
Serving Netflix Video at
400Gb/s on FreeBSD

Drew Gallatin
EuroBSDCon 2021

 Outline:

● Motivation
● Description of production platform
● Description of workload
● To NUMA or not to NUMA?
● Inline Hardware (NIC) kTLS
● Alternate platforms

 Motivation:

● Since 2020, Netflix has been able to
serve 200Gb/s of TLS encrypted video
traffic from a single server.

● How can we serve ~400Gb/s of video
from the same servers?

 Netflix Video Serving Workload

● FreeBSD-current
● NGINX web server
● Video served via sendfile(2) and

encrypted using software kTLS

 Netflix Video Serving Hardware

● AMD EPYC 7502P (“Rome”)
○ 32 cores @ 2.5GHz
○ 256GB DDR4-3200

■ 8 channels
■ ~150GB/s mem bw

● Or ~1.2Tb/s in networking units
○ 128 lanes PCIe Gen4

■ ~250GB/s of IO bandwidth
● Or ~2Tb/s in networking units

 Netflix Video Serving Hardware

● 2x Mellanox ConnectX-6 Dx
○ Gen4 x16, 2 full speed 100GbE ports per NIC

■ 4 x 100GbE in total
○ Support for NIC kTLS offload

● 18x WD SN720 NVME
○ 2TB
○ PCIe Gen3 x4

 Performance Results:

● 240Gb/s
● Limited by memory BW

○ Determined empirically by using
AMDuProfPCM

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

400Gb/s == 50GB/s

~200GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

 Can NUMA get us to 400Gb/s

● Use STREAM benchmark bandwidth as a proxy

○ Single Node: 150GB/s
○ Four Nodes: 175GB/s

 What is NUMA?

Non Uniform Memory Architecture

That means memory and/or devices can
be “closer” to some CPU cores

Memory

CPU

Network Card

Disks

Multi CPU Before NUMA

Memory

Network Card

Disks

CPU
North Bridge

Memory access
was UNIFORM:

Each core had
equal and direct
access to all
memory and IO
devices.

Memory

CPU

Network Card

Disks

Multi Socket system with NUMA:

Memory

Network Card

DisksMemory access can be
NON-UNIFORM
● Each core has

unequal access to
memory

● Each core has
unequal access to
I/O devices

CPU

NUMA Bus

Memory

CPU

Network Card

Disks

Present day NUMA:

Memory

Network Card

DisksEach locality zone
called a
“NUMA Domain” or
“NUMA Node” CPU

NUMA Bus

Node 0 Node 1

4 Node configurations are
common on AMD EPYC

Cross-Domain costs

Latency Penalties:

● 12-28ns

Cross-Domain costs

Bandwidth Limit:

● AMD Infinity Fabric
○ ~47GB/s per link
○ ~280GB/s total

 Strategy: Keep as much of our
200GB/sec of bulk data off the
NUMA fabric is possible

● Bulk data congests NUMA fabric and leads to
CPU stalls when competing with normal memory
accesses.

4 Nodes, worst case

Steps to send data:

4 Nodes, worst case

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

4 Nodes, worst case

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing

4 Nodes, worst case

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes data for encryption

○ Third NUMA crossing

4 Nodes, worst case

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes data for encryption

○ Third NUMA crossing
● DMA data from memory to network

○ Fourth NUMA crossing

 Worst Case Summary:

● 4 NUMA crossings
● 200GB/s of data on the NUMA fabric

○ Fabric saturates, cannot handle the load.
○ CPU Stalls, saturates early

 Best Case Summary:

● 0 NUMA crossings
● 0GB/s of data on the NUMA

fabric

 How can we get as close as
possible to the best case?

● Constrained to use 1 IP address
per host

● Must use lagg(4) LACP network
bonding

Impose order on the chaos..
somehow:

● Disk centric siloing
○ Try to do everything on the NUMA node where

the content is stored
● Network centric siloing

○ Try to do as much as we can on the NUMA
node that the LACP partner chose for us

Network centric siloing

● Associate network connections with NUMA nodes
● Allocate local memory to back media files when

they are DMA’ed from disk
● Allocate local memory for TLS crypto destination

buffers & do SW crypto locally
● Run kTLS workers, RACK / BBR TCP pacers with

domain affinity
● Choose local lagg(4) egress port
 All of this is upstream!

4 Nodes, worst case with siloing

Steps to send data:

4 Nodes, worst case with siloing

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

4 Nodes, worst case with siloing

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

4 Nodes, worst case with siloing

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption
● CPU writes data for encryption

4 Nodes, worst case with siloing

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption
● CPU writes data for encryption
● DMA data from memory to network

 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 50GB/s of data on each NUMA fabric link
○ Much less than the 280GB/sec of Inifinity fabric

bandwidth

 Real Life is Messy

● NICs on only 2 of the 4 NUMA nodes
● Differing number of NVME on each node
● Hacks to “pretend” we have NICs in all 4 domains
● Impacts worst and average cases

4 Nodes,worst case with siloing: messy

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption
● CPU writes data for encryption
● DMA data from memory to network

 Worst Case Summary:

● 2 NUMA crossing on average
○ 100% of disk reads across NUMA
○ 100% of network writes across NUMA

● 100GB/s of data on the NUMA fabric
○ Less than the 280GB/s of Inifinity fabric

bandwidth

 Average Case Summary:

● 1.25 NUMA crossings on average
○ 75% of disk reads across NUMA
○ 50% of NIC transmits across NUMA due to

unbalanced setup
● 62.5 GB/sec of data on NUMA fabric

Performance: 1 vs 4 nodes

Would NIC based kTLS
offload help for 400Gb/s ?

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

400Gb/s == 50GB/s

~200GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

50
G

B
/s

50
G

B
/s

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

400Gb/s == 50GB/s

~200GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

Netflix 400Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

Bulk Data

Metadata

50GB/s 50GB/s

Using sendfile and NIC kTLS, data
is encrypted by the NIC.

400Gb/s == 50GB/s

~100GB/sec of memory bandwidth
and ~64 PCIe Gen 4 lanes are
needed to serve 400Gb/s

 What is NIC kTLS?:

● Hardware Inline TLS
● TLS session is established in userspace.
● When crypto is moved to the kernel, the kernel

passes crypto keys to the NIC
● TLS records are encrypted by NIC as the data

flows through it on transmit
○ No more detour through the CPU for crypto
○ This cuts memory BW requirements in half!

 Mellanox ConnectX-6 Dx

● Offloads TLS 1.2 and 1.3 for AES GCM cipher
● Retains crypto state within a TLS record

○ Means that the TCP stack can send partial
TLS records without performance loss

● If a packet is sent out of order (eg, a TCP
retransmit), it must re-DMA the record containing
the out of order packet

 CX6-DX: In-order Transmit

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

014482896434457927240

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

868810136115841303214480

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

15928

 CX6-DX: TCP Retransmit

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

15928

 CX6-DX: Initial Results

Peak:125Gb/s per NIC, (~250Gb/s total)
Sustained:75Gb/s per NIC, (~150Gb/s total)

● Pre-release Firmware

 CX6-DX: Initial performance

● NIC stores TLS state per-session
● We have a lot of sessions active

○ (~400k sessions for 400Gb/s)
○ Performance gets worse the more sessions we

add
● Limited memory on-board NIC

○ NIC pages in and out to buffers in host RAM
○ Buffers managed by NIC

 PCIe Relaxed Ordering

● Allows PCIe transactions to pass each other
○ Should eliminate pipeline bubbles due to “slow”

reads delaying fast ones.
○ May help with “paging in” TLS connection state

● Enabled Relaxed Ordering
○ Didn’t help
○ Turns out CX6-DX pre-release firmware hardcoded

Relaxed Ordering to disabled

 CX6-DX: Results from next firmware

● Firmware update enabled Relaxed Ordering on NIC
● Peak results improved:

160Gb/s per NIC (~320Gb/s total)
● Note that peak and sustained were effectively

identical from this fw update forward.
● This is a new record!
● Nearly as fast as SW TLS (per NIC): 160Gb/s vs

190Gb/s, much faster overall

 CX6-DX: Results from production fw

● Firmware update added “TLS_OPTIMIZE” setting
● Peak & sustained results improved:

190Gb/s per NIC (~380Gb/s total)!

 CX6-DX: What’s needed to use of
NIC TLS in production at Netflix?

● QoE testing
○ Measure various factors, such as rebuffer rate,

play delay, time to quality, etc.
○ Initial results are great
○ Larger, more complete study scheduled soon.

 CX6-DX: What’s needed to use of
NIC TLS in production at Netflix?

● Track retransmits & move sessions to software
○ Monitor bytes retransmitted for lossy networks
○ Monitor segments retransmitted to protect against

attacks

 CX6-DX:Mixed HW/SW session perf?

● Moving a non-trivial percentage of conns to SW has
unanticipated BW cost.

● Setting SW switch threshold to 1% bytes retransmitted
moves ⅓ of conns to SW

● Max stable BW moves from 380Gb/s to 350Gb/s with
roughly ⅓ of connections in SW
○ Performance impact is more than expected

4 Nodes, worst case with siloing +
NIC kTLS

Steps to send data:

4 Nodes, worst case with siloing +
NIC kTLS

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

4 Nodes, worst case with siloing +
NIC kTLS

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● DMA data from memory to network

4 Nodes, worst case with siloing +
NIC kTLS

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● DMA data from memory to network

 Worst Case Summary:

● 2 NUMA crossing on average
○ 100% of disk reads across NUMA
○ 100% of network writes across NUMA

● 100GB/s of data on the NUMA fabric
○ Less than the 280GB/s of Inifinity fabric

bandwidth

 Average Case Summary:

● 1.25 NUMA crossings on average
○ 75% of disk reads across NUMA
○ 50% of NIC transmits across NUMA due to

unbalanced setup
● 62.5 GB/sec of data on NUMA fabric

 Other platforms? Ampere Altra

● “Mt. Snow”
○ Q80-30: 80 3.0GHz Arm Neoverse-N1 cores
○ 8 channels of 256GB DDR4-3200
○ 128 Lanes Gen4 PCIe
○ 16x WD SN720 2TB NVMe
○ 2 Mellanox CX6-DX NICs

 Other platforms? Ampere Altra

● Minimal access to system counters
○ No way to see memory BW usage
○ No way to see IO bandwidth or latency
○ Leads to feeling like you’re driving blind

 Other platforms? Ampere Altra

● Poor performance with SW kTLS:
○ CPU limited at 180Gb/s

● Poor initial performance with NIC TLS
○ PCIe limited at 240Gb/s

■ Very low CPU utilization
■ NICs saturated, and we see lots of output

drops

 Ampere: PCIe Extended Tags

● Poor initial performance with NIC TLS: 240Gb/s
● Very low CPU utilization
● NICs saturated, and we see lots of output drops
● Seems like a PCIe problem

 Ampere: PCIe Extended Tags

● PCIe is more of a network than a bus
● Number of outstanding DMA reads is limited by the

number of PCIe “tags”
● PCIe tag space is 5-bits by default, allowing for 32

DMAs to be in-flight at the same time
● PCIe extended tags increase the tag space to 8 bits,

allowing 256 DMA reads in flight at the same time
● Like increasing TCP window size.

 Ampere: PCIe Extended Tags

● After enabling extended tags, we see a bandwidth
improvement:

240Gb/s -> 320Gb/s

 Other platforms? Intel Ice Lake Xeon

● 8352V CPU
○ 36 cores, 2.1GHz
○ 8 channels 256GB DDR4-3200 (running at 2933)
○ 64 Lanes Gen4 PCIe
○ 20x Kioxia 4TB NVMe (PCIe Gen4)
○ 2 Mellanox CX6-DX NICs

 Intel Ice Lake Xeon

● 230Gb/s SW kTLS
○ Limited by memory BW

 Intel Ice Lake Xeon (WIP)

● 230Gb/s SW kTLS
○ Limited by memory BW

■ 8352V runs memory at 2993, others SKUs run
at 3200
● Would expect the same performance as

AMD from that
● BIOS locked out PCIe Relaxed ordering, so no NIC

KTLS results yet

 But wait, there’s …. not … more..

● 800Gb prototype sitting on datacenter floor due to
shipping exception 😞

● Something to talk about
next year?

Many thanks to:
● Warren Harrop & the Netflix Open

Connect hardware team for putting
together the testbed.

● FreeBSD developers for making such an
awesome OS

Slides at:
https://people.freebsd.org/~gallatin/talks/euro2021.pdf

Disk centric siloing

● Associate disk controllers with NUMA nodes
● Associate NUMA affinity with files
● Associate network connections with NUMA nodes
● Move connections to be “close” to the disk where

the contents file is stored.
● After the connection is moved, there will be 0

NUMA crossings!

Disk centric siloing problems

● No way to tell link partner that we want LACP to
direct traffic to a different switch/router port
○ So TCP acks and http requests will come in on

the “wrong” port
● Moving connections can lead to TCP re-ordering

due to using multiple egress NICs
● Some clients issue http GET requests for different

content on the same TCP connection
○ Content may be on different NUMA domains!

Disk centric siloing problems

● Different numbers of NVME drives on each
domain
○ Node 3 has 3x the number of NVME drives as

Node 0
● Content popularity differences can lead to hot and

cold disks
● All of this adds up to uneven use of each Numa

Node.
○ Output limited by hottest Numa node

Disk centric siloing problems

● Moving established NIC TLS sessions to a
different egress NIC is painful

Disk centric siloing problems

● Moving NIC TLS sessions is expensive
○ Session will be established before content

location is known

 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Allocate host pages to back files on NUMA node

close to NVME, not NIC
○ Eliminates the 0.75 crossings for 4 domains with

NVME
○ Still have the 0.5 crossings on average for

remapped NICs

 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Assumes equal number of NVME on each node
○ Actual machine has:

■ Node 0: 2 NVME
■ Node 1: 6 NVME
■ Node 2: 4 NVME
■ Node 3: 6 NVME

 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Peak of ~300Gb/s
○ Traffic unequal due to more NVME on Node 3
○ Output drops on mce3 (NIC port on Node 3) at

98Gb/s, while mce0 (NIC port on Node 1) is mostly
idle at 40Gb/s

○ Tried “remapping” NVME and pretending some
drives in different domains

 AMD: NUMA w/NIC kTLS Offload

● Disk Siloing
○ Pretended some of Node 3’s NVME drives were in

Node 1
■ Reached a peak of ~350Gb/s
■ Output still uneven between domains because

of uneven popularity of content on different
NVME drives

○ Sharding based on network (LACP) far more even

