
pgmemcache and the over
reliance on RDBMSs

Copyright (c) 2004 Sean Chittenden. All rights reserved.
sean@chittenden.org

Tenets of Fast Applications

Fast == Good

Slow == Bad

Disk IO == Bad

Memory == Good

Central Point of Failure == Bad

Distributed == Good

Redundant == Good

RDMS

RDBMS incorrectly defined acronym

Relational Data Management Systems

RDBMSs should not be used as RDMSs

RDBMSs generate lots of disk IO

RDBMSs are central points of failure

RDBMSs carry businesses on shoulders

RDBMSs are heavily loaded, most of the time

Temptation and Sin

Temptation to over rely on RDBMSs is great
Great temptation leads to great peril
RDBMSs manage data well
All RDBMSs require disks (ACID)
All RDBMSs are slow
Conclusion: RDBMSs are a sinful indulgence
for application developers

The Good, Bad, and Ugly of RDBMSs

RDBMSs are a great place to store data
RDBMSs are a fantastic way to organize
data and businesses
RDBMSs are not a fast source for data
RDBMSs bottleneck easily and scale
terribly

80/20: The Hot Potato

80% of a database’s data is dormant
20% of a database’s data is hot, active,
and constantly being queried
99% of all applications fetch 100% of
their data from databases
99% of applications are abusing a data
management system as a data source
99% of applications don’t use a cache as
a data source

Enter Data Caching

Busy sites learned long ago: avoid
looking up data in the database
Common tricks include distributing load
via DNS (ex: user.db.example.com)
Using a local database (ex: cdb, bdb,
gdbm, and MySQL)
Stuff data into SysV IPC shared mem

Problem with Data Caching

All applications build their own caching
that is normally language specific
Data Expiration
Cache coherency
Only works for reading data, not writing
Invalidating cached data
Displaying wrong data to customers is
costly (think Toys’R’Us and crying kids)

Enter memcached(8)

memcached is a flat, distributed data cache
memcached scales infinitely
memcached does not use disk
memcached works well with RDBMSs
memcached is application driven
memcached is fast to the tune of ~100+K
requests per server per second
memcached solves the hot potato problem

How memcached(8) works

Two hash levels
Client hashes key to determine which
server stores the key
Server stores key/value in hash
That’s it. There ain’t no more to it.

Limitations

memcached(8) is not an RDBMS or even an
RDMS
memcached(8) is language neutral
memcached(8) has no structure for stored
data
memcached(8) only manages the expiration of
data and its available space via a LRU algo
memcached(8) has to have its data managed
Text protocol
No spaces in keys

Limitations: Part Two

Server has no knowledge of server lists
Server lists have to be kept in sync across
hosts and applications
Server flap kills cache hit rates
Only helps with frequently accessed data
Doesn’t help with OLAP applications
Doesn’t help with write caching
Relies on a sealed network for security

libmemcache(3)

mc = mc_new();
mc_server_add(mc, “host1”, “11211”);
mc_add(mc, key, key_len, val, val_len,

expiration, flags);
val = mc_aget(mc, key, key_len);
mc_replace(mc, key, key_len, val, val_len,

expiration, flags);
mc_set(mc, key, key_len, val, val_len,

expiration, flags);
mc_delete(mc, key, key_len, hold);

libmemcache(3)

req = mc_req_new();
key1_res = mc_req_add(req, key1, key1_len);
key2_res = mc_req_add(req, key2, key2_len);
mc_get(mc, req);
mc_incr(mc, key, key_len, increment);
mc_decr(mc, key, key_len, decrement);
stats = mc_stats(mc);

pgmemcache to the rescue

PostgreSQL manages data
PostgreSQL replaces and deletes data in
memcached(8)
Applications add data to memcached(8)
pgmemcache only lets you use one
memcache domain per backend

Step #1: Write mc_init()

CREATE OR REPLACE FUNCTION mc_init()
RETURNS VOID AS ‘BEGIN

IF memcache_init() THEN
PERFORM memcache_server_add(’’mc1.example.com’’, ’’11211’’);
PERFORM memcache_server_add(’’mc2.example.com’’, ’’11211’’);

END IF;
RETURN;

END;’ LANGUAGE ‘plpgsql’;

Step #2: Write an Update Function

CREATE FUNCTION auth_passwd_upd() RETURNS TRIGGER
AS ‘BEGIN

IF OLD.passwd != NEW.passwd THEN
PERFORM mc_init();
PERFORM memcache_replace(’’user_id_’’ || NEW.user_id || ’’_password’’, NEW.passwd);

END IF;
RETURN NEW;

END;’ LANGUAGE ‘plpgsql’;

CREATE TRIGGER auth_passwd_upd_trg
AFTER UPDATE ON passwd
FOR EACH ROW
EXECUTE PROCEDURE auth_passwd_upd();

Step #3: Write a Delete Function

CREATE FUNCTION auth_passwd_del() RETURNS TRIGGER
AS ‘BEGIN

PERFORM mc_init();
PERFORM memcache_delete(’’user_id_’’ || OLD.user_id || ’’_passwd’’, OLD.passwd);
RETURN OLD;

END;’ LANGUAGE ‘plpgsql’;

CREATE TRIGGER auth_passwd_del_trg
AFTER DELETE ON passwd
FOR EACH ROW
EXECUTE PROCEDURE auth_passwd_del();

pgmemcache API #1

memcache_init()
Initializes the backend to work with memcached(8). Returns
TRUE if this call initialized itself (ie, servers need to be added).

memcache_server_add(/* server */ TEXT, /* port */ TEXT)
Adds a server to the list of available servers.

memcache_add(/*key*/ TEXT[, /*value*/ TEXT[,
/*expire*/ INTERVAL[, /*flags*/ INT2]]])

memcache_add(/*key*/ TEXT, /*value*/ TEXT,
/*expire*/ TIMESTAMP WITH TIME ZONE[, /*flags*/ INT2])
Adds a key to the cache cluster if the key does not already exist.

pgmemcache API #2

newval = memcache_decr(/*key*/ TEXT[,
/*decrement*/ INT4])
If key exists and is an integer, atomically decrements
by the value specified (default decrement is one).
Returns value after decrement.

memcache_delete(/*key*/ TEXT[,
/*hold timer*/ INTERVAL])
Deletes a given key. If a hold timer is specified, key
with the same name can not be added until the hold
timer expires.

pgmemcache API #3

memcache_flush_all(/*key*/ TEXT)
Flushes all keys from the backend as calculated by
the passed key.

memcache_free()
Cleans up libmemcache from the backend

value = memcache_get(/*key*/ TEXT)
Fetches a key out of the cache. Returns a TEXT for
keys that are found and NULL for keys that didn’t
exist. Zero length values are valid.

pgmemcache API #4

hash = memcache_hash(/*key*/ TEXT)
Returns the hash value for a given key

newval = memcache_incr(/*key*/ TEXT[,
/*increment*/ INT4])
If key exists and is an integer, atomically increment
by the value specified (default increment is one).
Returns value after increment.

pgmemcache API #5

memcache_replace(/*key*/ TEXT[, /*value*/ TEXT[,
/*expire*/ INTERVAL[, /*flags*/ INT2]]])

memcache_replace(/*key*/ TEXT, /*value*/ TEXT,
/*expire*/ TIMESTAMP WITH TIME ZONE[, /*flags*/ INT2])
Replaces an existing key’s value if the key already exists.

memcache_set(/*key*/ TEXT[, /*value*/ TEXT[,
/*expire*/ INTERVAL[, /*flags*/ INT2]]])

memcache_set(/*key*/ TEXT, /*value*/ TEXT,
/*expire*/ TIMESTAMP WITH TIME ZONE[, /*flags*/ INT2])
Regardless of whether the key exists or not, set the value for the
key to the specified value.

pgmemcache API #6

stats = memcache_stats()
Returns a TEXT string with all of the stats from all
servers in the server list

stat = memcache_stats(/*statistic key*/ TEXT)
Returns a specific statistic as a TEXT object. Statistic
derived from summation of all servers in server list.

memcached(8) best practices

Use servers without hard drives
Use PXE to net boot memcache servers
Use 64 bit architectures (ex: AMD64)
Don’t skimp on RAM
If using 32bit architecture, don’t use more
than 4GB of RAM (don’t use PAE: it’s evil)
Use FreeBSD or Leenox with epoll

pgmemcache Best Practices

Use triggers
Use the LISTEN/NOTIFY mechanism to
simulate ON COMMIT triggers
Use manageable keys
Help fund someone to add ON COMMIT
triggers to PostgreSQL *grin*

Application Development Advice

Convert small portions of an application at a
time using XP practices
Many small keys work well
Avoid caching serialized data structures (eg:
PHP, Java, C struct’s, etc.)
RAM is a bigger constraint than CPU in
nearly all memcached(8) installations
It’s easy to update small single key/values pairs
(user => password, username => host/port)
It’s hard to update complex key/value pairs

Suggestions

Perdition
Postfix
BIND+DLZ
Apache/mod_* (duh!)
Authentication on trusted networks

Q&A

Ask ‘em if you’ve got ‘em!

“If you ask a stupid question, you may feel
stupid. If you don’t ask a stupid question,

you remain stupid.”
-Tony Rothman, Ph.D.U. Chicago, Physics

Thanks!

http://people.FreeBSD.org/~seanc/libmemcache/
http://people.FreeBSD.org/~seanc/pgmemcache/
e: sean@chittenden.org

Consulting to integrate libmemcache or pgmemcache into applications,
commercial support, and training are available. Please send email for details.

