
TDMA for Long Distance Wireless Networks

Sam Leffler, Errno Consulting

sam@errno.com

Background
In 2006 the UC Berkeley TIER Project studied the need to deploy network infrastructure to emerging
regions. Their goal was to “address the challenges in bringing the Information Technology revolution
to the masses of the developing regions of the world” [1]. Out of that work came plans for WiFi Based
Long Distance Networks (WiLDNet) that leveraged commodity 802.11 wireless parts to preserve cost
savings [2]. WiLDNets were specifically intended for deployments where station separation far
exceeded normal 802.11 use (e.g. 30-100 kilometer station separation). A key component of the
WilDNet design was the use of a Time Division Multiplex Access (TDMA) MAC [3] in place of the
standard DCF MAC that is part of the 802.11 specification [7].

About the same time the Intel Research Laboratory in Berkeley, CA developed the Rural Connectivity
Platform (RCP). TIER was a joint project between UC Berkeley and Intel and the RCP was an
offshoot focused more on easy setup, low maintenance, and production use. For TDMA the RCP
project developed a unique scheme to leverage the capabilities of Atheros wireless devices to
implement TDMA almost entirely in hardware [4]. The scheme has proven to work very well and has
been incorporated in commercial products. In 2008 the RCP software base was moved from Linux to
FreeBSD and in 2009 Intel released the FreeBSD implementation of the TDMA software as open
source. This paper describes the protocols and algorithms as they appear in FreeBSD 8.0.

TDMA Background
Most 802.11 networks use the Distributed Coordination Function (DCF) to arbitrate access to the
shared wireless medium. With DCF each station first tests if the medium is busy using a Channel
Control Access (CCA) mechanism. If the medium is deemed “free” then the station attempts to
transmit a frame. Transmit attempts may still collide in which case each station waits a small random
amount of time before trying again to use the medium. Once the frame transmit completes, the sending
station optionally listens for an Acknowledgement frame from the receiving station. If no Ack frame is
received within a timeout then the frame is transmit again.

DCF is designed for networks where stations are near each other. With highly distributed networks
stations may not hear each other resulting in collisions and excessive retransmits. This issue is termed
the “hidden node problem”. Also, for very long distances the time required to wait for each frame to be
acknowledged can dramatically affect performance. All these factors motivate the use of a different
scheme than DCF.

Time Division Multiplexed Access (TDMA) eliminates mediated access by assigning each station in
the network a time slice during which it may transmit. No arbitration is required once a slot is assigned
to a station. TDMA is a good way to handle media access in long distance networks but it does

University of Cambridge, Computer Laboratory Seminar, September 21, 2009

TDMA for Long Distance Wireless Networks 2

potentially increase packet latency and waste bandwidth because stations can transmit only during their
time slot. To mitigate the latency problem one can use short time slots. It is possible to reduce unused
bandwidth by dynamically assigning slots and/or changing their size but this can significantly increase
complexity and overhead. In general the balance between latency and throughput means the time slot
configuration in a TDMA network should be chosen according to the needs of applications (e.g. latency
must be low enough for packetized voice data).

TDMA requires a slot assignment protocol and a synchronization algorithm to ensure time slots do not
collide as the clocks drift. Implementing TDMA purely in software is feasible but can use significant
resources to guarantee the real-time constraints. Also, software-based TDMA implementations usually
perform worse than those with hardware assistance.

In the sections below we describe a TDMA network configuration in terms of:
• The number of time slots in the network (“N”).
• The length of each time slot (“slot-length”).
• The time between each time slot needed to safeguard packets transmit during that slot (“guard-

interval”).
The time between each station's time slot is termed the superframe and is defined as:

superframe=N∗slot−lengthguard−interval 

Figure 1 shows a typical TDMA
configuration with two slots (A and B), slot-
length 2.5 milliseconds, and a superframe of
5 milliseconds. The selection and/or
calculation of TDMA configuration
parameters is discussed below.

TDMA for wireless networks is not a new
idea. There are several wireless products
that use custom hardware to do TDMA.
Also IEEE 802.16 (aka WiMAX) includes TDD support that can do dynamic slot allocation. The work
described here is novel in that it leverages commodity 802.11 hardware to implement TDMA.

FreeBSD TDMA Support
The TDMA support in FreeBSD is made up of two components: an 802.11 protocol module that fits
into FreeBSD's net80211 network layer, and device driver support for the Atheros hardware. The
802.11 protocol component is device-independent and designed to support multiple stations in a TDMA
BSS. The protocol support uses vendor extensions to the 802.11 protocol so that it can coexist with
other 802.11 networks1. The device driver support is responsible for implementing the TDMA
scheduling mechanism by which frames are sent over the air. For the Atheros driver this code is small
as the hardware is well-suited to doing TDMA.

In our TDMA design one station is defined to be the “master”. The master is required to broadcast

1 One would not normally setup a TDMA BSS on the same channel as another BSS because
performance would suffer.

Figure 1: Example TDMA configuration.

TDMA for Long Distance Wireless Networks 3

beacon frames when it becomes operational (e.g. locates a channel to operate on). These beacon
frames include a special TDMA Information Element (IE) that identifies the station as operating in
TDMA mode and includes information such as whether there are free slots in the network. Slave
stations search for a master using a pre-assigned SSID.

Non-TDMA stations do not try to join a TDMA BSS because the beacon frames lack the necessary
capabilities (BSS for Infrastructure mode and IBSS for adhoc mode). This is the same technique used
by the forthcoming 802.11s specification to distinguish Mesh stations from Infrastructure/IBSS stations
[8].

Once a slave finds a master that has a free slot it adopts the TDMA configuration of the master and
begins transmitting it's own beacon frames. These frames include a TDMA IE that identifies it's
selected TDMA slot. The master sees the slave's beacon frames and records the now occupied slot at
which time the slave is free to start operating. If multiple stations try to join a BSS simultaneously the
master chooses the station with the oldest TSF as the “winner”. The station that did not get a slot either
chooses another slot (if available) or continues searching for a BSS with an open slot.

Beacon frames are used by slaves to synchronize their time slot. With the current scheme (described
more below) the master operates without adjusting its timer and the slaves adjust their timers to match.
Slave stations never transmit a beacon frame except in response to receiving a frame from the master
(in a two station network).

Aside from time slot synchronization beacon frames also serve to identify when a station leaves the
BSS. If a slave stops hearing beacon frames from the master it may roam to find it. Likewise if a
master stops hearing a slave it will mark the time slot in the BSS available. Coordinated channel
changes are also done using the Channel Switch Announcement (CSA) mechanism that is part of
802.11h [9].

The master station in a TDMA BSS is responsible for propagating TDMA configuration parameters to
other stations in the BSS. For example, the slot length (in microseconds) is transmitted by the master
and slaves adopt it when they join the BSS. This mechanism is used to auto-configure stations when
they join and also to dynamically update parameters.

TDMA slots are numbered from 0 with the master assigned slot 0 and the slave slot 1 (when more than
two slots are in configured slave slots are numbered 1 to N-1). While the TDMA protocol is designed to
support multi-slot networks, in practice it has been optimized for two stations; i.e. point-to-point links.

Net80211 TDMA Support

FreeBSD 8.0's wireless networking is based on a virtual radio architecture that uses device cloning to
present network services [5]. A cloned device is termed a “vap”. TDMA fits into this model; users
create a TDMA vap that is cloned just like other 802.11 devices2.

ifconfig wlan create wlandev ath0 wlanmode tdma

2 TDMA vaps are actually implemented using “adhoc-demo mode” vaps. These are a general-purpose
vap that provides direct station-to-station communication and neighbor discovery a la IBSS operation.

TDMA for Long Distance Wireless Networks 4

The TDMA master and slave roles described above are configured by setting the TDMA slot for a vap.
By default a vap is assigned slot 1 and it will not transmit beacon frames. To configure master
operation one just overrides this slot assignment:

ifconfig wlan0 tdmaslot 0

Similarly the other TDMA parameters can be configured with ifconfig:

ifconfig wlan0 ssid freebsd-ap tdmaslotcnt 2 tdmaslotlen 2500 tdmaslot 0

Recall that a slave adopts TDMA configuration from the master so the only parameter that must be set
is the SSID. Parameters set for a vap operating as a slave are not used.

Scanning happens automatically when a TDMA vap is marked up. Likewise beacon miss handling
may trigger scanning. Both operations are managed using the state machine framework that is a
standard component of net80211. If 802.11h support is enabled for the vap then coordinated channel
changes are supported using CSA.

 A TDMA vap is designed for building a point-to-point bridge using the standard Layer 2 bridging
mechanism. Setting up the master side of a TDMA bridge is as simple as:

ifconfig wlan create wlandev ath0 ssid freebsd-tdma tdmaslot 0 up
ifconfig bridge create addm wlan0 up

A fixed transmit rate is used for sending data frames because there are no Ack frames to provide
feedback to a rate control algorithm. The default rate is chosen as the highest available rate that also
optimizes transmit power. For example, when operating on an 802.11a channel 24Mb/s is used. This is
configured on the command line with:

ifconfig wlan0 ucastrate 24

FreeBSD 8.0 requires all stations in a TDMA BSS manually set the transmit rate. Forthcoming
changes include this in the TDMA configuration parameters sent in each beacon frame.

Atheros Driver Transmit
Support

The driver support for TDMA transmit is
straightforward. Atheros devices support
multiple hardware transmit queues that are
programmed to dispatch frames to the
Protocol Control Unit (PCU) according to
one of several scheduling algorithms (see
Figure 2). Typically data frames use an
“ASAP” scheduling algorithm that
dispatches frames immediately as they
appear in the queue. For access point
operation the hardware also supports a frame Figure 2: Atheros AR5212 MAC

TDMA for Long Distance Wireless Networks 5

scheduling algorithm where frames are dispatched according to the beacon timer for sending beacon
frames. By applying this frame scheduling algorithm to the normal data frames the hardware can be
used to schedule data frames according to the beacon schedule.

The only remaining requirement for the frame scheduling is to limit traffic so frames are transmit only
within the assigned time slot. This turns out to be easily handled by setting the maximum duration for
bursting frames according to the TDMA slot length. Aside from a few other minor details that is
everything required to have the hardware schedule and send frames according to a periodic schedule
defined by the hardware beacon timer(s).

One complication that arises with using the hardware directly is that the Transmit DMA engine that
walks the linked list of transmit descriptors runs asynchronously to the driver. Normally the driver
triggers a descriptor list walk so it knows when it is safe to reclaim transmit descriptors for operations
that have completed. But with the asynchronous operation the “next descriptor” field in the last
descriptor in the chain may be re-read at any time by the hardware so one must reclaim the descriptor
carefully.

There is a related issue caused by asynchronous operation of the DMA engine. The driver tells the
hardware new descriptors are present by writing a register that holds the address of the first entry in the
descriptor list. But if the hardware is actively traversing this list any write is ignored. The driver
handles this by checking if the DMA engine is active before doing these writes and if it is then it
records the need for a deferred write. Deferred writes are processed when another packet is submitted
for transmit or a beacon frame is prepared.

Note the above changes fit within the existing driver/hardware framework. This means, for example,
that priority queueing of QoS frames is still done so even while frames are transmit according to a
TDMA schedule WME/WMME service is preserved. Also the mechanisms described here work with
all Atheros parts (though some parts cannot be used for reasons described below).

802.11 ACK Frames

With the current TDMA implementation there are no 802.11 ACK frames. This is done by
encapsulating all traffic with a QoS header and setting the ACK Policy field to “No ACK required”.
No driver changes are required for this. Net80211 marks neighbor stations as using QoS so that frames
are suitably encapsulated and user configuration forces the ACK Policy.

TDMA Clock Setup

The hardware transmit machinery is driven by the hardware beacon timers and the packet bursting
controls of each hardware transmit queue. Each station's time slot is scheduled by setting the beacon
timer interval according to the TDMA BSS' superframe. The time slot length is controlled by the burst
duration assigned to each hardware transmit queue.

The beacon timer in the AR5212 MAC has a 1 TU (1024 microseconds) granularity which is very
course-grained. To compensate for this limitation the driver must round up the calculated superframe
to a multiple of 1 TU. The packet bursting duration has a one microsecond granularity which is perfect
for our needs.

TDMA for Long Distance Wireless Networks 6

A more important factor in calculations is that the hardware transmit machinery does not “kill a frame
in flight” that might exceed the burst length. That is, the hardware might start transmitting a frame just
before the end of the slot and overflow into the next slot. To handle this we calculate a “guard time”
that covers this possibility. When a fixed transmit rate is used to send data frames the guard time
includes the time to send a maximal-sized frame at the fixed rate. Using a variable transmit rate
requires this calculation to be done with the lowest possible rate.

TDMA Clock Synchronization

Once the TDMA transmit scheduling is in place the other key requirement is to synchronize scheduling
of each station so frames do not collide. The obvious way is to implement a consistent clock across all
stations in the BSS. There are existing algorithms for doing this when there are three or more stations
and/or when there is an external reference clock (e.g. from GPS). But in a point-to-point network there
are only two stations and we cannot assume a reference clock source will be available. Instead a novel
algorithm was used that leverages information obtained from the wireless hardware to work with only
two stations and without a reference clock. Not only does this algorithm synchronize the slot
scheduling of each station in the network but it also works independent of the distance between
stations. This turns out to be very useful both for fixed and mobile applications.

Recall that the master station sends beacon frames periodic in the superframe. This process is driven
by the hardware beacon timers. The slave station is responsible for synchronizing with the master.
This is done using the master's beacon frames. The wireless hardware provides a snapshot of the local
TSF in the receive descriptor of the beacon frame. This value is copied from the TSF at the point
where the DMA engine pushes the received frame to the host and can be adjusted by the air time to
calculate the value at the point where the start of the frame is received. Additionally the snapshot is
only 15-bits (on the MACs currently supported) and must be extended to 64 bits for calculations.
Given a 64-bit microsecond time for when a beacon frame is received it is simple to calculate the next
time at which the receiving station should transmit—i.e. the start of the next TDMA slot. This value is
then compared to the hardware timers to calculate any adjustment required. No knowledge of the
propagation delay is needed for the
calculations because the slave clock is
synchronized using only the local time
source.

The key detail in the above algorithm is
that we need to effectively do sub-TU
adjustments of the hardware beacon
timers while they are running. The
beacon timer registers do not have sufficient granularity but one can write the TSF directly if done with
care. In particular the hardware does not handle setting timers backwards. However because we do not
synchronize clocks but only the difference between clocks the actual value of each station's TSF does
not matter. This means we can implement a negative timer adjustment T by setting the hardware timer
forward (superframe-T). Together with some other hard-learned tricks it is possible to make the
necessary adjustments without having the hardware lockup. One caveat is that the techniques we
employ only work for a class of Atheros AR5212 chips; the driver enforces this by enabling TDMA
support only for capable devices.

Figure 3: NextTBTT Timer Adjustment

TDMA for Long Distance Wireless Networks 7

Using the above scheme the time slots are typically synchronized within 3 microseconds. There may
be wider swings if beacon frames are not received. Transmit/receive conflicts caused by loss of
synchronization show up as Transmit Override Receive (TOR) PHY errors recorded by the radio. The
driver also maintains detailed statistics about clock synchronization. And each beacon frame returns
the 64-bit time stamp of the other station's last beacon beacon frame so stations can track “round trip
time”.

Note that timers are synchronized only from beacon frames. The default beacon interval schedule is
chosen to be similar to a normal Infrastructure BSS; e.g. for a two slot BSS with a 2.5 millisecond time
slot beacon frames are sent every 20 superframes which is comparable to the 100 TU value often used
by access points. The frequency of beacons is a tradeoff between the overhead to send and receive the
frames and how often it is necessary to calibrate the clocks (it also constrains how quickly TDMA
parameters can be changed). The Atheros radios seem to very have stable clocks and require minimal
adjustment. If issues are noticed however one can use more beacon frames and adjust more often. One
can also send beacon frames at intermediate superframe boundaries as needed without any
consequences.

Performance
The performance of the TDMA implementation was initially evaluated using a testbed where the
stations reside in RF isolation chambers and are cabled together. To simulate the propagation delay of
long distance separation a Spirent SR5500 Wireless Channel Emulator was used [10]. Each station was
built-up from a Gateworks 2348 board [11], high transmit power Atheros wireless card (Wistron
DCMA-82), and FreeBSD software. Attenuators were used to avoid overloading the RF components in
the system.

Basic network performance was measured using tools such as netperf [12] and iperf [13] while
monitoring throughput and error statistics collected by the hardware and software. To verify the slot
timing synchronization concurrent unidirectional UDP “blast tests” were run to saturate the channel in
each direction. Different TDMA network configurations were tested while varying the channel delay to
simulate inter-station separation between 0 and 200 miles. The Spirent device uses digital signal
reproduction so signal attenuation due to distance did not occur (allowing tests at “impossible”
distances).

Test results were consistent with expected results calculated from the TDMA parameters. Packet loss is
zero. Cumulative channel bandwidth is 70% or more of the fixed transmit rate. There is a drop as the
slot length is reduced toward 1 millisecond and the host overhead required by additional interrupts for
each beacon interval becomes noticeable and affects packet processing.

Tests were repeated without the link emulator hardware by just using inline attenuators and results were
identical. Table 1 shows results for this configuration with 80 dB of pad (RSSI 14-15 dBm) operating
in 802.11a on channel 36. Longer slot lengths have slightly better bandwidth as one would expect.
One anomaly is that transmit rates above 24Mb/s show poorer than expected performance (especially
with larger slot lengths). At 54Mb/s this was accompanied by CRC errors that are (as yet) unexplained.

TDMA for Long Distance Wireless Networks 8

Finally outdoor tests were run under varying conditions with consistent results. In all situations it is
critical to verify the hardware setup for noise that might be introduced by cables or noise sources such
as fans, rotating media,
and power supplies.
Because there are no
link layer
acknowledgements
throughput is sensitive
to packet loss.
Typically one can
identify the cause from
error statistics but
sometimes it cannot be
done without an
independent device to
monitor the channel.
For this reason a third
station was always
present to do passive
monitoring.

Frame rates and detailed packet traces were also collected to verify inter-packet gaps and media access
overhead were at a minimum. Initially it was believed we would need to disable CCA for optimal
performance but experiments indicate otherwise. This is important as disabling CCA is not allowed in
most locales as it violates local regulatory requirements.

Time slot jitter was also measured to evaluate the synchronization algorithm. As reported previously
TSF adjustment on the slave was typically less than 3 microseconds. This value was measured using a
rolling average over a twenty sample window. Wider swings seem to occur with lost beacon frames
though this is dependent on the frequency with which beacons are sent. One interesting observation
was that jitter was noticeably worse when operating on a 2.4GHz channel than on a 5GHz channel.
This may be due to the conversion of the MAC's internal clock for some base-band circuits. These
anomalous results were not observed when the clock was varied for narrower (5MHz and 10MHz) or
wider channel widths (40MHz for Turbo mode). However even with the increased jitter operation on
2.4GHz channels was not affected (e.g. no packet loss was observed due to time slots colliding).

Future Work
The FreeBSD 8.0 TDMA protocol does not include all network configuration parameters in the beacon
frames. Adding the fixed transmit rate will enable full auto-configuration of slave stations. It is also
minimal effort to add a per-station “bandwidth allocation” mechanism that can be used to vary the slot
length at each station. Dynamic changes to these parameters can be done at each beacon interval to
improve throughput by varying “upstream/downstream bandwidth” as proposed for systems such as
WiMAX [6].

Frame encapsulation is done using a 3-address 802.11 header format. This only works for a network
with two stations (as the peer association is implied). It also makes encrypting traffic awkward.

Table 1: Cumulative bandwidth with 80 dB fixed attenuation on 5180/20.

6 Mb/s 9 Mb/s 12 Mb/s 18 Mb/s 24 Mb/s 36 Mb/s 48 Mb/s 54 Mb/s

0

5

10

15

20

25

30

35

40

45

1 ms
2.5 ms
5 ms
10 ms

TDMA for Long Distance Wireless Networks 9

Switching to a 4-address format header is required to support more than two stations. This change also
simplifies the handling of keys as they can be maintained for each pair of stations in the BSS using
existing facilities.

The current scheme provides no link-layer acknowledgements. Packet loss is normally low so this has
not been important. But when there is significant packet loss it affects high level protocols such as
TCP. There are extensions to the normal TCP algorithms that try to address lossy links such as one
might encounter in a wireless environment. Another option is to extend the TDMA support to include
explicit acknowledgement and packet retransmit. This can readily be done with a “Bulk ACK”
mechanism tied to the slot scheduling. But without sufficiently short slot lengths retransmissions done
at the link layer do not help as delays in TCP ACK frames are still noticed by the TCP protocol causing
throughput to drop.

The 802.11 TDMA protocol support is designed to support a BSS with up to eight stations but the time
synchronization algorithm has only been field-tested with two-station networks. Once there are more
than two stations participating many other algorithms are know to work well, but none of these
algorithms handle arbitrary station separation as the current algorithm does. It may be possible to
extend the current slot synchronization algorithm to more stations (experimental results are
encouraging for up to four stations).

The Atheros AR5212 hardware limits the effectiveness of the TDMA support. The 1 TU beacon timer
granularity and the lack of PCU packet kill support result in significant underutilization of the medium.
Newer Atheros hardware addresses both these problems: starting with the AR5416 the beacon timer has
a one microsecond granularity and the hardware kills frames queued to the PCU when the maximum
burst duration is reached. Newer hardware would also enable higher throughput using 802.11n
transmit facilities .

Conclusions
The TDMA wireless support in FreeBSD has proven to be a valuable facility for deploying networks.
It has been used for everything from remote monitoring to building network infrastructure where it is
impractical to use normal facilities [14]. The ability to automatically configure the link layer
parameters without regard for station separation is useful for fixed point applications and, in the future,
is expected to enable new mobile applications. The software support is simple to understand, robust,
and enables the construction of systems for very low cost. Features such as bulk acknowledgements
and dynamic bandwidth assignment can be done entirely in software to improve service. Support for
newer 802.11n hardware devices will improve network utilization and enable greater bandwidth.

The original TDMA work was done for the Intel Research Laboratory in Berkeley, CA who graciously
released it to the general community. Kevin Fall and Alan Mainwaring of Intel were key contributors.
Recent work was supported by Carlson Wireless Technologies and Hobnob, Inc.

References
[1] “Rethinking Wireless in the Developing World”, Lakshminarayanan Subramanian,

Sonesh Surana, Rabin Patra, Sergiu Nedevschi, Melissa Ho, Eric Brewer and Anmol
Sheth. Hot Topics in Networks (HotNets-V), November 2006.

TDMA for Long Distance Wireless Networks 10

[2] “WiLDNet: Design and Implementation of High Performance WiFi Based Long Distance
Networks”, Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth,
Lakshminarayanan Subramanian, Eric Brewer; USENIX NSDI, April 2007.

[3] “Packet Loss Characterization in WiFi-based Long Distance Networks”, Anmol Sheth,
Sergiu Nedevschi, Rabin Patra, Sonesh Surana, Lakshminarayanan Subramanian, Eric
Brewer IEEE INFOCOM, 2007.

[4] “Long Distance Wireless (for Emerging Regions)”, Sam Leffler, Errno Consulting;
EuroBSDCon, September, 2007.

[5] net80211(9) manual page in FreeBSD 8.0.
[6] “Adaptive Downlink and Uplink Channel Split Ratio Determination for TCP-Based Best

Effort Traffic in TDD-Based WiMAX Networks”, Chih-He Chiang, Wanjiun Liao, Tehuang
Liu, Iam Kin Chan, Hsi-Lu Chao; IEEE Journal on Selected Areas in Communications,
Vol. 27, No. 2, February 2009.

[7] IEEE Standard for Local and Metropolitan Area Networks Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY), IEEE Std 802.11, 1999.

[8] “IEEE P802.11s/D3.0”, March 2009.
[9] IEEE Standard for Local and Metropolitan Area Networks: Amendment 5: Spectrum

and Transmit Power Management Extensions in the 5 GHz band in Europe, IEEE Std
802.11h, 2003.

[10] Spirent Comunications. http://www.spirentcom.com
[11] Gateworks Corp. http://www.gateworks.com/products/avila
[12] netperf. http://www.netperf.org/netperf
[13] iperf. http://iperf.sourceforge.net
[14] “HPWREN collaborates South of the Equator”, James Hale, David Rabinowitz, Sam

Leffler; http://hpwren.ucsd.edu/news/20090516, May, 2009.

http://www.spirentcom.com/
http://hpwren.ucsd.edu/news/20090516
http://iperf.sourceforge.net/
http://www.netperf.org/netperf
http://www.gateworks.com/products/avila

	Background
	TDMA Background
	FreeBSD TDMA Support
	Net80211 TDMA Support
	Atheros Driver Transmit Support
	802.11 ACK Frames
	TDMA Clock Setup
	TDMA Clock Synchronization

	Performance
	Future Work
	Conclusions

