace

	11.7.7 Enable Trace to Probe On-chip Memory
	11.7.8 TCB Trigger
	11.7.9 Cycle-by-Cycle Information
	11.7.10 Instruction and Data Cache Miss Tracing
	11.7.11 Trace Message Format
	11.7.12 Trace Word Format

	11.8 PDtrace™ Registers (Software Control)
	11.9 Trace Control Block (TCB) Registers (Hardware Control)
	11.9.1 TCBCONTROLA Register
	11.9.2 TCBCONTROLB Register
	11.9.3 TCBDATA Register
	11.9.4 TCBCONTROLC Register
	11.9.5 TCBCONFIG Register (Reg 0)
	11.9.6 TCBTW Register (Reg 4)
	11.9.7 TCBRDP Register (Reg 5)
	11.9.8 TCBWRP Register (Reg 6)
	11.9.9 TCBSTP Register (Reg 7)
	11.9.10 TCBTRIGx Register (Reg 16-23)
	11.9.11 Register Reset State

	11.10 Enabling MIPS Trace
	11.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	11.10.2 Turning On PDtrace™ Trace
	11.10.3 Turning Off PDtrace™ Trace
	11.10.4 TCB Trace Enabling
	11.10.5 Tracing a Reset Exception

	11.11 TCB Trigger Logic
	11.11.1 Trigger Units Overview
	11.11.2 Trigger Source Unit
	11.11.3 Trigger Control Units
	11.11.4 Trigger Action Unit
	11.11.5 Simultaneous Triggers
	11.11.5.1 Prioritized Trigger Actions
	11.11.5.2 OR’ed Trigger Actions

	11.12 MIPS Trace Cycle-by-Cycle Behavior
	11.12.1 FIFO Logic in PDtrace and TCB Modules
	11.12.2 Handling of FIFO Overflow in the PDtrace Module
	11.12.3 Handling of FIFO Overflow in the TCB
	11.12.3.1 Probe Width and Clock-ratio Settings

	11.12.4 Adding Cycle Accurate Information to the Trace

	11.13 TCB On-Chip Trace Memory
	11.13.1 On-Chip Trace Memory Size
	11.13.2 Trace-From Mode
	11.13.3 Trace-To Mode

	24K® Processor Core Instructions
	12.1 Understanding the Instruction Descriptions
	12.2 24K® Opcode Map
	12.3 Floating Point Unit Instruction Format Encodings
	12.4 MIPS32® Instruction Set for the 24K® Core
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	TLBWR
	WAIT

	MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set
	13.1 Instruction Bit Encoding
	13.2 Instruction Listing

	References
	Revision History

