Porting FreeBSD/ARM to new SoCs and Boards

Or, getting from power on to printf

Andrew Turner

andrew®@fubar.geek.nz

29 September 2013

Andrew Turner (andrew@fubar.geek.nz)

o =
Porting FreeBSD/ARM

Porting FreeBSD/ARM

c Typical Boot sequence

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Booting

@ Chip firmware

@ Early boot

© U-Boot

© ubldr (U-Boot loader)
@ Kernel

O Userland

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 3 /40

Chip firmware

Performs chip specific initialisation

Hard-wired in the chip

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Early Boot

Performs board specific initialisation
e.g. Set up SDRAM, simple disk drivers

Examples include T1 X-Loader, Raspberry-Pi bootcode.bin, U-Boot SPL

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 5/ 40

U-Boot

Advanced executable loader
Can load from storage, network, serial (e.g. zmodem), etc
Like a BIOS++
Can be scripted, e.g. change the boot commands

Can load U-Boot executables, some ELF files, raw binaries

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 6 / 40

ubldr

Is the FreeBSD loader

Calls back to U-Boot to access disk and network

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Kernel and Userland

Is a standard FreeBSD

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Porting FreeBSD/ARM

© First steps

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

First steps

Cross-toolchain

Board kernel config
Flattened Device Tree config
UART driver

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 10 / 40

Toolchain

For ARMv6 and ARMvVT:
make kernel-toolchain TARGET_ARCH=armv6

For ARMv4 and ARMv5:
make kernel-toolchain TARGET_ARCH=arm

Gets a toolchain that can build the kernel (no userland)
The default compiler is clang/llvm

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 11 / 40

Kernel config

Create the file system layout, sys/arm/vendor/soc
Create standard SoC files

> files.soc — SoC version of sys/conf/files
» std.soc — Common SoC parts of the kernel config

@ Write SoC specific initialisation functions, initarm_lastaddr,
initarm gpio_init, initarm_late_init, platform devmap_init

Stub out DMA, CPU reset, DELAY, etc. functions

Provide a bus_space struct

Create a kernel config file in sys/arm/conf

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 12 / 40

FDT config

@ Best case — The board provides usable Device Tree blob
@ Second best case — Existing CPU device tree source in the tree

@ Worst case — You have to write the entire thing

If you have to write a new DTS (device tree source) file:
@ Split out the SoC specific part of the config to a separate file and

include it
@ Disable devices by default, then enable them in the board file

@ The minimal config includes:

» List of memory ranges (RAM)
Chosen stdin/stdout
Aliases for the chosen section to use
Bus root to add devices be added to

v vyy

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 13 / 40

SoC FDT config

/dts-v1/;

/L
localbus@20000000 {
#address-cells = <1>;
#size—-cells = <1>;
compatible = "simple-bus";
ranges;
bus-frequency = <0>;

uart0: uart@20000000 {
compatible = "ns16550";
reg = <0x20000000 0x1000>;
reg-shift = <2>;
status = "disabled";
};
};

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013

14 / 40

Board FDT config

/dts-v1/;
/include/ "soc.dtsi";
/1
aliases { uart = &uart0; I};
chosen {
stdin = "uart0";
stdout = "uart0";
};
memory {
device_type = "memory";
reg = < 0x40000000 0x08000000 >;
};

1localbus©20000000 {
uart0: uart@20000000 {
status = "okay";
}s;
};
}s;

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 15 / 40

UART

@ Best case, you have an ns16550 compatible UART

@ Worst case, you have to write a custom driver without using the uart
framework

If you need to write your own UART driver you will need to:
@ Create a uart device class

o Create a uart ops struct with:

> probe — Just return zero
» init — Configure the hardware
» putc — Wait for space in the FIFO, write the character

@ Add the device class to the list in uart_fdt_getdev in
sys/dev/uart/uart_cpu_fdt.c

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 16 / 40

Porting FreeBSD/ARM

© Common problem

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Symptom

In: serial
OQut: serial
Err: serial
Hit any key to stop autoboot: O
soc# fatload mmc 0 0x40200000 kernel
reading kernel
4598153 bytes read in 261 ms (16.8 MiB/s)
soc# go 0x40200000
Starting application at 0x40200000 ...

And then nothing. ..

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 18 / 40

Tools to find out what is wrong

o JTAG

» Useful to tell you what state the kernel is in

» Costs €10s to €10,000s

> Need to configure software for board, e.g. OpenOCD, DS-5
o UART

» SoC specific

» Map the registers into the virtual address space
e GPIO, Buzzer, LED

» Same setup as UART
» Limited information on how far the kernel has booted

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 19 / 40

Things that can go wrong

@ Load the kernel to the wrong location
@ Branch to the wrong address

» An address outside the kernel
» The start of the kernel load address
» A random address within the kernel

@ Incorrect KERNPHYSADDR, KERNVIRTADDR, or
STARTUP_PAGETABLE_ADDR

@ No Flattened Device Tree blob
@ Incorrect UART driver

@ More. ..

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 20 / 40

First Solution

readelf -h \
/usr/obj/arm.armv6/src/sys/BOARD_CONFIG/kernel
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00O 00 OO0 00 00 0O 00

Entry point address: 0xc0200100
The physical entry point is:
entrypoint = 0xc0200100 — KERNVIRTADDR + KERNPHYSADDR

= 0xc0200100 — 0xc0200000 + 0x40200000
= 0x40200100

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 21 / 40

Second Problem

Fix by jumping to the correct location
In: serial
OQut: serial
Err: serial
Hit any key to stop autoboot: O
soc# fatload mmc O 0x40200000 kernel
reading kernel
4598153 bytes read in 261 ms (16.8 MiB/s)
soc# go 0x40200100
Starting application at 0x40200100 ...

And then nothing. ..

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 22 / 40

Second Problem

How do we know if we are in the kernel or not?

If we are, where are we?

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 23 / 40

Solution

Andrew Turner (andrew@fubar.geek.nz)

Find some way to output data

e.g. JTAG, UART, LED

o =
Porting FreeBSD/ARM

UART Solution

@ Ensure the UART clocks are setup (they most likely will be by
U-Boot)

@ Find the UART output register
© Write a character to the UART register

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 25 / 40

UART Solution

For a ns16550 UART with a base address at 0x20000000
The data register, for writing, is at offset 0

Map the memory for the UART registers into the virtual address space.
Add to mmu_init_table in sys/arm/arm/locore.S

The format is:

MMU_INIT(virtual address, physical address, pages, flags)

This gives:
MMU_INIT(0x20000000, 0x20000000, 1, L1_TYPE_S|L1_S_AP(AP_KRW))
L1_TYPE_S — Use 1MiB sections

L1_S_AP(AP_KRW) — Sets the access permission

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 26 / 40

Simple putc

Writes data to the serial port, drops data if the FIFO fills up

In C code:

void
early_putchar (char ch)
{
*(unsigned int *)0x2000000 = ch;
}

In assembler, may break booting past it:

define PUTCHAR (ch) \
1dr r0, =0x2000000; \
1ldr r1, =ch; \

str r1, [ro0]

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013

27 / 40

Places to check

In C code:
@ Start of initarm — The first C code to run

o After the call to OF_install, OF_init, fdt_get mem regions — An
infinite loop on failure

@ Before the call to setttb — The call to setup the Translation Table
Base for the MMU

If you failed to get into C:
@ Start of _start — Make sure you are in the kernel as expected
o After mmu_done — Make sure the MMU setup worked

o After virt_done — Make sure we are running from a virtual address

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 28 / 40

Second Solution

Check if we are in C code:
void *

initarm(struct arm_boot_params *abp)

{
struct mem_region memory_regions[FDT_MEM_REGIONS];

int curr;
early_putchar(’A’);

lastaddr = parse_boot_param(abp);

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 29 / 40

Third Problem

In: serial
OQut: serial
Err: serial
Hit any key to stop autoboot: O

soc# fatload mmc O 0x40200000 kernel
reading kernel
4598153 bytes read in 261 ms (16.8 MiB/s)
soc# go 0x40200100
Starting application at 0x40200100 ...
A

And then nothing. ..

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 30 / 40

Triage

We know the kernel is running C code, but failing before it calls printf

Places likely to fail:
o OF_install — Fails with a broken kernel config
@ OF_init — Fails when no FDT blob was provided

o fdt_get mem regions — Fails when FDT blob it incorrect

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 31/ 40

Add more debugging

if (OF_install(OFW_FDT, 0) == FALSE)
while (1);

early_putchar(’B’);

if (OF_init((void *)dtbp) != 0)
while (1);

early_putchar(’C’);
if (fdt_get_mem_regions(memory_regions, &memory_regions_sz,
&memsize) != 0)

while(1);

early_putchar(’D’);

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 32 /40

Third Problem

In: serial
OQut: serial
Err: serial
Hit any key to stop autoboot: O

soc# fatload mmc O 0x40200000 kernel
reading kernel
4598153 bytes read in 261 ms (16.8 MiB/s)
soc# go 0x40200100
Starting application at 0x40200100 ...
AB

And then nothing. ..

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 33 /40

Triage

We know:

@ OF_install succeeds

@ OF_init fails

Possible issues:

@ No FDT blob provided — likely, one of two reasons:
» Not provided by the boot loader
» Not hard coded in the kernel

@ Invalid FDT blob header — unlikely

Using the “go” U-Boot command doesn't provide the FDT blob

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 34 / 40

Solution

To get something running add this:

options FDT_DTB_STATIC
makeoptions FDT_DTS_FILE=board.dts

to the kernel config.
It will get something working

Should only be used for development, better for the boot loader provide it

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 35/ 40

Booting

In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: O
soc# fatload mmc O 0x40200000 kernel
reading kernel
4598153 bytes read in 261 ms (16.8 MiB/s)
soc# go 0x40200100
Starting application at 0x40200100 ...
ABCDKDB: debugger backends: ddb
KDB: current backend: ddb
Copyright (c) 1992-2013 The FreeBSD Project.

Followed by more boot messages. ..

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013

36 / 40

Conclusion

Early boot code is fragile
Easy to make mistakes
Can be difficult to debug

Not documented

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 37 / 40

Porting FreeBSD/ARM

@ Future work

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Future work

@ Early putchar framework

@ Location independent kernel
@ Documentation

Andrew Turner (andrew@fubar.geek.nz)

Porting FreeBSD/ARM

Questions?
FreeBSD ARM resources:

Email: freebsd-arm@FreeBSD.org
IRC: #bsdmips on EFnet

Andrew Turner (andrew®fubar.geek.nz) Porting FreeBSD/ARM 29 September 2013 40 / 40

	Typical Boot sequence
	First steps
	Common problem
	Future work

