
Text

Text

BSDCan DevSummit
May 15, 2013

Netflix OpenConnect
& FreeBSD

Who are we?
• Scott Long <scottl@netflix.com>
– FreeBSD 20+ year veteran
– Former Release Engineer
– Adaptec, Yahoo!, Netflix

• Alistair Crooks <agc@netflix.com>
– Unix since V6, BSD since 4.1c
– pkgsrc founder
– NetBSD security-officer, core team
– Wasabi, VISA Europe, Yahoo!, Netflix

mailto:scottl@netflix.com
mailto:scottl@netflix.com
mailto:agc@netflix.com
mailto:agc@netflix.com

What is Netflix Streaming?
• Amazon Web Services
– Website, Business Functions, Authentication
– Data Science
– Encoding/Encryption
– Command and Control

• Content Servers
– Was Big-3 CDNs
– Moving to “OpenConnect”

What does OpenConnect do?
• Brings content closer to the customer
• Saves ISPs and Netflix money on peering and

transit costs
• Augments existing CDN capacity

Amazon
(AWS, S3)

Origin
Server

IX
Cache

Embed
Cache

Client

The Internet ISPs

Traditional CDNs

What is OpenConnect?
• Webserver for terabits of static traffic
• Content delivery network - peering and

embedding
• FreeBSD 9, nginx webserver, Bird BGP
• Off-the-shelf PC components
• High-Density, ISP-friendly Chassis
• http://openconnect.netflix.com

http://openconnect.netflix.com
http://openconnect.netflix.com

Typical Traffic Pattern

Building Block Architecture

• Horizontally and vertically scalable
• 1 box = 10% of the Netflix library
• 1 box = 5,000-15,000 streams
• 1 box = 60-80% bandwidth offload
• Fail-in-place design
• Fault tolerance via distributed copies, client-server

feedback loop

Building Block Architecture

Initial design goals

• Modest compute resources
• ~10Gbps of traffic
• Maximized capacity: No RAID!
• No hot swap drives, few user-serviceable parts
• No SAS expander or other single-points-of-failure
• 600W power footprint, reasonable airflow, data-

center friendly

Revision A Hardware

• Supermicro X9SCM-F, Intel E3-1260L
• Custom chassis, 4U x 25” deep
• 36 3TB Seagate Barracuda HDDs
• 2 Crucial M4 512GB SSDs
• 2 16-port LSI SAS/SATA
• 32 GB RAM
• Dual port Intel 10 GbE Fibre
• 8,000 - 10,000 clients, 8.5Gbps

Revision A Hardware

Revision C Hardware

• Custom chassis, 4U x 20” deep
• Supermicro X9SRL-F Motherboard
• Intel E5-2650 8-Core Xeon, 64GB RAM
• 36 Hitachi Enterprise 4TB HDD’s
• 6 Crucial M4 512GB SSD’s
• 4 8 port LSI SAS
• 2 Dual-port Chelsio 10GbE Fibre
• 15,000 clients, 15-18Gbps

Revision C Hardware

Revision D Hardware

• 1U Chassis
• Supermicro X9SRH-7F Motherboard
• Intel E5-2650 8-Core Xeon, 64GB RAM
• 14 Crucial M5 960GB SSDs
• Onboard 8-port LSI SAS
• Quad-port Chelsio 10GbE Fibre
• >20,000 connections, >20Gbps

Revision D Hardware

Structured Cabling

Why FreeBSD?

• Availability of expertise, outstanding community
• Works well, good vendor support
• No GPL
• Features used:

– SUJ
– gmirror – boot drive only
– AIO
– Dtrace, HWPMC
– TCP Stack, modular CC

Netflix Contributions

• Camcontrol mods to download SATA firmware
• IPv6 ref counting fixes
• ixgbe interrupt mitigation, RX optimizations
• Fixes for isci driver for firmware download
• Collaboration with FF, Isilon on Unmapped I/O
• VM/VFS Tuning: vfs.read_min

Unmapped I/O

vfs.read_min

More than just code

• Community sponsorship
– FreeBSD Foundation
– MeetBSD, EuroBSDCon

• Working with Intel
– Improve community relationships
– Monthly meeting to discuss issues

• Advocate for FreeBSD with Supermicro, Seagate,
HGST, LSI, Adaptec, etc

Challenges and Future Work

• Disk I/O
– I/O scheduling
– Command queue management
– GEOM

• Network
– Pipelining RX path
– TCP Congestion Control
– Traffic Classification/Prioritization

Challenges and Future Work

• Filesystem
– Layout optimized for streaming
– Journaling/SU bugs

• VM/Buffer/Cache
– aio_sendfile()
– LRU cache policy = worst case scenario

• FreeBSD 10

Review - what does an OCA do?
• Serves HTTP range requests to clients
• Communicates with control plane in AWS
• Allows ISPs to specify AS and CIDRs
• Hardware fail-in-place
• Serve and fill simultaneously
• In ISP or IX locations
• Currently serves 20%+ of US internet

OpenConnect Software
• FreeBSD 9.1 Stable
– Sync every week with freebsd.org by svn merge

– nanobsd is used to make 2 embedded images

• Nginx 1.2/1.4
– Formerly sync’ed every week by svn merge

– Now by hg up

• And....

Other parts of the system
• 2 images
– 1 custom production-ready image
– 1 GENERIC image; prod embedded in thrash

• Scripts and programs
– For nginx, bird/bird6, normal system configuration
– For communications with control plane
– Reporting and monitoring

• Netflix-specific ports tree

Packaging
• 51 ports/packages
– some bespoke ones

• fast digest functions
• control plane communications and reporting

• Ports tree is location independent
• Sandbox builds in a chroot are used
– avoid build system leaks
– Binary packages on systems

What’s different?
• saved-options file as part of meta-data
• metadata versions are saved as part of pkg
• a single package defines OCA firmware level
• no indirection through system .mk files
• single script to make all packages in a chroot
• no version number necessary on command line
• no chroot building for src yet

Repository
• Subversion - easy to sync with freebsd/nginx
• Git mirror (but we know where the git user lives)

• Formerly sync’ed with Perforce
• Websvn for web-based access
– primary source of truth for most users

• JIRA integration - ticketing and code review

Installer
• One size fits all
• Hardware-based profiles used
– easy to add new hardware
– try out new boards, memory or motherboards

• Disk sizes automatically calculated

OCA Firmware Images

-rw-r--r-- 1 agc domainus 102M May 13 15:19
prod-20130513-r2072-red1-image.bz2

-rw-r--r-- 1 agc domainus 394M May 13 15:19
prod-20130513-r2072-thrash-image.bz2

-rw-r--r-- 1 agc domainus 406M May 13 15:19
prod-20130513-r2072-thrash.iso

Lessons learned
• Package-based approach
– allows us to upgrade individual machines
– is never used

• Cross-building of packages would be good
– aio_mlock experiments with nginx
– need a kernel with that system call in it

More lessons learned
• nanobsd’s /cfg is useful, but can be dangerous
– need to umount before rebooting

• tracking stable has been good for us
• control plane-controlled firmware-refresh nice
• from previous lives - no local patches

Any questions?

Alistair Crooks
agc@netflix.com

Scott Long
scottl@netflix.com

mailto:agc@netflix.com
mailto:agc@netflix.com
mailto:scottl@netflix.com
mailto:scottl@netflix.com

