
Nested Paging in bhyve

Neel Natu
The FreeBSD Project
neel@freebsd.org

Peter Grehan
The FreeBSD Project
grehan@freebsd.org

Abstract
Nested paging is a hardware technique used to reduce
the overhead of memory virtualization. Specifically, this
refers to Intel EPT (Extended Page Tables) and AMD
NPT (Nested Page Tables). Nested paging support is
available in bhyve starting from FreeBSD [1] 10.0 and
provides useful features such as transparent superpages
and overprovisioning of guest memory. This paper de-
scribes the design and implementation of nested paging
in bhyve.

1 Introduction

Intel and AMD have introduced extensions to the x86 ar-
chitecture that provide hardware support for virtual ma-
chines, viz.

• Intel Virtual-Machine Extensions (VMX) [2, 3]

• AMD Secure Virtual Machine (SVM) [4]

The first generation of VMX and SVM did not have
any hardware-assist for virtualizing access to the mem-
ory management unit (MMU). Hypervisors had to make
do with existing paging hardware to protect themselves
and to provide isolation between virtual machines. This
was typically done with a technique referred to as
shadow paging [5].

A hypervisor would examine the guest paging
structures and generate a corresponding set of pag-
ing structures in memory called shadow page tables.
The shadow page tables would be used to translate
a guest-virtual address to a host-physical address.
The hypervisor would be responsible for keeping the
shadow page tables synchronized with the guest page
tables. This included tracking modifications to the
guest page tables, handling page faults and reflecting
accessed/dirty (A/D) bits from the shadow page tables
to guest page tables. It was estimated that in certain

workloads shadow paging could account for up to 75%
of the overall hypervisor overhead [5].

Nested page tables were introduced in the second
generation of VMX and SVM to reduce the overhead
in virtualizing the MMU. This feature has been shown
to provide performance gains upwards of 40% for
MMU-intensive benchmarks and upwards of 500% for
micro-benchmarks [6].

With x86 64 page tables there are two types of
addresses: virtual and physical. With nested page
tables there are three types of addresses: guest-virtual,
guest-physical and host-physical. The address used
to access memory with x86 64 page tables is instead
treated as a guest-physical address that must be trans-
lated to a host-physical address. The guest-physical to
host-physical translation uses nested page tables which
are similar in structure to x86 64 page tables.

bhyve has always relied on nested page tables to re-
strict guest access to memory, but until the nested paging
work described in this paper it wasn’t a well-behaved
consumer of the virtual memory subsystem. All guest
memory would be allocated upfront and not released
until the guest was destroyed. Guest memory could not
be swapped to stable storage nor was there a mechanism
to track which pages had been accessed or modified1.

The nested paging work described in this paper allows
bhyve to leverage the FreeBSD/amd64 pmap to maintain
nested paging structures, track A/D bits and maintain
TLB consistency. It also allows bhyve to represent guest
memory as a FreeBSD vmspace and handle nested page
faults in the context of this vmspace.

1Modified and dirty are used interchangeably in this paper

Virtual address space Physical pages

Page 0

1

2

3

7

200

1000

7

MMU

Virt Phys Attr

1 unmapped

3 205 readwrite

2 7 readwrite

0 1000 readonly

Figure 1: Memory Management Unit

The rest of the paper is organized as follows: Section 2
provides an overview of virtual memory management in
FreeBSD on x86 64 processors. Section 3 describes the
virtualization extensions in Intel CPUs. Section 4 in-
troduces Intel’s implementation of nested page tables.
Sections 5, 6 and 7 describe the design and implementa-
tion of nested paging in bhyve. Section 8 presents results
of experimental evaluation of the overhead of nested pag-
ing. Section 9 looks at opportunities to leverage nested
page tables for several useful features.

2 FreeBSD virtual memory management

The FreeBSD virtual memory (VM) subsystem provides
each process with a virtual address space. All memory
references made by a process are interpreted in the
context of its virtual address space. These virtual
addresses are translated into physical addresses by the
MMU as shown in Figure 1.

The MMU performs address translation in fixed-sized
units called pages. The size of a page is machine-
dependent and for the x86 64 architecture this can be
4KB, 2MB or 1GB. The MMU also protects physical
pages belonging to an address space from being writ-
ten to or read from a different address space. All MMU
implementations allow a translation to be marked as
readonly while some implementations can keep track of
which pages have been read or written by the process.

The process address space in FreeBSD is represented
by a vmspace [7]. The address space is divided into
contiguous ranges such that all addresses in a range are

vmspace

start: 1000

length: 8192

prot: RO

vm_map_entry

MMU

Virt Phys Attr

1001 201

1000 50 readonly

readonly

OBJT_VNODE

/tmp/file

vm_object vm_page

physical
page : 50

vm_page

physical
page : 201

Figure 2: mmap(/tmp/file, 8192, readonly)

mapped with the same protection (e.g., readonly) and
source data from the same backing object (e.g., a file
on disk). Each range is represented by a vm map en-
try. The physical memory pages provided by the back-
ing object are mapped into the address range represented
by the vm map entry. The backing object is represented
by a vm object. The physical memory pages associated
with the backing object are represented by a vm page.
A vm page contains the physical address of the page in
system memory. This address is used by the MMU in its
translation tables. Figure 2 shows the data structures in-
volved in a readonly mapping of /tmp/file into a process’s
address space.

The physical-mapping (pmap) subsystem provides
machine-dependent functionality to the VM subsystem,
such as:

• Creating virtual to physical mappings

• Invalidating a mapping to a physical page

• Modifying protection attributes of a mapping

Virt Phys

1 190

0 100

2 7

CPU0 CR3

0x9000

pmap {

 pm_cr3 = 0x9000;

 pm_active = 0x1;

};

Virt Phys

1 8

0 200

2 22

CPU1 CR3

0x5000

pmap {

 pm_cr3 = 0x5000;

 pm_active = 0x2;

};

Figure 3: pmap

• Tracking page access and modification

Each vmspace has an embedded pmap. The pmap
contains machine-dependent information such as a
pointer to the root of the page table hierarchy.

For the x86 64 architecture the pmap subsystem main-
tains mappings in hierarchical address-translation struc-
tures commonly referred to as page tables. The page
tables are the machine-dependent representation of the
vmspace. The processor’s control register CR3 points to
the root of the page tables.

It is important to note that multiple processors may
have an address space active simultaneously. This is
tracked by the pm active bitmap. Figure 3 depicts a
dual-processor system with a different address space
active on each processor.

2.1 x86 64 address translation

PML4E

PDPE

PDE

PTE

01112202129303839474863

Page-Map

Level-4 Offset

(PML4)

Page-Directory-

Pointer Offset

Page-Directory

Offset

Page-Table

Offset

Physical-Page

Offset

Page-Map Level-4

Base Address

1251

Physical

Address

Page-Map

Level-4

Table

Page-

Directory-

Pointer Table

Page-

Directory

Table

Page

Table

4Kbyte

Physical

Page

9 9 9 9 12

CR3

Virtual Address

Figure 4: x86 64 address translation

A page-table-page is 4KB in size and contains 512
page-table-entries each of which is 64-bits wide. A page-
table-entry (PTE) contains the physical address of the
next level page-table-page or the page-frame. A page-
table-entry also specifies the protection attributes, mem-
ory type information and A/D bits.

As shown in Figure 4, a 64-bit virtual address is di-
vided into 4 fields with each field used to index into a
page-table-page at different levels of the translation hier-
archy:

• Bits 47:39 index into the page-map level4 table

• Bits 38:30 index into the page-directory pointer ta-
ble

• Bits 29:21 index into the page-directory table

• Bits 20:12 index into the page table

• Bits 11:0 provide the offset into the page-frame

3 Intel Virtual-Machine Extensions

Intel Virtual-Machine Extensions (VMX) provide hard-
ware support to simplify processor virtualization. This is
done by introducing two new forms of processor opera-
tion: VMX root and VMX non-root.

A hypervisor runs in VMX root operation and has full
control of the processor and platform resources. Guests
run in VMX non-root operation which is a restricted en-
vironment.

A guest starts executing when the hypervisor executes
the vmlaunch instruction to transition the processor into
VMX non-root operation. The guest continues execution
until a condition established by the hypervisor transitions
the processor back into VMX root operation and resumes
hypervisor execution. The hypervisor will examine the
reason for the VM-exit, handle it appropriately, and re-
sume guest execution.

The VMX transition from hypervisor to guest is a
VM-entry. The VMX transition from guest to hypervisor
is a VM-exit. VMX transitions and non-root operation
are controlled by the Virtual Machine Control Structure
(VMCS). The VMCS is used to load guest processor
state on VM-entry and save guest processor state on
VM-exit. The VMCS also controls processor behavior
in VMX non-root operation, for example to enable
nested page tables. Of particular importance is the
Extended-Page-Table Pointer (EPTP) field of the VMCS
which holds the physical address of the root of the
nested page tables.

Host (bhyve)

Guest

guest state

host state

GPA

0

1

2

HPA

200

712

Nested Page Table

VMCS

VM-enter VM-exit

execution
controls

Figure 5: VMX operation

Figure 5 illustrates the VMX transitions and the nested
page tables referenced from the VMCS.

4 Intel Extended Page Tables

The x86 64 page tables translate virtual addresses to
physical addresses. This translation is done using page
tables pointed to by CR3. In addition to mapping the
virtual address to a physical address, the page tables also
provide permissions and memory type associated with
the mapping.

When the processor is operating in guest context and
nested page tables are enabled, the physical address that
is the output of x86 64 page tables is treated as a guest-
physical-address. The nested page tables translate this
guest-physical-address (GPA) to a host-physical-address
(HPA). It is the HPA that is driven out on the processor’s
memory and I/O busses. This additional level of address
translation allows the hypervisor to isolate the guest ad-
dress space.

Note that with nested paging enabled there are two dis-
tinct page tables active simultaneously:

• x86 64 page tables pointed to by guest CR3

• nested page tables pointed to by the VMCS

Intel’s implementation of nested page tables is called
Extended Page Tables (EPT). EPT is similar in structure
and functionality to x86 64 page tables. It has same
number of translation levels and it uses the the same bits
to index into the page-table-pages. For example, bits
47:39 of the GPA index into the PML4 table. It also
provides the same protection attributes as x86 64 page
tables.

However, there are some differences.

4.1 Page-table-entry

The most obvious difference between the page-table-
entries in Table 4.1 is that different bit positions are used
to express the same functionality. For example, the dirty
flag is bit 6 in the x86 64 PTE versus bit 9 in the EPT
PTE.

Some differences arise when the x86 64 PTE has
functionality that does not exist in the EPT PTE. Bit 8 in
the x86 64 PTE is used to represent mappings that are
global and are not flushed on an address space change.
There is no corresponding bit in the EPT PTE because
this functionality is not relevant in extended page tables.

The EPT PTE and x86 64 PTE also differ in their de-
fault settings. The execute permission must be explicitly
granted in an EPT PTE whereas it must be explicitly re-
voked in a x86 64 PTE.

Bit x86 64 PTE EPT PTE
0 Valid Read permission
1 Write permission Write permission
2 User/Supervisor Execute permission
3 Write-through cache Memory type[0]
4 Cache disable Memory type[1]
5 Accessed Memory type[2]
6 Dirty Ignore guest PAT
7 Page Attribute Table index Ignored
8 Global Accessed
9 Ignored Dirty
61 Execute disable Suppress #VE

Table 1: Differences between x86 64 and EPT PTEs

4.2 Capabilities
Table 4.2 highlights differences in the capabilities of
x86 64 page tables and EPT page tables.

Capability x86 64 PTE EPT PTE
2MB mapping Yes Optional
A/D bits Yes Optional
Execute-only mapping No Optional

5 Design of nested paging in bhyve

The address space of a typical guest is shown in Figure 6.
This guest is configured with 2GB of system memory
split across two memory segments: the first segment
starts at 0x00000000 and the second segment starts at
0x100000000. The region of the address space between
1GB and 4GB is called the PCI hole and is used for
addressing Memory-Mapped I/O (MMIO) devices. The
guest’s system firmware2 is mapped readonly in the ad-
dress space just below 4GB.

The nested paging implementation in bhyve is based
on the observation that the guest address space is similar
to process address space:

• Guest memory segments are backed by a vm object
that supplies zero-filled, anonymous memory.

• Guest firmware is backed by a vm object that is as-
sociated with the firmware file and is mapped read-
only.

2The guest BIOS or UEFI image

Guest Physical Address Space

High Memory

Firmware (readonly)

Local APIC

HPET

I/O APIC

PCI Hole

Low Memory

1GB

1GB

5GB

4GB

0

1GB

e
m

u
la

te
d
 b

y
 b

h
y
v
e

Figure 6: Guest address space

• The PCI hole is not mapped. Any access to it from
the guest will cause a nested page fault.

Figure 7 shows the guest address space represented as
a vmspace. The VM subsystem already had the primi-
tives needed to represent the guest address space in this
manner. However, the pmap needed modifications to
support nested paging.

6 pmap modifications

The pmap subsystem is responsible for maintaining the
page tables in a machine-dependent format. Given the
differences between the x86 64 page tables and EPT,
modifications were required to make the pmap EPT-
aware.

6.1 pmap initialization
The pmap was identified as an x86 64 or EPT pmap by
adding an enumeration for its type.

enum pmap_type {

PT_X86, /* regular x86 page tables */

PT_EPT, /* Intel’s nested page tables */

PT_RVI, /* AMD’s nested page tables */

};

struct pmap {

...

enum pmap_type pm_type;

};

guest

vmspace

vm_map_entry

OBJT_DEFAULT

size = 1GB

vm_object

start:

length:

prot:

0x00000000

1GB

readwrite

start:

length:

prot:

0xFFE00000

1MB

readonly

start:

length:

prot:

0x10000000

1GB

readwrite

OBJT_VNODE

size = 1MB

/disk/guest.efi

OBJT_DEFAULT

size = 1GB

Figure 7: Guest vmspace

Prior to the nested paging changes vmspace alloc()
called pmap pinit() to initialize the pmap. vmspace al-
loc() was modified to accept a pointer to the pmap ini-
tialization function.

struct vmspace *

vmspace_alloc(min, max, pmap_pinit_t pinit)

{

/* Use pmap_pinit() unless overridden by the caller */

if (pinit == NULL)

pinit = &pmap_pinit;

}

A new function pmap pinit type was added to initial-
ize a pmap based on its type. In particular the pmap
type is used to ensure that the kernel address space is
not mapped into nested page tables.

int

pmap_pinit_type(pmap_t pmap, enum pmap_type type, int flags)

{

pmap->pm_type = type;

if (type == PT_EPT) {

/* Initialize extended page tables */

} else {

/* Initialize x86_64 page tables */

}

}

int

pmap_pinit(pmap_t pmap)

{

return pmap_pinit_type(pmap, PT_X86, flags);

}

Finally the EPT pmap is created as follows.

int

ept_pinit(pmap_t pmap)

{

return pmap_pinit_type(pmap, PT_EPT, flags);

}

struct vmspace *

ept_vmspace_alloc(vm_offset min, vm_offset max)

{

return vmspace_alloc(min, max, ept_pinit);

}

6.2 EPT page-table-entries
Section 4.1 highlighted the differences between EPT
PTEs and x86 64 PTEs. The pmap code was written
to support the x86 64 page tables and used preprocessor
macros to represent bit fields in the PTE.

#define PG_M 0x040 /* Dirty bit */

This would not work for nested page tables because
the dirty flag is represented by bit 9 in the EPT PTE.

The bitmask is now computed at runtime depending
on the pmap type.

#undef PG_M

#define X86_PG_M 0x040

#define EPT_PG_M 0x200

pt_entry_t

pmap_modified_bit(pmap_t pmap)

{

switch (pmap->pm_type) {

case PT_X86:

return (X86_PG_M);

case PT_EPT:

return (EPT_PG_M);

}

}

Note that PG M is now undefined to force compilation
errors if used inadvertently. Functions that used PG M
were modified as follows:

void

some_pmap_func(pmap_t pmap)

{

pt_entry_t PG_M = pmap_modified_bit(pmap);

/* Rest of the function does not change */

}

The same technique was used for all fields in the EPT
PTE that are different from the x86 64 PTE with the ex-
ception of PG U. Section 6.3 discusses the special treat-
ment given to PG U.

6.3 EPT execute permission

bhyve has no visibility into how the guest uses its address
space and therefore needs to map all guest memory with
execute permission. An EPT mapping is executable if
the EPT PG EXECUTE field at bit 2 is set in the PTE.

PG U in the x86 64 PTE represents whether the map-
ping can be accessed in user-mode. PG U is at bit 2
in the x86 64 PTE. The pmap sets PG U if the address
mapped by the PTE is in the range [0, VM MAXUSER -
ADDRESS).

The guest address space is in the same numerical range
as the user address space i.e., both address spaces start at
0 and grow upwards 3. From pmap’s perspective, map-
pings in the guest address space are considered user map-
pings and PG U is set. However, bit 2 is interpreted as
EPT PG EXECUTE in the EPT context. This has the
desired effect of mapping guest memory with execute
permission.

Note that the guest still retains the ability to make its
mappings not executable by setting the PG NX bit in its
PTE.

6.4 EPT capabilities

The original pmap implementation assumed MMU sup-
port for 2MB superpages and A/D bits in the PTE.
However these features are optional in an EPT imple-
mentation.

The pm flags field was added to the pmap to record
capabilities of the EPT implementation.

#define PMAP_PDE_SUPERPAGE (1 << 0)

#define PMAP_EMULATE_AD_BITS (1 << 1)

#define PMAP_SUPPORTS_EXEC_ONLY (1 << 2)

struct pmap {

...

int pm_flags;

}

A PT X86 pmap sets pm flags to PMAP PDE -
SUPERPAGE unconditionally. A PT EPT pmap sets
pm flags based on EPT capabilities advertised by the pro-
cessor in a model specific register.

The pmap already had code to disable superpage pro-
motion globally and it was trivial to extend it to check
for PMAP PDE SUPERPAGE in pm flags.

6.5 EPT A/D bit emulation

The x86 64 page tables keep track of whether a map-
ping has been accessed or modified using the PG A and
PG M bits in the PTE.

3VM MAXUSER ADDRESS implies an upper limit of 128TB on
guest physical memory

The VM subsystem uses the accessed bit to maintain
the activity count for the page. The dirty bit is used
to determine whether the page needs to be committed
to stable storage. It is important to faithfully emulate
the A/D bits in EPT implementations that don’t support
them4.

A straightforward approach would be to assign unused
bits in the EPT PTE to represent the A/D bits. Dirty
bit emulation was done by making the mapping read-
only and setting the emulated PG M bit on a write fault.
Accessed bit emulation was done by removing the map-
ping and setting the emulated PG A bit on a read fault.

Accessed bit emulation required the mapping to be
entirely removed from the page tables with it being rein-
stated through vm fault(). Dirty bit emulation required
differentiating between true-readonly mappings versus
pseudo-readonly mappings used to trigger write faults.
The code to implement this scheme required extensive
modifications to the pmap subsystem [8].

A simpler solution is to interpret the relevant bits in
the EPT PTE as follows [9]: PG V and PG RW are now
assigned to unused bits in the EPT PTE. On the other
hand PG A maps to EPT PG READ and PG M maps
to EPT PG WRITE which are interpreted by the MMU
as permission bits.

PTE bit Interpreted by
PG V 52 A/D emulation handler
PG RW 53 A/D emulation handler
PG A 0 MMU as EPT PG READ
PG M 1 MMU as EPT PG WRITE

Clearing the accessed bit removes read permission to
the page in hardware. Similarly, clearing the modified
bit removes write permission to the page in hardware.
In both cases the rest of the PTE remains intact. Thus,
the A/D bit emulation handler can inspect PG V and
PG RW in the PTE and handle the fault accordingly.

The A/D bit emulation handler can resolve the follow-
ing types of faults:

• Read fault on 4KB and 2MB mappings

• Write fault on 4KB mappings

The handler will attempt to promote a 4KB mapping to
a 2MB mapping. It does not handle write faults on 2MB
mappings because the pmap enforces that if a superpage
is writeable then its PG M bit must also be set [10].

4Hardware support for A/D bits in EPT first appeared in the Haswell
microarchitecture

6.5.1 EPT PTE restrictions:

There is an additional issue with clearing the emulated
PG A. Recall that clearing the emulated PG A actu-
ally clears EPT PG READ and makes the mapping not
readable.

The MMU requires that if the PTE is not readable
then:

• it cannot be writeable

• it cannot be executable unless the MMU supports
execute-only mappings

These restrictions cause pessimistic side-effects when
the emulated PG A is cleared. Writeable mappings will
be removed entirely after superpage demotion if appro-
priate. Executable mappings suffer the same fate unless
execute-only mappings are allowed.

6.6 EPT TLB invalidation
The Translation Lookaside Buffer (TLB) is used to cache
frequently used address translations. The pmap subsys-
tem is responsible for invalidating the TLB when map-
pings in the page tables are modified or removed.

To facilitate this a new field was added to pmap called
pm eptgen. This field is incremented for every TLB in-
validation request. A copy of the generation number is
also cached in the virtual machine context as eptgen.
Just prior to entering the guest, eptgen is compared to
pm eptgen, and if they are not equal the EPT mappings
are invalidated from the TLB.

The pm active bitmap is used to track the cpus
on which the guest address space is active. The bit
corresponding to the physical cpu is set by bhyve on a
VM-entry and cleared on a VM-exit. If the pm active
field indicates that the nested pmap is in use on other
cpus, an Inter-Processor Interrupt (IPI) is issued to
those cpus. The IPI will trigger a VM-exit and the
next VM-entry will invalidate the TLB as previously
described.

struct pmap {

...

long pm_eptgen; /* EPT pmap generation */

};

struct vmx {

...

long eptgen[MAXCPU]; /* cached pm_eptgen */

};

7 bhyve modifications

bhyve has always relied on nested page tables to assign
memory to a guest. Prior to this work, guest memory

was allocated when the virtual machine was created and
released when it was destroyed. Guest memory could be
accessed at all times without triggering a fault.

Representing guest memory as a vm object meant that
guest memory pages could be paged out or mapped read-
only by the VM subsystem. This required bhyve to
handle nested page faults. Additionally guest memory
could be accessed only after ensuring that the underlying
vm page was resident.

7.1 Guest memory segments

A guest memory segment corresponds to a vm map en-
try backed by a vm object of type OBJT DEFAULT as
depicted in Figure 7. Each memory segment is backed
by zero-filled, anonymous memory that is allocated on-
demand and can be paged out.

7.2 EPT-violation VM-exit

If the translation for a guest physical address is not
present or has insufficient privileges then it triggers an
EPT-violation VM-exit. The VMCS provides collateral
information such as the GPA and the access type (e.g.,
read or write) associated with the EPT-violation.

If the GPA is contained within the virtual machine’s
memory segments then the VM-exit is a nested page
fault, otherwise it is an instruction emulation fault.

7.2.1 Nested page fault

The nested page fault handler first calls into the pmap
to do A/D bit emulation. If the fault was not triggered
by A/D bit emulation, it is resolved by vm fault() in the
context of the guest vmspace.

Event re-injection A hypervisor can inject events
(e.g., interrupts) into the guest using a VM-entry con-
trol in the VMCS. It is possible that the MMU could
encounter a nested page fault when it is trying to inject
the event. For example, the guest physical page contain-
ing the interrupt descriptor table (IDT) might be swapped
out.

The hypervisor needs to recognize that a nested page
fault occurred during event injection and re-inject the
event on the subsequent VM entry.

It is now trivial to verify correct behavior of bhyve in
this scenario by calling pmap remove() to invalidate all
guest physical mappings from the EPT.

7.2.2 Instruction emulation fault

An instruction emulation fault is triggered when the
guest accesses a virtual MMIO device such as the lo-
cal APIC. To handle this type of fault bhyve has to fetch
the instruction that triggered the fault before it can be
emulated. Fetching the instruction requires walking the
guest’s page tables. Thus bhyve needs to be able to ac-
cess guest memory without triggering a page fault in ker-
nel mode.

This requirement was satisfied by using an existing
VM function: vm fault quick hold pages(). This func-
tion returns the vm page associated with the GPA and
also prevents the vm page from being freed by the page
daemon. vm gpa hold() and vm gpa release() in bhyve
are the convenience wrappers on top of this.

vm fault hold() and superpages The original imple-
mentation of vm gpa hold() called vm fault hold().

vm fault hold() resolved the GPA to a vm page and
called pmap enter() to install it in the page tables. If
there was already a superpage mapping for the GPA then
it would get demoted, the new mapping would be in-
stalled and then get promoted immediately. This resulted
in an inordinate number of superpage promotions and de-
motions.

7.3 PCI passthrough
bhyve supports PCI passthrough so a guest can directly
access a physical PCI device. There were two memory-
related issues that needed to be addressed with PCI
passthrough.

7.3.1 MMIO BARs

Most PCI devices implement a set of registers to con-
trol operation and monitor status. These registers are
mapped into MMIO space by programming the device’s
Base Address Register (BAR). The PCI device only re-
sponds to accesses that fall within the address range pro-
grammed in its BAR(s).

For the guest to get direct access to a PCI device the
physical BAR has to be mapped into the guest’s address
space. This mapping is represented by a memory seg-
ment that is backed by a vm object of type OBJT SG.
These mappings are unmanaged and they do not get
paged out or promoted to superpages.

7.3.2 Direct memory access

A PCI device has the ability to access system memory in-
dependently of the processor. This is commonly referred
to as Direct Memory Access (DMA). A PCI passthrough

device is assigned to a guest and is programmed with
guest physical addresses.

This implies that bhyve needs to install the GPA to
HPA translation not just in the EPT but also in the I/O
Memory Management Unit (IOMMU).

Additionally bhyve needs to ensure that the memory
backing the guest address space is never paged out be-
cause the current generation of platforms cannot handle
I/O page faults. This is implemented by calling vm -
map wire() on all memory segments.

7.4 Tunables, sysctls and counters
The following tunables can be used to influence the EPT
features used by bhyve:

• hw.vmm.ept.use superpages: 0 disables superpages

• hw.vmm.ept.use hw ad bits: 0 forces A/D bit emu-
lation

• hw.vmm.ept.use exec only: 0 disables execute-
only mappings

The following sysctls provide nested pmap informa-
tion:

• hw.vmm.ipinum: IPI vector used to trigger EPT
TLB invalidation

• hw.vmm.ept pmap flags: pm flags field in the pmap

• vm.pmap.num dirty emulations: count of dirty bit
emulations

• vm.pmap.num accessed emulations: count of ac-
cessed bit emulations

• vm.pmap.num superpage accessed emulations:
count of accessed bit emulations for superpages

• vm.pmap.ad emulation superpage promotions: su-
perpage promotions attempted by the A/D bit emu-
lation handler

The following bhyvectl counters5 are available per
vpcu:

• Number of nested pages faults

• Number of instruction emulation faults

8 Performance

The experiments described in this section were per-
formed on a system with 32GB RAM and a Xeon E3-
1220 v3 CPU at 3.10GHz. The host and the guest were
both running FreeBSD/amd64 10.0-RELEASE.

5/usr/sbin/bhyvectl –get-stats

8.1 Nested paging overhead
In this experiment the guest was assigned 2 vcpus and
8GB memory. The vcpus were pinned to minimize
scheduling artifacts. The host memory was overprovi-
sioned to eliminate paging artifacts.

The user, system and wall-clock times for make -j4
buildworld in the guest were measured. The results are
summarized in Table 2.

Guest memory User System Wall-clock
Wired 3696 389 2207
Not wired 3704 409 2225
Not wired, A/D bit emulation 3784 432 2276

Table 2: Guest buildworld times in seconds

The buildworld time with guest memory wired estab-
lished the baseline of 2207 seconds (i.e., nested paging
disabled).

The buildworld took 18 seconds longer when guest
memory was not wired and an additional 51 seconds with
A/D bits emulated in software.

8.2 GUPS
Giga-updates per second (GUPS) is a measurement of
how frequently a computer can issue updates to ran-
domly generated memory locations [11].

In this experiment the guest was assigned 1 vcpu and
24GB memory. GUPS was configured with a 12GB
working set and CPU time was measured.

Guest superpages Host superpages CPU time in seconds
Disabled Disabled 500
Disabled Enabled 258
Enabled Disabled 267
Enabled Enabled 102

Table 3: Effect of superpages on GUPS CPU time

Table 3 demonstrates the benefit of transparent super-
page support in nested paging.

9 Future work

Nested paging is a foundational technology that will
influence the design of upcoming features in bhyve.

The vm page activity count and modified state may
be used in live migration to compute the order in which
guest memory is migrated.

Guest memory could be backed by a file which would
be useful when suspending a virtual machine to disk.

10 Acknowledgements

Alan Cox and Konstantin Belousov provided guidance
on nested page table support in pmap. John Baldwin
reviewed the use of scatter-gather VM objects for PCI
passthrough. Peter Holm tested the nested paging patch
before it was committed to FreeBSD. Leon Dang did the
artwork in this paper. We wish to thank them all.

References
[1] The FreeBSD Project

http://www.freebsd.org

[2] Intel Virtualization Technology: Hardware Support for Efficient
Processor Virtualization Intel Technology Journal, Volume 10,
Issue 3

[3] Intel 64 and IA-32 Architectures Software Developer’s Manual

[4] AMD64 Architecture Programmer’s Manual Volume 2: System
Programming

[5] AMD-V Nested Paging White Paper
http://developer.amd.com/wordpress/media/2012/

10/NPT-WP-1%201-final-TM.pdf

[6] Performance Evaluation of AMD RVI Hardware Assist
http://www.vmware.com/pdf/RVI_performance.pdf

[7] The Design and Implementation of the FreeBSD Operating
System Marshall Kirk McKusick, George V. Neville-Neil

[8] FreeBSD svn revision 254317

[9] FreeBSD svn revision 255960

[10] Practical, transparent operating system support for super-
pages Juan Navarro, Sitaram Iyer, Peter Druschel, Alan Cox
http://www.usenix.org/events/osdi02/tech/full_

papers/navarro/navarro.pdf

[11] GUPS http://en.wikipedia.org/wiki/Giga-updates_

per_second

