
Porting FreeBSD/ARM to new SoCs and Boards
Or, getting from power on to printf

Andrew Turner

andrew@fubar.geek.nz

29 September 2013

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 1 / 40

Porting FreeBSD/ARM

1 Typical Boot sequence

2 First steps

3 Common problem

4 Future work

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 2 / 40

Booting

1 Chip firmware

2 Early boot

3 U-Boot

4 ubldr (U-Boot loader)

5 Kernel

6 Userland

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 3 / 40

Chip firmware

Performs chip specific initialisation

Hard-wired in the chip

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 4 / 40

Early Boot

Performs board specific initialisation
e.g. Set up SDRAM, simple disk drivers

Examples include TI X-Loader, Raspberry-Pi bootcode.bin, U-Boot SPL

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 5 / 40

U-Boot

Advanced executable loader

Can load from storage, network, serial (e.g. zmodem), etc

Like a BIOS++

Can be scripted, e.g. change the boot commands

Can load U-Boot executables, some ELF files, raw binaries

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 6 / 40

ubldr

Is the FreeBSD loader

Calls back to U-Boot to access disk and network

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 7 / 40

Kernel and Userland

Is a standard FreeBSD

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 8 / 40

Porting FreeBSD/ARM

1 Typical Boot sequence

2 First steps

3 Common problem

4 Future work

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 9 / 40

First steps

Cross-toolchain

Board kernel config

Flattened Device Tree config

UART driver

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 10 / 40

Toolchain

For ARMv6 and ARMv7:
make kernel-toolchain TARGET ARCH=armv6

For ARMv4 and ARMv5:
make kernel-toolchain TARGET ARCH=arm

Gets a toolchain that can build the kernel (no userland)
The default compiler is clang/llvm

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 11 / 40

Kernel config

Create the file system layout, sys/arm/vendor/soc

Create standard SoC files
I files.soc – SoC version of sys/conf/files
I std.soc – Common SoC parts of the kernel config

Write SoC specific initialisation functions, initarm lastaddr,
initarm gpio init, initarm late init, platform devmap init

Stub out DMA, CPU reset, DELAY, etc. functions

Provide a bus space struct

Create a kernel config file in sys/arm/conf

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 12 / 40

FDT config

Best case – The board provides usable Device Tree blob

Second best case – Existing CPU device tree source in the tree

Worst case – You have to write the entire thing

If you have to write a new DTS (device tree source) file:

Split out the SoC specific part of the config to a separate file and
include it

Disable devices by default, then enable them in the board file

The minimal config includes:
I List of memory ranges (RAM)
I Chosen stdin/stdout
I Aliases for the chosen section to use
I Bus root to add devices be added to

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 13 / 40

SoC FDT config

/dts-v1/;

/ {

localbus@20000000 {

#address-cells = <1>;

#size-cells = <1>;

compatible = "simple-bus";

ranges;

bus-frequency = <0>;

uart0: uart@20000000 {

compatible = "ns16550";

reg = <0x20000000 0x1000>;

reg-shift = <2>;

status = "disabled";

};

};

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 14 / 40

Board FDT config

/dts-v1/;

/include/ "soc.dtsi";

/ {

aliases { uart = &uart0; };

chosen {

stdin = "uart0";

stdout = "uart0";

};

memory {

device_type = "memory";

reg = < 0x40000000 0x08000000 >;

};

localbus@20000000 {

uart0: uart@20000000 {

status = "okay";

};

};

};

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 15 / 40

UART

Best case, you have an ns16550 compatible UART

Worst case, you have to write a custom driver without using the uart
framework

If you need to write your own UART driver you will need to:

Create a uart device class

Create a uart ops struct with:
I probe – Just return zero
I init – Configure the hardware
I putc – Wait for space in the FIFO, write the character

Add the device class to the list in uart fdt getdev in
sys/dev/uart/uart cpu fdt.c

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 16 / 40

Porting FreeBSD/ARM

1 Typical Boot sequence

2 First steps

3 Common problem

4 Future work

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 17 / 40

Symptom

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200000

Starting application at 0x40200000 ...

And then nothing. . .

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 18 / 40

Tools to find out what is wrong

JTAG
I Useful to tell you what state the kernel is in
I Costs e 10s to e 10,000s
I Need to configure software for board, e.g. OpenOCD, DS-5

UART
I SoC specific
I Map the registers into the virtual address space

GPIO, Buzzer, LED
I Same setup as UART
I Limited information on how far the kernel has booted

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 19 / 40

Things that can go wrong

Load the kernel to the wrong location

Branch to the wrong address
I An address outside the kernel
I The start of the kernel load address
I A random address within the kernel

Incorrect KERNPHYSADDR, KERNVIRTADDR, or
STARTUP PAGETABLE ADDR

No Flattened Device Tree blob

Incorrect UART driver

More. . .

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 20 / 40

First Solution

readelf -h \

/usr/obj/arm.armv6/src/sys/BOARD CONFIG/kernel

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

. . .
Entry point address: 0xc0200100

The physical entry point is:

entrypoint = 0xc0200100− KERNVIRTADDR + KERNPHYSADDR

= 0xc0200100− 0xc0200000 + 0x40200000

= 0x40200100

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 21 / 40

Second Problem

Fix by jumping to the correct location
In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

Starting application at 0x40200100 ...

And then nothing. . .

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 22 / 40

Second Problem

How do we know if we are in the kernel or not?

If we are, where are we?

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 23 / 40

Solution

Find some way to output data

e.g. JTAG, UART, LED

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 24 / 40

UART Solution

1 Ensure the UART clocks are setup (they most likely will be by
U-Boot)

2 Find the UART output register

3 Write a character to the UART register

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 25 / 40

UART Solution

For a ns16550 UART with a base address at 0x20000000
The data register, for writing, is at offset 0

Map the memory for the UART registers into the virtual address space.
Add to mmu init table in sys/arm/arm/locore.S

The format is:
MMU INIT(virtual address, physical address, pages, flags)

This gives:
MMU INIT(0x20000000, 0x20000000, 1, L1 TYPE S|L1 S AP(AP KRW))

L1 TYPE S – Use 1MiB sections

L1 S AP(AP KRW) – Sets the access permission

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 26 / 40

Simple putc

Writes data to the serial port, drops data if the FIFO fills up

In C code:

void

early_putchar(char ch)

{

*(unsigned int *)0 x2000000 = ch;

}

In assembler, may break booting past it:

define PUTCHAR(ch) \

ldr r0 , =0 x2000000; \

ldr r1 , =ch; \

str r1 , [r0]

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 27 / 40

Places to check

In C code:

Start of initarm – The first C code to run

After the call to OF install, OF init, fdt get mem regions – An
infinite loop on failure

Before the call to setttb – The call to setup the Translation Table
Base for the MMU

If you failed to get into C:

Start of start – Make sure you are in the kernel as expected

After mmu done – Make sure the MMU setup worked

After virt done – Make sure we are running from a virtual address

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 28 / 40

Second Solution

Check if we are in C code:

void *

initarm(struct arm_boot_params *abp)

{

struct mem_region memory_regions[FDT_MEM_REGIONS];

...

int curr;

early_putchar(’A’);

lastaddr = parse_boot_param(abp);

...

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 29 / 40

Third Problem

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

Starting application at 0x40200100 ...

A

And then nothing. . .

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 30 / 40

Triage

We know the kernel is running C code, but failing before it calls printf

Places likely to fail:

OF install – Fails with a broken kernel config

OF init – Fails when no FDT blob was provided

fdt get mem regions – Fails when FDT blob it incorrect

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 31 / 40

Add more debugging

if (OF_install(OFW_FDT, 0) == FALSE)

while (1);

early_putchar(’B’);

if (OF_init((void *)dtbp) != 0)

while (1);

early_putchar(’C’);

if (fdt_get_mem_regions(memory_regions, &memory_regions_sz,

&memsize) != 0)

while(1);

early_putchar(’D’);

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 32 / 40

Third Problem

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

Starting application at 0x40200100 ...

AB

And then nothing. . .

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 33 / 40

Triage

We know:

OF install succeeds

OF init fails

Possible issues:

No FDT blob provided – likely, one of two reasons:
I Not provided by the boot loader
I Not hard coded in the kernel

Invalid FDT blob header – unlikely

Using the “go” U-Boot command doesn’t provide the FDT blob

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 34 / 40

Solution

To get something running add this:

options FDT_DTB_STATIC

makeoptions FDT_DTS_FILE=board.dts

to the kernel config.

It will get something working

Should only be used for development, better for the boot loader provide it

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 35 / 40

Booting

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

Starting application at 0x40200100 ...

ABCDKDB: debugger backends: ddb

KDB: current backend: ddb

Copyright (c) 1992-2013 The FreeBSD Project.

Followed by more boot messages. . .

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 36 / 40

Conclusion

Early boot code is fragile

Easy to make mistakes

Can be difficult to debug

Not documented

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 37 / 40

Porting FreeBSD/ARM

1 Typical Boot sequence

2 First steps

3 Common problem

4 Future work

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 38 / 40

Future work

Early putchar framework

Location independent kernel

Documentation

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 39 / 40

Questions?

FreeBSD ARM resources:

Email: freebsd-arm@FreeBSD.org
IRC: #bsdmips on EFnet

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 40 / 40

	Typical Boot sequence
	First steps
	Common problem
	Future work

