

®

3C90xC NICs
Technical Reference
http://www.3com.com/

3Com® EtherLink® and EtherLink Server 10/100 PCI network interface cards

Part Number: 89-0931-000
Published September1999

3Com Corporation
5400 Bayfront Plaza
Santa Clara, California
95052-8145

Copyright © 3Com Corporation, 1998. All rights reserved. No part of this documentation may be
reproduced in any form or by any means or used to make any derivative work (such as translation,
transformation, or adaptation) without permission from 3Com Corporation.

3Com Corporation reserves the right to revise this documentation and to make changes in content from
time to time without obligation on the part of 3Com Corporation to provide notification of such revision
or change.

3Com Corporation provides this documentation without warranty of any kind, either implied or expressed,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
3Com may make improvements or changes in the product(s) and/or the program(s) described in this
documentation at any time.

UNITED STATES GOVERNMENT LEGENDS:
If you are a United States government agency, then this documentation and the software described herein
are provided to you subject to the following restricted rights:

For units of the Department of Defense:
Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) for Restricted Rights in Technical Data and Computer Software Clause at
48 C.F.R. 52.227-7013. 3Com Corporation, 5400 Bayfront Plaza, Santa Clara, California 95052-8145.

For civilian agencies:
Restricted Rights Legend: Use, reproduction, or disclosure is subject to restrictions set forth in subparagraph
(a) through (d) of the Commercial Computer Software – Restricted Rights Clause at 48 C.F.R. 52.227-19 and
the limitations set forth in 3Com Corporation’s standard commercial agreement for the software.
Unpublished rights reserved under the copyright laws of the United States.

If there is any software on removable media described in this documentation, it is furnished under a license
agreement included with the product as a separate document, in the hard copy documentation, or on the
removable media in a directory file named LICENSE.TXT. If you are unable to locate a copy, please contact
3Com and a copy will be provided to you.

Unless otherwise indicated, 3Com registered trademarks are registered in the United States and may or
may not be registered in other countries.

3Com and EtherLink are registered trademarks of 3Com Corporation. Lanworks is a trademark of
3Com Corporation.

Magic Packet is a trademark of Advanced Micro Devices, Inc. Atmel is a trademark of Atmel Corporation.
Broadcom is a trademark of Broadcom Corporation. Dell is a registered trademark of Dell Computer
Corporation. IBM is a registered trademark of International Business Machines Corporation. Lucent
Technologies is a trademark of Lucent Technologies, Inc. National Semiconductor is a registered
trademark of National Semiconductor Corporation.

Other brand and product names may be registered trademarks or trademarks of their respective holders.

C

ONTENTS

1 INTRODUCTION

3C90xC NIC Features 14
About This Technical Reference 15

Terms and Acronyms 15
Register Bit Maps 17

2 ARCHITECTURE

3C90xC NIC Block Diagram 18
ASICs 18

Hardware Identification 19
Software Identification 19
ASIC Block Descriptions 19

PCI Bus Controller 19
Upload and Download Engines 19
Transmit and Receive FIFOs 19
10/100 Mbps Ethernet MAC 19
Management Statistics 19
Auto-Negotiation 19
10/100 Mbps PHY 20
Keep-Alive 20
Wake Event 20
SOS Connector 20
SMBus Connector 20
RWU Connector 21

Other NIC Devices 21
BIOS ROM 21
Serial EEPROM 21

Host Registers 21
Bit Widths of Register Accesses 22
Command Register 22
Interrupt Status Register 22
3C90xC NIC Register Layout 22

3 OPERATION

Data Structure Lists 25
PCI Bus Master Operation 25

PCI Memory Commands 25
PCI Bus Request Control 26

Download 26
Upload 27

Power Management 27
Power Up Sequencing 27
Low-power Mode 27
Power States 27
Power Management Registers 29

PowerMgmtCap 29
PowerMgmtCtrl 30
PowerMgmtEvent 31

Remote Wake-Up 32
Wake-up Packets 32

Downloading Wake-up Frame Patterns 33
Wake-up Frame Patterns 33

Magic Packet Technology 34
Change of Link State 34
Wake-on-Timer 35

WakeOnTimer Register 35
Wake-on-SMB 35
Programming Remote Wake-Up Events 35

Power Down 36
Wake-Up 36

Keep-alive Packets 37
Installation 37
Activation 39
Transmission Timing 40
Linked Wake-up Pattern to Keep-alive 40
SOS 40
TriggerBits Register 41

IEEE 802.3x Flow Control 41
IEEE 802.1Q VLANs 42
TCP/IP Checksum Support 43
System Management Bus (SMBus) Interface 43

Transaction Format 44
Transaction Examples 45
Multiple SMBus Master Arbitration 45
Register Access 46
Transmitting a Packet 46
Receiving a Packet 47
Initiating a Keep-alive Packet 47
Issuing a Wake-Up Event 47
Monitoring Network Activity 48
SmbAddress 48
SmbArb 49
SmbDiag 49
SmbFifoData 50
SmbRxBytes 50
SmbStatus 51

4 CONFIGURATION

Power On Reset 53
System Reset 53
Global Reset 54
Serial EEPROM 54
Flexible EEPROM Format 55
NIC Configuration 55
Forced Configuration 56
Support for Signaling Standards 57

10 Mbps Signaling 57
100BASE-X Signaling 57
Media-Independent Interface/100BASE-T4 57

Auto-Negotiation 58
BIOS ROM 58
InternalConfig 58
NIC Initialization 61

Selecting the Media Port 61
Selection Through EEPROM 61
Selection Through AutoSelect 61

MediaOptions 62
AutoSelect Sequence 62

Auto-Negotiation 62
MII/100BASE-T4 62
100BASE-FX 63
Manual Testing of 10BASE-T and 100BASE-TX 63

Setting the Receive Filter 63
Station Address 63
Broadcast Packets 64
Multicast Packets 64
Multicast Address Hash Filter 64
Promiscuous Mode 64

Capabilities Word 64
MacControl 64
Setting the Duplex Mode 64
PCI Configuration Registers 65

BiosRomControl 65
CacheLineSize 66
CapID 66
CapPtr 66
ClassCode 66
Data 66
DeviceId 66
HeaderType 67
InterruptLine 67
InterruptPin 67
IoBaseAddress 67
LatencyTimer 67

MaxLat 68
MemBaseAddress 68
MinGnt 68
NextPtr 68
PciCommand 68
PciStatus 69
RevisionId 70
SubsystemId 70
SubsystemVendorId 70
VendorId 70

5 EEPROM
Data Format 71
Flexible Format 72
3Com Node Address 72
DeviceId 72
Manufacturing Data 73

Date 73
Division 73
Product Code 73

ManufacturerId 73
RomInfo 73
PciParm 73
OEM Node Address 74
Software Information 74
Compatibility Word 75
Capabilities Word 75
InternalConfig 76
Software Information 2 76
Software Information 3 77
Lanworks Data 1 77
SubsystemVendorId 78
SubsystemId 78
MediaOptions 78
Lanworks Data 2 78
SmbAddress 78
PciParm2 78
PciParm3 79
PowerMgmtCtrl 79
PowerConsumption 79
Current IP Address 79
SMBus - OEM Specific 80
Flexible Format 80

Command 80
Data 80

Checksum #2 80
Checksum #3 81
EepromCommand 81

EepromData 83

6 DOWNLOAD AND TRANSMISSION

Packet Download Model 84
DPD Data Structure 85

Down Next Pointer 85
Frame Start Header 86
Schedule Time 87
Down Fragment Address 88
Down Fragment Length 88

Packet Download 89
Simple Packet Download 89
Packet Length Round Up 89
Download Scheduling 90
Download Completion 90
Multipacket Lists 90

Adding DPDs to the End of the Downlist 90
Inserting a DPD Near the Head of the Downlist 91
Inserting a DPD in Front of a Scheduled DPD 92
Polling on DnNextPtr 92

NIC Download Sequence 92
Original Download Sequence 92
Alternate Download Sequence 93

Packet Transmission 93
Enabling Transmission 93
Transmit Errors 93
Underrun Recovery 94
Reclaiming Transmit FIFO Space 94
Transmit Mechanism 95

Limiting dnComplete Interrupts 95
Using CountDown Timer Instead of dnComplete 95

DmaCtrl 95
DnBurstThresh 97
DnListPtr 98
DnMaxBurst 99
DnPoll 100
DnPriorityThresh 100
TxFree 101
TxPktId 101
TxReclaimThresh 101
TxStartThresh 102
TxStatus 103

7 RECEPTION AND UPLOAD

Packet Upload Model 104
UPD Data Structure 105

Up Next Pointer 105

Up Pkt Status 105
Up Fragment Address 107
Up Fragment Length 107

Packet Reception 107
Enabling Reception 107
Simple Packet Upload 108
Upload Eligibility 108
Packet Upload Completion 108
Multipacket Lists 108
Early Receive Interrupts 109
Parallel Tasking of Receive Uploads 109
NIC Upload Sequence 109

DmaCtrl 110
MaxPktSize 110
RxEarlyThresh 111
RxFilter 112
RxFree 113
StationAddress 113
StationMask 114
UpBurstThresh 114
UpListPtr 115
UpMaxBurst 115
UpPktStatus 116
UpPoll 117
UpPriorityThresh 118
VlanMask 118

8 INTERRUPTS AND INDICATIONS

IndicationEnable 120
InterruptEnable 120
IntStatus 121
IntStatusAuto 124

9 STATISTICS AND DIAGNOSTICS

BadSSD 126
BytesRcvdOk 126
BytesXmittedOk 127
CarrierLost 127
FramesDeferred 127
FramesRcvdOk 128
FramesXmittedOk 129
LateCollisions 129
MultipleCollisions 130
RxOverruns 130
SingleCollisions 131
SqeErrors 131
UpperBytesOk 132

UpperFramesOk 132

10 COMMAND REGISTER

Summary of Commands 134
Unused Command Codes 136
Reset Commands 136

GlobalReset 136
RxReset 137
TxReset 137

Transmit Commands 138
DnStall 138
DnUnstall 138
SetTxReclaimThresh 139
SetTxStartThresh 139
TxAgain 139
TxDisable 139
TxDone 139
TxEnable 140
TxFifoBisect 140

Receive Commands 140
RxDisable 140
RxDiscard 141
RxEnable 141
SetHashFilterBit 141
SetRxEarlyThresh 141
SetRxFilter 142
UpStall 142
UpUnStall 142

Interrupt Commands 143
AcknowledgeInterrupt 143
RequestInterrupt 143
SetIndicationEnable 143
SetInterruptEnable 144

Other Commands 144
DisableDcConverter 144
EnableDcConverter 144
SelectRegisterWindow 144
StatisticsDisable 146
StatisticsEnable 146

11 AUTO-NEGOTIATION AND MII REGISTERS

Overview 147
40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers 147

Autonegotiation Advertisement 148
Autonegotiation Expansion 148
Autonegotiation Link Partner Ability 149
Control 149

Device Specific 1 150
Device Specific 2 151
Device Specific 3 152
Next Page Transmit 153
PHY Identification 1 153
PHY Identification 2 154
Quick Status 154
Status 155

40-0579-xxx ASIC Auto-Negotiation Registers 156
10BASE-T Auxiliary Error and General Status 157
100BASE-X Auxiliary Control 159
100BASE-X Auxiliary Status 160
100BASE-X Disconnect Counter 161
100BASE-X False Carrier Sense Counter 161
100BASE-X Receive Error Counter 161
Auto-Negotiation Advertise 162
Auto-Negotiation Expansion 163
Auxiliary Control/Status 164
Auxiliary Mode 165
Auxiliary Multiple PHY 166
Auxiliary Status Summary 167
Control 169
Interrupt 171
Link Partner Ability 171
PHYID High 172
PHYID Low 172
Status 173

12 OTHER REGISTERS

BiosRomAddr 175
BiosRomData 176
ConfigAddress 176
ConfigData 177
DebugControl 177
DebugData 177
FifoDiagnostic 178
Media 179

MacControl 179
MediaOptions 181
MediaStatus 182

NetworkDiagnostic 184
PhysicalMgmt 186
PowerMgmtCtrl 187
ResetOptions 187
SosBits 189
Timers and Counters 189

Countdown 189
FreeTimer 190

RealTimeCnt 190
Timer 192

VlanEtherType 192

A AUTOSELECT PSEUDO CODE

AutoSelect Sequence 193

B PROGRAMMING THE MII MANAGEMENT INTERFACE

Management Frame Formats 196
Read Frame 196
Write Frame 197
Read Cycle 197
Write Cycle 197
Z Cycle 197

C FRAME FORMATS

IEEE 802.3 MAC Frame Format 198
IEEE 802.3x PAUSE Frame Format 199
IEEE 802.1q Frame Format 200

D ERRATA LIST AND SOLUTIONS

INDEX

INDEX OF REGISTERS

INDEX OF BITS

FIGURES
1 3C90xC System Architecture 18
2 3C90xC NIC Bus Request Structure 26
3 Keep-alive Packet Transmission Timing 40
4 SMBus Master Arbitration Flow 46
5 Internal Reset Structure 54
6 Downlist 84
7 Type 0 DPD Format 85
8 Type 1 DPD Format 85
9 Uplist 104

10 UPD Format 105
11 TxFifoBisect Command 140
12 IEEE 802.3 MAC Frame Format 198
13 IEEE 802.3x PAUSE Frame Format 199
14 IEEE 802.1q Frame Format 200

TABLES
1 3C90xC NICs 14
2 3C90xC NIC ASICs 18
3 3C90xC Host Register Layout 23
4 3C90xC Register Window Layout 24
5 3C90xC NIC PCI Memory Commands 25
6 3C90xC NIC Power States 28
7 SOS Pins 41
8 EEPROM Data Locations 54
9 PCI Registers Set During Configuration 56

10 Summary of PCI Configuration Registers 65
11 EEPROM Contents 71
12 Flexible EEPROM Format 72
13 3C90xC NICs Summary of Capabilities 75
14 Interrupt-specific Actions 119
15 Summary of Transmit Statistics 125
16 Summary of Receive Statistics 126
17 Command Summary 135
18 Summary of 40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers 147
19 Summary of 40-0579-xxx ASIC Auto-Negotiation and MII Registers 157
20 Loopback Modes 186
21 Management Frame Formats 196
22 3C90xC NIC Anomalies 201

1
 INTRODUCTION
This technical reference describes the basic architecture and defines the
programming interface of the 3Com® EtherLink® and EtherLink Server 10/100 PCI
network interface cards (NICs). The NIC models are listed in Table 1.

Specifications in this technical reference apply to all listed NICs unless the text
designates a specific model.

3C90xC NIC Features The 3C90xC NIC contains the following features:

■ 2 KB transmit FIFO and 2 KB receive FIFO.

■ True dual-channel DMA engine.

■ Enhanced scatter-gather engines reduce the number of I/O operations required
to support data transfers (compared to the 3C905B NIC).

■ A download-scheduling mechanism that allows a packet to be downloaded at
some specific future time. For example, download scheduling can be used to
support video or audio streams over a LAN, or to avoid overflowing a switch’s
buffers when the switch is communicating with a lower-speed device.

■ A hash filter that provides improved multicast packet handling (compared to
the 3C905B NIC).

■ Support for VLANs and IEEE 802.3x flow control functions.

■ Support for IEEE 802.3u auto-negotiation (10BASE-T and 100BASE-TX).

■ Support for ACPI Power Management.

■ Support for wake-up events

■ Improved bus master efficiency through use of optimal PCI memory commands
and support of larger burst lengths.

■ Multipacket, multifragment scatter operations for uploads

■ Multipacket, multifragment gather operations for downloads

■ Simultaneous upload and download operations

■ On-chip RAM that can be used instead of external RAM

■ TCP/IP checksum features.

Table 1 3C90xC NICs

Model Description Notes

3C905C-TX EtherLink 10/100 PCI NIC for Complete PC Management Includes boot ROM socket

3C905C-TX-M EtherLink 10/100 PCI NIC for Complete PC Management Includes MBA boot flash ROM.

3C980C-TXM EtherLink Server 10/100 PCI NIC Includes MBA boot flash ROM.

About This Technical Reference 15
■ Direct register access to BIOS ROM.

■ An integrated 100 Mbps PHY that eliminates the need for an external
100 Mbps transceiver.

■ Two-wire SMBus (System Management Bus) that provides register,
configuration, and transmit and receive FIFO access.

■ Flexible EEPROM loads; any internal register can be written, commands can be
issued, and transmit FIFO can be loaded.

■ Keep-alive packets that can be stored in the transmit FIFO and sent out at
specific time intervals during sleep mode. These packets can also be “linked”
to a specific pattern match effectively performing an “ack” function.

■ SOS hardware pins that are linked to one of the keep-alive packets. These are
intended for alerting the management console that some abnormal event
(such as a case intrusion) has occurred.

■ PCI 2.2 compliance, which includes proper handling of PCIReset, sensing
3.3V-AUX, a very low power mode (less than 20 mA), and reporting total
current consumption.

About This
Technical Reference

This technical reference contains programming interface information that software
engineers, independent software developers, and test engineers require to write
device drivers, diagnostic programs, and production test software for 3C90xC
NICs.

This information includes:

■ Theory of operation; for example, how transmission and reception occur.

■ Register set, including the size, type, address, and function of each register and
the functions of the bits in the register.

The information in this reference is language-independent. It applies regardless of
the programming language you use to write the driver or other software program.

In this reference, addresses refer to physical addresses, not to logical or virtual
addresses. Numeric values other than Decimal values are presented in the
following formats:

Terms and Acronyms The following terms and acronyms are used in this reference:

Format Description Example

#’rZZZZ # is the number of bits.

‘ is a delimiter.

r is the radix (b for binary and h for
hexadecimal).

ZZZZ is the value.

6’b100101 is a 6-bit binary notation.

6’h25 is a 6-bit hexadecimal notation.

ZZZr ZZZ is the value.

r is the radix (b for binary and h for
hexadecimal).

100101b is a binary notation.

25h is a hexadecimal notation.

16 CHAPTER 1: INTRODUCTION
Term or Acronym Meaning

ACK Acknowledge.

BIST Built-in self test.

Byte An 8-bit wide quantity of data.

Double word (dword) A 32-bit wide quantity of data (4 bytes).

Download The process of transferring transmit data from system memory to NIC.

DPD Download packet descriptor.

FIFO First in, first out.

FLP Fast link pulse.

FSH Frame start header.

Indication The reporting of any interesting event on the NIC. Any indication may
be configured to cause an interrupt.

Interrupt The actual assertion of the host machine’s interrupt signal.

ISR Interrupt Service Routine

MII Media-Independent Interface.

NIC Network interface card.

NOS Network operating system.

PEROM Programmable and erasable read-only memory.

PHY IEEE designation for Physical layer.

Remote Wake-Up The ability to power on a networked PC that is in standby or suspend
mode using a wake-up event.

SMBus System Management Bus

UDP User datagram protocol.

UPD Upload packet descriptor.

Upload The process of transferring receive data from NIC to system memory.

WOL Wake on LAN (also known as Remote Wake-Up).

Word A 16-bit wide quantity of data (2 bytes).

About This Technical Reference 17
Register Bit Maps The register descriptions in this technical reference include register bit maps.
For example:

The first row of a bit map shows the bit numbers.

The second row of the bit map indicates the following information:

■ Shaded areas indicate one of the following:

■ Read-only bits. These bits read back the default values shown. If no value is
shown, the read-back value varies.

■ Unimplemented, reserved bits. These bits may be placeholders for possible
use in a future revision of the NIC, or they may provide diagnostic
information. Reserved bits are writable, but they do not control any
function. They disregard data written to them and return zeros when they
are read. To maintain compatibility with future versions of the NIC, drivers
should write zeroes to reserved bits.

■ Unshaded areas indicate active bits. The functions of these bits are described in
the register descriptions. A value in an unshaded bit indicates that the driver
must write that value to the bit.

■ Vertical lines mark the boundaries of fields of bits (for example, [12:0]).

Default bit values are indicated as follows:

■ 0 and 1 are known default states.

■ x is a bit that is not initialized at reset; thus, its value varies.

Most-significant word

Most-significant byte

Least-significant word

 Least-significant byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
 ARCHITECTURE
This chapter describes the 3C90xC NIC system architectures and ASIC block
diagrams. It also summarizes the layout of the host registers and windows.

3C90xC NIC
Block Diagram

The block diagram for the 3C90xC NICs is shown in Figure 1. The NIC devices are
described at the end of this chapter.

Figure 1 3C90xC System Architecture

ASICs Table 2 describes the 3C90xC ASIC versions.

Specifications in this technical reference apply to all ASIC versions unless the text
designates a specific ASIC number.

Auto-
negotiation

10/100 Mbps
PHY

Serial
EEPROM

Boot ROM
socket

BIOS ROMHost
CPU

10/100
Mbps

Ethernet
MAC

Transmit
FIFO

Receive
FIFO

Wake event

Download
engine

Upload
engine

P
C

I b
us

3C9XC-TX NIC

ASIC

R
X

 b
uf

fe
r

R
X

 b
uf

fe
r

R
X

 b
uf

fe
r

R
X

 b
uf

fe
r

T
X

 b
uf

fe
r

T
X

 b
uf

fe
r

T
X

 b
uf

fe
r

T
X

 b
uf

fe
r

Download
packet

descriptors

Upload
packet

descriptors

System
RAM

System board

PCI
bus

controller

RJ-45

Mgmt.
statistics

Keep-
Alive

MII

SOS
(optional)

SMBus
(optional)

RWU
(optional)

Table 2 3C90xC NIC ASICs

ASIC Number Description

40-0579-xxx 3.3-volt ASIC with an internal voltage regulator that allows it to operate
in a 5-volt environment.

40-0574-xxx 3.3-volt ASIC with an internal voltage regulator that allows it to operate
in a 5-volt environment.

40-05772-xxx 5-volt

ASICs 19
Hardware Identification To physically identify which ASIC is on a 3C90xC NIC, look at the ASIC number
inscribed on the ASIC. (See Table 2 for a list of ASIC numbers.)

Software Identification To identify through software which ASIC is on a 3C90xC NIC, view the
chip/Vendor bit in the RevisionId register. See “RevisionId” in Chapter 4.

ASIC Block Descriptions The devices associated with the ASICs are described below. For more information,
see Figure 1.

PCI Bus Controller

This block implements the PCI interface functions (responding to PCI target cycles,
generating and controlling PCI master cycles, and performing parity checking
and generation).

The PCI bus controller logic also provides bus master services to the download and
upload engines and provides the logic to control the BIOS ROM and serial EEPROM
devices.

Upload and Download Engines

These blocks fetch the descriptors in the uplist and downlist and perform
bus master data transfers by requesting PCI bus master burst service from the
PCI bus controller block.

The upload engine removes receive data from the receive FIFO and supplies it to
the PCI bus as it is required.

The download engine pipes transmit data from the PCI bus into the transmit FIFO.

Transmit and Receive FIFOs

These blocks are high-speed burst caches. These blocks each contain 2 KB of data
buffering and the logic required to manage the FIFOs.

The transmit FIFO, in addition to performing normal transmit operations, is also
used to store both Wake-On-LAN patterns and keep-alive packets while in sleep
mode. See Chapter 3 for specific operation.

10/100 Mbps Ethernet MAC

This block implements the IEEE 802.3 Media Access Control (MAC) function. It is
responsible for the media access protocol, including deference, collision recovery
and back off, receive packet filtering, and error detection. This block also provides
information to the management statistics function.

Management Statistics

This block accumulates various network events statistics in hardware. Driver
software reads these statistics periodically to maintain a network management
information base (MIB).

Auto-Negotiation

This block provides the IEEE 802.3u auto-negotiation function.

20 CHAPTER 2: ARCHITECTURE
Auto-negotiation provides a means for the two devices in a link segment to
communicate their signaling capabilities and automatically select the best mode.
Auto-negotiation only manages twisted-pair–based signaling.

10/100 Mbps PHY

This block replaces the 10BASE-T/AUI, 100 Mbps signaling, and auto-negotiation
functions found in 3C90x and 3C90xB NICs. It integrates the following functions:

■ IEEE 802.3 Media Access Control (MAC) function. The protocol, includes
deference, collision recovery and back off, receive packet filtering, and error
detection. This block provides information to the management statistics
function.

■ Auto-negotiation provides a means for the two devices in a link segment to
communicate their signaling capabilities and automatically select the best
mode. Auto-negotiation only manages twisted-pair–based signaling, so on the
3C90xB NICs, it covers only the 10BASE-T and 100BASE-TX ports. On 3C900B
NICs, it covers 10BASE-T signaling.

■ 10BASE-T/AUI interface supports 10BASE-T, AUI, and thin coax (10BASE2)
media types. Only filtering magnetics are required off-chip to implement a
complete 10BASE-T solution.

Keep-Alive

Keep-alive packets allow a NIC that is in sleep mode (i.e., the PCI host is powered
down) to transmit packets to refresh its presence in various network routing
tables.

Wake Event

The NIC will generate a wakeup signal as a result of any of three standard wakeup
events: Wakeup Packet reception, Magic Package reception, or change in link
state.

SOS Connector

The SOS connector allows a system configuration where an external event (e.g.,
fan speed, over-temperature, over-voltage) causes a transmission of an alert
packet over the network.

SMBus Connector

Attaching an SMBus controller to this connector allows:

■ Arbitration with multiple SMBus master controllers

■ Access to any ASIC register, including I/O and Configuration registers

■ Issuing of commands (via the Command register)

■ EEPROM read and write

■ Reception Send and Receive packets

■ Issuing of a System Wakeup (with assertRemotePme)

■ Monitoring of network activity (through txActivity and rxActivity)

Other NIC Devices 21
RWU Connector

The Remote Wake Up connector can be used to support WOL applications. Upon
receiving a wakeup packet, a PME signal is generated, waking up the host system.

Other NIC Devices The other devices associated with NIC operation are described below.

BIOS ROM The optional BIOS ROM can contain up to 128 KB of code that is executed at
system boot time.

NICs generally come with a BIOS ROM socket that allows field installation and
upgrade of the boot code.

The following boot roms are supported:

■ AT29C512

■ AT49F010

■ AT49BV512

■ AT49F001N

■ AT49LV001NT

■ AT29LV512

■ AT29LV010B

■ SST29EE010

■ SST29LE010

■ SST39SF010

■ SST39VF010

■ SST39VF512

■ STM29W512B

■ AM29LV010B

Serial EEPROM The 16-bit × 256-word and 16-bit × 1024-word serial EEPROM devices store
configuration information for the NIC, including PCI device ID, station address,
and transceiver selection. The type of EEPROM device installed is determined by a
“power-on reset” register stuffing option. See the ResetOptions register for more
information.

Host Registers This section shows the host register layouts for the 3C90xC NIC.

The NIC interacts with the host CPU through registers. The registers are mapped
into 128 bytes of the host CPU’s I/O space, memory space, or both. (Although
registers are sometimes called “I/O registers,” they may in fact be mapped and
accessed in memory space.)

The first 16 bytes in the register space are a switchable window into one of eight
register banks. A driver issues the SelectRegisterWindow command to the NIC to
select which bank is visible in the window. The remaining 112 bytes in the register
space are a flat address decode.

22 CHAPTER 2: ARCHITECTURE
A register’s location is specified by its offset from a base address that is defined
in the IoBaseAddress PCI register, or, in the case of registers residing within a
window, its window number and its offset within the window. For example, the
address to be used for I/O access of the BIOS ROM is held in the BiosRomAddr
register in window 0, offset 7.

Bit Widths of
Register Accesses

In general, registers must be accessed as operands that are no wider than the bit
width of the register. For example, although the BytesRcvdOk, UpperFramesOk,
and FramesDeferred registers all appear in the double word at offset 8 in
window 6, it is not legal to read all three registers with a single 32-bit I/O read
instruction. Additionally, because of internal architecture limitations, the
StationAddress register must be accessed with no larger than word-wide cycles.

Some registers cannot be accessed with cycles narrower than the register. Specific
register access limitations are described in the register definitions in this technical
reference.

Command Register Many of a driver’s interactions with the NIC are performed using a command
structure. Commands are codes, which sometimes include a parameter, that are
written to the NIC to perform some action. For example, the RxEnable command
causes the NIC transceiver to start accepting receive packets from the network.

Commands are written to the write-only Command register, which appears at
offset e in every window. For details on the commands, see Chapter 10,
“Command Register.”

Interrupt Status Register The read-only IntStatus register shares the location offset e with the write-only
Command register. A driver uses IntStatus to determine the sources of interrupts
on the NIC and to determine which window is currently visible. IntStatus also
includes a bit that indicates when a command issued to the Command register is
in the process of being executed.

The 3C90xC NICs have a special version of the IntStatus register, the IntStatusAuto
register. Reading IntStatusAuto returns the value in IntStatus and causes some side
effects that help optimize interrupt service routines.

3C90xC NIC
Register Layout

The host register layouts and register window layouts for the 3C90xC NIC are
shown in Table 3 and Table 4.

Shaded areas indicate reserved spaces that are not implemented. Do not program
in these spaces.

Host Registers 23
Table 3 3C90xC Host Register Layout

Byte 3 Byte 2 Byte 1 Byte 0 Offset

PowerMgmtCtrl 7c

UpMaxBurst DnMaxBurst 78

DebugControl 74

DebugData 70

6c

68

64

60

5c

58

54

50

4c

ConfigData 48

ConfigAddress 44

RealTimeCnt 40

UpBurstThresh UpPoll UpPriorityThresh 3c

UpListPtr 38

Countdown FreeTimer 34

UpPktStatus 30

DnPoll DnPriorityThresh 2c

DnBurstThresh 28

DnListPtr 24

DmaCtrl 20

IntStatusAuto 1c

TxStatus Timer TxPktId 18

14

10

Register Windows 0 through 7
(See Table 4)

c

8

4

0

24 CHAPTER 2: ARCHITECTURE
Table 4 3C90xC Register Window Layout

Byte 3 Byte 2 Byte 1 Byte 0 Offset Window

IntStatus /Command PowerMgmtEvent c 7

8

VlanEtherType 4

VlanMask 0

IntStatus /Command BytesXmittedOk c 6

BytesRcvdOk UpperFramesOk FramesDeferred 8

FramesRcvdOk FramesXmittedOk RxOverruns LateCollisions 4

SingleCollisions MultipleCollisions SqeErrors CarrierLost 0

IntStatus /Command IndicationEnable c 5

InterruptEnable TxReclaimThresh RxFilter 8

RxEarlyThresh 4

TxStartThresh 0

IntStatus /Command UpperBytesOk BadSSD c 4

MediaStatus PhysicalMgmt 8

NetworkDiagnostic FifoDiagnostic 4

VcoDiagnostic (not supported) 0

IntStatus /Command TxFree c 3

RxFree MediaOptions 8

MacControl MaxPktSize 4

InternalConfig 0

IntStatus /Command ResetOptions c 2

StationMask (Hi) StationMask (Mid) 8

StationMask (Lo) StationAddress (Hi) 4

StationAddress (Mid) StationAddress (Lo) 0

IntStatus /Command TriggerBits c 1

SosBits WakeOnTimer 8

SmbRxBytes SmbDiag SmbArb 4

SmbStatus SmbAddress SmbFifoData 0

IntStatus /Command EepromData c 0

EepromCommand BiosRomData 8

BiosRomAddr 4

0

3
 OPERATION
This chapter summarizes NIC operational characteristics.

Data Structure Lists To move data between the host and the NIC, drivers set up data structures in
system RAM to specify the buffers to be used for packet data movement. These
data structures, called descriptors, are linked together in system memory to
form lists.

All packet data is moved across the NIC PCI bus by bus master operations. The
NIC also uses bus master operations to read descriptor information out of system
RAM and to write status back into the descriptors.

Movement of a transmit packet to the NIC is called a download. The list of
download packet descriptors (DPDs) is called the downlist. Similarly, a receive
packet movement is called an upload, and the list of upload packet descriptors
(UPDs) is the uplist.

The device driver creates and maintains the uplist and the downlist. It starts the
download process by writing the address of the first download descriptor in the
downlist to the DnListPtr register. Uploads are started by writing the first upload
descriptor address to the UpListPtr register. The device driver also accesses NIC
registers for initialization, interrupt handling, statistics collection, and error handling.

For details on data structure lists, see Chapter 6 and Chapter 7.

PCI Bus Master
Operation

This section describes aspects of bus master operation that can be controlled by
software. For information about PCI configuration, see “PCI Configuration
Registers” in Chapter 4.

PCI Memory Commands The 3C90xC NIC supports the PCI memory commands summarized in Table 5. The
NIC decides on a burst-by-burst basis which command to use.

Table 5 3C90xC NIC PCI Memory Commands

Command Description

MW Memory Write

MWI Memory Write Invalidate

MR Memory Read

MRL Memory Read Line

MRM Memory Read Multiple

26 CHAPTER 3: OPERATION
MR is used for all fetches of descriptor information. For reads of transmit packet
data, MR, MRL, or MRM is used, depending upon the remaining number of bytes
in the fragment, the amount of free space in the transmit FIFO, and whether the
upload engine is requesting a bus master operation.

MW is used for all descriptor writes. Writes of receive packet data use either
MW or MWI, depending upon the remaining number of bytes in the fragment,
the amount of packet data in the receive FIFO, and whether the download engine
is requesting a bus master operation.

Three configuration bits control the use of advanced PCI memory commands:

■ The MWIEnable bit in the PciCommand configuration register allows the
system to enable or disable the NIC’s use of MWI.

■ The defeatMWI bit in the DmaCtrl register allows the driver to disable the NIC’s
use of MWI. By default, MWI is enabled.

■ The defeatMRL bit in the DmaCtrl register allows the driver disable the NIC’s
use of MRL. By default, MRL is enabled.

PCI Bus Request Control The NIC provides a set of registers that control PCI burst behavior. These registers
allow trade-offs to be made between PCI bus efficiency and underrun/overrun
frequency. Figure 2 illustrates the bus request structure.

Figure 2 3C90xC NIC Bus Request Structure

Arbitration logic (the arbiter) within the PCI bus controller block accepts bus
requests from the download and upload engines.

Download

The download engine monitors the amount of free space in the transmit FIFO.
When there are at least 16 bytes of free space and a fragment available for
download, the download engine uses the dnRequest bit to make a standard bus
request. The DnBurstThresh logic register qualifies dnRequest. When the amount
of free space in the FIFO is greater than the value in the DnBurstThresh register, a
download request is passed on to the arbiter. The purpose of DnBurstThresh is to
delay the bus request until there is enough free space in the FIFO for a long,
efficient burst.

Transmit
FIFO

Receive
FIFO

UpPriorityThresh

Upload engine

DnPriorityThresh

Download engine

rxFree

txBytes

rxBytes

txFree

DnBurstThresh dnRequest

dnPriorityRequest

upPriorityRequest

UpBurstThresh upRequest

Arbiter

PCI bus controller

PCI
bus

Power Management 27
The download engine also has a way to make an emergency bus request.
When the number of used bytes in the FIFO drops below the value in the
DnPriorityThresh register, indicating that the FIFO is approaching an underrun
condition, the dnPriorityRequest bit makes a priority request. This request is not
subject to the DnBurstThresh constraint; when the FIFO is close to underrun, burst
efficiency is sacrificed in favor of requesting the bus as quickly as possible.

Upload

The upload mechanism is similar to download. The upload engine monitors the
number of bytes in the receive FIFO. When there are enough bytes to make the
packet visible and a buffer is available for upload, the upload engine uses the
upRequest bit to make a standard bus request. The UpBurstThresh logic register
qualifies the upRequest bit. When the number of bytes in the FIFO is greater than
the value in the UpBurstThresh register, an upload request is passed on to the
arbiter. Priority requests prevent receive overruns. The upPriorityRequest bit is
asserted when the free space in the receive FIFO falls below the value in the
UpPriorityThresh register.

The arbiter services the four requests in this fixed priority order:

1 upPriorityRequest

2 dnPriorityRequest

3 upRequest/dnRequest (upload and download alternate if both requests are
present)

Power Management The NIC supports power management directed by the operating system,
in accordance with the Advanced Configuration and Power Management (ACPI)
Specification. The following paragraphs describe the power management features.

Power Up Sequencing The PCI 2.2 Bus Specification dictates power restrictions for NICs that use the
auxiliary 3.3-volt power supply. Specifically, the specification states that a NIC shall
not use more than 20 mA while in the D3cold state if the NIC is not enabled to
source the PME# system wake-up signal. (For more information on the D3 cold
state, see Table 6.

Through a special power-up sequencing, the NIC determines whether it can
operate in a normal mode or whether it must power up in a 20 mA mode (only
auxiliary power present) by reading a control word from the EEPROM. If the NIC
powers up in a 20 mA mode, it does not respond to incoming packets or SMBus
activity. To recover from this mode, the PCI main power must be restored.

Low-power Mode The 3C90xC NIC supports D3cold, a very low-power mode. If the NIC is receiving
auxiliary current and it is not enabled as a wake-up device, the NIC goes into a
20 mA mode. In this mode, the NIC is essentially “dead” and does not respond to
any cycles (through the PCI bus, network, or SMBus). To restore normal operation,
assert PCI main power back to the PCI bus.

Power States Table 6 defines the supported power states. The current power state is determined
by the powerState field in the PowerMgmtCtrl register.

28 CHAPTER 3: OPERATION
Table 6 3C90xC NIC Power States

State powerState Value Description

D0uninitialized 0 This state is a result of a hardware reset, or of a transition from D3hot to D0.
This state is the same as D0active except that the PCI configuration registers are
uninitialized. In this state, the NIC responds to PCI configuration cycles or SMBus
cycles.

D0active 0 This is the normal operational power state for the NIC.

In this state, the PCI configuration registers have been initialized by the system,
including the ioSpace, memorySpace, and busMaster bits in the PciCommand
register, so the NIC is able to respond to PCI I/O, memory and configuration cycles,
and can operate as a PCI master.

The 3C90xC NIC supports both wake-up events and SMBus cycles in this state.

D1 1 This is a “light-sleep” state, which allows transition back to D0 with no delay.
Support for D1 is determined by the d1Support bit in the PciParm2 word in
EEPROM.

In this state, the NIC responds to PCI configuration accesses, allowing the
system to change the power state, but it does not respond to any PCI I/O or
memory accesses.

The NIC’s function in the D1 state is to recognize wake-up events and pass them
on to the system by asserting the PME# signal on the PCI bus.

The 3C90xC NIC also responds to SMBus cycles in this state.

D2 2 This is a partial power-down state that allows a faster transition back to D0 than is
possible from the D3 state. Support for D2 is determined by the d2Support bit in
the PciParm2 word in EEPROM.

Like the D1 state, the NIC in the D2 state responds to PCI configuration accesses,
allowing the system to change the power state, but it does not respond to any
PCI I/O or memory accesses.

Similarly, the function of the NIC in the D2 state is to recognize wake-up events
and pass them on to the system by asserting the PME# signal on the PCI bus.

The 3C90xC NIC also responds to SMBus cycles in this state.

D3hot 3 This is the full power-down state for the NIC. In D3hot, the NIC loses all PCI
configuration information except for the value in the powerState bit.

In this state, the NIC responds to PCI configuration accesses, to allow the system to
change the power state back to D0uninitialized, but it does not respond to any PCI I/O
or memory accesses.

The NIC’s function in the D3hot state is to recognize wake-up events and pass them
on to the system by asserting the PME# signal on the PCI bus.

The 3C90xC NIC also responds to SMBus cycles in this state.

D3cold N/A This is the power-off state for the NIC from a bus point of view. The NIC has no
function in this state unless auxiliary current is supplied. If auxiliary power is
supplied, the NIC’s function in the D3cold state is to recognize wake-up events and
pass them on to the system by asserting the PME# signal on the PCI bus.

The 3C90xC NIC also responds to SMBus cycles in this state.

When power is restored, the system guarantees the assertion of hardware reset,
which puts the NIC into the D0uninitialized state.

Power Management 29
Power Management
Registers

Power management registers are in the PCI configuration space, as defined by the
PCI Bus Power Management Interface Specification, Revision 1.0.

PowerMgmtCap

The PowerMgmtCap register supplies the system with information about the NIC’s
power management support and capabilities. The PowerMgmtCtrl register allows
system or driver software to read the NIC’s power management status and set the
NIC’s power state.

The reset default is 7601h, but several bits are loaded from EEPROM shortly after
reset.

Synopsis Provides information about the NIC’s power management
capabilities.

Type Read-only

Size 16 bits

Offset from CapPtr 2

PowerMgmtCap Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

PowerMgmtCap Bit Descriptions

Bit Name Description

[2:0] version This read-only field returns the PCI Bus Power
Management Specification adherence value:

■ 001 = Adheres to PCI Bus Power Management
Specification version 1.0.

■ 010 = Adheres to PCI Bus Power Management
Specification version 1.1.

[9] d1Support This read-only bit, when set, indicates that this device
supports the D1 power state.

The value of this bit is determined by bit 4 (d1Support) in
the EEPROM PciParm word.

[10] d2Support This read-only bit, when set, indicates that this device
supports the D2 power state.

The value of this bit is determined by bit 5 (d2Support) in
the EEPROM PciParm word.

[15:11] pmeSupport This read-only field indicates the power states from which
this device is able to generate a power management event
(assert PME#).

Each bit corresponds to a power state. A zero in a
particular bit indicates that events cannot be generated
from that state.

The bits are defined as follows:

■ xxxx1: Power management events possible from D0.

■ xxx1x: Power management events possible from D1.

■ xx1xx: Power management events possible from D2.

■ x1xxx: Power management events possible from D3hot.

 (1 of 2)

30 CHAPTER 3: OPERATION
PowerMgmtCtrl

The reset default is 0000h.

■ 1xxxx: Power management events possible from D3cold.

The 3C90xC NIC supports wake-up events from all D-states. Bits [15:11] are loaded from the EEPROM
PciParm2 word.

Synopsis Allows control over the power state and the power
management interrupts.

Type Read/write

Size 16 bits

Offset from CapPtr 4

PowerMgmtCtrl Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

PowerMgmtCtrl Bit Descriptions

Bit Name Description

[1:0] powerState This read/write field is used to determine or set the NIC’s
power state. The following values are defined:

■ 0 = State D0

■ 1 = State D1

■ 2 = State D2

■ 3 = State D3

If this bit is set to a nonzero value, the NIC does not
respond to PCI I/O or memory cycles, nor is it able to
generate PCI bus master cycles.

[8] pmeEn When this read/write bit is set, the NIC is allowed to report
wake-up events on the PME# signal. The specific events
that can generate wake-up are defined by the
PowerMgmtEvent I/O register.

[12:9] dataSelect These read/write bits select which power consumption
value is to be reported when reading the
PowerConsumption register.

The NIC currently supports values of 0x0 to 0x7h, based
on the following table:

Value in dataSelect Data Reported

0,4 D0 Power Consumed/Dissipated

1,5 D1 Power Consumed/Dissipated

2,6 D2 Power Consumed/Dissipated

3,7 D3 Power Consumed/Dissipated

8-15 not supported

 (1 of 2)

PowerMgmtCap Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Power Management 31
PowerMgmtEvent

The PowerMgmtEvent register contains enable bits to control which types of
events can generate a wake-up event in the host system. It also contains status
bits that indicate what specific events have occurred.

The PowerMgmtEvent register is cleared by a LVDRst.

The enable bits in this register determine what types of events can cause the NIC
to generate a wake-up event (interrupt) on the PCI bus. All enable bits are
qualified with the pmeEn bit in the PowerMgmtCtrl configuration register. If the
pmeEn bit is clear, then wake-up generation is disabled and these bits are ignored.

The event bits indicate that an actual wake-up event has occurred. These bits are
masked by their corresponding enable bits above. If the enable bit is set, then the
event bit can never become set. Once set, the event bits are cleared by a read to
the PowerMgmtEvent register.

[14:13] dataScale These read/write bits define the scaling factor associated
with the PowerConsumption register.

These bits always read 0x10b, meaning that the value in
the PowerConsumption register should be multiplied by
0.01, giving a result in units of Watts from 0 to 2.56.

[15] pmeStatus This read/clear bit is set to indicate a wake-up event has
occurred. This bit is set regardless of the value in pmeEn.

Writing a one to this bit clears it. Writing a zero has no
effect.

Synopsis Allows control over power management event generation.

Type Read/write

Size 16 bits

Window 7

Offset c

PowerMgmtEvent Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

PowerMgmtEvent Bit Descriptions

Bit Name Description

[0] wakeupPktEnable This read/write bit, when set, causes the NIC to generate a
wake-up event due to wake-up packet reception.

[1] magicPktEnable This read/write bit, when set, enables the NIC to generate
a wake-up event due to a Magic Packet frame reception.

[2] linkEventEnable This read/write bit, when set, enables the NIC to generate
a wake-up event due to a change in link status (cable is
disconnected or reconnected).

PowerMgmtCtrl Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

32 CHAPTER 3: OPERATION
Remote Wake-Up The 3C90xC NIC supports Remote Wake-Up, the ability to remotely power on a
PC that is in standby or suspend mode.

The NIC can generate a wake-up signal to the system as a result of any of the
three standard wake-up events defined by the Device Class Power Management
Reference Specification — Network Device Class:

■ Wake-up packet reception

■ Magic Packet reception

■ Change in link state

The NIC can also cause a system wake-up based on two additional events:

■ Wake-on-Timer

■ Wake-On-SMB

The PowerMgmtEvent register gives the driver control over which of these events
is passed to the system. Wake-up events are signaled over the PCI bus using the
PME# pin.

Wake-up Packets The NIC can signal wake-up when the NIC receives an “interesting” packet from
another station. Driver software defines interesting packets by downloading a set
of frame patterns to the transmit FIFO before placing the NIC in a power-down
state. Once the NIC is powered down, it compares receive packets with the frame
patterns. Wake-up is signaled when a packet is received that matches a frame
pattern and also passes the filter set in the RxFilter register.

[3] wakeOnTimerEnable This read/write bit, when set, enables the NIC to generate
a wake-up event due to the WakeOnTimer register
expiring.

[4] wakeupPktEvent This bit indicates that a wake-up event (which meets the
reception criteria set by software) has been received.

[5] magicPktEvent This bit indicates that a Magic Packet frame has been
received.

[6] linkEvent This bit indicates that a link status event has occurred.

[7] wakeOnTimerEvent This bit indicates that a wake-on-timer status event has
occurred.

[8] kapEn This read/write bit, when set, places the transmit FIFO in
the keep-alive mode. The KeepAliveTimer starts running,
and the NIC sends keep-alive packets as programmed.

[9] startKap This read/write bit, when set, allows the keep-alive
function to start, if the kapEn bit is set.

[10] linkWpToKaEn Link wake-up packet to keep-alive packet. Whenever a
receive packet matches a wake-up pattern with a
non-zerotrigSel value, a keep-alive packet that has the
same trigSel value is transmitted, and the PMEN pin is not
asserted.

PowerMgmtEvent Bit Descriptions (continued)

Bit Name Description

Remote Wake-Up 33
A signature-matching technique allows the NIC to recognize wake-up packets.
The frame patterns specify which bytes in the incoming packets are to be
examined. A CRC is calculated over these bytes and compared with a CRC
value supplied in the frame pattern. This matching technique may result in
false wake-ups being reported to the system.

Packet wake-up is controlled by the wakeupPktEnable bit in the PowerMgmtEvent
register. This can occur in any power state (D0 to D3); however, normal transmit and
receive functions do not operate properly when this function is enabled. When the
NIC detects a wake-up packet, it signals a wake-up event on PME# (if PME# assertion
is enabled), and sets the wakeupPktEvent bit in PowerMgmtEvent.

Downloading Wake-up Frame Patterns

Drivers download frame patterns to the transmit FIFO in a single “pseudo packet”:

1 Issue a TxReset command (to reset the FIFO pointers and prevent transmission).

2 Prepare a DPD that points to a single data buffer.

The buffer contains one or more frame patterns, placed contiguously. The transmit
FIFO size limits the number of frame patterns. The DnFragLen DPD entry must
exactly equal the sum of the frame pattern bytes.

3 Set the rndupDefeat bit in the Frame Start Header DPD entry to prevent rounding
up of the packet size.

4 Write the DPD address to the DnListPtr register to download the packet.

Wake-up Frame Patterns

Each wake-up frame pattern contains the following:

■ One or more byte offset/byte count pairs—The byte offset indicates the
number of packet bytes to be skipped in order to reach the next group of bytes
to be included in the CRC calculation. The byte count indicates the number of
bytes in the next group to be included in the CRC calculation.

■ End-of-pattern symbol—This byte value (00) indicates the end of the pattern
for that wake-up frame.

■ Four-byte CRC value—This CRC value uses the same polynomial as the
Ethernet MAC CRC.

The frame patterns are encoded as follows: The byte offset/byte count values are
contained in a single byte. Bits [7:4] contain the byte offset value, and bits [3:0]
contain the byte count. The byte offset and byte count can take on a value of 0 to
14d. A byte offset or byte count value of 15d indicates that it has an extended
value: this value occupies eight bits and is contained in the next pattern byte. If
both the byte offset and the byte count values are 15d, the next byte is the
extended byte offset, and the byte after that is the extended byte count.

Offset/count bytes occur in the pattern until terminated by a zero byte, which
indicates the end of pattern for that wake-up frame. Following the end of pattern
are four bytes of CRC value. If there is another wake-up frame pattern, then it
immediately follows the CRC value.

34 CHAPTER 3: OPERATION
As an example, the following is the pattern to be downloaded into the transmit
FIFO for the ARP wake-up frame shown in Appendix A of the Network Device
Class Specification:

Magic Packet
Technology

The NIC can signal wake-up when it receives a Magic Packet frame from another
station.

The Magic Packet technology, developed by Advanced Micro Devices, allows
remote wake-up of a sleeping station on a network. The technology involves
sending a special packet to the sleeping station. Once a station has been placed in
Magic Packet mode and put to sleep, it scans all incoming packets addressed to it
for a specific data sequence.

The data sequence consists of 16 duplications of the Ethernet MAC address of the
station, with no breaks or interruptions. This sequence can be located anywhere
within the packet, but must be preceded by a synchronization stream. The
synchronization stream is defined as six bytes of FFh.

The device also accepts a broadcast frame as long as the 16 duplications of the
MAC address match the address of the machine to be awakened. If the MAC
address for a particular node on the network was 11:22:33:44:55:66, then the
LAN controller would be scanning for the following data sequence:

Destination_Address Source_Address {Miscellaneous} FF FF FF FF FF FF 11 22 33 44
55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55
66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 11
22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66 {Miscellaneous} CRC

Magic Packet wake-up is controlled by the magicPktEnable bit in the
PowerMgmtEvent register. The magicPktEnable bit can take place in any power
state (D0 to D3).

For the NIC to receive and recognize a Magic Packet frame, the packet must
also pass the filter criteria set in the RxFilter register. When the NIC detects a
Magic Packet frame, it signals a wake-up event on PME# (if PME# assertion is
enabled), and sets the magicPktEvent bit in PowerMgmtEvent.

Change of Link State The NIC can signal a wake-up event when a change in the network link state
(either from LINK_OK to LINK_FAIL, or vice versa) is detected.

c2 // byte offset = c, byte count = 2

71 // byte offset = 7, byte count = 1

f4 // byte offset = extended, byte count = 4

10 // byte offset = 10h

00 // end of pattern

f3 // first byte of CRC

19 // second byte of CRC

08 // third byte of CRC

d7 // fourth byte of CRC

Remote Wake-Up 35
Link state wake-up is controlled by the linkEventEnable bit in the
PowerMgmtEvent register. At the time linkEventEnable is set by software,
the NIC samples the current link state. It then waits for the link state to change.
If the link state changes before the NIC is returned to state D0 or linkEventEnable
is cleared, the linkEvent bit is set in PowerMgmtEvent, and (if it is enabled) the
PME# signal is asserted.

The change of link state can take place in any power state (Do to D3).

Wake-on-Timer The NIC can signal a wake-up event based on the WakeOnTimer register. This
register is programmed with a value from 1 to FFFFh. Setting the
wakeOnTimerEnable bit in the PowerMgmtEvent register causes a PME# and a
subsequent system wake-up. This event is cleared by writing the pmeStatus bit in
the PowerMgmtCtrl register.

Wake-on-Timer events can take place in any power state (D0 to D3).

WakeOnTimer Register

The WakeOnTimer register provides a means for the NIC to generate a system
wake-up event. When this register is loaded with a non-zero value and the
wakeOnTimerEnable bit is set in the PowerMgmtEvent register, the WakeOnTimer
register is decremented once every five minutes. When the timer transitions from
0001 to 0000h, a PME wake-event is triggered.

This timer does not rearm itself; it must be reprogrammed after each use.

Wake-on-SMB The NIC can signal a wake-up event through a direct register write through the
two-wire SMBus interface. Setting the assertRemotePme bit in the SmbStatus
register has the direct effect of issuing a bus PME# signal. This event is cleared by
writing the pmeStatus bit in the PowerMgmtCtrl register.

Wake-on-SMB events can take place in any power state (D0 to D3).

The SmbStatus register is also visible through PCI bus accesses. For testing
purposes, a PME# signal can be generated through a normal register write.

Programming
Remote Wake-Up Events

This section describes the sequences involved in programming the NIC for
Remote Wake-Up events.

Synopsis Used to generate a wake-up event

Type Read/write

Size 16 bits

Window 1

Offset 8

36 CHAPTER 3: OPERATION
Power Down

While in the operating state (D0), the device driver is notified by the operating
system that a power state change is imminent. The device driver prepares for
power down with these steps:

1 Halt the download process: stall the download engine; wait for any download in
progress to finish; wait for any transmissions to end; issue a TxReset command to
reset the FIFO pointers.

2 Perform uploads for any receive packets remaining in FIFO; stall the upload engine
(packets potentially keep filling FIFO between now and when the operating system
powers down the NIC. Once the power down state is entered and wake-up packet
scanning is enabled, these packets are also scanned and potentially wake up the
system immediately).

3 Clear the InterruptEnable register so that no interrupts occur before the
powerState bit in the PowerMgmtCtrl register is changed.

4 Save any NIC volatile state to system memory (system memory is restored after a
power down). Examples of volatile state are the pending power state and the hash
filter settings.

5 Download wake-up frame patterns to the transmit FIFO (if wake-up packets are to
be enabled).

6 Issue a TxFifoBisect command and download keep-alive packets (if keep-alive
packets are to be enabled).

7 Program the PowerMgmtEvent register to enable desired wake-up events.

8 Return to the operating system, indicating that the NIC is ready to be powered
down. Ensure that the RxFilter register is programmed to receive the appropriate
wake-up and Magic Packet frames.

9 The operating system eventually writes to the NIC’s PowerMgmtCtrl register,
placing the NIC in one of the power down states, and enabling PME# assertion.

10 The NIC scans packets for enabled wake-up events.

Wake-Up

1 When a desired wake-up event occurs, the NIC sets the appropriate event bit in
the PowerMgmtEvent register, sets the pmeStatus bit in the PowerMgmtCtrl
register, and asserts the PME# pin.

Alternatively, some other device in the system could recognize a wake-up event,
such as the user pushing the soft power button.

2 The system responds to PME# by restoring power to the PCI bus (if returning from
a D3cold state), and deasserting the PCIRST# signal.

The rising edge of this reset causes the NIC to return to a D0 state (PCI
configuration information is lost).

3 The system scans the power management configuration registers of all NICs,
looking for the device that asserted PME#. If the NIC signaled the wake-up, the
system finds pmeStatus set in the NIC’s PowerMgmtCtrl register and clears the
pmeEn bit, causing PME# to be deasserted.

4 The operating system calls the NIC’s device driver to inform it of the power state
transition, and possibly to determine the nature of the wake-up event.

Keep-alive Packets 37
5 The device driver issues a TxReset command to clear any wake-up patterns out of
the transmit FIFO (if this is not done, the patterns are treated as packets and
transmitted once the transmitter is enabled).

6 The device driver reads the PowerMgmtEvent register to determine the wake-up
event, and if requested, passes it back to the system.

7 The device driver restores any volatile state that was saved in the power
down sequence.

8 The device driver reenables interrupts by programming the InterruptEnable register.

9 The device driver restores the uplist (and any other data structures required for
operation). Any wake-up packet in the receive FIFO is uploaded and passed to the
system or protocol.

Keep-alive Packets Keep-alive packets are a feature that allows a NIC that is in sleep mode (the PCI
host is powered down) to transmit packets to refresh its presence in various
network routing tables.

Keep-alive packets are transmitted periodically because of internal timer/counter
logic. They may be invoked by received packets that match appropriately
programmed patterns in a hash filter located with wake-up pattern matching
logic. Wake-up pattern matches set bits in the TriggerBits register.

A keep-alive packet becomes an SOS packet if the appropriate sosEncoded bit
field is set.

Installation To prepare the transmit FIFO to accept keep-alive packets:

1 Disable the transmitter.

2 Send a TxFifoBisect command.

3 Download packets into the NIC.

Keep-alive packets are stored in the second half of the transmit FIFO RAM. They
resemble normal transmit packets, except in the second dword of the
Frame Start Header (FSH), which is downloaded into the NIC as the first dword of
the first fragment of each keep-alive packet (the keep-alive packet control word).

The Frame Start Header for keep-alive packets is as follows:

The last packet among the keep-alive packets must have a 1 set in the lastKap bit
of the Frame Start Header.

Frame Start Header

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Keep-alive Control

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

38 CHAPTER 3: OPERATION
Frame Start Header

Bit Name Description

[28] rndupDefeat This bit defeats packet length roundup.

[24] lastKap This bit distinguishes the last keep-alive packet in the
sequence.

[23] reArmEnable When this bit is set, the transmit path does not disable
itself upon seeing a max collision, but instead silently
discards the packet.

This bit is intended for keep-alive and SMBus packet
transmits only.

[9:2] pktId This bit has no function in a keep-alive packet.

[1:0] rndupBndry This bit is the roundup boundary.

Keep-alive Control

Bit Name Description

[31:29] sosEncoded These bits encode one of seven external SOS pins. They
indicate that this packet should be sent in response to an
active low on the respective pin.

A 0002 in this field disables this feature.

SOS pins two through seven are valid only as long as the
NIC is not in the MII or MII External MAC modes, as
defined in the InternalConfig register.

SOS Name sosEncoded Tornado Pin

n/a 000 n/a

SOS[1]N 001 SOS

SOS[2]N 011 TXCLK

SOS[3]N 010 TXEN

SOS[4]N 100 CRS

SOS[5]N 101 RXOE

SOS[6]N 110 RXCLK

SOS[7]N 111 MDCLK

[28] sendIfPciHot This bit indicates that this packet should be sent only if the
timer matches AND the PCI bus has power.

If this bit is 0, the packet is sent.

[27:24] trigSel When this encoded field contains a non-zero value and it
matches the respective bit in the TriggerBits register, the
keep-alive packet is sent.

If this field contains all zeros, it indicates that the
keep-alive packet is not associated with the TriggerBits
register.

 (1 of 2)

Keep-alive Packets 39
It is possible for the same keep-alive packet to be sent both in response to
wake-up patterns and to matching a timer value in kaTime. However, in the
unusual case that the wake-up event triggers a keep-alive sequence in which
kaTime also matches, the packet is only sent once.

Activation To activate keep-alive operation:

1 Set kapEn in the PowerMgmtEvent register.

2 Issue the TxFifoBisect command.

3 Download the keep-alive packets.

Make sure that the last one has the lastKap bit set.

[15:0] KatTime Each bit in this field represents a power of two seconds,
which is compared to a non-visible KeepAliveTimer. When
the timer and katTime match, this packet is sent.

Note: Only one bit within this field should be sent

The KeepAliveTimer value is reset by any of the following
events:

■ Rising edge of PCIRst#

■ Falling edge of SOS[0]N or SOS[1]N

■ TxReset command with fifoTxReset bit not masked

■ kaEn is not set

The following are some intervals for the KeepAliveTimer:

KatTime Value period between transmissions

0000 0000 0000 0000 undefined, reserved

0000 0000 0000 0001 1 second

0000 0000 0000 0010 2 seconds

0000 0000 0000 0100 4 seconds

0000 0000 0000 1000 8 seconds

0000 0000 0001 0000 16 seconds

0000 0000 0010 0000 32 seconds

0000 0000 0100 0000 1.06 minutes

0000 0000 1000 0000 2.13 minutes

0000 0001 0000 0000 4.26 minutes

0000 0010 0000 0000 8.53 minutes

0000 0100 0000 0000 17.06 minutes

0000 1000 0000 0000 34.13 minutes

0001 0000 0000 0000 1.14 hours

0010 0000 0000 0000 2.28 hours

0100 0000 0000 0000 4.56 hours

1000 0000 0000 0000 9.12 hours

Note: If more than one bit is set, the behavior is
undefined. If KatTime is zero, the packet is only to be sent
due to wake-up pattern matching.

Keep-alive Control (continued)

Bit Name Description

 (2 of 2)

40 CHAPTER 3: OPERATION
4 Set startKap in the PowerMgmtEvent register to start the keep-alive timer.

5 Change the power state to non-zero.

Transmission Timing A nonvisable, almost free-running timer is used as the basis for all keep-alive
transmissions. This timer goes off approximately every second, and all keep-alive
packets are checked to see if they should be transmitted.

Figure 3 demonstrates when keep-alive packets are transmitted.

Figure 3 Keep-alive Packet Transmission Timing

Linked Wake-up Pattern
to Keep-alive

If an incoming packet matches a loaded wake-up pattern and it has a respective
keep-alive packet, that packet is sent on the next KeepAliveTimer pulse. If the
pmeEn bit in the PowerMgmtCtrl register is set, a PME# wake-up signal is also
asserted.

SOS The 3C90xC NIC has an optional SOS connector with seven SOS pins that allow
you to configure when an external event (such as fan speed, an over-temperature,
or an over-voltage) asserts a level on one of these pins, which results in the
transmitting of an alert packet over the network.

kapEn and startKap

timer=1sec?

yes

trigSel?

no

kaTime?

sendifPciHot?

sosEncoded?

External
SOS?

Last keep-

Go to next
keep-alive packet

Transmit keep-alive
packet

PCI power?

yes

yes

no

yes yes

no

no

no

yes

yes

no

no

yes
alive packet?

IEEE 802.3x Flow Control 41
Table 7 describes the SOS pins.

Table 7 SOS Pins

A keep-alive packet transmission may be conditioned by any one of the SOS pins,
or by none. The SOS pins contain weak, internal pull-up resistors, and therefore do
not need to be connected to anything if they are not being used.

TriggerBits Register

Each bit in the TriggerBits register indicates whether a wake-up packet has been
received, and whether or not its corresponding keep-alive packet has been
received. The bit position tells which HashTable entry matched the wake-up
packet. There is no “zero” HashTable entry.

The value that is written into the TriggerBits register is ORed into the register. Zero
values are ignored. Thus, by writing to this register you can simulate the arrival of
a wake-up packet, as far as the keep-alive mechanism is concerned.

Each bit is cleared when its corresponding keep-alive packet is transmitted. The
wake-up patterns are numerically ordered from 1 to 15, based on the order in
which they were placed in the transmit FIFO.

IEEE 802.3x
Flow Control

The 3C90xC NIC supports IEEE 802.3x flow control.

SOS Pin Description

SOS[1]N External, active-low pin that is dedicated to an SOS alarm function.

SOS[2]N TXCLK; active-low pin that can be used for SOS if its primary functions
(MII internal or external) are not required in the application.

SOS[3]N TXEN; active-low pin that can be used for SOS if its primary functions (MII
internal or external) are not required in the application.

SOS[4]N CRS; active-low pin that can be used for SOS if its primary functions (MII
internal or external) are not required in the application.

SOS[5]N RXOE; active-low pin that can be used for SOS if its primary functions (MII
internal or external) are not required in the application.

SOS[6]N RXCLK; active-low pin that can be used for SOS if its primary functions
(MII internal or external) are not required in the application.

SOS[7]N MDCLK; active-low pin that can be used for SOS if its primary functions
(MII internal or external) are not required in the application.

Synopsis Indicates whether a wake-up packet has been received and whether
its corresponding keep-alive packet has not yet been received.

Type Read/write

Size 16 bits

Window 1

Offset c

TriggerBits Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

42 CHAPTER 3: OPERATION
The IEEE 802.3x full-duplex supplement to the IEEE 802.3 standard specifies a
MAC control sublayer that allows real-time control over the MAC sublayer. A new
MAC control frame format provides station-to-station communication at the MAC
control level.

A variety of MAC control commands is possible, but the 3C90xB NICs interpret
only the PAUSE operation. The PAUSE command can be used to implement flow
control. It allows one station to instruct another to inhibit transmission of data
frames for a specified period.

The PAUSE control frame format appears in Figure 13 in Appendix C.

Whenever the flowControlEnable bit in the MacControl register is one, the NIC
compares the destination address with 01:80:C2:00:00:01 and the type field with
88:08 in all incoming packets. If both fields match, the NIC further checks for the
PAUSE opcode (00:01) in the MAC Control Opcode field. If this is found, the NIC
inhibits transmission of all data frames (but not MAC control frames) for the time
specified in the 2-byte pause_time field. The pause_time value is specified in terms
of the number of slot times for the configured data rate:

■ At 10 Mbps, one slot time is 51.2 µs.

■ At 100 Mbps, one slot time is 5.12 µs.

The pause_time value is received from the medium most-significant byte first.

When the flowControlEnable bit is zero, MAC control packets are subject to the
same receive filtering conditions as normal packets; the NIC stores a packet that
satisfies one or more of the receive filters and makes the packet available for
upload to the host.

IEEE 802.1Q VLANs IEEE 802.1Q frames have four extra bytes (over and above the usual IEEE 802.3
frame format) that are inserted between the source address and the Length/type
field. Two of the bytes are a special type (TPID). The two other bytes contain a
12-bit VLAN ID number, three bits of priority, and a token ring encapsulation bit.

A driver can use the MaxPktSize register to set the size at which packets are
flagged as oversize, allowing the NIC to accommodate the increased IEEE 802.1Q
packet size. A driver using IEEE 802.1Q formats should increase the value in
MaxPktSize by four over the default.

The hardware only flags an oversized packet on an IEEE 802.1Q frame if it is
greater that MaxPktSize, plus four. (That is, the software does not need to change
the default value of 1514.)

The NIC interprets IEEE 802.1Q frames only for the purpose of properly performing
TCP/IP checksumming. The VlanEtherType register is programmed with the value
of TPID (at the time of writing, this value had not been defined). When the
checksumming logic encounters a packet in which the thirteenth and fourteenth
bytes match VlanEtherType, it recognizes the packet as IEEE 802.1Q and skips the
thirteenth through sixteenth bytes in its checksum calculation.

TCP/IP Checksum Support 43
TCP/IP Checksum
Support

The 3C90xC NIC provides automatic TCP/IP checksum insertion and verification.
A packet in the transmit FIFO may be scanned to determine if it is an IP version 4
packet, and if so, whether it contains a TCP or UDP segment header. Checksums
may then be calculated and inserted into the headers.

The host driver requests TCP/IP checksumming for a packet by setting one or more
checksum enable bits in the packet’s Frame Start Header DPD entry.

TCP/IP checksumming may delay transmission. A packet must be completely
downloaded to calculate checksums, and transmission cannot commence until the
checksums are calculated and inserted.

On reception, every packet is scanned for the presence of IP, TCP, and UDP
headers. For any that are found, checksums are calculated and compared with
those contained in the packet. Any mismatches are flagged in the checksum error
bits in the UPD’s Up Pkt Status entry.

The following restrictions apply to TCP/IP checksum support:

■ IP version 4 only. Packets that contain other IP versions are ignored by the
checksumming hardware.

■ IP forms: (EtherType = 0800), 802.2, or SNAP.

■ No support for reception of fragmented IP datagrams. Fragmented datagrams
have their IP header checksums verified, but the TCP or UDP checksums are
ignored. The fourth word in an IP header contains a 13-bit Fragment Offset
and a More Fragments bit. If the Fragment Offset is nonzero or the More
Fragments bit is set, the packet is considered a fragmented datagram.

■ Support for IEEE 802.1Q VLANs. When the checksumming logic encounters a
packet in which the thirteenth and fourteenth bytes match the VlanEtherType
register, it recognizes the packet as IEEE 802.1Q and skips the thirteenth
through sixteenth bytes in its checksum calculation.

■ Support for VLT packets. When the vltEnable bit in the MacControl register is
set, the checksumming logic skips the first through fourth bytes in every packet
during its checksum calculation.

System Management
Bus (SMBus) Interface

The 3C90xC NIC has a three-wire System Management Bus (SMBus) interface. The
three signals are:

■ SMBData

■ SMBClock

■ SMBChipSelectN

The SMBChipSelectN signal is an active-low signal that is used to qualify the entire
SMB transaction.

The SMBus interface has a predefined transaction format through which an
SMBus controller can:

■ Arbitrate with multiple SMBus master controllers.

■ Access any register within the ASIC. (This includes both I/O and Configuration
registers.)

44 CHAPTER 3: OPERATION
■ Issue commands through the Command register.

■ Read and write to the EEPROM.

■ Send and receive packets.

■ Issue a system wake-up with the assertRemotePme bit.

■ Monitor relative network activity using the txActivity and rxActivity bits.

Transaction Format The SMBus design supports two transaction types:

■ Block Reads — The hardware infers the access size through the defined format
and ignores the byte count sent by the SMBus master. Always access registers
in the defined size.

■ Block Writes — The hardware provides the byte count to the SMBus master
based on the size of the accessed register, or in the case of a RxFifo read, 32 (as
long as the bytes remaining are less than or equal to 32). When there are less
than 32 bytes remaining, the byte count properly reflects this value.

Through the two transaction types, any access can be made to the I/O registers or
to the transmit and receive FIFOs.

The ByteCount field is not used by the hardware to determine the size of the
access for register-access cycles. However, it is used by TxFifo write and RxFifo read
cycles.

The Block Read and Block Write transaction types are described below. Unshaded
areas indicate Master to Slave; shaded areas indicate Slave to Master.

The SMBChipSelectN must be valid for the entire cycle.

Note:

■ S — start

■ Wr — write

■ Rd — read

■ A — ack

■ P — stop

bit 1 7 1 1 8 1

Block Write S SlaveAddress Wr A CmdCode A

bit 8 1 8 1 8 1 1 8 1 1

ByteCount = N A DataByte 1 A DataByte 2 A ByteCount = N A P

bit 1 7 1 1 8 1 1 8 1 1

Block Read S SlaveAddress Wr A CmdCode A S SlaveAddress Rd A

bit 8 1 8 1 8 1 1 8 1 1

ByteCount = N A DataByte 1 A DataByte 2 A ByteCount = N A P

System Management Bus (SMBus) Interface 45
The SlaveAddress is compared to the seven bits of data this is stored in the
SmbAddress register. This register is loaded from the EEPROM during power up, or
it can be written through the PCI Host interface.

The CmdCode is the address that is offset into the 3C90xC NIC’s windowed
register map (see “3C90xC NIC Register Layout” in Chapter 2).

The ByteCount is the number of bytes in the Block Read or Block Write transaction
type that follow. The hardware, however, calculates the transaction size based not
on this number, but on the register size that is being pointed to by the CmdCode.
Therefore, always access registers in their natural size, as defined in this technical
reference.

Transaction Examples setWindowSelect command to switch to Window#1

Wr = 1, CmdCode = OE, ByteCount = 2, DataByte1 = 01, DataByte 2 = 08

SmbStatus register access, (assumes Window#1 context)

Wr = 1, CmdCode = 02, Wr = 0, ByteCount = 2, DataByte1 = lowerByte,
DataByte2 = upperByte

Multiple SMBus Master
Arbitration

A mechanism is provided to arbitrate for locked access in systems where multiple
SMBus masters coexist, and each needs access to the NIC’s ASIC. (Note that this
situation is rare. Typically, only one SMBUs master communicates with the NIC.)

This arbitration is performed through the SmbArb register. The SmbArb register is
an eight-bit register that can only be written to with a non-zero value if it already
contains a zero.

Obeying the SMBus Master Arbitration Flow protocol illustrated in Figure 4
ensures that only one SMBus master can access the NIC at any given time:

46 CHAPTER 3: OPERATION
Figure 4 SMBus Master Arbitration Flow

Register Access Through the SMBus, any register within the NIC’s ASIC can be accessed by the
transaction format illustrated in Figure 4. This includes registers that exist within
the PCI Config space (through the ConfigAddress and ConfigData registers
located at offset 44h and 48h, respectively) and commands that are issued (which
are essentially register writes).

Transmitting a Packet A packet can be sent over the SMBus by performing the following steps:

1 If normal PCI bus master operations are functioning, issue a DnStall command
(3002).

2 Read the SmbStatus register and determine if operations have completed and
conditions are right to transmit (okToXmit).

3 Form a four-byte Frame Start Header (FSH).

See the Packet Download and Transmission sections in Chapter 6 for more
information.

4 Append a properly formed Ethernet packet, including the source address,
destination address, ethertype, and data information.

The hardware “pads” out to 64 byes and appends the proper CRC to the end.

5 Switch the window context to window #1 (if necessary) by sending a
SelectRegisterWindow command.

6 Issue multiple Block Write commands to download the above data into the
transmit FIFO through the SmbFifoData register.

Write your unique ID
into the SmbArb register

Read back the
SmbArb register

Your ID?

Performed desired
operation

Write 0 into the
SmbArb register

No

Yes

System Management Bus (SMBus) Interface 47
7 Issue a TxDone command (3800) to send the packet out onto the wire, flush any
odd bytes, and align the transmit FIFO pointers for the next packet.

8 Restore normal operation (if applicable) by issuing a DnUnStall command (3003).

Receiving a Packet The SMBus can receive normal packets, Magic Packet frames, or packets that have
been pattern matched when the host is not in operation.

To receive normal packets:

1 Determine if a packet is in the receive FIFO by reading the InStatus register and
looking for the rxComplete bit.

2 Issue multiple Block Read commands to upload the data from the receive FIFO
through the SmbFifoData register.

The ByteCount returned by the Block Read command is 32 (as long as the bytes
remaining to be uploaded are less than or equal to 32). If the SMBus controller
wants to read more data, it should check the SmbRxBytes register to determine if
there is more data in the packet. The SmbRxBytes register decrements to zero
when all of the packet is read.

3 Issue an RxDiscard command after reading all or part of the packet (in blocks of
32).

To receive Magic Packet frames or pattern-matched packets:

1 Place the NIC in the smbPMEMask mode (bit [8] in the FifoDiagnostic register).

2 Determine if a Magic Packet frame or a pattern-matched packet is in the receive
FIFO by reading the SmbStatus register and looking for the wakeEventPending bit.

3 Issue multiple Block Read commands to upload the data from the receive FIFO
through the SmbFifoData register.

The ByteCount returned by the Block Read command is 32 (as long as the bytes
remaining to be uploaded are less than or equal to 32). If the SMBus controller
wants to read more data, it should check the SmbRxBytes register to determine if
there is more data in the packet. The SmbRxBytes register decrements to zero
when all of the packet is read.

4 Issue an RxDiscard command, or not, after reading all or part of the packet (blocks
of 32).

Initiating a Keep-alive
Packet

If the transmit FIFO already contains a set of keep-alive packets, the SMBus
controller or the PCI host can cause one of the packets to be sent on the next
KeepAliveTimer tick (approximately each second). This is done by setting a
bit [15:1] in the TriggerBits register corresponding to the trigSel field in the
keep-alive packets in the transmit FIFO.

A keep-alive packet is sent only once in response to a triggerBits bit being set. This
bit is automatically cleared when the packet is sent.

Issuing a Wake-Up Event The SMBus controller can cause its own wake-up event through the NIC as a result
of a pattern-matched packet, a Magic Packet frame, or as an independent action.
This gives the SMBUs controller the capability to authenticate, accept, or reject an
external wake-up event.

48 CHAPTER 3: OPERATION
The pmeEn bit needs to be set in the PowerMgmtCap register in the PCI Config
space to pass the event to the PME signal.

Monitoring Network
Activity

Two bits are provided in the SmbStatus register to infer network activity: txActivity
and rxActivity. These bits are set by network transmit and receive traffic,
respectively and are cleared by reading the SmbStatus register. The intent of these
bits is to support network activity LEDs, or an equivalent function.

SmbAddress

The SmbAddress register can be initialized through the EEPROM during power-up.
It can also be ready or written to through the SMBus driver or PCI host software. A
unique base address is needed for an SMBus slave to determine whether to
respond to an SMBus master-initiated access.

Synopsis SMBus address register.

Type Read/write

Size 7 bits

Window 1

Offset 1

SmbAddress Register Format

7 6 5 4 3 2 1 0

0

SmbAddress Bit Descriptions

Bit Name Description

[0:6] smbSlaveAddr These bits contain the seven-bit slave address that is
compared against the incoming SMBus master cycle to
determine whether or not the cycle is for it.

System Management Bus (SMBus) Interface 49
SmbArb

The following steps are suggested for multiple SMBus masters to arbitrate the
access of the NIC’s resources:

1 Write its own ID with a non-zero value from an SMBus master.

2 Read arbitration register.

If the same value is returned, this master wins the arbitration.

3 Follow the required procedures to access the NIC’s transmit FIFO and receive FIFO
for transmit and receive packets.

4 After completing the FIFO access, write the arbitration register with a zero ID.

The NIC’s hardware ignores a non-zero ID write operation if the current ID is not
zero.

SmbDiag

Synopsis Allows multiple SMBus masters to access the NIC’s resources.

Type Read/write

Size 8 bits

Window 1

Offset 4

SmbArb Register Format

7 6 5 4 3 2 1 0

SmbArb Bit Descriptions

Bit Name Description

[0:7] smbMasterId These bits are the SMBus master’s unique ID.

Synopsis Used for hardware diagnostic purposes only.

Type Read/write

Size 8 bits

Window 1

Offset 5

SmbDiag Register Format

7 6 5 4 3 2 1 0

0 0 0 0

SmbDiag Bit Descriptions

Bit Name Description

[0:3] smbDiag These read/write bits are defined by the SMBus IDs.

50 CHAPTER 3: OPERATION
SmbFifoData

The SmbFifoData register can only be accessed through the SMBus driver. A write
access loads a byte of data from the SMBus to the transmit FIFO. A read access
unloads a byte of data from the receive FIFO to the SMBus.

The SmbFifoData register can only be accessed through the SMBus controller.
Accesses through the PCI bus are not supported.

The SmbFifoData register is not a “true” register in that no data actually resides in
it. It is simply used as a decoded location when moving data in or out of the FIFOs.

SmbRxBytes

The SmbRxBytes register provides the size information of a received packet. The
SMBus driver should read this register to determine the number of block transfers
needed for uploading a received packet from the receive FIFO. The rxBytes bit is
not decremented as the packet is being uploaded. It is only updated when the
packet is discarded.

Synopsis SMBus FIFO data register.

Type Read/write

Size 8 bits

Window 1

Offset 0

SmbFifoData Register Format

7 6 5 4 3 2 1 0

Synopsis Provides the size information of a received packet.

Type Read/write

Size 16 bits

Window 1

Offset 6

SmbFifoData Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

SmbArb Bit Descriptions

Bit Name Description

[0:12] rxBytes These bits are the number of bytes in the received
packets.

System Management Bus (SMBus) Interface 51
SmbStatus

The SmbStatus register contains bits that indicate the status of various FIFO and
network operations.

Synopsis Indicates the status of the NIC through the SMBus to determine
whether a packet can be transmitted or has been received.

Type Read/write

Size 16 bits

Window 1

Offset 2

SmbStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

SmbStatus Bit Descriptions

Bit Name Description

[0] txError This bit is an ORed version of soft error (max collision and
transmit reclaim error) and hard error (jabber and transmit
underrun).

[1] linkDetect This bit is a real-time indication of the link status.

[2] autoNegComplete This bit indicates whether auto-negotiation has completed
successfully.

[3] txActivity This bit is set whenever the txInProg bit in the MediaStatus
register is active. This indicates transmit activity. This bit is
cleared by reading the register.

[4] rxActivity This bit is set whenever a packet is received into the
receive FIFO (the fiRxComplete bit is true). This indicates
receive activity. This bit is cleared by reading the register.

[5] txEmpty This bit indicates that the transmit FIFO is empty. The
SMBus driver can poll this bit until the transmit FIFO is
empty before downloading an SMBus packet or by issuing
a txAgain command to retransmit a packet.

[6] dnInProg This bit indicates a PCI master download operation is in
progress. The SMBus driver should issue a dnStall
command and poll this bit until the dnInProg bit is
inactive, before downloading a packet through the
SMBus.

[7] upInProg This bit indicates a PCI master upload operation is in
progress. The SMBus driver should issue an upStall
command and poll this bit until the upInProg bit is
inactive, before uploading a packet through the SMBus.

[8] wakeEventPending When PME mask mode is enabled (through the pmeMask
bit [8] in the FifoDiag register), and either a pattern match
or Magic Packet frame is detected, the PCI bus PME#
signal is not asserted to wake-up the system. Instead, the
wakeEventPending bit is set.

The SMBus driver can poll this bit to determine whether a
packet should be uploaded through the SMBus.

This bit can be cleared by either writing a zero to it or by
reading the PowerMgmtEvent register.

 (1 of 2)

52 CHAPTER 3: OPERATION
[9] assertRemotePme This bit, when set to 1, asserts a PCI PME# signal. This
signal should stay asserted until the system software
writes a 1 to the pmeStatus bit [15] in the PowerMgmtCtrl
register, which acknowledges that a wake-up event has
occurred.

The assertRemotePme bit is also cleared accordingly.

The pmeEn bit in the PowerMgmtCtrl register must be set
for this to take effect.

[10] okToXmit This bit, when set, indicates that the SMBus controller
interprets that all conditions have been met and it is ready
to download and transmit a packet.

SmbStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

4
 CONFIGURATION
This chapter discusses the 3C90xC NIC configuration mechanism and defines the
registers associated with configuration. Configuration has two components: NIC
configuration and PCI configuration.

Power On Reset Power On Reset (POR) occurs when the NIC is first powered on from a non-power
state. (In PCs that supply auxiliary power to the NIC, POR occurs only when the AC
is initially applied.)

On the rising edge of POR, the ASIC samples some of its pins and latches them
into the ResetOptions register, setting various modes. See the ResetOptions
register for more information.

System Reset System reset is the assertion of the hardware reset signal on the PCI bus. For the
3C90xC NIC, however, this reset has limited affect on the ASIC.

The internal reset structure of 3C90xC NIC relies upon the ASIC Internal VDD,
creating a LVDRst signal that brings the ASIC to a known initial state. It is active
when the ASIC Internal VDD is less than approximately 2.9 volts.

After the NIC is initialized, PCIRst#s are used only to reset sections of the PCI host
logic; specifically, the PCI Target, PCI Master, PCI Config Space, and the
KeepAlive Timer.

The PCIRst# consists of three logical signals:

■ PciFallRst — generated on the falling edge of PCIRst#. This signal is a pulse of
approximately 1 µs long and is intended to reset PCI bus activity as the bus is
powered down.

■ PciRiseRst — generated on the rising edge of PCIRst#. This signal is a pulse of
approximately 1 µs long and is intended to reset PCI bus activity as the bus is
powered up. It also resets the KeepAlive Timer, ensuring a known duration
from reset until any subsequent keep-alive packet transmission.

■ PciLevelRstb — a buffered version of the PCIRst# signal. This signal is used to
disable the PCI I/O buffers during a bus reset condition.

Figure 5 illustrates the 3C90xC NIC internal reset structure.

54 CHAPTER 4: CONFIGURATION
Figure 5 Internal Reset Structure

Global Reset A GlobalReset command is available for use by the driver software to reset the
NIC. This command has a bit mask parameter that allows selective reset of various
parts of the NIC.

See the Command register definition for more information.

Serial EEPROM The serial EEPROM is used for nonvolatile storage of such information as the
DeviceId, node address, manufacturing data, default configuration settings, and
software information.

Some of the EEPROM data (such as the DeviceId and configuration defaults) is
automatically read into the NIC logic after system reset, whereas other data
(such as the node address and software information) is meant to be read by
driver software.

Shortly after system reset, the NIC ASIC reads certain locations from the EEPROM
and places the data into the host-accessible registers shown in Table 8.

Low
Voltage
Detect

PCI
Reset
Logic

ASIC Internal VDD LVDRst

Network
FIFO

Statistics
KeepAlive
WakeEvent

PCI Host

PCI Config
KeepAlive Timer

AutoInit

PciRiseRst

PciFallRst

PCIRst#

PciLevelRst

PCI I/O Signals

Table 8 EEPROM Data Locations

EEPROM Location Register Register Type

03 DeviceId PCI configuration

08 PciParm PCI configuration

0a OEM Node Address Word 0 I/O

 (1 of 2)

Flexible EEPROM Format 55
Flexible EEPROM
Format

Data in locations 40h and above are interpreted as a flexible format. The format
for this has a command-data structure, allowing any register to be written,
command to be executed, or data to be loaded into the transmit FIFO.

In this manner, any arbitrary sequence of commands can be executed every time
the EEPROM is loaded. It also allows packets to be loaded up into the transmit
FIFO ready for transmission, which is useful when implementing SOS “failed to
boot” messages out to the network. For more information, see Chapter 5.

NIC Configuration PCI NICs use a slot-specific block of configuration registers to perform NIC
configuration. The configuration registers are accessed with two types of
PCI configuration cycles:

■ Type 0 cycles are used to configure devices on the local PCI bus.

■ Type 1 cycles are used to pass a configuration request to a PCI bus at a different
hierarchical level.

PCI configuration cycles are directed at one out of eight possible PCI logical
functions within a single physical PCI device.

The 3C90xC NIC responds only to Type 0 configuration cycles, directed at
function 0. The NIC ignores Type 1 cycles and Type 0 cycles directed at functions
other than 0.

Each PCI device decodes 256 bytes worth of configuration registers. Of these, the
first 64 bytes are predefined by the PCI specification. The remaining registers may
be used as needed for PCI device-specific configuration registers.

In PCI configuration cycles, the host system provides a slot-specific decode signal
(IDSEL) that informs the NIC that a configuration cycle is in progress. The NIC
responds by asserting DEVSEL# and decoding the specific configuration register
from the address bus and the byte enable signals. See the PCI BIOS Specification
(available from the BIOS vendor) for information on generating configuration
cycles from driver software.

0b OEM Node Address Word 1 I/O

0c OEM Node Address Word 2 I/O

12 InternalConfig Word 0 I/O

13 InternalConfig Word 1 I/O

17 SubsystemVendorId PCI configuration

18 SubsystemId PCI configuration

19 MediaOptions I/O

1b SmbAddress I/O

1c PciParm2 PCI configuration

1d PciParm3 PCI configuration

Table 8 EEPROM Data Locations (continued)

EEPROM Location Register Register Type

 (2 of 2)

56 CHAPTER 4: CONFIGURATION
Configuration consists of allocating system resources to the NIC and setting
NIC-specific options. This is done by writing values into special PCI configuration
registers and into I/O registers. The location of this configuration space in the host
processor’s address map is system-dependent. PCI configuration is performed by a
POST routine supplied with the computer system. NIC-specific configuration is the
driver’s responsibility.

The registers that are set during PCI configuration are summarized in Table 9.

Forced Configuration The NIC includes a forced-configuration mode that enables it to be accessed
across the PCI bus without first needing to perform PCI configuration or to load
data from the EEPROM. Forced configuration mode is intended for NIC testing
only.

Forced configuration mode is useful for embedded applications in which
it is desired to operate the chip without an EEPROM.

In forced configuration mode, the NIC is forced to the following
configuration settings:

■ I/O base address: 200h

■ I/O target cycles: enabled

■ Memory target cycles: disabled

■ Bus master cycles: enabled

■ BIOS ROM cycles: disabled

Table 9 PCI Registers Set During Configuration

Configured by

Register BIOS POST Description

PciCommand X Enables NIC operation through response to and generation of PCI bus cycles, and enables
parity error generation.

IoBaseAddress X Sets the I/O base address for the NIC registers.

MemBaseAddress X Sets the memory base address for the NIC registers.

BiosRomControl X Sets the base address and size for an optional installed expansion ROM.

CacheLineSize X Indicates the system’s cache line size. The NIC uses this value for optimizing bus master
data transfers.

LatencyTimer X Programs a NIC timer that controls how long the NIC can hold the bus as a bus master.

InterruptLine X Maps the NIC’s interrupt request to a specific interrupt line (level) on the system board.

InternalConfig X Selects the media port (transceiver) and local RAM parameters. The InternalConfig register
is mapped into window 3 of the I/O register space.

Support for Signaling Standards 57
Support for
Signaling Standards

The 3C90xC NIC ASICs support the following signaling standards:

■ The two physical signaling schemes defined in the IEEE 802.3u Fast Ethernet
specification

■ The 10 Mbps IEEE 802.3 10BASE-T signaling standard

Three basic media types are supported:

■ 10 Mbps

■ 100BASE-TX

■ Media-independent Interface (MII)

A signal multiplexer selects which media type is active by connecting it to the
Ethernet MAC, which is the common point for all of the media types.

The signal multiplexer is controlled by a combination of the xcvrSelect field in the
InternalConfig register and the IEEE 802.3u auto-negotiation function.

On the 3C90xC NIC, the entire 100 Mbps PHY is integrated on-chip; there is no
need for an external 100 Mbps transceiver. The MII registers are inside the 10/100
Mbps PHY and control not only the auto-negotiation function, but also various
other functions within the PHY.

10 Mbps Signaling 10 Mbps signaling supports the 10BASE-T types of connection, this includes the
Manchester encoder/decoder, clock recovery VCO, and the line drivers/receivers.

Magnetics connect the ASIC to the RJ-45 connector. With additional circuitry,
10BASE-T and 100BASE-TX can share the same RJ-45 connector.

100BASE-X Signaling The 100BASE-X standard combines the IEEE 802.3 CSMA/CD Media Access
Control (MAC) specification and FDDI PMD specifications. There are two types
of 100BASE-X:

■ 100BASE-TX defines signaling over two pairs of Category 5 twisted-pair wiring,
as defined in the ANSI FDDI TP-PMD Specification.

■ 100BASE-FX defines signaling over FDDI-standard fiber-optic cabling, as
defined in the ANSI FDDI PMD Specification.

The 3C90xC NIC ASICs include the 4B/5B encoding, decoding, scrambling,
descrambling, and clock generation/clock recovery functions required for
100BASE-X. Only an external transceiver is required for a complete 100BASE-TX
solution.

100BASE-TX is typically implemented to share an RJ-45 connector with 10BASE-T.
This requires some switching circuitry external to the NIC ASICs, and the driver
must select the media speed.

Media-Independent
Interface/100BASE-T4

MII provides a general-purpose interface between an IEEE 802.3u MAC and
various physical layer devices. MII has two components:

■ A data interface that provides separate 4-bit-wide paths for receive data and
transmit data. The MII data interface is connected to the Ethernet MAC by

58 CHAPTER 4: CONFIGURATION
programming the code for MII in the xcvrSelect field of the InternalConfig
register.

■ A management interface that is a bidirectional serial link that provides access
to a physical layer device’s internal registers. Driver software controls the
management interface through bits in the NetworkDiagnostic register. For
information about programming management interface accesses, see
Appendix B.

Because the MII is independent of the signaling method, it is possible to use it to
support any type of 10 Mbps or 100 Mbps signaling, depending on the availability
of MII-compliant PHY devices.

Auto-Negotiation IEEE 802.3u auto-negotiation provides automatic negotiation of signaling rate and
duplex mode between the two ends of a twisted-pair link segment. Typically, the
two ends of a link segment are an end station (NIC) and a hub or switch.

IEEE auto-negotiation is specified to negotiate the following signaling
technologies: 10BASE-T, 100BASE-TX, and 100BASE-T4.

On the 3C90xC NIC, an integrated IEEE 802.3u auto-negotiation function handles
auto-negotiation for 10BASE-T and 100BASE-TX media types (100BASE-T4 is not
implemented within the 3C90xC NIC). The auto-negotiation function interacts
with the 10 Mbps and 100BASE-X functions to negotiate a common operating
mode with its link partner. If a common mode is found and a link is established,
auto-negotiation directs the signal multiplexer to connect the appropriate
signaling function to the MAC.

For more details on auto-negotiation, see Chapter 11.

BIOS ROM The 3C90xC NIC supports an optional BIOS ROM through a socket. The following
Atmel PEROM flash devices are supported:

■ AT29C512 (64K × 8)

■ AT29C010 (128K × 8)

The BIOS ROM is configured through the BiosRomControl PCI configuration
register. This register causes the ROM to be mapped into the memory space of the
host system, allowing the ROM contents to be scanned, copied to system RAM,
and executed at initialization time.

The BIOS ROM in memory space is read-accessible using byte, word, or
double-word cycles. All write accesses to the BIOS ROM in memory space
require double-word writes to the NIC.

The BIOS ROM is also byte-read and byte-write accessible to the host CPU
through the BiosRomData and BiosRomAddr I/O registers. This allows a diagnostic
program to read or modify the ROM contents without having to write to
configuration registers.

InternalConfig
Synopsis Allows the setting of a NIC-specific configuration.

Type Read/write

InternalConfig 59
The InternalConfig register provides a way to set NIC-specific, non-host-related
configuration settings. The contents of InternalConfig are read from EEPROM
at reset.

Two words supply the value for InternalConfig:

■ InternalConfig word 0 corresponds to the low-order 16 bits of the register.

■ InternalConfig word 1 corresponds to the high-order 16 bits of the register.

The least-significant word of InternalConfig contains hardware configuration
information that should generally not be changed by software.

The most-significant word contains information that may be changed by
installation software to tune the NIC to the system configuration. It also has a
field to select the media port.

InternalConfig is set to 00000010h at reset but is normally loaded with a value
from EEPROM shortly after reset.

Size 32 bits

Window 3

Offset 0

InternalConfig Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

InternalConfig Bit Descriptions

Bit Name Description

[7:6] romSize Specifies the size of the BIOS ROM installed on the NIC, as
defined below:

■ 0 = 64 KB

■ 1 = 128 KB

■ 2, 3 = Reserved

[8] disableBadSsdDetect This bit, when set, disables checking for a proper JK
symbol in the first byte of the 100BASE-TX start of stream
delimiter (SSD).

When this bit is clear, the NIC checks for a proper JK in
this byte, and updates the BadSSD counter accordingly (if
statistics are enabled).

This bit only has an effect in 100BASE-TX modes.

[14] enableTxLarge This read/write bit, when set, enables transmission of
packets that are larger than the transmit FIFO.

Because the FIFO size is 2 KB, this bit can be left clear (the
reset default).

[15] enableRxLarge This read/write bit, when set, enables reception of packets
that are larger than the receive FIFO.

Because the FIFO size is 2 KB, this bit can be left clear (the
reset default).

 (1 of 3)

60 CHAPTER 4: CONFIGURATION
[23:20] xcvrSelect This read/write field indicates the selected transceiver
type. The only legal values for xcvrSelect are those that
have a corresponding bit set in the MediaOptions register.

After changing the value of xcvrSelect, drivers must issue
both an RxReset and a TxReset command.

The transceiver types are defined below:

xcvrSelect Value Transceiver Selected

0000 10BASE-T: This setting is used for backward-compatibility
and diagnostic purposes only. Drivers wishing to
operate over 10BASE-T should set these bits to the
auto-negotiation setting and configure the
auto-negotiation registers for the appropriate mode.

0001 10 Mbps AUI: Configure the NIC for AUI operation. The
specific type of MAU (transceiver) operating over the AUI
is unspecified.

0010 Reserved.

0011 10BASE2: Configure the NIC for 10BASE2 operation. Note
that when 10BASE2 is chosen, the EnableDcConverter
command also must be issued before network operation
can begin.

0100 100BASE-TX: This setting is used for
backward-compatibility and diagnostic purposes only.
Drivers that need to operate over 100BASE-TX should set
these bits to the auto-negotiation setting and configure
the auto-negotiation registers for the appropriate mode.

0101 100BASE-FX: Configure the NIC for 100BASE-FX
operation.

0110 MII: Configure the NIC for MII operation. The specific type
of PHY device (transceiver) operating over the MII is
unspecified. The MII PHY device may or may not
have its own auto-negotiation entity. If it has its own
auto-negotiation entity, it is functionally distinct from
the integrated auto-negotiation function of the NIC.

The MII is a general-purpose port that can be used to
allow the NIC to signal over a variety of media types. The
MII is used to support (among other things) 100BASE-T4
signaling.

0111 Reserved.

1000 Auto-negotiation: The auto-negotiation function
automatically determines the data rate and duplex mode.

After auto-negotiation, the chip is automatically
configured to operate at the negotiated data rate.
However, if a full-duplex link was negotiated, the
driver must configure the duplex mode by setting the
fullDuplexEnable bit in the MacControl register.

The on-chip auto-negotiation only handles 10BASE-T and
100BASE-TX connections. In an AutoSelect sequence, if
auto-negotiation is unable to establish a link, then the
driver needs to try the other supported media types.

1001 MII external MAC mode. This setting enables a special
operating mode in which the MII ASIC pins are used to
expose the MAC/PHY interface signals.

InternalConfig Bit Descriptions (continued)

Bit Name Description

 (2 of 3)

NIC Initialization 61
NIC Initialization After the system has performed basic configuration of the NIC, software must
initialize the NIC, which means selecting the media port and setting various NIC
registers to the desired initial values.

Selecting the Media Port The media port (transceiver) can be selected one of two ways:

■ Through the EEPROM (by using the xcvrSelect field in the InternalConfig
register)

■ Through automatic selection (by using AutoSelect)

Selection Through EEPROM

Because the value of the InternalConfig register is stored in the serial EEPROM
and loaded into the ASIC after reset, it is possible to write an xcvrSelect value into
EEPROM and thereafter have the NIC automatically use the stored value when it
is powered up.

The xcvrSelect field settings enable specific ports. After the value of xcvrSelect is
changed, drivers must always issue RxReset and TxReset commands.

Selection Through AutoSelect

Alternatively, an AutoSelect mechanism causes the driver to ignore the EEPROM
value for xcvrSelect and attempt to set the media port based on which port is
currently active.

When the autoSelect bit in the InternalConfig register is set, the driver selects each
port available on the NIC in turn (see “MediaOptions”, the next section). The
driver attempts to find a port that is connected to the network. Different kinds of
ports require different techniques to determine an active link. If the driver fails to
find a connected port, it restores the original value in the xcvrSelect field.

For more details on autoSelect, see “AutoSelect Sequence””in this chapter.

1010–1111 Reserved.

[24] autoSelect When set, this bit indicates that the driver should ignore the
value set in xcvrSelect, and instead automatically select the
media port at load time.

If autoSelect is clear, the xcvrSelect value is used as is, and
the driver configures the NIC accordingly.

Although this bit is read/write, it should be treated as
read-only by drivers.

[25] disableBiosROM This bit, when set, disables accesses to the on-NIC BIOS
ROM. This bit is included to allow bypassing the BIOS
ROM without having to physically remove it from the
board. When this bit is set, the NIC responds to any
read in its configured BIOS ROM space by returning
00000000h, and it ignores writes to the BIOS ROM.

InternalConfig Bit Descriptions (continued)

Bit Name Description

 (3 of 3)

62 CHAPTER 4: CONFIGURATION
MediaOptions The MediaOptions register provides a way for driver or configuration software to
determine the media ports installed on the NIC.

The value for MediaOptions is stored in word 19 of the EEPROM and is read into
the ASIC after a reset. During an AutoSelect sequence, a driver checks
MediaOptions to determine which ports it should try.

AutoSelect Sequence The following paragraphs describe, in general terms, the techniques for
determining the active media port. For detailed AutoSelect pseudo code,
see Appendix A.

Auto-Negotiation

The IEEE 802.3u auto-negotiation logic attempts to negotiate a 10BASE-T
or 100BASE-TX link with the hub or switch. Shortly after reset or power-up,
the auto-negotiation logic starts the auto-negotiation process. This consists
of advertising the NIC’s capabilities using encoded fast link pulses (FLPs)
and listening for indications of the link partner’s capabilities.

Auto-negotiation is designed to allow the NIC to establish a valid link with the
following hubs or switches:

■ Those that implement auto-negotiation

■ Those that are pre–auto-negotiation 10BASE-T

■ Those that are pre–auto-negotiation 100BASE-TX

Typically, by the time driver software is loaded, auto-negotiation is finished and the
driver is able to determine the negotiated link speed and mode. However, because
the driver is unable to distinguish between an auto-negotiation incomplete state
and an auto-negotiation failure state, it must implement a timeout loop to wait a
reasonable time period before deciding that auto-negotiation has failed.

A driver typically executes the following steps in its auto-negotiation sequence.

1 Check that auto-negotiation is complete.

For example, the NIC checks that bit 5 (autoNegComplete) in the MII register 01
(Status) is set, indicating that auto-negotiation is complete. If not complete,
execute a timeout loop of some reasonable length, and check again.

2 Compare the advertised capabilities of the NIC against the capabilities received
from the link partner.

This involves doing a bitwise AND on bits [5:8] of MII registers 04 and 05
(Autonegotiation Advertisement and AutoNegAbility).

The highest common capability is the negotiated mode. If no common capability is
found, no link has been established.

3 If a full-duplex mode has been negotiated, set the fullDuplexEnable bit in the
MacControl register, if desired.

MII/100BASE-T4

Any number of different PHY devices can be connected to the MII port. Each
device either supports auto-negotiation or has its own proprietary link detection
sequence. In general, driver software must communicate with the PHY device

Setting the Receive Filter 63
registers across the MII management interface to determine the link status of
the PHY.

The typical application for MII is to support 100BASE-T4. Current 100BASE-T4
devices have a proprietary scheme for determining and selecting the active port.
Future 100BASE-T4 PHY devices may support IEEE 802.3u auto-negotiation. Refer
to the PHY device specifications for more details.

100BASE-FX

100BASE-FX is not covered by auto-negotiation and cannot be looped back, so
the link is tested using a combination of checking the linkDetect bit in the
MediaStatus register and listening for receive frames.

To check for a 100BASE-FX link:

1 Set the xcvrSelect bit in the InternalConfig register to 100BASE-FX.

2 Issue RxReset and TxReset commands.

3 Set the linkBeatEnable bit in the MediaStatus register.

4 Set the receiveAllFrames bit in the RxFilter register (promiscuous mode) and issue
RxEnable and TxEnable commands.

5 Transmit a self-directed packet (some hubs require this to unpartition the link so
that they can receive packets).

6 Enter a loop that looks for any receive packets, reads the linkDetect bit in
MediaStatus, and checks the carrierSense bit.

The number of times the carrierSense bit is seen active is accumulated. If at any
time in the loop a packet is received without error, the link is considered good. If
error packets are received, they are discarded and the loop continues. If at any
time the linkDetect bit is off, the link is considered bad.

If the loop completes a large number of iterations without ever seeing linkDetect
off or receiving a good frame, then the carrierSense statistic is used to guess the
link status. If carrierSense was detected “on” for more than 25% of the loop
iterations, then on a good link this should have resulted in a good receive frame,
so the link is considered bad. If carrierSense was seen active less than 25% of the
time, then carrierSense is considered a false reading and the link is declared good.

Manual Testing of 10BASE-T and 100BASE-TX

The approach outlined for 100BASE-FX can also be applied to manual
testing of the 10BASE-T and 100BASE-TX ports, if it is desired to bypass
the auto-negotiation process. Use the 10BASE-T and 100BASE-TX choices
in the xcvrSelect field, instead of auto-negotiation.

Setting the
Receive Filter

The RxFilter register determines which types of packets can be received by the NIC.
RxFilter is set using the SetRxFilter command.

Station Address The StationAddress is loaded at power-up. The NIC’s network address can be
obtained from the appropriate data locations within the EEPROM. The driver can
program any arbitrary value into StationAddress.

64 CHAPTER 4: CONFIGURATION
Once StationAddress is programmed, the NIC can be configured to receive packets
whose destination addresses match that address by setting the receiveIndividual
bit in the RxFilter register.

Broadcast Packets Setting the receiveBroadcast bit in the RxFilter register causes the NIC to receive all
broadcast packets.

Multicast Packets Setting the receiveMulticast bit in the RxFilter register causes the NIC to receive all
multicast packets.

Multicast Address
Hash Filter

The 3C90xC NIC contains a hash filter for selective reception of multicast packets.
The hash filter is an array of 256 enable bits.

The NIC applies a cyclic redundancy check (CRC) to the destination address of
incoming packets that have the multicast bit set. The low-order eight bits of the
CRC are used as an index into the hash filter. If the hash filter bit addressed by the
index is set, the packet is accepted by the NIC and is passed to the driver. If the
hash filter bit is cleared, the NIC discards the packet.

Setting the receiveMulticastHash bit in the RxFilter register enables the filtering
mechanism. The hash filter is programmed using the SetHashFilterBit command.

Promiscuous Mode Setting the receiveAllFrames bit in the RxFilter register causes the NIC to receive all
packets in promiscuous mode.

Capabilities Word This word is a 16-bit location in the EEPROM that specifies the capabilities of
the NIC.

See “Data Format” in Chapter 5 for more details.

MacControl The MacControl register is used to configure MAC-specific parameters, including
full-duplex mode, flow control enabling, and extended deference options.

Setting the
Duplex Mode

The NIC can operate in either half-duplex or full-duplex mode.

■ In half-duplex mode, the NIC cannot transmit and receive simultaneously.
Before it can transmit, it must wait for the network link to go quiet, and a
collision may occur once transmission has begun.

■ In full-duplex mode, the NIC can transmit and receive simultaneously, and
collisions do not exist.

The duplex mode is set by a combination of fullDuplexEnable in the MacControl
register and the auto-negotiation bits in the MII registers.

If auto-negotiation is not enabled (xcvrSelect in InternalConfig is not set to
1000b), fullDuplexEnable fully controls the duplex mode. In this case, the criteria
for setting fullDuplexEnable are driver- and environment-dependent.

PCI Configuration Registers 65
If auto-negotiation is enabled (xcvrSelect is set to 1000b), then the negotiated
duplex mode is indicated by bits 6 and 8 in MII registers 04 and 05
(Autonegotiation Advertisement and AutoNegAbility). If these bits indicate that a
full-duplex link has been negotiated, the driver must sense this and set
fullDuplexEnable.

PCI Configuration
Registers

Table 10 summarizes the NIC PCI configuration registers. Shaded spaces and all
locations within the 256-byte configuration space that are not shown in the table
are either reserved or not implemented and return zero when read.

The following sections describe the PCI configuration registers.

BiosRomControl This read/write register allows the system to define the base address for the NIC’s
BIOS ROM.

Table 10 Summary of PCI Configuration Registers

Byte 3 Byte 2 Byte 1 Byte 0 Offset

Data PowerMgmtCtrl e0

PowerMgmtCap NextPtr CapID dc

60 – d8

5c

58

54

50

4c

48

44

40

MaxLat MinGnt InterruptPin InterruptLine 3c

38

CapPtr 34

BiosRomControl 30

SubsystemId SubsystemVendorId 2c

28

24

20

1c

18

MemBaseAddress 14

IoBaseAddress 10

HeaderType LatencyTimer CacheLineSize 0c

ClassCode RevisionId 08

PciStatus PciCommand 04

DeviceId VendorId 00

66 CHAPTER 4: CONFIGURATION
CacheLineSize The system BIOS writes the system’s cache line size into this register. The NIC uses
this to optimize PCI bus master operation (choosing the best memory command,
and so forth).

The value in CacheLineSize represents the number of dwords in a cache.
CacheLineSize only supports powers of 2 from 4 to 64 (giving a range of 16 to
256 bytes). An unsupported value is treated the same as zero.

CapID The CapID register is at Offset 0 from the CapPtr register.

This byte-wide, read-only register indicates the type of capability data structure. It
returns 01h to indicate a PCI power management structure.

CapPtr This hard-coded value points to the beginning of a chain of registers that describe
enhanced functions. This register returns 0xdc, which points to the power
management registers.

ClassCode This 24-bit read-only register identifies the general function of the PCI device. The
NIC returns 020000h, indicating “Ethernet” network controller.

Data The Data register is at Offset 7 from the CapPtr register.

The read-only Data register provides a mechanism to report the power consumed
by the NIC in any of the D-states. The specific value and scaling is determined by
the dataSelect and dataScale fields in the PowerMgmtCtrl register.

DeviceId This read-only register contains the 3Com-allocated 16-bit device ID for the NIC.
This value is read from EEPROM location 03 after reset.

BiosRomControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BiosRomControl Bit Descriptions

Bit Name Description

[0] addressDecodeEnable When this bit is cleared, the NIC’s BIOS ROM is disabled.
Setting this bit when the memorySpace bit in the
PciCommand register is also set causes the NIC to respond
to accesses in its configured expansion ROM space.

[31:17] romBaseAddress The system programs the expansion ROM base address
into this field.

Since this field is 15 bits wide, the ROM is mapped on
128 KB boundaries. If a ROM smaller than 128 KB is
installed, it will appear as multiple images within the
128 KB space.

CacheLineSize Register Format

7 6 5 4 3 2 1 0

0 0 0

PCI Configuration Registers 67
HeaderType The value returned in this read-only field, 00h, identifies the NIC as a
single-function PCI device, and specifies the configuration register layout
shown in Table 10.

InterruptLine This 8-bit read/write register is written by the system to communicate to the
device driver which interrupt level is being used for the device. This allows the
driver to use the appropriate interrupt vector for its interrupt service routine (ISR).

For 80x86 systems, the value in InterruptLine corresponds to the IRQ numbers
(0 through 15) of the standard dual 8259 configuration, and the values 0 and 255
correspond to disabled.

InterruptPin This read-only register indicates which PCI interrupt “pin” the NIC will use. The
NIC always uses INTA#, so 01h is returned in InterruptPin.

IoBaseAddress This read/write register allows the system to define the I/O base address for
the NIC. PCI requires that I/O base addresses be set as if the system used 32-bit
I/O addressing. The register returns one in bit 0 to indicate that this is an I/O
base address.

The upper 25 bits of the register are writable, indicating that the NIC requires 128
bytes of I/O space in the system I/O map.

LatencyTimer This 8-bit read/write register specifies, in units of PCI bus clocks, the value of the
latency timer for bus master operations.

The system writes a value into LatencyTimer, which determines how long the NIC
can hold the bus in the presence of other bus requesters. Whenever the NIC
asserts FRAME#, the latency timer is started. When the timer count expires, the
NIC must relinquish the bus as soon as its GNT# signal has been negated.

Because the low-order three bits are not implemented, the granularity of the timer
is eight bus clocks.

IoBaseAddress Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1

IoBaseAddress Bit Descriptions

Bit Name Description

[31:7] ioBaseAddress The system programs the I/O base address into this field.
Because the NIC uses 128 bytes of I/O space, 25 bits are
required to completely specify the I/O base address.

LatencyTimer Register Format

7 6 5 4 3 2 1 0

0 0 0

68 CHAPTER 4: CONFIGURATION
MaxLat MaxLat is a read-only value that specifies, in 250-ns increments, how often the
NIC requires the bus when operating as a bus master. The value for MaxLat is
stored in the PciParm word in EEPROM.

100 Mbps NICs return the value 5 in this field. 10 Mbps-only NICs return the value
48d.

MemBaseAddress This read/write register allows the system to define the memory base address for
the NIC’s registers. The register returns zero in bit 0 to indicate that this is a
memory base address.

The upper 25 bits of the register are writable, indicating that the NIC requires
128 bytes of memory space in the system I/O map.

MinGnt MinGnt is a read-only value that specifies, in 250-ns increments, how long a burst
period the NIC requires when it is operating as a bus master. The value for MinGnt
is stored in the PciParm word in EEPROM.

The 3C90xC NIC returns the value 5 in this field.

NextPtr The NextPtr register is at Offset 1 from the CapPtr register.

This byte-wide, read-only register points to the next capability data structure in the
capabilities list. It returns 00h to indicate that there are no further data structures.

PciCommand This read/write register provides control over the NIC’s ability to generate and
respond to PCI cycles. When a zero is written to this register, the NIC is logically
disconnected from the PCI bus, except for configuration cycles.

MemBaseAddress Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

MemBaseAddress Bit Descriptions

Bit Name Description

[1] mapLowerMeg This read-only bit, when set, instructs the system to map
the NIC registers into the lowest 1 MB of memory address
space. This bit is loaded from the PciParm word in
EEPROM.

[31:7] memBaseAddress The system programs the memory base address into
this field. Because the NIC registers occupy 128 bytes of
space, 25 bits are required to completely specify the
memory base address.

PciCommand Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

PCI Configuration Registers 69
PciStatus This read/write register is used to record status information for PCI bus events.

Although this register is writable, write operations work in an unusual manner.
Read/write bits in the register can be reset, but not set, by writing to this register.
Bits are reset by writing a one to that bit position.

PciCommand Bit Descriptions

Bit Name Description

[0] ioSpace Setting this bit allows the NIC to respond to I/O space
accesses (if the NIC is in the D0 power state).

[1] memorySpace Setting this bit (along with the addressDecodeEnable bit
in the BiosRomControl register) allows the NIC to decode
accesses to its BIOS ROM, if one is installed, and if the NIC
is in the D0 power state.

[2] busMaster Setting this bit allows NICs with bus master capability
to initiate bus master cycles (if the NIC is in the D0
power state).

[4] MWIEnable Memory Write and Invalidate Enable. Setting this bit
allows the NIC to generate the MWI command.

[6] parityErrorResponse This bit controls how the NIC responds to parity errors.
Setting this bit causes the NIC to take its normal action
upon detecting a parity error. Clearing this bit causes
the NIC to ignore parity errors. This bit is cleared upon
system reset.

[8] SERREnable This bit is the enable bit for the SERR# pin driver. A value
of zero disables the SERR# driver.

PciStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

PciStatus Bit Descriptions

Bit Name Description

[4] capabilitiesList This read-only bit is always set, indicating the existence of
a list of extended capabilities registers. The CapPtr register
points to the start of the list.

[7] fastBackToBack This read-only bit indicates that the NIC, as a target,
supports fast, back-to-back transactions.

This bit is programmable through bit 0 in the EEPROM
PciParm word. It must be programmed to zero to be
compatible with other NICs in the 3C90x family.

[8] dataParityDetected The NIC sets this bit when, as a master, it detects the
PERR# signal asserted, and the parityErrorResponse bit is
set in the PciCommand register.

[10:9] devselTiming This read-only field is used to encode the slowest time
with which the NIC asserts the DEVSEL# signal.

The NIC returns 01b, indicating support of “medium”
speed DEVSEL# assertion.

[11] signaledTargetAbort The NIC asserts this bit when it terminates a bus
transaction with target-abort.

 (1 of 2)

70 CHAPTER 4: CONFIGURATION
RevisionId The RevisionId register provides a revision code for the ASIC.

A portion of the RevisionId register value is also made visible in the I/O register
space, in the asicRevision field in the NetworkDiagnostic register. The asicRevision
field is only 5 bits wide, so only a portion of RevisionId can be visible there.

Bits [6:2] are visible in asicRevision, to allow both revision and vendor information
to be visible here.

SubsystemId This is the value read from EEPROM word 18h after system reset.

For more information, see “SubsystemId” in Chapter 5.

SubsystemVendorId This value is read from EEPROM location 17h after system reset.

For more information, see “SubsystemVendorId” in Chapter 5.

VendorId This read-only register contains the unique 16-bit manufacturer’s ID as allocated by
the PCI SIG. 3Com’s manufacturer ID is 10B7h.

[12] receivedTargetAbort The NIC asserts this bit when, operating as a bus master,
its bus transaction is terminated with target-abort.

[13] receivedMasterAbort The NIC asserts this bit when, operating as a bus master,
its bus transaction is terminated with master-abort.

[14] signaledSystemError This bit is set whenever the NIC asserts SERR#.

[15] detectedParityError The NIC asserts this bit when it detects a parity error,
regardless of whether parity error handling is enabled.

PciStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

RevisionId Register Format

7 6 5 4 3 2 1 0

RevisionId Bit Descriptions

Bit Name Description

[4:0] revision This field encodes the chip revision.

Bits [1:0] are hardwired to 00b. Bits [4:2] are used to
encode the revision (this allows pertinent revision data to
also be visible in the NetworkDiagnostic register).

[7:5] chip/Vendor This field encodes the type of ASIC.

5
 EEPROM
This chapter provides information about the EEPROM contents and registers.

Data Format Table 11 summarizes the contents of the 3C90xC NIC’s EEPROM.

Table 11 EEPROM Contents

Offset
(hex) Field Name

10/100 TX
(hex)

00 3Com Node Address (word 0) xxxx

01 3Com Node Address (word 1) xxxx

02 3Com Node Address (word 2) xxxx

03 DeviceId 9200

04 Manufacturing Data - Date xxxx

05 Manufacturing Data - Division 00xx

06 Manufacturing Data - Product Code xxxx

07 ManufacturerId 6d50

08 PciParm 2940

09 RomInfo 0000

0a OEM Node Address (word 0) xxxx

0b OEM Node Address (word 1) xxxx

0c OEM Node Address (word 2) xxxx

0d Software Information 0010

0e Compatibility Word 0000

0f Software Information 2 00aa

10 CapabilitiesWord 72a2

11 Reserved 0000

12 InternalConfig Word 0 0000

13 InternalConfig Word 1 0180

14 Reserved 0000

15 Software Information 3 0000

16 LANWorks Data 1 0000

17 SubsystemVendorId 10b7

18 SubsystemId 1000

19 MediaOptions 000a

1a LANWorks Data 2 0000

1b SmbAddress 6300

 (1 of 2)

72 CHAPTER 5: EEPROM
Flexible Format Table 12 summarizes the contents of the 3C90xC NIC’s flexible EEPROM format.

3Com Node Address This field contains the 3Com node address for the NIC. It is not the field to be
programmed into the StationAddress register. See “OEM Node Address” in this
chapter.

DeviceId This field contains the 2-byte product identifier, which gets loaded into the ASIC
and made available in the DeviceId register in the PCI Configuration space.

The most-significant three nibbles are the numeric portion of the 3C number
(920 for 3C905C NICs).

The least-significant nibble is used as a sort of revision code, to reflect
the particular transceiver resources on the NIC and, potentially, board or
ASIC revisions. The following codes are defined:

1c PciParm2 ffb7

1d PciParm3 b7b7

1e-1f reserved 0000

20 Checksum #1: 00-1f 00xx

Table 11 EEPROM Contents (continued)

Offset
(hex) Field Name

10/100 TX
(hex)

 (2 of 2)

Table 12 Flexible EEPROM Format

Offset
(hex) Field Name

10/100 TX
(hex)

21-2f reserved 0000

30 Current IP address bytes 1-0 xxxx

31 Current IP address bytes 3-2 xxxx

32-3f SMBus (OEM-specific) xxxx

40-3fe Flexible format xxxx

ff Checksum#2*: 40-fe

* Checksum #2 is only applicable if a 4K EEPROM is used.

00xx

3ff Checksum #3†: 40-3fe

† Checksum #3 is only applicable if a 16K EEPROM is used.

00xx

3C905C NICs

9200 EtherLink 10/100 PCI (TX)

3C980C NIC

9805 EtherLink Server 10/100 PCI (TX)

Manufacturing Data 73
Manufacturing Data The manufacturing data fields are described below.

Date This field contains the date of manufacture, encoded as follows:

Division This field contains the manufacturing division code, as shown on the product bar
code label.

Product Code This field contains the manufacturing product code, which is two alphanumeric
ASCII characters from the bar code label.

ManufacturerId This field contains 3Com’s assigned EISA Manufacturer ID. It is a byte-swapped,
encoded form of the string “TCM.” This is included to aid software in identifying
3Com NICs in systems where a PCI BIOS is not available.

This value has no significance in PCI operation (it is unrelated to the PCI VendorId
value). It is not used by the NIC logic in any way nor made available in any NIC I/O
register. This value is the same as the value in this EEPROM location in 3Com
ISA/EISA NICs.

RomInfo This field conveys to a driver or configuration program whether a BIOS ROM is
installed, and the physical size of the ROM.

PciParm The contents of this field are loaded into the ASIC to control various hardware
functions related to PCI bus operation.

Day [4:0]: The day (1 through 31)

Month [8:5]: The number of the month (1 through 12)

Year [15:9]: The last two digits of the current year (0 through 99)

RomInfo Bit Descriptions

Bit Name Description

[11] romPresent Indicates the presence of a BIOS ROM.

[13:12] romSize The physical size of the BIOS ROM. The romSize bit is valid
only when the romPresent bit is set.

■ 00 = 64K × 8

■ 01 = 128K × 8

■ 1x = Reserved

PciParm Bit Descriptions

Bit Name Description

[0] pulsedPME This bit, when set, indicates that the PME signal sourced
by the ASIC is pulsed with a duration of approximately
100 µs when a wake event occurs.

[1] lower1Meg This bit provides the value for the mapLowerMeg bit in
the MemBaseAddress register.

 (1 of 2)

74 CHAPTER 5: EEPROM
PciParm has a default value of 1540h but is normally overwritten by the value
in EEPROM.

The EEPROM values specify the following:

OEM Node Address This field is loaded into the StationAddress register upon power-up. For
3Com NICs, this field contains the same value as in 3Com Node Address.
OEM customers may choose to program this field with a different value.

Software Information This field contains environmental information for use by the driver.

[2] disableMemBase This bit, when set, disables the MemBaseAddress register.
This bit causes the memBaseAddress bit to read back as
zeros, appearing as if it is not implemented by the NIC.

[9:6] minGnt Determines the value returned in bits [4:1] of the
MinGnt register.

[15:10] maxLat Determines the value returned in bits [5:0] of the
MaxLat register.

Bit

pulsedPME 0

lower1Meg 0

disableMemBase 0

minGnt 0101b (2.5 µs)

maxLat 110000b (12 µs)

PciParm Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Software Information Bit Descriptions

Bit Name Description

[3:0] Reserved Reserved, set to zero.

[5:4] optimizeFor Specifies the environment for which to optimize.

■ 00 = Reserved

■ 01 = Normal

■ 10 = Maximum network performance

■ 11 = Minimum CPU utilization

[7:6] Reserved Reserved, set to zero.

[13:8] Reserved Reserved. The value of these bits is undefined.

[14] linkBeatDisable Indicates to the host software whether it should set the
linkBeatEnable bit in the MediaStatus register (for
appropriately equipped NICs).

Note the opposite polarities of the linkBeatDisable and
linkBeatEnable bits.

Compatibility Word 75
The default value specifies:

■ Normal optimization

■ Link beat enabled

■ Full-duplex disabled

Compatibility Word This field contains two byte-wide values that are checked by the driver with
an internal value (CLevel) to determine the compatibility of the driver with
the software.

Capabilities Word This word contains data defining the basic capabilities of the 3C90xC NICs.
Table 13 summarizes the capabilities of NICs.

[15] fullDuplex Indicates to the host software whether it should configure
the NIC for full-duplex operation.

■ 0 = Disable full-duplex operation.

■ 1 = Enable full-duplex operation.

Software Information Bit Descriptions (continued)

Bit Name Description

Compatibility Word Bit Descriptions

Bit Name Description

[7:0] warningLevel If the driver’s CLevel is less than this field, the driver issues
a warning message that a newer driver is available that
may offer improved performance.

[15:8] failureLevel If the driver’s CLevel is less than this field, the driver fails
the installation process. A new driver needs to
be obtained.

Table 13 3C90xC NICs Summary of Capabilities

Bit Capabilities Bit Value

0 supportsPlugNPlay 0

1 supportsFullDuplex 1

2 supportsLargePackets 0

3 supportsSlaveDma 0

4 supportsSecondDma 0

5 supportsFullBusMaster 1

6 supportsFragBusMaster 0

7 supportsCrcPassThru 1

8 supportsTxDone 0

9 supportsNoTxLength 1

10 supportsRxRepeat 0

11 supportsSnooping 0

12 supports100Mbps 0 or 1

13 supportsPowerMgmt 1

14 supportsKeppAlives 0 or 1

76 CHAPTER 5: EEPROM
The capabilities bits that are set for the 3C90xC NIC are described below.

InternalConfig Two words supply the value for the InternalConfig register:

■ InternalConfig word 0 corresponds to the low-order 16 bits of the
InternalConfig registers.

■ InternalConfig word 1 corresponds to the high-order 16 bits.

The hardware reads the words automatically upon reset to provide default settings
for non–system-related configuration settings. They can later be written over by
driver software.

See “InternalConfig” in Chapter 4 for bit definitions.

Software
Information 2

This word contains additional information for drivers.

Capabilities Word Bit Descriptions

Bit Name Description

[1] supportsFullDuplex Indicates that the NIC supports full-duplex media
operation.

[5] supportsFullBusMaster Indicates that the NIC supports scatter/gather bus master
data transfers.

[7] supportsCrcPassThru Indicates that the NIC supports CRC pass-through using
the crcAppendDisable bit in the Frame Start Header (FSH).

[9] supportsNoTxLength Indicates that the NIC calculates the length of transmit
packets automatically software does not need to supply
it in the FSH.

[12] supports100Mbps Indicates the NIC’s ability to support 100 Mbps data rates.

[13] supportsPowerMgmt Indicates that the NIC supports the OnNow/ACPI power
management scheme.

[14] supportsKeepAlives Indicates that the NIC supports keep-alive packets.

Software Information 2 Bit Descriptions

Bit Name Description

[1] fixedBroadcastRxBug This bit, when set, indicates that the NIC hardware
includes a fix for the broadcast receive bug. This bug
required a bit to be turned on in the multicast hash filter
in order to receive broadcast frames.

[2] fixedEndecLpbackBug This bit, when set, indicates that the bug in the ENDEC
loopback function has been fixed.

[3] wolConnector This bit, when set, indicates that the NIC has a 3-pin
auxiliary Remote Wake-Up connector.

 (1 of 2)

Software Information 3 77
Software
Information 3

This word instructs the driver how to configure the NIC when “forcing” the
transceiver to MII or auto-negotiation.

Lanworks Data 1 This word is reserved for use by Lanworks to hold data related to their
expansion ROMs.

[4] pmePulsed BWOL only. This bit indicates that the PME# signal is
asserted with a pulse rather than a level.

This bit is meaningless if the wolConnector bit is 0.

When wolConnector is 1, the value of this bit indicates
the type of Remote Wake-Up PME# signal:

■ 0 = Level signal (as per the PCI specification)

■ 1 = Pulsed signal (the Dell implementation)

[5] fixedMWIBug This bit indicates that the Memory Write Invalidate (MWI)
PCI command bug has been fixed and the MWI command
should be enabled.

■ 0 = MWI command is not working properly

■ 1 = MWI command is working properly

[6] wolAfterPowerLoss This bit, when set to 0, indicates that the BIOS should
place the NIC in a Magic Packet wake-up state after a
power loss.

[7] autoResetToD0 This bit, when set, indicates that the NIC automatically
goes to a D0 state on a PCI bus reset.

Software Information 2 Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Software Information 3 Bit Descriptions

Bit Name Description

[3:0] forceXcvr Specifies which transceiver type to select on an MII-based
PHY device.

■ 0000 = Generic MII

■ 0001 = 100BASE-T4 - MII

■ 0010 = 10BASE-T - MII

■ 0011 = 100BASE-TX - MII

■ 0100 = 10BASE-T - Auto-negotiation

■ 0101 = 100BASE-TX - Auto-negotiation

■ Others = Reserved for future combinations

In addition to this field, driver software should check the fullDuplex bit in the
Software Information field to determine which duplex mode to configure for the NIC.

This value is used by the driver only when both of the following conditions are true:

■ The autoSelect bit in the InternalConfig register is clear.

■ The xcvrSelect bit in the InternalConfig register is set to MII or auto-negotiation.

[15:4] Reserved Reserved for future information bits.

78 CHAPTER 5: EEPROM
SubsystemVendorId This word is the 2-byte subsystem vendor ID. Because in this case the subsystem is
a 3Com NIC, 3Com’s PCI vendor ID, 10b7h, is used. If this were an OEM NIC, the
OEM’s 2-byte code would be used.

SubsystemId This is the 2-byte subsystem ID. The upper byte of this field reflects a NIC
configuration (for example, 10 would be “Tx” and the lower byte would
designate a software revision).

MediaOptions This field holds the value to be loaded into the MediaOptions register after reset.
For details, see “MediaOptions” in Chapter 12.

Lanworks Data 2 This word is reserved for use by LANWorks to hold data related to their expansion
ROMs.

SmbAddress This word is loaded into the SmbAddress register. It is used as the NIC’s slave
SMBus address.

PciParm2 This word is loaded into the NIC and controls various hardware functions related
to PCI bus operation.

PciParm2 Bit Descriptions

Bit Name Description

[7:0] d0/d1Power This byte contains the power consumed by the NIC while
the NIC is in a D0 or a D1 power state. The value is in
watts/100.

[8] janitorBit This bit, when set, indicates to the hardware that this NIC
is the designated wake-up device, and can consume up to
350ma from the auxiliary power supply.

If this bit is cleared, the ASIC must consume no more than
20ma of current while in a D3cold sleep state.

[9] d1Support This bit indicates that the NIC supports the D1 power
state. This bit is reflected in bit 9 of the PowerMgmtCap
register.

[10] d2Support This bit indicates that the NIC supports the D2 power
state. This bit is reflected in bit 10 of the PowerMgmtCap
register.

PciParm3 79
PciParm3 This word is loaded into the NIC and sources the power consumed in the D3 and
D2 states.

PowerMgmtCtrl This word is loaded into the PowerMgmtCtrl register in the PCI config space.

PowerConsumption The lower byte of this word is loaded into the PowerConsumption register in the
PCI configuration space. This number represents the number of watts
consumed/100 during operation. No attempt is being made to differentiate
between the different D-states.

Current IP Address Locations 30h and 31h in the EEPROM are reserved for the current IP address that
is assigned to the NIC in the following format:

[15:11] pmeSupport This field indicates the power states from which the NIC is
able to generate a power management event (assert
PME#).

Each bit corresponds to a power state. A zero in a
particular bit indicates that events cannot be generated
from that state.

The bits are reflected in bits [15:11] of the
PowerMgmtCap register and are defined as follows:

xxxx1: Power management events possible from D0.

xxx1x: Power management events possible from D1.

xx1xx: Power management events possible from D2.

x1xxx: Power management events possible from D3hot.

1xxxx: Power management events possible from D3cold.

PciParm2 Bit Descriptions (continued)

Bit Name Description

PciParm2 Bit Descriptions

Bit Name Description

[7:0] d2Power This byte contains the power consumed by the NIC while
in a D2 power state. The value is in watts/100.

[15:8] d3Power This byte contains the power consumed by the NIC while
in a D3 power state. The value is in watts/100.

Location 31 30

IPAddress 255 255 255 255

80 CHAPTER 5: EEPROM
SMBus - OEM Specific These 16 words (from 30h through 3Fh) are allocated for OEM-specific use.

Flexible Format The 3C90xC NICs have the ability to do the following:

■ Load information into any register within the MAC portion of the ASIC (not
including MII registers in the PHY/PMC or the EepromCommand and
EePromData registers)

■ Issue commands through the command/status register

■ Modify the PCI config space

■ Load data into the transmit FIFO

The mechanism to complete the tasks above is to have a generic
“command-data” format to the EEPROM data starting at location 40h. The format
is as follows:

Command

Data

Checksum #2 This checksum for the EEPROM contents is a standard 16-bit TCP/IP algorithm that
is computed across all bytes in EEPROM words 000 through 0feh and is written
into the word at location 0ffh.

This is used only if a 4K EEPROM is connected to the ASIC.

[15:13] Encoded Command 111: Autoinit Done (that is, the EEPROM has completed
loading).

110: Reserved for future expansion.

101: PCI Config Space Write.

100: Reserved for future expansion.

011: Register Write.

010: Reserved for future expansion.

001: TxFifo Write.

000: Reserved for future expansion.

[12] Byte/Word 0: Byte Access

1: Word Access

[11] Reserved

[10:8] eeCurWin Temporarily forces the window that is being accessed.

[7:0] eeAddress Address within the EEPROM that is being accessed.

[9:0] eeTxByteCount Represents the number of bytes following (word-justified)
a TxFifo Write command.

[15:0] eePromData This data is “right-justified” if it contains only a byte. For
TxFifo commands, this is also the case for the last transfer
of an odd length.

Checksum #3 81
Checksum #3 This checksum for the EEPROM contents is a standard 16-bit TCP/IP algorithm that
is computed across all bytes in EEPROM words 000 through 3feh and is written
into the low-order byte of word 3ffh.

This is used only if a 16K EEPROM is connected to the ASIC.

EepromCommand

The EepromCommand register provides the host with a method for controlling the
NIC’s serial EEPROM. Individual 16-bit word locations within the EEPROM may be
written, read, or erased. In addition, the EEPROM’s WriteEnable, WriteDisable,
EraseAll, and WriteAll commands can be issued. The EepromCommand register
defaults to 0000h upon reset.

Support for various size EEPROMs is listed as follows:

■ 2K-bit (128x16)

■ 4K-bit (256x16)

■ 16K-bit (1024x16)

The command formatting required for 2K, 4K, and 16K differ in which bits the
opcode and subopcode reside; however, to preserve legacy software’s
functionality, the hardware does the appropriate bit swapping and is therefore
transparent to the software. This explains why the eepromOpcode is located in
bits [7:6].

Synopsis Allows commands to be issued to the serial EEPROM controller.

Type Read/write

Size 16 bits

Window 0

Offset a

EepromCommand Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

EepromCommand Bit Descriptions

Bit Name Description

[11:8],
[5:0]

eepromAddress These read/write bits logically translate to a linear 1024
locations, identifying which 16-bit word is the target for
the ReadRegister, WriteRegister, and EraseRegister
commands.

When the eepromOpcode bits [7:6] are 002, bits [5:4] are
defined to identify an individual command among the
following group of four subcommands:

■ 00 = WriteDisable (60 us)

■ 01 = WriteAll (11 ms)

■ 10 = EraseAll (11 ms)

■ 11 - WriteEnable (60 us)

82 CHAPTER 5: EEPROM
Two-bit opcodes and up to a 10-bit address are written into this 16-bit register to
cause the NIC to carry out the desired EEPROM command.

The 3C90xC NIC ensures backward-compatibility only if the legacy software writes
the EepromCommand register as a word.

If data is written to the EEPROM, the 16-bit data word must be written to the
EepromData register by the host prior to issuing the associated write command.
Similarly, if data is to be read from the EEPROM, the read data is available through
the EepromData register 162 us after the ReadRegister command has been issued.

A mechanism within the EEPROM interface automatically disables writes and
erasures to prevent accidental changes should power be interrupted. The NIC
disables writes and erasures after every write or erase type command has been
executed. To write or erase a series of locations, the host must issue the
WriteEnable command prior to every write or erase type command.

The serial EEPROM can only clear bits to zero during a write command and cannot
set individual bits to one. Therefore, and EraseRegister or EraseAll command must
be issued prior to attempting to write data to the EEPROM.

The EEPROM is a particularly slow device. It is important that the host wait until
the eepromBusy bit is false before issuing a command to the EepromCommand
register.

A typical write operation would be controlled as follows:

1 Verify that the eepromBusy bit is false.

2 Issue a WriteEnable command; opcode = xxxx xxxx 0011 xxxx2

3 Verify that the eepromBusy bit is false.

4 Issue an EraseRegister command; opcode xxxx aaaa 11aa aaaa2

5 Verify that the eepromBusy bit is false.

6 Write data pattern to the EepromData register.

7 Issue a WriteEnable command; opcode xxxx xxxx 0011 xxxx2

8 Verify that the eepromBusy bit is false.

9 Issue a WriteEnable command; opcode xxxx aaaa 01aa aaaa2

[7:6] eepromOpcode These read/write bits specify one of three individual
commands and a single group of four subcommands.

■ 00 = WriteEnable, WriteDisable, WriteAll, EraseAll
subcommands

■ 01 = WriteRegister (11 ms)

■ 10 = ReadRegister (162 us)

■ 11 = EraseRegister (11 ms)

[15] eepromBusy This read-only bit is asserted during the execution of
EEPROM commands. Further commands should not be
issued to the EepromCOmmand register, nor should data
be read from the EepromData register while this bit is
true.

EepromCommand Bit Descriptions (continued)

Bit Name Description

EepromData 83
EepromData

The EepromData register is a 16-bit register for use with the NIC’s serial EEPROM.
Data that is read out of the EEPROM can be read by the host from this register
when the eepromBusy bit becomes false. Data to be written to the EEPROM is
written to the EepromData register prior to issuing the write command to the
EepromCommand register.

Portions of the EEPROM are used for dynamic information. That is, there are
locations that are written many times over the life of the NIC. Although the
number of write cycles to a give location is very large (on the order of 1,000,000
cycles), it is not infinite. Care should be taken to not needlessly write to the
EEPROM. For example, read a location first to see if the information has actually
changed prior to writing out a value.

The EepromData register is cleared after a system reset.

Synopsis Provides data access for the EEPROM.

Type Read/write

Size 16 bits

Window 0

Offset c

6
 DOWNLOAD AND TRANSMISSION
This chapter presents an overview of the packet download and transmission
process, and defines the registers associated with the downloading and
transmission of data.

For information regarding keep-alive packets (special packets that can be
transmitted while the NIC is in a sleep or suspend state) see “Keep-alive Packets”
in Chapter 3.

The 3C90xC NIC supports a multipacket, multifragment gather process, whereby
descriptors representing packets can be built in system memory and linked
together by the host. The NIC follows the links, downloading multiple fragments
per packet, and generating interrupts when required.

Packet Download
Model

Drivers control packet download by building a linked list of packet descriptors,
called down packet descriptors (DPDs). This linked list, which is called the downlist,
is illustrated in Figure 6.

Figure 6 Downlist

The packet to be transmitted is first placed in data fragments (buffers) in
system memory. Next, a list of DPDs (the downlist) that points to the fragments
is also created in system memory.

The head of the list is the DPD that corresponds to the current download packet.
The down list pointer (DnListPtr) register points to this DPD. As the DPD is
processed, the fragment address and fragment length values are fetched one
by one from the DPD into on-NIC registers, which are used to control the data
download operations.

First DnFragAddr

First DnFragLen

Last DnFragAddr

Last DnFragLen

FrameStartHeader

DnNextPtrDnListPtr

3 DPD 0

DPD

System RAMNIC

Last data fragment

First data fragment

Transmit packet

DPD Data Structure 85
The NIC exits reset with the download engine in the idle state, ready to start
processing a downlist as soon as a nonzero value is written into DnListPtr.

DPD Data Structure Two DPD formats are supported: Type 0 and Type 1.

The Type 0 DPD format is shown in Figure 7. This format is backward-compatible
with 3Com 3C90x NICs but has some added extensions.

Figure 7 Type 0 DPD Format

The Type 1 DPD format is shown in Figure 8. This format adds fields to support
time scheduling of packet downloads.

Figure 8 Type 1 DPD Format

DPDs are between 16 and 512 bytes long and describe up to 63 fragments.

Bits [31:30] in the dword at offset 4 determine whether the DPD format is Type 0
or Type 1. Bit combination 11b is reserved for a future DPD format. If bits [31:30]
are 01, then a ScheduleTime is inserted into the structure and all entries are
shifted by 4.

Keep-alive packets have a slightly different Frame Start Header format. See
“Keep-alive Packets” in Chapter 3 for more information.

Down Next Pointer The first dword in the DPD is the DnNextPtr entry, which contains the physical
address of the next DPD in the downlist. If there are no more DPD entries in the
downlist, then this value is zero.

First DnFragAddr

First DnFragLen

nth DnFragAddr

nth DnFragLen (n x 8) + 4

n x 8

c

8

4

0

FrameStartHeader(FrameStartHeader fields)

DnNextPtr

0X

31 30

First DnFragAddr

First DnFragLen

nth DnFragAddr

nth DnFragLen (n x 8) + 4

n x 8

14

10

c

8

4

0

FrameStartHeader

ScheduleTime(ScheduleTime fields)

DnNextPtr

10

31 30

(reserved)

86 CHAPTER 6: DOWNLOAD AND TRANSMISSION
Type 0 DPDs must be aligned on 8-byte physical address boundaries.

Type 1 DPDs must be aligned on 16-byte boundaries.

Frame Start Header The FrameStartHeader DPD entry (also called the FSH) contains packet
control information.

Type 0 DnNextPtr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Type 1 DnNextPtr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

FrameStartHeader Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0

FrameStartHeader Bit Descriptions

Bit Name Description

[1:0] rndupBndry These bits determine the boundary to which transmit
packet lengths are rounded up in the transmit FIFO, and
hence onto the network medium. These bits are ignored if
rndupDefeat is set.

■ 00 = Up to dword

■ 10 = Up to word

■ x1 = No rounding up is performed

[9:2] pktId This field can be used as a packet ID or sequence number.
This value is saved with the packet in the transmit FIFO,
and made visible in the TxPktId register while the packet
is being transmitted. When a transmit error occurs, the
driver can check TxPktId to determine which packet
experienced the error.

[13] crcAppendDisable The driver sets this bit to inhibit the NIC from appending a
CRC to the end of this packet.

When this bit is set, it is expected that the packet’s
CRC would be supplied as part of the data downloaded
to the FIFO. An exception to this occurs with a transmit
underrun. In this case a guaranteed-bad CRC is appended
to the packet.

When this bit is cleared, the NIC computes and appends
CRCs for transmit packets.

[15] txIndicate When this bit is set, a txComplete interrupt occurs when a
packet finishes transmitting. If this bit is cleared, no
interrupt occurs unless a transmit error occurs.

[16] dnComplete This bit indicates that the packet download is complete.
The NIC sets this bit after it has finished downloading all
of the fragments specified in the DPD.

 (1 of 2)

DPD Data Structure 87
Schedule Time The ScheduleTime DPD entry contains a field defining when the packet should be
downloaded.

The Alternate Download Sequence does not support the Schedule Time DPD
structure.

[23] reArmEnable When this bit is set, the transmit path does not disable
itself upon seeing a max collision; instead, it silently
discards the packet.

This is intended for keep-alive and SMBus packet
transmits only.

[24] lastKap This bit distinguishes the last keep-alive packet in the
sequence. This bit is only applicable when the keep-alive
function is running.

[25] addIpChecksum Setting this bit tells the NIC hardware to scan this packet
and insert an IP checksum if it finds an IP header.

[26] addTcpChecksum Setting this bit tells the NIC hardware to scan this packet
and insert a TCP checksum if it finds IP and TCP headers.

[27] addUdpChecksum Setting this bit tells the NIC hardware to scan this
packet and insert a UDP checksum if it finds IP and
UDP headers.

[28] rndupDefeat Setting this bit defeats the packet length round up
operation. When this bit is cleared, transmit packet
lengths are rounded up to an even number, according
to the value of the rndupBndry bit.

For more information on packet length round up, see
“Packet Length Round Up” later in this chapter.

[29] dpdEmpty This bit indicates that there is no packet data in this DPD
entry, so the NIC should proceed directly to fetching the
DnNextPtr DPD entry.

A driver can use this feature to allow it to handle the
DownList-empty condition consistently.

[31] dnIndicate When this bit is set, a dnComplete interrupt occurs when
a packet finishes downloading. If this bit is cleared, no
interrupt occurs.

The NIC reads this bit after the download operation has
finished, allowing the host to change this bit while the
download is in progress.

The FSH is read twice: first to store the FSH bit values
temporarily while the packet is being downloaded, and
again after the download is finished to determine whether
to generate an interrupt.

FrameStartHeader Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

ScheduleTime Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0

88 CHAPTER 6: DOWNLOAD AND TRANSMISSION

Down Fragment Address The DnFragAddr DPD entry contains the physical address of a contiguous block of
data to be downloaded to the NIC and transmitted.

A fragment can start on any byte boundary.

Down Fragment Length The DnFragLen DPD entry contains fragment length and control information for
the block of data pointed to by the previous DnFragAddr DPD entry.

ScheduleTime Bit Descriptions

Bit Name Description

[23:0] scheduleTime This field provides either an absolute time at which to
download this packet, or a value to be loaded into the
RealTimeCnt register, depending upon the values of the
loadTimeCnt and scheduleTimeValid bits.

When scheduleTimeValid is set, scheduleTime represents
the time at which the packet is to be downloaded.
When the NIC sees scheduleTimeValid set, it compares
scheduleTime against the value in the RealTimeCnt
register. If RealTimeCnt is greater than scheduleTime,
the packet is downloaded. If RealTimeCnt is less, then
the NIC goes into a polling mode, in which it periodically
refetches the ScheduleTime entry and compares it against
RealTimeCnt. The poll rate is determined by the value in
the DnPoll register.

The scheduleTime bit specifies a time in increments of
800 ns.

[28] loadTimeCnt This bit, when set, instructs the NIC to load the value in
the scheduleTime field into the RealTimeCnt register and
download the packet immediately. When loadTimeCnt is
set, scheduleTimeValid is ignored by the NIC.

[29] scheduleTimeValid This bit, when set, indicates that bits [23:0] contain a time
schedule value.

When the NIC detects this bit set, it compares the value in
scheduleTime with the current value in the RealTimeCnt
register. If scheduleTime is less than RealTimeCnt, the NIC
downloads the packet for transmission.

When this bit is clear, the NIC ignores the contents
of scheduleTime, and the packet is downloaded
immediately.

DnFragAddr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DnFragLen Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DnFragLen Bit Descriptions

Bit Name Description

[12:0] dnFragLen This field contains the length of the contiguous block of
data pointed to by the previous DnFragAddr DPD entry.

Packet Download 89
Packet Download A packet download begins when all of the following conditions are true:

■ The DnListPtr register is not equal to zero.

■ The download engine is not in the DnStall command state.

■ One of the following is true:

■ The DPD has no ScheduleTime entry.

■ There is a ScheduleTime DPD entry and the scheduleTime bit is less than the
RealTimeCnt register value.

■ The loadTimeCnt bit is set in the ScheduleTime DPD entry.

■ The transmit FIFO has more space available than the threshold specified in the
DnBurstThresh register.

Simple Packet Download The simplest example of packet download starts with the download engine idle
and an empty downlist, as would be the case after reset.

To download a single packet, the following actions occur:

1 The driver creates a DPD with the addresses and lengths of the buffers containing
the data to be transmitted.

Because there are no more DPDs, the driver programs zero into the DnNextPtr DPD
entry.

2 The driver writes the address of the DPD into the DnListPtr register to start the
download engine.

3 The NIC proceeds to fetch information from the DPD and move the packet data
into the transmit FIFO.

Packet Length Round Up The 3C90xC NIC has the ability to round up the length of a transmit packet
automatically. This is useful in some network operating system (NOS)
environments in which packet lengths need to be made an even number.

The NIC performs length roundup in a way that is compatible with older 3Com
3C90x NICs.

The rounding up of the packet length is based on the sum of the fragment lengths
specified in a DPD and the rndupBndry [1:0] field in the FrameStartHeader DPD
entry. The rndupBndry bit coincides with the two low-order txLength bits written
by earlier-generation NIC drivers. Rounding up occurs when the packet length
implied by the sum of the fragment lengths is odd and the value in rndupBndry is
even. The packet length is rounded up to either a word or dword boundary,
depending on the value of rndupBndry.

NIC drivers may defeat rounding up of the length by setting the rndupDefeat bit in
the FrameStartHeader DPD entry of each DPD.

[31] dnFragLast This bit is set by the driver to indicate that this is the last
fragment of the transmit packet and that the NIC should
proceed to the next DPD.

DnFragLen Bit Descriptions (continued)

Bit Name Description

90 CHAPTER 6: DOWNLOAD AND TRANSMISSION
Download Scheduling Transmit packets can be scheduled for download at a time determined by
an on-chip real-time counter. A scheduled packet is not downloaded until the
real-time counter is greater than or equal to the schedule time specified in the
packet’s DPD.

When a packet is at the head of the downlist waiting for its schedule time to be
reached, all packets behind it are delayed. However, packets can be inserted in
front of a scheduled packet to allow transmission of priority packets.

Download Completion After downloading a packet, the NIC writes a dnComplete bit into the DPD,
eliminating the need for the driver to read the DnListPtr register to determine
which DPDs have been downloaded.

The NIC can be configured to generate dnComplete interrupts when packets
finish being downloaded. These dnComplete interrupts can be generated on a
per-packet basis by programming the appropriate value into the dnIndicate field of
each DPD’s FrameStartHeader entry.

In response to a dnComplete interrupt, the driver acknowledges the interrupt and
returns the DPD’s buffers to the protocol. In the general case, in which the driver is
using a multipacket downlist, when the driver enters its interrupt handler, multiple
packets may have been downloaded. To determine which packets in a list of DPDs
have been downloaded, the driver can traverse the list, examining the
dnComplete bit in each DPD.

The NIC fetches the FrameStartHeader to examine the dnIndicate bit before
packet download and again when the download is finished. This allows a driver to
change dnIndicate while download of the packet is in progress. For example, a
packet’s DPD might be at the end of the downlist when it starts downloading, so
the driver would probably set dnIndicate to generate an interrupt. However, if
during the process of downloading this packet the driver were to add a new DPD
to the end of the list, it might clear dnIndicate in the active DPD so that the
interrupt is delayed until the next DPD finishes.

Multipacket Lists Generally, it is desirable for the driver to queue multiple DPDs. Multiple DPDs are
linked together by pointing the DnNextPtr entry within each DPD at the next DPD,
and programming zero into DnNextPtr in the last DPD.

Because the host and the NIC are generally both accessing the downlist at the
same time, the host must stall the NIC before modifying the downlist or writing
a new value to the DnListPtr register (unless the value is already zero). This is
accomplished by issuing a DnStall command. When the host has finished
manipulating the list, it issues a DnUnStall command.

Adding DPDs to the End of the Downlist

You can add DPDs to the end of the downlist with polling disabled or enabled.

Polling Disabled The following sequence is recommended for adding DPDs to
the downlist when download polling is disabled (the DnPoll register is zero):

1 Stall the download engine by issuing the DnStall command.

2 Wait for DnStall to finish by polling on the cmdInProgress bit in the
IntStatus register.

Packet Download 91
3 Update the DnNextPtr entry in the last DPD in the downlist to point at the
new DPD.

4 Read the DnListPtr register.

5 If DnListPtr is zero, write the address of the new DPD to DnListPtr.

6 Unstall the download engine by issuing the DnUnStall command.

The download engine becomes idle when it fetches a zero value from a DnNextPtr
DPD entry. One way to restart the download process is by writing a nonzero value
to DnListPtr.

Polling Enabled When polling is enabled (the DnPoll register is nonzero), DPDs
can be added with no register accesses. Point the last DPD’s DnNextPtr entry at the
new DPD.

Inserting a DPD Near the Head of the Downlist

Although DPDs cannot be added at the head of the downlist, they can be added
after the first active (unfinished) DPD.

Polling Disabled The following sequence is recommended for inserting a DPD
near the head of the downlist when download polling is disabled (the DnPoll
register is zero):

1 Stall the download engine by issuing the DnStall command.

2 Wait for DnStall to finish by polling on the cmdInProgress bit in the
IntStatus register.

3 Find the last DPD that is marked as downloaded (the dnComplete bit is one).

4 Update the DnNextPtr entry in this last DPD to point at the inserted DPD.

5 Point the inserted DPD’s DnNextPtr entry where the last downloaded DPD points.

6 Read the DnListPtr register.

7 If DnListPtr is zero, write the address of the inserted DPD to DnListPtr.

8 Unstall the download engine by issuing the DnUnStall command.

Polling Enabled When polling is enabled (the DnPoll register is nonzero), DPDs
can be inserted with no register accesses as follows:

1 Find the first DPD that is not marked as downloaded (the dnComplete bit is reset).

2 Set this DPD’s DnNextPtr entry to zero.

3 Check to see if this DPD is now marked as downloaded. If so, it is too late to insert
at this DPD. Restore DnNextPtr, and move to the next DPD in the list and restart
this process. If the DPD is not downloaded, go to the next step.

4 Point the inserted DPD’s DnNextPtr where the first DPD once pointed.

5 Point the first DPD’s DnNextPtr at the inserted DPD, completing the chain.

92 CHAPTER 6: DOWNLOAD AND TRANSMISSION
Inserting a DPD in Front of a Scheduled DPD

A DPD can be inserted in front of a DPD that is scheduled to download next—that
is, after a completed DPD and before a DPD whose download is being delayed
until the value specified in the ScheduleTime DPD entry is reached.

1 Prepare the DPD to be inserted. Point its DnNextPtr entry at the scheduled DPD.

2 Set the DnNextPtr entry in the completed DPD to zero.

3 Read the DnListPtr register. If it no longer points to the completed DPD but instead
points to the scheduled DPD, it is too late to insert at this location. Restore
DnNextPtr in the completed DPD (if necessary, to keep the list coherent) and try
inserting it after the next DPD.

4 If DnListPtr still points at the completed DPD, then complete the insertion by
pointing DnNextPtr in the completed DPD at the DPD to be inserted.

Polling on DnNextPtr

The 3C90xC NIC can be programmed to automatically poll on DnNextPtr until a
nonzero value has been written to it. This polling function is controlled by the
DnPoll register. The value written to DnPoll determines the DnNextPtr polling
interval. The polling function is enabled whenever DnPoll contains a nonzero
value.

NIC Download Sequence The actions taken by the NIC hardware to download packets are described in
this section.

Original Download Sequence

Starting with the driver writing the DnListPtr register (for example, when starting
from an empty downlist) the 3C90xC NIC follows this sequence:

1 Checks that the DnListPtr register is nonzero.

2 Checks that it is not in the DnStall command state.

3 Fetches the second dword from the DPD pointed to by the DnListPtr entry.

If the dword contains FrameStartHeader information, it is written into the transmit
FIFO. If the dword is a ScheduleTime entry, it checks the scheduleTimeValid and
loadTimeCnt bits and takes the appropriate action, delaying the download
if required. If the download is delayed, the download engine polls on the
ScheduleTime DPD entry at a rate determined by the DnPoll register.

4 Fetches the DnFragAddr and DnFragLen DPD entries one by one from the DPD,
and move the associated data fragments to the transmit FIFO.

5 If a transmit underrun occurs, waits until the driver issues a TxReset command.

6 Sets the dnComplete bit in the DPD.

7 If a DnStall command has been issued, waits until a DnUnStall command is issued.

8 Fetches the FrameStartHeader again, and, if the dnIndicate bit is set, sets the
dnComplete indication (which may in turn cause an interrupt if the
IndicationEnable and InterruptEnable masks are set correctly).

9 Fetches the DnNextPtr entry from the current DPD.

Packet Transmission 93
If DnNextPtr is zero, the download engine becomes idle. If polling is disabled
(the DnPoll register is zero), the download engine waits for a nonzero value to
be written to the DnListPtr register. If polling is enabled (the DnPoll register is
nonzero), the old value in DnListPtr is preserved, and the NIC polls on DnNextPtr
in the DPD until it fetches a nonzero value from it.

If the value fetched from DnNextPtr is nonzero, then the value is stored
temporarily in the NIC and the NIC inspects the DPD at that location. If the
referenced DPD does not contain a ScheduleTime entry or it contains one that has
already expired, then the temporary value is loaded into DnListPtr, advancing the
NIC to the new DPD.

If the referenced DPD contains an unexpired ScheduleTime, then DnListPtr is not
updated (the NIC stays at the old, completed DPD), and the NIC starts to time a
polling interval (download polling must be enabled when ScheduleTime is used).
When polling is complete, the NIC fetches DnNextPtr again (into the temporary
register) and checks the referenced DPD again to see if its ScheduleTime has
expired. This process is repeated until the ScheduleTime value is eventually
reached. When this happens, the temporary value is finally loaded into DnListPtr,
and the NIC advances to the new DPD.

10 With the new DPD to work on, the process begins again at step 2.

Alternate Download Sequence

Based on a dnAltSeqDisable bit in the DmaCtrl register, steps 6 through 10 in the
Original Download Sequence are reordered to become:

6 If a DnStall has been issued, waits until a DnUnStall is issued.

7 Fetches the DnNextPtr from the current DPD.

8 Fetches the FrameStartHeader again and, if the dnIndicate bit is set, sets the
dnComplete indication (which may in turn cause an interrupt if the
IndicationEnable and InterruptEnable masks are set correctly).

9 Sets the dnComplete bit in the DPD.

10 With the new DPD to work on, the process begins again at step 2

Packet Transmission The NIC initiates packet transmission (assuming transmission is enabled) as soon as
either the entire packet is resident in the transmit FIFO, or the number of bytes
that are resident is greater than the value in the TxStartThresh register.

Enabling Transmission The NIC comes out of reset with transmission disabled. Until transmission is
enabled, no data is transmitted to the network medium. Any data downloaded to
the NIC stays in the FIFO, waiting to be transmitted. If more data is downloaded
than can fit into the FIFO, an overrun occurs.

■ Transmission is enabled with the TxEnable command.

■ Transmission can be disabled with the TxDisable command. If TxDisable is
issued while a packet transmission is in progress, it takes effect after the packet
has been transmitted.

Transmit Errors When a transmit error occurs, a txComplete interrupt is generated, and the
specific error is indicated by status bits in the TxStatus register.

94 CHAPTER 6: DOWNLOAD AND TRANSMISSION
To recover from a transmit error, the driver must reenable the transmitter and, in
the case of an underrun or jabber error, reset the transmit logic with the TxReset
command, before subsequent transmissions can occur.

With transmit errors that do not require TxReset (namely, the maxCollisions and
txStatusOverflow bits in the TxStatus register), any pending packets in the transmit
FIFO are preserved (except the packet that experienced maxCollisions), and they
are transmitted after the transmitter is reenabled.

In general, download completions and transmit completions (including errors) are
independent of one another—downloads operate on the tail end of the transmit
FIFO, transmissions on the head. A special case is transmit underruns. When a
transmit underrun occurs, that packet is the only one in the transmit FIFO, so the
head and tail packets in the FIFO are the same.

Underrun Recovery If a transmit underrun error occurs, the NIC stops processing DPDs, and an
interrupt is generated with a txUnderrun error flagged in the TxStatus register.
By examining the current value of the DnListPtr register, the driver can determine
which packet was being transmitted when the underrun occurred. All packet
DPDs in the downlist before the underrun packet will have been downloaded
successfully.

To recover from an underrun, the driver should follow this sequence:

1 Issue a DnStall command.

2 Ensure that the download and transmission processes are finished by polling on
the dnInProg bit in the DmaCtrl register, and then polling on the txInProg bit in the
MediaStatus register until they are cleared.

3 Issue a TxReset command to reset the underrun (this clears the dnComplete bit).

4 Reenable transmission by issuing a TxEnable command.

5 Restore all transmit-related thresholds (probably increasing the value in the
TxStartThresh register, in particular).

6 Retransmit the packet by pointing the DnListPtr register at the DPD that
experienced the underrun.

Reclaiming Transmit
FIFO Space

As a packet transmits out of the transmit FIFO, it is desirable to be able to release
the packet data space so that it can be used for another packet download.
However, if a collision occurs on a packet after part of it has been released, the
NIC is unable to retransmit it and the packet must be downloaded again. This is
inefficient.

The TxReclaimThresh register allows the driver to make trade-offs between
efficiently using the transmit FIFO space and limiting the number of downloads
due to collisions. The value programmed into TxReclaimThresh determines how
much of a packet must be transmitted before its data starts to be released from
the FIFO.

A txReclaimError occurs when a packet experiences a collision after its reclaim
threshold has been crossed. For more information on reclaiming, see
“TxReclaimThresh” in this chapter.

DmaCtrl 95
Transmit Mechanism The transmit mechanism allows the driver software to perform optimizations that
reduce the number of interrupts generated.

Limiting dnComplete Interrupts

The driver can limit the number of packets in the downlist for which a
dnComplete interrupt is generated. It could, for example, only set the dnIndicate
bit for the packet on the tail of the list (clearing dnIndicate for the current tail
before enqueueing each new packet). Or the driver might require an interrupt
every n packets. In any case, on each interrupt the driver would then dequeue all
of the packets that were downloaded before that interrupt occurred (DPDs in
which the dnComplete bit is set). Obviously there is a trade-off between latency
and the number of interrupts taken—the driver writer is responsible for making
this trade-off.

Using CountDown Timer Instead of dnComplete

The driver can mask off dnComplete interrupts and use the CountDown register
to generate interrupts instead. The driver might look at the time it would take to
transmit all the bytes currently in the transmit FIFO and queued in the downlist
and set CountDown to half that time, for example. The driver would then use the
intRequested interrupt to dequeue all the DPDs in which the dnComplete bit is set.
Again, this is just an example, and it is the driver writer’s job to determine which
algorithm to use.

DmaCtrl

DmaCtrl controls some of the functions in the upload and download engines, and
contains some status bits.

DmaCtrl is cleared by a reset.

Synopsis Control and status register for bus master operations. (This register
was PktStatus on earlier-generation NICs.)

Type Read/write

Size 32 bits

Offset 20

DmaCtrl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DmaCtrl Bit Descriptions

Bit Name Description

[1] dnCmplReq This read-only bit is set to the value that the packet
controller reads from the dnIndicate field in the
FrameStartHeader of the current DPD.

[2] dnStalled This read-only bit is set whenever downloading is
stalled with the DnStall command. It is cleared by a
DnUnstall command.

 (1 of 3)

96 CHAPTER 6: DOWNLOAD AND TRANSMISSION
[3] upComplete This read-only bit is the same as upComplete in the
IntStatus register, except that this bit is always visible
regardless of the setting of the IndicationEnable register.

This bit is different from the upPktComplete bit in the
UpPktStatus register in that upComplete latches on once
an upPktComplete indication has occurred.

This bit is cleared by issuing an AcknowledgeInterrupt
command with the upCompleteAck bit set.

[4] dnComplete This read-only bit is the same as dnComplete in IntStatus,
except that this bit is always visible regardless of the
setting of the IndicationEnable register.

This bit is cleared by issuing an AcknowledgeInterrupt
command with the dnCompleteAck bit set.

[5] upRxEarlyEnable This read/write bit determines when the NIC can start
uploading a receive packet.

By default (cleared), uploads qualify for bus master
arbitration when the packet becomes visible, normally at
60 bytes unless an RxEarlyThresh threshold smaller than
that has been set.

When set to one, uploads do not start until the
RxEarlyThresh threshold has been crossed (or the packet
is completed, whichever is first).

[6] armCountdown This read-only bit specifies whether expiration of the
Countdown register sets the intRequested bit.

If this bit is clear, Countdown expiration does not set the
intRequested bit. If this bit is set, expiration of Countdown
sets intRequested.

The armCountdown bit is completely managed by the
hardware. This bit is cleared automatically by the act of
setting intRequested, or when a zero value is written to
Countdown. The armCountdown bit is set implicitly when
a nonzero value is written to Countdown.

[7] dnInProg This read-only bit indicates that a download operation is
in progress.

Drivers use this bit primarily in an underrun recovery
routine. The driver waits for this bit to be cleared before
issuing a TxReset command to clear the underrun
condition.

Before checking this bit, issue a DnStall command to
ensure that this bit is not set as a result of the NIC being
in a polling mode.

[8] counterSpeed This read/write bit sets the count rate for the Countdown
and FreeTimer registers.

When this bit is cleared, the count rate is once every 3.2 µs
(four byte times at 10 Mbps). When counterSpeed is set, the
count rate is once every 320 ns (four byte times at
100 Mbps).

By setting this bit appropriately for the negotiated wire
speed, conversions can be made between byte times and
counter values using simple shift operations.

DmaCtrl Bit Descriptions (continued)

Bit Name Description

 (2 of 3)

DnBurstThresh 97
DnBurstThresh

[9] countdownMode This read/write bit controls the operating mode of the
Countdown register.

When this bit cleared, Countdown begins its down
counting operation as soon as a nonzero value is written
to it. When this bit set, Countdown does not begin
counting down until the dnComplete bit in the IntStatus
register is set.

For more information on the Countdown modes, see
“Countdown” in Chapter 12.

[16] upAltSeqDisable Setting this bit disables the alternate upload sequence, so
that the NIC mimics the behavior of earlier-generation
(3C90x) NICs.

When this bit is set, the upload engine writes
the UpPktStatus UPD entry first and then fetches
the UpNextPtr UPD entry. When this bit is clear (the
default), the upload engine first fetches UpNextPtr and
then writes UpPktStatus.

[17] dnAltSeqDisable When this bit is cleared (default), the alternate download
sequence is enabled (the sequence becomes: fetch next
pointer, generate interrupt, write dnComplete).

When this bit is set, the alternate download sequence is
disabled (the sequence becomes: write dnComplete, fetch
next pointer, generate interrupt).

[20] defeatMWI Setting this read/write bit prevents the bus master
logic from using the Memory Write Invalidate (MWI)
PCI command.

[21] defeatMRL Setting this read/write bit prevents the bus master logic
from using the Memory Read Line (MRL) PCI command.

[22] upOverDiscDisable This read/write bit, when clear (the default), causes the
upload engine to discard receive overrun packets without
uploading them to memory. When this bit is set, the
upload engine keeps and uploads overrun packets.

[30] targetAbort This read-only bit is set when the NIC experiences a target
abort sequence when operating as a bus master. This bit
indicates a fatal error, and it must be cleared before
further download or upload operation can proceed.

This bit is cleared by issuing a GlobalReset command with
the upDownReset mask bit cleared.

[31] masterAbort This read-only bit is set when the NIC experiences a master
abort sequence when operating as a bus master. This bit
indicates a fatal error, and it must be cleared before
further download or upload operation can proceed.

This bit is cleared by issuing a GlobalReset command with
the upDownReset mask bit cleared.

DmaCtrl Bit Descriptions (continued)

Bit Name Description

 (3 of 3)

Synopsis A threshold determining when bus master download requests
are made.

Type Read/write

Size 8 bits

Offset 2a

98 CHAPTER 6: DOWNLOAD AND TRANSMISSION
The DnBurstThresh register determines when the NIC makes download bus master
requests, based upon the available space in the transmit FIFO. The value in this
register represents free space in the FIFO in units of 32 bytes. When the free space
exceeds the threshold, the NIC can make a download request.

DnBurstThresh may be overridden by the DnPriorityThresh register mechanism.
See “PCI Bus Master Operation” in Chapter 3 for information about the
relationship between DnBurstThresh and DnPriorityThresh.

A value of zero is invalid. DnBurstThresh defaults to 8, a threshold of 256 bytes.

DnListPtr

The DnListPtr register holds the address of the current DPD in the downlist. The
NIC interprets a value of zero in DnListPtr to mean that no more packets remain to
be downloaded.

DnListPtr is cleared by reset.

■ Type 0 DnListPtr can only point to addresses on 8-byte boundaries, so DPDs
must be aligned on 8-byte boundaries.

■ Type 1 DnListPtr can only point to addresses on 16-byte boundaries, so DPDs
must be aligned on 16-byte boundaries.

DnListPtr may be written directly by host software to point the NIC at the head of
a newly created downlist.

Writes to DnListPtr are ignored while the current value in the register is nonzero.
To avoid access conflicts between the NIC and host software, the host must issue a
DnStall command before writing to DnListPtr (unless the driver has specific
knowledge that DnListPtr contains zero).

The NIC also updates DnListPtr while it processes DPDs in the downlist. As the NIC
finishes processing a DPD, it fetches the value from the DnNextPtr entry. If the

DnBurstThresh Register Format

7 6 5 4 3 2 1 0

0 0 0

Synopsis Points to the current DPD in the downlist.

Type Read/write

Size 32 bits

Offset 24

Type 0 DnListPtr Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Type 1 DnListPtr Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

DnMaxBurst 99
value is zero, the download engine becomes idle. Also, if download polling is
enabled (the DnPoll register is nonzero), the old value in DnListPtr is preserved.

If the value fetched from the DnNextPtr DPD entry is nonzero, then the value is
stored temporarily in the NIC, and the NIC inspects the DPD at that location. If the
referenced DPD does not contain a ScheduleTime entry or if it contains one that
has already expired, then the temporary value is loaded into DnListPtr, and the NIC
advances to the new DPD.

If the referenced DPD contains an unexpired ScheduleTime entry, then DnListPtr is
not updated (the NIC stays at the old, completed DPD), and the NIC starts to time
a polling interval (any driver that uses ScheduleTime entries must also configure
the NIC to poll). When the polling is complete, the NIC fetches DnNextPtr again
(into the temporary register) and checks the referenced DPD again to see if the
ScheduleTime value has expired. This process is repeated until the ScheduleTime
value is eventually reached. When this happens, the temporary value is loaded into
DnListPtr, and the NIC advances to the new DPD.

There are two ways the download engine can leave the idle state:

■ The driver can write a nonzero value directly to DnListPtr.

■ If polling is enabled, the download engine leaves the idle state when a nonzero
value is finally fetched from DnNextPtr.

Reading DnListPtr while the download engine is polling for ScheduleTime
expiration has the following side effects:

■ Any pending decision to advance to the next DPD because the ScheduleTime
value has just been reached is canceled.

■ The download engine fetches the DnNextPtr entry in the current (completed) DPD
immediately, rather than waiting for the full DnPoll interval. (It is assumed that
the driver will only read DnListPtr when it is in the process of inserting a DPD at
the list head, so it will have written a new value into DnNextPtr to hook up the
inserted DPD).

For Type 1, scheduled DPDs, the value written to DnListPtr must be
16-byte aligned.

DnMaxBurst

DnMaxBurst is a diagnostic register that records the longest memory read burst
experienced by the NIC. The burst length is expressed in bytes, with a granularity
of 32. DnMaxBurst may be cleared to restart the measurement process.

Synopsis Records the longest download (memory read) burst experienced by
the NIC.

Type Read/write

Size 16 bits

Offset 78

DnMaxBurst Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

100 CHAPTER 6: DOWNLOAD AND TRANSMISSION
DnPoll

The value in the DnPoll register determines the rate at which the current DPD is
polled. DPDs are polled for two different reasons:

■ When a zero DnNextPtr entry is fetched from the current DPD, DnNextPtr is
polled to determine when a new DPD is ready to be processed.

■ When packet download is delayed with the ScheduleTime DPD entry, the DPD
is polled to determine when the RealTimeCnt has reached the required
ScheduleTime value.

Polling is disabled when DnPoll is cleared. DnPoll is cleared by reset.

The value in DnPoll represents 320-ns time intervals. The maximum value
represents 40.64 µs.

DnPriorityThresh

The value in the DnPriorityThresh register sets a point at which the download
engine makes a priority bus master request. A priority download request has
priority over the upload engine, unless the engine is also making a priority request.
When the number of used bytes in the transmit FIFO falls below the value implied
by DnPriorityThresh, the priority bus request is made.

A download priority request is not subject to the DnBurstThresh register
constraint. When the FIFO is close to underrun, burst efficiency is sacrificed
in favor of requesting the bus as quickly as possible.

The value in DnPriorityThresh represents data in the transmit FIFO in terms of
32-byte portions. DnPriorityThresh resets to 4, or a threshold of 128d bytes.

Synopsis Sets the DnNextPtr DPD entry poll rate.

Type Read/write

Size 8 bits

Offset 2d

DnPoll Register Format

7 6 5 4 3 2 1 0

0

Synopsis Provides a threshold to set a point at which the download engine
makes a priority bus master request.

Type Read/write

Size 8 bits

Offset 2c

DnPriorityThresh Register Format

7 6 5 4 3 2 1 0

0 0

TxFree 101
TxFree

The TxFree register provides a real-time indication of the number of bytes of free
space that are available in the transmit FIFO. If this register returns zero, the
transmit FIFO is full.

TxFree is unreliable while bus master operations are active.

TxPktId

The TxPktId register contains the packet ID for the currently transmitting or most
recently transmitted packet. The TxPktId value comes from the pktId field in the
packet’s FrameStartHeader DPD entry.

Drivers can use TxPktId during transmit error recovery by scanning through the
DPDs in the downlist, searching for a match between the TxPktId value and a
pktId value.

TxReclaimThresh

Synopsis Returns the space available in the transmit packet buffer area.

Type Read-only

Size 16 bits

Window 3

Offset c

TxFree Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

Synopsis Allows read-back of the TxPktId field.

Type Read-only

Size 8 bits

Offset 18

TxPktId Register Format

7 6 5 4 3 2 1 0

Synopsis Provides a threshold to control when transmit packet data is released
from the FIFO.

Type Read-only

Size 8 bits

Window 5

Offset 9

TxReclaimThresh Register Format

7 6 5 4 3 2 1 0

102 CHAPTER 6: DOWNLOAD AND TRANSMISSION
The value in the TxReclaimThresh register determines how much of a packet must
be transmitted before the data starts to be released for use by the tail of the FIFO.

TxReclaimThresh is set by issuing the SetTxReclaimThresh command.

The value in TxReclaimThresh represents a multiple of 16 bytes. A value of 255d in
TxReclaimThresh disables the reclaim mechanism: packet space is not reclaimed
until the entire packet is transmitted.

TxReclaimThresh resets to 8d, which yields a reclaim threshold of 128 bytes.

Once the number of bytes implied by the value in TxReclaimThresh has been
transmitted, that number of bytes is discarded from the FIFO. Thereafter, bytes are
discarded as they are transmitted to the network.

A txReclaimError (signaled in the TxStatus register) occurs when a packet
experiences a collision after its reclaim threshold has been crossed, preventing it
from being able to retry. When a reclaim error occurs, the transmitter is disabled,
and the packet’s ID number (sequence number) is visible in the TxPktId register. To
recover from a reclaim error, the driver must issue a TxEnable command.

It is recommended that values no smaller than 4 be written to TxReclaimThresh, to
avoid excessive reclaim errors due to in-window collisions.

TxStartThresh

The value in the TxStartThresh register is used to control early packet transmission.
Transmission of a packet begins when the number of bytes for the packet
downloaded to the NIC is greater than the value set in this register.

TxStartThresh is set using the SetTxStartThresh command.

If TxStartThresh is set too low, the transmitter may experience underruns because
the DMA data transfers are unable to keep up with the instantaneous wire data
rate. Drivers should use underrun indications as a hint to increase the
TxStartThresh value.

This register resets to 8188d, which disables the threshold mechanism.

Synopsis Provides for an early transmission start based upon the number of
packet bytes downloaded to the NIC.

Type Read-only (write to advance queue)

Size 16 bits

Window 5

Offset 0

TxStartThresh Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

TxStatus 103
TxStatus

The TxStatus register returns the status of packet transmission attempts. TxStatus
actually implements a queue of up to 31 transmit status bytes. An I/O write of an
arbitrary value to TxStatus advances the queue to the next transmit status byte.

Synopsis Returns the transmit status for the current transmit packet.

Type Read-only (write to advance queue)

Size 8 bits

Offset 1b

TxStatus Register Format

7 6 5 4 3 2 1 0

0

TxStatus Bit Descriptions

Bit Name Description

[1] txReclaimError This bit indicates that a transmit reclaim error occurred,
meaning that the packet experienced a collision after
the front of the packet had already been reclaimed to the
FIFO free space.

[2] txStatusOverflow This bit, when set, indicates that the TxStatus stack is full,
and as a result, the transmitter has been disabled. Writing
the TxStatus register clears this bit, but the transmitter
must be reenabled with the TxEnable command before
transmissions can resume.

[3] maxCollisions This bit, when set, indicates that a packet was not
successfully transmitted, because it encountered
16 collisions. The TxEnable command must be issued
to recover from this condition. The packet is discarded
from the transmit FIFO, so typically software should
resubmit the packet for transmission.

[4] txUnderrun This bit indicates that the packet experienced an
underrun during the transmit process—the host was
unable to supply the packet data fast enough to keep up
with the network. An underrun halts the transmitter and
the transmit FIFO. The TxReset and TxEnable commands
must be issued before any new packets are submitted to
the NIC.

[5] txJabber This bit is asserted if the NIC determines that it is
transmitting for too long. The TxReset command is
required to recover from this error.

[6] interruptRequested This bit is asserted if the txIndicate bit was set when the
32-bit FrameStartHeader was written to the NIC for the
packet in question.

[7] txComplete If this bit is false, then the remainder of the status bits are
undefined. If the host chooses to poll this register while
waiting for a packet transmission to finish, then this bit is
used to determine whether a packet transmission attempt
has finished that either experienced an error or had the
txIndicate bit set in the transmit packet descriptor.

7
 RECEPTION AND UPLOAD
This chapter presents an overview of the packet reception process and defines the
registers associated with the reception and uploading of data.

The 3C90xC NIC supports a multipacket multifragment scatter process, whereby
incoming packets are moved to system memory buffers defined by descriptors.
The descriptors themselves also reside in system memory, and are linked together
by the host CPU.

Packet Upload Model The packet upload mechanism is similar to the download mechanism. Upload
is structured around a linked list of packet descriptors, called upload packet
descriptors (UPDs). UPDs contain pointers to the fragment buffers into which the
NIC is to place receive data. The linked list of UPDs, called the uplist, is illustrated
in Figure 9.

Figure 9 Uplist

The head of the uplist is the UPD that corresponds to the current upload packet.
The Up List Pointer (UpListPtr) register points to this UPD. As the UPD is processed,
the fragment address and fragment length values are fetched one by one from the
UPD into on-NIC registers, which are used to control the data upload operations.

When the NIC exits reset, the upload engine is in the idle state, ready to start
processing an uplist as soon as a nonzero value is written into UpListPtr.

First UpFragAddr

First UpFragLen

Last UpFragAddr

Last UpFragLen

UpPktStatus

UpNextPtrUpListPtr

3 UPD 0

UPD

System RAMNIC

Last data buffer

First data buffer

Rx fragment buffers

UPD Data Structure 105
UPD Data Structure A UPD is 16 to 512 bytes long. It contains the UpNextPtr and UpPktStatus entries,
and from 1 to 63 pairs of UpFragAddr and UpFragLen entries. See Figure 10.

Figure 10 UPD Format

Up Next Pointer The first dword in the UPD is the UpNextPtr entry, which contains the physical
address of the next UPD in the uplist. If this is the last UPD in the uplist, then this
value is zero.

UPDs must be aligned on 8-byte physical address boundaries.

Up Pkt Status The second dword in the UPD is the UpPktStatus entry. At the end of a packet
upload, the NIC writes the value of the UpPktStatus register into this location in
the UPD.

First UpFragAddr

First UpFragLen

nth UpFragAddr

nth UpFragLen (n x 8) + 4

n x 8

c

8

4

0

UpPktStatus

UpNextPtr

3 2 1 0

UpNextPtr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

UpPktStatus Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

UpPktStatus Bit Descriptions

Bit Name Description

[12:0] upPktLen This field is the number of packet bytes uploaded.

This is essentially the packet length, except when the
packet is larger than the number of bytes specified in the
upload fragments. In this case, the upOverflow bit is set.

[14] upError This bit indicates that an error occurred in the receipt of
the packet. The driver should examine bits [16:20] of this
register to determine the specific errors.

[15] upComplete This bit indicates that the packet upload is complete.

 (1 of 3)

106 CHAPTER 7: RECEPTION AND UPLOAD
[16] upOverrun This bit indicates that the hardware was unable to remove
data from the receive FIFO quickly enough, resulting in
lost data. Bytes are missing from the packet at one or
more (unpredictable) locations in the packet.

When this bit is set, it is most likely because the software
failed to provide a UPD quickly enough, or it kept the NIC
in the UpStall state for too long.

[17] runtFrame This bit indicates that the packet was a runt (less than 60
bytes). Normally such frames are not uploaded unless the
RxEarlyThresh register is set to less than 60.

[18] alignmentError This bit indicates that the packet had an alignment error
(a bad CRC plus dribble bits).

[19] crcError This bit indicates a CRC error on the packet.

[20] oversizedFrame This bit indicates that the packet was larger than the
maximum allowable size, as defined in the MaxPktSize
register.

[23] dribbleBits This bit indicates that the packet had accompanying
dribble bits. This bit is informational only and does not
indicate a packet error.

[24] upOverflow This bit indicates that the UPD specified insufficient buffer
space for the packet—there were still bytes left to be
uploaded when the NIC ran out of buffers. When this bit
is set, the NIC has discarded the remainder of the packet.

[25] ipChecksumError This bit indicates that the packet contained an error in
the IP header checksum. This bit is only valid when the
ipChecksumChecked bit is set.

[26] tcpChecksumError This bit indicates that the packet contained an error in
the TCP header checksum. This bit is only valid when the
tcpChecksumChecked bit is set.

[27] udpChecksumError This bit indicates that the packet contained an error in
the UDP header checksum. This bit is only valid when the
udpChecksumChecked bit is set.

[28] impliedBufferEnable This bit enables a special upload mode that reduces the
number of information fetches by the NIC, and is intended
for server applications in which packets are received into
a ring of maximum-packet-sized buffers.

Setting this bit instructs the NIC not to fetch any
UpFragAddr or UpFragLen entries from this UPD. Instead,
the NIC assumes that there is one receive buffer of length
1528d bytes, starting immediately after the UpPktStatus
entry at (UPD address + 8).

The driver sets this bit when it prepares the UPD. The NIC
tests this bit before uploading a packet. At the same time,
the NIC also tests the upComplete bit.

When the NIC updates the UpPktStatus entry at the end
of the upload operation (in order to set the upComplete
bit), the value written to this bit is undefined. A driver
cannot assume a certain value is left in this bit after the
UPD is used. Therefore, the driver must write the desired
value to this bit every time it releases a UPD to the NIC.

[29] ipChecksumChecked This bit, when set, indicates that the packet contained an
IP header. The ipChecksumError bit in the UpPktStatus
register contains the result of the checksum comparison.

UpPktStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 3)

Packet Reception 107
Up Fragment Address The third (fifth, and so on) dword in the UPD, UpFragAddr, contains the physical
address of a contiguous block of system memory to which receive data is to
be uploaded.

A fragment can start on any byte boundary.

Up Fragment Length The fourth (sixth, and so on) dword in the UPD, UpFragLen, contains fragment
length and control information for the block of data pointed to by the previous
UpFragAddr UPD entry.

Packet Reception The following sections describe various aspects of packet reception.

Enabling Reception The 3C90xC NIC comes out of reset with reception disabled.

Until reception is enabled, no incoming packets are accepted by the NIC. Once
reception is enabled, packets are received according to the value programmed in
the RxFilter register.

Reception is enabled by issuing the RxEnable command and can be disabled with
the RxDisable command. If RxDisable is issued while a packet is being received, the
disabling takes effect after the reception has finished.

[30] tcpChecksumChecked This bit, when set, indicates that the packet contained
a TCP header recognizable by the NIC (fragmented
TCP datagrams do not set this bit). The tcpChecksumError
bit in the UpPktStatus register contains the result of the
checksum comparison.

[31] udpChecksumChecked This bit, when set, indicates that the packet contained a
UDP header recognizable by the NIC (fragmented UDP
datagrams do not set this bit). The udpChecksumError
bit in the UpPktStatus register contains the result of the
checksum comparison.

UpPktStatus Bit Descriptions (continued)

Bit Name Description

 (3 of 3)

UpFragAddr Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UpFragLen Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UpFragLen Bit Descriptions

Bit Name Description

[12:0] upFragLen This field contains the length of the contiguous block of
data pointed to by the previous UpFragAddr UPD entry.

[31] upLastFrag This bit is set by the driver to indicate that this is the last
fragment of the receive packet.

108 CHAPTER 7: RECEPTION AND UPLOAD
Simple Packet Upload The simplest example of packet upload starts with the upload engine idle and an
empty uplist, as would be the case after a reset.

To upload a single packet, the following actions occur:

1 The driver creates a UPD with the addresses and lengths of the buffers to be used
(typically one buffer, equal to the maximum packet size).

Because there are no more UPDs, the driver programs zero into the UpNextPtr
UPD entry.

2 The driver writes the address of the UPD into the UpListPtr register.

3 Assuming that there is a receive packet in the FIFO, the NIC proceeds to
fetch information from the UPD and move the packet data into the buffers.

With receives, it is likely that the driver needs to set up one or more UPDs and their
associated buffers before reception of a packet. One approach is to simply allocate
a block of full-size packet buffers in its own data space and create UPDs that point
to the buffers. Another approach is for the driver to request the buffers from the
protocol ahead of time.

Similar to download, there are UpStall and UpUnStall commands. The driver
should issue an UpStall command before modifying the list pointers in the uplist.

As with download, the upload engine becomes idle if it fetches an UpListPtr
register of zero.

Upload Eligibility The upRxEarlyEnable bit in the DmaCtrl register controls when a packet upload
can begin. By default, upRxEarlyEnable is clear. With this setting, an upload can
begin when the packet becomes visible. Normally, this is when 60 bytes have been
received, unless the RxEarlyThresh register is set to a smaller value.

When upRxEarlyEnable is set, uploads do not start until RxEarlyThresh has been
crossed (or the packet completes reception, whichever is first).

In either case, setting RxEarlyThresh to a value less than 60 may cause the host to
process an excessive number of collision fragments.

Packet Upload
Completion

The NIC can be configured to generate an upComplete interrupt when a packet
upload is completed. In response to an upComplete interrupt, the driver looks at
the UpPktStatus UPD entry to determine the size of the packet and whether there
were any errors, and then copies the packet out of the buffers, if needed.

In general, when the driver enters its interrupt handler, multiple packets may have
been uploaded. The driver can read the UpListPtr register to determine which
UPDs in the list have been used. The driver starts at the head of its UPD list and
traverses backward until it reaches the UPD whose address matches the UpListPtr
register. However, because I/O operations are costly, it is more efficient to use the
upComplete bit in each UPD to determine which packets have been uploaded.

Multipacket Lists Generally, it is desirable for the driver to create a list of multiple UPDs. Multiple
UPDs are linked together by pointing the UpNextPtr entry within each UPD at the
next UPD and programming zero into UpNextPtr in the last UPD.

Packet Reception 109
One upload option that differs from download is that the uplist can be formed
into a ring. The NIC does an implicit UpStall command if it starts to process a
UPD that has already been used (one in which the upComplete bit is set in the
UpPktStatus UPD entry). Or, if the new UpPoll register is set to a nonzero value,
the NIC does not stall but automatically rechecks upComplete periodically until it
is cleared.

When the driver finishes processing a UPD, it should leave the UpPktStatus
entry cleared, and if the UpPoll register is zero, it should issue an UpUnStall
command, just in case the NIC has already read the UpPktStatus UPD entry
and stalled.

The following sequence is recommended for adding UPDs to the uplist:

1 Stall the upload engine by issuing the UpStall command.

2 Update the UpNextPtr entry in the last UPD in the uplist to point at the new UPD.

3 Read the UpListPtr register.

4 If UpListPtr was zero, write the address of the new UPD into UpListPtr.

5 Unstall the upload engine by issuing the UpUnStall command.

Most drivers probably simply allocate a number of full-size packet buffers, create a
UPD for each one, and link the UPDs into a ring. As packets are received and
uploaded, an upComplete interrupt is generated for each one.

Early Receive Interrupts The NICs can be programmed to generate an interrupt based upon the number of
bytes that have been received in a packet. The RxEarlyThresh register sets this early
receive threshold.

See “RxEarlyThresh” later in this chapter for more information.

Parallel Tasking of
Receive Uploads

Some drivers need to be able to copy a packet out of the scatter buffer into the
protocol buffer while the packet is still being uploaded (an example is the DOS ODI
client driver). The UpPktStatus register is provided for this purpose.

If the driver issues an UpStall command, reads the UpListPtr and UpPktStatus
registers, and then issues an UpUnStall command (in other words, reads UpListPtr
and UpPktStatus in a critical section), the driver can determine how much of the
packet has been uploaded. If UpListPtr is pointing to a UPD for an incomplete
packet, then UpPktStatus gives the number of bytes uploaded so far. (If not, the
packet has been completely updated, and UpPktStatus in the UPD should be
examined instead.) The driver can then do memory copies out of the buffer in
parallel with the upload operation.

NIC Upload Sequence The NIC performs the following steps to upload a packet to the host:

1 Checks that the UpListPtr register is nonzero.

2 Checks that the NIC is not in the UpStall state.

3 Resets the UpPktStatus register.

4 Fetches UpPktStatus from the current UPD.

110 CHAPTER 7: RECEPTION AND UPLOAD
If the upComplete bit is set, then the NIC does an implicit UpStall, stalling the
upload process. If the UpPoll register contains a nonzero value, the NIC then
polls on the upComplete bit and waits for it to be cleared before continuing.
Otherwise, the upload process continues.

5 Waits for the top receive packet to become eligible for upload (for details, see
“Upload Eligibility” earlier in this chapter).

6 Uploads the packet into the fragments specified in the UPD, or into the implied
buffer if the impliedBufferEnable bit in the UpPktStatus register is set. If there is
more data in the packet than space in the fragment buffers, the NIC generates an
upOverflow error.

7 As the packet is being uploaded, maintains the UpPktStatus register, specifically
the upPktLen field.

8 At the end of packet upload, updates the UpPktStatus register with any error code
from the packet and sets the upComplete bit.

9 Issues an internal RxDiscard command and waits for it to finish.

10 If the upAltSeqDisable bit in the DmaCtrl register is set, writes UpPktStatus to the
UPD in host memory. (This behavior is compatible with 3C90x NICs.)

11 If an UpStall command has been carried out, waits until an UpUnStall command
has been executed.

12 Fetches the UpNextPtr entry from the UPD. If UpNextPtr is zero and polling is
enabled, the NIC starts a polling loop. If polling is disabled, loads the fetched value
into the UpListPtr UPD entry.

13 If the upAltSeqDisable bit in the DmaCtrl register is clear, writes UpPktStatus to the
UPD in host memory. (This behavior is compatible with 3C90xB NICs.)

14 If a polling loop had been started, polls on UpNextPtr until a nonzero value is
fetched, and loads the value into UpListPtr.

15 If the UpListPtr value is zero (polling is disabled), then the upload engine becomes
idle and waits for a nonzero value to be written into UpListPtr.

16 Repeats as necessary.

DmaCtrl See “DmaCtrl” in Chapter 6.

MaxPktSize
Synopsis Determines the receive packet size that will flag the upOversizedPkt

bit.

Type Read/write

Size 16 bits

Window 3

Offset 4

MaxPktSize Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

RxEarlyThresh 111
The value in MaxPktSize determines the minimum receive packet size that is
flagged as oversize.

MaxPktSize defaults to 1514d upon reset. For backward compatibility with
earlier-generation NICs, MaxPktSize is automatically loaded with 1514d or 4491d
upon the RxReset command, depending on the value of the allowLargePackets bit
in the MacControl register.

RxEarlyThresh

The value stored in this register defines the number of bytes that must be received
before an rxEarly indication occurs. The first byte of the destination address is
considered to be byte 1.

RxEarlyThresh can be set using the SetRxEarlyThresh command.

RxEarlyThresh resets to the value 8188d, which disables the threshold mechanism.

As soon as the number of bytes that have been received is greater than the value
in RxEarlyThresh, the NIC generates an rxEarly interrupt to the host (assuming the
rxEarly indication and interrupt bits are not masked). The rxEarly interrupt occurs
only when the packet being received is the top packet; in other words, only if the
packet being received can be transferred by the host during reception.

The RxEarlyThresh mechanism causes one rxEarly indication per packet unless it is
retriggered. The rxEarly interrupt is meant to be used as a retriggerable interrupt.
In other words, it is legal for the driver to respond to an rxEarly interrupt resulting
from a value set in the RxEarlyThresh register, and then reprogram RxEarlyThresh
to a larger value so that a subsequent interrupt is generated within the same
receive packet. If a new value is set in RxEarlyThresh while a packet is being
received from the medium, then an rxEarly interrupt is generated as soon as the
rxEarly threshold is crossed, or immediately if the threshold was already crossed.

An rxEarly indication occurs whenever the RxEarlyThresh threshold has been met
and the packet being received is the top packet.

The driver can program any value into RxEarlyThresh, but setting RxEarlyThresh to
less than 8 causes the NIC to interpret the value as 8, to allow the NIC to perform
destination address filtering before generating an rxEarly indication.

The value in RxEarlyThresh may also determine how many bytes of a packet must
be received before upload transfers for the packet are allowed to begin. If the
upRxEarlyEnable bit in the DmaCtrl register is set, a packet is not eligible to start

Synopsis Returns the value of the RxEarlyThresh register.

Type Read-only

Size 16 bits

Window 5

Offset 6

RxEarlyThresh Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

112 CHAPTER 7: RECEPTION AND UPLOAD
upload until the number of bytes defined in the UpPktStatus DPD entry has been
received.

Setting RxEarlyThresh to a value that is too low causes the host to respond to the
interrupt before the entire receive packet header has been received. Setting
RxEarlyThresh to a value that is too high introduces unnecessary delays in the
system’s receive response sequence.

If RxEarlyThresh is set to a value that is greater than the length of the
received packet, then an rxComplete interrupt (rather than an rxEarly interrupt)
occurs at the completion of packet reception.

If the host system is particularly slow in responding to an rxEarly interrupt, then
it is likely that the packet has been completely received by the time the driver
examines the NIC. In this case, rxEarly is overridden by rxComplete. The rxEarly and
rxComplete interrupts are mutually exclusive. Because rxEarly goes away when
rxComplete becomes set, rxComplete should only be disabled if rxEarly is also
disabled. Such disabling prevents spurious interrupts.

The rxEarly interrupt is meant to be usable as a retriggerable interrupt. It is legal
for the driver to respond to an rxEarly interrupt due to a value set in the
RxEarlyThresh register, then reprogram RxEarlyThresh to a larger value so that a
subsequent interrupt is generated within the same receive packet. If a new value is
set in RxEarlyThresh while a packet is being received from the medium, then an
rxEarly indication is generated as soon as the rxEarly threshold is crossed (or
immediately if the threshold was already crossed).

RxFilter

Each bit in the RxFilter register, when set, enables reception of a different type
of packet.

RxFilter is set using the SetRxFilter command. It is cleared upon reset.

Synopsis Defines the types of receive packets that are accepted.

Type Read-only

Size 8 bits

Window 5

Offset 8

RxFilter Register Format

7 6 5 4 3 2 1 0

0 0 0

RxFilter Bit Descriptions

Bit Name Description

[0] receiveIndividual Setting this bit enables the NIC to receive packets that
match the station address set for the NIC.

[1] receiveMulticast Setting this bit causes the NIC to receive all multicast
packets, including broadcast.

 (1 of 2)

RxFree 113
RxFree

The RxFree register provides a real-time indication of the number of bytes of
free space that are available in the receive FIFO. If zero is returned, the receive
FIFO is full.

RxFree must be read as a 16-bit quantity to guarantee a valid return value.

StationAddress

The StationAddress register is used to define the individual destination address
that the NIC responds to when receiving packets. Network addresses are generally
specified in the form 00:20:af:12:34:56, where the bytes are received left to right,
and the bits within each byte are received right to left (least-significant bit to
most-significant bit).

StationAddress is written with three separate word accesses. To use the address
above as an example, a driver would perform the following writes to
StationAddress:

■ A write of 2000h to offset 0

■ A write of 12afh to offset 2

■ A write of 5634h to offset 4

[2] receiveBroadcast Setting this bit causes the NIC to receive all broadcast
packets.

[3] receiveAllFrames Setting this bit causes the NIC to receive all packets in
promiscuous mode.

[4] receiveMulticastHash Setting this bit enables the NIC to receive packets that
pass the hash filtering mechanism.

RxFilter Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Returns the space available in the receive packet buffer area.

Type Read-only

Size 16 bits

Window 3

Offset a

RxFree Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

Synopsis Defines the NIC’s station address for receive purposes.

Type Read/write

Size 48 bits (accessible as three words)

Window 2

Offset 0, 2, 4

114 CHAPTER 7: RECEPTION AND UPLOAD
The writes can be made in any order; the important consideration is that
the individual bytes end up in the correct byte position within the register.

The value programmed into StationAddress is not inserted into the source address
field of packets transmitted by the NIC. The NIC’s source address must be specified
for every packet as part of the packet contents.

The 3C90xC NIC loads the StationAddress register from the EEPROM; however,
because of a logic bug, the address is not byte-swapped as required. The drivers
should continue to load these values as part of their initialization sequence and
not rely on the hardware state machine.

StationMask

The StationMask register allows bits in receive packets to be treated as
“don’t cares” during individual address matching. Setting a bit in StationMask
causes the value in the corresponding bit of StationAddress to be ignored
when the destination address of incoming packets is compared with the NIC’s
individual address.

StationMask is written in the same way as the StationAddress register, using three
separate word accesses to offsets 6, 8 and a.

The StationMask is reset to all zeros on LVDRst.

UpBurstThresh

The UpBurstThresh register determines when the NIC makes upload bus master
requests, based upon the number of used bytes in the receive FIFO. The value
in UpBurstThresh represents used space in the FIFO in units of 32 bytes. When the
used space exceeds the threshold, the NIC may make an upload request on the
PCI bus.

UpBurstThresh may be overridden by the UpPriorityThresh register mechanism. For
information about the relationship between UpBurstThresh and UpPriorityThresh,
see “PCI Bus Master Operation” in Chapter 3.

Synopsis Defines a mask to apply to the station address register.

Type Read/write

Size 48 bits (accessible as 3 words)

Window 2

Offset 6, 8, a

Synopsis A threshold determining when bus master upload requests are made.

Type Read/write

Size 8 bits

Offset 3e

UpBurstThresh Register Format

7 6 5 4 3 2 1 0

0 0 0

UpListPtr 115
A value of zero is invalid. UpBurstThresh defaults to 8, a threshold of 256 bytes.

UpListPtr

The UpListPtr register holds the physical address of the current UPD in the uplist. A
value of zero in UpListPtr is interpreted by the NIC to mean that no more UPDs are
available to accept receive packets.

UpListPtr is cleared by reset.

UpListPtr can only point to addresses on 8-byte boundaries, so UPDs must be
aligned on 8-byte physical address boundaries.

UpListPtr may be written directly by host software to point the NIC at the head of
a newly created uplist.

UpListPtr is also updated by the NIC as it processes UPDs in the uplist. As the NIC
finishes processing a UPD, it loads UpListPtr with the value from the UpNxtPtr UPD
entry to allow it to move on to the next UPD. If the NIC loads a value of zero from
the current UPD, the upload engine enters the idle state, waiting for a nonzero
value to be written to UpListPtr.

To avoid access conflicts between the NIC and host software, the host must issue
an UpStall command before writing to UpListPtr.

UpMaxBurst

The UpMaxBurst register records the longest memory write burst experienced by
the NIC. The burst length is expressed in bytes, with a granularity of 32.
UpMaxBurst may be cleared to restart the measurement process.

Synopsis Points to the current UPD in the uplist.

Type Read/write

Size 32 bits

Offset 38

UpListPtr Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Synopsis Measures the longest upload (memory write) burst on the PCI bus.

Type Read/write

Size 16 bits

Offset 7a

UpMaxBurst Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

116 CHAPTER 7: RECEPTION AND UPLOAD
UpPktStatus

UpPktStatus shows the status of various logic in the upload logic. Drivers should
read this register only while the upload engine is in the UpStall state. Otherwise,
the hardware may change UPDs between accesses to this register. The format of
this register is identical to that of the UpPktStatus field written into processed
UPDs, except that the impliedBufferEnable bit is not implemented here.

UpPktStatus is cleared by a reset.

The error bits ([14] and [20:16]) are undefined until the upPktComplete bit is set.

Bits [27:25] and [31:29] are undefined until the upPktComplete bit is set.

Synopsis Indicates the status of upload operations.

Type Read-only

Size 32 bits

Offset 30

UpPktStatus Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

UpPktStatus Bit Descriptions

Bit Name Description

[12:0] upPktLen This field gives a real-time indication of the number of bytes
uploaded for the packet during packet upload.

This bit is cleared when the NIC fetches a new UpListPtr
register, and counts up in steps no larger than a bus master
burst. When the packet has been completely uploaded, this
bit indicates the true packet length.

[13] upStalled This bit is asserted whenever the NIC is in the UpStall
state, either because of an UpStall command or because
of an implicit stall due to fetching a UPD with the
upPktComplete bit in the UpPktStatus register already set.

This bit is cleared with an UpUnStall command.

[14] upError This bit indicates that an error occurred in the receipt of
the packet. The driver should examine bits [16:20] of this
register to determine the type of errors.

[15] upPktComplete This bit indicates that the packet is complete. Unless an
upload stall is in effect, this bit normally remains on only
momentarily (too short for the software to read it)
because the hardware then fetches the next UPD.

[16] upOverrun This bit indicates that the hardware was unable to remove
data from the receive FIFO quickly enough (most likely
because the software failed to free a UPD quickly enough,
or kept the NIC in the UpStall state for too long). Bytes are
missing from the packet at one or more locations in the
packet (unpredictable).

[17] upRuntFrame This bit indicates that the packet was a runt (less than
60 bytes). Normally such frames are not uploaded unless
RxEarlyThresh is set to a value less than 60.

 (1 of 2)

UpPoll 117
UpPoll

The value in the UpPoll register determines the rate at which the current UPD is
polled when the NIC is looking for the upComplete bit in the UpPktStatus register
to be cleared.

Polling is disabled when UpPoll is cleared. UpPoll is cleared by reset.

[18] upAlignmentError This bit indicates that the packet had an alignment error (a
bad CRC plus dribble bits).

[19] upCRCError This bit indicates a CRC error on the packet.

[20] upOversizedFrame This bit indicates that the packet was equal to or greater
than the value set in the MaxPktSize register.

[23] dribbleBits This bit indicates that the packet had accompanying
dribble bits. This bit is informational only, and does not
indicate a packet error.

[24] upOverflow This bit indicates that the UPD had insufficient buffer
storage for the packet—there were still bytes left to be
uploaded when the NIC ran out of fragments. The NIC
uploads what it can into the buffers provided, discards the
rest, and sets this bit.

[25] ipChecksumError This bit indicates that the packet contained an error in
the IP header checksum. This bit is only valid when
ipChecksumChecked is set.

[26] tcpChecksumError This bit indicates that the packet contained an error in
the TCP header checksum. This bit is only valid when
tcpChecksumChecked is set.

[27] udpChecksumError This bit indicates that the packet contained an error in
the UDP header checksum. This bit is only valid when
udpChecksumChecked is set.

[29] ipChecksumChecked This bit, when set, indicates that the packet contained an
IP header, and ipChecksumError contains the result of
the checksum comparison.

[30] tcpChecksumChecked This bit, when set, indicates that the packet contained a
TCP header recognizable by the NIC (fragmented TCP
datagrams do not set this bit), and tcpChecksumError
contains the result of the checksum comparison.

[31] udpChecksumChecked This bit, when set, indicates that the packet contained a
UDP header recognizable by the NIC (fragmented UDP
datagrams do not set this bit), and udpChecksumError
contains the result of the checksum comparison.

UpPktStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Allows setting of the upComplete poll rate.

Type Read/write

Size 8 bits

Offset 3d

UpPoll Register Format

7 6 5 4 3 2 1 0

0

118 CHAPTER 7: RECEPTION AND UPLOAD
The value in UpPoll represents 320-ns time intervals. The maximum representable
value is 40.64 µs.

UpPriorityThresh

The value in the UpPriorityThresh register sets a point at which the upload engine
makes a priority bus master request. A priority upload request has priority over all
other requests on the NIC. The priority bus request is made when the free space in
the receive FIFO falls below the value in UpPriorityThresh.

An upload priority request is not subject to the UpBurstThresh constraint: when
the FIFO is close to overrun, burst efficiency is sacrificed in favor of requesting the
bus as quickly as possible.

The value in UpPriorityThresh represents free space in the receive FIFO in terms of
32-byte portions. UpPriorityThresh resets to 4, or a threshold of 128d bytes.

VlanMask

Under the 3Com proprietary VLAN Tagging (VLT) scheme, each packet includes a
4-bit VLAN ID field. The NIC’s default behavior, when VLT is enabled, is to receive
all VLT packets, regardless of the contents of the ID field. VlanMask allows
individual IDs to be masked, which causes the NIC to discard packets containing
those ID values.

VlanMask is cleared upon reset. When the vltEnable bit in the MacControl register
is clear, VlanMask is ignored.

Each bit in VlanMask corresponds to a VLT ID value. Setting a bit causes packets
containing the corresponding ID value to be discarded. Bit 0 corresponds to an
ID value of zero, bit 1 corresponds to an ID value of one, and so on.

Synopsis Provides a threshold to control when the upload engine makes a
priority bus master request.

Type Read/write

Size 8 bits

Offset 3c

UpPriorityThresh Register Format

7 6 5 4 3 2 1 0

0 0 0

Synopsis Provides the ability to mask reception of individual VLAN IDs in the
3Com proprietary VLAN Tagging (VLT) scheme.

Type Read/write

Size 16 bits

Window 7

Offset 0

8
 INTERRUPTS AND INDICATIONS
This chapter provides an overview of interrupts and indications, and defines the
registers associated with interrupts.

Indications are reports of any interesting events on the NIC. An indication appears
as a set bit in the IntStatus register. Indications can be individually masked off to
prevent them from appearing as set in IntStatus. For the 3C90xC NIC, there are
eight different types of indications.

Any indication can be individually configured to cause an interrupt, which is the
actual assertion of the interrupt signal on the PCI bus.

In this technical reference, the term interrupt is used loosely to refer to both
interrupts and indications. It is assumed that a driver configures the NIC to
generate an interrupt for any indication that is of interest to it.

When responding to an interrupt, the host reads the IntStatus register to determine
the cause of the interrupt. In the IntStatus register, there are eight bits that define
the source of the interrupt. The least-significant bit, interruptLatch, is always set
whenever any of the interrupts are asserted. This is done to prevent spurious
interrupts on the host bus. The interruptLatch bit must be explicitly acknowledged
(cleared) using the AcknowledgeInterrupt command.

The host acknowledges interrupts by carrying out the interrupt-specific actions
summarized in Table 14.

Table 14 Interrupt-specific Actions

Action Description

interruptLatch Acknowledged by the AcknowledgeInterrupt command

hostError Acknowledged by issuing the appropriate resets

txComplete Acknowledged by writing to the TxStatus register

rxComplete Acknowledged automatically by the hardware

rxEarly Acknowledged by the AcknowledgeInterrupt command

intRequested Acknowledged by the AcknowledgeInterrupt command

updateStats Acknowledged by reading one or more statistics registers

linkEvent Acknowledged by reading the AutoNegExpansion register.

dnComplete Acknowledged by the AcknowledgeInterrupt command

upComplete Acknowledged by the AcknowledgeInterrupt command

120 CHAPTER 8: INTERRUPTS AND INDICATIONS
A two-level enable structure gives drivers flexibility in configuring indications
and interrupts. For example, the driver may want one type of indication to
interrupt the host processor, a second indication to not cause an interrupt but
still be visible when the IntStatus register is read, and a third indication to be
completely ignored.

IndicationEnable

The IndicationEnable register allows the eight indication bits to be individually
masked off so that they appear as zero in the IntStatus register, even though the
corresponding condition in the IntStatus register is true. In order for an indication
bit to be set in IntStatus, its corresponding bit-position in IndicationEnable must
be set.

The IndicationEnable register is written by issuing the SetIndicationEnable
command.

Each bit set in IndicationEnable enables the corresponding bit to be set in the
IntStatus register. This register is set using the SetIndicationEnable command. See
“SetIndicationEnable” in Chapter 10 for more details.

IndicationEnable is cleared upon reset.

InterruptEnable

The InterruptEnable register controls which of the eight indication bits (after
passing through the IndicationEnable register) can generate an interrupt. In order
for an indication bit to generate an interrupt, its corresponding bit-position in the
InterruptEnable register must be set.

Synopsis Specifies which bits in the IntStatus register can become set.

Type Read-only

Size 16 bits

Window 5

Offset c

IndicationEnable Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

Synopsis Specifies which bits in the IntStatus register can generate an interrupt
to the host.

Type Read-only

Size 16 bits

Window 5

Offset a

InterruptEnable Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

IntStatus 121
The InterruptEnable register is written by issuing the SetInterruptEnable command.

Each bit in InterruptEnable is the interrupt enable bit for the corresponding bit
in the IntStatus register. Setting a bit in InterruptEnable allows that source to
generate an interrupt on the bus. This register is set using the SetInterruptEnable
command. See “SetInterruptEnable” in Chapter 10 for more details.

InterruptEnable is cleared upon reset. It is also cleared by a read of the
IntStatusAuto register.

IntStatus

IntStatus is the main status register for the NIC. It indicates the source of interrupts
and indications on the NIC, the completion status of commands issued to the
Command register, and the current register window visible in the lower part of the
I/O space.

Bits [1:10] are the interrupt-causing sources for the NIC. These bits can be
individually disabled as interrupt sources using the InterruptEnable register, and
individually forced to read as zero in IntStatus using the IndicationEnable register.

IntStatus is cleared by reset.

The windowNumber in bits [15:13] reflects the current window pointed to.
Separate values are maintained for SMBus accesses and PCI bus accesses.

Synopsis Indicates the sources for NIC interrupts, and the number of the visible
register window.

Type Read-only

Size 16 bits

Window All

Offset e

IntStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

IntStatus Bit Descriptions

Bit Name Description

[0] interruptLatch This bit is set when the NIC is driving the bus interrupt
signal. It is a logical OR of the interrupt-causing bits after
they have been filtered through the InterruptEnable
register.

This bit is acknowledged by issuing the
AcknowledgeInterrupt command with the
interruptLatchAck bit set.

 (1 of 3)

122 CHAPTER 8: INTERRUPTS AND INDICATIONS
[1] hostError This bit is set when a catastrophic error related to the bus
interface occurs.

The errors that set this bit are PCI target abort and PCI
master abort.

This bit is cleared by issuing the GlobalReset command
with the upDownReset mask bit cleared.

[2] txComplete This bit is set when a packet (whose txIndicate bit in the
FrameStartHeader is set) has been successfully transmitted
or for any packet that experiences a transmission error.

This interrupt is acknowledged by writing to the TxStatus
register to advance the status FIFO.

[4] rxComplete This bit is set when one or more entire packets have been
received into the receive FIFO.

This bit is automatically acknowledged by the upload
engine as it uploads packets. Drivers should disable this
interrupt and mask this bit when reading IntStatus.

[5] rxEarly This bit is set when the number of bytes of the top packet
that have been received is greater than the value of the
RxEarlyThresh register.

When the top packet has been completely received by the
NIC, this bit is negated and the rxComplete bit asserts
(assuming that the appropriate masks are clear).

This bit is acknowledged by issuing
the AcknowledgeInterrupt command with the rxEarlyAck
bit set.

[6] intRequested This bit is set by the execution of a RequestInterrupt
command or by the expiration of the Countdown register.

This bit is acknowledged by issuing the
AcknowledgeInterrupt command with the
intRequestedAck bit set.

[7] updateStats This bit indicates that one or more of the statistics
counters is nearing an overflow condition (typically
half of its maximum value). Reading all of the statistics
acknowledges this bit.

A driver should respond to an updateStats interrupt by
reading all of the statistics. This has the side effect of
acknowledging (clearing) updateStats.

IntStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 3)

IntStatus 123
[8] linkEvent This bit indicates a change in the link status, as detected
by the on-chip auto-negotiation logic.

A change in link status is defined as either entering the
LINK GOOD state (meaning that auto-negotiation has
been completed), or leaving the LINK GOOD state,
because of a link failure.

Drivers should determine the cause of a linkEvent
interrupt by checking the two interrupt status bits in the
AutoNegExpansion register. Reading AutoNegExpansion
automatically clears linkEvent.

The linkEvent interrupt is cleared either by reading the
IntStatusAuto register or by issuing an
AcknowledgeInterrupt command with the appropriate bit
set.

Note that the auto-negotiation logic can generate
linkEvent even when the xcvrSelect bit in the
InternalConfig register is not set for auto-negotiation.
It is the driver’s responsibility to mask off linkEvent
interrupts when it is not interested in receiving them.

[9] dnComplete This bit indicates that a packet download has been
completed, and the DPD in question has had the
dnIndicate bit set in its FrameStartHeader.

This bit is acknowledged by an AcknowledgeInterrupt
command with the dnComplete bit set.

The host should examine the DnListPtr register to
determine which packets have been downloaded—those
in the downlist before the current DnListPtr (which if
zero, implies all those in the list) have already been
downloaded.

[10] upComplete This bit indicates that a packet upload has been
completed. This bit is acknowledged by an
AcknowledgeInterrupt command with the upComplete
bit set.

[12] cmdInProgress This bit indicates that the last command issued is still
being executed by the NIC.

This bit need only be checked after one of the commands
that require longer than a single I/O cycle to finish has
been issued. No new commands can be issued until this
bit is negated.

[15:13] windowNumber This field indicates which set of registers is currently visible
in the I/O space of the NIC.

These bits are reset after a hardware reset or a
GlobalReset command.

IntStatus Bit Descriptions (continued)

Bit Name Description

 (3 of 3)

IntStatusAuto

The IntStatusAuto register actively acknowledges the active interrupts in the
IntStatus register and clears the InteruptEnable register.

IntStatusAuto has the same bit definition as IntStatus. It differs from IntStatus only
in the following side effects that occur when it is read:

■ The InterruptEnable register is cleared. This prevents subsequent events from
generating an interrupt on the bus.

■ The following bits in IntStatus (if they are set) are acknowledged (cleared):
dnComplete, upComplete, rxEarly, intRequested, interruptLatch, and linkEvent.

Synopsis Special version of the IntStatus register with some added side effects
to allow a reduction in the number of I/O operations required to
service interrupts.

Type Read-only

Size 16 bits

Offset 1e

9
 STATISTICS AND DIAGNOSTICS
This chapter provides an overview of statistics and defines the registers associated
with statistics and diagnostics.

The 3C90xC NIC includes 12 statistic counters of various widths. The gathering of
statistics is enabled by issuing the StatisticsEnable command. When enabled, the
statistic counters advance as corresponding events occur. No host intervention is
required to facilitate this counting.

Reading a statistic register clears the register. Writing a value to a statistic register
adds that value to the register. This is useful in diagnostics and IC production tests.
Reading all of the statistics acknowledges the updateStats interrupt.

It is not necessary to disable statistics collection while reading the statistic
registers. It is legal to do so, but disabling statistics collection may result in missed
statistics events.

Whenever one or more of the statistic registers reaches half of its maximum value,
an updateStats interrupt is generated.

Transmit and receive statistics are summarized in Table 15 and Table 16 and are
described in alphabetical order in this chapter.

Table 15 Summary of Transmit Statistics

Statistic Description

BytesXmittedOk A byte total for all packets transmitted without error.

CarrierLost A count of packets that were transmitted without error but
experienced a loss of carrier.

FramesDeferred A count of events where the transmission of a packet had to defer to
network traffic. A single packet may defer more than once as a result
of collisions, and each deference would be counted.

FramesXmittedOk The number of packets of all types transmitted without errors. Loss of
carrier and absence of an expected SQE are not considered errors.

LateCollisions A count of every occurrence of a late collision (there could be more
that one per packet transmitted).

MultipleCollisions A count of all packets transmitted without error after experiencing
from 2 through 15 collisions (including late collisions).

SingleCollisions A count of packets that are transmitted without errors after one and
only one collision (including late collisions).

SqeErrors A count of events that occur if the NIC is configured to expect an SQE
pulse after each transmission and did not receive such a pulse.

UpperBytesOk A display of the high-order bits of the BytesRcvdOk and
BytesXmittedOk statistics.

UpperFramesOk A display of the high-order bits of the FramesRcvdOk and
FramesXmittedOk statistics.

126 CHAPTER 9: STATISTICS AND DIAGNOSTICS
BadSSD

The BadSSD register counts the number of packets that are received with a bad
start-of-stream delimiter. This statistic is only valid when the NIC is operating
in 100BASE-TX mode.

This is an 8-bit counter and wraps around to zero after reaching ffx. An
updateStats interrupt occurs after the counter has counted through 80h.

Reading this statistic clears it. Therefore, this statistic must be read as an 8-bit
quantity. The StatisticsEnable command must have been issued for this register to
count events.

BytesRcvdOk

The BytesRcvdOk register counts the number of bytes that are received
successfully. For the purposes of this statistic, a successfully received packet is one
that is completely moved into the receive FIFO before being discarded by the
hardware.

This is a 16-bit counter and wraps around to zero after reaching ffffh. An
updateStats interrupt occurs after the counter has counted through 8000h.

Reading this statistic clears it. Therefore, this statistic must be read as a 16-bit
quantity. The StatisticsEnable command must have been issued for this register to
count events.

Table 16 Summary of Receive Statistics

Statistic Description

BadSSD A count of packets received with bad start-of-stream delimiter. This
statistic is only valid for 100BASE-TX operation.

BytesRcvdOk A byte total for all packets received without error. A packet’s bytes
are included in this count if the packet is received without errors.

FramesRcvdOk A count of packets of all types that are received without error.

RxOverruns A count of rxOverrun errors. Only packets that the host actually sees
as overruns are included in this count, and not packets that are
completely ignored by the NIC because the receive FIFO is full.

Synopsis Indicates the number of packets that experienced an error in the
start-of-stream delimiter.

Type Read/write

Size 8 bits

Window 4

Offset c

Synopsis Indicates the total number of bytes for frames that are received
without error.

Type Read/write

Size 16 bits

Window 6

Offset a

BytesXmittedOk 127
BytesXmittedOk

The BytesXmittedOk register counts the number of bytes included in packets that
are transmitted with no errors reported in the TxStatus register.

This is a 16-bit counter and wraps around to zero after reaching ffffh. An
updateStatistics interrupt occurs after the counter has counted through 8000h.

Reading this statistic clears it. Therefore, this statistic must be read as a 16-bit
quantity. The StatisticsEnable command must have been issued for this register to
count events.

CarrierLost

The CarrierLost register counts the number of packets that experience at least one
loss of carrier during transmission.

Carrier sense is not monitored for the purpose of this statistic until after the
preamble and start-of-frame delimiter. This 4-bit counter sticks at 0fh. An
updateStatistics indication occurs after the counter has counted through 08h.

Reading this statistic clears it. The StatisticsEnable command must have been
issued for this register to count events.

FramesDeferred

Synopsis Indicates the total number of bytes for packets that are transmitted
without error.

Type Read/write

Size 16 bits

Window 6

Offset c

Synopsis Indicates the number of packets experiencing loss of carrier during
transmission.

Type Read/write

Size 8 bits

Window 6

Offset 0

CarrierLost Register Format

7 6 5 4 3 2 1 0

0 0 0 0

Synopsis The number of transmit packets deferred to network activity.

Type Read/write

Size 8 bits

Window 6

Offset 8

128 CHAPTER 9: STATISTICS AND DIAGNOSTICS
The FramesDeferred statistic register counts the number of times a transmit packet
must defer to network traffic. A single packet may cause multiple deferrals as a
result of collisions and retransmissions.

This is an 8-bit counter and wraps around to zero after reaching ffh. An
updateStatistics interrupt occurs after the counter has counted through 80h.
Reading this statistic clears it.

The StatisticsEnabled command must have been issued for this register to
count events.

FramesRcvdOk

The FramesRcvdOk register counts the number of packets that are received
without error. Packets received with errors are defined as packets in which one of
the following bits is set in the UpPktStatus register:

■ upOverrun

■ upRuntFrame

■ upAlignmentError

■ upCRCError

■ upOversizedFrame

This 10-bit counter wraps around to zero after reaching 3ffh. An updateStatistics
indication occurs after the counter counts through 200h.

The low-order eight bits of this register are visible at this location. The upper two
bits are visible in the UpperFramesOk register.

When FramesRcvdOk is read, the value in the upper two bits of that register is
latched and made visible in UpperFramesOk. This latched value can be read from
UpperFramesOk at any time until FramesRcvdOk is again read.

Reading UpperFramesOk has no affect on the value seen in UpperFramesOk. See
“UpperFramesOk” in this chapter for more information.

The StatisticsEnable command must have been issued for this register to
count events.

Synopsis The number of error-free packets received.

Type Read/write

Size 8 bits

Window 6

Offset 7

FramesXmittedOk 129
FramesXmittedOk

The FramesXmittedOk register counts the number of packets that are transmitted
without error. Error packets are defined as those for which the maxCollisions,
txJabber, or txUnderrun bit is set to one in the TxStatus register.

This is a 10-bit counter that wraps around to zero after reaching 3ffh. An
updateStatistics indication occurs after the counter counts through 200h.

The low-order eight bits of this register are visible within the register. The upper
two bits are visible in the UpperFramesOk register.

When the FramesXmittedOk register is read, the value in the upper two bits of the
register is latched and made visible in UpperFramesOk. This latched value can be
read from UpperFramesOk at any time until FramesXmittedOk is again read.

Reading UpperFramesOk has no effect on the value seen in UpperFramesOk. See
“UpperFramesOk” in this chapter for more information.

The StatisticsEnable command must have been issued for FramesXmittedOk to
count events.

LateCollisions

The LateCollisions register counts the number of late collisions. Because every
transmission attempt is monitored, it is possible to count multiple late collisions
per transmit packet.

This 8-bit counter wraps around to zero after reaching ffh. An updateStatistics
indication occurs after the counter counts through 80h.

Reading this statistic clears it. The StatisticsEnabled command must have been
issued for this register to count events.

Synopsis The number of error-free packets transmitted.

Type Read/write

Size 8 bits

Window 6

Offset 6

Synopsis Returns the number of late collisions during transmission attempts.

Type Read/write

Size 8 bits

Window 6

Offset 4

130 CHAPTER 9: STATISTICS AND DIAGNOSTICS
MultipleCollisions

The MultipleCollisions register counts the number of packets that are transmitted
successfully after experiencing anywhere from 2 through 15 collisions or late
collisions.

This 8-bit counter wraps around to zero after reaching ffh. An updateStatistics
indication occurs when the counter has counted through 80h. Reading this
statistic has the side effect of clearing it.

The StatisticsEnable command must have been issued for this counter to
be enabled.

RxOverruns

The RxOverruns register counts the number of packets that should have been
received (the destination address matched the filter criteria) but experienced an
rxOverrun error because there was not enough FIFO space to hold the packet.

This statistic only includes overruns that become apparent to the driver, and does
not count packets that are completely ignored because the receive FIFO is full at
the start of packet reception.

This 8-bit counter wraps around to zero after reaching ffh. An updateStatistics
indication occurs after the counter has counted through 80h.

Reading this statistic clears it. The StatisticsEnable command must have been
issued for this register to count events.

Synopsis The number of transmit packets experiencing at least two collisions.

Type Read/write

Size 8 bits

Window 6

Offset 2

MultipleCollisions Register Format

7 6 5 4 3 2 1 0

Synopsis Counts the number of packets that cause an rxOverrun error.

Type Read/write

Size 8 bits

Window 6

Offset 5

SingleCollisions 131
SingleCollisions

The SingleCollisions register counts the number of packets that are transmitted
without error after experiencing a single collision.

This 8-bit counter wraps around to zero after reaching ffh. An updateStatistics
interrupt occurs after the counter has counted through 80h.

Reading this statistic clears it. The StatisticsEnable command must have been
issued for this register to count events.

SqeErrors

The SqeErrors register counts the number of transmit packets that result in an
SQE error.

This is a 4-bit counter that sticks at 0fh. An updateStatistics interrupt occurs after
the counter has counted through 08h.

Reading this statistic clears it. The StatisticsEnable command must have been
issued for this register to count events.

SqeErrors collection can be disabled independently of other statistics by clearing
the enableSqeStats bit in the MediaStatus register. Normally, SqeErrors would only
be enabled if an external transceiver over the AUI was used.

Synopsis Returns the number of packets experiencing a single collision.

Type Read/write

Size 8 bits

Window 6

Offset 3

SingleCollisions Register Format

7 6 5 4 3 2 1 0

Synopsis Counts the number of transmit packets that experience SQE errors.

Type Read/write

Size 8 bits

Window 6

Offset 1

SqeErrors Register Format

7 6 5 4 3 2 1 0

0 0 0 0

132 CHAPTER 9: STATISTICS AND DIAGNOSTICS
UpperBytesOk

The UpperBytesOk register allows read access to the high-order bits of the
BytesRcvdOk and BytesXmittedOk statistics.

UpperBytesOk is cleared by reset.

The BytesRcvdOk and BytesXmittedOk registers are actually 20-bit registers. Their
lower 16 bits are visible in the BytesRcvdOk and BytesXmittedOk registers in
window 6.

See the “BytesRcvdOk” and “BytesXmittedOk” register definitions for more
details on how UpperBytesOK works.

UpperFramesOk

The UpperFramesOk register allows read access to the high-order bits of the
FramesRcvdOk and FramesXmittedOk statistic registers.

See the “FramesRcvdOk” and “FramesXmittedOk” register definitions for details
about how the register values are latched into UpperFramesOk.

Synopsis Makes visible the high-order bits of the BytesRcvdOk and
BytesXmittedOk statistic registers.

Type Read-only

Size 8 bits

Window 4

Offset d

UpperBytesOk Register Format

7 6 5 4 3 2 1 0

UpperBytesOk Bit Descriptions

Bit Name Description

[3:0] upperBytesRcvdOk The high-order four bits of the BytesRcvdOk register. This
value is latched whenever BytesRcvdOk is read.

[7:4] upperBytesXmittedOk The high-order four bits of the BytesXmittedOk register.
This value is latched whenever BytesXmittedOk is read.

Synopsis Makes visible the high-order bits of the FramesRcvdOk and
FramesXmittedOk statistic registers.

Type Read-only

Size 8 bits

Window 6

Offset 9

UpperFramesOk Register Format

7 6 5 4 3 2 1 0

0 0 0 0

UpperFramesOk 133
UpperFramesOk Bit Descriptions

Bit Name Description

[1:0] upperFramesRcvdOk The high-order two bits of the FramesRcvdOk register.
This value is latched whenever FramesRcvdOk is read.

[5:4] upperFramesXmittedOk The high-order two bits of the FramesXmittedOk register.
This value is latched whenever FramesXmittedOk is read.

10
 COMMAND REGISTER
This chapter provides an overview of the Command register and gives definitions
of the commands.

The Command register is used to issue commands of various types to the NIC.
Commands may or may not contain parameters. Most commands execute in less
time than it takes for the host system to perform a subsequent read or write
operation and are considered to execute in zero time. Those commands that take
a nonzero amount of time to execute are identified in their respective definitions.

All commands must be issued as a single write to the Command register. If the
command being issued has Xs occupying bits [7:0], then a write to only bits [15:8]
(offset fh) can be used. If any of the least-significant eight bits of the command
word are defined, then a single 16-bit write must be used. The read-only IntStatus
register is located with the Command register.

The command definitions in this chapter use the following conventions:

■ The bit value is the 16-bit value that the NIC expects to be written to the
Command register to carry out the desired operation. The most-significant five
bits make up the Command Code; the remaining bits are the parameter.

■ Bit positions occupied by an “X” indicate that the value for the corresponding
bit does not matter. However, for future hardware compatibility, it is
recommended that zeros be written to these positions.

■ Bit positions occupied by a dot (•) indicate bit positions that are to be filled by
the parameter associated with the command.

Summary of
Commands

Table 17 summarizes the commands that are used by the 3C90xC NIC. The
commands are described in alphabetical order in the following sections.

Synopsis Allows commands to be issued to the NIC.

Type Write-only

Size 16 bits

Window All

Offset e

Command Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command Code Parameter

Summary of Commands 135
Commands in Table 17 that are marked with an asterisk (*) (for example,
GlobalReset *) are not always completely executed before the next command
can be issued to the NIC. For these commands, the driver must ensure that the
cmdInProgress bit in the IntStatus register is a zero before taking any further
action with the NIC.

Table 17 Command Summary

Command Type Command Name Bit Value Description

Reset GlobalReset * (0000 000• •0•• ••••) * Perform an overall reset of NIC.

RxReset * (0010 100• 0000 ••••) * Reset the receive logic.

TxReset * (0101 100• 0000 ••••) * Reset the transmit logic.

Transmit DnStall * (0011 0XXX XXX0 0010)* Stall the download engine.

DnUnStall (0011 0XXX XXX0 0011) Unstall the download engine.

SetTxReclaimThresh (1100 0000 •••• ••••) Set the value of the TxReclaimThresh register.

SetTxStartThresh (1001 1••• •••• ••••) Set the value of the TxStartThresh register.

TxAgain (1001 0XXX XXXX XXXX) Retransmit the last packet in the queue that was just
sent out of the transmit FIFO.

TxDisable (0101 0XXX XXXX XXXX) Disable packet transmission.

TxDone (0011 1XXX XXXX XXXX) Used by the external SMBus controller to signal to the
NIC that the data which has been downloaded to the
transmit FIFO is a complete packet.

TxEnable (0100 1XXX XXXX XXXX) Enable packet transmission.

TxFifoBisect (1101 1XXX XXXX XXXX) Logically split the transmit FIFO into two 1K FIFOs to
prepare the transmit FIFO to accept keep-alive frames.

Receive RxDisable (0001 1XXX XXXX XXXX) Disable packet reception.

RxDiscard (0100 0XXX XXXX XXXX) Used by the external SMBus controller to cause the top
receive packet to be discarded.

RxEnable (0010 0XXX XXXX XXXX) Enable packet reception.

SetHashFilterBit (1100 1•XX XX•• ••••) Program a particular bit in the hash filter.

SetRxEarlyThresh (1000 1••• •••• ••••) Set the value of the RxEarlyThresh register.

SetRxFilter (1000 0000 000• ••••) Set the value of the RxFilter register.

UpStall * (0011 0XXX XXX0 0000)* Stall the upload engine.

UpUnStall (0011 0XXX XXX0 0001) Unstall the upload engine.

Interrupt AcknowledgeInterrupt (0110 1••• X••X •XX•) Acknowledge active interrupts.

RequestInterrupt (0110 0XXX XXXX XXXX) Cause the NIC to generate an interrupt.

SetIndicationEnable (0111 1••• •••• X••X) Set the value of the IndicationEnable register.

SetInterruptEnable (0111 0••• •••• X••X) Set the value of the InterruptEnable register.

Other DisableDcConverter (1011 1XXX XXXX XXXX) Disable the 10BASE2 DC-DC converter.

EnableDcConverter (0001 0XXX XXXX XXXX) Enable the 10BASE2 DC-DC converter.

SelectRegisterWindow (0000 1000 0000 0•••) Change the visible window.

StatisticsDisable (1011 0XXX XXXX XXXX) Disable collection of statistics.

StatisticsEnable (1010 1XXX XXXX XXXX) Enable collection of statistics.

136 CHAPTER 10: COMMAND REGISTER
Unused Command
Codes

The following are command codes that are not used by the 3C90xC NIC:

■ 10010

■ 10100

■ 11010

■ 11100

■ 11101

■ 11110

■ 11111

Reset Commands

GlobalReset The GlobalReset command is not always completely executed before the next
command can be issued to the NIC. The driver must ensure that the cmdInProgress
bit in the IntStatus register is a zero before taking any further action with the NIC.

Except for the NIC configuration aspects that are handled by the
power-on self-test (POST) routines executed by the host, the NIC must
be reinitialized after a GlobalReset unless the aismReset bit is set.

Bit Value (0000 000• •0•• ••••)

Bit Name Description

[0] tpAuiReset This bit, when set, masks reset to the 10BASE-T and
AUI transceiver.

[1] endecReset This bit, when set, masks reset to the internal 10 Mbps
encoder/decoder.

[2] networkReset This bit, when set, masks reset to the network interface
logic, including the CSMA/CD core, and the statistics
registers. In 3C905B (ASIC 40-0476-00x or 40-0483-00x)
and 3C90xC NICs, this bit masks reset to the PHY.

[3] fifoReset This bit, when set, masks reset to the FIFO control logic.

[4] aismReset This bit, when set, masks reset to the auto-initialize state
machine logic.

If this bit is not set, the EEPROM data is reloaded.

[5] hostReset This bit, when set, masks reset to the bus interface logic.

If this bit is not set, the following registers are cleared:
IntStatus, InterruptEnable, IndicationEnable,
and Countdown.

[6] smbReset This bit, when set, masks reset to the SMBus interface.

[7] vcoReset This bit, when set, masks reset to the on-board
10 Mbps VCO.

[8] upDownReset This bit, when set, masks reset to the upload/download
logic.

If this bit is not set, the upload and download engines
are reset, including DnListPtr, UpListPtr, DmaCtrl, and
UpPktStatus.

Reset Commands 137
The registers in the PCI configuration space are not reset by the GlobalReset
command, except those registers that are aliased from registers in the I/O
space—InternalConfig, ResetOptions, and EepromData.

Because the NIC’s serial EEPROM may need to be read as part of the reset process,
this operation can take as long as 1 ms to finish. The cmdInProgress bit in IntStatus
must be polled to ensure that the command has finished.

RxReset The RxReset command is not always completely executed before the next
command can be issued to the NIC. The driver must ensure that the cmdInProgress
bit in the IntStatus register is a zero before taking any further action with the NIC.

The RxReset command resets the receive logic throughout the NIC.

The 5-bit parameter acts as a bit mask, masking the reset to various portions of
the receive logic.

This command should not be used after initialization except to recover from
receive errors such as a receive FIFO underrun.

TxReset The TxReset command is not always completely executed before the next
command can be issued to the NIC. The driver must ensure that the cmdInProgress
bit in the IntStatus register is a zero before taking any further action with the NIC.

Bit Value (0010 100• 0000 ••••)

Bit Name Description

[0] tpAuiRxReset This bit, when set, masks reset to the 10BASE-T and AUI
transceiver receive logic.

[1] endecRxReset This bit, when set, masks reset to the internal Ethernet
encoder/decoder receive logic.

[2] networkRxReset This bit, when set, masks reset to the network interface
receive logic, including the CSMA/CD core. In 3C905B
(ASIC 40-0476-00x or 40-0483-00x) and 3C90xC NICs,
this bit masks reset to the PHY.

If this bit is not set, the receiver is disabled, and RxFilter
is cleared.

[3] fifoRxReset This bit, when set, masks reset to the receive FIFO
control logic.

If this bit is not set, the receive FIFO contents are flushed
and RxEarlyThresh is set to its default (disabled) state.

[8] upRxReset This bit, when set, masks reset to the upload logic.

When this bit is not set, the upload logic is reset,
including the UpListPtr and UpPktStatus registers,
and the upComplete and upRxEarlyEnable bits in the
DmaCtrl register.

Bit Value (0101 100• 0000 ••••)

Bit Name Description

[0] tpAuiTxReset This bit, when set, masks reset to the 10BASE-T and AUI
transceiver transmit logic.

 (1 of 2)

138 CHAPTER 10: COMMAND REGISTER
The TxReset command resets the transmitter logic throughout the NIC. TxReset is
required after a transmit underrun or jabber error. The low-order bits mask the
reset to various portions of the transmit logic.

Transmit Commands

DnStall The DnStall command is not always completely executed before the next
command can be issued to the NIC. The driver must ensure that the cmdInProgress
bit in the IntStatus register is a zero before taking any further action with the NIC.

The DnStall command stops the NIC from fetching the DnNextPtr DPD entry and
loading it into the DnListPtr register.

If DnListPtr is nonzero, the driver must issue a DnStall command before modifying
the downlist to avoid conflicts with the DnListPtr updates. The host must wait for
the cmdInProgress bit to be deasserted before continuing.

A DnStall may be issued by the SMBus controller through the SMBus interface.
This stall condition is "OR"ed with the one from the PCI bus. Both conditions must
be cleared by there respective DnUnstall to continue normal operation.

DnUnstall

The opposite of DnStall, The DnUnstall command releases the NIC to fetch the
DnNextPtr DPD entry and update the DnListPtr register. The host should issue this
command as soon as possible after the DnStall command, once it has finished
modifying the downlist.

[1] endecTxReset This bit, when set, masks reset to the internal Ethernet
encoder/decoder transmit logic.

[2] networkTxReset This bit, when set, masks reset to the network interface
transmit logic, including the CSMA/CD core.

If this bit is not set, the transmitter is disabled, and the
TxStatus queue is cleared.

[3] fifoTxReset This bit, when set, masks reset to the transmit FIFO
control logic.

If this bit is not set, the transmit FIFO is flushed, and
TxStartThresh and TxReclaimThresh are forced to their
default (disabled) state.

[8] dnTxReset This bit, when set, masks reset to the download logic.

If this bit is not set, the download logic is reset, including
the DnListPtr register and the dnComplete and dnInProg
bits in the DmaCtrl register.

Bit Value (0101 100• 0000 ••••)

Bit Name Description

 (2 of 2)

Bit Value (0011 0XXX XXX0 0010)

Bit Value (0011 0XXX XXX0 0011)

Transmit Commands 139
This command must also be issued by the SMBus controller if it had previously
issued a DnStall command to resume normal operation.

SetTxReclaimThresh

The SetTxReclaimThresh command sets the TxReclaimThresh register to the
desired value.

SetTxStartThresh

The SetTxStartThresh command establishes the value of the TxStartThresh register.
The parameter is written into bits [12:2] of TxStartThresh, and bits [1:0] are
cleared.

The NIC begins transmission attempts for a packet as soon as the number of bytes
downloaded to the transmit FIFO is greater than the value in TxStartThresh. If the
packet being transmitted is shorter than TxStartThresh, then transmit attempts
begin as soon as the entire packet has been downloaded.

TxAgain

The TxAgain command retransmits the last packet in the queue that was just sent
out of the transmit FIFO. The transmit FIFO must be empty when issuing the
TxAgain command.

The intended use of this command is to allow an SMBus controller to be able to
send out multiple copies of the same packet, simplifying the controller’s work.

TxDisable

The TxDisable command disables the NIC’s transmitter after the completion of the
transmission attempt of any packet currently being transmitted.

If additional packets are queued up in the transmit FIFO, they are not transmitted.
Nor are those packets discarded. If the transmitter is again enabled, packets in the
transmit FIFO are transmitted.

TxDone

The TxDone command is used by the external SMBus controller only. When the
SMBus controller issues a TxDone command, it signals to the NIC that the data
which has been downloaded to the transmit FIFO is a complete packet.

Issuing TxDone has the effect of “flushing” any remaining data in the host
interface registers into the FIFO.

Bit Value (1100 0000 •••• ••••)

Bit Value (1001 1••• •••• ••••)

Bit Value (1001 0XXX XXXX XXXX)

Bit Value (0101 0XXX XXXX XXXX)

Bit Value (0011 1XXX XXXX XXXX)

140 CHAPTER 10: COMMAND REGISTER
TxEnable

The TxEnable command enables the NIC to transmit packets.

The NIC comes out of reset with the transmitter disabled. This command must be
issued before any attempt to transmit packets. The transmitter can be disabled
through the use of the TxDisable or TxReset commands or by a transmitter error
such as a transmit FIFO overrun.

TxFifoBisect

The TxFifoBisect command causes the transmit FIFO to be split logically into two
1K FIFOs. It should be used to prepare the transmit FIFO to accept keep-alive
packets from the host.

The TxFifoBisect command causes the CurSopPtr, CurWritePtr, TopSopPtr, and
TopReadPt registers to be pointed at the first word in the second half of the
transmit FIFO RAM.

The purpose of splitting the FIFO is to allow both keep-alive packets (periodically
sent based on a time interval) and pattern-matching packets (wake-up packets) to
coexist in the transmit FIFO, as illustrated in Figure 11.

Figure 11 TxFifoBisect Command

Receive Commands

RxDisable

The RxDisable command prevents the NIC from receiving any further packets.

Bit Value (0100 1XXX XXXX XXXX)

Bit Value (1101 1XXX XXXX XXXX)

WU Pattern #1

WU Pattern #2

WU Pattern #3

Keep-alive #1

Keep-alive #2

Keep-alive #3

TxFifoBisect command
moves pointers to
second half of FIFO

Transmit FIFO
0

3ff

400

7ff

Bit Value (0001 1XXX XXXX XXXX)

Receive Commands 141
Any packet that is in the process of being received when this command is issued is
not affected. This command has no effect on the contents of the receive FIFO or
on any receive status or statistics.

RxDiscard

The RxDiscard command is used by the external SMBus controller only. When the
SMBus controller issues an RxDiscard command, it causes the top receive packet to
be discarded.

An RxDiscard must be issued for every receive packet when removed through the
SMBus interface. If the top packet has been completely read out of the receive
FIFO, then RxDiscard causes the RxStatus register to reflect the status of the next
packet in sequence. If the top packet is still being received or has only been
partially read, RxDiscard causes the remainder of the packet to be discarded, and
the data and status of the next packet to become available through the
SmbFifoData and RxStatus registers, respectively.

RxEnable

The RxEnable command enables the NIC to receive packets that meet the
address-filtering requirements currently in use. If this command is issued while
a packet is currently active on the network, the NIC begins reception at the
beginning of the next packet.

The NIC comes out of reset with the receiver disabled. An RxEnable command
must be issued to allow the NIC to receive packets. Either an RxDisable or an
RxReset command can be used to disable receive operations.

SetHashFilterBit

The SetHashFilterBit command is used to program the value of a particular bit in
the hash filter for multicast packet reception. Each bit in the hash filter
corresponds to a set of multicast addresses that may be received. The low-order six
bits select the bit. Bit 10 is the value to be programmed into that bit.

The hash filter acts as an array of 64 enable bits. Incoming packets that have the
group bit set have a cyclic redundancy check (CRC) applied to their destination
address.

The low-order six bits of the CRC are used as an index into the hash filter. If the
hash filter bit addressed by the index is set, the packet is accepted by the NIC and
passed up to higher layers. If the hash filter bit is cleared, the packet is discarded.

SetRxEarlyThresh

Bit Value (0101 0XXX XXXX XXXX)

Bit Value (0010 0XXX XXXX XXXX)

Bit Value (1100 1•XX XX•• ••••)

Bit Value (1000 1••• •••• ••••)

142 CHAPTER 10: COMMAND REGISTER
The SetRxEarlyThresh command sets the RxEarlyThresh register to the desired
value. The parameter is written into bits [12:2] of RxEarlyThresh, and bits [1:0]
are cleared.

The value in RxEarlyThresh serves two functions:

■ Early receive interrupt—When the number of bytes received for a packet is
greater than the value stored in RxEarlyThresh, the rxEarly indication is set.

■ Upload eligibility—When the upRxEarlyEnable bit in DmaCtrl is set,
RxEarlyThresh then determines the number of bytes that must be received
before the packet can begin uploading.

For more information on the operation of rxEarly interrupts, see “RxEarlyThresh”
in Chapter 7.

SetRxFilter

The SetRxFilter command defines the value of the RxFilter register.

The five active parameter bits in this command may be used in any combination
and are defined as follows:

The effect of each bit is additive. That is, a 00011b pattern enables individually
addressed packets that match the NIC’s StationAddress as well as all multicast
packets. Setting bit 3 (promiscuous mode) overrides bits [2:0].

UpStall The UpStall command is not always completely executed before the next
command can be issued to the NIC. The driver must ensure that the cmdInProgress
bit in the IntStatus register is a zero before taking any further action with the NIC.

The UpStall command stops the NIC from fetching the UpNextPtr UPD entry and
loading it into the UpListPtr register.

Whenever the host wishes to modify the uplist, and UpListPtr is nonzero, the
host must issue an UpStall command to avoid conflicts with the NIC’s UpListPtr
updates. Note that this command requires the host to wait for the cmdInProgress
bit to be deasserted before continuing.

UpUnStall

Bit Value (1000 0000 000• ••••)

RxFilter Parameter Addresses Enabled

XXXX1 Individual (must match station address)

XXX1X All multicast (including broadcast)

XX1XX Broadcast

X1XXX All (promiscuous)

1XXXX (3C90xB NICs) Multicast hash filter

Bit Value (0011 0XXX XXX0 0000)

Bit Value (0011 0XXX XXX0 0001)

Interrupt Commands 143
The opposite of UpStall, the UpUnStall command releases the NIC to fetch the
UpNextPtr UPD entry and load the UpListPtr register. The host should issue this
command as soon as possible after UpStall, once it has finished modifying
the uplist.

When the upload engine stalls because it is reading a UPD that is in use (meaning
the upComplete bit is set in the UpPktStatus entry in the UPD), the NIC can
automatically execute an UpUnStall command by polling on the upComplete bit
and waiting for the software to clear the bit. This function is enabled when the
UpPoll register contains a nonzero value.

Interrupt Commands

AcknowledgeInterrupt

The AcknowledgeInterrupt command resets selected interrupt indications in the
IntStatus register. When it is issued, the indications that correspond to bits set to
one in the parameter field are cleared.

Several of the interrupt types must be acknowledged by means that are unique to
the interrupt type. These means are defined in the IntStatus register definition.

Attempting to acknowledge an indication that is not active has no effect.

RequestInterrupt

The RequestInterrupt command sets the intRequested bit in the IntStatus register
(if so enabled) and causes an interrupt to the host (if so enabled).

The NIC can generate an automatic intRequested interrupt when the Countdown
register count reaches zero. The driver must maintain internal state to determine
what to do when an intRequested interrupt occurs.

SetIndicationEnable

The parameter of the SetIndicationEnable command becomes the value held in
the IndicationEnable register.

Each bit corresponds to an individual indication source. See “IntStatus” in
Chapter 8 for a description of the indication bits.

Bit Value (0110 1••• X••X •XX•)

Bit Name

[0] interruptLatchAck

[1] linkEventAck

[5] rxEarlyAck

[6] intRequestedAck

[9] dnCompleteAck

[10] upCompleteAck

Bit Value (0110 0XXX XXXX XXXX)

Bit Value (0111 1••• •••• X••X)

144 CHAPTER 10: COMMAND REGISTER
Indications disabled with this command do not cause an interrupt to the host, nor
are they visible in the IntStatus register. The IndicationEnable register is cleared
upon system reset. Bit 0 of this register is a “don’t care” bit because
the interruptLatch bit is always enabled.

SetInterruptEnable

The parameter of the SetInterruptEnable command becomes the value held in the
InterruptEnable register.

Each bit corresponds to an individual interrupt source. See “IntStatus” in
Chapter 8 for a description of the interrupt bits.

Interrupts disabled with this command do not cause an interrupt to the host, but
they may still be set in the IntStatus register. The InterruptEnable register is cleared
upon NIC reset. Bit 0 of this register is a “don’t care” bit because the
interruptLatch bit is always enabled.

Other Commands

DisableDcConverter

The DisableDcConverter command disables the DC-DC converter that drives an
on-board 10BASE2 transceiver.

This command affects only 10BASE2 operation and should be used only when
a NIC is so configured. The driver should wait at least 800 µs after issuing this
command before attempting to use an AUI interface. The Timer register can be
used to time this.

EnableDcConverter

The EnableDcConverter command enables (applies power to) the DC-DC
converter that drives an on-board 10BASE2 transceiver. This command affects only
10BASE2 operation and should be used only when a NIC is so configured.

After the NIC is powered up or when it experiences a hardware reset, this
command must be issued before the 10BASE2 port can be used to transmit or
receive packets. The driver should wait at least 800 µs after issuing this command
before attempting to transmit or receive packets. The Timer register can be used
to time this.

SelectRegisterWindow

The SelectRegisterWindow command causes the specified register bank (windows
0 through 7) to become visible in the 16-byte register window.

Bit Value (0111 0••• •••• X••X)

Bit Value (1011 1XXX XXXX XXXX)

Bit Value (0001 0XXX XXXX XXXX)

Bit Value (0000 1000 0000 0•••)

Other Commands 145
The register window bank zero is the default bank upon system reset.

146 CHAPTER 10: COMMAND REGISTER
StatisticsDisable

The StatisticsDisable command disables the counting of statistical events by
halting the statistic counters. Disabling the counters does not alter their values.

StatisticsEnable

The StatisticsEnable command enables the NIC’s statistic counters. Upon
power-up, statistics counting is disabled. This command must be issued to
enable the counting of statistic events.

Bit Value (1011 0XXX XXXX XXXX)

Bit Value (1010 1XXX XXXX XXXX)

11
 AUTO-NEGOTIATION AND MII REGISTERS
This chapter describes the auto-negotiation and MII registers for 3C90xC NICs.

Overview The auto-negotiation function on the 3C90xC NIC includes several registers
that allow software to read status and control various aspects of the
auto-negotiation process.

These auto-negotiation registers are accessed through the MII management
interface using a PHY address (PHYAD) of 11000b (shifted out left to right).
Software controls the management interface directly by writing and reading bits
in the NetworkDiagnostic register. For more information on programming the
MII management interface, see Appendix B.

The auto-negotiation registers are different on the different versions of the ASIC
that may be used on 3C90xC NICs. After you identify the ASIC version on the NIC,
use the information in this chapter that applies to that version. The ASIC version
numbers and ways to identify the ASICs are described in “ASICs” in Chapter 2.

40-0574-xxx or
40-05772-xxx ASIC
Auto-Negotiation
Registers

On a 3C90xC NIC that uses the 40-0574-xxx or 40-05772-xxx ASIC, an integrated
802.3u auto-negotiation function handles auto-negotiation for 10BASE-T and
100BASE-TX media types. 100BASE-T4 is not implemented on the NIC.

The auto-negotiation function interacts with the 10 Mbps and 100BASE-X
functions to negotiate a common operating mode with its link partner. If a
common mode is found and a link is established, auto-negotiation directs the
signal multiplexer (see “Support for Signaling Standards” in Chapter 4) to connect
the appropriate signaling function to the MAC.

To make auto-negotiation compatible with old drivers written for external PHY
devices, auto-negotiation registers are accessed through the MII management
interface. However, they do not use the MII data interface. For auto-negotiation
to work properly, the xcvrSelect bit in the InternalConfig register must be set to
Auto-Negotiation, not to MII.

Table 18 summarizes the names, addresses, and functions of the 40-0574-xxx or
40-05772-xxx ASIC auto-negotiation registers. The registers are described in
alphabetical order in the section following the table.

Table 18 Summary of 40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers

Address Register Name Description

00 Control Contains control bits to reset, restart, and configure auto-negotiation.

01 Status Contains various status and capabilities bits.

148 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
Autonegotiation
Advertisement

The read/write Autonegotiation Advertisement register controls which capabilities
the NIC is allowed to advertise to the link partner.

Autonegotiation
Expansion

The read-only Autonegotiation Expansion register Contains bits pertaining to
expanded auto-negotiation functions.

02 PHY Identification 1 Contains PHY identification data.

03 PHY Identification 2 Contains PHY identification data.

04 Autonegotiation
Advertisement

Controls which capabilities the NIC is allowed to advertise to the link partner.

05 Autonegotiation
Link Partner Ability

Returns the advertised abilities received from the link partner during auto-negotiation.

06 Autonegotiation
Expansion

Contains bits pertaining to expanded auto-negotiation functions.

07 Next Page Transmit See the register bit definitions for a description of this register.

08-15 Reserved

28 Device Specific 1 See the register bit definitions for a description of this register.

29 Device Specific 2 See the register bit definitions for a description of this register.

30 Device Specific 3 See the register bit definitions for a description of this register.

31 Quick Status See the register bit definitions for a description of this register.

Table 18 Summary of 40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers

Address Register Name Description

Autonegotiation Advertisement Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Autonegotiation Advertisement Bit Descriptions

Bit Name Description

[4:0] selector field These read-only bits are hardwired with the value 00001
for IEEE 802.3.

[5] 10Base-T When this bit is set, auto-negotiation advertises that the
ASIC is capable of 10BASE-T operation.

[6] 10Base-T full duplex When this bit is set, auto-negotiation advertises that the
ASIC is capable of 10BASE-T full-duplex operation.

[7] 100Base-TX When this bit is set, auto-negotiation advertises that the
ASIC is capable of 100BASE-TX operation.

[8] 100Base-TX full duplex When this bit is set, auto-negotiation advertises that the
ASIC is capable of 100BASE-TX full-duplex operation.

[9] 100Base-T4 This bit is always set to a logic 0.

[10] advertise pause capability This bit is always set to on.

[13] remote fault When this read-only bit is set to a logic 1, the ASIC
indicates to the link partner a remote fault condition.

[14] acknowledge This bit is the acknowledge bit from the link code word.

[15] next page This bit, when set, indicates that the next page function is
activated. This function allows the exchange of arbitrary
pieces of data. Data is carried by operational next pages of
information.

40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers 149
Autonegotiation
Link Partner Ability

The read-only Autonegotiation Link Partner Ability register Returns the advertised
abilities received from the link partner during auto-negotiation.

Control The Control register contains control bits to reset, restart, and configure
auto-negotiation.

Autonegotiation Expansion Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0

Autonegotiation Expansion Bit Descriptions

Bit Name Description

[0] link partner
autonegotiation capable

Setting this bit indicates that the link partner is capable of
auto-negotiation.

[1] page received This read-only bit is set when a new link code word page
has been received from the link partner. This bit is latched
high (R/HL).

[2] next page able Setting this bit indicates that this device supports the next
page function.

[3] link partner next page
able

Setting this bit indicates that the link partner supports the
next page function.

[4] parallel detection fault Setting this bit indicates that a fault has been detected in
the parallel detection function. This fault is due to more
than one technology detecting concurrent link conditions.
This bit can only be cleared by reading this register (R/LH).

Autonegotiation Link Partner Ability Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Autonegotiation Link Partner Ability Bit Descriptions

Bit Name Description

[4:0] selector field This field contains the type of message sent by the link
partner.

For IEEE 802.3-compliant link partners, this field should
read 00001.

[12:5] technology ability field This field contains the technology ability of the link
partner. These bits are defined as shown in the
Autonegotiation Advertisement register bits [12:5].

[13] remote fault Setting this bit indicates that the link partner has a fault.

[14] acknowledge Setting this bit indicates that the link partner has
successfully received at least three consecutive and
consistent FLP bursts.

[15] next page Setting this bit indicates that the link partner wants to
engage in next page exchange.

Control Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0

150 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS

Device Specific 1 The Device Specific 1 register is read-only.

Control Bit Descriptions

Bit Name Description

[7] collision test When this bit is set to a logic 0, the ASIC asserts the COL
signal in response to TXEN.

This bit should only be set in loopback mode.

[8] duplex mode This bit reflects the mode of operation:

■ 1 = full-duplex

■ 0 = half-duplex

This bit is ignored when the autonegotiation enable bit
[12] is enabled. The default state is a logic 0. This bit is
ORed with the TXLED[A] signal during power up and
reset. This register is also ORed with the H_DUPLEX[D]
signal during power up or reset.

[9] restart autonegotiation When this bit is set to a logic 1, the auto-negotiation
process starts.

The NwayDone bit in the StatusRegister is reset when this
bit goes high. This bit is self-cleared when NWAY starts
and its default is 0.

[10] isolate Setting this bit indicates that MII outputs should be in high
impedance state. The default state is a logic 0.

[11] powerdown When this bit is set to a logic 1, the ASIC is placed in a
low-power state. While in a powerdown state, the ASIC
responds to management transactions. The default is 0.

[12] autonegotiation enable Wen this bit is set to a logic 1, the auto-negotiation
process is enabled. The default is 0.

[13] speed selection The value of this bit reflects the current speed of
operation:

■ 1 = 100 Mbps

■ 0 = 10 Mbps

This bit only affects operating speed when the
autonegotiation enable bit [12] is disabled. This bit is
ignored when auto-negotiation is enabled. This bit is
ANDed with the SPEEDLED[D] signal during power-up or
reset.

[14] loopback When this bit is set, data transmission does not take place
on the media, and any received data is ignored.

The loopback signal path contains all circuitry up to, but
not including, the PECL I/O. The default is 0.

[15] reset Setting this bit resets the ASIC. All registers are set to their
default states. This bit is self-clearing. The default is 0.

Device Specific 1 Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0

40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers 151
Device Specific 2 The Device Specific 2 register is read/write.

Device Specific 1 Bit Descriptions

Bit Name Description

[0] link up 10 Setting this bit indicates that a 10 Mbps transceiver is up
and operational.

[1] link up 100 Setting this bit indicates that a 100 Mbps transceiver is up
and operational.

[2] force jam This bit latches high until it is read (R/LH).

[3] rx error status Setting this bit indicates a false carrier indication. This bit
latches high until it is read (R/LH).

[4] unlocked Setting this bit indicates TX scrambler lost lock. This bit
latches high until it is read (R/LH).

[5] disconnect Setting this bit indicates a disconnect. This bit is only valid
in 10 Mbps mode. This bit latches high until it is read
(R/LH).

[6] autopolarity status This bit is a logic 1 when bit [3] of the Device Specific 3
Register is set. The autopolarity status bit indicates that
the ASIC has detected and corrected a polarity reversal on
the twisted-pair.

This bit is not valid in 100 Mbps operation.

[7] code violation Setting this bit indicates that a Manchester code violation
has occurred.

The error code is outputted on the RXD lines. The the
RXC signal descriptions for error code descriptions.

This bit is valid in 10 Mbps mode only. This bit latches high
and is only clear after it has been read or the device has
been reset.

[8] bad frame Setting this bit indicates that a packet has been received
without an SFD.

This bit is valid in 10 Mbps mode only. This bit latches high
and is only clear after it has been read or the device has
been reset (R/LH).

Device Specific 2 Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Device Specific 2 Bit Descriptions

Bit Name Description

[2] jam enable Setting this bit enables JAM associated with carrier
integrity to be ORed with COL.

[3] carrier integrity enable Setting this bit enables carrier integrity.

[4] scrambler/descrambler
bypass

Setting this bit disables the scrambling and descrambling
functions.

[5] symbol aligner bypass Setting this bit disables the aligner function.

[6] encoder/decoder bypass Setting this bit disables the 4B/5B encoder and the
5B/4B decoder functions.

152 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
Device Specific 3 The Device Specific 3 register is read/write.

[8] packet error indication
enable

When this bit is set, a packet error code is reported on
RXD[3:0] of the ASIC when RXER is asserted on the MII. A
logic 0 disables this function.

A packet error code indicates that the scrambler is locked.

[9] link error indication WHen this bit is set, a link error code is reported on
RXD[3:0] of the ASIC when RXER is asserted on the MII.

The specific error codes are listed int9he RXD signal
description.

A logic 0 disables this function.

[10] carrier sense select When this bit is set to a logic 1, CRS is asserted on receive
only. When this bit is set to a logic 0, CRS is asserted on
receive or transmit.

[12] 100 Mbps transmitter off Setting this bit forces TXOP low and TXON high.

[13] generic reset 1

[14] generic reset 2

[15] management reset Setting this bit causes the lower 16 registers and registers
28 and 29 (Device Specific 1 and Device Specific 2) to be
reset to their default values.

This bit is self-clearing.

Device Specific 2 Bit Descriptions (continued)

Bit Name Description

Device Specific 3 Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

Device Specific 3 Bit Descriptions

Bit Name Description

[0] no lp mode Setting this bit allows 10 Mbps operation with link pulses
disabled. If the ASIC is configured for 10 Mbps operation,
setting this bit does not affect operation.

[1] serial select Setting this bit selects 10 Mbps serial mode operation. If
the ASIC is in 100 Mbps mode, this bit is ignored.

[2] reference select When this bit is set, the external 10 MHz reference signal
REF10 is used for phase alignment.

[3] autopolarity function
enable

When this bit is set and the ASIC is in 10 Mbps mode, the
autopolarity function determines if the TOP link is wired
with a polarity reversal. If there is a polarity reversal, the
ASIC asserts bit [6] of the Device Specific 1 Register and
corrects the polarity reversal. If this bit is a logic 0 and the
device is in 10 Mbps mode, the reversal is corrected.

[4] extended line length
enable

When this bit is set, the receive squelch levels are reduced,
allowing reception of signals with a lower amplitude.

This bit is valid in 10 Mbps mode only.

[5] heartbeat enable When this bit is set, the heartbeat function is enabled.

This bit is valid in 10 Mbps mode only.

40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers 153
Next Page Transmit The Next Page Transmit register is read/write.

PHY Identification 1 The read-only PHY Identification 1 register contains PHY identification data.

Next Page Transmit Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Next Page Transmit Bit Descriptions

Bit Name Description

[10:0] message/unformatted
code field

With these 11 bits, there are 2,048 possible messages.
The message code field definitions are described in
Annex 28C of the IEEE 802.3u standard.

[11] toggle This read-only bit is used by the arbitration function to
ensure synchronization with the link partner during
next page exchange.

This bit always takes the opposite value of the toggle bit in
e previously exchanged link code word.

If the bit is a logic 0, the previous value of the transmitted
link code word is a logic 1.

If the bit is a logic 1, the previous value of the transmitted
link code word is a logic 0.

The initial value of the toggle bit in the first next page that
is transmitted is the inverse of the value of bit [11] in the
base link code word and therefore may assume a value of
logic 1 or 0.

[12] acknowledge 2 This bit is used by the next page function to indicate that a
device has the ability to comply with the message.

■ Logic 0 = the device cannot comply with the message.

■ Logic 1 = the device complies with the message.

[13] message page This bit is used to differentiate a message page from an
unformatted page.

■ Logic 0 = an unformatted page

■ Logic 1 = a formatted pate

[14] acknowledge This read-only bit is the acknowledge bit from the link
code word.

[15] next page This bit indicates whether this is the last next page to be
transmitted.

■ Logic 0 = this is the last page

■ Logic 1 = there is an additional next page

PHY Identification 1 Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

154 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
PHY Identification 2 The read-only PHY Identification 2 register contains PHY identification data.

Quick Status The Quick Status register is read-only.

PHY Identification 1 Bit Descriptions

Bit Name Description

[0:15] organizationally unique
identifier

Bits [3:24]of the organizationally unique identifier (OUI)
that is assigned to the PHY manufacturer by the IEEEE are
placed in this field and in MR3 PHY Identification 2
register [0:15].

PHY Identification 2 Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PHY Identification 2 Bit Descriptions

Bit Name Description

[3:0] revision number These bits are the value of the current revision number
(01h for the first revision.

[9:4] model number The six-bit model number of the device. The model
number is 24h.

[15:10] organizationally unique
identifier

Bits [3:24]of the organizationally unique identifier (OUI)
that is assigned to the PHY manufacturer by the IEEEE are
placed in the PHY Identification 1 register [0:15] and in
this field.

Quick Status Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Quick Status Register Bit Descriptions

Bit Name Description

[2:0] highest autonegotiation
state

These bits report the highest auto-negotiation state
reached since the last register read. They are defined in
the following priority order:

■ 000 = auto-negotiation enabled

■ 001 = transmit disable or ability detect

■ 010 = link status check

■ 011 = acknowledge detect

■ 100 = complete acknowledge

■ 101 = FLP link good check

■ 110 = next page wait

■ 111 = FLP link good

[5:3] lowest autonegotiation
state

These bits report the lowest auto-negotiation state
reached since the last register read, as defined in bit [2:0].

[8] duplex mode This bit, when set to a logic 1, indicates that the link is
operating at full-duplex mode. A logic 0 indicates that the
link is operating in half-duplex mode.

40-0574-xxx or 40-05772-xxx ASIC Auto-Negotiation Registers 155
Status The read-only Status register contains various status and capabilities bits.

[9] link speed This bit, when set to a logic 1, indicates that the link is
operating at 100 Mbps. A logic 0 indicates that the link is
at 10 Mbps.

[10] link partner pause This bit, when set to a logic 1, indicates that both link
partners have negotiated to exchange pause information.

[11] link status Setting this bit indicates that a valid link is established.
This bit has a latching low function. A link failure causes
the bit to clear and stay cleared until it has been read
through the management interface.

[12] unlocked/jabber Setting this bit in 100 Mbps mode indicates that the TX
scrambler has lost lock. In 10 Mbps mode, this bit
indicates that a jabber condition has been detected.

This bit remains set until it is cleared by reading the
register.

[13] remote fault Setting this bit indicates that a remote fault has been
detected.

This bit remains set until it is cleared by reading the
register. The default is a logic 0.

[14] false carrier Setting this bit indicates that the carrier detect state
machine has found a false carrier.

This bit remains set until it is cleared by reading the
register. The default is a logic 0.

[15] receive error Setting this bit indicates that a receive error has been
detected. This bit is valid in 100 Mbps mode only.

This bit remains set until it is cleared by reading the
register. The default is a logic 0.

Quick Status Register Bit Descriptions (continued)

Bit Name Description

MR1: Status Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

MR1: Status Bit Descriptions

Bit Name Description

[0] extended capability This bit is always set, indicating that the ASIC supports the
extended register set (PHY Identifier 1 and beyond).

[1] jabber detect This bit is set whenever a jabber condition is detected. This
bit remains set until it is read and the jabber condition no
longer exists.

[2] link status When this bit is set to a logic 1, a valid link has been
established.

This bit has a latching function. A link failure causes the
bit to clear and remain clear until it has been read through
the management interface.

[3] autonegotiation ability This bit is always set to indicate the ability to perform
auto-negotiation.

 (1 of 2)

156 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
40-0579-xxx ASIC
Auto-Negotiation
Registers

The 40-0579-xxx ASIC has an integrated 802.3u auto-negotiation function that
handles auto-negotiation for 10BASE-T and 100BASE-TX media types.
100BASE-T4 is not implemented on the 3C90xC NIC.

The 40-0579-xxx ASIC contains the ability to negotiate its mode of operation over
the twisted-pair link using the auto-negotiation mechanism defined in the IEEE
802.3u specification.

Auto-negotiation may be enabled or disabled by hardware or software control.
When the auto-negotiation function is enabled, the NIC automatically chooses its
mode of operation by advertising its abilities and comparing them with those
received from its link partner.

The 40-0579-xxx ASIC can be configured to advertise 100BASE-TX full-duplex and
half-duplex and 10BASE-T full-duplex and half-duplex. Each transceiver negotiates
independently with its link partner and chooses the highest level of operation
available for its own link.

Table 19 summarizes the names, addresses, and functions of the 40-0579-xxx
ASIC auto-negotiation and MII registers. The registers are described in alphabetical
order in the sections following the table.

[4] remote fault Setting this bit indicates that a remote fault has been
detected. This bit remains set until it is cleared with a read.
The default is a logic 0.

[5] autonegotiation
complete

When this bit is set to a logic 1, the auto-negotiation
process is complete and the contents of the following
registers are valid:

■ MR4: autonegotiation advertisement

■ MR5: autonegotiation link partner ability

■ MR6: autonegotiation expansion

■ MR7: next page transmit

This bit is reset when auto-negotiation starts. The default
is a logic 0.

[6] suppress preamble This bit is always set to indicate that the ASIC accepts
management frames with the preamble suppressed.

[11] 10Base-T half duplex
ability

This bit always returns a logic 1, indicating
auto-negotiation’s ability to negotiate a 10BASE-T
half-duplex link.

[12] 10Base-T full duplex
ability

This bit always returns a logic 1, indicating
auto-negotiation’s ability to negotiate a 10BASE-T
full-duplex link.

[13] 100Base-TX half duplex
ability

This bit always returns a logic 1, indicating
auto-negotiation’s ability to negotiate a 100BASE-TX
half-duplex link.

[14] 100Base-TX full duplex
ability

This bit always returns a logic 1, indicating
auto-negotiation’s ability to negotiate a 100BASE-TX
full-duplex link.

[15] 100Base-T4 ability This bit is always set to a logic 0.

MR1: Status Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 157
10BASE-T Auxiliary Error
and General Status

The 10BASE-T Auxiliary Error and General Status register contains read-only bits
that are latched high. When certain types of errors occur in the PHY core, one or
more corresponding error bits are set to one. They remain so until the register is
read, or until a chip reset occurs. All such errors necessarily result in data errors,
and are indicated by a high value on the RXER output pin at the time the error
occurs.

Table 19 Summary of 40-0579-xxx ASIC Auto-Negotiation and MII Registers

Address Register Name Description

00h Control Contains control bits to reset, restart, and configure auto-negotiation.

01h Status Contains various status and capabilities bits.

02h PHYID High Contains PHY identification data.

03h PHYID Low Contains PHY identification data.

04h Autonegotiation
Advertise

Controls which capabilities the NIC is allowed to advertise to the link partner.

05h Link Partner Ability Returns the advertised abilities received from the link partner during auto-negotiation.

06h Autonegotiation
Expansion

Contains bits pertaining to expanded auto-negotiation functions.

07h Next Page Not implemented; this register is not accessible.

10h 100BASE-X Auxiliary
Control

See the register bit definitions for a description of this register.

11h 100BASE-X Auxiliary
Status

See the register bit definitions for a description of this register.

12h 100BASE-X Receive
Error Counter

Contains bits that increment each time the NIC receives a noncollision packet containing at
least one receive error.

13h 100BASE-X False Carrier
Counter

Contains bits that increment each time the NIC detects a false carrier on the receive input.

14h 100BASE-X Disconnect
Counter

Contains bits that increment each time the carrier integrity monitor within the NIC enters
the link unstable state.

15h Reserved

16h Reserved

17h PTEST Reserved.

18h Auxiliary Status
Summary

See the register bit definitions for a description of this register.

1Ah INTERRUPT See the register bit definitions for a description of this register.

1Bh Reserved

1Ch 10BASE-T Auxiliary
Error and General
Status

Returns auxiliary errors and general status implemented in 10BASE-T mode.

1Dh Auxiliary Mode See the register bit definitions for a description of this register.

1Eh Auxiliary Multiple-PHY See the register bit definitions for a description of this register.

1Fh BROADCOM Test Reserved.

10BASE-T Auxiliary Error and General Status Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

158 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS

10BASE-T Auxiliary Error and General Status Bit Descriptions

Bit Name Description

[0] full-duplex indication This read-only bit indicates whether or not full-duplex
mode is active.

■ 0 = full-duplex not active

■ 1 = full-duplex active

[1] speed indication This read-only bit indicates the current operation speed of
the NIC.

■ 0 = 10BASE-T operation

■ 1 = 100BASE-X operation

While the auto-negotiation exchanged is performed, the
NIC is always operating at 10BASE-T speed.

[2] force 100/10 indication This read-only bit returns a zero when one of the
following instances is true:

■ The ANEN pin is low and the F100 pin is low.

■ The autonegotiation enable bit [12] and the forced
speed selection bit [13] in the Control register are set
to zero.

When bit [8] of the Auxiliary Control register is zero, the
speed of the chip is 10BASE-T. In all other cases, either the
speed is not forced (auto-negotiation is enabled), or the
speed is forced to 100BASE-X.

■ 0 = speed forced to 10BASE-T

■ 1 = speed forced to 100BASE-X

[3] auto-negotiation
indication

This bit indicates whether auto-negotiation has been
enabled or disabled on the ASIC.

A combination of a 1 in the autonegotiation enable bit
[12] in the Control register and a logic 1 on the ANEN
input pin is required to enable auto-negotiation.

When auto-negotiation is disabled, bit [15] of the
Auxiliary mode register returns a 0. At all other times, it
returns a 1.

■ 0 = speed is manually forced

■ 1 = auto-negotiation activated

[4] repeater mode indication This bit returns the same value as the RPTR input line.

■ 0 = the ASIC is in DTE mode

■ 1 = the ASIC is in repeater mode

[5:7] revision These read-only bits return the revision number of the
ASIC. The current revision is labeled 001.

[8] polarity error This bit reflects the polarity status of the receive channel
pair. The ASIC is capable of automatically inverting the
polarity of the receive channel. No data errors are
reported to indicate that the automatic polarity inversion
is occurring. Instead, this bit returns a 1 whenever the
polarity of the channel is inverted.

■ 0 = channel polarity correct

■ 1 = channel polarity inverted

 (1 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 159
100BASE-X
Auxiliary Control

The 100BASE-X Auxiliary Control register is read/write.

[9] EOF error This bit returns a one when the end of frame (EOF)
sequence is improperly received.

This bit is valid during 10BASE-T operation only.

[10] Manchester code error This bit returns a one when a Manchester code violation
is received.

This bit is valid during 10BASE-T operation only.

10BASE-T Auxiliary Error and General Status Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

100BASE-X Auxiliary Control Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

100BASE-X Auxiliary Control Bit Descriptions

Bit Name Description

[1] MII out-of-band enable This bit controls the MII out-of-band mechanism within
the MII receive logic.

■ 0 = disabled

■ 1 = enabled

[2] extended MII FIFO
enabled

This bit controls the extended MII FIFO mechanism.

■ 0 = disabled

■ 1 = enabled

[5] FEF enable This bit controls the Far End Fault (FEF) mechanism that is
associated with 100BASE-FX operation.

■ 0 = disabled

■ 1 = enabled

[6] baseline wander
correction disable

This bit, when set to 1, disables the baseline wander
correction circuit. The NIC corrects the baseline wander on
the receive data signal when this bit is cleared.

[7] bypass receive
symbol alignment

This bit, when set to one, bypasses the receive symbol
alignment.

When used in conjunction with the bypass 4B5B
encoder/decoder in this register, unaligned 5B codes are
placed directly on the RXER and RXD [3:0] pins.

[8] bypass MLT3
encoder/decoder

This bit, when set to one, bypasses the MLT3 encoder
and decoder. NRZ data is transmitted and received on the
cable. When set to zero, this bit enables the MLT3 encoder.

[9] bypass
scrambler/descrambler

This bit, when set to one, disables the stream cipher
function. When set to zero, this bit enables the stream
cipher function.

 (1 of 2)

160 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
100BASE-X
Auxiliary Status

[10] bypass 4B5B
encoder/decoder

This bit, when set to one, bypasses the 4B5B encoder
and decoder.

The transmitter sends 5B codes from the TXER and
TXD [3:0] pins directly to the scrambler. TXEN must be
active and frame encapsulation (insertion of J/K and T/R
codes) are not performed.

The receiver places descrambled and aligned 5B codes
onto the RXER and RXD [3:0] pins. CRS is still asserted
when a valid frame is received.

[12] CIM disable This bit, when set to 1, disables the carrier integrity
monitor for this port. When set to 0, the CIM function is
enabled.

The default value of this bit after reset is determined by
the CIM mode select input , if RPTR=1. If RPTR=0 during
reset, the CIM function is disabled by default.

[13] transmit disable This bit, when set to one, disables the transmitter.
The transmitter output (TD±) is forced into a high
impedance state.

100BASE-X Auxiliary Control Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

100BASE-X Auxiliary Status Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

100BASE-X Auxiliary Status Bit Descriptions

Bit Name Description

[0] MLT3 code error
detected

This bit returns a 1 if an MLT3 coding error is detected in
the receive data stream since the last time this register
was read; otherwise, it returns a 0.

[1] lock error detected This bit returns a 1 if the descrambler has lost lock since
the last time this register was read; otherwise, it returns
a 0.

[2] transmit error detected This bit returns a 1 if a packet is received with a transmit
error code since the last time this register was read;
otherwise, it returns a 0.

[3] receive error detected This bit returns a 1 if a packet was received with an invalid
code since the last time this register was read; otherwise,
it returns a 0.

[4] bad ESD detected This bit returns a 1 if a bad end of stream error has been
detected since the last time the register was read;
otherwise, it returns a 0.

[5] false carrier detected This bit returns a 1 if a false carrier is detected since
the last time the register was read; otherwise, it returns
a zero.

[6] disconnect state This bit returns a 1 when the link is unstable and the
carrier integrity monitor has isolated the port; otherwise, it
returns a 0.

This bit is qualified by 100BASE-X operation.

 (1 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 161
100BASE-X
Disconnect Counter

The 100BASE-X Disconnect Counter register increments each time the carrier
integrity monitor within the NIC enters the link unstable state. This register
automatically clears itself when read.

When the counter reaches its maximum value, FFh, it stops counting disconnects
until cleared.

100BASE-X False
Carrier Sense Counter

The 100BASE-X False Sense Counter register increments each time the NIC
detects a false carrier on the receive input. This register automatically clears itself
when read.

When the counter reaches it maximum value (FFh), it stops counting false carrier
sense errors until cleared.

100BASE-X Receive
Error Counter

The 100BASE-X Receive Error Counter register increments each time the NIC
receives a noncollision packet containing at least one receive error. This counter
automatically clears itself when read.

[7] remote fault This bit returns a 1 while its link partner is signaling a
far-end fault condition; otherwise, it returns a 0.

[8] current 100BASE-X
link status

This bit returns a 1 when the 100BASE-X link status is
good; otherwise, it returns a 0.

[9] locked This bit returns a 1 when the descrambler is locked to the
incoming data stream; otherwise, it returns a zero.

[10] FX mode This bit returns a 1 when SD± input pins are driven with a
valid differential signal level. It returns a 0 when both SD±
and SD− are simultaneously driven low.

100BASE-X Auxiliary Status Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

100BASE-X Disconnect Counter Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

100BASE-X Disconnect Counter Bit Descriptions

Bit Name Description

[7:0] disconnect counter These bits indicate the number of disconnects since the
last read.

100BASE-X False Carrier Sense Counter Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

100BASE-X False Carrier Sense Counter Bit Descriptions

Bit Name Description

[7:0] false carrier sense
counter

These bits indicate the number of false carrier sense
events since the last read.

162 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
When the counter reaches its maximum value (FFFFh), it stops counting receive
errors until cleared.

Auto-Negotiation
Advertise

The Auto-Negotiation Advertise register controls which capabilities the NIC is
allowed to advertise to the link partner.

100BASE-X Receive Error Counter Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100BASE-X Receive Error Counter Bit Descriptions

Bit Name Description

[7:0] receive error counter These bits indicate the number of noncollision packets
with receive errors since the last read.

Auto-Negotiation Advertise Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Auto-Negotiation Advertise Bit Descriptions

Bit Name Description

[4:0] advertise selector field These read-only bits contain the fixed value 00001,
indicating that the chip belongs to the IEEE 802.3 class of
PHY transceivers.

[5] advertise 10BASE-T This bit, when set to one, transmits 10BASE-T
functionality to the link partner. When set to zero,
10BASE-T functionality is not transmitted.

The default value reflects the abilities of the NIC. Resetting
the NIC restores the default value.

Reading the register returns either the value that was last
written to the bit or the default value (if no write has been
completed since the last reset).

[6] advertise 10BASE-T FDX This bit, when set to one, transmits 10BASE-T full-duplex
functionality to the link partner. When set to zero,
10BASE-T full-duplex functionality is not transmitted.

The default value reflects the abilities of the NIC. Resetting
the NIC restores the default value.

Reading the register returns either the value that was last
written to the bit or the default value (if no write has been
completed since the last reset).

[7] advertise 100BASE-X This bit, when set to one, transmits 100BASE-X
functionality to the link partner. When set to zero,
100BASE-X functionality is not transmitted.

The default value reflects the abilities of the NIC. Resetting
the NIC restores the default value.

Reading the register returns either the value that was last
written to the bit or the default value (if no write has been
completed since the last reset).

 (1 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 163
Auto-Negotiation
Expansion

The Auto-Negotiation Expansion register contains bits pertaining to expanded
auto-negotiation functions.

[8] advertise 100BASE-X FDX This bit, when set to one, transmits 100BASE-X full-duplex
functionality to the link partner. When set to zero,
100BASE-X full-duplex functionality is not transmitted.

The default value reflects the abilities of the NIC. Resetting
the NIC restores the default value.

Reading the register returns either the value that was last
written to the bit or the default value (if no write has been
completed since the last reset).

[9] advertise 100BASE-T4 This bit, when set to one, transmits 100BASE-T4
functionality to the link partner. When set to zero,
100BASE-T4 functionality is not transmitted.

The default value reflects the abilities of the NIC. Resetting
the NIC restores the default value.

Reading the register returns either the value that was last
written to the bit or the default value (if no write has been
completed since the last reset).

[10] advertise pause operation This bit, when set to one, indicates the availability of
additional DTE capability when full-duplex operation is
in use.

The use of this bit is orthogonal to the negotiated data
rate, medium, or link technology.

[13] remote fault This bit, when set to one, causes a remote fault indicator
to be sent to the link partner during auto-negotiation.
When set to zero, this bit clears the remote fault
transmission. Resetting the NIC also clears the remote
fault transmission.

This bit returns the value that was last written to it. If no
write has been complete since the last chip reset, a zero
is returned.

[15] next page This bit must always be written 0.

Auto-Negotiation Advertise Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Auto-Negotiation Expansion Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0

Auto-Negotiation Expansion Bit Descriptions

Bit Name Description

[0] link partner
auto-negotiation able

This read-only bit returns a one when the link partner is
known to have auto-negotiation capability.

The bit returns a zero before any auto-negotiation
information is exchanged or if the link partner does not
comply with the IEEE auto-negotiation specification.

[1] page received This read-only bit is latched high when a new link code
word is received from the link partner, checked, and
acknowledged. It remains high until the register is read or
until the chip is reset.

164 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
Auxiliary Control/Status

[2] next page able This read-only bit always returns 0.

[3] link partner next page
able

This read-only bit returns a one when the link partner has
next page capabilities.

[4] parallel detection fault This read-only bit is latched high when a parallel detection
fault occurs in the auto-negotiation state machine. For
more details, see the IEEE 802.3 specification.

This bit is reset to zero after the register is read, or when
the NIC is reset.

Auto-Negotiation Expansion Bit Descriptions (continued)

Bit Name Description

Auxiliary Control/Status Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

Auxiliary Control/Status Bit Descriptions

Bit Name Description

[0] full-duplex indication This read-only bit, when set to one, indicates that
full-duplex operation is active. When set to zero,
full-duplex operation is not active.

[1] speed indication This read-only bit returns one when the NIC is in
100BASE-X operation. It returns zero when it is in
10BASE-T operation.

When auto-negotiation exchange is performed, the NIC is
always operating at 10BASE-T speed.

[2] force 100/10 indication This read-only bit returns a one when the speed is forced
to 100BASE-X operation. It returns a zero when one of
the following instances is true:

■ The ANEN pin is low and the F100 pin is low.

■ The auto-negotiation enable bit (12) of the Control
register is set to zero.

In all other instances, either the speed is not forced
(auto-negotiation is enabled) or the speed is forced to
100BASE-X.

[3] auto-negotiation
indicator

This read-only bit indicates whether auto-negotiation has
been enabled or disabled on the NIC.

A combination of a one in the auto-negotiation enable bit
[12] in the Control register and a logic one on the ANEN
input pin is required to enable auto-negotiation.

When auto-negotiation is disabled, this bit returns a 0.

 (1 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 165
Auxiliary Mode

[4:5] edge rate These control bits are used to program the transmit DAC
output edge rate in 100BASE-TX mode.

These bits are logically ANDed with the ER[1:0] input pins
to produce the internal edge-rate controls (Edge_Rate_1
AND ER1, Edge_Rate_0 AND ER0).

■ 00 = 1 ns

■ 01 = 2 ns

■ 10 = 3 ns

■ 11 = 4 ns

[6:7] HSQ:LSQ These bits extend or decrease the squelch levels for
detection of incoming 10BASE-T data packets.

The default squelch levels implemented are those defined
in the IEEE standard. The high- and low-squelch levels are
useful for situations where the IEEE-prescribed levels are
inadequate. The squelch levels are used by the CRS/LNK
block to filter out noise and recognize only valid packet
preambles and link integrity pulses.

Extending the squelch levels allows the NIC to operate
properly over longer cable lengths. Decreasing the squelch
levels may be useful in situations where a high level of
noise is present on the cables. Reading these two bits
returns the value of the squelch levels.

[14] link disable This bit, when set to 1, disables the link integrity state
machines and places the NIC into forced link pass status.
When set to 0, this bit restores the link integrity functions.

Resetting the chip also restores the link integrity functions.

Reading this bit returns the value of the link integrity
disable status.

[15] jabber disable This bit, when set to 1, disables the jabber detect
function, as defined in the IEEE standard.

This function shuts off the transmitter when a
transmission request has exceeded a maximum time limit.

When this bit is set to 0, or when the chip is reset, normal
operation is enabled.

Reading this bit returns the value of the jabber detect
disable status. This bit is implemented in 10BASE-T
mode only.

Auxiliary Control/Status Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Auxiliary Mode Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

166 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS

Auxiliary Multiple PHY

Auxiliary Mode Bit Descriptions

Bit Name Description

[1] block TXEN mode This bit, when set to 1, enables the block TXEN mode.
When this mode is enabled, short IPGs of one, two, three,
or four TXC cycles all result in the insertion of two IDLEs
before the beginning of the next packet’s JK symbols.

[3] link LED disable This bit, when set to one, disables the LINK LED output
pin. When set to zero, the LINK LED output pin is enabled.

[4] activity LED disable This bit, when set to one, disables the XMTLED# and
RCVLED# output pins. When set to zero, the XMTLED#
and RCVLED# output pins are enabled.

Auxiliary Multiple PHY Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Auxiliary Multiple PHY Bit Descriptions

Bit Name Description

[0] RXER code mode ■ 0 = disable RXER code mode

■ 1 = enable RXER code mode

[1] 10Base-T serial mode ■ 0 = disable 10BASE-T serial mode

■ 1 = enable 10BASE-T serial mode

[3] super isolate This bit, when set to one, places the NIC in super isolate
mode. When set to zero, it enables normal operation.

The super isolate mode is similar to the isolate mode. All
MII inputs are ignored and all MII outputs are tri-stated.
Additionally, all link pulses are suppressed and not
transmitted. This allows the NIC to coexist with another
PHY on the same NIC, with only one PHY being activated
at any time.

[4] ability detect This read-only bit returns a one when the
auto-negotiation state machine is in the ability detect
state. This bit returns a zero when the auto-negotiation
state machine is not in the ability detect state.

The ability detect state is entered after the
auto-negotiation process begins. This state is exited
after the first FLP burst or link pulses are detected from
the link partner.

[5] acknowledge detected This read-only bit is latched high when the arbitrator state
machine exits the acknowledge detected state. It remains
high until the auto-negotiation process is restarted or the
NIC is reset.

[6] acknowledge complete This read-only bit returns a one after the acknowledgment
exchange portion of the auto-negotiation process is
complete and the arbitrator state machine has exited the
acknowledge complete state.

It remains this value until the auto-negotiation process is
restarted, a link fault occurs, auto-negotiation is disabled,
or the NIC is reset.

 (1 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 167
Auxiliary
Status Summary

The Auxiliary Status Summary register contains redundant status bits found
elsewhere within the MII register space.

[7] auto-negotiation
complete

This read-only bit returns a one after the auto-negotiation
process is complete. It remains this value until the
auto-negotiation process is restarted.

This bit returns a zero if the auto-negotiation process is
still in progress or if auto-negotiation is disabled.

[8] restart auto-negotiation This self-clearing bit, when set to one, restarts
auto-negotiation, regardless of the current status of the
state machine.

Because this bit is self-clearing after only a few cycles, it
always returns a zero when read. The operation of this bit
is identical to the restart auto-negotiation bit (9) in the
Control register.

Auto-negotiation must be enabled for this bit to work.

[11] HCD_10BASE-T This read-only bit reports that the highest common
denominator (HCD) result of the auto-negotiation process
is 10BASE-T.

[12] HCD_10BASE-T_FDX This read-only bit reports that the highest common
denominator (HCD) result of the auto-negotiation process
is 10BASE-T full-duplex.

[13] HCD_TX This read-only bit reports that the highest common
denominator (HCD) result of the auto-negotiation process
is 100BASE-TX.

[14] HCD_T4 This read-only bit reports that the highest common
denominator (HCD) result of the auto-negotiation process
is 100BASE-T4.

15 HCD_TX_FDX This read-only bit reports that the highest common
denominator (HCD) result of the auto-negotiation process
is 100BASE-TX full-duplex.

Auxiliary Multiple PHY Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Auxiliary Status Summary Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Auxiliary Status Summary Bit Descriptions

Bit Name Description

[0] jabber detect This bit returns a one if a jabber condition has been
detected. After the bit is read once, or if the NIC is reset,
it returns a zero.

This bit is implemented in 10BASE-T operation only.

 (1 of 3)

168 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
[1] auto-negotiation enabled Auto-negotiation can be disabled by one of two methods:
hardware or software control.

If the ANEN input pin is driven to a logic zero,
auto-negotiation is disabled by hardware control. If the
auto-negotiation enabled bit is written with a value of
zero, auto-negotiation is disabled by software control.

When auto-negotiation is disabled by software control,
writing a one to this bit or resetting the NIC enables
auto-negotiation.

Writing to this bit has no effect when auto-negotiation is
disabled by hardware control. When read, this bit returns
the value most recently written to it, or a one if it has not
been written to since the last NIC reset.

[2] link status This bit returns a one when the link state machine is in
link pass state, indicating that a valid link has been
established. If a link has not been established, this bit
returns a zero.

When a link failure occurs after the link pass state has
been entered, the link status bit latches at zero and
remains so until the bit is read. After the bit is read, it
becomes a one when the link pass state is entered again.

[3] speed indication This read-only bit, when set to one, indicates 100BASE-X
operation. When set to zero, this bit indicates 10BASE-T
operation.

When auto-negotiation exchange is performed, the NIC is
always operating at 10BASE-T speed.

[4] link partner
auto-negotiation able

This bit returns a one when the link partner is known to
have auto-negotiation capability. The bit returns a zero
before any auto-negotiation information is exchanged or
if the link partner does not comply with the IEEE
auto-negotiation specification.

[5] link partner page
received

This bit returns a one when a new page has been
received.

[6] link partner remote fault This bit returns a one while its link partner is signaling a
far-end fault condition; otherwise, it returns a zero.

[7] auto-negotiation parallel
detection fault

This bit returns a one when an auto-negotiation parallel
detection fault is detected; otherwise, it returns a zero.

[8:10] auto-negotiation HCD This bit indicates the highest common denominator (HCD)
discovered with auto-negotiation.

■ 000 = No highest common denominator

■ 001 = 10BASE-T

■ 010 = 10BASE-T full-duplex

■ 011 = 100BASE-TX

■ 100 = 100BASE-T4

■ 101 = 100BASE-TX full-duplex

■ 11x = Undefined

[11] auto-negotiation pause This bit, when set to one, indicates the availability of
additional DTE capability when full-duplex operation is in
use. The use of this bit is orthogonal to the negotiated
data rate, medium, or link technology.

Auxiliary Status Summary Bit Descriptions (continued)

Bit Name Description

 (2 of 3)

40-0579-xxx ASIC Auto-Negotiation Registers 169
Control The Control register contains control bits to reset, restart, and configure
auto-negotiation.

[12] auto-negotiation ability
detect

This bit, when set to one, indicates auto-negotiation for
link partner ability.

[13] auto-negotiation
acknowledge detected

This bit, when set to one, indicates that an
auto-negotiation acknowledge state is detected.

[14] auto-negotiation
complete acknowledge

This bit, when set to one, indicates a completed
acknowledge state.

[15] auto-negotiation
complete

This bit returns a one if the auto-negotiation process
is complete and the contents of the Auto-Negotiation
Advertise, Link Partner Ability, and Auto-Negotiation
Expansion registers are valid. The bit returns a zero if
the auto-negotiation process is not complete.

Auxiliary Status Summary Bit Descriptions (continued)

Bit Name Description

 (3 of 3)

Control Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0

Control Bit Descriptions

Bit Name Description

[7] collision test enable This bit, when set to one, enables the collision test mode.
When set to zero, it disables the collision test mode.

Resetting the NIC also disables the collision test mode.
This bit should only be set while the NIC is in loopback
test mode. The COL pin may be tested by activating
the Collision Test mode. While the NIC is in this mode,
asserting TXEN causes the COL output to go high within
512 bit times. Deasserting TXEN causes the COL output to
go low within 4 bit times.

[8] duplex mode When this bit is set to one and the autonegotiation enable
bit [12] in this register is set to zero, the NIC is forced to
full-duplex mode. When set to zero or when the NIC is
reset, the NIC is forced to half-duplex mode.

The default setting is half-duplex mode.

[9] restart auto-negotiation This bit, when set to one, restarts the auto-negotiation
process, regardless of the current status of the
auto-negotiation state machine. When set to zero,
this bit has no effect.

For this bit to have an effect, auto-negotiation must be
enabled. Because this bit is self-clearing after only a few
cycles, it always returns a zero when read. The operation
of this bit is identical to that of bit [9] in the Auxiliary
Multiple PHY register.

 (1 of 2)

170 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
[10] isolate This bit, when set to one, isolates the NIC from its Media
Independent Interface (MII). All MII outputs are tri-stated
and are ignored.

When set to zero, this bit clears the isolate mode because
the MII management interface is still active. The isolate
mode can also be cleared by resetting the NIC.

When this bit is read and the block is in isolate mode, it
returns a one. When this bit is read and the block is not in
isolate mode, it returns a zero.

[11] power down This bit always returns a zero because the ASIC does not
implement a low-power mode.

[12] autonegotiation enable Auto-negotiation can be disabled by one of two methods:
hardware or software control.

If the ANEN input pin is driven to a logic zero,
auto-negotiation is disabled by hardware control. If the
auto-negotiation enable bit is written with a value of zero,
auto-negotiation is disabled by software control.

When auto-negotiation is disabled by software control,
writing a one to this bit or resetting the chip enables
auto-negotiation.

Writing to this bit has no effect when auto-negotiation is
disabled by hardware control. When read, this bit returns
the value most recently written to it, or a one if it has not
been written to since the last chip reset.

[13] forced speed selection This bit, when set to one, forces 100BASE-X operation
if auto-negotiation is disabled by software control.
When set to zero, this bit forces 10BASE-T operation
if auto-negotiation is disabled by software control.

This bit has no effect on the speed selection if
auto-negotiation is enabled (both the auto-negotiation
pin and bit are enabled) or disabled (auto-negotiation pin
is pulled low) by hardware control.

When this bit is read, it returns the value of the
software-controlled forced speed selection only.

[14] loopback This bit, when set to one, enables loopback mode. When
set to zero, it indicates normal operation. The loopback
mode can also be cleared by resetting the NIC.

When this bit is read, it returns a one when the chip is in
software-controlled loopback mode; otherwise, it returns
a zero.

[15] reset This bit, when set to one using an MII write operation,
resets the PHY. Writing a zero to this bit has no effect.

This bit clears itself after the reset process is complete and
does not need to be cleared using a second MII write.

Writes to other bits in the Control register have no effect
until the reset process is completed, which requires
approximately 1 µs. Because this bit is self-clearing, after
a few cycles from a write operation, it returns a zero
when read.

Control Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

40-0579-xxx ASIC Auto-Negotiation Registers 171
Interrupt

Link Partner Ability The Link Partner Ability register returns the advertised abilities received from the
link partner during auto-negotiation.

Interrupt Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

Interrupt Bit Descriptions

Bit Name Description

[0] INTR status This read-only bit represents the status of the INTR# input.
A 1 indicates that the interrupt mask is off and that one or
more of the change bits are set. Reading this register
clears this bit.

[1] LINK change This read-only bit, when set to 1, indicates a change of
link status since the last register read. Reading this register
clears this bit.

[2] SPD change This read-only bit, when set to 1, indicates a change of
speed status since the last register read. Reading this
register clears this bit.

[3] FDX change This read-only bit, when set to 1, indicates a change of
duplex status since the last register read. Reading this
register clears this bit.

[8] INTR mask When this bit is set, no interrupts are generated,
regardless of the state of the other MASK bits.

[9] LINK mask When this bit is set, changes in link status do not generate
an interrupt.

[10] SPD mask When this bit is set, changes in operating speed do not
generate an interrupt.

[11] FDX mask WHen this bit is set, changes in duplex mode do not
generate an interrupt.

[14] INTR enable This bit, when set, enables interrupt mode. This bit and
the FDX LED enable bit [15] are exclusive; only one may be
set at a time.

When interrupt mode is enabled, XMTLED# becomes
INTR# and RCVLED# becomes ACTLED#.

[15] FDX LED enable This bit, when set, enables full-duplex LED mode. This bit
and the INTR enable bit [14] are exclusive; only one may
be set at a time.

Link Partner Ability Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Link Partner Ability Bit Descriptions

Bit Name Description

[0:4] link partner selector field These read-only bits reflect the value of the link partner’s
selector field. These bits are cleared anytime
auto-negotiation is restarted or when the NIC is reset.

 (1 of 2)

172 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
PHYID High The PHYID High register contains PHY identification data (also known as OUI—
organizationally unique identifier—data).

PHYID Low The PHYID Low register contains PHY identification data (also known as OUI—
organizationally unique identifier—data).

[5] LP advertise 10BASE-T This read-only bit, when set to one, indicates that the link
partner is capable of performing 10BASE-T operation. This
bit is cleared anytime auto-negotiation is restarted or
when the NIC is reset.

[6] LP advertise 10BASE-T
FDX

This read-only bit, when set to one, indicates that the link
partner is capable of performing 10BASE-T full-duplex
operation. This bit is cleared anytime auto-negotiation is
restarted or when the NIC is reset.

[7] LP advertise 100BASE-X This read-only bit, when set to one, indicates that the link
partner is capable of performing 100BASE-X operation.
This bit is cleared anytime auto-negotiation is restarted or
when the NIC is reset.

[8] LP advertise 100BASE-X
FDX

This read-only bit, when set to one, indicates that the link
partner is capable of performing 100BASE-X full-duplex
operation. This bit is cleared anytime auto-negotiation is
restarted or when the NIC is reset.

[9] LP advertise 100BASE-T4 This read-only bit, when set to one, indicates that the link
partner is capable of performing 100BASE-T4 operation.
This bit is cleared anytime auto-negotiation is restarted or
when the NIC is reset.

[10] LP advertise pause This read-only bit, when set to one, indicates that the link
partner is capable of pause operation.

[13] LP remote fault This read-only bit returns a one when the link partner
signals that a remote fault has occurred. The NIC copies
the value to this register for the MAC layer to act upon.

[14] LP acknowledge This read-only bit indicates that a device has successfully
received the link partner’s link code word.

[15] LP next page This read-only bit is the link partner next page bit.

Link Partner Ability Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

PHYID High Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PHYID High Bit Descriptions

Bit Name Description

[0:15] Address 00010:ID MSBs These are the most-significant bits of the PHY.

PHYID High [15:0] = OUI [21:6] (OUI bits [23:22] are not
represented.)

PHYID Low Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

40-0579-xxx ASIC Auto-Negotiation Registers 173

Status The Status register contains various status and capabilities bits.

PHYID Low Bit Descriptions

Bit Name Description

[0:15] Address 00011:ID LSBs These are the 16 least-significant bits of the PHY.

PHYID Low [15:10] = OUI [5:0]). These bits are the OUI
least-significant bits.

PHYID Low [9:4] (Model [5:0]). These bits are the vendor
model number.

PHYID Low [3:0] (Revision [3:0]). These bits are the model
revision number.

Status Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

Status Bit Descriptions

Bit Name Description

[0] extended capability The NIC supports extended capability registers and returns
a one when this read-only bit is read.

[1] jabber detect This bit returns a one if a jabber condition has been
detected. After the bit is read once, or if the NIC is reset,
it returns a zero.

This bit is implemented in 10BASE-T operation only.

[2] link status This read-only bit returns a one when the link state
machine is in link pass state, indicating that a valid link has
been established. If a link has not been established, this
bit returns a zero.

When a link failure occurs after the link pass state has
been entered, the link status bit latches at zero and
remains so until the bit is read. After the bit is read, it
becomes a one when the link pass state is entered again.

[3] auto-negotiation
capability

This read-only bit returns a one when read, regardless of
whether or not the auto-negotiation function has been
disabled.

[4] remote fault This read-only bit returns a one if the link partner has
detected a remote fault condition. When a remote fault
occurs, the bit latches at one and remains at one until the
register is read and the remote fault condition has been
cleared.

This bit returns a zero if a remote fault condition has not
been detected.

[5] auto-negotiation
complete

This bit returns a one if the auto-negotiation process is
complete and the contents of the Auto-Negotiation
Advertise, Link Partner Ability, and Auto-Negotiation
Expansion registers are valid.

The bit returns a zero if the auto-negotiation process is
not complete.

174 CHAPTER 11: AUTO-NEGOTIATION AND MII REGISTERS
[6] MF preamble suppression This bit, when set to one, allows subsequent MII
management frames to be accepted with or without the
standard preamble pattern.

A one-time, two-cycle delay is required after this bit is set
before the start of the next MII management frame (ST
field) can begin. No added delay is required between
frames in any future transmissions.

When this bit is set to zero, a preamble is always required.

[11] 10BASE-T capability This read-only bit returns a one when read, indicating that
the NIC is capable of 10BASE-T half-duplex operation.

[12] 10BASE-T FDX capability This read-only bit returns a one when read, indicating that
the NIC is capable of 10BASE-T full-duplex operation.

[13] 100BASE-TX capability This read-only bit returns a one when read, indicating that
the NIC is capable of 100BASE-TX half-duplex operation.

[14] 100BASE-TX FDX
capability

This read-only bit returns a one when read, indicating that
the NIC is capable of 100BASE-TX full-duplex operation.

[15] 100BASE-T4 capability This read-only bit always returns a 0.

Status Bit Descriptions (continued)

Bit Name Description

12
 OTHER REGISTERS
This chapter describes the following registers:

■ BiosRomAddr

■ BiosRomData

■ ConfigAddress

■ ConfigData

■ DebugControl

■ DebugData

■ FifoDiagnostic

■ Media

■ NetworkDiagnostic

■ PhysicalMgmt

■ PowerMgmtCtrl

■ ResetOptions

■ SosBits

■ Timers and Counters

■ VlanEtherType

BiosRomAddr

Together with the BiosRomData register, the BiosRomAddr register supports direct
access to the BIOS ROM in I/O or memory space.

BiosRomAddr holds the address to be used for I/O accesses of the BIOS ROM
through the BiosRomData port. To access a byte in the BIOS ROM, write the
address of the byte to be accessed into BiosRomAddr. Then issue either a read or a
write to the BiosRomData register. For reads, the ROM value will be returned by
the read instruction. For writes, the new value will be programmed into the ROM
upon completion of the write instruction.

Synopsis Holds the address for direct I/O accesses of the BIOS ROM.

Type Read/write

Size 32 bits

Window 0

Offset 4

176 CHAPTER 12: OTHER REGISTERS
The Atmel PEROM devices supported by the NIC must be programmed in 64-byte
pages. See the Atmel Flash Memory Device Data Book for information on
programming PEROMs.

BiosRomData

Together with the BiosRomAddr register, the BiosRomData register supports direct
access to the BIOS ROM in I/O or memory space.

BiosRomData is the data port for performing byte accesses of the BIOS ROM. A
read of BiosRomData returns the ROM byte value from the location specified by
the BiosRomAddr register. A write to BiosRomData causes the write data to be
programmed into the ROM location specified by BiosRomAddr.

The Atmel PEROM devices supported by the NIC must be programmed in 64-byte
pages. See the Atmel Flash Memory Device Data Book for information on
programming PEROMs.

ConfigAddress

ConfigAddress, in conjuction with the ConfigData register, provides a method to
access the PCI configuration space through I/O accesses. This register can be
written to a value of 0 to 256 directly. A subsequent read from the ConfigData
register results in the data from that location. Similarily, a write to the ConfigData
register writes that data into the PCI configuration location addressed by
ConfigAddress.

BiosRomAddr Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Synopsis Implements the data port for direct I/O accesses of the BIOS ROM.

Type Read/write

Size 8 bits

Window 0

Offset 8

BiosRomData Register Format

7 6 5 4 3 2 1 0

Synopsis Provides an I/O back door into the PCI configuration space..

Type Read/write

Size 8 bits

Offset 44

ConfigAddress Register Format

7 6 5 4 3 2 1 0

ConfigData 177
ConfigData

The ConfigData registeris an 8-bit, read/write data register that is used to access
the PCI configuration location addressed by the ConfigAddress register.

DebugControl

DebugControl determines which sets of diagnostic data are visible in the
DebugData register.

DebugControl is cleared by a reset.

DebugData

DebugData is a 32-bit read-only diagnostic register for viewing the internal state
of the ASIC. The debugSelect field in DebugControl determines which particular
set of signals is visible in DebugData.

This register is intended for 3Com use only.

Synopsis PCI configuration data register.

Type Read/write

Size 8 bits

Offset 48

Synopsis Diagnostics control register.

Type Read/write

Size 16 bits

Offset 74

DebugControl Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

DebugControl Bit Descriptions

Bit Name Description

[0:4] debugSelect This read/write field sets which set of data is visible in the
DebugData register.

This field is ignored if the debugOverride bit is zero.

[15] debugOverride When this read/write bit is set, the value in the
debugSelect field overrides the select input pins on the
ASIC to determine what data set is output on the physical
ASIC debug pins and visible in DebugData.

Synopsis Diagnostics read-back register.

Type Read-only

Size 32 bits

Offset 70

178 CHAPTER 12: OTHER REGISTERS
FifoDiagnostic

The bits in the FifoDiagnostic register provide various indications of transmit and
receive FIFO failures.

Bits [8:0] control the built-in self-test (BIST) for the transmit and receive FIFO
RAMs. These bits are used for IC-level testing only; driver software must always
write zeros to these bits.

Synopsis Provides diagnostic read access to the packet-buffering (FIFO) logic.

Type Read/write

Size 16 bits

Window 4

Offset 4

FifoDiagnostic Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

FifoDiagnostic Bit Descriptions

Bit Name Description

[0] txBistEnable This read/write bit enables the transmit FIFO BIST.

[1] txBistControl This read/write bit sets the transmit FIFO BIST mode.

[2] txBistFlag This read-only bit indicates the result of the transmit
FIFO BIST.

[3] txBistComplete This read-only bit indicates that the transmit FIFO BIST
is complete.

[4] rxBistEnable This read/write bit enables the receive FIFO BIST.

[5] rxBistControl This read/write bit sets the receive FIFO BIST mode.

[6] rxBistFlag This read-only bit indicates the result of the receive
FIFO BIST.

[7] rxBistComplete This read-only bit indicates that the receive FIFO BIST
is complete.

[8] smbPMEMask This read/write bit, when set, blocks a PME event from
going onto the PCI bus. The default is 0.

[9] keepRxOverrun This read/write bit determines how the NIC handles
receive overrun packets. The default is zero, which causes
the NIC to discard all overrun packets.

Setting this bit causes the NIC to keep and make visible all
overrun packets that have been made visible to the host,
so that they can be inspected for diagnostic purposes.

[11] rxFull This read-only bit is set when the receive FIFO is full.

This bit does not in itself indicate an overrun condition.
However, if data is received while this bit is set, an overrun
will occur.

This bit is informational only. This bit is cleared as soon as
the receive FIFO is no longer full.

 (1 of 2)

Media 179
Media

MacControl

The MacControl register provides for setting of MAC-specific parameters. It is
cleared upon reset.

[15] receiving This read-only bit is set whenever the NIC is receiving
a packet into the receive FIFO. No particular action is
expected on the part of the host based on the state of
this bit.

FifoDiagnostic Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Allows control of parameters related to Media Access Control.

Type Read/write

Size 16 bits

Window 3

Offset 6

MacControl Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

MacControl Bit Descriptions

Bit Name Description

[0] deferExtendEnable Setting this bit enables the special deference mode,
in which the time the transmitter defers after a
transmission is extended to allow other stations
collision-free access to the medium.

Clearing this bit causes the NIC to use standard IEEE 802.3
deference rules (except that values are scaled when the
NIC is operating at 100 Mbps).

[4:1] deferTimerSelect This field is used to select the amount of time, in addition
to the standard Inter-Frame Space (IFS) period, to defer
when the NIC is operating in the special deference modes.
The values and defer times are:

■ 0 = Standard IFS + 0 bit times

■ 1 = Standard IFS + 16 bit times

■ 2 = Standard IFS + 32 bit times

■ 3 = Standard IFS + 64 bit times

■ 4 = Standard IFS + 96 bit times

■ 5 = Standard IFS + 128 bit times

■ 6 = Standard IFS + 160 bit times

■ 7 = Standard IFS + 192 bit times

■ 8 = Standard IFS + 224 bit times

■ 9 = Standard IFS + 256 bit times

 (1 of 3)

180 CHAPTER 12: OTHER REGISTERS
■ A = Standard IFS + 288 bit times

■ B = Standard IFS + 320 bit times

■ C = Standard IFS + 352 bit times

■ D = Standard IFS + 384 bit times

■ E = Standard IFS + 416 bit times

■ F = Standard IFS + 448 bit times

When the deferExtendEnable bit is clear, the special
deference modes are disabled, and the value of
deferTimerSelect is irrelevant.

[5] fullDuplexEnable Setting this bit configures the NIC to communicate with
the hub or switch in a full-duplex manner. Specifically, it
disables transmitter deference to receive traffic, allowing
simultaneous receive and transmit traffic.

Setting this bit has the side effect of disabling CarrierLost
statistics collection, because full-duplex operation requires
carrier sense to be masked to the transmitter.

Software must issue TxReset and RxReset commands after
changing the value of this bit.

For information on programming fullDuplexEnable, see
“Setting the Duplex Mode” in Chapter 4.

[6] allowLargePackets This bit determines the packet size at which the
oversizedFrame error is generated for receive packets.

The minimum packet sizes at which an oversizedFrame
error will be flagged are:

■ allowLargePackets value 0 = 1519 minimum

■ allowLargePackets value 1 = 4495* minimum

*This value was calculated by taking the maximum FDDI
frame size, 4500 bytes, and subtracting bytes for fields
that have no Ethernet equivalent.

The packet size includes the destination and source
addresses, the type/length field, and the FCS field.

[7] extendAfterCollision This bit determines the extended deference mode.

■ 0 = “Old-style” extended deference Deference
extension occurs after all transmissions, including
collisions.

■ 1 = Deference extension occurs only after a collision,
and only when this station was the last to transmit
a packet.

[8] flowControlEnable Flow control enable.

■ 0 = Default. Treat all incoming packets normally.

■ 1 = Flow control enabled. Act upon incoming flow
control (PAUSE) packets.

Note: This bit should not be set unless fullDuplexEnable is
also set.

MacControl Bit Descriptions (continued)

Bit Name Description

 (2 of 3)

Media 181
MediaOptions

The MediaOptions register shows what physical media connections are available in
the NIC. This register is read in from EEPROM location 19 after a reset. It is cleared
upon reset.

Some bits in the MediaOptions register represent media types that are not
supported on 3C90xC NIC. These are noted in the MediaOptions Bit Descriptions
table.

[9] vltEnable 3Com-proprietary VLAN tagging (VLT) enable.

■ 0 = Default. Treat incoming packets as normal
IEEE 802.3 frame format.

■ 1 = Enable VLT. Interpret the first four bytes of all
incoming packets as the VLT field. Packets are received
subject to the value set in the VlanMask register.

[10] vlanOversizeEn This bit, when set, allows IEEE 802.1Q frames to not be
flagged as an oversizeFrame in the UpPacketStatus
register if its packet size is less than or equal to the value
in the MaxPktSize register, plus four.

■ 0 = Default. Any frame with a size greater than the
value in the MaxPktSize register is flagged as an
oversizedFrame.

■ 1 = IEEE 802.1Q frame with a size greater than the
value in the MaxPktSize register, plus 4, is flagged as
an oversizedFrame, and non-802.1Q frames with a size
greater than the value in the MaxPktSize register are
flagged as an oversizedFrame.

MacControl Bit Descriptions (continued)

Bit Name Description

 (3 of 3)

Synopsis Provides access to the media options installed on the NIC.

Type Read-only

Size 16 bits

Window 3

Offset 8

MediaOptions Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

MediaOptions Bit Descriptions

Bit Name Description

[0] baseT4available This read-only bit, when set, indicates that a 100BASE-T4
PHY is available on the NIC through the MII.

This bit is not implemented on 3C90xC NIC. It is
programmed to zero.

 (1 of 2)

182 CHAPTER 12: OTHER REGISTERS
MediaStatus

The MediaStatus register provides for the setting of media-specific parameters,
and for the reading of media-specific status indications.

[1] baseTxAvailable This read-only bit, when set, indicates that a 100BASE-TX
PHY is available on the NIC, using the on-chip 100BASE-X
interface.

If an MII-based 100BASE-TX PHY is available on the
NIC (to be used instead of the on-chip 100BASE-X
interface), this bit is zero, and the miiDevice bit in this
register is set.

[2] baseFxAvailable This read-only bit, when set, indicates that a 100BASE-FX
PHY is available on the NIC.

[3] 10bTAvailable This read-only bit, when set, indicates that a 10BASE-T
encoder/decoder and transceiver are available on the NIC.

[4] coaxAvailable This read-only bit, when set, indicates that a 10BASE2
coaxial transceiver is available on the NIC.

This bit is not implemented on the 3C90xC NIC. It is
programmed to zero.

[5] auiAvailable This read-only bit, when set, indicates that a 10 Mbps AUI
connector is available on the NIC.

This bit is not implemented on the 3C90xC NIC. It is
programmed to zero.

[6] miiDevice This read-only bit, when set, indicates that a PHY device is
available through the MII. If the device is a 100BASE-T4
PHY, then the baseT4Available bit in this register is
also set.

[8] 10BaseFL This read-only bit, when set, indicates that a 10BASE-FL
transceiver is available on the NIC.

This bit is not implemented on the 3C90xC NIC. It is
programmed to zero.

MediaOptions Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Allows setting of media-specific parameters and provides
media-specific status.

Type Read/write

Size 16 bits

Window 4

Offset a

MediaStatus Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

Media 183
MediaStatus Bit Descriptions

Bit Name Description

[2] crcStripDisable The host asserts this bit if the receive packet’s CRC is to be
passed to the host as part of the data in the FIFO. The
state of this bit does not affect the NIC’s checking of the
packet’s CRC and its posting of CRC error status. This bit
is cleared by a system reset.

To avoid confusing the FIFO logic, the value of this bit
should only be changed when the receiver is disabled and
the receive FIFO is empty.

[3] enableSqeStats This read/write bit must be set by the host to enable the
SqeErrors statistics register to count SQE errors. This bit
will normally only be set when an external transceiver
across the AUI is used.

[4] collisionDetect This read-only bit provides a real-time indication of the
state of the collisionDetect signal within the ASIC.

[5] carrierSense This read-only bit provides a real-time indication of the
state of the carrierSense signal within the ASIC.

[6] jabberGuardEnable This bit is for use only with the 10 Mbps twisted-pair
transceiver.

When this read/write bit is set by the host, the NIC
automatically shuts down transmissions if it detects that it
is not sending transmission normally. This bit also enables
the automatic reversal of polarity on the receive pair,
if required.

[7] linkBeatEnable The host should set this read/write bit to require that
the NIC detect the presence of the link beat to enable
transmission. When this bit is false, the NIC is able to
transmit packets with or without detecting link beat.

[9] jabberDetect This read-only bit is set whenever the NIC senses that
it has been transmitting without interruption for much
longer than the allowed transmit packet duration.
When in this state, the NIC is disabled from further
transmissions. The TxReset command is required to release
the NIC from the jabber detect state.

[10] polarityReversed This read-only bit indicates that the twisted-pair
transceiver has detected a reversal of polarity on its receive
pair. If jabberGuardEnable is asserted, then the transceiver
automatically corrects the polarity reversal.

[11] linkDetect This read-only bit provides a real-time indication of
the twisted-pair transceiver link status for 10BASE-T,
100BASE-TX, and 100BASE-FX operation.

When the NIC is operating in 10BASE-T mode, this bit
reflects the state of the link beat logic.

For 100BASE-TX or 100BASE-FX operation, this bit reflects
the state of the link monitor process. For all of these
modes, linkDetect is forced on whenever linkBeatEnable
is cleared.

For MII operation, this bit is always set.

[12] txInProg This bit provides a real-time indication that a packet is
being transmitted. This bit is used by drivers during
underrun recovery to delay issuing a TxReset command.

 (1 of 2)

184 CHAPTER 12: OTHER REGISTERS
NetworkDiagnostic

The NetworkDiagnostic register provides diagnostic access to the network
interface logic in the NIC.

The TxReset and RxReset commands must be issued after the value of any of the
loopback bits is changed in the NetworkDiagnostic register or the value of the
fullDuplexEnable bit changes in the MacControl register.

[14] dcConverterEnabled This bit, when set, indicates that the 10BASE2 DC-DC
converter has been enabled with the EnableDcConverter
command.

This bit is not implemented on the 3C90xC NIC. It is
programmed to zero.

[15] auiDisable This read-only bit is asserted whenever any media port
except AUI has been selected.

This bit always reads as a one on the 3C90xC NIC.

MediaStatus Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Provides medium-dependent diagnostic access to the network
interface logic, and a few other miscellaneous functions.

Type Read/write

Size 16 bits

Window 4

Offset 6

NetworkDiagnostic Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NetworkDiagnostic Bit Descriptions

Bit Name Description

[0] testLowVoltageDetector Setting this bit tests the low-voltage detection circuit,
which has the side effect of resetting the NIC. This bit
always returns zero.

[5:1] asicRevision This field reflects the revision level of the ASIC.

This field is equivalent to bits [6:2] in the RevisionId PCI
configuration register.

 (1 of 2)

NetworkDiagnostic 185
Table 20 summarizes the various loopback modes and the required values for the
associated bits in the NetworkDiagnostic, MacControl, and PhysicalMgmt registers.

[6] upperBytesEnable This read/write bit determines whether the upper bits of
the BytesRcvdOk and BytesXmittedOk statistic registers
are included in determining when an updateStatistics
interrupt is generated.

When this bit is clear, as it is after a reset, the chip defaults
to a mode that is compatible with earlier-generation NICs
in which updateStatistics is set whenever bit 15 of
BytesRcvdOk or BytesXmittedOk becomes set.

When this bit is set, bit 15 of the BytesRcvdOk or
BytesXmittedOk register and all four corresponding bits in
the UpperBytesOk register must be set in order to cause
an updateStatistics interrupt.

All drivers should set this bit and read UpperBytesOk after
each read of the BytesRcvdOk and BytesXmittedOk
registers. This reduces the number of updateStatistics
interrupts to a more reasonable level (reducing the
CPU utilization).

[7] statisticsEnabled This read-only bit indicates when the NIC is enabled to
count the various statistical events. The value of this bit is
affected by the StatisticsEnable and StatisticsDisable
commands.

[8] txFatalError This bit is set if a jabber or txUnderrun occurs, indicating
that the transmitter needs to be reset with the TxReset
command.

[9] transmitting This bit is set whenever the NIC is transmitting or waiting
to transmit (deferring).

[10] rxEnabled This read-only bit is set by the RxEnable command and is
cleared by the RxDisable command, RxReset command, or
a system reset.

[11] txEnabled This read-only bit is set by the TxEnable command and is
cleared by the TxDisable command, TxReset command, or
a system reset.

[12] fifoLoopback Setting this bit forces data loopback from the transmit
FIFO directly into the receive FIFO.

When using FIFO loopback mode, it is the software’s
responsibility to ensure that the proper interpacket gap
is inserted between packets, to avoid losing data in the
receive path. To do this, the software must not load more
than one transmit packet into the FIFO at a time.

[13] macLoopback Setting this bit causes the NIC to loop back transmissions
at the output of the media access controller.

[14] endecLoopback This bit, when set, enables PHY loopback.

[15] externalLoopback Setting this bit enables reception of packets transmitted
by the NIC. Address-filtering criteria must also be met for
each packet received.

This is an external loopback and requires a loopback plug.

NetworkDiagnostic Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

186 CHAPTER 12: OTHER REGISTERS
PhysicalMgmt

The PhysicalMgmt register contains control bits for the MII management interface,
power management event generation, and 100BASE-X link test defeat.

Bits [2:0] control the MII management interface. The management interface is
a two-wire serial interface connecting the NIC ASIC and any MII-compliant
PHY devices residing on the NIC.

Driver software operates the management interface by writing and reading bit
patterns that correspond to the physical waveforms required on the interface
signals to this register. For more information on the management interface signal
protocols, refer to the Reconciliation Sublayer and Media Independent Interface
draft supplement to IEEE 802.3.

Table 20 Loopback Modes

Mode fifoLoopback macLoopback endecLoopback externalLoopback
fullDuplex
Enable

cat5LinkTest
Defeat

FIFO 1 0 0 0 x* x

MAC 0 1 0 0 x x

Encoder/decoder 0 0 1 0 x †

“External” 100BASE-X‡ 0 0 0 1 x 1

True “on-wire” external
100BASE-X

0 0 0 0 1 1

External 10BASE-T** 0 0 0 1 x x

External 10BASE2†† 0 0 0 0 1 x

External AUI‡‡ 0 0 0 0 1 x

External MII*** 0 0 0 1 x 0

* x = don’t care.
† 1 for 100BASE-TX/FX; x for others.
‡ Loopback through 100BASE-TX/FX transceiver chip—not a true “on-wire” loopback.
**Requires 10BASE-T loopback plug.
††Requires loopback plug or coax segment.
‡‡Loopback type determined by external AUI device.
***Loopback type controlled by MII device. May need to enable a loopback mode within MII device using the management interface.

Synopsis Provides control over various physical layer functions.

Type Read/write

Size 16 bits

Window 4

Offset 8

PhysicalMgmt Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

PowerMgmtCtrl 187
PowerMgmtCtrl

The PowerMgmtCtrl register is a write-only version of the PowerMgmtCtrl PCI
configuration register. This version helps work around a problem that is found in
pre-ACPI environments. In such systems, the driver (not the operating system) is
required to change the power state by writing to the PowerMgmtCtrl register.
However, the driver is prevented from performing configuration writes by
Windows operating systems when the NIC is in the D0 power state. Mapping the
register here allows the driver to lower the power state.

See the PowerMgmtCtrl register definition in Chapter 3 for a bit description and
more details about accessing this register in I/O memory space.

ResetOptions

The ResetOptions register contains bits that indicate the configuration and test
status of the NIC.

PhysicalMgmt Bit Descriptions

Bit Name Description

[0] mgmtClk The MII management clock. This bit drives the
management clock directly to the PMD devices.

[1] mgmtData The MII management data bit. When the mgmtDir bit in
this register is set, the value written to this bit is driven
onto the MDIO signal. When mgmtDir is cleared, data
being driven by the PMD can be read from this bit.

[2] mgmtDir The MII data direction control bit. Setting this bit causes
the ASIC to drive MDIO with the data bit written into
mgmtData.

[15] cat5LinkTestDefeat Setting this bit defeats the link test function in the
100BASE-X reconciliation layer logic. This bit is for
diagnostic purposes only; software should always write
a zero to this bit.

This bit is implemented in the 3C90xC NIC but has no
function.

Synopsis Write-only version of the PowerMgmtCtrl PCI configuration regsiter.

Type Write-only

Size 16 bits

Offset 7c

Synopsis Provides read access to various configuration and test mode bits.

Type Read/write (some bits read-only)

Size 16 bits

Window 2

Offset c

188 CHAPTER 12: OTHER REGISTERS
ResetOptions Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

ResetOptions Bit Descriptions

Bit Name Description

[2:0] featureSet These read-only bits indicate the NIC’s ability to support
packet scheduling, extended deference, multicast filtering,
and wake-up features.

■ 000 = Motherboard feature set: All advanced features
are enabled except packet scheduling.

■ 001 = Low-cost NIC feature set: All advanced features
are disabled.

■ 010 = Standard NIC feature set: All advanced features
are enabled.

■ 100 = Server NIC feature set: All advanced features
are enabled.

Other combinations are reserved.

[3] smBusDisable This read/write bit, when set, disables the SMBus
interface. The NIC does not respond to any incoming
SMBus cycles.

[4] smBusMode When this read/write bit is set, it indicates that the NIC is
being used in an SMBus signal-level-compatible
application and drives this signal accordingly.

If this bit is not set, the NIC drives I2C signal levels on the
SMBus clock and data lines.

[5] disableAdv100 When this read/write bit is set, the auto-negotiation
function is prevented from advertising 100 Mbps
capability to its link partner.

This bit is not implemented in the 3C90xC NIC. It always
returns zero.

[6] ee16KInstalled This read/write bit, when set, indicates that a 16K-bit
EEPROM device is installed on the NIC. If this bit is not set,
the hardware assumes a 2K or 4K EEPROM device.

[7] debugMode This read/write bit is clear during normal operation. When
set, it indicates that the ASIC’s debug visibility mode is
in effect.

[8] fastAutoNeg This read-only bit is used for simulation only. This bit is not
implemented in the 3C90xC NIC.

[9] fastEE This read-only bit is used for simulation only. When set, it
indicates a special EEPROM speed-up mode to decrease
simulation time.

[10] forcedConfig This read/write bit, when set, places the NIC into forced
configuration mode.

[11] fastReset This read-only bit, when set, places the NIC into a fast
reset mode. This is intended for simulations only.

[12] test100Tx When this read-only bit is set, the ASIC is in a PDT bypass
test mode.

This bit is not implemented in the 3C90xC NIC. It always
returns zero.

 (1 of 2)

SosBits 189
SosBits

The SosBits register shows the state of the NIC’s external SOS pins. This register is
only valid when the device is in the 10BASE-T, 100BASE-TX, or auto-negotiation
mode.

Bits [0:6] correspond to the SOS pins 1 to 7, respectively.

Timers and Counters

Countdown

The Countdown register is a programmable down-counter that can cause the NIC
to generate an interrupt when the counter expires. It is cleared by a reset.

Countdown has two modes of operation, which are selected by the
countdownMode bit in the DmaCtrl register:

■ When countdownMode is zero, Countdown is loaded by the host software
with an initial countdown value. Thereafter, it decrements at a rate determined
by the counterSpeed bit in DmaCtrl. When counterSpeed is clear, the count
rate is once every 3.2 µs. When counterSpeed is set, the count rate is once

[13] test100Rx When this read-only bit is set, the ASIC is in PDR bypass
test mode.

This bit is not implemented in the 3C90xC NIC. It always
returns zero.

ResetOptions Bit Descriptions (continued)

Bit Name Description

 (2 of 2)

Synopsis Reflects the state of the external SOS pins.

Type Read-only

Size 7 bits

Window 1

Offset a

SosBits Register Format

7 6 5 4 3 2 1 0

0

Synopsis Provides a mechanism for the host to cause an interrupt to be
generated by the NIC in a programmable time period.

Type Read/write

Size 16 bits

Offset 36

Countdown Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

190 CHAPTER 12: OTHER REGISTERS
every 320 ns. When Countdown reaches zero, it continues to count, wrapping
to ffffh.

■ When countdownMode is one, Countdown begins counting only when the
dnComplete bit in the IntStatus register becomes set.

Countdown can cause an intRequested interrupt when it counts through zero.
The interrupt is generated if the armCountdown bit in DmaCtrl is set at the time
of the one-to-zero transition.

The armCountdown bit is managed solely by the hardware according to the
following rules:

■ Set when a nonzero value is written to Countdown

■ Cleared when the value zero is written to Countdown, or when Countdown
counts through zero

This means that when the host writes a nonzero value to Countdown, an interrupt
is generated in a corresponding amount of time. By writing a zero value to
Countdown, the host can suppress interrupts.

FreeTimer

The FreeTimer register is a free-running, read-only counter that increments
at precise time intervals so that it can used for timing measurements. The
count interval for FreeTimer is determined by the counterSpeed bit in the
DmaCtrl register.

When counterSpeed is cleared, the count rate is once every 3.2 µs (four byte times
at 10 Mbps). This yields a maximum measurable time interval of 200 ms. When
counterSpeed is set, the count rate is once every 320 ns (four byte times at
100 Mbps), giving a maximum measurable time interval of 20 ms.

FreeTimer is cleared by hardware reset or the GlobalReset command.

RealTimeCnt

Synopsis Provides a free-running counter for general timing purposes.

Type Read-only

Size 16 bits

Offset 34

FreeTimer Register Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Synopsis Provides a real-time counter for download scheduling.

Type Read-only

Size 32 bits

Offset 40

RealTimeCnt Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

Timers and Counters 191
The RealTimeCnt register is a real-time counter that supports the packet download
scheduling function.

RealTimeCnt counts continuously, incrementing every 800 ns (0.8 µs) and
wrapping to zero when it reaches its maximum value. When a transmit packet
is scheduled for download, the download starts when this register is greater than
or equal to the value in the DPD’s scheduleTime field.

RealTimeCnt is loaded with the value in the scheduleTime bit in the Schedule Time
DPD entry when the loadTimeCnt bit is set. This has the side effect of causing the
packet to be downloaded immediately.

RealTimeCnt is cleared by reset.

192 CHAPTER 12: OTHER REGISTERS
Timer

The Timer register contains an 8-bit counter that begins counting from zero upon
the assertion of the interrupt signal. The host can use this function to make
interrupt latency measurements. The counter increments by one every 3.2 µs.
When the counter reaches ffh, it halts. This yields a maximum measurable
interrupt latency of 816 µs.

When Timer is used to measure interrupt latency, it is suggested that Timer be
read as late as possible in the interrupt service routine (just before dispatching to
handle the interrupt reasons flagged in the IntStatus register) in order to include
the fixed overhead of the interrupt handler itself.

To use Timer for general-purpose measurements at driver initialization time,
ensure that the interruptLatch bit in the IntStatus register is clear (a pending
interrupt would prevent the counter from starting), disable system interrupts,
and issue a RequestInterrupt command to start the timer.

VlanEtherType

The value in the VlanEtherType register allows the TCP/IP checksumming hardware
to properly identify IEEE 802.1Q packets and exclude their VLAN information bytes
from the checksum calculation.

On transmit and receive packets, the checksumming hardware compares the
thirteenth and fourteenth bytes with the value in VlanEtherType. A match causes
the hardware to skip over the thirteenth through sixteenth bytes of the packet.

Synopsis Provides a general-purpose timer function.

Type Read-only

Size 8 bits

Offset 1a

Synopsis Supplies the EtherType value used to identify IEEE 802.1Q VLAN
packets.

Type Read/write

Size 16 bits

Window 7

Offset 4

A
 AUTOSELECT PSEUDO CODE
This appendix describes an AutoSelect sequence psuedo code.

AutoSelect Sequence The following psuedo code shows how to implement the NIC autoselect
sequence, as desribed in Chapter 4.

// Definitions

// xcvrSelect The xcvrSelect field in InternalConfig.
// mgmtData The MII mgmt interface data read/write bit in PhysicalMgmt.
// mgmtClk The MII mgmt interface clock bit in PhysicalMgmt.
// autoNegCapable Bit 3 in the MII Status register of an MII device.
// autoNegComplete Bit 5 in the MII Status register of an MII device.
// restartAutoNeg Bit 9 in the MII Control register of an MII device.
// reset Bit 15 in the MII Control register of an MII device.
// AutoNegAdvert The MII register in an auto-negotiation-capable PHY that
// indicates the link speed/full-duplex capabilities of the PHY.
// AutoNegAbility The MII register in an auto-negotiation-capable PHY that
// indicates the link speed/full-duplex capabilities received from
// link partner.
// The next 6 bits are bits read from the MediaStatus register. They indicate the
// presence on the NIC of the various possible media ports.
// baseTXAvailable Indicates a 100BASE-TX port is available on the NIC.
// 10bTAvailable Indicates a 10BASE-T port is available on the NIC.
// miiDevice Indicates an off-chip MII device is available on the NIC.
// baseFXAvailable Indicates a 100BASE-FX port is available on the NIC.
// auiEnable Indicates an AUI port is available on the NIC.
// coaxAvailable Indicates a 10BASE2 port is available on the NIC.

/*************** The main AutoSelect sequence ***************/
AutoSelect ()

// AutoSelect returns the selected port, link speed, and duplex mode
// or FALSE, indicating that no active port was found.

if baseTXAvailable or 10bTAvailable
set xcvrSelect to "Auto-Negotiation"
if TryMII successful // First test NIC’s internal
// Auto-Neg function for an active 10BASE-T
// or 100BASE-TX link
return results from TryMII

else if miiDevice
set xcvrSelect to "MII"
if TryMII successful // then test any MII device
return results from TryMII

else if baseFXAvailable
set xcvrSelect to "100BASE-FX"
if TryLinkDetect successful
return 100BASE-FX, 100MBPS, HALF_DUPLEX

194 CHAPTER A: AUTOSELECT PSEUDO CODE
else if auiEnable
set xcvrSelect to "AUI"
if TryLoopback(AUI) successful
return AUI, 10MBPS, HALF_DUPLEX

else if coaxAvailable
set xcvrSelect to "10BASE-2"
if TryLoopback(10BASE-2) successful
return 10BASE-2, 10MBPS, HALF_DUPLEX

else return FALSE// no active port found

/*************** Sub-routines ***************/
TryLinkDetect() // returns TRUE when good link

download self-directed packet // this unpartitions 3Com on certain hubs
program RxFilter for Promiscuous operation
issue TxEnable and RxEnable
for 1 to 65535

read RxStatus for any received packets
if packet(s) received without error, return TRUE
if packet(s) received with error, discard

read linkDetect
if off, return FALSE

check carrierSense bit and accumulate result
// fell out of the loop, so no good packets in 65535 tries
if carrierSense on > 25% of time, return FALSE // all those carrierSenses

// should have yielded a good packet
if carrierSense on < 25% return TRUE // assume the link is good, 25% is

// fairly arbitrary
TryMII ()

// TryMII checks the on-chip auto-negotiation logic or an off-chip MII PHY,
// depending upon what is set in xcvrSelect by the caller.
// It exits when it finds the first device with a good link. TryMII returns the
// selected port, link speed, and duplex mode, or FALSE if no good link found

if xcvrSelect is set to "Auto-Negotiate"
if TryPHY(11000b) successful // the on-chip auto-neg logic
return AUTO-NEG, link speed, and duplex mode

else // xcvrSelect is set to "MII"
make sure mgmtDir is clear
read mgmtData : 1 indicates a PHY present
if no PHY, return FALSE
else // continue, find all PHY devices attached
for PHYAD = 0 to 31 except 11000b

read MII Control register
if a PHY responds, store that PHYAD value

if no response to any PHYAD, return FALSE
for all responding PHYAD values

if TryPHY(PHYAD) successful
return MII, link speed, and duplex mode

// fell out of loop with no successful PHYAD
return FALSE

TryPHY(PHYAD)
// TryPHY checks the auto-negotiation function in the PHY at PHYAD
// It can also be extended to include link detection for non-IEEE 802.3u
// auto-negotiation devices, for instance the BCM5000.
// TryPHY returns the link speed and duplex mode (caller knows which
// port is selected).

issue PHY reset to device at PHYAD
poll on reset bit until cleared

AutoSelect Sequence 195
if reset bit not cleared in 2 seconds return FALSE
read MII Control register again // bits aren’t latched - read again to make sure
if reset bit set return FALSE // didn’t really reset
read MII Status register, check that Extended registers supported
if Extended supported // means auto-negotiation might be supported

read PHY ID registers// save these values to aid
// PHY-specific bug fixes

if (autoNegCapable and !autoNegComplete)
restart Auto-Negotiation by setting restartAutoNeg
poll on autoNegComplete for up to 2 sec
if !autoNegComplete return FALSE // never finished, go to next PHY
// auto-neg completed, see what happened
read AutoNegAdvert and AutoNegAbility registers
negotiated link mode is the highest common bit

set in the range [5..9]
if a common bit found

return link speed and duplex mode
else return FALSE

else // no Extended reg or no auto-neg support
(do PHY-specific tests, i.e., BCM5000 sequence)
return link speed and duplex mode or FALSE

TryLoopback(port) // try a loopback packet: use for 10BASE2 or AUI port
if (port == 10BASE-2) issue EnableDcConverter command
for 1 to 3 // give a port 3 chances to complete a loopback

if TestPacket successful
if (port == 10BASE-2) issue DisableDcConverter command
return TRUE

if (port == 10BASE-2) issue DisableDcConverter command
return FALSE

TestPacket()
set fullDuplexEnable in MacControl register
set RxFilter to enable Individual Address matches
issue RxEnable and TxEnable
setup a UPD for a receive packet
download a self-directed packet
poll on txComplete in TxStatus register
reset transmitter
poll on upComplete in UPD UpPktStatus field for up to 1.5 sec
if packet complete and no error return TRUE
else return FALSE
clear fullDuplexEnable in MacControl register

QuietAdapter ()
set xcvrSelect to 10BASE-T
clear linkBeatEnable, enableSqeStats, and jabberGuardEnable in MediaStatus
wait 1.5 seconds
issue TxReset and RxReset

B
 PROGRAMMING THE MII
MANAGEMENT INTERFACE
The Media-Independent Interface (MII) management interface is used to access
registers in an MII PHY device.

The on-chip auto-negotiation registers appear as a PHY device and are accessible
through the management interface. A 3C90xC NIC may also have an off-chip PHY
device with registers visible across the management interface.

The internal PHY address is 18H.

Register accesses across the MII management interface occur serially.
Drivers control access with the mgmtClk, mgmtData, and mgmtDir bits in the
PhysicalMgmt register. The direction of the serial transmission is controlled by
mgmtDir; it is set when bits are written to the PHY device, and cleared when bits
are read from PHY. Data bits are read from and written to the mgmtData bit. The
mgmtClk bit supplies the synchronization clock for the interface.

Management
Frame Formats

The serial bit sequences used to read and write registers are called frames. The
following table shows the frame formats for register read and write accesses for
the 3C90xC NIC. Each box defines the bits in a certain frame field. Each field
consists of one or more read, write, or Z cycles. The fields are sent across the
interface from left to right.

The Read and Write frame sequences for the 3C90xC NIC are described in the
sections following the table.

Table 21 Management Frame Formats

Read Frame A read frame consists of the following sequence.

1 Set the mgmtDir bit in the PhysicalMgmt register.

2 Execute write cycles to transmit the bits in the first five read frame fields, one bit
per cycle.

3 Execute a Z cycle to prepare the interface to receive read data bits.

Type PRE* ST OP PHYAD REGAD TA DATA IDLE

Read 1...1 01 10 AAAAA RRRRR Z0 DDDDDDDD
DDDDDDDD

Z

Write 1...1 01 01 AAAAA RRRRR 10 DDDDDDDD
DDDDDDDD

Z

* This is 32 consecutive “1” bits.

Management Frame Formats 197
4 Execute a single read cycle. The PHY should be driving a zero to indicate its
intention to respond to the read access. A one indicates that no PHY is responding
and the data to follow is invalid.

5 Execute 16 read cycles to read the data field. Data bits are received starting with
register bit [15] and ending with register bit [0].

6 Execute a Z cycle to terminate the frame.

Write Frame A write frame consists of the following sequence.

1 Set the mgmtDir bit in the PhysicalMgmt register.

2 Execute write cycles to transmit the bits in the first six write frame fields, one bit
per cycle.

3 Execute 16 write cycles to transmit the bits in the data field. Data bits are
transmitted starting with register bit [15] and ending with register bit [0].

4 Execute a Z cycle to terminate the frame.

Read Cycle To read a single MII data bit from the interface, follow this procedure.

1 Clear the mgmtClk bit in the PhysicalMgmt register.

2 Wait a minimum of 200 ns.

Back-to-back I/O cycles on the PCI bus generally guarantee this, but drivers may
use an arbitrarily long timer to time clock transitions.

3 Set mgmtClk.

4 Wait a minimum of 200 ns.

5 Read the next data bit from the mgmtData bit.

6 Wait a minimum of 200 ns.

Write Cycle To write a single MII data bit to the interface, follow this procedure.

1 Clear the mgmtClk bit in the PhysicalMgmt register.

2 Wait a minimum of 200 ns.

Back-to-back I/O cycles on the PCI bus generally guarantee this, but drivers may
use an arbitrarily long timer to time clock transitions.

3 Set mgmtClk.

4 Write the desired data bit to mgmtData.

5 Wait a minimum of 200 ns.

Z Cycle This procedure is used during the turnaround portion of a register read frame. It
terminates transmission and resets the mgmtDir bit.

1 Clear the mgmtClk bit in the PhysicalMgmt register.

2 Wait a minimum of 200 ns.

3 Set mgmtClk.

4 Clear the mgmtDir bit.

5 Wait a minimum of 200 ns.

C
 FRAME FORMATS
This appendix illustrates the frame formats.

IEEE 802.3 MAC
Frame Format

Figure 12 IEEE 802.3 MAC Frame Format

Destination address

Length/type

Source address

Frame check sequence

6 bytes

6 bytes

2 bytes

4 bytes

Bits within bytes transmitted least-significant bit first

Fields transmitted
top to bottom

(Pad)

(LLC data)

IEEE 802.3x PAUSE Frame Format 199
IEEE 802.3x PAUSE
Frame Format

Figure 13 IEEE 802.3x PAUSE Frame Format

Destination address

01:80:C2:00:00:01

Type

88:08

MAC control opcode

00:01

Source address

pause_time

Pad

6 bytes

6 bytes

2 bytes

2 bytes

2 bytes

4 bytes

42 bytes

Bytes within fields transmitted left to right;
bits within bytes transmitted least-significant bit first

Fields transmitted
top to bottom

Frame check sequence

0118

200 CHAPTER C: FRAME FORMATS
IEEE 802.1q
Frame Format

Figure 14 IEEE 802.1q Frame Format

Destination address

Length/type

Source address

Frame check sequence

6 bytes

6 bytes

2 bytes

2 bytes

2 bytes

4 bytes

Bytes within fields transmitted left to right;
bits within bytes transmitted least-significant bit first

Fields transmitted
top to bottom

(Pad)

(LLC data)

TPID = (to be defined)

TCI

T
R

-e
nc

ap

user_priorityVID

15
TCI detail

4 3 2 0

D
 ERRATA LIST AND SOLUTIONS
This appendix describes 3C90xC NIC anomalies and possible solutions.

Table 22 3C90xC NIC Anomalies

ASIC(s) Anomaly Description Solution

-003 V1 The transmission of
KeepAlive and SOS packets
becomes non-functional
after AC power is restored
from a complete power loss.

After restoration of AC power due to a
complete power loss, such as the
removal of the AC plug or power
outage, the transmission of KeepAlive
and SOS packets is interrupted. There
are two cases in which this happens:

■ Case #1: In addition to restoration
of axiliary power after AC power is
restored, some systems have a
momentary window in which there
is +5Vpci, as well as a PciClk and
RSTN signal. Note that the PciClk
goes away when the PCI voltage
falls approximately below +3.8V.
The result of +5V on the PCI-bus
causes the -003 V1 ASIC to cycle
through different power modes. As
AC power ramps up, the power-on
reset of the low-voltage detect cell
resets the ASIC to a D0 powerstate
and full-PCI-powermode, and then
kicks off the EEPROM loading.
When the PCI voltage drops below
+1.7V to trip the low-volt-age
detect cell, the ASIC then switches
to full-AUX-power mode and
attempts to switch from the PciClk
to the on-board 25MHz crystal
oscillator. However, because the
PciClk disappears well before the
trip point of the low-voltage detect
cell, the internal PciClk is unable to
switch to the 25MHz crystal
oscillator. This lack of a PciClk to the
TxFIFO logic of the ASIC interrupts
the transmission of KeepAlive or
SOS packets.

■ Case #2: After AC power is
restored, only auxiliary power is
restored. When the ASIC powers up
again with only auxiliary power,
some logic is not cleared and left in
unknown states. This can interrupt
the transmission of KeepAlive and
SOS packets.

■ Hardware Fix for Case #1: The new
-004 V1 ASIC has a logic fix for
Case#1. This logic fix involves
clearing the flip-flop associated with
switching the clock domain to either
the PciClk or on-board 25MHz
crystal oscillator. This flip-flop will be
cleared when the PCI voltage drops
below the threshold voltage, thus,
switching the internal PCI domain to
the on-board 25MHz crystal
oscillator.

■ Software Fix for Case #1: If an ASIC
roll is not an option for OEM
customers, it is possible do a
software workaround. The ASIC can
be placed into full-AUX-powermode
much earlier, when the PciClk is still
available. This is accomplished by
using the FlexEE portion of the
EEPROM to put it in a non-D0
powerstate. A non-D0 state
generates a signal that will put the
ASIC into full-AUX-powermode and
switch the internal clock from the
PciClk to the on-board 25MHz
crystal oscillator. This internal
switching will happen well before
the PciClk goes away due to power
being removed. The only
disadvantage to this is that the ASIC
is then limited to only configuration
I/O cycles since it is no longer in a D0
powerstate. However, it is possible
to use the system BIOS to set the
ASIC back to a D0 powerstate upon
normal bootup. Note: Since the
FlexEE portion of the EEPROM will
put the ASIC in a D3 powerstate,
then it is no longer valid to set bit7
autoResetToD0 in the
SoftwareInformation2 (offset 0x0F)
of the EEPROM.

■ No fix for Case #2 is available at
present.

 (1 of 2)

202 CHAPTER D: ERRATA LIST AND SOLUTIONS
3C920V1-005 In certain systems which
utilize the Intel 450NX PCI
chipset, using two 3C905C
NICs with ASIC revisions up
to and including -005 may
cause Microsoft Windows
HCT Certification Tests to
“blue screen” after 30 to 60
minutes of operation.

For the 3C920V1-005-based systems, it
has been discovered that the retry of a
PCI master cycle gets terminated with
the assertion of SERRN because the
intended operation exceeds the PCI
time-out interval of 1ms. Some PCI
chipsets, when enabled, will generate
an NMI (non-maskable interrupt)
associated with this time-out. If the
agent does not want an NMI to be
generated, a different reporting
mechanism is employed. This could also
be translated into either a performance
issue or an inequitable Tx/Rx
load-sharing problem.

There are two possible causes of the
time-out. One is due to the retried PCI
master cycle gets locked out by the
3C920V1’s internal Tx/Rx arbitration.
The other is caused by the race
condition that exists between
generating a bus request before the
FIFO free space has been updated.

The Tx/Rx arbitration did not take into
account the possibility of retried PCI
master cycles or other network
conditions causing Tx and Rx to lock
each other out. This eventually results
in a system time-out.

The race condition exists when a PCI
bus request is issued prematurely prior
to the FIFO’s space being updated. This
becomes a problem when the space in
the FIFO reaches a burst threshold
boundary. Under these circumstances,
a bus request is not re-generated. As
the space in the FIFO is freed up, the
PCI bus request is re-issued. However, if
the retried PCI bus cycle does not
complete before the system time-out
requirement, the assertion of SERRN
will occur as a consequenceof the
time-out.

There is currently no software or
hardware workaround available. The
3C920V1-006 revision is presently in
process to eliminate this
problem.eliminate this problem.

Table 22 3C90xC NIC Anomalies (continued)

ASIC(s) Anomaly Description Solution

 (2 of 2)

INDEX

Numbers
10/100 Mbps Ethernet MAC 19
10/100 Mbps PHY block 20
100BASE-FX link, checking 63
100BASE-T4 57
100BASE-TX link, testing 63
100BASE-X signaling 57
10BASE-T link, testing 63
3C905C NICs

features 18
3C90x NICs

operational characteristics 25
3C90xB NICs

architecture 18
auto-negotiation registers 147
block diagrams 18
models 14, 18
operational characteristics 25
register layout 22, 24

3Com node address 72
40-0476-001 ASIC 156
40-0574-00x or 40-05772-xxx

ASICs 147

A
acronyms 15
address, PHY 196
arbiter 26
arbitration logic 26
architecture 18

3C90xB NICs 18
ASICs

block descriptions 19
identifying through hardware 19
identifying through software 19
on 3C905B-TX NICs 147
signaling standards 57

Atmel PEROM flash devices 58
auto-negotiation 58, 147

3C90xB NICs 147
AutoSelect sequence 62
block 19
registers 147

40-0476-001 ASIC 156
40-0574-00x or 40-05772-xxx

ASICs 147
AutoSelect 61

pseudo code 193
sequence 62

B
binary numbers, identifying 15
BIOS ROM 21, 58
bit map descriptions 17
bit widths of register accesses 22
block diagrams

3C905C-TX NIC 18
broadcast packets 64
bus controller, PCI 19
bus master operation, PCI 25
bus request control, PCI 26
bus request structure 26

C
capabilities word 64
change in network link state 34
commands

interrupt 143
miscellaneous 144
PCI memory 25
receive 140
reset 136
transmit 138

configuration 53
forced 56
NIC 55
PCI 65
PCI cycles 55

counters, registers 189
cycle

read 197
write 197
z 197

D
data structure lists 25
date of manufacture 73
decimal numbers, identifying 15
defined 25
deviceId, EEPROM field 72
diagnostics 125
division, manufacturing 73
downlist 84

adding DPDs to 90
defined 25

download 26, 84
completion 90
defined 25
engine 19
model 84
multipacket lists 90
packet 89
scheduling 90
sequence 92

DPD data structure 85
duplex mode 64
E
early receive interrupts 109
EEPROM 71

data locations 54
EEPROM contents 71
EEPROM contents, flexible 72
EEPROM, serial 21, 54
enabling reception 107
engine, upload and download 19
errata 201
Ethernet MAC, 10/100 19

F
features, NIC 14, 18
FIFO space, reclaiming 94
FIFO, transmit and receive 19
flash devices 58
flexible EEPROM contents 72
flow control 41
forced configuration 56
frame formats 198
frames 196

read 196
write 197

full-duplex 64

H
half-duplex 64
hash filter, multicast address 64
hexadecimal numbers, identifying 15
host registers 21

3C90xB NICs 22

I
IEEE 802.1q VLAN

description 42
frame format 200

IEEE 802.3 MAC frame format 198
IEEE 802.3u auto-negotiation 58, 147
IEEE 802.3x flow control 41
IEEE 802.3x PAUSE frame format 199
indications 119
initialization, NIC 61
internal PHY address 196
interrupt commands 143
interrupts 119

early receive 109
interrupt-specific actions 119

L
link state, change of 34
local download engine 19

204 INDEX
local upload engine 19
loopback modes 186

M
MAC, 10/100 Ethernet 19
MacControl 64
Magic Packet technology 34
management frame formats 196
management interface, MII,

programming 196
management statistics block 19
manufacturing data 73

date 73
division 73
product code 73

media port, selecting 61
Media-Independent Interface 57
memory commands, PCI 25
MII

management frame formats 196
management interface,

programming 196
registers 147

MII/100BASE-T4
link, checking 62
signaling 57

multicast
address hash filter 64
packets 64

multipacket lists
download 90
upload 108

N
node address, 3Com 72
numbers

binary, identifying 15
decimal, identifying 15
hexadecimal, identifying 15

P
packet

download 89
download model 84
length round up 89
reception 107
transmission 93
upload completion 108
upload model 104

packets
broadcast 64
multicast 64

parallel tasking of receive uploads 109
PAUSE frame format 199
PCI

bus controller 19
bus master operation 25
bus request control 26
bus request structure 26
configuration cycles 55
configuration registers 56, 65
memory commands 25

PCI configuration registers 65
PHY address 196
power management 27

registers 29
power states 27
product code 73
programming Remote Wake-Up

events 35
promiscuous mode 64, 113
pseudo code, AutoSelect 193

R
read cycle 197
read frame 196
receive

commands 140
FIFO 19
filter, setting 63
statistics, summary of 126

reception
and upload 104
enabling 107
packet 107

reclaiming transmit FIFO space 94
registers

auto-negotiation 147
bit map description 17
command 22, 134
counters 189
host 21
layout

3C90xB NICs 22, 24
MII 147
miscellaneous 175
PCI configuration 56, 65
timers 189

Remote Wake-Up
overview 32
programming events 35

reset
commands 136
system 53

ROM, BIOS 21, 58

S
selecting the media port 61
serial EEPROM 21, 54
signaling

100BASE-X 57
signaling standards 57
station address 63
statistics 125

receive, summary 126
transmit, summary 125

statistics block, management 19
structure lists, data 25
system reset 53

T
TCP/IP checksum support 43
terms 15
timers, registers 189
transceivers, external media,

selecting 61
transmission 84, 93
enabling 93
errors 93

transmit
commands 138
errors 93
FIFO 19
mechanism 95
statistics, summary of 125

type 0 DPD format 85
type 1 DPD format 85

U
underrun recovery 94
Up Fragment Address 107
Up Fragment Length 107
Up Next Pointer 105
Up Pkt Status 105
UPD data structure and format 105
uplist 25, 104
upload 27

and reception 104
defined 25
eligibility 108
engine 19
model, packet 104
multipacket lists 108
packet completion 108
parallel tasking 109
sequence 109

W
wake-on-LAN (WOL) 32
wake-up frame patterns 32
wake-up packets 32
WOL (wake-on-LAN) 32
write cycle 197
write frame 197

Z
z cycle 197

INDEX OF REGISTERS

Numerics
100BASE-X Auxiliary Control 159
100BASE-X Auxiliary Status 160
100BASE-X Disconnect Counter 161
100BASE-X False Carrier Sense Counter 161
100BASE-X Receive Error Counter 161
10BASE-T Auxiliary Error and General Status 157
40-????-??? ASIC

Status 155
40-0476-001 ASIC

100BASE-X Auxiliary Control 159
100BASE-X Auxiliary Status 160
100BASE-X Disconnect Counter 161
100BASE-X False Carrier Sense Counter 161
100BASE-X Receive Error Counter 161
10BASE-T Auxiliary Error and General Status

157
Auto-Negotiation Advertise 162
Auto-Negotiation Expansion 163
Auxiliary Control Status 164
Auxiliary Mode 165
Auxiliary Multiple PHY 166
Auxiliary Status Summary 167
Control 169
Link Partner Ability 171
PHYID High 172
PHYID Low 172
Status 173

A
AcknowledgeInterrupt (command) 143
Auto-Negotiation Advertise 162
Autonegotiation Advertisement 148
Auto-Negotiation Expansion 163
Autonegotiation Expansion 148
Autonegotiation Link Partner Ability 149
Auxiliary Control/Status 164
Auxiliary Mode 165
Auxiliary Multiple PHY 166
Auxiliary Status Summary 167

B
BadSSD 126
BiosRomAddr 175
BiosRomControl 65
BiosRomData 176
BytesRcvdOk 126
BytesXmittedOk 127
C
CacheLineSize 66
Capabilities Word 75
CapID 66
CapPtr 66
CarrierLost 127
Checksum #2 80
Checksum #3 81
ClassCode 66
Command 22, 134
Compatibility Word 75
ConfigAddress 176
ConfigData 177
Control 149, 169
Countdown 189

D
DebugControl 177
DebugData 177
Device Specific 1 150
Device Specific 2 151
Device Specific 3 152
DeviceId 66
DisableDcConverter (command) 144
DmaCtrl 95
DnBurstThresh 97
DnFragAddr (DPD entry) 88
DnFragLen (DPD entry) 88
DnListPtr 98
DnMaxBurst 99
DnNextPtr (DPD entry) 86
DnPoll 100
DnPriorityThresh 100
DnStall (command) 138
DnUnstall (command) 138

E
EepromData 83
EnableDcConverter (command) 144

F
FifoDiagnostic 178
FramesRcvdOk 128
FrameStartHeader (DPD entry) 86
FramesXmittedOk 129
FreeTimer 190

206 INDEX OF REGISTERS
G
GlobalReset (command) 136

H
HeaderType 67

I
IndicationEnable 120
InternalConfig 58, 76
Interrupt 171
InterruptEnable 120
InterruptLine 67
InterruptPin 67
IntStatus 22, 121
IntStatusAuto 124
IoBaseAddress 67

L
Lanworks Data 1 77
Lanworks Data 2 78
LateCollisions 129
LatencyTimer 67
Link Partner Ability 171

M
MacControl 179
ManufacturerID 73
MaxLat 68
MaxPktSize 110
MediaOptions 62, 78, 181
MediaStatus 182
MemBaseAddress 68
MinGnt 68
MultipleCollisions 130

N
NetworkDiagnostic 184
Next Page Transmit 153
NextPtr 68

O
OEM Node Address 74

P
PciCommand 68
PciParm 73
PciParm2 78
PciParm3 79
PciStatus 69
PHY Identification 1 153
PHY Identification 2 154
PHYID High 172
PHYID Low 172
PowerMgmtCap 29
PowerMgmtCtrl 30, 187
PowerMgmtEvent 31

Q
Quick Status 154

R
RealTimeCnt 190
RequestInterrupt (command) 143
ResetOptions 187
RevisionId 70
RomInfo 73
RxDisable (command) 140
RxDiscard (command) 141
RxEarlyThresh 111
RxEnable (command) 141
RxFilter 112
RxFree 113
RxOverruns 130
RxReset (command) 137
RxStatus 113

S
ScheduleTime (DPD entry) 87
SelectRegisterWindow (command) 144
SetHashFilterBit (command) 141
SetIndicationEnable (command) 143
SetInterruptEnable (command) 144
SetRxEarlyThresh (command) 141
SetRxFilter (command) 142
SetTxReclaimThresh (command) 139
SetTxStartThresh (command) 139
SingleCollisions 131
SmbAddress 78
SmbArb 49
SmbDiag 49
SmbFifoData 50
SmbRxBytes 50
SmbStatus 51
SMBus - OEM Specific 80
Software Information 74
Software Information 2 76
Software Information 3 77
SosBits 189
SqeErrors 131
StationAddress 113
StationMask 114
StatisticsDisable (command) 146
StatisticsEnable (command) 146
Status 173
SubsystemId 70, 78
SubsystemVendorId 70, 78

INDEX OF REGISTERS 207
T
Timer 192
TxAgain (command) 139
TxDisable (command) 139
TxDone (command) 139
TxEnable (command) 140
TxFree 101
TxPktId 101
TxReclaimThresh 101
TxReset (command) 137
TxStartThresh 102
TxStatus 103

U
UpBurstThresh 114
UpFragAddr (UPD entry) 107
UpFragLen (UPD entry) 107
UpListPtr 115
UpMaxBurst 115
UpNextPtr (UPD entry) 105
UpperBytesOk 132
UpperFramesOk 132
UpPktStatus 116
UpPktStatus (UPD entry) 105
UpPoll 117
UpPriorityThresh 118
UpStall (command) 142
UpUnStall (command) 142

V
VendorId 70
VlanEtherType 192
VlanMask 118

INDEX OF BITS

Numerics
100 Mbps transmitter off 152
100Base-T4 148
100Base-T4 ability 156
100Base-TX 148
100BASE-TX capability 174
100BASE-TX FDX capability 174
100Base-TX full duplex 148
100Base-TX full duplex ability 156
100Base-TX half duplex ability 156
10Base 148
10BaseFL 182
10BASE-T capability 174
10BASE-T FDX capability 174
10Base-T full duplex 148
10Base-T full duplex ability 156
10Base-T half duplex ability 156
10Base-T serial mode 166
10bTAvailable 182

A
ability detect 166
acknowledge 148, 149, 153
acknowledge 2 153
acknowledge complete 166
acknowledge detected 166
activity LED disable 166
addIpChecksum (DPD entry) 87
Address 00010

ID MSBs 172
Address 00011

ID LSBs 173
addressDecodeEnable 66
addTcpChecksum (DPD entry) 87
addUdpChecksum (DPD entry) 87
advertise 100BASE-T4 163
advertise 100BASE-X 162
advertise 100BASE-X FDX 163
advertise 10BASE-T 162
advertise 10BASE-T FDX 162
advertise pause capability 148
advertise pause operation 163
advertise selector field 162
aismReset 136
alignmentError (UPD entry) 106
allowLargePackets 180
armCountdown 96
asicRevision 184
assertRemotePme 52
auiAvailable 182
auiDisable 184
autoNegComplete 51
autonegotiation ability 155
auto-negotiation ability detect 169
auto-negotiation acknowledge detected 169
auto-negotiation capability 173
auto-negotiation complete 167, 169, 173
autonegotiation complete 156
auto-negotiation complete acknowledge 169
autonegotiation enable 150, 170
auto-negotiation enabled 168
auto-negotiation HCD 168
auto-negotiation indication 158
auto-negotiation indicator 164
auto-negotiation parallel detection fault 168
auto-negotiation pause 168
autopolarity function enable 152
autopolarity status 151
autoResetToD0 (EEPROM) 77
autoSelect 61

B
bad ESD detected 160
bad frame 151
baseFxAvailable 182
baseline wander correction disable 159
baseT4available 181
baseTxAvailable 182
block TXEN mode 166
busMaster 69
bypass 4B5B encoder/decoder 160
bypass MLT3 encoder/decoder 159
bypass receive symbol alignment 159
bypass scrambler/descrambler 159

C
capabilitiesList 69
carrier integrity enable 151
carrier sense select 152
carrierSense 183
cat5LinkTestDefeat 187
chip/Vendor 70
CIM disable 160
cmdInProgress 123
coaxAvailable 182
code violation 151
collision test 150
collision test enable 169
collisionDetect 183
countdownMode 97

INDEX OF BITS 209
counterSpeed 96
crcAppendDisable (DPD entry) 86
crcError (UPD entry) 106
crcStripDisable 183

D
d0/d1Power (EEPROM) 78
d1Support 29
d1Support (EEPROM) 78
d2Power (EEPROM) 79
d2Support 29
d2Support (EEPROM) 78
d3Power (EEPROM) 79
dataParityDetected 69
dataSelect 30
dcConverterEnabled 184
debugMode 188
defeatMRL 97
defeatMWI 97
deferExtendEnable 179
deferTimerSelect 179
detectedParityError 70
devselTiming 69
disableAdv100 188
disableBadSsdDetect 59
disableBiosROM 61
disableMemBase (EEPROM) 74
disconnect 151
disconnect counter 161
disconnect state 160
dnAltSeqDisable 97
dnCmplReq 95
dnComplete 96, 123
dnComplete (DPD entry) 86
dnCompleteAck 143
dnFragLast (DPD entry) 89
dnFragLen (DPD entry) 88
dnIndicate (DPD entry) 87
dnInProg 51, 96
dnPriorityRequest 27
dnRequest 26
dnStalled 95
dnTxReset 138
dpdEmpty (DPD entry) 87
dribbleBits 117
dribbleBits (UPD entry) 106
duplex mode 150, 154, 169

E
edge rate 165
ee16KInstalled 188
eepromAddress 81
eepromBusy 82
eepromOpcode 82
enableRxLarge 59
enableSqeStats 183
enableTxLarge 59
encoder/decoder bypass 151
endecLoopback 185
endecReset 136
endecRxReset 137
endecTxReset 138
EOF error 159
extendAfterCollision 180
extended capability 155, 173
extended line length enable 152
extended MII FIFO enabled 159
externalLoopback 185

F
failureLevel (EEPROM) 75
false carrier 155
false carrier detected 160
false carrier sense counter 161
fastAutoNeg 188
fastBackToBack (EEPROM) 69
fastEE 188
FDX change 171
FDX LED enable 171
FDX mask 171
featureSet 188
FEF enable 159
fifoLoopback 185
fifoReset 136
fifoRxReset 137
fifoTxReset 138
fixedBroadcastRxBug 76
fixedEndecLpbackBug 76
fixedMWIBug 77
flowControlEnable 180
force 100/10 indication 158, 164
force jam 151
forced speed selection 170
forcedConfig 188
forceXcvr (EEPROM) 77
fullDuplex (EEPROM) 75
full-duplex indication 158, 164
fullDuplexEnable 180
FX mode 161

G
generic reset 1 152
generic reset 2 152

H
HCD_10BASE-T 167
HCD_10BASE-T_FDX 167
HCD_T4 167
HCD_TX 167
HCD_TX_FDX 167
heartbeat enable 152
highest autonegotiation state 154
hostError 122
hostReset 136
HSQ:LSQ 165

210 INDEX OF BITS
I
impliedBufferEnable (UPD entry) 106
interruptLatch 121
interruptLatchAck 143
interruptRequested 103
INTR enable 171
INTR mask 171
INTR status 171
intRequested 122
intRequestedAck 143
ioBaseAddress 67
ioSpace 69
ipChecksumChecked 117
ipChecksumChecked (UPD entry) 106
ipChecksumError 117
ipChecksumError (UPD entry) 106
isolate 150, 170

J
jabber detect 155, 167, 173
jabber disable 165
jabberDetect 183
jabberGuardEnable 183
jam enable 151
janitorBit (EEPROM) 78

K
kapEn 32
KatTime 39
keepRxOverrun 178

L
lastKap 38
lastKap (DPD entry) 87
LINK change 171
link disable 165
link error indication 152
link LED disable 166
LINK mask 171
link partner auto-negotiation able 163, 168
link partner autonegotiation capable 149
link partner next page able 149, 164
link partner page received 168
link partner pause 155
link partner remote fault 168
link partner selector field 171
link speed 155
link status 155, 161, 168, 173
link up 10 151
link up 100 151
linkBeatDisable (EEPROM) 74
linkBeatEnable 183
linkDetect 51, 183
linkEvent 32, 123
linkEventAck 143
linkEventEnable 31
linkWpToKaEn 32
loadTimeCnt (DPD entry) 88
lock error detected 160
locked 161
loopback 150, 170
lower1Meg (EEPROM) 73
lowest autonegotiation state 154
LP acknowledge 172
LP advertise 100BASE-4 172
LP advertise 100BASE-X 172
LP advertise 100BASE-X FDX 172
LP advertise 10BASE-T 172
LP advertise 10BASE-T FDX 172
LP advertise pause 172
LP next page 172
LP remote fault 172

M
macLoopback 185
magicPktEnable 31
magicPktEvent 32
management reset 152
Manchester code error 159
mapLowerMeg 68
masterAbort 97
maxCollisions 103
maxLat (EEPROM) 74
memBaseAddress 68
memorySpace 69
message page 153
message/unformatted code field 153
MF preamble suppression 174
mgmtClk 187
mgmtData 187
mgmtDir 187
MII out-of-band enable 159
miiDevice 182
minGnt (EEPROM) 74
MLT3 code error detected 160
model number 154
MWIEnable 69

N
networkReset 136
networkRxReset 137
networkTxReset 138
next page 148, 149, 153, 163
next page able 149, 164
no lp mode 152

O
okToXmit 52
optimizeFor (EEPROM) 74
organizationally unique identifier 154
oversizedFrame (UPD entry) 106

INDEX OF BITS 211
P
packet error indication enable 152
page received 149, 163
parallel detection fault 149, 164
parityErrorResponse 69
pktId 38
pktId (DPD entry) 86
pmeEn 30
pmePulsed 77
pmeSupport 29
pmeSupport (EEPROM) 79
polarity error 158
polarityReversed 183
power down 170
powerdown 150
powerState 30
pulsedPME (EEPROM) 73

R
reArmEnable 38
reArmEnable (DPD entry) 87
receive error 155
receive error counter 162
receive error detected 160
receiveAllFrames 113
receiveBroadcast 113
receivedMasterAbort 70
receivedTargetAbort 70
receiveIndividual 112
receiveMulticast 112
receiveMulticastHash 113
receiving 179
reference select 152
remote fault 148, 149, 155, 156, 161, 163, 173
repeater mode indication 158
reset 150, 170
restart auto-negotiation 167, 169
restart autonegotiation 150
revision 70, 158
revision number 154
rndupBndry 38
rndupBndry (DPD entry) 86
rndupDefeat 38
rndupDefeat (DPD entry) 87
romBaseAddress 66
romSize 59
runtFrame (UPD entry) 106
rx error status 151
rxActivity 51
rxBistComplete 178
rxBistControl 178
rxBistEnable 178
rxBistFlag 178
rxBytes 50
rxComplete 122
rxEarly 122
rxEarlyAck 143
rxEnabled 185
RXER code mode 166
rxFull 178

S
scheduleTime (DPD entry) 88
scheduleTimeValid (DPD entry) 88
scrambler/descrambler bypass 151
selector field 148, 149
sendIfPciHot 38
serial select 152
SERREnable 69
signaledSystemError 70
signaledTargetAbort 69
smbDiag 49
smbMasterId 49
smbPMEMask 178
smbReset 136
smbSlaveAddr 48
smBusDisable 188
smBusMode 188
sosEncoded 38
SPD change 171
SPD mask 171
speed indication 158, 164, 168
speed selection 150
startKap 32
statisticsEnabled 185
super isolate 166
supports100Mbps (EEPROM) 76
supportsCrcPassThru (EEPROM) 76
supportsFullBusMaster (EEPROM) 76
supportsFullDuplex (EEPROM) 76
supportsKeppAlives (EEPROM) 76
supportsNoTxLength (EEPROM) 76
supportsPowerMgmt (EEPROM) 76
suppress preamble 156
symbol aligner bypass 151

T
targetAbort 97
tcpChecksumChecked 117
tcpChecksumChecked (UPD entry) 107
tcpChecksumError 117
tcpChecksumError (UPD entry) 106
technology ability field 149
test100Rx 189
test100Tx 188
testLowVoltageDetector 184
toggle 153
tpAuiReset 136
tpAuiRxReset 137
tpAuiTxReset 137
transmit disable 160
transmit error detected 160
transmitting 185
trigSel 38
txActivity 51
txBistComplete 178

212 INDEX OF BITS
txBistControl 178
txBistEnable 178
txBistFlag 178
txComplete 103, 122
txEmpty 51
txEnabled 185
txError 51
txFatalError 185
txIndicate (DPD entry) 86
txInProg 183
txJabber 103
txReclaimError 103
txStatusOverflow 103
txUnderrun 103

U
udpChecksumChecked 117
udpChecksumChecked (UPD entry) 107
udpChecksumError 117
udpChecksumError (UPD entry) 106
unlocked 151
unlocked/jabber 155
upAlignmentError 117
upAltSeqDisable 97
upComplete 96, 123
upComplete (UPD entry) 105
upCompleteAck 143
upCRCError 117
updateStats 122
upDownReset 136
upError 116
upError (UPD entry) 105
upFragLen (UPD entry) 107
upInProg 51
upLastFrag (UPD entry) 107
upOverDiscDisable 97
upOverflow 117
upOverflow (UPD entry) 106
upOverrun 116
upOverrun (UPD entry) 106
upOversizedFrame 117
upperBytesEnable 185
upperBytesRcvdOk 132
upperBytesXmittedOk 132
upperFramesRcvdOk 133
upperFramesXmittedOk 133
upPktComplete 116
upPktLen 116
upPktLen (UPD entry) 105
upPriorityRequest 27
upRequest 27
upRuntFrame 116
upRxEarlyEnable 96
upRxReset 137
upStalled 116

V
vcoReset 136
version 29
vltEnable 181

W
wakeEventPending 51
wakeOnTimerEnable 32
wakeOnTimerEvent 32
wakeupPktEnable 31
wakeupPktEvent 32
warningLevel (EEPROM) 75
windowNumber 123
wol3PinConnector 76
wolAfterPowerLoss (EEPROM) 77

X
xcvrSelect 60

	Introduction
	3C90xC NIC Features
	About This Technical�Reference
	Terms and Acronyms
	Register Bit Maps

	Architecture
	3C90xC NIC Block�Diagram
	ASICs
	Hardware Identification
	Software Identification
	ASIC Block Descriptions
	PCI Bus Controller
	Upload and Download�Engines
	Transmit and Receive�FIFOs
	10/100 Mbps Ethernet�MAC
	Management Statistics
	Auto-Negotiation
	10/100 Mbps PHY
	Keep-Alive
	Wake Event
	SOS Connector
	SMBus Connector
	RWU Connector

	Other NIC Devices
	BIOS ROM
	Serial EEPROM

	Host Registers
	Bit Widths of Register�Accesses
	Command Register
	Interrupt Status Register
	3C90xC NIC Register�Layout

	Operation
	Data Structure Lists
	PCI Bus Master Operation
	PCI Memory Commands
	PCI Bus Request Control
	Download
	Upload

	Power Management
	Power Up Sequencing
	Low-power Mode
	Power States
	Power Management Registers
	PowerMgmtCap
	PowerMgmtCtrl
	PowerMgmtEvent

	Remote Wake-Up
	Wake-up Packets
	Downloading Wake-up Frame Patterns
	Wake-up Frame Patterns

	Magic Packet Technology
	Change of Link State
	Wake-on-Timer
	WakeOnTimer Register

	Wake-on-SMB
	Programming Remote�Wake-Up�Events
	Power Down
	Wake-Up

	Keep-alive Packets
	Installation
	Activation
	Transmission Timing
	Linked Wake-up Pattern to Keep-alive
	SOS
	TriggerBits Register

	IEEE 802.3x Flow�Control
	IEEE 802.1Q VLANs
	TCP/IP Checksum Support
	System Management Bus (SMBus) Interface
	Transaction Format
	Transaction Examples
	Multiple SMBus Master Arbitration
	Register Access
	Transmitting a Packet
	Receiving a Packet
	Initiating a Keep-alive Packet
	Issuing a Wake-Up Event
	Monitoring Network Activity
	SmbAddress
	SmbArb
	SmbDiag
	SmbFifoData
	SmbRxBytes
	SmbStatus

	Configuration
	Power On Reset
	System Reset
	Global Reset
	Serial EEPROM
	Flexible EEPROM Format
	NIC Configuration
	Forced Configuration
	Support for Signaling�Standards
	10 Mbps Signaling
	100BASE-X Signaling
	Media-Independent Interface/100BASE-T4

	Auto-Negotiation
	BIOS ROM
	InternalConfig
	NIC Initialization
	Selecting the Media�Port
	Selection Through EEPROM
	Selection Through AutoSelect

	MediaOptions
	AutoSelect Sequence
	Auto-Negotiation
	MII/100BASE-T4
	100BASE-FX
	Manual Testing of 10BASE-T and 100BASE-TX

	Setting the Receive�Filter
	Station Address
	Broadcast Packets
	Multicast Packets
	Multicast Address Hash�Filter
	Promiscuous Mode

	Capabilities Word
	MacControl
	Setting the Duplex�Mode
	PCI Configuration Registers
	BiosRomControl
	CacheLineSize
	CapID
	CapPtr
	ClassCode
	Data
	DeviceId
	HeaderType
	InterruptLine
	InterruptPin
	IoBaseAddress
	LatencyTimer
	MaxLat
	MemBaseAddress
	MinGnt
	NextPtr
	PciCommand
	PciStatus
	RevisionId
	SubsystemId
	SubsystemVendorId
	VendorId

	EEPROM
	Data Format
	Flexible Format
	3Com Node Address
	DeviceId
	Manufacturing Data
	Date
	Division
	Product Code

	ManufacturerId
	RomInfo
	PciParm
	OEM Node Address
	Software Information
	Compatibility Word
	Capabilities Word
	InternalConfig
	Software Information�2
	Software Information�3
	Lanworks Data 1
	SubsystemVendorId
	SubsystemId
	MediaOptions
	Lanworks Data 2
	SmbAddress
	PciParm2
	PciParm3
	PowerMgmtCtrl
	PowerConsumption
	Current IP Address
	SMBus - OEM Specific
	Flexible Format
	Command
	Data

	Checksum #2
	Checksum #3
	EepromCommand
	EepromData

	Download and Transmission
	Packet Download Model
	DPD Data Structure
	Down Next Pointer
	Frame Start Header
	Schedule Time
	Down Fragment Address
	Down Fragment Length

	Packet Download
	Simple Packet Download
	Packet Length Round�Up
	Download Scheduling
	Download Completion
	Multipacket Lists
	Adding DPDs to the End�of the Downlist
	Inserting a DPD Near�the Head of�the�Downlist
	Inserting a DPD in Front of a Scheduled DPD
	Polling on DnNextPtr

	NIC Download Sequence
	Original Download Sequence
	Alternate Download Sequence

	Packet Transmission
	Enabling Transmission
	Transmit Errors
	Underrun Recovery
	Reclaiming Transmit FIFO Space
	Transmit Mechanism
	Limiting dnComplete Interrupts
	Using CountDown Timer Instead of dnComplete

	DmaCtrl
	DnBurstThresh
	DnListPtr
	DnMaxBurst
	DnPoll
	DnPriorityThresh
	TxFree
	TxPktId
	TxReclaimThresh
	TxStartThresh
	TxStatus

	Reception and Upload
	Packet Upload Model
	UPD Data Structure
	Up Next Pointer
	Up Pkt Status
	Up Fragment Address
	Up Fragment Length

	Packet Reception
	Enabling Reception
	Simple Packet Upload
	Upload Eligibility
	Packet Upload Completion
	Multipacket Lists
	Early Receive Interrupts
	Parallel Tasking of Receive Uploads
	NIC Upload Sequence

	DmaCtrl
	MaxPktSize
	RxEarlyThresh
	RxFilter
	RxFree
	StationAddress
	StationMask
	UpBurstThresh
	UpListPtr
	UpMaxBurst
	UpPktStatus
	UpPoll
	UpPriorityThresh
	VlanMask

	Interrupts and Indications
	IndicationEnable
	InterruptEnable
	IntStatus
	IntStatusAuto

	Statistics and Diagnostics
	BadSSD
	BytesRcvdOk
	BytesXmittedOk
	CarrierLost
	FramesDeferred
	FramesRcvdOk
	FramesXmittedOk
	LateCollisions
	MultipleCollisions
	RxOverruns
	SingleCollisions
	SqeErrors
	UpperBytesOk
	UpperFramesOk

	Command Register
	Summary of Commands
	Unused Command Codes
	Reset Commands
	GlobalReset
	RxReset
	TxReset

	Transmit Commands
	DnStall
	DnUnstall
	SetTxReclaimThresh
	SetTxStartThresh
	TxAgain
	TxDisable
	TxDone
	TxEnable
	TxFifoBisect

	Receive Commands
	RxDisable
	RxDiscard
	RxEnable
	SetHashFilterBit
	SetRxEarlyThresh
	SetRxFilter
	UpStall
	UpUnStall

	Interrupt Commands
	AcknowledgeInterrupt
	RequestInterrupt
	SetIndicationEnable
	SetInterruptEnable

	Other Commands
	DisableDcConverter
	EnableDcConverter
	SelectRegisterWindow
	StatisticsDisable
	StatisticsEnable

	Auto-Negotiation and MII�Registers
	Overview
	40-0574-xxx or 40-05772-xxx� ASIC Auto-Negotiation Registers
	Autonegotiation Advertisement
	Autonegotiation Expansion
	Autonegotiation Link�Partner Ability
	Control
	Device Specific 1
	Device Specific 2
	Device Specific 3
	Next Page Transmit
	PHY Identification 1
	PHY Identification 2
	Quick Status
	Status

	40-0579-xxx ASIC Auto-Negotiation Registers
	10BASE-T Auxiliary Error and General Status
	100BASE-X Auxiliary�Control
	100BASE-X Auxiliary�Status
	100BASE-X Disconnect�Counter
	100BASE-X False Carrier�Sense Counter
	100BASE-X Receive Error�Counter
	Auto-Negotiation Advertise
	Auto-Negotiation Expansion
	Auxiliary Control/Status
	Auxiliary Mode
	Auxiliary Multiple PHY
	Auxiliary Status�Summary
	Control
	Interrupt
	Link Partner Ability
	PHYID High
	PHYID Low
	Status

	Other Registers
	BiosRomAddr
	BiosRomData
	ConfigAddress
	ConfigData
	DebugControl
	DebugData
	FifoDiagnostic
	Media
	MacControl
	MediaOptions
	MediaStatus

	NetworkDiagnostic
	PhysicalMgmt
	PowerMgmtCtrl
	ResetOptions
	SosBits
	Timers and Counters
	Countdown
	FreeTimer
	RealTimeCnt
	Timer

	VlanEtherType

	AutoSelect Pseudo Code
	AutoSelect Sequence

	Programming the MII Management�Interface
	Management Frame�Formats
	Read Frame
	Write Frame
	Read Cycle
	Write Cycle
	Z Cycle

	Frame Formats
	IEEE 802.3 MAC Frame�Format
	IEEE 802.3x PAUSE Frame Format
	IEEE 802.1q Frame�Format

	Errata List and Solutions
	Index
	Index of Registers
	Index of Bits

