FreeBSD In The Embedded World

Rafał Jaworowski raj@semihalf.com, raj@FreeBSD.org

BSD-Day, Napoli, April 6th 2013

Introduction

- What is an embedded system?
- Contemporary embedded world
- Industry trends
- Embedded FreeBSD
- How we do it (at Semihalf)

What is an embedded system?

- No strict definition
- Historical view
 - Simple, small footprint systems
 - Single function, limited software
 - No general purpose software components
 - Highly integrated (system-on-chip)
 - Special acceleration engines
- Greatly diversified platforms
 - No "standard" platform, everything is custom

Embedded world today

- More integrated and smaller than ever
- No longer tiny and simple
- Hardware (silicon) changing rapidly
- Top technologies
 - 28nm, 20nm, 14nm
 - Multicore
 - 10's and 100's cores in one package
 - MMU, caches, 64-bit
 - Modern i/f
 - DDR3/4
 - SerDes, PCI-Express, USB3, SATA3

System-on-chip example

A subjective (Semihalf) view

- High end processors
 - Networking, storage
- Focus on RISC
 - ARM, MIPS, PowerPC, not much x86
- Focus on ARM
 - Moving into high end
 - High performance CPU core + peripherals
 - Multicore, virtualization, 64-bit
 - General purpose computing
 - Strong vendors interest and investment
 - Altera, AMD, Apple, Applied Micro, Broadcom, Calxeda, Cavium, Freescale, LSI, Marvell, Nvidia, Qualcomm, Samsung, ST, TI, Xilinx

Industry trends

- Low power, not only pure performance (single core)
 - ARM winning over MIPS and PowerPC
- Embedded goes into servers
 - Low power, better efficiency
 - Alternative vendors
 - \$10 bn market
- Embedded goes into the cloud and data centers
 - Open Compute (Facebook)
 - Note: the single purpose software aspect is gone

Industry trends: microserver

- Rack space requirements
 - Increase density, better scalability
 - New architecture to reduce cost
- Common form factor
 - PCI-E
 - Simple, modular
 - Base board: slots, power, control, management
- SoC, memory, storage, Ethernet
- Multiple vendors
 - AMD, Applied Micro, Calxeda, Intel

Embedded FreeBSD

- Current state overview
 - ARM, MIPS, PowerPC
- FreeBSD/arm
 - Support for ARMv5, v6, v7
 - SMP (quad core)
 - Popular platforms (Pandaboard, Beaglebone, Raspberry Pi, Plugs etc.)
 - Numerous projects and activities (i.MX port, EABI)
 - In progress: transparent superpages for ARM

Embedded FreeBSD – strengths

- Modern CPU architectures support
 - ARM, MIPS, PowerPC
- FreeBSD portability
 - Drivers API (newbus, bus_dma, bus_space)
 - Flattened device tree (FDT)
- Toolchains
 - LLVM/clang (still new)
 - External toolchains support
- Testing frameworks
 - Stress2
 - ATF (recently imported from NetBSD)

Embedded FreeBSD – weaknesses

- Existing support not always ready for production use
 - Bugs, no optimizations, no extensive testing
- Mainstream development not done with embedded in mind
 - New features only tested / verified on x86 and commodity platforms (e.g. strict alignment problems with drivers)
 - Code bloat
- Embedded architectures not considered first-class citizen
 - No Tier-1 status of any of the embedded architectures so far
- Performance
 - Vendors and potential users test and compare vs. other OSes
 - Latency, throughput, overheads, offloading

Embedded FreeBSD challenges

- Linux everywhere
 - FreeBSD (*BSD) in general unknown in the industry
- Does BSD license matter for embedded use?
- How to stay relevant (on top)
 - Make one of the platforms Tier-1
 - Prepare for the upcoming ARM server wave
 - ARMv8 (64-bit) support
 - Grow pre-built systems (snapshots) for vendors to test, validate (GENERIC embedded kernels)
 - Have more developers work on embedded FreeBSD
 - Focus on the industry needs (doing another port is a nice exercise, but...)
 - (Some of the above items are hard)

How we (Semihalf) embed FreeBSD

- Numerous ports
 - Applied Micro (PacketPro)
 - Freescale (PowerQUICC, QorlQ)
 - Marvell (Orion, Kirkwood, Discovery, Raid-on-chip, Armada-XP)
 - Texas Instruments (DaVinci)
 - Mostly integrated with the public SVN tree
- Flattened device tree (FDT)
 - ARM, MIPS, PowerPC
 - Supported by the FreeBSD Foundation

Embedding FreeBSD cont'd

- FreeBSD/arm infrastructure
 - ARMv6, v7 support
 - SMP
- NAND Flash support
 - Flash devices drivers framework
 - Log-structured filesystem (NANDFS)
- FreeBSD/arm superpages
 - Work in progress
 - Supported by the FreeBSD Foundation
- Community involvement
 - Speaking at conferences
 - Mentoring GSoC students
 - FreeBSD committers @Semihalf

Recent highlights

- NetBSD/arm port to Armada-XP
 - ARMv7 (PJ4B CPU core)
 - Single core
 - Major peripherals support
 - Thoroughly tested
 - Being merged with official CVS
- High performance userspace TCP/IP stack
 - Derived from FreeBSD networking stack
 - Integrated with massively multicore environment (36core) running Linux
 - 40Gbps throughput, low latency

FreeBSD In The Embedded World

Rafał Jaworowski raj@semihalf.com, raj@FreeBSD.org

BSD-Day, Napoli, April 6th 2013

