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 Motivation:

● Since 2021, Netflix has been able to 
serve almost 800Gb/s of TLS encrypted 
video traffic from a single server.

● How much are the various optimizations 
made to FreeBSD over the years 
helping?



Note:  Most of the optimizations 
discussed in this slide deck were done 
outside of Netflix, by members of the 

FreeBSD community 

Drew Gallatin
EuroBSDCon 2022







 Netflix Video Serving Workload

● FreeBSD-current
● NGINX web server
● Video served via sendfile(2) and 

encrypted using software kTLS



Netflix 400G Video Serving Hardware

● AMD EPYC 7502P (“Rome”)
○ 32 cores @ 2.5GHz
○ 256GB DDR4-3200

■ 8 channels
■ ~150GB/s mem bw

● Or ~1.2Tb/s in networking units
○ 128 lanes PCIe Gen4 

■ ~250GB/s of IO bandwidth
● Or ~2Tb/s in networking units



 Netflix 400G Video Serving Hardware

● 2x Mellanox ConnectX-6 Dx
○ Gen4 x16, 2 full speed 100GbE ports per NIC

■ 4 x 100GbE in total
○ Support for NIC kTLS offload

● 18x WD SN720 NVME
○ 2TB
○ PCIe Gen3 x4



 Measurement Metrics

● Measure the maximum stable bandwidth of a 
configuration

● Use this bandwidth, and the CPU utilization, to 
arrive at a new “Gb/s per Percent CPU” metric.



 Optimal Configuration

● Dataflow using NIC kTLS  & sendfile
● All VM and NIC optimizations enabled
● Baseline Bandwidth: 375Gb/s @ 53% CPU

○ Or 7.1Gbs/pcpu





 Section 1: 

Sendfile & kTLS



Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

 

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s
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copied to userspace & encrypted 
by the host CPU, then copied back 
to the kernel
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~400GB/sec of memory bandwidth 
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 What is sendfile?

● Specify a file and a socket to send it on
● Kernel sends directly from the page cache

○ No data is copied to userspace
○ Nginx never sees the data it is sending



 Problem: Disk reads can block 
sendfile

● When an nginx worker is blocked, it 
cannot service other requests

● Solutions to prevent nginx from blocking 
like aio or thread pools scale poorly



 Solution: Asynchronous sendfile

● sendfile() becomes “fire and forget”
● Empty buffers are appended to the TCP 

socket buffer. TCP stops when it sees 
an empty buffer.

● When disk read completes, disk 
interrupt handler informs TCP it is ready 
to send
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What is kTLS?
● Bulk crypto is moved into the kernel

○ Handshakes are still done in userspace
○ Required for async sendfile based dataflow with 

no copies or context switches.
● Doing crypto in the kernel almost quadruples CPU 

efficiency
● Originated at Netflix
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~200GB/sec of memory bandwidth 
and ~64 PCIe Gen 4 lanes are 
needed to serve 400Gb/s 
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Using sendfile and NIC  kTLS, data 
is encrypted by the NIC.

400Gb/s == 50GB/s

~100GB/sec of memory bandwidth 
and ~64 PCIe Gen 4 lanes are 
needed to serve 400Gb/s 



 Disable kTLS (and async sendfile)

● I was expecting just elevated CPU and memory 
bandwidth
○ Max BW is ~40Gb/s with 100% CPU
○ Bottlenecked on lock contention on aio queues

■ Nginx uses aio to avoid blocking when 
sending files without async sendfile.



 Disable kTLS (and async sendfile)





 Disable kTLS (and async sendfile)

● Attempt 2:  Use nginx thread pools
○ 90Gb/s, 80% CPU
○ A lot of time spent accessing memory

■ Copy out file data from kernel to ngix
■ Crypto in userspace SSL
■ Extra memcpy in nginx for SSL
■ Copy in data to kernel from nginx



 Disable kTLS (and async sendfile)





 Disable sendfile (but use kTLS)

● 75Gb/s, 80% CPU
○ VM lock contention
○ A lot of time spent accessing memory

■ Copy out file data from kernel to ngix
■ Extra memcpy in nginx for SSL
■ Copy in data to kernel from nginx
■ Crypto in-place in kernel



 Disable sendfile (but use kTLS)





 Disable sendfile (but use NIC kTLS)

● 95Gb/s, 80% CPU
○ VM lock contention
○ A lot of time spent accessing memory

■ Copy out file data from kernel to ngix
■ Extra memcpy in nginx for SSL

● Even though it is not doing encryption, it 
still copies into a 16k buffer

■ Copy in data to kernel from nginx



 Disable sendfile (but use NIC kTLS)





 ISA-L

● Intel Intelligent Storage Acceleration Library
○ In ports as security/isal-kmod
○ Works well on AMD CPUs as well as Intel

● Highly optimized accelerated AES block ciphers
○ Has options to use non-temporal instructions, 

which avoids read-modify-write cache miss 
when storing crypto results



 Enable Sendfile & kTLS, but disable 
ISA-L crypto

● 180Gb/s, 80% CPU
○ CPU / Memory bound in aesni crypto
○ Unlike ISA-L

■ We take cache misses when storing 
encrypted data

■ Data is copied



 Enable Sendfile & kTLS, but disable 
ISA-L crypto





 Enable Sendfile & kTLS

● 240Gb/s, 80% CPU
○ CPU / Memory bound in ISA-L crypto



 Enable Sendfile & kTLS





 Section 2: 

Virtual Memory 
Optimizations



 UMA VM Page Cache

● A per-cpu pool of free pages that can be accessed 
locklessly

● Managed via UMA (Universal Memory Allocator)
● Only works for free pages, not pages that are 

recycled into the inactive or active page queues



 Disable UMA VM Page Cache

● 60Gb/s 95% CPU
● Severe lock contention on VM free page queue



 UMA VM Page Cache





 VM Batch Queues

● A way to free multiple pages to a page queue with 
a single lock 



 Disable VM Batch Queues

● 280Gb/s 95% CPU
● Severe lock contention on VM inactive page queue



 VM Batch Queues





 SF_NOCACHE

● SF_NOCACHE causes data sent by sendfile() to 
be freed directly, and to not linger on the inactive 
page queues.

● Used when we don’t expect data to be re-used.



 Disable SF_NOCACHE

● 120Gb/s at 55% CPU
○ Lock contention on the inactive page queue
○ Nginx pauses cause clients to run away



 Disable SF_NOCACHE





 16KB Pages (arm64)

● Arm64 recently added support for 16K pages
● A lot of our kernel time is spent in page 

management.
● Large performance improvement:

○ 345Gb/s @ 80% CPU -> 368Gb/s @ 66% CPU
■ Ampere Q80-30, 128GB RAM, CX6-DX



 16K Pages



 4K Pages



 16K Pages



 Section 3: 

Network Stack 
Optimizations



 TCP Large Receive Offload (LRO)

● LRO aggregates multiple received packets from the 
same TCP connection

● It reduces trips through the network stack
○ This reduces connection lookups, lock 

acquisitions and releases, decisions about 
when to send TCP acks, etc.



 Disable TCP Large Receive Offload

● 330G 65% CPU
○ Health limited by NIC drops, clients go away



 TCP Large Receive Offload
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 Disable RSS accelerated LRO

● 365G 70% CPU
○ Health limited by NIC drops, clients go away
○ Basically the same efficiency as no LRO



 RSS accelerated LRO





 TCP Large Send Offload (TSO)

● Like LRO, we reduce the number of trips through 
the network stack.

● Rather than sending 2 (or 8 or 43) packets to the 
NIC, we send one.  NIC breaks (segments) it into 2 
(or 8 or 43) packets on the wire.

● Avoids having to allocate headers for each, look up 
ethernet addresses, and interact with NIC hardware 
for each packet



 TSO Disabled

● 180G 85% CPU
○ Needed to disable IRQ coalescing to avoid 

transmit drops
○ A lot more time spent in network related 

functions.



 TCP Large Send Offload (TSO)





 Disable TSO and LRO

● 170G 85% CPU
○ Needed to disable IRQ coalescing to avoid 

transmit drops



 TCP Large Send Offload (TSO) and 
LRO





 But wait, there’s …. not … more..

● 800Gb prototype sitting on datacenter floor due to 
shipping exception 😞

● Something to talk about
next year?



 800G Prototype Details

● Dell R7525
● 2x AMD EPYC 7713 64c / 128t  (128c / 256t total)
● 3x xGMI links between sockets
● 512 GB RAM
● 4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
● 16x Intel Gen4 x4  14TB NVME



 Initial Results: 420Gb/s

● Ran in 1NPS mode
● Network Siloing mode
● CPUs mostly idle

○ AMD guessed that xGMI was down-linking to x2
○ Set xGMI speed to 18GT/s and forced link width to 

x16, and disabled dynamic link width management



 Results with DLWM forced: 500Gb/s

● Ran in 1NPS mode
● Network Siloing mode

○ NVME data DMA’ed to NIC’s NUMA Node
● xGMI link usage very uneven:

○ 15GB/s, 4GB/s and 2GB/s
○ Turns out that NVME is not evenly distributed by 

IO Quadrants
○ Even hashing of cross-socket to xGMI depends on 

evenly distributed IO



 How to Improve xGMI Hashing

● Hashing based on device doing DMA
○ NVME is very uneven
○ NICs are much less uneven
○ “Network Siloing” normally does DMA from NVME 

to remote node, local to NIC
● Flip things, and do DMA from NVME to local buffers
● The NICs are doing DMA across xGMI



 Results with local DMA to NVME 
node: 670Gb/s

● Much more even xGMI hashing:
○ 10/10/7 GB/s

● Problematic because:
○ Daemon that “locks” content into memory is not 

NUMA aware & can lead to page daemon 
thrashing.

○ Still pressure on xGMI links



Disk centric siloing

● Associate disk controllers with NUMA nodes
● Associate NUMA affinity with files
● Associate network connections with NUMA nodes
● Move connections to be “close” to the disk where 

the contents file is stored.
● After the connection is moved, there will be 0 

NUMA crossings for bulk data.



Disk centric siloing problems

● No way to tell link partner that we want LACP to 
direct traffic to a different switch/router port
○ So TCP acks and http requests will come in on 

the “wrong” port
● Moving connections can lead to TCP re-ordering 

due to using multiple egress NICs
● Some clients issue http GET requests for different 

content on the same TCP connection
○ Content may be on different NUMA domains!



Disk centric siloing problems

● Moving NIC TLS sessions is expensive
○ Session will be established before content 

location is known
○ Once content location is known, crypto state 

needs to torn down on the original egress NIC 
and re-established on the NIC close to the 
media file.



Disk centric siloing problems

● Affinities are wrong for most things
○ Nginx worker accepted the connection on the 

NUMA node near the ingress NIC, so all sends 
on the socket will originate from the wrong 
node.

○ TCP/IP, ktls, etc, data structures allocated on 
node near ingress NIC

○ Incoming TCP acks will be handled on ingress 
NIC

○ TCP pacing done by pacer on “wrong” node



Disk centric siloing problems

● Network Siloing: Each connection hashed by LACP 
hash over IP/port.
○ Hundreds of thousands of unique IP/port combos
○ sharding of conns to NUMA domains is nearly 

perfect
● Disk Siloing:

○ Each connection is hashed by content location
○ 8 to 32 drives considered
○ Sharding is almost always uneven



Disk centric siloing problems

● Uneven sharding can lead to hot NUMA nodes
○ Hot node constantly paging due to lack of RAM
○ Hot node NICs overloaded, leading to output drops 

while cold node’s NICs are underused



 “Disk Centric Siloing” Results: 
731Gb/s

● Much less xGMI traffic
● Limited by NIC output drops, not CPU.
● Cause of drops is now largely due to:

○ Page daemon interfering with nginx on popular 
node

○ Uneven loading on NICs due to content popularity 
differences. (NICs on popular node doing 94Gb/s, 
others doing 89Gb/s)


