PITR with
PostgreSQL 8

Crash recovery:.
It’s not a matter of if, but when.

Copyright Sean Chittenden 2005
All Rights Reserved.

PI'TR in a Nutshell

If pg_dump is to DBAs what level
zero backups are to System
Administrators, then PITR is to
DBAs what incremental backups are
to System Administrators.

Is PI'TR right for you?

 PI'TR is not for everyone: it adds

administrative complexity and increased disk
use and IO.

* Small databases may find performing frequent full
dumps via pg_dump to be more acceptable than
implementing and deploying PITR.

* For non-readonly databases with 24/7
operation and DBAs who want a high degree
of recoverability, PITR is a must!

Is PI'TR appropriate?

Use PITR if:

* Obtaining a frequent dump of the database is
performance or space prohibitive.

* It is not acceptable to loose data between the
last dump and the time of a crash.

* File system snapshots aren’t appealing.

¢ There is sufficient man %ower available to
monitor the health of a PI'TR setup!

How PITR works...

* PITR works by invoking an external command
that archives WAL files when they become
eligible to be recycling.

e A WAL file will be recycled upon successful

completion of the external command.

* The postmaster will execute the WAL file
archival command as many times as is
necessary until it returns non-zero.

postgresql.conf

archive command = ‘/any/command’
* 3p = absolute path

* 3f = filename only

* 3% ="The % character

e Example:

archive command = ‘cp -n %p /nfsl/pitr/sf’

PITR Full Backup Procedure

Backups of $SPGDATA can now be done with

the database online without the use or need for
filesystem snapshots.

1. SELECT pg start backup(’'my backup’);

2. tar --exclude S$PGDATA/pg xlog \
cvjpf pgbackup.tar.bz2 S$SPGDATA/

3. SELECT pg stop backup();

PITR Backup Notes

* Be mindful of tablespaces and data directories
outside SPGDATA

* Time interval between issuing
pg_start_backup(and pg_end_backup()

statements 1s not time sensitive

 Make sure WAL archiving is working before
starting this procedure

PI'TR Recovery

Start fresh (ie: move $SPGDATA and its data

subdirectories - including table spaces - and
install copies of its configs

Restore database from last full dump/tar

Clean out pg_xlog

Copy unarchived WAL logs into SPGDATA/
pg_xlog/, if available

Create recovery.conf in SPGDATA/

Start postmaster

recovery.conf

restore_command = ‘/any/sh/command’
3p = absolute path

% f = filename only

%% = The % character

Example:

restore command = ‘cp -n /nfsl/pitr/%f %p’

Recovery Notes

restore_command will be asked for files that
don’t exist

Command must return zero on success

Command must return non-zero on non-
existent files

Can restore to any time after a completed full
dump to a given time or transaction ID

PITA Food for PITR Thought

* Test, practice, and verify that your site’s PITR
procedure works before depending on its
recoverability!

¢ WAL logs aren’t small. Choose data expiration
policies for archived WAL data wisely (ie: only
after last full backup completes)

e WAL files must archived faster than WAL files

are generated!!!

 PITR files should be kept with with tull
backups

* Why not backup unarchived WAL files once a
minute via Cron&)? ust remember to discard
unofhcially archived WAL files when the
official archival of a WAL file happens.

Final Thoughts

* Read the docs, this was a lightning talk to
familiarize and introduce the concept and use
of PITR. This is not meant to be used for
training or replace a tutorial.

* Having DBA depts contracting PITRitis is
not fatal, but it can be a PITA to setup, but
pays huge dividends come tailure time.

* Database administration 101: It’s not a matter
of if the database hardware/disks crash, it’s a
matter of when. PITR is the extra safety belt.

Thank you!

Questions? Let me know!

Sean Chittenden
sean@gigave.com

