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Booting

1 Chip firmware

2 Early boot

3 U-Boot

4 ubldr (U-Boot loader)

5 Kernel

6 Userland
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Chip firmware

Performs chip specific initialisation

Hard-wired in the chip
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Early Boot

Performs board specific initialisation
e.g. Set up SDRAM, simple disk drivers

Examples include TI X-Loader, Raspberry-Pi bootcode.bin, U-Boot SPL
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U-Boot

Advanced executable loader

Can load from storage, network, serial (e.g. zmodem), etc

Like a BIOS++

Can be scripted, e.g. change the boot commands

Can load U-Boot executables, some ELF files, raw binaries
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ubldr

Is the FreeBSD loader

Calls back to U-Boot to access disk and network
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Kernel and Userland

Is a standard FreeBSD
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First steps

Cross-toolchain

Board kernel config

Flattened Device Tree config

UART driver
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Toolchain

For ARMv6 and ARMv7:
# make kernel-toolchain TARGET ARCH=armv6

For ARMv4 and ARMv5:
# make kernel-toolchain TARGET ARCH=arm

Gets a toolchain that can build the kernel (no userland)
The default compiler is clang/llvm
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Kernel config

Create the file system layout, sys/arm/vendor/soc

Create standard SoC files
I files.soc – SoC version of sys/conf/files
I std.soc – Common SoC parts of the kernel config

Write SoC specific initialisation functions, initarm lastaddr,
initarm gpio init, initarm late init, platform devmap init

Stub out DMA, CPU reset, DELAY, etc. functions

Provide a bus space struct

Create a kernel config file in sys/arm/conf
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FDT config

Best case – The board provides usable Device Tree blob

Second best case – Existing CPU device tree source in the tree

Worst case – You have to write the entire thing

If you have to write a new DTS (device tree source) file:

Split out the SoC specific part of the config to a separate file and
include it

Disable devices by default, then enable them in the board file

The minimal config includes:
I List of memory ranges (RAM)
I Chosen stdin/stdout
I Aliases for the chosen section to use
I Bus root to add devices be added to
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SoC FDT config

/dts-v1/;

/ {

localbus@20000000 {

#address-cells = <1>;

#size-cells = <1>;

compatible = "simple-bus";

ranges;

bus-frequency = <0>;

uart0: uart@20000000 {

compatible = "ns16550";

reg = <0x20000000 0x1000>;

reg-shift = <2>;

status = "disabled";

};

};
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Board FDT config

/dts-v1/;

/include/ "soc.dtsi";

/ {

aliases { uart = &uart0; };

chosen {

stdin = "uart0";

stdout = "uart0";

};

memory {

device_type = "memory";

reg = < 0x40000000 0x08000000 >;

};

localbus@20000000 {

uart0: uart@20000000 {

status = "okay";

};

};

};
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UART

Best case, you have an ns16550 compatible UART

Worst case, you have to write a custom driver without using the uart
framework

If you need to write your own UART driver you will need to:

Create a uart device class

Create a uart ops struct with:
I probe – Just return zero
I init – Configure the hardware
I putc – Wait for space in the FIFO, write the character

Add the device class to the list in uart fdt getdev in
sys/dev/uart/uart cpu fdt.c
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Symptom

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200000

## Starting application at 0x40200000 ...

And then nothing. . .
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Tools to find out what is wrong

JTAG
I Useful to tell you what state the kernel is in
I Costs e 10s to e 10,000s
I Need to configure software for board, e.g. OpenOCD, DS-5

UART
I SoC specific
I Map the registers into the virtual address space

GPIO, Buzzer, LED
I Same setup as UART
I Limited information on how far the kernel has booted
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Things that can go wrong

Load the kernel to the wrong location

Branch to the wrong address
I An address outside the kernel
I The start of the kernel load address
I A random address within the kernel

Incorrect KERNPHYSADDR, KERNVIRTADDR, or
STARTUP PAGETABLE ADDR

No Flattened Device Tree blob

Incorrect UART driver

More. . .
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First Solution

# readelf -h \

/usr/obj/arm.armv6/src/sys/BOARD CONFIG/kernel

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

. . .
Entry point address: 0xc0200100

The physical entry point is:

entrypoint = 0xc0200100− KERNVIRTADDR + KERNPHYSADDR

= 0xc0200100− 0xc0200000 + 0x40200000

= 0x40200100
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Second Problem

Fix by jumping to the correct location
In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

## Starting application at 0x40200100 ...

And then nothing. . .
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Second Problem

How do we know if we are in the kernel or not?

If we are, where are we?
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Solution

Find some way to output data

e.g. JTAG, UART, LED
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UART Solution

1 Ensure the UART clocks are setup (they most likely will be by
U-Boot)

2 Find the UART output register

3 Write a character to the UART register
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UART Solution

For a ns16550 UART with a base address at 0x20000000
The data register, for writing, is at offset 0

Map the memory for the UART registers into the virtual address space.
Add to mmu init table in sys/arm/arm/locore.S

The format is:
MMU INIT(virtual address, physical address, pages, flags)

This gives:
MMU INIT(0x20000000, 0x20000000, 1, L1 TYPE S|L1 S AP(AP KRW))

L1 TYPE S – Use 1MiB sections

L1 S AP(AP KRW) – Sets the access permission

Andrew Turner (andrew@fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 26 / 40



Simple putc

Writes data to the serial port, drops data if the FIFO fills up

In C code:

void

early_putchar(char ch)

{

*( unsigned int *)0 x2000000 = ch;

}

In assembler, may break booting past it:

define PUTCHAR(ch) \

ldr r0 , =0 x2000000; \

ldr r1 , =ch; \

str r1 , [r0]
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Places to check

In C code:

Start of initarm – The first C code to run

After the call to OF install, OF init, fdt get mem regions – An
infinite loop on failure

Before the call to setttb – The call to setup the Translation Table
Base for the MMU

If you failed to get into C:

Start of start – Make sure you are in the kernel as expected

After mmu done – Make sure the MMU setup worked

After virt done – Make sure we are running from a virtual address
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Second Solution

Check if we are in C code:

void *

initarm(struct arm_boot_params *abp)

{

struct mem_region memory_regions[FDT_MEM_REGIONS];

...

int curr;

early_putchar(’A’);

lastaddr = parse_boot_param(abp);

...
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Third Problem

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

## Starting application at 0x40200100 ...

A

And then nothing. . .
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Triage

We know the kernel is running C code, but failing before it calls printf

Places likely to fail:

OF install – Fails with a broken kernel config

OF init – Fails when no FDT blob was provided

fdt get mem regions – Fails when FDT blob it incorrect
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Add more debugging

if (OF_install(OFW_FDT, 0) == FALSE)

while (1);

early_putchar(’B’);

if (OF_init((void *)dtbp) != 0)

while (1);

early_putchar(’C’);

if (fdt_get_mem_regions(memory_regions, &memory_regions_sz,

&memsize) != 0)

while(1);

early_putchar(’D’);
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Third Problem

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

## Starting application at 0x40200100 ...

AB

And then nothing. . .
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Triage

We know:

OF install succeeds

OF init fails

Possible issues:

No FDT blob provided – likely, one of two reasons:
I Not provided by the boot loader
I Not hard coded in the kernel

Invalid FDT blob header – unlikely

Using the “go” U-Boot command doesn’t provide the FDT blob
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Solution

To get something running add this:

options FDT_DTB_STATIC

makeoptions FDT_DTS_FILE=board.dts

to the kernel config.

It will get something working

Should only be used for development, better for the boot loader provide it
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Booting

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

soc# fatload mmc 0 0x40200000 kernel

reading kernel

4598153 bytes read in 261 ms (16.8 MiB/s)

soc# go 0x40200100

## Starting application at 0x40200100 ...

ABCDKDB: debugger backends: ddb

KDB: current backend: ddb

Copyright (c) 1992-2013 The FreeBSD Project.

Followed by more boot messages. . .
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Conclusion

Early boot code is fragile

Easy to make mistakes

Can be difficult to debug

Not documented
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Future work

Early putchar framework

Location independent kernel

Documentation
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Questions?

FreeBSD ARM resources:

Email: freebsd-arm@FreeBSD.org
IRC: #bsdmips on EFnet
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