NETFLIX

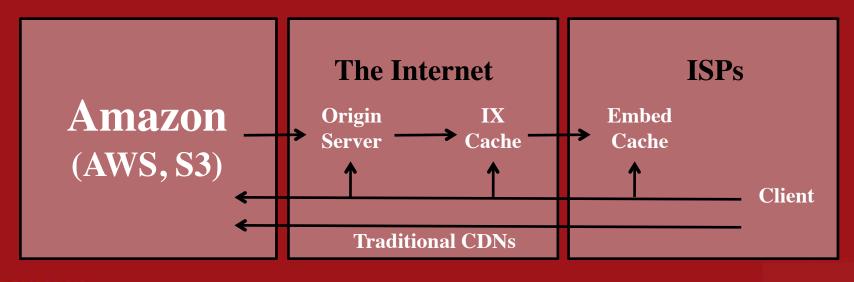
Netflix OpenConnect & FreeBSD

BSDCan DevSummit May 15, 2013

Միրդիրինությունը հերդերին հերդերին հերհերին հերհերի հերհերի հերհերի հերհերի հերհերին հերհերին հերհերին հերհերին հերհերին

Who are we?

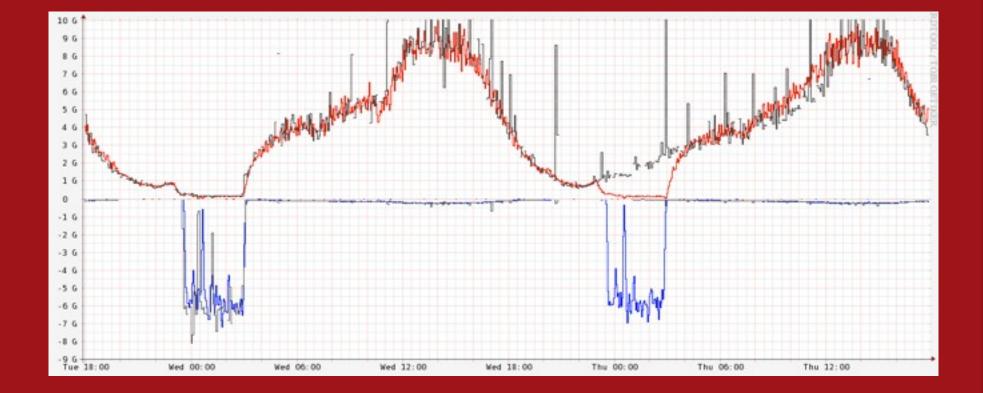
- Scott Long <<u>scottl@netflix.com</u>>
 - FreeBSD 20+ year veteran
 - Former Release Engineer
 - Adaptec, Yahoo!, Netflix
- Alistair Crooks <<u>agc@netflix.com</u>>
 - Unix since V6, BSD since 4.1c
 - pkgsrc founder
 - NetBSD security-officer, core team
 - Wasabi, VISA Europe, Yahoo!, Netflix


What is Netflix Streaming?

- Amazon Web Services
 - Website, Business Functions, Authentication
 - Data Science
 - Encoding/Encryption
 - Command and Control
- Content Servers
 - Was Big-3 CDNs
 - Moving to "OpenConnect"

What does OpenConnect do?

- Brings content closer to the customer
- Saves ISPs and Netflix money on peering and transit costs
- Augments existing CDN capacity



What is OpenConnect?

- Webserver for terabits of static traffic
- Content delivery network peering and embedding
- FreeBSD 9, nginx webserver, Bird BGP
- Off-the-shelf PC components
- High-Density, ISP-friendly Chassis
- <u>http://openconnect.netflix.com</u>

Typical Traffic Pattern

Building Block Architecture

- Horizontally and vertically scalable
- 1 box = 10% of the Netflix library
- 1 box = 5,000-15,000 streams
- 1 box = 60-80% bandwidth offload
- Fail-in-place design
- Fault tolerance via distributed copies, client-server feedback loop

Building Block Architecture

Initial design goals

- Modest compute resources
- ~10Gbps of traffic
- Maximized capacity: No RAID!
- No hot swap drives, few user-serviceable parts
- No SAS expander or other single-points-of-failure
- 600W power footprint, reasonable airflow, datacenter friendly

Revision A Hardware

- Supermicro X9SCM-F, Intel E3-1260L
- Custom chassis, 4U x 25" deep
- 36 3TB Seagate Barracuda HDDs
- 2 Crucial M4 512GB SSDs
- 2 16-port LSI SAS/SATA
- 32 GB RAM
- Dual port Intel 10 GbE Fibre
- 8,000 10,000 clients, 8.5Gbps

Revision A Hardware

Revision C Hardware

- Custom chassis, 4U x 20" deep
- Supermicro X9SRL-F Motherboard
- Intel E5-2650 8-Core Xeon, 64GB RAM
- 36 Hitachi Enterprise 4TB HDD's
- 6 Crucial M4 512GB SSD's
- 4 8 port LSI SAS
- 2 Dual-port Chelsio 10GbE Fibre
- 15,000 clients, 15-18Gbps

Revision C Hardware

Revision D Hardware

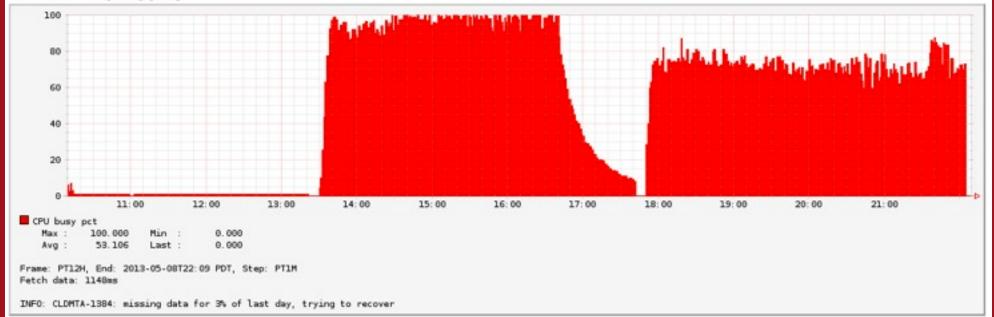
- 1U Chassis
- Supermicro X9SRH-7F Motherboard
- Intel E5-2650 8-Core Xeon, 64GB RAM
- 14 Crucial M5 960GB SSDs
- Onboard 8-port LSI SAS
- Quad-port Chelsio 10GbE Fibre
- >20,000 connections, >20Gbps

Revision D Hardware

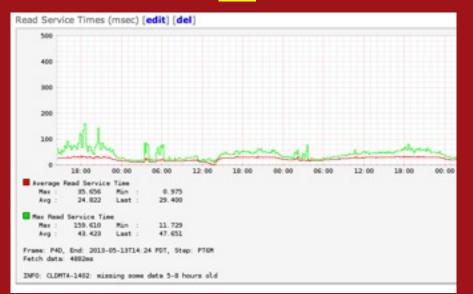
Structured Cabling

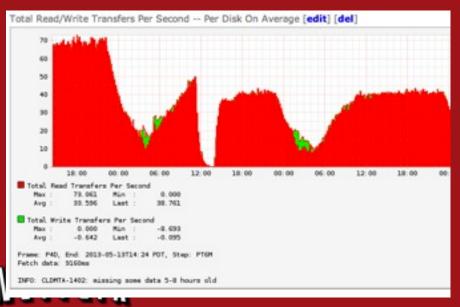
Why FreeBSD?

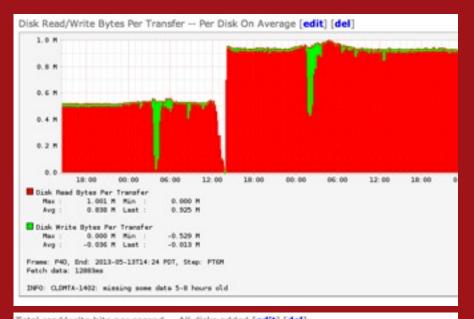
- Availability of expertise, outstanding community
- Works well, good vendor support
- No GPL
- Features used:
 - SUJ
 - gmirror boot drive only
 - AIO
 - Dtrace, HWPMC
 - TCP Stack, modular CC

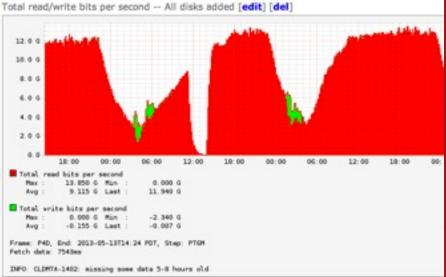

Netflix Contributions

- Camcontrol mods to download SATA firmware
- IPv6 ref counting fixes
- ixgbe interrupt mitigation, RX optimizations
- Fixes for isci driver for firmware download
- Collaboration with FF, Isilon on Unmapped I/O
- VM/VFS Tuning: vfs.read_min


Unmapped I/O


CPU utilization [edit] [del]





vfs.read_min

More than just code

- Community sponsorship
 - FreeBSD Foundation
 - MeetBSD, EuroBSDCon
- Working with Intel
 - Improve community relationships
 - Monthly meeting to discuss issues
- Advocate for FreeBSD with Supermicro, Seagate, HGST, LSI, Adaptec, etc

Challenges and Future Work

- Disk I/O
 - I/O scheduling
 - Command queue management
 - GEOM
- Network
 - Pipelining RX path
 - TCP Congestion Control
 - Traffic Classification/Prioritization

Challenges and Future Work

• Filesystem

- Layout optimized for streaming
- Journaling/SU bugs
- VM/Buffer/Cache
 - aio_sendfile()
 - LRU cache policy = worst case scenario
- FreeBSD 10

Review - what does an OCA do?

- Serves HTTP range requests to clients
- Communicates with control plane in AWS
- Allows ISPs to specify AS and CIDRs
- Hardware fail-in-place
- Serve and fill simultaneously
- In ISP or IX locations
- Currently serves 20%+ of US internet

OpenConnect Software

- FreeBSD 9.1 Stable
 - Sync every week with freebsd.org by svn merge
 - nanobsd is used to make 2 embedded images
- Nginx 1.2/1.4
 - Formerly sync'ed every week by svn merge
 - Now by hg up
- And....

Other parts of the system

- 2 images
 - 1 custom production-ready image
 - 1 GENERIC image; prod embedded in thrash
- Scripts and programs
 - For nginx, bird/bird6, normal system configuration
 - For communications with control plane
 - Reporting and monitoring
- Netflix-specific ports tree

Packaging

- 51 ports/packages
 - some bespoke ones
 - fast digest functions
 - control plane communications and reporting
- Ports tree is location independent
- Sandbox builds in a chroot are used
 - avoid build system leaks
 - Binary packages on systems

What's different?

- saved-options file as part of meta-data
- metadata versions are saved as part of pkg
- a single package defines OCA firmware level
- no indirection through system .mk files
- single script to make all packages in a chroot
- no version number necessary on command line
- no chroot building for src yet

Repository

- Subversion easy to sync with freebsd/nginx
- Git mirror (but we know where the git user lives)
- Formerly sync'ed with Perforce
- Websvn for web-based access
 - primary source of truth for most users
- JIRA integration ticketing and code review

Installer

- One size fits all
- Hardware-based profiles used
 - easy to add new hardware
 - try out new boards, memory or motherboards
- Disk sizes automatically calculated

OCA Firmware Images

-rw-r--r-- 1 agc domainus 102M May 13 15:19 prod-20130513-r2072-red1-image.bz2

-rw-r--r-- 1 agc domainus 394M May 13 15:19 prod-20130513-r2072-thrash-image.bz2

-rw-r--r-- 1 agc domainus 406M May 13 15:19 prod-20130513-r2072-thrash.iso

Lessons learned

- Package-based approach
 - allows us to upgrade individual machines
 - is never used
- Cross-building of packages would be good
 - aio_mlock experiments with nginx
 - need a kernel with that system call in it

More lessons learned

- nanobsd's /cfg is useful, but can be dangerous
 - need to umount before rebooting
- tracking stable has been good for us
- control plane-controlled firmware-refresh nice
- from previous lives no local patches

Any questions?

Alistair Crooks agc@netflix.com

Scott Long scottl@netflix.com

