
The “other” FreeBSD optimizations used
by Netflix to serve video at 800Gb/s from

a single server

Drew Gallatin
EuroBSDCon 2022

Or..

“How badly can I break Netflix’s performance
when I disable optimizations?”

Drew Gallatin
EuroBSDCon 2022

 Motivation:

● Since 2021, Netflix has been able to
serve almost 800Gb/s of TLS encrypted
video traffic from a single server.

● How much are the various optimizations
made to FreeBSD over the years
helping?

Note: Most of the optimizations
discussed in this slide deck were done
outside of Netflix, by members of the

FreeBSD community

Drew Gallatin
EuroBSDCon 2022

 Netflix Video Serving Workload

● FreeBSD-current
● NGINX web server
● Video served via sendfile(2) and

encrypted using software kTLS

Netflix 400G Video Serving Hardware

● AMD EPYC 7502P (“Rome”)
○ 32 cores @ 2.5GHz
○ 256GB DDR4-3200

■ 8 channels
■ ~150GB/s mem bw

● Or ~1.2Tb/s in networking units
○ 128 lanes PCIe Gen4

■ ~250GB/s of IO bandwidth
● Or ~2Tb/s in networking units

 Netflix 400G Video Serving Hardware

● 2x Mellanox ConnectX-6 Dx
○ Gen4 x16, 2 full speed 100GbE ports per NIC

■ 4 x 100GbE in total
○ Support for NIC kTLS offload

● 18x WD SN720 NVME
○ 2TB
○ PCIe Gen3 x4

 Measurement Metrics

● Measure the maximum stable bandwidth of a
configuration

● Use this bandwidth, and the CPU utilization, to
arrive at a new “Gb/s per Percent CPU” metric.

 Optimal Configuration

● Dataflow using NIC kTLS & sendfile
● All VM and NIC optimizations enabled
● Baseline Bandwidth: 375Gb/s @ 53% CPU

○ Or 7.1Gbs/pcpu

 Section 1:

Sendfile & kTLS

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

When not using sendfile, data is
copied to userspace & encrypted
by the host CPU, then copied back
to the kernel

400Gb/s == 50GB/s

~400GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

50
G

B
/s

50
G

B
/s 50

G
B

/s

50
G

B
/s 50

G
B

/s

 What is sendfile?

● Specify a file and a socket to send it on
● Kernel sends directly from the page cache

○ No data is copied to userspace
○ Nginx never sees the data it is sending

 Problem: Disk reads can block
sendfile

● When an nginx worker is blocked, it
cannot service other requests

● Solutions to prevent nginx from blocking
like aio or thread pools scale poorly

 Solution: Asynchronous sendfile

● sendfile() becomes “fire and forget”
● Empty buffers are appended to the TCP

socket buffer. TCP stops when it sees
an empty buffer.

● When disk read completes, disk
interrupt handler informs TCP it is ready
to send

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet

Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

What is kTLS?
● Bulk crypto is moved into the kernel

○ Handshakes are still done in userspace
○ Required for async sendfile based dataflow with

no copies or context switches.
● Doing crypto in the kernel almost quadruples CPU

efficiency
● Originated at Netflix

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

When not using sendfile, data is
copied to userspace & encrypted
by the host CPU, then copied back
to the kernel

400Gb/s == 50GB/s

~400GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

50
G

B
/s

50
G

B
/s 50

G
B

/s

50
G

B
/s 50

G
B

/s

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

400Gb/s == 50GB/s

~200GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

400Gb/s == 50GB/s

~200GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and NIC kTLS, data
is encrypted by the NIC.

400Gb/s == 50GB/s

~100GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

 Disable kTLS (and async sendfile)

● I was expecting just elevated CPU and memory
bandwidth
○ Max BW is ~40Gb/s with 100% CPU
○ Bottlenecked on lock contention on aio queues

■ Nginx uses aio to avoid blocking when
sending files without async sendfile.

 Disable kTLS (and async sendfile)

 Disable kTLS (and async sendfile)

● Attempt 2: Use nginx thread pools
○ 90Gb/s, 80% CPU
○ A lot of time spent accessing memory

■ Copy out file data from kernel to ngix
■ Crypto in userspace SSL
■ Extra memcpy in nginx for SSL
■ Copy in data to kernel from nginx

 Disable kTLS (and async sendfile)

 Disable sendfile (but use kTLS)

● 75Gb/s, 80% CPU
○ VM lock contention
○ A lot of time spent accessing memory

■ Copy out file data from kernel to ngix
■ Extra memcpy in nginx for SSL
■ Copy in data to kernel from nginx
■ Crypto in-place in kernel

 Disable sendfile (but use kTLS)

 Disable sendfile (but use NIC kTLS)

● 95Gb/s, 80% CPU
○ VM lock contention
○ A lot of time spent accessing memory

■ Copy out file data from kernel to ngix
■ Extra memcpy in nginx for SSL

● Even though it is not doing encryption, it
still copies into a 16k buffer

■ Copy in data to kernel from nginx

 Disable sendfile (but use NIC kTLS)

 ISA-L

● Intel Intelligent Storage Acceleration Library
○ In ports as security/isal-kmod
○ Works well on AMD CPUs as well as Intel

● Highly optimized accelerated AES block ciphers
○ Has options to use non-temporal instructions,

which avoids read-modify-write cache miss
when storing crypto results

 Enable Sendfile & kTLS, but disable
ISA-L crypto

● 180Gb/s, 80% CPU
○ CPU / Memory bound in aesni crypto
○ Unlike ISA-L

■ We take cache misses when storing
encrypted data

■ Data is copied

 Enable Sendfile & kTLS, but disable
ISA-L crypto

 Enable Sendfile & kTLS

● 240Gb/s, 80% CPU
○ CPU / Memory bound in ISA-L crypto

 Enable Sendfile & kTLS

 Section 2:

Virtual Memory
Optimizations

 UMA VM Page Cache

● A per-cpu pool of free pages that can be accessed
locklessly

● Managed via UMA (Universal Memory Allocator)
● Only works for free pages, not pages that are

recycled into the inactive or active page queues

 Disable UMA VM Page Cache

● 60Gb/s 95% CPU
● Severe lock contention on VM free page queue

 UMA VM Page Cache

 VM Batch Queues

● A way to free multiple pages to a page queue with
a single lock

 Disable VM Batch Queues

● 280Gb/s 95% CPU
● Severe lock contention on VM inactive page queue

 VM Batch Queues

 SF_NOCACHE

● SF_NOCACHE causes data sent by sendfile() to
be freed directly, and to not linger on the inactive
page queues.

● Used when we don’t expect data to be re-used.

 Disable SF_NOCACHE

● 120Gb/s at 55% CPU
○ Lock contention on the inactive page queue
○ Nginx pauses cause clients to run away

 Disable SF_NOCACHE

 16KB Pages (arm64)

● Arm64 recently added support for 16K pages
● A lot of our kernel time is spent in page

management.
● Large performance improvement:

○ 345Gb/s @ 80% CPU -> 368Gb/s @ 66% CPU
■ Ampere Q80-30, 128GB RAM, CX6-DX

 16K Pages

 4K Pages

 16K Pages

 Section 3:

Network Stack
Optimizations

 TCP Large Receive Offload (LRO)

● LRO aggregates multiple received packets from the
same TCP connection

● It reduces trips through the network stack
○ This reduces connection lookups, lock

acquisitions and releases, decisions about
when to send TCP acks, etc.

 Disable TCP Large Receive Offload

● 330G 65% CPU
○ Health limited by NIC drops, clients go away

 TCP Large Receive Offload

 RSS accelerated LRO
Connection 0
Packet 0

Connection 1
Packet 0

Connection 2
Packet 0

Connection 3
Packet 0

Connection 4
Packet 0

Connection 5
Packet 0

Connection 254
Packet 3

Connection 255
Packet 3

Connection 0
Packet 0

Connection 0
Packet 1

Connection 0
Packet 2

Connection 0
Packet 3

Connection 1
Packet 0

Connection 1
Packet 1

Connection 255
Packet 2

Connection 255
Packet 3

SORT

 Disable RSS accelerated LRO

● 365G 70% CPU
○ Health limited by NIC drops, clients go away
○ Basically the same efficiency as no LRO

 RSS accelerated LRO

 TCP Large Send Offload (TSO)

● Like LRO, we reduce the number of trips through
the network stack.

● Rather than sending 2 (or 8 or 43) packets to the
NIC, we send one. NIC breaks (segments) it into 2
(or 8 or 43) packets on the wire.

● Avoids having to allocate headers for each, look up
ethernet addresses, and interact with NIC hardware
for each packet

 TSO Disabled

● 180G 85% CPU
○ Needed to disable IRQ coalescing to avoid

transmit drops
○ A lot more time spent in network related

functions.

 TCP Large Send Offload (TSO)

 Disable TSO and LRO

● 170G 85% CPU
○ Needed to disable IRQ coalescing to avoid

transmit drops

 TCP Large Send Offload (TSO) and
LRO

 But wait, there’s …. not … more..

● 800Gb prototype sitting on datacenter floor due to
shipping exception 😞

● Something to talk about
next year?

 800G Prototype Details

● Dell R7525
● 2x AMD EPYC 7713 64c / 128t (128c / 256t total)
● 3x xGMI links between sockets
● 512 GB RAM
● 4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
● 16x Intel Gen4 x4 14TB NVME

 Initial Results: 420Gb/s

● Ran in 1NPS mode
● Network Siloing mode
● CPUs mostly idle

○ AMD guessed that xGMI was down-linking to x2
○ Set xGMI speed to 18GT/s and forced link width to

x16, and disabled dynamic link width management

 Results with DLWM forced: 500Gb/s

● Ran in 1NPS mode
● Network Siloing mode

○ NVME data DMA’ed to NIC’s NUMA Node
● xGMI link usage very uneven:

○ 15GB/s, 4GB/s and 2GB/s
○ Turns out that NVME is not evenly distributed by

IO Quadrants
○ Even hashing of cross-socket to xGMI depends on

evenly distributed IO

 How to Improve xGMI Hashing

● Hashing based on device doing DMA
○ NVME is very uneven
○ NICs are much less uneven
○ “Network Siloing” normally does DMA from NVME

to remote node, local to NIC
● Flip things, and do DMA from NVME to local buffers
● The NICs are doing DMA across xGMI

 Results with local DMA to NVME
node: 670Gb/s

● Much more even xGMI hashing:
○ 10/10/7 GB/s

● Problematic because:
○ Daemon that “locks” content into memory is not

NUMA aware & can lead to page daemon
thrashing.

○ Still pressure on xGMI links

Disk centric siloing

● Associate disk controllers with NUMA nodes
● Associate NUMA affinity with files
● Associate network connections with NUMA nodes
● Move connections to be “close” to the disk where

the contents file is stored.
● After the connection is moved, there will be 0

NUMA crossings for bulk data.

Disk centric siloing problems

● No way to tell link partner that we want LACP to
direct traffic to a different switch/router port
○ So TCP acks and http requests will come in on

the “wrong” port
● Moving connections can lead to TCP re-ordering

due to using multiple egress NICs
● Some clients issue http GET requests for different

content on the same TCP connection
○ Content may be on different NUMA domains!

Disk centric siloing problems

● Moving NIC TLS sessions is expensive
○ Session will be established before content

location is known
○ Once content location is known, crypto state

needs to torn down on the original egress NIC
and re-established on the NIC close to the
media file.

Disk centric siloing problems

● Affinities are wrong for most things
○ Nginx worker accepted the connection on the

NUMA node near the ingress NIC, so all sends
on the socket will originate from the wrong
node.

○ TCP/IP, ktls, etc, data structures allocated on
node near ingress NIC

○ Incoming TCP acks will be handled on ingress
NIC

○ TCP pacing done by pacer on “wrong” node

Disk centric siloing problems

● Network Siloing: Each connection hashed by LACP
hash over IP/port.
○ Hundreds of thousands of unique IP/port combos
○ sharding of conns to NUMA domains is nearly

perfect
● Disk Siloing:

○ Each connection is hashed by content location
○ 8 to 32 drives considered
○ Sharding is almost always uneven

Disk centric siloing problems

● Uneven sharding can lead to hot NUMA nodes
○ Hot node constantly paging due to lack of RAM
○ Hot node NICs overloaded, leading to output drops

while cold node’s NICs are underused

 “Disk Centric Siloing” Results:
731Gb/s

● Much less xGMI traffic
● Limited by NIC output drops, not CPU.
● Cause of drops is now largely due to:

○ Page daemon interfering with nginx on popular
node

○ Uneven loading on NICs due to content popularity
differences. (NICs on popular node doing 94Gb/s,
others doing 89Gb/s)

