
PITR with
PostgreSQL 8

Crash recovery.
It’s not a matter of if, but when.

Copyright Sean Chittenden 2005
All Rights Reserved.

PITR in a Nutshell

If pg_dump is to DBAs what level
zero backups are to System
Administrators, then PITR is to
DBAs what incremental backups are
to System Administrators.

Is PITR right for you?
• PITR is not for everyone: it adds

administrative complexity and increased disk
use and IO.

• Small databases may find performing frequent full
dumps via pg_dump to be more acceptable than
implementing and deploying PITR.

• For non-readonly databases with 24/7
operation and DBAs who want a high degree
of recoverability, PITR is a must!

Is PITR appropriate?

Use PITR if:

• Obtaining a frequent dump of the database is
performance or space prohibitive.

• It is not acceptable to loose data between the
last dump and the time of a crash.

• File system snapshots aren’t appealing.

• There is sufficient man power available to
monitor the health of a PITR setup!

How PITR works...
• PITR works by invoking an external command

that archives WAL files when they become
eligible to be recycling.

• A WAL file will be recycled upon successful
completion of the external command.

• The postmaster will execute the WAL file
archival command as many times as is
necessary until it returns non-zero.

postgresql.conf

archive_command = ‘/any/command’

• %p = absolute path

• %f = filename only

• %% = The % character

• Example:

archive_command = ‘cp -n %p /nfs1/pitr/%f’

PITR Full Backup Procedure

1. SELECT pg_start_backup(’my_backup’);

2. tar --exclude $PGDATA/pg_xlog \
cvjpf pgbackup.tar.bz2 $PGDATA/

3. SELECT pg_stop_backup();

Backups of $PGDATA can now be done with
the database online without the use or need for
filesystem snapshots.

PITR Backup Notes

• Be mindful of tablespaces and data directories
outside $PGDATA

• Time interval between issuing
pg_start_backup() and pg_end_backup()
statements is not time sensitive

• Make sure WAL archiving is working before
starting this procedure

PITR Recovery

• Start fresh (ie: move $PGDATA and its data
subdirectories - including table spaces - and
install copies of its configs

• Restore database from last full dump/tar
• Clean out pg_xlog
• Copy unarchived WAL logs into $PGDATA/

pg_xlog/, if available
• Create recovery.conf in $PGDATA/
• Start postmaster

recovery.conf

• restore_command = ‘/any/sh/command’

• %p = absolute path

• %f = filename only

• %% = The % character

• Example:
restore_command = ‘cp -n /nfs1/pitr/%f %p’

Recovery Notes

• restore_command will be asked for files that
don’t exist

• Command must return zero on success

• Command must return non-zero on non-
existent files

• Can restore to any time after a completed full
dump to a given time or transaction ID

PITA Food for PITR Thought
• Test, practice, and verify that your site’s PITR

procedure works before depending on its
recoverability!

• WAL logs aren’t small. Choose data expiration
policies for archived WAL data wisely (ie: only
after last full backup completes)

• WAL files must archived faster than WAL files
are generated!!!

• PITR files should be kept with with full
backups

• Why not backup unarchived WAL files once a
minute via cron(8)? Just remember to discard
unofficially archived WAL files when the
official archival of a WAL file happens.

Final Thoughts

• Read the docs, this was a lightning talk to
familiarize and introduce the concept and use
of PITR. This is not meant to be used for
training or replace a tutorial.

• Having DBA depts contracting PITRitis is
not fatal, but it can be a PITA to setup, but
pays huge dividends come failure time.

• Database administration 101: It’s not a matter
of if the database hardware/disks crash, it’s a
matter of when. PITR is the extra safety belt.

Thank you!

Questions? Let me know!

Sean Chittenden
sean@gigave.com

