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 Motivation:

● Since 2020, Netflix has been able to 
serve 200Gb/s of TLS encrypted video 
traffic from a single server.

● How can we serve ~400Gb/s of video 
from the same servers?



 Netflix Video Serving Workload

● FreeBSD-current
● NGINX web server
● Video served via sendfile(2) and 

encrypted using software kTLS



 Netflix Video Serving Hardware

● AMD EPYC 7502P (“Rome”)
○ 32 cores @ 2.5GHz
○ 256GB DDR4-3200

■ 8 channels
■ ~150GB/s mem bw

● Or ~1.2Tb/s in networking units
○ 128 lanes PCIe Gen4 

■ ~250GB/s of IO bandwidth
● Or ~2Tb/s in networking units



 Netflix Video Serving Hardware

● 2x Mellanox ConnectX-6 Dx
○ Gen4 x16, 2 full speed 100GbE ports per NIC

■ 4 x 100GbE in total
○ Support for NIC kTLS offload

● 18x WD SN720 NVME
○ 2TB
○ PCIe Gen3 x4



 Performance Results:

● 240Gb/s
● Limited by memory BW

○ Determined empirically by using 
AMDuProfPCM



Netflix 400Gb/s Video Serving Data Flow
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Using sendfile and software  kTLS, 
data is encrypted by the host CPU.

400Gb/s == 50GB/s

~200GB/sec of memory bandwidth 
and ~64 PCIe Gen 4 lanes are 
needed to serve 400Gb/s 



 Can NUMA get us to 400Gb/s
 
● Use STREAM benchmark bandwidth as a proxy

○ Single Node: 150GB/s
○ Four Nodes: 175GB/s 



 What is NUMA?

Non Uniform Memory Architecture

That means memory and/or devices can 
be “closer” to some CPU cores
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Memory access 
was UNIFORM:

Each core had 
equal and direct 
access to all 
memory and IO 
devices.
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4 Node configurations are 
common on AMD EPYC



Cross-Domain costs

Latency Penalties:

● 12-28ns



Cross-Domain costs

Bandwidth Limit:

● AMD Infinity Fabric
○ ~47GB/s per link
○ ~280GB/s total



 Strategy:  Keep as much of our 
200GB/sec of bulk data off the 
NUMA fabric is possible

● Bulk data congests NUMA fabric and leads to 
CPU stalls when competing with normal memory 
accesses.



4 Nodes, worst case

Steps to send data:
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4 Nodes, worst case

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes data for encryption

○ Third NUMA crossing
● DMA data from memory to network

○ Fourth NUMA crossing



 Worst Case Summary:

● 4 NUMA crossings
● 200GB/s of data on the NUMA fabric

○ Fabric saturates, cannot handle the load.  
○ CPU Stalls, saturates early



 Best Case Summary:

● 0 NUMA crossings
● 0GB/s of data on the NUMA 

fabric



 How can we get as close as 
possible to the best case?

● Constrained to use 1 IP address 
per host

● Must use lagg(4) LACP network 
bonding



Impose order on the chaos.. 
somehow:

● Disk centric siloing
○ Try to do everything on the NUMA node where 

the content is stored
● Network centric siloing

○ Try to do as much as we can on the NUMA 
node that the LACP partner chose for us



Network centric siloing

● Associate network connections with NUMA nodes
● Allocate local memory to back media files when 

they are DMA’ed from disk
● Allocate local memory for TLS crypto destination 

buffers & do SW crypto locally
● Run kTLS workers, RACK / BBR TCP pacers with 

domain affinity
● Choose local lagg(4) egress port
             All of this is upstream!



4 Nodes, worst case with siloing

Steps to send data:
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4 Nodes, worst case with siloing

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption
● CPU writes data for encryption
● DMA data from memory to network



 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 50GB/s of data on each NUMA fabric link
○ Much less than the 280GB/sec of Inifinity fabric 

bandwidth



 Real Life is Messy

● NICs on only 2 of the 4 NUMA nodes
● Differing number of NVME on each node
● Hacks to “pretend” we have NICs in all 4 domains
● Impacts worst and average cases



4 Nodes,worst case with siloing: messy

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption
● CPU writes data for encryption
● DMA data from memory to network



 Worst Case Summary:

● 2 NUMA crossing on average
○ 100% of disk reads across NUMA
○ 100% of network writes across NUMA

● 100GB/s of data on the NUMA fabric
○ Less than the 280GB/s of Inifinity fabric 

bandwidth



 Average Case Summary:

● 1.25 NUMA crossings on average
○ 75% of disk reads across NUMA
○ 50% of NIC transmits across NUMA due to 

unbalanced setup
● 62.5 GB/sec of data on NUMA fabric



Performance: 1 vs 4 nodes



Would NIC based kTLS 
offload help for 400Gb/s ?
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Netflix 400Gb/s Video Serving Data Flow
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Using sendfile and NIC  kTLS, data 
is encrypted by the NIC.

400Gb/s == 50GB/s

~100GB/sec of memory bandwidth 
and ~64 PCIe Gen 4 lanes are 
needed to serve 400Gb/s 



 What is NIC kTLS?:

● Hardware Inline TLS
● TLS session is established in userspace.
● When crypto is moved to the kernel, the kernel 

passes crypto keys to the NIC
● TLS records are encrypted by NIC as the data 

flows through it on transmit
○ No more detour through the CPU for crypto
○ This cuts memory BW requirements in half!



 Mellanox ConnectX-6 Dx

● Offloads TLS 1.2 and 1.3 for AES GCM cipher
● Retains crypto state within a TLS record

○ Means that the TCP stack can send partial 
TLS records without performance loss

● If a packet is sent out of order (eg, a TCP 
retransmit), it must re-DMA the record containing 
the out of order packet



 CX6-DX: In-order Transmit
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 CX6-DX: TCP Retransmit
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 CX6-DX: Initial Results

Peak:125Gb/s per NIC, (~250Gb/s total)
Sustained:75Gb/s per NIC, (~150Gb/s total)

● Pre-release Firmware 



 CX6-DX: Initial performance

● NIC stores TLS state per-session
● We have a lot of sessions active

○ (~400k sessions for 400Gb/s)
○ Performance gets worse the more sessions we 

add
● Limited memory on-board NIC

○ NIC pages in and out to buffers in host RAM
○ Buffers managed by NIC



 PCIe Relaxed Ordering

● Allows PCIe transactions to pass each other
○ Should eliminate pipeline bubbles due to “slow” 

reads delaying fast ones.
○ May help with “paging in” TLS connection state

● Enabled Relaxed Ordering
○ Didn’t help
○ Turns out CX6-DX pre-release firmware hardcoded 

Relaxed Ordering to disabled



 CX6-DX: Results from next firmware

● Firmware update enabled Relaxed Ordering on NIC
● Peak results improved:

160Gb/s per NIC (~320Gb/s total)
● Note that peak and sustained were effectively 

identical from this fw update forward.
● This is a new record!
● Nearly as fast as SW TLS (per NIC): 160Gb/s vs 

190Gb/s, much faster overall



 CX6-DX: Results from production fw 

● Firmware update added “TLS_OPTIMIZE” setting
● Peak & sustained results improved:

190Gb/s per NIC (~380Gb/s total)!



 CX6-DX: What’s needed to use of 
NIC TLS in production at Netflix?

● QoE testing
○ Measure various factors, such as rebuffer rate, 

play delay, time to quality, etc.
○ Initial results are great
○ Larger, more complete study scheduled soon.



 CX6-DX: What’s needed to use of 
NIC TLS in production at Netflix?

● Track retransmits & move sessions to software
○ Monitor bytes retransmitted for lossy networks
○ Monitor segments retransmitted to protect against 

attacks



 CX6-DX:Mixed HW/SW session perf?

● Moving a non-trivial percentage of conns to SW has 
unanticipated BW cost.

● Setting SW switch threshold to 1% bytes retransmitted 
moves ⅓ of conns to SW

● Max stable BW moves from 380Gb/s to 350Gb/s with 
roughly ⅓ of connections in SW
○ Performance impact is more than expected



4 Nodes, worst case with siloing + 
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4 Nodes, worst case with siloing + 
NIC kTLS

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● DMA data from memory to network



 Worst Case Summary:

● 2 NUMA crossing on average
○ 100% of disk reads across NUMA
○ 100% of network writes across NUMA

● 100GB/s of data on the NUMA fabric
○ Less than the 280GB/s of Inifinity fabric 

bandwidth



 Average Case Summary:

● 1.25 NUMA crossings on average
○ 75% of disk reads across NUMA
○ 50% of NIC transmits across NUMA due to 

unbalanced setup
● 62.5 GB/sec of data on NUMA fabric





 Other platforms?  Ampere Altra

● “Mt. Snow”
○ Q80-30:  80 3.0GHz Arm Neoverse-N1 cores
○ 8 channels of 256GB DDR4-3200
○ 128 Lanes Gen4 PCIe
○ 16x WD SN720 2TB NVMe
○ 2 Mellanox CX6-DX NICs



 Other platforms?  Ampere Altra

● Minimal access to system counters
○ No way to see memory BW usage
○ No way to see IO bandwidth or latency
○ Leads to feeling like you’re driving blind



 Other platforms?  Ampere Altra

● Poor performance with SW kTLS: 
○ CPU limited at 180Gb/s

● Poor initial performance with NIC TLS
○ PCIe limited at 240Gb/s

■ Very low CPU utilization
■ NICs saturated, and we see lots of output 

drops



 Ampere: PCIe Extended Tags

● Poor initial performance with NIC TLS: 240Gb/s
● Very low CPU utilization
● NICs saturated, and we see lots of output drops
● Seems like a PCIe problem



 Ampere: PCIe Extended Tags

● PCIe is more of a network than a bus
● Number of outstanding DMA reads is limited by the 

number of PCIe “tags”
● PCIe tag space is 5-bits by default, allowing for 32 

DMAs to be in-flight at the same time
● PCIe extended tags increase the tag space to 8 bits, 

allowing 256 DMA reads in flight at the same time
● Like increasing TCP window size.



 Ampere: PCIe Extended Tags

● After enabling extended tags, we see a bandwidth 
improvement:

240Gb/s -> 320Gb/s



 Other platforms?  Intel Ice Lake Xeon

● 8352V CPU
○ 36 cores, 2.1GHz
○ 8 channels 256GB DDR4-3200 (running at 2933)
○ 64 Lanes Gen4 PCIe
○ 20x Kioxia 4TB NVMe (PCIe Gen4)
○ 2 Mellanox CX6-DX NICs



 Intel Ice Lake Xeon

● 230Gb/s SW kTLS
○ Limited by memory BW



 Intel Ice Lake Xeon (WIP)

● 230Gb/s SW kTLS
○ Limited by memory BW

■ 8352V runs memory at 2993, others SKUs run 
at 3200
● Would expect the same performance as 

AMD from that
● BIOS locked out PCIe Relaxed ordering, so no NIC 

KTLS results yet







 But wait, there’s …. not … more..

● 800Gb prototype sitting on datacenter floor due to 
shipping exception 😞

● Something to talk about
next year?



Many thanks to:
● Warren Harrop & the Netflix Open 

Connect hardware team for putting 
together the testbed.

● FreeBSD developers for making such an 
awesome OS

Slides at: 
https://people.freebsd.org/~gallatin/talks/euro2021.pdf



Disk centric siloing

● Associate disk controllers with NUMA nodes
● Associate NUMA affinity with files
● Associate network connections with NUMA nodes
● Move connections to be “close” to the disk where 

the contents file is stored.
● After the connection is moved, there will be 0 

NUMA crossings!



Disk centric siloing problems

● No way to tell link partner that we want LACP to 
direct traffic to a different switch/router port
○ So TCP acks and http requests will come in on 

the “wrong” port
● Moving connections can lead to TCP re-ordering 

due to using multiple egress NICs
● Some clients issue http GET requests for different 

content on the same TCP connection
○ Content may be on different NUMA domains!



Disk centric siloing problems

● Different numbers of NVME drives on each 
domain
○ Node 3 has 3x the number of NVME drives as 

Node 0
● Content popularity differences can lead to hot and 

cold disks
● All of this adds up to uneven use of each Numa 

Node.
○ Output limited by hottest Numa node



Disk centric siloing problems

● Moving established NIC TLS sessions to a 
different egress NIC is painful



Disk centric siloing problems

● Moving NIC TLS sessions is expensive
○ Session will be established before content 

location is known



 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Allocate host pages to back files on NUMA node 

close to NVME, not  NIC
○ Eliminates the 0.75 crossings for 4 domains with 

NVME
○ Still have the 0.5 crossings on average for 

remapped NICs 



 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Assumes equal number of NVME on each node
○ Actual machine has:

■ Node 0: 2 NVME
■ Node 1: 6 NVME
■ Node 2: 4 NVME
■ Node 3: 6 NVME



 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Peak of ~300Gb/s
○ Traffic unequal due to more NVME on Node 3
○ Output drops on mce3 (NIC port on Node 3) at 

98Gb/s, while mce0 (NIC port on Node 1) is mostly 
idle at 40Gb/s

○ Tried “remapping” NVME and pretending some 
drives in different domains



 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Pretended some of Node 3’s NVME drives were in 

Node 1
■ Reached a peak of ~350Gb/s
■ Output still uneven between domains because 

of uneven popularity of content on different 
NVME drives

○ Sharding based on network (LACP) far more even


