
The Release Engineering of FreeBSD 4.4

Murray Stokely murray@FreeBSD.org

Wind River Systems

Abstract
This paper describes the approach used by the FreeBSD re-
lease engineering team to make production-quality releases
of the FreeBSD operating system. It details the methodol-
ogy used for the release of FreeBSD 4.4 and describes the
tools available for those interested in producing customized
FreeBSD releases for corporate rollouts or commercial pro-
ductization.

1 Introduction

The development of FreeBSD is a very open process.
FreeBSD is comprised of contributions from thousands of
people around the world. The FreeBSD Project provides
anonymous CVS[1] access to the general public so that
others can have access to log messages, diffs between de-
velopment branches, and other productivity enhancements
that formal source code management provides. This has
been a huge help in attracting more talented developers
to FreeBSD. However, I think everyone would agree that
chaos would soon manifest if write access were opened
up to everyone on the Internet. Therefore, only a “se-
lect” group of nearly 300 people are given write access to
the CVS repository. These committers[6] are responsible
for the bulk of FreeBSD development. An elected core-
team[7] of very senior developers provides some level of
direction over the project.

The rapid pace of FreeBSD development leaves little
time for polishing the development system into a produc-
tion quality release. To solve this dilemma, development
continues on two parallel tracks. The main development
branch is the HEAD or trunk of our CVS tree, known
as FreeBSD-CURRENT. A more stable branch is main-
tained, known as FreeBSD-STABLE. Both branches live in
a master CVS repository in California and are replicated
via CVSup[2] to mirrors all over the world. FreeBSD-
CURRENT[8] is the “bleeding-edge” of FreeBSD devel-
opment where all new changes first enter the system.
FreeBSD-STABLE is the development branch from which
major releases are made. Changes go into this branch at a

different pace, and with the general assumption that they
have first gone into FreeBSD-CURRENT and have been
thoroughly tested by our user community.

In the interim period between releases, nightly snap-
shots are built automatically by the FreeBSD Project build
machines and made available for download from ftp:
//stable.FreeBSD.org. The widespread availabil-
ity of binary release snapshots, and the tendency of our
user community to keep up with -STABLE development
with CVSup and “make world”[8] helps to keep FreeBSD-
STABLE in a very reliable condition even before the qual-
ity assurance activities ramp up pending a major release.

Bug reports and feature requests are continuously sub-
mitted by users throughout the release cycle. Problem
reports are entered into our GNATS[9] database through
email, the send-pr(1) application, or via a web-based form.
In addition to the multitude of different technical mailing
lists about FreeBSD, the FreeBSD quality-assurance mail-
ing list freebsd-qa@FreeBSD.org provides a forum
for discussing the finer points of release-polishing.

To service our most conservative users, individual re-
lease branches were introduced with FreeBSD 4.3. These
release branches are created shortly before a final release
is made, and after the release goes out only the most crit-
ical security fixes are merged onto the release branch. In
addition to source updates via CVS, binary patchkits are
available to keep systems on the RELENG 4 3 and RE-
LENG 4 4 branches updated.

Section 2 discussed the different phases of the release
engineering process leading up to the actual system build
and section 3 describes the actual build process. Section 4
describes how the base releases may be extended by third-
parties and Section 5 details some of the lessons learned
through the release of FreeBSD 4.4. Finally, section 6
presents future directions of development.

2 Release Process

New releases of FreeBSD are released from the -STABLE
branch at approximately four month intervals. The



Figure 1: FreeBSD Development Branches

�� ��

�� ��
3.0-RELEASE

�

H
E
A
D

5.0-CURRENT

4.0-RELEASE

4.0-CURRENT

3.1-RELEASE 3.2R 3.3R 3.4R 3.5R 3.5.1R 3.x-STABLE� � � � � �

4.1R 4.1.1R 4.2R 4.3R 4.4R 4.x-STABLE� � � � � �
�

�

�

�

RELENG 4 3 RELENG 4 4

� �

RELENG 3

RELENG 4

FreeBSD release process begins to ramp up 45 days be-
fore the anticipated release date when the release engineer
sends an email to the development mailing lists to remind
developers that they only have 15 days to integrate new
changes before the code freeze. During this time, many
developers perform what have become known as “MFC
sweeps”. MFC stands for “Merge From CURRENT” and it
describes the process of merging a tested change from our
-CURRENT development branch to our -STABLE branch.

2.1 Code Review

Thirty days before the anticipated release, the source repos-
itory enters a “code slush”. During this time, all commits
to the -STABLE branch must be approved by the release
engineer (re@FreeBSD.org). The kinds of changes that
are allowed during this 15 day period include :

� Bug-fixes.

� Documentation updates.

� Security-related fixes of any kind.

� Minor changes to device drivers, such as adding new
device IDs.

� Any additional change that the release engineering
team feels is justified given the potential risk.

After the first 15 days of the code slush, a release candi-
date is released for widespread testing and the code enters a
“code freeze” where it becomes much harder to justify new
changes to the system unless a serious bug-fix or security

issue is involved. During the code freeze, at least one re-
lease candidate is released per week until the final release
is ready. During the days leading up to the final release,
the release engineering team is in constant communication
with the security-officer team, the documentation maintain-
ers, and the ports managers, to make sure that all of the
different components required for a successful release are
available.

2.2 Final Release Checklist

When several release candidates have been made available
for widespread testing and all major issues have been re-
solved, the final release “polishing” can begin.

Creating the Release Branch

As described in the introduction, the RELENG X Y release
branch is a relatively new addition to our release engineer-
ing methodology. The first step in creating this branch is to
ensure that you are working with the newest version of the
RELENG X sources that you want to branch from.

/usr/src# cvs up -rRELENG_4 -P -d

The next step is to create a branch point tag1, so that diffs
against the start of the branch are easier with CVS :

/usr/src# cvs rtag -rRELENG_4 RELENG_4_4_BP src

1A “tag” is CVS vernacular for a label that identifies the source at a
specific point in time. By tagging the tree, we ensure that future release
builders will always be able to use the same source we used to create the
official FreeBSD Project releases.



And then a new branch tag is created with :

/usr/src# cvs rtag -b -rRELENG_4_4_BP \
RELENG_4_4 src

The RELENG * tags are restricted for use by the CVS-
meisters and release engineers.

Bumping up the Version Number

Before the final release can be tagged, built, and released,
the following files need to be modified to reflect the correct
version of FreeBSD :

� src/sys/conf/newvers.sh

� src/sys/sys/param.h

� src/release/doc/share/sgml/release.
ent

� src/gnu/usr.bin/groff/tmac/mdoc.
local

� doc/share/sgml/freebsd.ent

� doc/en_US.ISO8859-1/books/handbook/
mirrors/chapter.sgml

� www/en/releases/*

� src/UPDATING

Creating the Release Tags

When the final release is ready, the following command
will create the RELENG 4 4 0 RELEASE tag.

/usr/src# cvs rtag -rRELENG_4_4 \
RELENG_4_4_0_RELEASE src

The Documentation and Ports managers are responsible
for tagging the respective trees with the RELEASE 4 4 0
tag.

Occasionally, a last minute fix may be required after
the final tags have been created. In practice this isn’t a
problem, since CVS allows tags to be manipulated with
cvs tag -d tagname filename. It is very impor-
tant that any last minute changes be tagged appropriately
as part of the release. FreeBSD releases must always be
reproduceable. Local hacks in the release engineer’s envi-
ronment are not acceptable.

3 Release Building

FreeBSD releases can be built by anyone with a fast ma-
chine and access to a source repository2. The only special
requirement is that the vn3 device must be available. If
the device is not loaded into your kernel, then the kernel
module should be automatically loaded when vnconfig
is executed during the boot media creation phase. All of
the tools necessary to build a release are available from
the CVS repository in src/release. These tools aim
to provide a consistent way to build FreeBSD releases. A
complete release can actually be built with only a single
command, including the creation of ISO images suitable
for burning to CDROM, installation floppies, and an FTP
install directory. This command is aptly named “make re-
lease”.

3.1 “make release”

To successfully build a release, you must first populate
/usr/obj by running “make world” or simply “make
buildworld”. The release target requires several variables
be set properly to build a release :

� CHROOTDIR - The directory to be used as the chroot
environment for the entire release build.

� BUILDNAME - The name of the release to be built.

� CVSROOT - The location of a CVS repository.

� RELEASETAG - The CVS tag corresponding to the
release you would like to build.

There are many other variables available to customize
the release build. Most of these variables are documented
at the top of src/release/Makefile. The exact com-
mand used to build the official FreeBSD 4.4 (x86) release
was :

make release CHROOTDIR=/local3/release \
BUILDNAME=4.4-RELEASE \
CVSROOT=/host/cvs/usr/home/ncvs \
RELEASETAG=RELENG_4_4_0_RELEASE

The release Makefile can be broken down into several
distinct steps.

� Creation of a sanitized system environment in a sepa-
rate directory hierarchy with “make installworld”.

� Checkout from CVS of a clean version of the system
source, documentation, and ports into the release build
hierarchy.

2That should be everyone, since we offer anonymous CVS! See
http://www.FreeBSD.org/handbook for details.

3On -CURRENT, this device has been replaced by the new mdmemory
disk driver.



� Population of /etc and /dev in the chrooted envi-
ronment.

� chroot into the release build hierarchy, to make it
harder for the outside environment to taint this build.

� “make world” in the chrooted environment.

� Build of Kerberos-related binaries.

� Build ’GENERIC’ kernel.

� Creation of a staging directory tree where the binary
distributions will be built and packaged.

� Build and installation of the documentation toolchain
needed to convert the documentation source (SGML)
into HTML, and text documents that will accompany
the release.

� Build and installation of the actual documentation
(user manuals, tutorials, release notes, hardware com-
patibility lists, etc...)

� Build of the “crunched” binaries used for installation
floppies.

� Package up distribution tarballs of the binaries and
sources.

� Create the boot media and a fixit floppy.

� Create FTP installation hierarchy.

� (optionally) Create ISO images for CDROM/DVD
media.

3.2 Contributed Software (“ports”)

The FreeBSD Ports collection[4] is a collection of nearly
6,000 third-party software packages available for FreeBSD.
The ports team (portmgr@FreeBSD.org) is respon-
sible for maintaining a consistent ports tree that can be
used to create the binary packages that accompany a given
FreeBSD release.

The Ports Cluster

In order to provide a consistent set of third-party packages
for FreeBSD releases, every port is built in a separate ch-
root environment, starting with an empty /usr/local
and /usr/X11R6. The requisite dependencies are in-
stalled as packages before the build proceeds. This en-
forces consistency in the package build process. By starting
the package build in a pristine environment, we can assure
that the package metadata (such as required dependencies)
is accurate, and so we will never generate packages that
might work on some systems and not on others depending
on what software was previously installed.

The “Ports Cluster”[3] for the x86 architecture currently
consists of a master node (Dual Pentium III 733Mhz) and 8
slave nodes (Pentium III 800Mhz) to do the actual package
builds. With this configuration, a complete package build
takes over 24 hours. These machines are co-located with
the other FreeBSD Project equipment at Yahoo’s corner of
Exodus in Santa Clara, CA.

The “Ports Cluster” for the Alpha architecture consists of
7 PWS 500A machines donated by Compaq and co-located
in the BSD Lab at Wind River Systems.

The Package Split

For FreeBSD 4.4 over 4.1 gigabytes of packages were cre-
ated. This causes a problem for CDROM distributions
because we would like to ship as many packages as pos-
sible without making the user insert another disc to sat-
isfy dependencies. The solution is to create “clusters”
of like packages with similar dependencies onto specific
discs. The package split is performed by the portmgr@
FreeBSD.org team in coordination with the wishes of
the general user community with respect to which pack-
ages get to appear on the first CD.

3.3 Release ISOs

Starting with FreeBSD 4.4, the FreeBSD Project decided
to release all four ISO images that were previously sold on
the BSDi/Wind River Systems “official” CDROM distribu-
tions. Each of the four discs must contain a README.TXT
file that explains the contents of the disc, a CDROM.INF
file that provides meta-data for the disc so that sysinstall
can validate and use the contents, and a filename.txt
file that provides a manifest for the disc. This manifest can
be created with a simple command :

/stage/cdrom# find . -type f |
sed -e ’s/\ˆ.\///’ | sort > filename.txt

The specific requirements of each CD is outlined below.

Disc #1

The first disc is almost completely created by “make re-
lease”. The only changes that should be made to the
disc1 directory are the addition of a ’tools’ directory,
XFree86, and as many popular third party software pack-
ages as will fit on the disc. The ’tools’ directory contains
software that allow users to create installation floppies from
other operating systems. This disc should be made bootable
so that users of modern PCs do not need to create installa-
tion floppy disks.

If an alternate version of XFree86 is to be provided,
then sysinstall must be updated to reflect the new loca-
tion and installation instructions. The relevant code is con-
tained in src/release/sysinstall on -STABLE or



src/usr.sbin/sysinstall on -CURRENT. Specif-
ically, the files dist.c, menus.c, and config.c will
need to be updated.

Disc #2

The second disc is also largely created by “make release”.
This disc contains a “live filesystem” that can be used from
sysinstall to troubleshoot a FreeBSD installation. This disc
should be bootable and should also contain a compressed
copy of the CVS repository in the CVSROOT directory and
commercial software demos in the commerce directory.

Discs #3 and 4

The remaining two discs contains additional software pack-
ages for FreeBSD. The packages should be clustered so that
a package and all of its dependencies are included on the
same disc.

4 Extensibility

Although FreeBSD forms a complete operating system,
there is nothing that forces you to use the system exactly
as we’ve packaged it up for distribution. We have tried to
design the system to be as extensible as possible so that it
can serve as a platform that other commercial products can
be built on top of. The only “rule” we have about this is
that if you’re going to distribute FreeBSD with non-trivial
changes, we encourage you to document your enhance-
ments! The FreeBSD community can only help support
users of the software we provide. We certainly encourage
innovation in the form of advanced installation and admin-
istration tools, for example, but we can’t be expected to
answer questions about it.

4.1 Creating Customized Boot floppies

Many sites have complex requirements that may require ad-
ditional kernel modules or userland tools be added to the
installation floppies. The “quick and dirty” way to accom-
plish this would be to modify the staging directory of an
existing “make release” build hierarchy :

� Apply patches or add additional files inside the chroot
release build directory.

� rm ${CHROOTDIR}/usr/obj/usr/src/\
release/release.[48]

� rebuild sysinstall, the kernel, or whatever parts of the
system your change affected.

� chroot ${CHROOTDIR} ./mk release.4

� chroot ${CHROOTDIR} ./mk release.8

New release floppies will then be located in
$ � CHROOTDIR � /R/stage/floppies.

Alternatively, the “boot.flp” make target can
be called or the filesystem creation script,
src/release/scripts/doFS.sh may be invoked
directly.

Local patches may also be supplied to a release build by
defining the LOCAL PATCH variable in “make release”.

4.2 Scripting Sysinstall

The FreeBSD system installation and configuration tool,
sysinstall, can be scripted to provide automated installs for
large sites. This functionality can be used in conjunction
with Intel’s PXE[13] to bootstrap systems from the net-
work, or via custom boot floppies with a sysinstall script.
An example sysinstall script is available in the CVS tree as
src/release/sysinstall/install.cfg.

5 Lessons Learned from FreeBSD 4.4

The release engineering process for 4.4 formally began on
August 1st, 2001. After that date all commits to the RE-
LENG 4 branch of FreeBSD had to be explicitly approved
by re@FreeBSD.org. The first release candidate for the
x86 architecture was release on August 16, followed by 4
more release candidates leading up to the final release on
September 18th. The security officer was very involved
in the last week of the process as several security issues
were found in the earlier release candidates. A total of over
500 emails were sent to re@FreeBSD.org in little over
a month.

Our user community has made it very clear that the secu-
rity and stability of a FreeBSD release should not be sacri-
ficed for any self-imposed deadlines or target release dates.

The FreeBSD Project has grown tremendously over its
lifetime and the need for standardized release engineering
procedures has never been more apparent. This will be-
come even more important as FreeBSD is ported to new
platforms.

6 Future Directions

It is imperative for our release engineering activities to
scale with our growing userbase. Along these lines we are
working very hard to document the procedures involved in
producing FreeBSD releases.

� Parallelism - Certain portions of the release build are
actually “embarrassingly parallel”. Most of the tasks
are very I/O intensive, so multiple high-speed disk
drives is actually more important than multiple pro-
cessors in speeding up the “make release” process.
If multiple disks are used for different hierarchies in
the chroot environment, then the CVS checkout of the



Figure 2: Project Lifetime PR Statistics [10]

�

�����

�������

�������

�������

�������

	������

	������

��
�
�� ��
�
�� ��
�
�� ��
�
�
 ��
�
�� ��
�
�
 ������� ������� �������

�������
� �������������
������ "!�#����

$&%�$'�(���������

ports and doc trees can be happening simultaneously
to the “make world” on another disk. Using a RAID
solution (hardware or software) can significantly de-
crease the overall build time.

� Cross-building releases - Building IA-64 or Alpha re-
leases on x86 hardware? “make TARGET=ia64 re-
lease”

� Regression Testing - We need better automated cor-
rectness testing for FreeBSD.

� Installation Tools - Our installation program has long
since outlived its intended life span. Several projects
are under development to provide a more advanced
installation mechanism. One of the most promising
is the libh project[5] which aims to provide an intel-
ligent new package framework and GUI installation
program.

Acknowledgments

I would like to thank Jordan Hubbard for giving me the
opportunity to take on some of the release engineering re-
sponsibilities for FreeBSD 4.4 and also for all of his work
throughout the years making FreeBSD what it is today. Of
course the release wouldn’t have been possible without all
of the release-related work done by Satoshi Asami, Steve
Price, Bruce Mah, Nik Clayton, David O’Brien, Kris Ken-
naway, John Baldwin, and the rest of the FreeBSD devel-
oper community. I would also like to thank Rod Grimes,

Poul-Henning Kamp, and others who worked on the release
engineering tools in the very early days of FreeBSD.

This paper was influenced by release engineering doc-
uments from the CSRG[14], the NetBSD Project[11],
and John Baldwin’s proposed release engineering process
notes[12].

References

[1] CVS – Concurrent Versions System http://www.
cvshome.org

[2] CVSup – The CVS-Optimized General Pur-
pose Network File Distribution System
http://www.polstra.com/projects/
freeware/CVSup/

[3] http://bento.FreeBSD.org

[4] FreeBSD Ports Collection http://www.
FreeBSD.org/ports/

[5] The libh Project http://www.FreeBSD.org/
projects/libh.html

[6] FreeBSD Commiters http://www.FreeBSD.
org/doc/en_US.ISO8859-1/articles/
contributors/staff-committers.html

[7] FreeBSD Core-Team http://www.FreeBSD.
org/doc/en_US.ISO8859-1/articles/
contributors/staff-core.html’



[8] FreeBSD Handbook http://www.FreeBSD.
org/handbook

[9] GNATS : The GNU Bug Tracking System http://
sources.redhat.com/gnats/

[10] Poul-Henning’s FreeBSD PR Statistics http://
phk.freebsd.dk/Gnats/

[11] NetBSD Developer Documentation: Release
Engineering http://www.netbsd.org/
developers/releng/index.html

[12] John Balwin’s FreeBSD Release Engineering Pro-
posal http://people.freebsd.org/˜jhb/
docs/releng.txt

[13] PXE Jumpstart Guide http://www.freebsd.
org/doc/en_US.ISO8859-1/articles/
pxe/index.html

[14] Marshall Kirk McKusick, Michael J. Karels, and
Keith Bostic The Release Engineering of 4.3BSD


