
Instruction caching for bhyve

Mihai Carabas, Neel Natu
{mihai,neel}@freebsd.org

AsiaBSDCon 2015
Tokyo University of Science

Tokyo, Japan
March 12 – 15, 2015



Who we are?

I Mihai Carabas
I PhD Student and Teaching Assistant at the University

POLITEHNICA of Bucharest, Romania
I DragonFly BSD (SMT aware scheduler - 2012 / Intel EPT for

vkernels - 2013)
I FreeBSD - bhyve (instruction caching - 2014 / coordinating

students in bhyve projects - current)

I Neel Natu
I principal contributor for the bhyve project (together with Peter

Grehan)
I started as a FreeBSD/mips committer



Who we are?

I Mihai Carabas
I PhD Student and Teaching Assistant at the University

POLITEHNICA of Bucharest, Romania
I DragonFly BSD (SMT aware scheduler - 2012 / Intel EPT for

vkernels - 2013)
I FreeBSD - bhyve (instruction caching - 2014 / coordinating

students in bhyve projects - current)

I Neel Natu
I principal contributor for the bhyve project (together with Peter

Grehan)
I started as a FreeBSD/mips committer



Context

I Hardware Assisted Virtualization
I a new CPU privilege level
I memory virtualization (EPT / NPT)

I What about controlling the APIC from the VM?
I each control register access traps in the hypervisor
I the hypervisor needs to emulate that access



Context

I Hardware Assisted Virtualization
I a new CPU privilege level
I memory virtualization (EPT / NPT)

I What about controlling the APIC from the VM?
I each control register access traps in the hypervisor
I the hypervisor needs to emulate that access



Steps for handling a trap in the hypervisor

I Fetch the instruction
I manually walking the Guest OS page table to find the physical

address
I map the address in the hypervisor address space and copy the

instruction

I Decode the instruction
I variable length instructions for x86 platforms

I Emulate the instruction
I execute the instruction in the name of the VM

I Any solution to jump over some of them?



Steps for handling a trap in the hypervisor

I Fetch the instruction
I manually walking the Guest OS page table to find the physical

address
I map the address in the hypervisor address space and copy the

instruction

I Decode the instruction
I variable length instructions for x86 platforms

I Emulate the instruction
I execute the instruction in the name of the VM

I Any solution to jump over some of them?



Steps for handling a trap in the hypervisor

I Fetch the instruction
I manually walking the Guest OS page table to find the physical

address
I map the address in the hypervisor address space and copy the

instruction

I Decode the instruction
I variable length instructions for x86 platforms

I Emulate the instruction
I execute the instruction in the name of the VM

I Any solution to jump over some of them?



Steps for handling a trap in the hypervisor

I Fetch the instruction
I manually walking the Guest OS page table to find the physical

address
I map the address in the hypervisor address space and copy the

instruction

I Decode the instruction
I variable length instructions for x86 platforms

I Emulate the instruction
I execute the instruction in the name of the VM

I Any solution to jump over some of them?



Identify an instruction for caching

I Cached object: struct vie

I Unique identifier (key)

I VM ID: struct vm *
I instruction address (RIP)
I pointer to the page table (CR3)

I Stored in struct vie cached



Identify an instruction for caching

I Cached object: struct vie

I Unique identifier (key)
I VM ID: struct vm *
I instruction address (RIP)
I pointer to the page table (CR3)

I Stored in struct vie cached



Integrating caching mechanism in the emulation code

I New interface provided by vmm instruction cache.h

I vm inst cache add
I adds the instruction to the cache
I mark as read-only the pages related to the instruction

I vm inst cache delete
I removes an instruction from cache
I solves the write page fault

I vm inst cache lookup



Integrating caching mechanism in the emulation code

I New interface provided by vmm instruction cache.h

I vm inst cache add
I adds the instruction to the cache
I mark as read-only the pages related to the instruction

I vm inst cache delete
I removes an instruction from cache
I solves the write page fault

I vm inst cache lookup



Integrating caching mechanism in the emulation code

I New interface provided by vmm instruction cache.h

I vm inst cache add
I adds the instruction to the cache
I mark as read-only the pages related to the instruction

I vm inst cache delete
I removes an instruction from cache
I solves the write page fault

I vm inst cache lookup



Integrating caching mechanism in the emulation code

I New interface provided by vmm instruction cache.h

I vm inst cache add
I adds the instruction to the cache
I mark as read-only the pages related to the instruction

I vm inst cache delete
I removes an instruction from cache
I solves the write page fault

I vm inst cache lookup



Caching flow

vm_handle_inst_emul 



Caching flow

vm_handle_inst_emul 

vm_inst_cache_lookup 



Caching flow

vm_handle_inst_emul 

vm_inst_cache_lookup 

vmm_fetch_instruction 

vmm_decode_instruction 

Not found 



Caching flow

vm_handle_inst_emul 

vm_inst_cache_lookup 

vmm_fetch_instruction 

vmm_decode_instruction 

vm_inst_cache_add 

struct vie 
(the decoded instruction) 

Not found 



Caching flow

vm_handle_inst_emul 

vm_inst_cache_lookup 

vmm_fetch_instruction 

vmm_decode_instruction 

vm_inst_cache_add 

struct vie 
(the decoded instruction) 

Not found Found 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

Lock the cache 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 

No 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

inst_cache_delete 

Lock the cache 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 

Again 

No 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

inst_cache_delete 

Lock the cache 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 

Again 

KERN_SUCCESS ? 

No 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

inst_cache_delete 

Lock the cache 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 

Again 

KERN_SUCCESS ? 

SUCCESS 

No Yes 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

inst_cache_delete 

Lock the cache 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 

Again 

KERN_SUCCESS ? 

EFAULT SUCCESS 

No No Yes 



Cache invalidation flow

vm_handle_paging 

Page Fault 

vm_fault 

inst_cache_delete 

Lock the cache 

Is cache 
locked? 

KERN_PROTECTION_FAILURE 

Again 

Unlock the 
cache 

KERN_SUCCESS ? 

EFAULT SUCCESS 

Yes 

No No Yes 



Efficiency evaluation

I Micro-benchmarking
I kernel module accessing the LAPIC ID in a tight loop
I measure the average access time
I 10500 ticks without instruction caching
I 6700 ticks with it (30% improvement)

I Real world workloads
I simple loop running in user space and make buildworld in

VM
I measure the time that needs to finish the workload (time

command)
I measure the cache efficiency (hits, misses) (VMM STAT *

custom counters)



Efficiency evaluation

I Micro-benchmarking
I kernel module accessing the LAPIC ID in a tight loop
I measure the average access time
I 10500 ticks without instruction caching
I 6700 ticks with it (30% improvement)

I Real world workloads
I simple loop running in user space and make buildworld in

VM
I measure the time that needs to finish the workload (time

command)
I measure the cache efficiency (hits, misses) (VMM STAT *

custom counters)



Real world cache efficiency

Table: CPU intensive bash script

Number of instruction cache vCPU0 vCPU1

hits 699.519 840,485
insertions 10.395 5,743
evictions[0] 7.139 8.926
evictions[1] 0 0
evictions[2] 0 0
evictions[3] 0 0

Table: make buildworld -j2

Number of instruction cache vCPU0 vCPU1

hits 19.204.630 12.930.500
insertions 8.688.733 9.051.295
evictions[0] 8.563.694 9.173.381
evictions[1] 1.131 1.457
evictions[2] 0 0
evictions[3] 0 0



Speed-up for running time

Table: CPU intensive bash script

hw.vmm.instruction cache time spent in execution (s)

1 225
0 230

Table: make buildworld -j2

hw.vmm.instruction cache time spent in execution (s)

1 13900
0 13938



Related work

I KVM driver isn’t using any caching technique

I there exists something in the fetch part (pre-fetch the
instructions bytes in advanced)

I KVM community opinion as stated in a KVM-Intel
presentation from 2012

I they want to rely on the hardware only
I all the interrupt handling in hardware (virtualize the APIC

without VM exists)
I a VM exit is too expensive

I instruction emulation will still be used for other devices
models (e.g. HPET, AHCI)



Related work

I KVM driver isn’t using any caching technique

I there exists something in the fetch part (pre-fetch the
instructions bytes in advanced)

I KVM community opinion as stated in a KVM-Intel
presentation from 2012

I they want to rely on the hardware only
I all the interrupt handling in hardware (virtualize the APIC

without VM exists)
I a VM exit is too expensive

I instruction emulation will still be used for other devices
models (e.g. HPET, AHCI)



Related work

I KVM driver isn’t using any caching technique

I there exists something in the fetch part (pre-fetch the
instructions bytes in advanced)

I KVM community opinion as stated in a KVM-Intel
presentation from 2012

I they want to rely on the hardware only
I all the interrupt handling in hardware (virtualize the APIC

without VM exists)
I a VM exit is too expensive

I instruction emulation will still be used for other devices
models (e.g. HPET, AHCI)



Conclusions

I Cache the emulated instructions in order to decrease the time
spent in the hypervisor

I Handled corner cases like contention on the VM page table
without using a big lock

I Theoretical good results (e.g. 30% improvement of the
average access time)

I Didn’t find a real world workload to benefit from this
mechanism

Thank you for your attention!
ask questions


